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Abstract—Software developers rely on various repositories and
communication channels to exchange relevant information about
their ongoing tasks and the status of overall project progress.
In this context, semi-structured and unstructured software arti-
facts have been leveraged by researchers to build recommender
systems aimed at supporting developers in different tasks, such
as transforming user feedback in maintenance and evolution
tasks, suggesting experts, or generating software documentation.
More specifically, Natural Language (NL) parsing techniques
have been successfully leveraged to automatically identify (or
extract) the relevant information embedded in unstructured
software artifacts. However, such techniques require the manual
identification of patterns to be used for classification purposes.
To reduce such a manual effort, we propose an NL parsing-
based tool for software artifacts analysis named NEON that can
automate the mining of such rules, minimizing the manual effort
of developers and researchers. Through a small study involving
human subjects with NL processing and parsing expertise, we
assess the performance of NEON in identifying rules useful to
classify app reviews for software maintenance purposes. Our
results show that more than one-third of the rules inferred by
NEON are relevant for the proposed task.
Demo webpage: https://github.com/adisorbo/NEON tool

Index Terms—Unstructured Data Mining, Natural Language
Parsing, Software maintenance and evolution

I. INTRODUCTION

Software developers intensively rely on of software reposi-
tories [1], [9], [29] and written communication channels [7],
[24] for exchanging relevant information about the ongoing
development tasks and the status of overall project progress.
Development teams contributing to the software reposito-
ries [1], [9], [29] are globally distributed [7]: they often (i)
communicate in unstructured form through mailing lists [5]
and chats [2], (ii) discuss problems and related solutions over
issue trackers [20], [21] and Question & Answer forums (e.g.,
Stack Overflow) [31], and (iii) acquire feedback posted by
users on dedicated channels, as in the case of mobile apps (e.g.,
app stores) [14]. Therefore, valuable information is dissemi-
nated (and scattered) over semi-structured and unstructured
software artifacts [7], [9], [24].

Semi-structured and unstructured software artifacts have
been leveraged by researchers to build automated approaches
aimed at supporting developers dealing with several software
engineering (SE) tasks [1], [3], [4], [10], [20], [30]. In this
context, the information embedded in unstructured software
artifacts has been analyzed with approaches relying on infor-
mation retrieval models (e.g., VSM [6], LSI [13], or LDA [8]).
However, such approaches treat unstructured text as a bag of

word (or, in the best case, infer latent topics/concepts from
them). This makes them ineffective when a deeper level of
detail in the text analysis and interpretation is needed [16]–
[18].

To overcome the limitations of approaches based on bag-
of-words representations, and to automatically identify textual
patterns in informal software documents that are relevant
to different evolution tasks, in previous work we proposed
an approach named intention mining [16], which leverages
Natural Language (NL) parsing techniques. Such an approach
has been successfully applied for classification [17], [25], [27],
summarization [15], [28], or quality assessment [11], [32]
purposes, where it turned out to be more accurate than models
based on bag-of-words representations.

The main challenge of leveraging approaches based on NL
parsing techniques is that they require the manual definition of
sets of NL rules [15], [16], [25] to recognize natural language
patterns. This manual task has proven to be effort-intensive
and error-prone, since it requires specific domain-knowledge
in natural language parsing [18]. For this reason, recent
research [19] attempted to automate and generalize intention
mining by experimenting with deep learning-based methods.
However, while deep learning-based approaches avoid the
manual tagging of textual information, they hampers the
interpretability of the results, making it difficult to understand
the specific linguistic patterns that have been identified. Such
patterns are indeed crucial to support several tasks, e.g.,
automated detection of inconsistencies between source code
and API documents [32].

To reduce the manual work required for manually identify-
ing patterns in textual documents, in this paper we present
a tool named NEON (Nlp-based softwarE dOcumentation
aNalyzer), able to automatically mine recurring patterns from
software informal documents. NEON, by implementing an
approach that we presented in previous work [18], inspects
natural language sentences received as input and identifies the
recurrent grammatical structures appearing in them. NEON
is able to output a list of syntactical rules and each rule has
the purpose of detecting a specific natural language pattern.
In previous work [18], we showed that NEON allows for
saving more than 70% of time otherwise spent in the manual
identification and definition of NL rules.

Through a small study involving human subjects with NL
parsing expertise, we assess the performance of NEON in
identifying rules relevant for classifying user intents in the
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Fig. 1. The NEON’s architecture.

context of app reviews. Such an experiment demonstrates that
NEON can efficiently automate the detection of rules useful
for intention mining.

II. THE NEON’S APPROACH AND TOOL

NEON has the goal of minimizing the manual effort to
gather the relevant rules (or patterns) for identifying (or
extracting) the information of interest embedded in software
informal documents.

Figure 1 shows the high-level architecture of NEON. The
analysis of software documentation is performed through two
main phases: i.e., the training phase and the testing phase.
In the training phase, a set of software artifacts of a spe-
cific type (e.g., app reviews or issue reports) is inspected to
identify rules for capturing recurrent NL patterns [16]. In the
testing phase, the inferred rules are leveraged to recognize
the information of interest in a different corpus of software
artifacts. Specifically, NEON encompasses two independent
software components that allow automating both phases: (i)
the Patterns Finder, and (ii) the Tagger.

The Patterns Finder automatically identifies relevant
rules for detecting NL patterns occurring in a set of unstruc-
tured texts (i.e., training set). The Tagger exploits such rules,
stored in an XML file, to automatically label the relevant
pieces of information appearing in the documents whose
sentences need to be classified (i.e., the test set).

The Patterns Finder is composed of two main soft-
ware modules: the Parser and the PathsFinder. The
Parser (i) preprocesses the text through sentence splitting
and tokenization, and (ii) generates the semantic graph1 of
each sentence present in the input text. Such semantic graphs
are then provided to the PathsFinder module, which
implements the approach presented in our previous work [18].
More specifically, given two generic semantic graphs, G1

and G2, that share a common grammatical structure, the
PathsFinder (i) selects the nodes of the verb and noun
types from both graphs, (ii) identifies the pairs of similar nodes

1https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/
SemanticGraph.html

<NLP_heuristic>
<sentence type="declarative"/>
<type>aux/neg/dobj/nsubj</type>
<text>[something] [auxiliary] not open [something].</

text>
<conditions>

<condition>aux.governor="open"</condition>
<condition>aux.governor=neg.governor</condition>
<condition>neg.governor=dobj.governor</condition>
<condition>dobj.governor=nsubj.governor</condition>

</conditions>
<sentence_class>PROBLEM DISCOVERY</sentence_class>

</NLP_heuristic>

Fig. 2. Example of NEON rule in XML

(e.g., nodes containing the same or similar lemmas) present
in G1 and G2, and (iii) analyzes the children and the labeled
arcs outgoing from the pairs of similar nodes, to specify the
rule aimed at recognizing the common grammatical structure.
In particular, a rule able to recognize a grammatical structure
in a generic sentence is defined through the XML grammar
illustrated in Figure 2. The <conditions> represent the
core part of the rule and they describe the path to be searched
in the Stanford Dependencies (SD) representation [12] of a
sentence under analysis. In general, the PathsFinder is
able to automatically infer two types of conditions:
1. Conditions of type 1, in which specific lemmas

have to appear in precise grammatical roles (e.g.,
aux.governor=‘‘open").

2. Conditions of type 2, which localize typed dependen-
cies sharing particular regents (i.e., governors) or argu-
ments (dependents) or typed dependencies whose depen-
dent represents the governor of a second dependency (e.g.,
aux.governor=neg.governor).

It is worth noting that the rule set can evolve incrementally.
Indeed, when inspecting new artifacts through the Patterns
Finder, new rules might be discovered. Hence, the tool
provides the ability to integrate the newly identified rules into
the existing rule set stored in a specific XML file.

The Tagger generalizes the approach used in previ-
ous NLP-based classification tools [17], [26]. It is com-
posed of two main software modules: the Parser and the
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Classifier. By relying on the Stanford CoreNLP API [23],
the Parser performs sentence splitting, tokenization, and, for
each sentence, it generates the Stanford Dependencies (SD)
representation. The Classifier leverages such a represen-
tation and the set of rules (defined in an XML file) to detect
the presence of text structures that match one (or more) of the
defined rules. Whenever a rule is matched, the Classifier
creates a result instance, together with information about (i)
the sentence in the text that matched the rule, (ii) the sentence
class (on the basis of the matched rule), and (iii) the specific
rule matched. The Classifier labels only the sentences
that match known rules, assuming that all other sentences are
too generic or have negligible contents [17].

III. USING NEON

NEON provides an intuitive Graphical User Interface
(GUI). It can also be used programmatically as a Java library.
Here, we mainly describe the features of the GUI, while code
examples on how to use the NEON.jar library are reported
in our online repository2. As shown in previous work [18],
NEON can be useful to analyze a variety of software artifacts
(e.g., issue reports, development emails, etc.). For simplicity,
in this section, we focus on a specific usage scenario, i.e.,
app review analysis. Given a set of app reviews, NEON helps
researchers (or practitioners) to (i) discover, during the training
phase, the NL patterns (and the respective detection rules)
occurring in these artifacts and connected with information of
interest (e.g., feature requests), and (ii) leverage the inferred
rules to automatically recognize/extract such information when
inspecting further app reviews (i.e., testing phase).

Training phase. By selecting the Add new
heuristics... option from the File menu, a new
window will open. This new window includes a text area
in which the user can paste the training documents (or load
them by selecting the Open text file... option from
the File menu). The Find Common Patterns button
located below the text area can be used to start the analysis
of the training app reviews. At the end of the analysis, an
interactive table containing all the inferred rules is generated
and visualized by NEON. As illustrated in Figure 3, each
row in the table reports the conditions and the details related
to a specific rule. By inspecting such a table, the researchers
(or practitioners) can easily analyze, modify, and decide if
each given rule is relevant for a given purpose (by acting on
a checkbox). The table also offers the possibility to specify
the category to which each relevant rule is related (i.e.,
the sentences matching the given rule will fall within the
assigned category). For instance, the table in Figure 3 shows
that the selected rules (useful for detecting patterns like
“It lacks” or “I would like”) can be later used to identify
app reviews requesting new features or enhancements. Once
finished reviewing the interactive table, by clicking on the
Add Selected Patterns button, all the rules marked
as relevant are stored in an output XML file specified by

2https://github.com/adisorbo/NEON tool

the end-user. This feature fosters the reuse of knowledge,
providing end-users with the opportunity of sharing and
using sets of rules extracted for different purposes (or from
different documents).

Testing phase. By acting on the GUI’s main window, the
user can classify relevant sentences (e.g., feature requests)
contained in app reviews different from the ones used for
training. Such documents have to be imported in the text
area of the GUI (by selecting the Open text file...
option from the File menu). By pressing the Classify
button and selecting the desired XML file containing the set
of rules enabling the classification, the testing phase is trig-
gered. NEON will highlight all the recognized sentences (i.e.,
containing one or more relevant NL patterns) using different
colors for different categories. The classification results can
be exported (by selecting the Export results... option
from the File menu) in an XML file for further analysis.

IV. EVALUATION

In addition to the empirical evaluation reported in our
research paper [18], we performed a small study, whose goal is
to assess the NEON’s capability of identifying rules useful to
automatically classify app software documents (in particular,
app reviews) along two categories, i.e., feature request, and
problem discovery. The study context consists of subjects, i.e.,
three participants, and objects, i.e., 100 app reviews. The three
subjects are (i) one professional software engineer (Subject 1),
(ii) one software engineering master student (Subject2), and
(iii) an author of the paper (Subject 3). All of them had prior
knowledge about NL processing and parsing.

To identify the study objects, we leveraged a dataset from
previous work [25], which comprises 1,390 mobile app re-
view sentences, and each sentence is labeled with one of
the feature request, problem discovery, information giving,
and information seeking categories. In particular, we sampled
100 sentences from the aforementioned dataset, 50 of them
belonging to the feature request category and the remaining
50 sentences falling in the problem discovery category. The
choice of only sampling 100 sentences was motivated by the
need for limiting the manual task duration (i.e., three hours
at maximum), as the human raters involved in our study had
limited time availability, as well as to mitigate fatigue effects.
Moreover, we decided to only focus on documents of the
feature request or problem discovery categories, as software
engineers are more likely familiar with phrases of these types,
often analyzed during software maintenance tasks [15].

We processed all the 100 sentences in the sample with
NEON, and obtained a list of 241 candidate grammatical
rules. We asked Subject 1 and Subject 2 to independently
inspect the candidate rules provided by NEON and judge
whether each rule was relevant (or not) for identifying sen-
tences belonging to one of the two categories (i.e., feature
request or problem discovery). Table I reports the results of
the manual inspection performed by the raters involved in our
study.
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Fig. 3. The interactive table for inspecting the results of the rule mining process

TABLE I
RESULTS OF THE RULES’ RELEVANCE ASSESSMENT TASK

Subject 1 Subject 2 Subject 3 # Patterns
yes yes - 52
yes no yes 15
yes no no 8
no yes yes 17
no yes no 9
no no - 140

Both initial raters marked as relevant 52 of the rules recom-
mended by NEON, while they agreed on the irrelevance of
140 items. However, there were conflicts in 49 cases. Indeed,
the inter-rater agreement (Cohen’s Kappa) was k = 0.531
(192 items out of a total of 241). According to the guidelines
in [22], a moderate agreement between the two validators
was achieved. We decided to involve a third annotator for a
further check. The third annotator (i.e., Subject 3) was asked to
express her independent judgment on the relevance of the rules
provided by NEON in all the 49 cases in which a disagreement
between the two initial raters was observed. Specifically, the
third annotator independently marked as relevant 32 out of
the 49 inspected rules. Some examples of relevant rules that
NEON was able to automatically mine from unstructured texts
in our sample are the following: [something] should have,
[something] is missing, [something] [auxiliary] use [some-
thing], problem with [something] is, it crashes, [something]
needs to [verb], [auxiliary] fix [something], [something] fails
to [verb]. These patterns are very similar to those manually
identified in our previous work [25].

After the finalization of the evaluation process, we can
conclude that more than one third of the rules (i.e., 84
patterns out of a total of 241) automatically extracted and
recommended by NEON were judged useful by at least two
out of three human validators experienced in natural language
parsing. Furthermore, as shown in our previous work [18],
NEON reduces over 70% the time spent for the identification
and definition of NL rules.

V. CONCLUSION

In this paper, we presented NEON, a tool aimed at (i)
automatically inferring rules for identifying natural language
patterns in software artifacts, and (ii) leverage such rules for
information classification (or extraction) purposes. A small
study involving real-world app reviews and human subjects
experienced in natural language parsing demonstrated that
more than one third (i.e., 35%) of the rules inferred by our
tool are relevant for identifying app review sentences reporting
bugs or requesting enhancements. In previous work [18],
we also demonstrated that NEON is time-saving and useful
for inferring rules from different types of software artifacts
(e.g., development emails, and issue reports). However, the
effectiveness of NEON might degrade when dealing with
sentences containing mixtures of code elements and natural
language [27] or incomplete sentences (e.g., commit messages,
chats).

NEON is designed to be used by both researchers and
practitioners in a wide set of software engineering-related
contexts. For instance, it can be leveraged to develop (or
improve) recommender systems supporting specific software
engineering tasks such as requirements elicitation, issue man-
agement, task prioritization, and artifacts analysis. NEON’s
ability to identify (and extract) precise information embedded
in different kinds of sources can indeed help developers and re-
searchers in improving the effectiveness of systems that require
the analysis of semi-structured (e.g., code comments, code
documentation, etc.) and unstructured artifacts, e.g., developer
communications, issue- or vulnerability-related documents,
Q&A posts, or user feedback.
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