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a b s t r a c t 

Heat release from absorption storage heat pump by means of absorption of water vapor into aqueous 

sodium hydroxide is limited by uptake kinetics affecting temperature gain, as well as power- and en- 

ergy density of the method. Earlier studies pinpoint that natural diffusion alone is not sufficient to reach 

higher uptake rate, and that the surface to bulk exchange has to be enforced. In this paper, different 

technical solutions to this problem for the heat storage application are introduced and studied by neu- 

tron imaging, enabling visual observation of water vapor uptake and diffusion. The experiments brought 

to the fore that the buoyancy changes associated with water uptake may be utilized to markedly enhance 

kinetics. This concept was applied on a vertically installed spiral finned tube operating as heat and mass 

exchanger for the absorption storage heat pump, also referred to as sorption heat storage. By flooding 

the space between the spiral fin with absorbent, water absorption into the vertical surface leads to a 

buoyancy driven movement of the liquid, supplying unspent aqueous NaOH to the vertical surface and 

exchanging it with the diluted liquid. This is found to increase the rate of absorption markedly. Under 

realistic heat storage specific operating conditions, a temperature gain of 12.5 K, an active area specific 

power of 1.28 kW/m 
2 and an energy density of 243 kWh/m 

3 in respect to the volume of charged ab- 

sorbent (greatest volume) is reached. It is proposed that carful design of the spiral finned tube to enhance 

buoyancy movement will further improve overall sorption heat storage performance. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Liquid absorption heat transformers such as chemical heat 

umps and chillers are typical technical gas-liquid absorption pro- 

esses, providing a temperature shift [1] . Processes are continu- 

us, cycling between absorption and desorption [2] . Liquid absorp- 

ion heat storage, a form of chemically driven heat pump with ab- 

orbent pair storage, follows the same alternating process with ob- 

ective for heat release at serviceable temperature [3] . However, 

ot in its classical continuous cycling, but with intermittent stor- 

ge time, bringing forth the need for stored absorption potential, 

ranslating to thermal storage capacity [4] . 
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The liquid absorption storage heat pump also referred to as ab- 

orption heat storage, is a technology studied and developed for 

nter-seasonal heat shifting [3] . Systems are charged with surplus 

olar energy in summer and employed to release heat from a low 

emperature heat source at serviceable space heating temperature 

n winter [4] . The concept is a part of a broad range of compact

ong-term sorption heat pump-based, heat storage technologies in- 

luding the processes of adsorption on solids as well as absorption 

n solids and liquids [3] . 

In the absorption storage heat pump, the absorption heat pump 

apacity depends on the kinetics of the heat and mass transfer. 

his counterintuitive behavior stems from the fact that the max- 

mum uptake (release) of the absorbate (in our case here water) 

y the absorbent (in our case here aqueous NaOH) is a function of 

he temperature. The higher the temperature, the lower is the to- 

al amount of water in aqueous NaOH and vice versa. Heat storage 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121967
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2021.121967&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:benjamin.fumey@empa.ch
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121967
http://creativecommons.org/licenses/by/4.0/


B. Fumey, A. Borgschulte, S. Stoller et al. International Journal of Heat and Mass Transfer 182 (2022) 121967 

Fig. 1. a) Illustration of the spiral finned heat and mass exchanger concept. The HTF flows through the center tube and the liquid absorbent flows on the spiral fin top 

surface in counter flow to the HTF. Absorbate is exchanged to the absorbate atmosphere, absorbed in discharging and desorbed in charging, illustrated by the changing gray 

scale of the arrows. b) Illustration of the absorbent film on the spiral fin. c) Illustration of the absorbate uptake in absorption, with the buoyancy force (F b ), originating from 

the gravitational force (F g ) and the changing liquid density ( ρ), in counter direction to the absorbate mass transport. Concentration, and thus solution density increases from 

top to bottom. 
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elies on removing heat from a high temperature source by evap- 

rating water, and the reversed process for heat release. However, 

nite kinetics require an over potential, here a temperature gra- 

ient, which translates into an effectively lower (higher) temper- 

ture of the absorbent upon heat uptake (release). With this, less 

dsorbent is released (taken up for heat release) than would be 

ossible in a system with infinitely high kinetics. Research and de- 

elopment focusses thus on the enhancement of the mass transfer 

eing the main kinetic barrier [5] . 

The technical realization of such absorption heat pump type 

eat and mass exchangers (HMX) for use in absorption heat stor- 

ge (see also appendix for further details) may be simplified by 

ssuming a liquid layer of absorbent, here aqueous NaOH, which 

akes up (releases) water vapor at a given vapor pressure and tem- 

erature. For thin liquid layers, the mass transfer is exclusively de- 

ermined by diffusion of water in the liquid layer; the system is 

ractically "static" [5] . This limits the mass transport drastically. 

he solution to this problem is apparently simple: the surface to 

ulk exchange has to be actively enforced. Practical examples in- 

lude: finned structures to spread the absorbent on the falling film 

at plate [6] , grooved plate falling film absorbers [7] , tube bundle 

alling film HMX with corrugated mesh guides, and several others. 

owever, all designs depend on high absorbent flow rate, reached 

y absorbent recirculation, pumping partly discharged absorbent 

ack to the top of the HMX, an action disallowed in the absorp- 

ion storage heat pump since it leads to severe decline in potential 

emperature gain. 

Our idea of a novel concept of increasing surface-to-bulk mix- 

ng is born from a design based on vertically installed spiral finned 

ube HMXs [8] , illustrated in Fig. 1 . In this design, the absorbent

ows as a thin film, by gravitational force, in spiral formation 

ownwards along the finned tube and the heat transfer fluid (HTF) 

s pumped in counter flow through the tube. Absorbent channeling 

long the fin prevents dry inactive areas, long flow distance as- 

erts prolonged exposure time for maximum absorbate uptake and 

ounter flow underwrites good heat exchange. Despite the fact that 

he absorbent flow is distinctly laminar, we find by carefully de- 

igned model experiments that the buoyancy changes induced by 

he water uptake/release enhance mass transfer. In order to vali- 

ate the functionality of our novel approach, we utilized high tem- 

a

n

2 
oral resolution neutron imaging [9] for visualization of the con- 

entration changes and transport of fluids. 

To scrutinize the effect of natural convection on the water up- 

ake by aqueous NaOH, we designed three different experiments 

ased on time resolved neutron radiography. The first one analy- 

is the impact of film height and droplet impingement on a hor- 

zontal quiescent liquid absorbent film ( Section 3.1 ). The origi- 

al idea was to follow the surface to bulk mixing enforced by 

roplet impingement through fin segmentation. However, it be- 

ame clear that the natural convection had a much bigger impact 

han the short mixing induced by impingement. To further ana- 

yze the buoyancy effect, we designed an experiment, in which the 

iquid film is put upside down (suspended film / droplet). The con- 

rary behavior is expected and indeed found ( Section 3.2 ). Finally, 

 model of the finned tube scenario is studied. Here, the natural 

onvection induces a circular flow beneficial for the water uptake 

ate ( Section 3.3 ). This concept was realized in a single tube model 

MX, changing from thin absorbent film flow shown in Fig. 1 , to 

ooded fin flow illustrated in Fig. 7 , with good mass transfer rates 

 Section 3.4 ). 

It is understood that in addition to the gravity force-based 

uoyancy movement from changing solution density through ab- 

orbate uptake or release, effects such as the Gibbs-Marangoni 

ffect may become active, particularly at instances of high con- 

entration and temperature gradient. For example, during initial 

bsorbate uptake on highly concentrated absorbent. Nevertheless, 

his is not considered in this study, and would require further 

eflection, particularly in light of the continuously changing sur- 

ace tension, concentration gradient, temperature gradient and rate 

f absorption or desorption. Both spatial and temporal resolution 

f the employed visualization method may not meet the require- 

ents for such analysis. 

. Methods section 

.1. Neutron imaging 

Neutron imaging is an area of study followed since the acces- 

ibility of the neutron beam in the 1930s [10] . To date, there are

pproximately 15 state of the art installations situated at research 

uclear reactors and spallation neutron sources, such as the Paul 
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Fig. 2. a) Illustration of the visualization of absorbate mass transport. The gaseous absorbate is transparent and becomes visible (black) when liquified on the absorbent 

surface and transports into the absorbent film. b) Neutron image of the cell showing the chamber vaper volume (H 2 O gas), droplet supply and absorbent film (NaOD + D 2 O). 

The black dots are for orientation purpose only, originating from an afore-placed aluminum sheet containing highly neutron scattering inlays. 
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cherrer Institute (PSI) Swiss Spallation Neutron Source (SINQ) fa- 

ility, with the Cold Neutrons imaging (ICON) beam line employed 

n this work [ 10 , 11 ]. 

Due to its weak interaction with many higher density ma- 

erials, the neutron is a unique probe in non-destructive inves- 

igations of materials and component [12–15] . Hydrogen is one 

f the most prominent neutron scatterers, providing high sensi- 

ivity to water [16] . Furthermore, neutrons are isotope sensitive. 

articularly for hydrogen, there is a great contrast difference be- 

ween the two isotopes 1 H and 2 H (deuterium) [17] , a charac- 

eristic exploited in this experiment. Classically, neutrons are at- 

enuated (due to scattering) by the hydrogen in water (H 2 O) and 

odium hydroxide (NaOH) and to a substantially lower degree by 

odium (Na) and oxygen (O). In order to improve contrast of ab- 

orbent (NaOH + H 2 O) to absorbate (H 2 O), the experiment is fol- 

owed through with isotopically-enriched absorbent solution, thus 

he hydrogen in the absorbent solution is replaced with deuterium, 

aOD and D 2 O, while the absorbate vapor is kept as conventional 

ater (H 2 O). In this way, the neutron beam provides a hydrogen 

ensitive radiographic image. Fig. 2 a illustrates the image contrast; 

hereby gaseous H 2 O is non-visible. Although it contains hydro- 

en in its primary isotope state, the low material density renders it 

ransparency. The liquid absorbent, containing hydrogen in its sec- 

nd isotopic state, is also transparent. Liquified water vapor, ab- 

orbed on the liquid absorbent on the other hand, becomes visi- 

le as dark areas, areas where the neutrons are scattered and ab- 

orbent concentration is reduced. Transport of this liquid water 

nto the absorbent and mixing is made visible by gray scale. 

The temporal and spatial resolution of the images are mutu- 

lly limited by the neutron flux. One is optimized on the expense 

f the other, both have been refined by digital detection and im- 

ge processing [18-23] . In this study, exposure times of 0.1 s and 

.0 s with a resolution of 44 μm are applied. The test object is 

losely positioned to the scintillator screen to reduce the amount 

f penumbra blurring. Images are referenced in respect to dark cur- 

ent and open beam image. 

.2. Test cell 

The aluminum test cell shown in Fig. 3 a is used. Aluminum 

s mostly transparent to neutrons and withstands the applied va- 

or to atmosphere pressure difference. In the cell all gasses apart 

rom water vapor are removed. To prevent absorbent contact, a 

olytetrafluoroethylene (PTFE) tray is inserted inside the cell. Like 

he aluminum PTFE is mostly transparent, having a relatively low 
3 
ttenuation coefficient and containing no hydrogen. Samples are 

laced on a stainless-steel metal sheet on the tray bottom. For 

ample supply, a thin PTFE tube is inserted from the cell top. The 

ell is connected to a water (H 2 O) vapor source, vacuum pump and 

ressure sensor. Absorbent supply is tubing pump regulated. 

Observation of absorption and convection is performed under 

hree varying conditions: increasing film height (thickness), droplet 

uspension, and fin segment embedment. The study is performed 

nder absorbate atmosphere, with quiescent absorbent, and non- 

ontrolled absorption heat release. Tests are performed at 2.33 kPa 

ater vapor pressure, equivalent to 20 °C evaporating temperature 

nd the absorbent concentration is 40wt% NaOD in D 2 O. 

.3. Lab test bench 

A test bench was built to examine the flooded spiral finned 

eat and mass exchanger (HMX). The setup consists of two inter- 

onnected chambers (absorber / desorber and evaporator / con- 

enser) of cylindrical shape, 1400 mm high and 100 mm in di- 

meter. Fig. 3 b shows the setup. Each chamber contains a single 

ertically installed spiral finned tube. The heat transport fluid (wa- 

er on both sides) is pumped upwards through the spiral fin tube, 

ow regulated by gear pump. The evaporator fin is flooded with 

ater which is recirculated. The absorber is supplied with aque- 

us NaOH with a concentration of 50wt% to the top of the spiral 

n. Discharged absorbent is collected at the bottom of the chamber 

nd released via vacuum lock. The test bench enables realistic test- 

ng conditions on a single HMX testing tube. A detailed description 

f the testing facility can be found in [8] . 

. Results 

.1. Droplet impingement on quiescent liquid absorbent film 

The prospect for mass transport enhancement through mix- 

ng by droplet impingement on absorbent film is examined. Drops 

f 2.8 mm diameter are constructed and released at a height of 

.5 mm from the stainless-steel plate. The droplet diameter is 

ot specifically regulated and results from the absorbent viscos- 

ty and surface tension in the absorbate atmosphere. The falling 

eight is chosen based on the possible fin spacing in the real setup, 

nd varies dependent on the accumulated film height. Results are 

hown in Fig. 4 , with original images accompanied by contrast en- 

anced, enlarged records (showing half of the original image with 

he left border representing the droplet center line), emphasizing 
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Fig. 3. a) Illustration of the test cell on the left and a picture of the test cell installed in the beam line on the right. Measurement values are in millimeters. b) Illustration 

of the test bench containing the spiral finned tube on the left and a picture of the testing facility on the right. 

a

a

c

c

i

a

fi

f

o

c

s

e  

s

w

F

p

t

p

i

o

r

d

i  

a

t

d

t

t

i

b

T

t

t

n

c

3

bsorbed water (H 2 O) vapor diluted absorbent, in black. Red lines 

re inserted to indicate the steel plate surface and arrows are in- 

luded in the enhanced image to indicate observed movement of 

oncentrated absorbent (red) and diluted absorbent (blue). Areas of 

ncreased water vapor uptake, based on exposure of concentrated 

bsorbent, are indicated with green arrows. White areas within the 

lm contain concentrated absorbent, the film shape can be derived 

rom the original images. Initially, the stainless-steel surface is free 

f absorbent, except for slight absorbent impregnation, followed by 

ontinuous film growth through droplet impingement and depo- 

ition. The film height after droplet impingement is indicated in 

ach image as well as the time step from first image. In Fig. 4 a, a

equence of images, pre and post droplet impingement is shown 

ith droplets numbered and time step from first image indicated. 

ig. 4 b shows a follow-up series of images, with one droplet im- 

ingement event contained. Succeeding images are shown with 

ime step from first image indicated. 

First impingement (D1) accompanies rapid, wide spread and 

rompt absorbate uptake indicated by the absorbent film appear- 

ng all black. The subsequent droplets (D2 to D6) follow a pattern 

s

4 
f sideways movement of diluted absorbent, indicated by the ar- 

ows, resulting in a more concentrated center of the film with a 

ilute ring. This behavior can be witnessed by the lighter gray area 

n the center of the film in Fig. 4 a to the left or by the white

rea in the respective contrast enhanced images. From D4 on, as 

he film depth increases, this process is accompanied by an un- 

er washing of concentrated absorbent forcing diluted absorbent 

o rise. In the sequence shown in Fig. 4 b, this process continues 

o the extent that the diluted absorbent floats to the top, expos- 

ng concentrated absorbent on the sides. The droplet impingement 

etween time 3 s and 4 s produces no visible absorbent mixing. 

here appears to be a process of surface breakthrough and deposi- 

ion under the diluted absorbent. The final four images from 14 s 

o 44 s show a steady increase of the diluted absorbent film thick- 

ess (uptake of H 2 O), with continuous sideways exposure of con- 

entrated absorbent. 

.2. Film suspension 

Based on the observations presented in Fig. 4 , the film suspen- 

ion test is performed in an attempt to verify natural convection. 
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Fig. 4. Images showing droplet impingement taken at an image exposure time of 0.1 s ( Fig. 4 a) and 1 s ( Fig. 4 b). The horizontal red line indicates the interface between 

stainless steel plate and absorbent. Dark areas above the red line are regions of diluted absorbent containing absorbed H 2 O. Images are accompanied with a thresholded, 

enlarged version, with white areas in the film containing concentrated absorbent. Observed movement is indicated with red arrows for concentrated absorbent, blue arrows 

for diluted absorbent and green arrows for areas of expected large absorbate uptake. The four black dots are for orientation purpose only. The red vertical lines in the 

left pixel frequency diagrams indicate the gray level interval displayed. The line in the right diagrams is the threshold used for the segmentation (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article). 

5 
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Fig. 5. Image sequence of droplet suspension and impingement taken at 0.1 s exposure time. Images are accompanied with a thresholded, enlarged version, with white areas 

in the droplet containing concentrated absorbent. Observed movement is indicated with red arrows for concentrated absorbent, blue arrows for diluted absorbent and green 

arrows for areas of expected large absorbate uptake. The four black dots are for orientation purpose only. The red vertical lines in the left pixel frequency diagram indicate 

the gray level interval displayed. The lines in the right diagram are the threshold area used for the segmentation (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article). 
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or this purpose, a stainless-steel wire mesh is installed for ab- 

orbent suspension. Droplets from the supply tube fall on and ad- 

ere to the mesh and are suspended in the water vapor atmo- 

phere. 

Fig. 5 shows the image results, 6 images with noted time 

tep. Again, original and threshold adjusted, enlarged variants are 

hown. In the commencing image a fresh absorbent droplet drops 

bove a suspended diluted absorbate film. At time 0.2 s, the 

roplet has fallen, colliding and partly intermixing with the diluted 

lm on the mesh. In the following images, a continuous separa- 

ion of concentrated and diluted absorbent is observed. Concen- 

rated absorbent sinks to the bottom and diluted absorbent rises 

o the top, indicated by the respective arrows. Like in the previ- 

us setup ( Fig. 4 ), rapid separation occurs. On the contrary, in the

c

6 
roplet suspension case, the concentrated solution is directly ex- 

osed with a large surface area to the absorbate from underneath 

he wire mesh. This increases the concentrated absorbent exposure 

o absorbate, augmenting power by reducing mass transport hin- 

rance. 

.3. Absorbent flooded fin segment 

A fin segment, comparable to the spiral finned vertical tube 

MX, is installed in the tray. Absorbent is supplied from the supply 

ube, with droplets impinging on the upper fin and flowing over 

he fin edge to fill the space between fins. 

Fig. 6 shows exemplary images, with time step noted. The pro- 

ess starts with a small deposit of diluted absorbent at the closed 
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Fig. 6. Image sequence of absorbent impinging on a fin segment and flowing over the side while adhering to the fin underside, subsequently filling the lower set space 

between the fins with absorbent from right to left. The black dots are for orientation purpose only. The red vertical lines in the pixel frequency diagram indicate the gray 

level interval displayed (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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nd of the fin. Accumulating droplets on the upper fin flow over 

he fin edge, suspending on the underside of the fin, seen at time 

8.9 s, before bridging to the diluted absorbent and depositing un- 

er it. In the figure sequence starting at 95.1 s, three series of three

mages are displayed, showing conditions prior, during and post 

ow of concentrated absorbent from under the upper fin to the 

eposit between the fins. Separation of diluted to concentrated ab- 

orbent is clearly visible in all three sequences. In addition, it can 

e observed that as absorbent flows, there is a slight carry along 

f diluted absorbent, pointed to with the circles in the respective 

mages. This downward movement of diluted absorbent is quickly 

ounteracted and a clear separation of concentrated and diluted 

bsorbent is restored as shown in the follow-up images. 

.4. Model spiral finned HMX 

A copper spiral finned tube is installed in the lab scale test 

ench. The spiral finned tube has an outer fin diameter of 21 mm, 

 length of 960 mm, a fin width of 4.5 mm and 2.8 mm fin spac-

ng. The spiral finned HMX is tested under realistic absorption heat 

torage conditions at an evaporator HTF input temperature of 10 °C 
nd flow of 700 ml/min and an absorber HTF input temperature 

f 25 °C with a flow of 100 ml/min. These conditions are consid- 

red to be realistic for the application in a home with floor heating 

nd access to a ground source heat exchanger. The evaporator in- 

ut temperature is the temperature available from the geothermal 

eat exchanger and the absorber input temperature is the return 

emperature from the building floor heating system. 

. Discussion 

In the absorption storage heat pump, performance is measured 

y output temperature, power and volumetric energy density. All 

re bound by mass transport kinetics. In this visual study, mea- 
7 
ures are sought to optimize mass transport kinetics on the ver- 

ically installed spiral finned HMX by mixing, while keeping the 

ingle pass restriction. It is expected that by triggering absorbent 

ixing along the fin, concentration gradient in the film is reduced 

nd rate of mass transport improved. A possible approach assessed 

s droplet formation and impingement by fin segmentation, cut- 

ing the fin so that a droplet forms at the end of a segment and

alls onto the lower set fin segment. The results from the droplet 

n film impingement tests in Fig. 4 , show that, the mixing effect 

s marginal, possibly due to lack of momentum of the imping- 

ng droplet and the high viscosity of NaOH solution, 47.7mPa s at 

0wt% and 30 °C, relevant for the storage application. Especially 
rom a film depth of 1 mm on, strict separation of diluted and con- 

entrated absorbent is seen, with diluted absorbent rising to the 

op, slowing down absorption by increasing mass diffusion resis- 

ance. The fresh, concentrated absorbent droplets fall through and 

eposit under the diluted absorbent. 

An alternative approach to increase absorption is found by ab- 

orbent suspension in a wire mesh. In this way, the exposure area 

f absorbent to absorbate is augmented. Again, rapid separation 

f diluted and concentrated absorbent is recognized. Contrary to 

he previous test, Fig. 5 shows that by suspending the absorbent 

roplet on a wire mesh, concentrated absorbent, on the bottom 

ide, is directly and continuously exposed to the absorbate vapor. 

ractically no diffusion barrier to the absorbate evolves, since di- 

uted absorbent rises to the top, re-exposing fresh concentrated 

bsorbent on the bottom. It is esteemed that this process of di- 

uted absorbent removal is even more effective than mixing, since 

bsorbent with high concentration is continuously exposed to the 

bsorbate vapor. In this case, it may be considered that mass trans- 

ort by diffusion is even counterproductive since similar to mixing, 

t tends towards a mean concentration in the solution contacting 

he absorbate. In practice, substantial challenge in the design of 

 HMX, achieving stable suspension in HTF counter flow motion is 
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Fig. 7. a) Illustration of the water absorption and convection process in the fin space. The arrows indicate the vapor uptake, convection of diluted absorbent and exposing of 

concentrated absorbent to the absorption interface. b) Closeup of a fin segment neutron image, confirming the separation of concentrated absorbent (light gray) and diluted 

absorbent (dark gray), as well as the exposure of concentrated absorbent to the absorption interface. c) Image of the operating flooded spiral finned HMX. 
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nticipated. There is a strong tendency towards absorbent accumu- 

ation, building large droplets, that fall from their suspension [24] . 

A compromise between the favored conditions of droplet sus- 

ension and thin film flow on the spiral fin may be found in the 

n segment evaluation. The images in Fig. 6 show that in the space 

etween the upper and lower fin, alike concentration stratifica- 

ion occurs. This action exposes concentrated absorbent to the ab- 

orbate interface, where it rapidly absorbs vapor and rises to the 

nderside of the upper fin releasing heat to the HTF in a contin- 

ous absorption and wash away process. This is also observed in 

ig. 4 b, where concentrated absorbent is exposed to the absorbate 

apor due to the strong separation. 

In all three varying analysis schemes, the separation of di- 

uted to concentrated absorbent can be clearly detected. The source 

f this separation is proposed to be natural convection through 

hange of concentration and temperature. Due to the good ther- 

al conductivity of aqueous NaOH [25] , thermal stratification is 

ssumed minor in comparison to mass based effects [26] , although 

oth are equal in direction. An evaluation is possible based on 

he Rayleigh number Ra = �ρgh 3 (D η) −1 . Considering conditions 

n the heat storage application, with a density difference ( �ρ) of 

25 kg m 
−3 , the difference between 50wt% aqueous NaOH and 

 2 O, the film height (h) of 2 mm, the mass diffusion coefficient (D)
8 
f 3.39 × 10 −11 m 
2 s −1 , and the dynamic viscosity ( η) of 0.048Pa s,

 high Rayleigh number of 2.55 × 10 7 results, a clear indication 

or strong convection. The mass diffusion coefficient (D) is calcu- 

ated according to the Stokes-Einstein equation D = k B �(b πηr) −1 

here k B is the Boltzmann constant (1.380643E −23 J K −1 ), � is the 

olution temperature of 303 K, b is a constant dependent on the 

olecule size relation, taken to be 6 in this case, η is the dynamic 

iscosity of the absorbent taken to be 0.048Pa s, and r is the radius 

f the diffusing molecule, in this case water (1.375 × 10 −10 m). 

Fig. 7 a illustrates the proposed process. A spiral finned tube is 

nstalled vertically as was followed in [8] , whereby the spiral fin, 

erpendicular to the tube, is horizontal in a downwards moving 

elical spiral. The illustration ( Fig. 7 a) shows a segment cut, with 

he HTF on the right side and the fin spiral to the left. The fin is

umbered as fin spiral x and x + 1, indicating a continuous sin- 

le downward spiraling fin. The space between the spiraling fin is 

lled with absorbent having sideways vertical contact to the ab- 

orbate vapor. In this way, the absorbent is contained in a con- 

inuous stream in the spiraling fin. Issues with absorbent accumu- 

ation and fall through are prevented and the absorbent does not 

pill from the fin due to the sufficiently high liquid surface ten- 

ion and mass-based stratification is actively employed to increase 

he rate of absorption. In the process, absorbate is condensed on 
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Fig. 8. Diagram showing the HMX performance in respect to the gross temperature lift and the concentration change, compared to the theoretical absorbate pressure, 

absorbent temperature and absorbent concentration equilibrium. The arrows indicate the potential improvement through increased buoyancy movement from design opti- 

mization. 
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he vertical absorbent surface, and the heat of condensation is re- 

eased. Since the liquid absorbate, in this case water, is lighter than 

he absorbent, it rises to the underside of the higher set spiral, ex- 

osing fresh concentrated absorbent to the vertical contact surface. 

 continuous process of absorption, convection and fresh exposure 

esults as illustrated in Fig. 7 a. Fig. 7 b shows a close up of a fin

egment image ( Fig. 6 ), emphasizing the detected process. 

This concept is tested in the described lab scale single ab- 

orbent tube test setup [8] . The applied transported process, con- 

inuous supply of concentrated absorbent of 50wt% NaOH at a flow 

f 4 g/min to the top of the spiral finned tube, renders the sys- 

em steady state operation with a continuous absorbent HTF out- 

ut temperature of 37.5 °C. This is well sufficient for space heat- 

ng; the European standard EN 14511 [27] requires 35 °C supply 
emperature for floor heating. The absorber HTF temperature lift is 

hus 12.5 K. On the evaporator, the HTF temperature drops from 

0 °C input temperature to 8.2 °C output temperature, with a heat 

ump temperature lift, also referred to as gross temperature lift 

GTL), between absorber output and evaporator output of 29.3 K. 

ompared to the theoretical maximum lift of 38 K under adiabatic 

pen circuit conditions and considering the inclusion of temper- 

ture drop on the heat and mass exchanger, this achievement is 

avorable. The HMX has a power output of 84.2 W or an area spe-

ific power of 1.28 kW/m 
2 , referring to the active area of the ab-

orber tube and not including the evaporator. The final discharged 

oncentration is 37wt%. Under the testing conditions of 15 K differ- 

nce between evaporator input (10 °C) and absorber input (25 °C) 
nd adiabatic conditions, a theoretical concentration of 33wt% can 

e reached. Again, considering the running process, the achieved 

7wt% is good. Based on the concentration difference, an ener gy 

ensity of 243 kWh/m 
3 is calculated in respect to the volume of 

harged absorbent, the condition of greatest volume. This result is 

isualized in Fig. 8 in respect to the theoretical equilibrium be- 

ween absorbate vapor pressure, absorbent temperature and ab- 

orbent concentration in a GTL vs. concentration diagram. The fig- 

re emphasizes the challenge encountered in the sorption storage 

eat pump, requiring both high temperature lift and low final con- 

entration in a single pass discharge process, a challenge singular 

o the storage application, largely effecting the HMX design. The vi- 

ualization in Fig. 8 provides a good basis for further performance 

t  

9 
valuation of design changes for enhanced buoyancy movement 

oth in respect to GTL and final concentration as indicated by the 

orizontal and vertical arrow. 

. Conclusion 

In this study, strong convection triggered by concentration dif- 

erence in the process of absorption is observed by neutron imag- 

ng experiments and associated with buoyancy changes. From 

hese observation, a method for targeted engagement for liquid 

bsorption heat storage is deduced. The designed flooded spiral 

nned tube HMX is expected to enable continuous exposure of 

oncentrated absorbent to the absorbate in counterflow and with 

ong exposure time. This eliminates the need for absorbent mix- 

ng along the spiral fin. Initial testing of such a spiral finned tube 

MX have shown good performance in respect to the triple per- 

ormance parameters; output temperature, power and energy den- 

ity. Further work will now follow on the HMX design in order 

o evaluate best fin width and spacing to encourage exposure of 

oncentrated absorbent through buoyancy movement and enable 

uantitative comparison. 
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ppendix: Challenge of absorption kinetics 

The liquid absorption heat storage system comprises absorp- 

ion heat pump and working pair storage tanks [ 28 , 29 ]. Absorbent
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nd absorbate are pumped from tank to heat pump and back 

nd are stored in charged and discharged state. Operation distin- 

uishes between charging (desorption and condensation) and dis- 

harging (evaporation and absorption), technically reducing heat 

ump components to a single HMX [ 30 , 31 ]. Owing to the interde-

endence of temperature lift and absorbent concentration, recircu- 

ation of absorbent solution for power enhancement is not applica- 

le, requiring single pass discharge [8] . This is best fitted with ab- 

orbent and heat transfer fluid (HTF) counter-flow heat exchange, 

ermitting maximum absorbent cooling (close to HTF input tem- 

erature), allowing for high absorbate uptake (equilibrium at low 

ondensation temperature) and maximum HTF output temperature 

close to absorbent maximum temperature) [32] . Absorbent flow, 

ith exposure to absorbate vapor, is generally free, gravity based, 

hile HTF flow is pumped [ 24 , 28 ]. Operation is performed under

bsorbate atmosphere [ 3 , 33 ] with good wetting, a practical design 

train [24] . 

In the absorption heat storage, temperature lift and heat trans- 

ort (power) are extended with energy capacity [3] . Ergo, a 

ew scheme of operation manifests, centering on maximum ab- 

orbate uptake and heat release, requiring the advance towards ab- 

orbent equilibrium, an absorbent temperature, concentration and 

bsorbate pressure dependent condition [34] . In absorption heat 

umps, temperature lift and heat transport are enhanced through 

peration at high absorbent concentration with small concentra- 

ion difference between absorption and desorption [35] . Measure 

f energy capacity impairs this approach for absorption heat stor- 

ge, since large absorbate exchange is required between charged 

nd discharged state to reach high energy density [36] . 

When looking into the process of absorption, in the phase tran- 

itions of pure substances, such as condensation of water vapor 

n liquid water, the gas-liquid interface is determining while in 

bsorbent pools, diffusion is mass transfer rate limiting [37] . The 

aminar film model by Whitman is a common model taken to de- 

cribe the absorption of a gas into a liquid [38] , assuming a lam-

nar gas–liquid interface layer as the predominant constriction to 

ass transfer of gas into the liquid phase [39] . In their studies, 

sai and Perez-Blanco conclude that surface-to-bulk mixing is re- 

uired to increase the mass transport rates beyond molecular dif- 

usion [40] . 

Absorbate mass flux to and from the absorbent surface is based 

n its vapor pressure, dependent on concentration gradient, lim- 

ted by diffusion kinetics [41] . Acceleration is obtained through ac- 

ive (e.g. stirring) [ 42 , 43 ] or passive (e.g. impingement) [30] mix-

ng, at best acquiring uniform temperature and concentration [44] . 

ypically, heat pumps exploit passive measures by absorbent im- 

ingement on a tube bundle at high absorbent flow rate [45] . Due 

o the low absorbent to absorbate exposure time, this design is not 

ppropriate for absorption heat storage and suffers from low ab- 

orbate exchange in single pass [24] . 

In technical operation, kinetics of mass transport governs all 

hree performance parameters, temperature lift, heat transport 

power) and energy density. Under adiabatic condition, tempera- 

ure lift from evaporator to absorber, is given by the absorbate va- 

or pressure on the absorbent, depending on the absorbent con- 

entration [ 3 , 36 ]. In operation, surface concentration is reduced 

wing to mass transport rate limits from surface to bulk, limiting 

emperature lift [46] . Heat transport is coupled to both, absorbate 

ransport rate and active (wetted) area. Energy density is depen- 

ent on the absorbate balance, charged to discharged state, bound 

y equilibrium conditions, limited by transport rate and exposure 

ime [5] . 

Numerous studies have worked to adapt conventional absorp- 

ion heat pump type heat and mass exchangers (HMX) for im- 

roved rate of absorption as required in the absorption heat stor- 

ge. Mortazavi et al. addressed wetting issues for flat plate heat 
10 
nd mass exchanger operating with LiBr [6] . They proposed a 

nned structure to spread the absorbent on the falling film flat 

late. Nevertheless, exposure time was low and single pass, a 

rimary requirement, was not enabled. Michel et al. proposed a 

rooved plate falling film absorber, also not fitting to heat storage 

pplication [7] . Further research on novel flat plate falling film de- 

igns was reported by Hu et al. nevertheless they also needed to 

llow recirculation [47] . An extension of the tube bundle falling 

lm HMX with M–W shaped corrugated mesh guides was reported 

y Chen et al. and Stehlík et al. propose finned surfaces on hori- 

ontal tubes, both again not reaching single pass [ 4 8 , 4 9 ]. 

In the development of absorption heat storage prototypes, the 

hallenge has been encountered by many researches in the field, 

ocusing on the common tube bundle falling film HMX design. 

’Tsoukpoe et al. note a lack of mature absorption heat storage 

echnology [50] . Zhang et al. adapt a lithium bromide absorp- 

ion heat pump and fail to reach adequate energy density [51] . 

o heat gain is reached by N’Tsoukpoe et al. [ 28 , 30 ]. Le Pierrès

t al. [52] reached only a low temperature lift and energy density. 

aguenet-Frick et al. [ 24 , 53 ] also report insufficient temperature 

ain and energy density. 
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