
What Do Developers Discuss about Code
Comments?

Pooja Rani∗, Mathias Birrer∗, Sebastiano Panichella†, Mohammad Ghafari‡, Oscar Nierstrasz∗

∗Software Composition Group, University of Bern
Bern, Switzerland
� scg.unibe.ch/staff

† Zurich University of Applied Science (ZHAW), Switzerland
panc@zhaw.ch

‡ University of Auckland, New Zealand
m.ghafari@auckland.ac.nz

Abstract—Code comments are important for program compre-
hension, development, and maintenance tasks. Given the varying
standards for code comments, and their unstructured or semi-
structured nature, developers get easily confused (especially
novice developers) about which convention(s) to follow, or what
tools to use while writing code documentation. Thus, they post
related questions on external online sources to seek better
commenting practices. In this paper, we analyze code comment
discussions on online sources such as Stack Overflow (SO) and
Quora to shed some light on the questions developers ask about
commenting practices. We apply Latent Dirichlet Allocation
(LDA) to identify emerging topics concerning code comments.
Then we manually analyze a statistically significant sample set
of posts to derive a taxonomy that provides an overview of the
developer questions about commenting practices.
Our results highlight that on SO nearly 40% of the questions
mention how to write or process comments in documentation
tools and environments, and nearly 20% of the questions are
about potential limitations and possibilities of documentation
tools to add automatically and consistently more information
in comments. On the other hand, on Quora, developer questions
focus more on background information (35% of the questions)
or asking opinions (16% of the questions) about code comments.
We found that (i) not all aspects of comments are covered
in coding style guidelines, e.g., how to add a specific type of
information, (ii) developers need support in learning the syntax
and format conventions to add various types of information
in comments, and (iii) developers are interested in various
automated strategies for comments such as detection of bad
comments, or verify comment style automatically, but lack tool
support to do that.

Index Terms—Mining online sources, Stack Overflow, Quora,
Code Comment analysis, Software documentation

I. INTRODUCTION

Recent studies provide evidence that developers consider code
comments to be the most important type of documentation
for understanding code [1]. Code comments are written us-
ing natural language sentences, and their syntax is neither
imposed by a programming language’s grammar nor checked
by its compiler. Consequently, developers follow various con-
ventions in writing code comments [2]. These conventions
vary across development environments as developers embed

different kinds of information in different environments [3],
[4], [5]. This makes it hard to write, evaluate, and maintain
the quality of comments (especially for new developers) as the
software evolves [6], [7].

To help developers in writing readable, consistent, and main-
tainable comments, programming language communities, and
large organizations, such as Google and Apache Software
Foundation provide coding style guidelines that also include
comment conventions [8], [9], [10], [11]. However, the avail-
ability of multiple syntactic alternatives, the freedom to adopt
personalized style guidelines,1 and the lack of tools for as-
sessing comments, make developers confused about which
commenting practice to adopt [6], or how to use a tool to
write and verify comments.

To resolve potential confusion, and to learn best commenting
practices, developers post questions on various Q&A forums.
Stack Overflow (SO) is one of the most popular Q&A forums,
enabling developers to ask questions to experts and other
developers.2 Barua et al. determined the relative popularity of
a topic across all SO posts and discovered the “coding style”
topic as the most popular [12]. Similarly, Quora3 is another
widely adopted by developers to discuss software development
aspects [13]. However, what specific problems developers re-
port about code comments such as do they face challenges due
to multiple writing conventions or development environments,
or which commenting conventions experts recommend to them
on these sources, is unknown.

Therefore, we analyze commenting practices discussions on
SO and Quora, to shed light on these concerns. Particularly,
we formulate the following research questions:

1) RQ1: What high-level topics do developers discuss about
code comments? Our interest is to identify high-level
concerns and themes developers discuss about code com-
ments on Q&A platforms.

1https://github.com/povilasb/style-guides/blob/master/cpp.rst, accessed on Jun, 2021
2https://www.stackoverflow.com
3https://www.quora.com

ar
X

iv
:2

10
8.

07
64

8v
1

 [c
s.S

E]
 1

7
A

ug
 2

02
1

http://scg.unibe.ch/staff/
mailto:panc@zhaw.ch
mailto:m.ghafari@auckland.ac.nz
https://github.com/povilasb/style-guides/blob/master/cpp.rst
https://www.stackoverflow.com
https://www.quora.com

2) RQ2: What type of questions do developers ask about
code comments? Our aim is to identify the type of
questions developers frequently ask e.g., questions such
as how to write comments, or what is the problem in
their comments. In addition, we aim to identify which
platform they prefer to ask which type of questions.

3) RQ3: What information needs do developers seek about
commenting practices? We investigate SO and Quora
questions in more detail (including body, tags, comments
of the question) to identify the challenges and needs
related to writing comments in various development en-
vironments.

4) RQ4: What specific commenting conventions are recom-
mended by developers? We investigate the answers to
specific kinds of questions, asking about best practices, to
collect commenting conventions suggested by developers.

For each research question, we analyze developer questions at
various levels, such as focusing only on the title of the ques-
tion, the whole question body, or the answers to the question.
The rationale behind each level is that future approaches for
identifying and automating developers’ intent, needs, and rec-
ommendations can focus on that specific aspect of comments
they want to evaluate and improve. Our manually labeled
questions for the research questions RQ2, RQ3, and RQ4 can
serve as an initial dataset for building such approaches.

To answer RQ1 we use a semi-automated approach involving
LDA [14], a well-known topic modeling technique used in
software engineering, to explore topics from the SO and Quora
posts [12], [15], [16], [17]. We then analyze a statistically
significant sample set of posts from SO and Quora posts
and derive a taxonomy of types of questions and information
needs of developers regarding comments to answer RQ2 and
RQ3 respectively. To answer RQ4, we manually analyze the
questions asked about best practices on the selected sources
and extract various commenting conventions recommended by
developers in their answers.

Our results show that developers frequently ask questions
on Q&A forums to discuss the best syntactic conventions to
write comments, ways to retrieve comments from the code or
background information about various comment conventions.
Specifically, the questions about how to write or process
comments (implementation strategies) in a language, tool,
or IDE are frequent on SO. On the other hand, questions
about background information concerning various conventions
or opinions on the best commenting practices are frequently
posted on Quora. Our analysis shows that developers are
interested in embedding various kinds of information, such
as code examples and media (e.g., images), in their code
comments but lack the strategies and standards to write them.
We also observe a considerable proportion of questions where
developers ask about the ways of automating the commenting
workflow with documentation tools or IDE features to foster
commenting practices and assess them. This shows the in-

creasing need to improve the state of commenting tools by
emphasizing better documentation of the supported features
and by providing their seamless integration in the development
environments.

The contributions of this paper are:

1) an empirically-validated taxonomy of comment-related
concerns collected from multiple sources;

2) a first study to investigate the Quora platform for code
comments; and

3) a publicly available dataset including all validated data,
and steps to reproduce the study in the Replication
Package (RP) [18].

Paper structure. In section II we detail the study definition
and methodology adopted to answer our research questions.
In section III, we present our results and insights. We discuss
our findings and their implications in section IV. We recap
the threats to validity in section V, summarize related work in
section VI, and conclude the paper in section VII.

II. STUDY DESIGN

The goal of this study is to investigate information needs,
practices, and problems developers discuss on various online
Q&A platforms about code comments. Figure 1 illustrates the
steps followed to answer the research questions.

Preprocess dataset

Extract question title

Review others'
classification

Evaluator accept/reject
reviews

Review sample posts
 from each topic

Discuss topics

Relevant topics

RQ1

Sample selection

Stack Overflow Quora

19, 700
posts

3, 671 posts

Relevant topicsRelevant tags

644 posts 570 posts

Classify assigned postsRun LDA

RQ2

Discuss conflicts

Data Collection

Analysis Method

RQ3

Best Practices
posts

RQ4

Comment
Recommendations

First Dimension
Taxonomy

Second Dimension
Taxonomy

Analysis

Validation

Data preparation

Results for RQs

Data sources

Tag selection

Data extraction

Fig. 1. Research Approach to answer research questions

A. Data collection

SO. To identify the relevant discussions concerning comment-
ing practices, we used an approach similar to Aghajani [19].
We selected the initial keywords (Ik) such as comment,
convention, and doc to search the SO tags page [19].4 The
search converged to a set of 70 potentially relevant tags,
referred to as initial tags (It).

Two authors independently examined all the tags, their de-
scriptions and the top ten questions in each tag, and selected
the relevant tags. We observed that certain tags are ambiguous
due to their usage in a different context, such as the comments
tag being used in many settings. For example, the tag comment
(5 710 questions on SO) contains questions about development
frameworks (e.g., Django) that provide the feature of attaching
comments to a website or other external source (478 questions
tagged with “wordpress”), or about the websites where users
add comments to the posts (512 questions tagged with “face-
book” tag). Therefore, we discarded posts where co-appearing
tags were wordpress and facebook, or django-comment. The
resulting set of tags (It) is therefore reduced to 55 tags out of
70 tags. The list of selected 55 tags is available in the RP.5

We extracted all questions tagged with at least one tag from
the It set, resulting in 19 705 non-duplicate questions. For
each question, we extracted various metadata fields such as ID,
title, body, tags, creation date, and view count from SO using
the Stack Exchange Data Explorer interface.6 The interface
facilitates the users to query all Stack Exchange sites in an
SQL-like Query language.7

Quora. Extracting data from Quora was non-trivial due to
the lack of publicly available datasets and services to access
the data, its restrictive scraping policies [20], and the absence
of a public API to access the data. Thus, to extract its data,
we implemented a web scraper in Python using selenium to
automate browsing, and BeautifulSoup to parse the HTML.8

On Quora, the notion of topics is the same as tags on SO,
so a question in Quora can be tagged with topics similar to
SO tags. Unlike the SO tag page, Quora provides neither an
index page listing all its topics, nor a list of similar topics on
a topic page. We therefore used the relevant SO tags as initial
Quora topics, searched for them on the Quora topic search
interface, and obtained 29 topics, such as Code Comments,
Source Code, Coding Style. The list of all topics and their
mapping to SO tags is provided in the RP.9 We scraped all
questions with their meta-data such as URL, title, body, and
topics of each question from the identified topics, resulting in
3 671 questions in total.

4https://stackoverflow.com/tags verified on Jun 2021
5File “RP/Tags-topics.md” in the Replication package
6https://data.stackexchange.com/
7File “RP/Stack-exchange-query.md” in the Replication package
8[https://pypi.org/project/beautifulsoup4/], [https://www.selenium.dev/]
9File “RP/Tags-topics.md” in the Replication package

B. Analysis Method

Automated analysis from LDA (RQ1). LDA infers latent
discussion topics to describe text-based documents. Each
document can contain several topics, and each topic can span
several documents, thus making it possible for the LDA model
to discover ideas and themes in a corpus. We applied LDA on
the SO dataset but excluded the Quora dataset as it contains
a high number of irrelevant posts (nearly 80%) based on the
manually analyzed statistically significant sample set shown in
Table I. Additionally, as LDA uses the word frequencies and
co-occurrence frequencies across documents to build a topic
model of related words, having a high number of irrelevant
posts can impact the model quality. Since our objective is to
discover the high-level concerns developers have, we extract
only titles of the SO questions, as the title summarizes the
main concern while the body of the question adds non-relevant
information, such as details of development environment, what
the developer has tried, or sources already referred to.

To achieve reliable high-level topics from LDA, we performed
the following data-preprocessing steps on the question titles:
removal of HTML tags, code elements, punctuation and stop
words (using the Snowball stop word list10), and applied
Snowball stemming[21]. We used the data management tool,
Makar, to prepare the data for LDA [22]. We provide the
concrete steps Makar performed to preprocess the data in
the Reproducibility section in the online appendix [18]. The
preprocessed title field of the questions served as the input
documents for LDA. We used the Topic Modeling Tool [23],
a GUI for MALLET [24] that uses a Gibbs sampling algo-
rithm, and facilitates extending the results with meta-data. We
provide the input data11 used for the MALLET tool and the
output12 achieved in the RP.

LDA requires optimal values for the k, α, and β parameters
to be chosen, which depends on the type of data under
analysis, but this represents an open challenge in software
engineering tasks. Wallach et al. pointed out that choosing a
smaller k may not separate topics precisely, whereas a larger
k does not significantly vary the quality of the generated
topics [25]. Therefore, to extract distinct topics that are both
broad and high-level, we experimented with several values of
k ranging from 5 to 25, as suggested by Linares-Vásquez et
al. [26]. We assessed the optimal value of k by analyzing
the topic distribution, coherence value (large negative values
indicate that words do not co-occur together often)13 [27],
and perplexity score (a low value means the model correctly
predicts unseen words) [28] for each value of k from the given
range [29]. This process suggested k = [10] as the most
promising value for our data (with the lowest perplexity of
-6.9 and high coherence score of -662.1) as fewer redundant
topics were selected with these values.

10http://snowball.tartarus.org/algorithms/english/stop.txt
11Folder “RP/RQ1/LDA input” in the Replication package
12Folder “RP/RQ1/LDA output” in the Replication package
13http://mallet.cs.umass.edu/diagnostics.php

https://stackoverflow.com/tags
https://doi.org/10.5281/zenodo.3762776
https://data.stackexchange.com/
https://doi.org/10.5281/zenodo.3762776
https://pypi.org/project/beautifulsoup4/
https://www.selenium.dev/
https://doi.org/10.5281/zenodo.3762776
http://snowball.tartarus.org/algorithms/english/stop.txt
https://doi.org/10.5281/zenodo.3762776
https://doi.org/10.5281/zenodo.3762776
http://mallet.cs.umass.edu/diagnostics.php

In the next iterations, we optimized the hyperparameters α
and β by using the best average probability of assigning
a dominant topic to a question, inspired by the existing
studies [30]. We selected the initial values of hyperparameters
α = 50

k β = 0.01 using the de facto standard heuristics [31] but
allowed these values to be optimized by having some topics
be more prominent than others. We ran the model optimizing
after every ten iterations in total 1000 iterations. Thus, we
concluded that the best hyperparameter configuration for our
study is k = 10, α = 5, β = 0.01. As LDA does not assign
meaningful names to the topics, we manually inspected a
sample of 15 top-ranked questions under each topic to assign
topic names.

TABLE I
DATA EXTRACTED FROM SO AND QUORA SOURCES

Source Extracted
posts

Manually
analyzed

Relevant
posts

SO 19 700 644 416
Quora 3 671 565 118

Taxonomy Study (RQ2, RQ3). After extracting all posts
tagged with the relevant tags for SO, we analyzed a statistically
significant sample from all (19 700) posts, reaching a confi-
dence level of 99% and an error margin of 5%. The resulting
sample set contains 644 posts. We selected the sample posts
using a random sampling approach without replacement to
reach 644 posts. Similarly, for Quora, we selected 565 posts
for our manual analysis, as shown in Table I.

Classification: We classified the sample posts into a two-
dimensional taxonomy mapping concepts of the selected ques-
tions. The first dimension (question types) aims to answer RQ2

while the second dimension (information needs) answers RQ3.
The first dimension, inspired from an earlier SO study [32],
defines the categories concerning the kind of question, e.g.,
if a developer is asking how to do something related to
comments, what is the problem with their comments, or why
comments are written in a particular way. We renamed their
categories [32] to fit our context, e.g., their ‘What’ type of
question renamed to ‘Implementation problems.’ To classify
the selected sample questions in the first dimension categories
as shown in Table II, we used closed card sorting technique.

The second dimension outlines more finely-grained categories
about the types of information needs developers seek [33],
e.g., development environment-related needs (e.g., comments
in programming languages, tools, IDEs), or about comments in
general. The majority of these categories are built based on the
software documentation work by Aghajani et al. [19], and the
questions are classified into these categories using the hybrid
card sorting technique [34]. In the development environment-
related needs, we identified if a question talks about IDE
& Editors (e.g., Intellij, Eclipse), Programming languages
(Java, Python), or Documentation tools (Javadoc, Doxygen).
The further sub-levels of the taxonomy focus on the type of
information a questioner is seeking in each development en-

vironment, such as asking about the syntax to add a comment
or specific information in the comment in Javadoc [33]. For
instance, the question “How to reference an indexer member
of a class in C# comments” [35] is about the C# language,
and asking about the syntax to refer to a member in the
class comment, thus gets classified into the three levels as
Programming languages—Syntax & format—Class comment
according to the taxonomy shown in Figure 6.

Execution and Validation: A Ph.D. candidate, a master’s stu-
dent, and a faculty member, each having more than three years
of programming experience, participated in the evaluation of
the study. The sample set of questions was divided into an
equal subset of questions and selected random questions for
each subset to ensure that each evaluator gets a chance to look
at all types of questions. We followed a three-iteration-based
approach to categorize the questions. In the first iteration, we
classified the posts into first and second-dimension categories.
In the second iteration, each evaluator (as a reviewer) reviewed
the classified questions of other evaluators and marked their
agreement or disagreement with the classification. In the
third iteration, the evaluator agreed or disagreed with the
decision and changes proposed by the reviewers. In case of
disagreements, another reviewer who had not yet looked at
the classification reviewed the classification and gave his/her
decision. Finally, if all evaluators disagreed, we chose the
category based on the majority voting mechanism. This way,
it was possible to ensure that each classification is reviewed
by at least one other evaluator. In case of questions belonging
to more than one category, we reviewed the other details of
questions, such as tags and comments of the questions and
chose the most appropriate one. We finalized the categories
and their names based on the majority voting mechanism.

Based on the classification and validation approach described
above, all three authors (evaluators) evaluated first the rele-
vance of all their assigned questions, and reviewed the cases
of irrelevant questions marked by other evaluators. The third
author reviewed and resolved their disagreement cases using a
majority voting mechanism (cohen’s k = 0.80). As a result, 416
questions of SO and 118 questions of Quora were considered
relevant to our study, as shown in Table I. The remaining
questions, marked as irrelevant, were manually inspected and
no new relevant topic was identified.

Recommended comment conventions (RQ4). Given the un-
structured or semi-structured nature of comments, and varying
standards to write comments, various organizations and lan-
guage communities present numerous commenting guidelines
to support consistency and readability of the comments. For
instance, the convention “Use 3rd person (descriptive) not 2nd
person in writing comments” is given in the Java Oracle style
guide. However, not all of these conventions are recommended
by developers in real-time and some conventions are even
discouraged, depending on the development environment. Ad-
ditionally, developers assumed some conventions were feasible
e.g., overriding docstrings of a parent class in its subclasses,

TABLE II
FIRST DIMENSION CATEGORIES

Category Description Question keywords to identify with an example

Implementation Strategies The questioner is not aware of ways to write or process comments. They often ask questions
about integrating different information in their comment, using features of various tools.

“How to”, e.g., How to use @value tag in javadoc?

Implementation Problems The questioner tried writing or processing the code comment but was unsuccessful. the question “What is the problem?”, e.g., Doxygen \command
does not work, but @command does?

Error The questioner posted the error, exceptions or crashes while writing or generating
comments, or any warning produced by the documentation tool.

contain an error message from the exceptions or stack trace

Limitation & Possibilities The questioner is seeking more information about limitations of a comment related
approach, tool, or IDE, and various possibilities to customize the comment.

the question “is it possible or allowed”, e.g., Is there a key
binding for block comments in Xcode4?

Background Information The questioner is looking for background details on the behavior of comments in a
programming languages, a tool, or a framework.

the question “why something”, e.g., Why in interpreted lan-
guages the # usually introduces a comment?

Best practice The questioner is interested to know the best practice, guidelines or general advice to tackle
a comment-related problem or convention.

the question “is there a better way to”, e.g., What is the proper
way to reference a user interaction in Android comments?

Opinion The questioner is interested to know the judgment of other users for a comment convention. the question “what do you think”, e.g., Are comments in code
a good or bad thing?

but other developers pointed out them as a limitation of current
documentation tools or environment. We attempted to collect
such comment conventions recommended by developers in
their answers on SO and Quora. From the classified questions
in RQ2, we chose the questions categorized in the Best
Practice category according to Table II. Based on the accepted
answers of these questions, we identified recommendation or
limitation of various comment conventions. In case a question
has no accepted answer, we referred to the top-voted answer.

III. RESULTS

A. High-Level Topics Discussed about Comments (RQ1)

Table III shows the 10 topics generated from the LDA analysis,
where the column Relevance denotes if a topic is relevant (R),
or irrelevant (IR) and Topic name is the assigned topic label.
The column Topic words shows the words generated by LDA,
sorted in the order of their likelihood of relevance to the topic.

In the Syntax & Format topic, developers mainly ask about
the syntax of adding comments, removing comments, pars-
ing comments, or regex to retrieve comments from code.
Occasionally, the questions are about extracting a particular
type of information from comments to provide customized
information to their clients, such as obtaining descriptions, or
to-do comments from code comments. Depending on a pro-
gramming language or a tool, strategies to add information in
the comments vary, such as adding a description in XML com-
ments [SO:9594322], in the R environment [SO:45917501],
or in the Ruby environment [SO:37612124]. This confirms the
relevance of recent research efforts on identifying the comment
information types in various programming languages [3], [4],
[36]. IDEs & Editors groups questions about commenting
features provided in various IDEs to add or remove com-
ments in the code, or setting up documentation tools to
write comments. R Documentation groups questions about
documentation features provided in the R language, such as
creating various formats of documents including Markdown,
Latex, PDF, or HTML documentation. ‘R Markdown’, a
documentation format available in knitr package, provides
these features in R. In the Code convention topic groups the
questions about best practices, such as printing the docstrings

of all functions of an imported module, or conventions to
check types in Javascript. In this topic, developers also ask
the reasons behind various code conventions such as the
reason behind having only one class containing the main
method in Java, or using particular symbols for comments.
In the Documentation generation topic, developers inquire
about problems in generating project documentation or HTML
documentation from comments automatically using various
documentation tools such as Sphinx, Doxygen. Apart from
code comments, software projects support other forms of doc-
umentation, such as wikis, user manuals, API documentation,
or design documentation. As the project documentation is
divided into various components, developers post questions
about locating them in the topic Seeking documentation. Ad-
ditionally, developers also showed interest in learning various
programming languages and thus seeking documentation to
learn them.

Finding 4.1.1 The most relevant topics discussed by developers
about commenting practices, and identified by LDA are related to
Syntax & format, Documentation generation, IDEs & Editors, R doc-
umentation, Code conventions, and Seeking documentation, indicating
developers interest in automating their code documentation.

B. Types of Questions Discussed (RQ2)

To get insights about which types of questions developers
ask about comments and where they ask the specific types
of questions more often, we categorized the sampled set of
questions from SO and Quora according to the first dimension
(question type) shown in Table II. Figure 3 shows such
categories on the x-axis with respect to both sources, and
the y-axis indicates the percentage of questions belonging to
a category out of the total question of a source. The figure
highlights implementation strategies (how-to) to be the most
frequent category on SO, confirming prior study results [37],
[38], [15], [12]. Differently from previous studies, we found
best practice and background information questions to arise
more frequently than implementation problems questions.

We also observed that different types of questions are prevalent
on the investigated platforms, as highlighted by Figure 2. The
figure shows that developers ask implementation strategies

https://www.stackoverflow.com/questions/9594322
https://www.stackoverflow.com/questions/45917501
https://www.stackoverflow.com/questions/37612124

TABLE III
TOPICS GENERATED BY LDA WITH ASSIGNED TOPIC NAME AND TEN MOST IMPORTANT TOPIC KEYWORDS

Relevance Topic name Topic words

R Syntax & format line code file c python doxygen block php html text remov string tag javascript style add regex command script singl

R IDEs & Editors javadoc generat studio eclips visual file xml java project code class c android sourc maven tag doc intellij show netbean

R R documentation r rmarkdown markdown tabl output pdf html file knitr code render chunk text packag chang latex error knit plot add

R Code conventions function class method jsdoc type doxygen paramet c object variabl return python phpdoc javadoc name refer properti convent
valu docstr

IR Development frameworks for
thread commenting

api doc rest rail generat spring rubi test net swagger web rspec where asp creat find develop googl rdoc what

IR Open source software code sourc what open can app where whi get find anyon websit develop program if android mean softwar doe someon

R Documentation generation sphinx file doxygen generat python html link doc page includ modul make creat build custom autodoc rst restructuredtext imag
output

IR Thread comments in web-
sites

facebook post wordpress page get php whi plugin user box like show youtub section display form system repli delet add

IR Naming conventions & data
types

convent name what java python develop c whi sql tabl valu case mysql string data x program code variabl column

R Seeking documentation &
learning language

what code software best program way write good language develop standard requir tool project c practic need learn are which

0%

5%

10%

15%

20%

25%

30%

35%

40%

Implementation
Strategies

Best practice Background
Information

Limitation &
Possibilites

Implementation
Problems

Opinion Error

%
 o
f Q
ue
st
io
n
Ty
pe
s

Stack overflow Quora

Fig. 2. First dimension categories found on SO and Quora

questions and implementation problems questions more on SO
compared to Quora. Despite Quora being an opinion-based
Q&A site, we also observed questions about best practice
and background information about reasons behind various
implementation and symbols used in comments. This shows
how developers rely on Quora to gather knowledge behind
numerous conventions and features provided by the develop-
ment environment. Such types of questions are also found
on SO but to a lesser extent. For instance, we observed the
question: What are these tags @ivar @param and @type in
python docstring [SO:379346] on SO. Based on the thousands
of views count of the post, we can say that the question
has attracted the attention of many developers. Uddin et al.
gathered developers’ perceptions about APIs in SO by mining
opinions automatically [39]. Our study provides the evidence
to include Quora as another source to validate their approach
and mine developer’s opinions.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Error

Opinion

Implementation Problems

Limitation and Possibilities

Background Information

Best Practice

Implementation Strategy

Information Types

Q
ue

st
io
n
Ty
pe

s

Commenting high levels Programming languages Tools IDEs & editors Other

Fig. 3. Distribution of first dimension and second dimension categories

Finding 4.2.1 Different kinds of questions are prevalent on SO and
Quora e.g., implementation strategies and implementation problems
questions are more common on SO whereas best practice and
background information questions apart from opinion-based questions
are more prevalent on Quora. This suggests that Quora can be a useful
resource to understand how developers perceive certain development
aspects, while SO is useful to understand what technical challenges
they face during its development.x

C. Developer Information Needs (RQ3)

We analyzed the questions from two different perspectives.
The first-dimension categories (question types) (Y-axis in
Figure 3) show the types of question (e.g., implement strate-
gies, problems) developers ask, whereas the second-dimension
categories (X-axis in Figure 3) highlight the kinds of prob-
lems they face with the code comments in the development
environment. For example, Figure 3 shows how in the second
dimension analysis the most frequent category implementation
strategies contains questions about how to do something
(comment-related) in a development environment, be it spe-
cific to a programming language, a documentation tool, or
to the IDE itself. On the other hand, developers discuss the
possible features of the documentation tools and IDEs in the
limitation & possibilities category. This category highlights
the developer’s struggle in locating the feature details from

https://www.stackoverflow.com/questions/379346

the documentation of such tools and showcases the vital need
for improving this aspect. However, which specific features
and syntaxes of comments developers seek in the develop-
ment environment is essential information to progress in this
direction. Therefore, we first separated general questions about
comment conventions to the commenting high levels category,
and moved other development environment related questions
to the programming languages, tools, and IDEs & editors
categories (first-level categories shown in Figure 6). We then
added sub-categories such as Syntax & format, Asking for
feature, Change comment template etc. under each first-level
category to highlight the specific need related to it, as shown
in Figure 6 and explained in Table III [18]. In the next
paragraphs, we explain a few such subcategories.

Finding 4.2.2 One-third of the developer commenting practices
questions are about their specific development environment. The top
two frequent questions concern the categories Syntax & format and
Asking for feature indicating developers’ interest in improving their
comment quality. The rest focus on setting up or using documentation
tools in IDEs to generate comments automatically.

Fig. 4. Comment’s syntax & format discussions

1.1

2.2

2.2

3.2

3.2

3.2

4.3

4.3

5.4

5.4

7.5

9.7

11.8

14

22.6

0 % 5 % 10 % 15 % 20 % 25 %

Show inherited methods comments

Detect Todo comments

Detect undocumented code files

Color scheme

Highlight comments

Synchronize Code comment changes

Ask for documentation

Multi-lingual comments

Add comments

Render Documentation

Other

Show comments

Add media

Generate documentation

Add more information

% of Posts Asking for a Feature

Fe
au
tr
es
 D
ev
el
op
er
 A
sk

Fig. 5. Developers asking for features

In Syntax & format, shown in Figure 4, developers discuss
syntax to add various kinds of comments to the code, such
as function comments, class comments, block comments, and
different tags. Specifically, the syntax of writing function
comments is asked more frequently (23% of questions) than
other types of comments, showing the importance and efforts
of API documentation. In this analysis we found 23% of
the questions marked as Other are either about the syntax

of writing comments in a programming language or a tool
without stating the kind of comment (class/function/block), or
concerning the intent of syntax conventions. Such background
questions are more often posted on Quora compared to SO.

Asking for feature is another frequent information developers
seek on SO to locate various features provided by the doc-
umentation tools. We rarely found such questions on Quora.
Aghajani et al. reported a similar category as Support/Expec-
tations covering developer needs that are not satisfied by the
documentation tools in their work [19]. In our study context,
we reported such inquiries, as shown in Figure 5, and in the
category Asking for feature under all development environment
categories in Figure 6.

Figure 5 shows that developers frequently need to add dif-
ferent kinds of information to the code comments, such
as code examples: How to add code description that are
not comments? [SO:45510056], performance-related: Javadoc
tag for performance considerations [SO:39278635], and me-
dia [SO:43556442]. Additionally, developers ask about fea-
tures to add comments automatically, detect various infor-
mation from the comments, or synchronize the comments
with code changes [SO:23493932]. These questions show
the worthiness of devoting research efforts to the direction
of identifying information types from comments, detecting
inconsistent comments, and assessing and generating com-
ments automatically to improve code comments [3], [40]. We
separated the feature-related questions (different features of
the tools and IDEs) into two categories, Using feature and
Asking for feature, based on the user awareness. In the former
category, the user is aware of the existence of a feature in
the environment but finds problems in using it, as shown
in Listing 1. In the latter category, users inquire about the
existence of a feature, or try to locate it, as shown in Listing 2.

How to use @value tag in javadoc?

Listing 1. Using @value feature in Javadoc

How can I show pictures of keyboard keys in-
line with text with Sphinx?

Listing 2. Asking for a feature to add inline images

Finding 4.2.3 The implementation strategies category questions
are the most frequently viewed questions on SO and limitation &
possibilities (is it possible) questions are the second most viewed
questions based on the view count of questions. On the other hand,
based on the answer count of questions, best practice questions
trigger the most discussions along with implementation strategies.

In addition to the above categories, we observed that SO
encourages developers, especially novice developers, to ask
questions about the basics of various topics [41], grouped into
the commenting high levels category, and shown in Figure 6.
This detailed taxonomy of the second dimension is reported in
the Figure 6 and Table III in the online appendix [18]. Figure 6
reports all levels of the second dimension according to the
source. For instance, the questions about setting up tools (Tool

https://www.stackoverflow.com/questions/45510056
https://www.stackoverflow.com/questions/39278635
https://www.stackoverflow.com/questions/43556442
https://www.stackoverflow.com/questions/23493932

setup), or asking for various features (Asking for features)
under IDE & editors are not found on Quora. Similarly, the
majority of the questions about documentation tools (Tools) are
asked on SO whereas the general questions about comments
(Commenting high levels) are often on Quora.

Finding 4.2.4 Developers often ask about the syntax to write function
(method) comments compared to other kinds of comments (class,
package), showing the trend of increasing effort towards API doc-
umentation. Another frequently asked question on SO concerns the
conventions to add different kinds of information to code comments,
such as code examples, media, or custom tags, indicating developers’
interest in embedding various information in comments.

Finding 4.2.5 Apart from questions related to comment syntax and
features, developers ask about adopting commenting styles from other
programming languages, modifying comment templates, understand-
ing comments, and processing comments for various purposes.

D. Recommended Comment Convention (RQ4)

There are various syntactic and semantic commenting guide-
lines mentioned in the style guides, and developers are often
confronted with several conventions, or are unable to find
any for a specific purpose. We collect various comment
conventions recommended by developers in their answers on
SO and Quora in Table IV. For example, a developer asks
Should .net comments start with a capital letter and end
with a period?[SO:2909241], concerning grammar rules in the
comments. The accepted answer affirms the convention and
describes how it helps to improve readability. We, therefore,
constructed the recommendation [.net] long inline comments
should start with a capital letter and end with a period. In
some answers, developers describe it as a limitation, we in-
cluded Limitation for such answers. For each recommendation,
we indicate whether it is specific to a programming language,
a tool, an IDE, or is instead a general recommendation, using
tags such as “[Java], [Doxygen], [visual studio],[general]”
respectively. It is important to note that we did not verify how
widely the recommendations are adopted in the commenting
style guidelines or projects, or how well they are supported by
current documentation checker tools (or style checkers). This
is a future direction for this work. On the positive side, it
represents an initial starting point to collect various comment
conventions confirmed by developers. We argue that it can also
help researchers in conducting the studies to assess the relative
importance of comment conventions or help tool developers in
deciding which recommendation they should include in their
tools to address frequent concerns of developers.

IV. DISCUSSION AND IMPLICATION

On Writing Comments. Although, various coding style
guidelines provide conventions to write comments, our results
showed that SO developers seek help in writing correct syntax
of various comment types (class/function/package comments
highlighted in Figure 4), in adding specific information in
comments, or formatting comments. Typical types of ques-
tions are What is the preferred way of notating methods

TABLE IV
CODE COMMENT CONVENTIONS RECOMMENDED BY DEVELOPERS

Topic Recommendation
Grammar [.net] long inline comments should start with a capital letter and end with a

period.
[.net] long inline comments should be written as a complete English sentence
(with subject, verb, object).
[general] check your coding style guidelines to verify how to write plural objects
in the comments, for example, Things(s) or Things.
[general] Do not mark the code section with an inline comment to highlight the
modified code section, version control system keep track of code changes.
[python] use backslash escape whitespace to use punctuations like apostrophe
symbol in docstring.
[python] Use ‘truthy’ and ‘falsy’ words to denote boolean values ‘True’ and
‘False’ respectively.
[general] Do not write filler words such as ‘please’ and ‘thank you’, nor swearing
words in the comments.
[general] Remove TODO comments when you finish the task.

Language [general] Comments should explain why and not how.
[general] Use correct notation to write block or multiline comments.
[general] Position your inline comments (about variable declaration) above the
variable declaration to remain consistent with method comment conventions.
[general] Do not write nested comments in the code.
[general] Use different tags to categorize the information in the comments.
[general] Do not use multiple single line comments instead of multi-line
comments.
[general] Do not document file specifications in the code comments rather
document them in the design specs.
[general] Use a consistent style such as ‘variable’ or <variable> to differentiate
the code variable names in the inline comments.
[Java] Implementation notes about the class should be mentioned before the
class definition rather than inside the class.
[Java] To denote a method (someMethod() of the class ClassA) in the comments,
use the template the <someMethod> method from the <ClassA> class instead
of ClassA.someMethod().
[.net] Document ‘this’ parameter of an extension method by describing the need
of ‘this’ object and its value.
[javascript] Limitation: Currently, there is no existing standard to document
AJAX calls of javascript in PhpDoc style comments.
[php] Use ‘->’ symbol to reference instance/object method rather than ‘::’ in
the method comments.
[sql] Use the same documentation style for SQL objects as you are using for
other code.
[groovy] Limitation: there is no standard way to document properties of a
dynamic map in Javadoc like JSDoc’ @typedef.

Tool [PhpDoc,JsDoc] Do not put implementation details of a public API in the API
documentation comments, rather put them in inline comments inside the method.
[JSDoc] Mention the class name in description to denote the instance of the
class.
[ghostDoc] Create your default comment template using c# snippets.
[JavaDoc] Limitation: Currently it is not possible to generate documentation of
an API in multi-languages (in addition to English) with the same source code.
[JavaDoc] Limitation: The tag @value support fields having literal values.
JavaDoc and IntelliJ IDEA do not support fetching value from an external file
using @value tag in Javadocs.
[Javadoc] Write annotations after the method javadoc, before the method
definition.
[Doxygen] Use @copydoc tag to reuse the documentation from other entities.
[Doxygen] Limitation: Currently it is not possible to generate documentation of
an API for different readers such as dev and users.
[Doxygen] Use @verbatim / @endverbatim to document console input and
output.
[Roxygen] Limitation: Not possible to override docstrings so the parent docstring
is used when inheriting a class.
[PhpDoc] Limitation: Currently it is not supported to document array details in
the return type of a method.
[PhpDoc] Limitation: Currently, using @value tag or any similar tag to refer to
the value of a field is not supported in PhpDoc, so developers should use @var
tag instead.
[Phpdoc] Use class aliases in import statement to write short name in docblock.
[Sphinx] Limitation: It can’t create sections for each class. Add yourself the
sections in the .rst file.

in comments? [SO:982307], and Indentation of inline com-
ments in Python [SO:56076686], or indentation of commented
code [SO:19275316]. This indicates the need of improving
the commenting guideline and assuring their findability to
developers. Tomasottir et al. showed in their interview study
that developers use linters to maintain code consistency and
to learn about the programming language [42]. By configuring
linters early in a project, developers can use them similarly
to learn the correct syntax to write and format comments
according to a particular style guideline. However, due to
their support to multiple languages, assisting developers in
language-specific conventions, or customizing comments to
add more information would still require further effort.

On Coding Style Guidelines. Organizing the information in

https://www.stackoverflow.com/questions/2909241
https://www.stackoverflow.com/questions/982307
https://www.stackoverflow.com/questions/56076686
https://www.stackoverflow.com/questions/19275316

Comment-conventions

Programming Languages Tools

IDEs & Editors Other

Add
comments

Versioning
comments

Comments
example

Grammar
rules

Maintain
comments

Syntax &
format

Other

Asking for
features

Change comment
template Error Process

comments
Report

bug Setup Syntax &
format

Using
Feature

Asking for
featuresShortcut

Process
comments

Using
feature

Tool
setup

Change comment
template

Syntax &
format

Adopt other
language style

Asking for
feature

Asking tool
existence

Change comment
template

Understand
documentation

Using
features

Process
comments

Syntax &
format

Display
comments

Add
tags

Add
comments

Blocks/Multiline
comments

Inline
comments

Add
comments Formatting Color

scheme
Render

documentation

Detect
undocumented

code files

Detect todo
comments

Highlight
comments

Add more information
in comments

Generate API
documentation

Directives Generate
documentation

Lint Add
tags

Class
comments

Function
comments

Project
documentation

Other

Show
comments

Synchronize code
comment changes

Mulit-lingual
comments

Add more
information

Add
comments

Show inherited
comments

Add
media

Generate
documentation

TagsFunction Class

ProjectOther

Function
comment

Class
comment

Project
comment

Block/
Multiline OtherInline

comments

Comment Highlevels

Categories found in both sources (SO and Quora)

Categories found on SO

Categories found on Quora

Fig. 6. Taxonomy of second dimension on SO and Quora

the comments is another concern highlighted in the study,
for example, how to differentiate the variables within a
comment [SO:2989522] [SO:47089022], where to put class
implementation details (in the class comment or in inline com-
ments) [SO:35957906], and which tag to use for a particular
type of information [SO:21823716]. We also found developer
concerns regarding grammar rules and word usage in all the
sources we analyzed (SO [SO:2909241], and Quora [43]). Al-
though various style guidelines propose comment conventions,
there are still many aspects of comments for which either
the conventions are not proposed or developers are unable
to locate them. Developers commonly ask questions, such as
Any coding/commenting standards you use when modifying
code? [SO:779025] on SO and Why is there no standard for
coding style in GNU R? on Quora. There is therefore a need
to cover detailed aspects of comments in the coding style
guidelines to help developers write high-quality comments.

On the Impact of Comment Conventions. Various com-
menting conventions are presented in the style guides to sup-
port consistent and readable comments. However, extracting
these conventions automatically from style guidelines and
customizing them according to the project requirements is still
a challenge and not explored much. Additionally, which of
these conventions play a more important role for comment
comprehension and which ones do not, is not yet explored.
Binkley et al. evaluated the impact of identifier conventions
on code comprehension, but the conventions were limited to
identifiers [44]. Smit et al. identified the relative importance
of 71 code conventions, but the majority of the comment
conventions were limited to detecting missing documentation
comments [45]. Therefore, assessing the impact and impor-
tance of comment conventions depending on a specific domain
and project, and on various development tasks appears to be
another potential direction.

Tools to Assess Comment Quality. Our results show that
developers are interested in various automated strategies, such

as automatic generation of comments, detection of bad com-
ments, identification of information embedded in comments,
and the quality assessment of comments, lack tools that can
be integrated into their IDE, especially to verify the comment
style automatically [SO:14384136]. However, a limited set
of documentation tools support comment quality assessment
or adherence of comment to the commenting conventions.
For example, current style checker tools, such as Check-
style, RuboCop and pydocstyle provide support for formatting
conventions but lack support for comprehensive checks for
grammar rules and content.14 There is a need to survey current
automated style checker tools. Additionally, some languages
with advanced style checkers don’t support comment checkers
at all, such as OCLint for Objective-C, and Ktlint for Kotlin,
Smalltalk.15 We found instances of developers asking about
the existence of such tools [SO:8834991] in Figure 5 and
Asking tool existence in Table III in the online appendix [18].
Therefore, more tool support is needed to help developers in
verifying the high-quality of comments.

V. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and experimentation. In our study, they mainly
relate to potential imprecision in our measurements. To miti-
gate potential bias in the selection of developer discussions on
SO, we relied on SO tags to perform initial filtering. However,
it is possible that this tag-based filtering approach misses
some relevant posts concerning comment convention practices
and topics. We therefore investigated the co-appearing tags
to find similar relevant tags. Aghajani et al. studied software
documentation-related posts, including code comments on SO
and other sources [19]. We extracted their documentation-
related tags from the given replication package and compared
them to our tags (It) to verify if we missed any. On Quora, we
mapped the selected SO tags as keywords and searched these

14[https://checkstyle.org/checks.html], [https://rubocop.org/], [http://www.pydocstyle.org/]
15[http://oclint.org/], [https://github.com/pinterest/ktlint]

https://www.stackoverflow.com/questions/2989522
https://www.stackoverflow.com/questions/47089022
https://www.stackoverflow.com/questions/35957906
https://www.stackoverflow.com/questions/21823716
https://www.stackoverflow.com/questions/2909241
https://www.stackoverflow.com/questions/779025
https://www.stackoverflow.com/questions/14384136
https://www.stackoverflow.com/questions/8834991
https://checkstyle.org/checks.html
https://rubocop.org/
http://www.pydocstyle.org/
http://oclint.org/
https://github.com/pinterest/ktlint

keywords on Quora search interface. To avoid eventual biased
in this manual process, we also adopted LDA, to investigate
high-level topics emerging in the SO and Quora posts. Thus, a
mix of qualitative and quantitative analysis was performed to
minimize potential bias in our investigation, providing insights
and direction into the automated extraction of relevant topics.

Threats to internal validity concern confounding factors,
internal to the study, that can affect its results. In our study,
they mainly affect the protocol used to build the taxonomy,
which could directly or indirectly influence our results. To
limit this threat, we used different strategies to avoid any
subjectivity in our results. Specifically, all posts were validated
by at least two reviewers and, in case of disagreement, a third
reviewer participated in the discussion to reach a consensus.
Thus, for the definition of the taxonomy, we applied multiple
iterations, involving different authors of this work.

Threats to conclusion validity concern the relationship be-
tween theory and outcome. In our study, they mainly relate to
the extent to which the produced taxonomy can be considered
exhaustive. To limit this threat, we focused on more than one
source of information (SO and Quora), so that the resulting
taxonomy has a higher likelihood to be composed of an
exhaustive list of elements (i.e., comment convention topics).

Threats to external validity concern the generalizability of
our findings. These are mainly due to the choice of SO and
Quora as the main sources. SO and Quora are widely used
for development discussions to date, although specific forums,
such as DZone and Reddit could be considered for future
works.16 Moreover, besides all written sources of information,
we are aware that there is still a portion of the developer
communication taking place about these topics that are not
traceable. Thus, further studies are needed to verify the gen-
eralizability of our findings.

VI. RELATED WORK

Studying developer activities related to various development
tasks from various sources can guide the development of
tools that help developers to find the desired information
more easily. Therefore, researchers have recently focused
on leveraging the useful content of these sources i.e., Git,
CVS [21], archived communications online forums and CQA
(Community Question Answer) sites [38], [12], [30], [16],
[13], [19] to comprehend developers information needs. SO
is one of the more popular platforms that researchers have
studied to capture developers questions about trends and tech-
nologies [38], security-related issues [16], and documentation
issues etc. [19]. Recently researchers have started investigating
Quora to get more insight into developer communities [13],
e.g., finding and predicting popularity of the topics [46], [13],
finding answerability of the questions [47], detecting experts
on specific topics [20], [48], [49], or analyzing anonymous
answers [50] Our study is first to investigate this platform for
code comments.

16[https://dzone.com/articles/my-commentary-on-code-comments], [https://www.reddit.com]

Research shows that interesting insights can be obtained from
combining these sources [51], [19]. Aghajani et al. studied
documentation issues on SO, Github, and mailing lists [19].
They reported a taxonomy of documentation issues developers
face. However, they do not focus on the style issues of
the code comments. Our study focuses on the all aspects
of code comments i.e., the content and style aspect of the
code comments. In a previous study, Barua et al. found
coding style/practice among the top share on SO [12]. They
considered the topic among common English language topics
instead of a technical category due to usage of generic words
in this topic. As their focus was on technical categories, they
did not explore the coding style questions further. Our study
complements their work by exploring the specific aspects of
coding style, focusing on comment conventions.

VII. CONCLUSIONS

In this study, we investigated commenting practices discus-
sions occurring in SO, and Quora. We first performed au-
tomated analysis (LDA) on extracted discussions and then
complemented it with a more in-depth manual analysis on
the selected sample set. From the manual analysis, we de-
rived a two-dimensional taxonomy. The first dimension of the
taxonomy focuses on the question types, while the second
dimension focuses on five types of first-level concerns and
20 types of second-level concerns developers express. We
qualitatively discussed our insights, and presented implications
for developers, researchers and tool designers to satisfy devel-
oper information needs regarding commenting practices. We
provide the data used in our study, including the validated data
and the detailed taxonomy, in the replication package [18]. In
the future, we plan (i) to verify the completeness and relevance
of gathered comment conventions, (ii) to survey practitioners
and tool designers to learn which rules are more important
than others, and (iii) to explore ways to improve and assess
tool support in this direction. This investigation will help us to
see which comment convention affects them most, and during
which specific development activity.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Assistance” (SNSF project No. 200020-181973, Feb. 1, 2019
- April 30, 2022).

REFERENCES

[1] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, ser. SIGDOC ’05.
New York, NY, USA: ACM, 2005, pp. 68–75.

[2] Y. Padioleau, L. Tan, and Y. Zhou, “Listening to programmers —
taxonomies and characteristics of comments in operating system code,”
in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009, pp. 331–341.

https://dzone.com/articles/my-commentary-on-code-comments
https://www.reddit.com

[3] L. Pascarella and A. Bacchelli, “Classifying code comments in
Java open-source software systems,” in Proceedings of the 14th
International Conference on Mining Software Repositories, ser.
MSR ’17. IEEE Press, 2017, pp. 227–237. [Online]. Available:
https://doi.org/10.1109/MSR.2017.63

[4] J. Zhang, L. Xu, and Y. Li, “Classifying python code comments
based on supervised learning,” in Web Information Systems and
Applications - 15th International Conference, WISA 2018, Taiyuan,
China, September 14-15, 2018, Proceedings, ser. Lecture Notes in
Computer Science, X. Meng, R. Li, K. Wang, B. Niu, X. Wang,
and G. Zhao, Eds., vol. 11242. Springer, 2018, pp. 39–47. [Online].
Available: https://doi.org/10.1007/978-3-030-02934-0 4

[5] P. Rani, S. Panichella, M. Leuenberger, M. Ghafari, and O. Nierstrasz,
“What do class comments tell us? An investigation of comment evolution
and practices in Pharo Smalltalk,” arXiv preprint arXiv:2005.11583,
2020, to be Published in Empirical Software Engineering.

[6] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2014. New York, NY, USA: ACM, 2014, pp. 281–293. [Online].
Available: http://doi.acm.org/10.1145/2635868.2635883

[7] B. W. Kernighan and R. Pike, The Practice of Programming (Addison-
Wesley Professional Computing Series), 1st ed. Addison-Wesley,
Feb. 1999. [Online]. Available: http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20&path=ASIN/020161586X

[8] “Oracle documentation guidelines,” 2020. [Online]. Available: https:
//www.oracle.com/technetwork/java/javase/documentation

[9] W. S. Jr. and E. White, The Elements of Style, 4th ed. Allyn and Bacon,
2000.

[10] “Google style guidelines,” 2020, verified on 10 Jan 2021. [Online].
Available: https://google.github.io/styleguide/

[11] “Apache spark code style guide.” [Online]. Available: https://spark.
apache.org/contributing.html

[12] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? An analysis of topics and trends in Stack Overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.
[Online]. Available: https://doi.org/10.1007/s10664-012-9231-y

[13] J. Krüger, “Are you talking about software product lines? An analysis
of developer communities,” in Proceedings of the 13th International
Workshop on Variability Modelling of Software-Intensive Systems, 2019,
pp. 1–9.

[14] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[15] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer
interactions in Stack Overflow,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, ser. SAC ’13. New
York, NY, USA: ACM, 2013, pp. 1019–1024. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480557

[16] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What
security questions do developers ask? A large-scale study of Stack
Overflow posts,” Journal of Computer Science and Technology,
vol. 31, no. 5, pp. 910–924, 2016. [Online]. Available: https:
//doi.org/10.1007/s11390-016-1672-0

[17] R. Pokharel, P. D. Haghighi, P. P. Jayaraman, and
D. Georgakopoulos, “Analysing emerging topics across multiple
social media platforms,” in Proceedings of the Australasian
Computer Science Week Multiconference, ser. ACSW 2019. New
York, NY, USA: ACM, 2019, pp. 16:1–16:9. [Online]. Available:
http://doi.acm.org/10.1145/3290688.3290720

[18] “Replication Package.” [Online]. Available: https://doi.org/10.5281/
zenodo.5044270

[19] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation
issues unveiled,” in Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, J. M. Atlee, T. Bultan, and J. Whittle,
Eds. IEEE / ACM, 2019, pp. 1199–1210. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00122

[20] S. Patil and K. Lee, “Detecting experts on quora: by their activity, quality
of answers, linguistic characteristics and temporal behaviors,” Social
network analysis and mining, vol. 6, no. 1, p. 5, 2016.

[21] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use
of topic models when mining software repositories,” Empirical Softw.
Engg., vol. 21, no. 5, pp. 1843–1919, oct 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9402-8

[22] “Makar.” [Online]. Available: https://github.com/maethub/makar

[23] J. S. Enderle, A. Balagopalan, X. Li, and D. Newman, “Topic modeling
tool,” 2017. [Online]. Available: https://doi.org/10.5281/zenodo.496150

[24] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002. [Online]. Available: http://mallet.cs.umass.edu

[25] H. M. Wallach, D. M. Mimno, and A. McCallum, “Rethinking lda: Why
priors matter,” in Advances in neural information processing systems,
2009, pp. 1973–1981.

[26] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An exploratory
analysis of mobile development issues using Stack Overflow,” in
Proceedings of the 10th Working Conference on Mining Software
Repositories, ser. MSR ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 93–96. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2487085.2487108

[27] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” in Proceedings of the eighth ACM international
conference on Web search and data mining, 2015, pp. 399–408.

[28] M. Hoffman, F. Bach, and D. Blei, “Online learning for latent dirichlet
allocation,” advances in neural information processing systems, vol. 23,
pp. 856–864, 2010.

[29] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-Graber, and D. M. Blei,
“Reading tea leaves: How humans interpret topic models,” in Advances
in neural information processing systems, 2009, pp. 288–296.

[30] C. Rosen and E. Shihab, “What are mobile developers asking
about? A large scale study using stack overflow,” Empirical Software
Engineering, vol. 21, no. 3, pp. 1192–1223, 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9379-3

[31] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy, L. H. Etzkorn,
and N. A. Kraft, “Configuring latent dirichlet allocation based feature
location,” Empirical Software Engineering, vol. 19, no. 3, pp. 465–500,
2014.

[32] S. Beyer and M. Pinzger, “A manual categorization of Android
app development issues on Stack Overflow,” in Proceedings of
the 2014 IEEE International Conference on Software Maintenance
and Evolution, ser. ICSME ’14. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 531–535. [Online]. Available: http:
//dx.doi.org/10.1109/ICSME.2014.88

[33] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen,
“Communication in open source software development mailing lists,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories. IEEE Press, 2013, pp. 277–286.

[34] E. Miller, “Universal Methods of Design: 100 ways to research complex
problems, develop innovative ideas, and design effective solutions,”
2012.

[35] “Stack Overflow discussion 379346,” accessed August 3, 2020, online.
[Online]. Available: https://www.stackoverflow.com/questions/379346

https://doi.org/10.1109/MSR.2017.63
https://doi.org/10.1007/978-3-030-02934-0_4
http://doi.acm.org/10.1145/2635868.2635883
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/020161586X
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/020161586X
https://www.oracle.com/technetwork/java/javase/documentation
https://www.oracle.com/technetwork/java/javase/documentation
https://google.github.io/styleguide/
https://spark.apache.org/contributing.html
https://spark.apache.org/contributing.html
https://doi.org/10.1007/s10664-012-9231-y
http://doi.acm.org/10.1145/2480362.2480557
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1007/s11390-016-1672-0
http://doi.acm.org/10.1145/3290688.3290720
https://doi.org/10.5281/zenodo.5044270
https://doi.org/10.5281/zenodo.5044270
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1007/s10664-015-9402-8
https://github.com/maethub/makar
https://doi.org/10.5281/zenodo.496150
http://mallet.cs.umass.edu
http://dl.acm.org/citation.cfm?id=2487085.2487108
http://dl.acm.org/citation.cfm?id=2487085.2487108
https://doi.org/10.1007/s10664-015-9379-3
http://dx.doi.org/10.1109/ICSME.2014.88
http://dx.doi.org/10.1109/ICSME.2014.88
https://www.stackoverflow.com/questions/379346

[36] P. Rani, S. Panichella, M. Leuenberger, A. Di Sorbo, and O. Nierstrasz,
“How to identify class comment types? A multi-language approach for
class comment classification,” Journal of Systems and Software, vol.
181, p. 111047, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121221001448

[37] S. Beyer, C. Macho, M. Di Penta, and M. Pinzger, “What kind of
questions do developers ask on stack overflow? a comparison of auto-
mated approaches to classify posts into question categories,” Empirical
Software Engineering, pp. 1–44, 2019.

[38] M. Allamanis and C. Sutton, “Why, when, and what: Analyzing Stack
Overflow questions by topic, type, and code,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 53–56. [Online].
Available: http://dl.acm.org/citation.cfm?id=2487085.2487098

[39] G. Uddin and F. Khomh, “Automatic mining of opinions expressed about
apis in stack overflow,” IEEE Transactions on Software Engineering,
2019.

[40] F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empirical
study on code-comment inconsistencies,” in Proceedings of the 27th
International Conference on Program Comprehension. IEEE Press,
2019, pp. 53–64.

[41] P. S. Kochhar, “Mining testing questions on Stack Overflow,” in
Proceedings of the 5th International Workshop on Software Mining, ser.
SoftwareMining 2016. New York, NY, USA: ACM, 2016, pp. 32–38.
[Online]. Available: http://doi.acm.org/10.1145/2975961.2975966

[42] K. F. Tómasdóttir, M. Aniche, and A. van Deursen, “Why and how
JavaScript developers use linters,” in 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2017, pp. 578–589.

[43] “Should code comments be formal English or informal English,”
accessed August 3, 2020, online. [Online]. Available: https://www.quora.
com/Should-code-comments-be-formal-English-or-informal-English?

[44] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif,
“The impact of identifier style on effort and comprehension,” Empirical
Software Engineering, vol. 18, no. 2, pp. 219–276, 2013.

[45] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, “Maintainability
and source code conventions: An analysis of open source projects,”
University of Alberta, Department of Computing Science, Tech. Rep.
TR11, vol. 6, 2011.

[46] G. Wang, K. Gill, M. Mohanlal, H. Zheng, and B. Y. Zhao, “Wisdom
in the social crowd: an analysis of quora,” in Proceedings of the 22nd
international conference on World Wide Web, 2013, pp. 1341–1352.

[47] S. K. Maity, A. Kharb, and A. Mukherjee, “Language use matters:
Analysis of the linguistic structure of question texts can characterize
answerability in quora,” in Eleventh International AAAI Conference on
Web and Social Media, 2017.

[48] M. Neshati, Z. Fallahnejad, and H. Beigy, “On dynamicity of expert
finding in community question answering,” Information Processing &
Management, vol. 53, no. 5, pp. 1026–1042, 2017.

[49] S. Geerthik, K. R. Gandhi, and S. Venkatraman, “Domain expert ranking
for finding domain authoritative users on community question answer-
ing sites,” in 2016 IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC). IEEE, 2016, pp. 1–5.

[50] B. Mathew, R. Dutt, S. K. Maity, P. Goyal, and A. Mukherjee, “Deep
dive into anonymity: Large scale analysis of quora questions,” in
International Conference on Social Informatics. Springer, 2019, pp.
35–49.

[51] G. Bavota, “Mining unstructured data in software repositories: Current
and future trends,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 5.
IEEE, 2016, pp. 1–12.

https://www.sciencedirect.com/science/article/pii/S0164121221001448
https://www.sciencedirect.com/science/article/pii/S0164121221001448
http://dl.acm.org/citation.cfm?id=2487085.2487098
http://doi.acm.org/10.1145/2975961.2975966
https://www.quora.com/Should-code-comments-be-formal-English-or-informal-English?
https://www.quora.com/Should-code-comments-be-formal-English-or-informal-English?

