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Abstract

The application of abiotic stresses by moderate hydrostatic pressures (MHP) is still

underdeveloped. Abiotic stresses allow activating the enzymatic complexes inducing

the synthesis of de novo bioactive compounds. Pineapple by-products are rich in bro-

melain and bioactive compounds that can be enhanced through abiotic stresses. The

aim of this study was to evaluate the effect of MHP on the enzymatic activity of

pineapple by-products. Pineapple by-products were submitted to MHP (50–400 MPa

between 1 and 15 min) according to a central composite factorial design matrix. Sam-

ples were stored at 5 ± 1�C for 24 hr, to allow enzymatic activity to occur. Enzymatic

and antioxidant activities and total phenolic compounds (TPC) were quantified. MHP

promoted a 262% increase in the phenylalanine ammonia-lyase activity and 36%

increase in TPC, in shell samples. In core the activity of bromelain increased 350%.

These results pinpoint the potential to increase the value of pineapple by-products

by enhancing the amounts of bioactive compounds through MHP application.

Practical application

Abiotic stresses can enhance enzyme activity, inducing the synthesis of bioactive

compounds in living tissues. Hydrostatic pressure is an innovative nonthermal pro-

cess that can be used to stabilize or increase enzymes' activity present in by-products

generated in the minimally processed fruit and vegetables industry. Moderate hydro-

static pressure (MHP) act as abiotic stress inducing de novo phenols synthesis and

enhancing bromelain activity. After treatment, enriched material could be stabilized

and then blended with foods and beverages to improve nutraceutical properties and

help in the prevention and treatment of chronic diseases. The study demonstrates

that MHP (150–250 MPa) applied to the pineapple core and pineapple shell produce

a phenolic and bromelain rich product.

1 | INTRODUCTION

Bioactive compounds' levels in fruits and vegetables can be enhanced

by the application of controlled postharvest abiotic stresses, to induce

de novo synthesis of active compounds. Different stresses can acti-

vate specific enzymes involved in the synthesis of the corresponding

compound (Cisneros-Zevallos, 2003) and an increase in the activity

of enzymes related with the biosynthesis and accumulation of second-

ary metabolites can be associated with late response of plants to

abiotic stresses (Jacobo-Velázquez, González-Agüero, & Cisneros-

Zevallos, 2015).

Moderate hydrostatic pressure (MHP) can be used to stabilize or

increase enzymes' activity and this enzyme activity enhancement is an

effective response parameter with great potential for application in
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enzyme catalysis (Eisenmenger & Reyes-De-Corcuera, 2009). The

behavior of enzyme activity is variable: depending on the hydrostatic

pressure applied and on the food matrix, the inactivation or activation

of the enzyme may occur. Some studies reported increase of enzy-

matic activity in fruits and vegetables using MHP (Chakraborty,

Kaushik, Rao, & Mishra, 2014). The increase in enzyme activity after

pressurization may occur due to the reversibility of the enzyme's

conformation or reorganization of its active sites, modification of

the substrate or of the medium properties, and/or displacement of

the equilibrium towards the release of inhibitors from enzymes when

enzyme-inhibitor complexes are formed (Eisenmenger & Reyes-De-

Corcuera, 2009). Once the enzyme is unfolded by pressure, it may

become more sensitive to the substrate (Chakraborty, Kaushik,

et al., 2014; Eisenmenger & Reyes-De-Corcuera, 2009).

Enzymatic reactions in plant tissues can be enhanced by favoring

the contact between the enzyme and the substrate, for example,

caused by the disruption of tissue that occurs during stresses, particu-

larly mechanical stresses such as application of hydrostatic pressure.

Hydrostatic pressure may also alter the conformation of macromolec-

ular substrates, increasing or decreasing the easiness of the catalytic

action of the enzyme upon them, with this consequently affecting the

enzyme-substrate interaction and, ultimately, enzyme activity (Cano &

Ancos, 2005).

Pineapple is a fruit that contains large amounts of proteolytic

enzymes, namely stem bromelain (EC 3.4.22.32) and fruit bromelain

(EC 3.4.22.33) that are homologous cysteine proteases (Raimbault,

Zuily-Fodil, Soler, Mora, & Cruz de Carvalho, 2013) which are absorbed

by the body without losing proteolytic activity and without creating

significant side effects. Bromelain has numerous advantages in the

digestive and cardiovascular systems. Bromelain has anticancer proper-

ties, promotes apoptosis (cell death), relieves osteoarthritis, diarrhea

and various cardiovascular disorders, and has also therapeutic benefits,

such as for the treatment of angina pectoris, bronchitis, sinusitis, surgi-

cal trauma and thrombophlebitis, wound debridement, and absorption

of drugs, principally antibiotics (Pavan, Jain, Shraddha, & Kumar, 2012).

Phenylalanine ammonia lyase (PAL; EC 4.3.1.5) is very important

in biosynthesis of phenolic compounds and can be induced by stress

conditions. In the phenylpropanoid pathway, PAL is the first enzyme

and plays an essential role in the biosynthesis of phenolic compounds

in plants (Chen et al., 2006; Tomás-Barberán & Espín, 2001).

PAL is responsible for the catalysis of nonoxidative deamination of

L-phenylalanine forming trans-cinnamic acid and a free ammonium

ion. Plant cells were shown to increase the synthesis of PAL in

response to hydrostatic pressure treatments stress, this resulting in

an increase of the synthesis of polyphenols (Terefe, Buckow, &

Versteeg, 2014).

MHP may also increase or decrease the catalytic action of other

important enzymes in plant tissues, such as pectin methyl esterase

(PME; EC 3.1.1.11), polyphenol oxidase (PPO; E.C. 1.14.18.1), peroxi-

dase (POD; EC 1.11.1.7) are usually very resistant to hydrostatic pres-

sures (HP).

The by-products from fresh-cut fruit and vegetable industries are

still physiologically active living tissues, able to synthetize compounds,

and thus they can be used as biofactories of secondary metabolites

with pharmaceutical and nutraceutical applications (Surjadinata &

Cisneros-Zevallos, 2012). The abiotic stresses can activate some

enzymatic antioxidant systems of the fresh fruit and, consequently,

enhance the antioxidant capacity (Cisneros-Zevallos, 2003). This study

intends to evaluate the influence of moderate hydrostatic pressure

treatments on the increase of enzymatic activity in pineapple by-

products and the corresponding effect on the accumulation of bioac-

tive compounds by those tissues.

2 | MATERIAL AND METHODS

2.1 | Reagents and solutions

Folin–Ciocalteu reagent and cysteine (C3H7NO2S) were purchased

from Panreac AppliChem (Germany). 2,2-difenil-1-picrilhidrazil (DPPH;

C18H12N5O6), 2,4,6-tripyridyl-s-triazine (TPTZ; C18H12N6), poly

(vinylpolypyrrolidone) (C6H9NO)n, triton X-100 (t-Oct-C6H4-[OCH2CH2]

xOH, x = 9–10), casein from bovine milk, glycine (C2H5NO2),

β-mercaptoetanol (C2H6OS), pectin from citrus peel (galacturonic

acid ≥74%), 2,20-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)

diammonium salt (ABTS; C18H18N4O6S4) were acquired from Sigma–

Aldrich (Germany). Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-

2-carboxylic acid) was obtained from Acrós Organics (Belgium).

Catechol (C6H6O2), tyrosine (C9H11NO3), L-phenylalanine (C9H11NO2)

and cresol red (C21H17NaO5S) were purchased from Alfa Aesar

(United Kingdom).

2.2 | Sample preparation

Pineapple by-products (Ananas comosus L.) were provided by company

Campotec S. A. located in Torres Vedras, west center of Portugal. The

shell (9.27 ± 0.60 �Brix) and core (10.17 ± 0.67 �Brix) were stored

under refrigeration (4 ± 1�C) �18 hr prior to packaging and abiotic

stresses application. The by-products of the pineapple were cut

in specific dimensions: core cylinders (�52.5 × 30 mm) and the

shell (�110 × 40 mm). Subsequently, the by-products were packaged

(�40 g) in PA/PE-90 (Alempack-Embalagens Flexíveis, Elvas, Portugal)

that were vacuum sealed (85% of vacuum). The samples were pre-

pared in triplicate for each treatment of the experimental design.

2.3 | Moderate hydrostatic pressures treatment

The packaged by-products were processed in a pilot-scale high hydro-

static pressure equipment (Hiperbaric 55, Burgos, Spain) with a 55 L

vessel, according to a central composite factorial matrix (Tables 1

and 2), with the pressure conditions varying between 50 and 400 MPa

and the processing times between 1 and 15 min. Samples were stored

at ±5�C for 24 hr and then were frozen at −80�C until the analyzes

were performed.
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2.4 | Experimental design

Response surface methodology (RSM) was used to find the most

favorable experimental conditions. The experiments were carried out

following a central composite rotatable design (CCRD), as a function

of pressure (50–400 MPa) and time (1–15 min). A total of 12 experi-

ments were carried out (Table 1—Shell and Table 2—core): four facto-

rial design points (± 1), four axial points (± 1.414), and four central

points (0). The repetition of the central point was used to determine

the experimental error, which was assumed to be constant throughout

the experimental domain. The experiments were performed randomly

in order to avoid systematic errors.

The experimental data were statistically analyzed through a step-

wise multiple regression analysis using StatisticaTM v.8 Software

(StatSoft Inc., 2007), which was fitted to a second-order polynomial

equation to predict each dependent variable [Enzymatic activity

(Bromelain, PAL, PPO, PME), TPC, antioxidant activity (DPPH, FRAP,

ABTS)] (Y). The three-dimensional response surface designs as a func-

tion of independent variables [pressure (X1; MPa) and time (X2; min)],

b0 is the interception and bi, bj, bij (i,j = 1,2) are the linear, quadratic,

and interaction coefficients, respectively that are described by the

second order polynomial models, using decoded variables, as follows

(Equation (1)).

Yi = b0 + b1X1 + b2X2 + b11X
2
1 + b22X

2
2 + b12X1X2 ð1Þ

The adequacy of the model to the experimental data was con-

firmed by the analysis of variance (ANOVA) and coefficient of deter-

mination (R2) and adjusted R2 (Adj-R2) (Montgomery, 2017).

The desirability function was applied to experimental results

to optimize multiple responses in RSM for shell samples: bromelain

activity and phenylalanine ammonia-lyase (PAL) activity. This function

is highly useful when optimizing complex systems (Corrêa-Filho,

Lourenço, Duarte, Mold~ao-Martins, & Alves, 2019).

2.5 | Analytical methods

The preparation of the pineapple extract for the enzymatic activities is

described together with the quantification method. All experimental

results were determined from extracts of the samples. Each extract

was analyzed in triplicate and the average was used for each condition.

2.5.1 | Bromelain activity

The bromelain assay was determined according to Chakraborty, Rao,

and Mishra (2014) with some modifications. Two grams of pineapple

sample was mixed with 20 ml extraction solution (5 mmol/L ethylene-

diamine-tetra-acetic acid [EDTA] and 25 mmol/L cysteine prepared in

0.1 mol/L sodium phosphate buffer [pH 8]) in an ice bath for 2 min

using an Ultra-Turrax (Ika Labortechnik T25 basic) at 8000 rpm. The

mixture was centrifuged (Hermle Labortechnik Z 383 K) at 8000 rpmT
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for 20 min at 4�C and the supernatant was filtered (Whatman no.1)

and used as crude enzyme extract.

The reaction blend consisted of 50 μl enzyme extract, 1,150 μl of

1% (wt/vol) casein solution in 0.1 mol/L glycine and 25 mmol/L cyste-

ine. The mixture was incubated in a shaking water bath (10 min at

37�C) and the reaction was subsequently stopped by adding 1.8 ml of

5% (wt/vol) trichloroacetic acid (TCA). The assay mixture was filtrated

(0.45 μm) and the absorbance was taken at 280 nm (UNICAM UV/Vis

Spectrometer). In the blank sample, TCA was added before the addi-

tion of casein substrate. Bromelain activity was calculated using a

standard curve established with tyrosine (0–50 mg/L), and expressed

as the amount of tyrosine on a dry weight basis and reported in the

units μmol.min−1.g−1 (dry weight basis).

2.5.2 | Phenylalanine ammonia-lyase activity

The phenylalanine ammonia-lyase (PAL) activity determination was

performed as described in Alegria, Gonçalves, Mold~ao-Martins,

Cisneros-Zevallos, and Abreu (2016) with few modifications. The

pineapple sample (2 g) was added to 2 g polyvinylpolypyrrolidone and

homogenized with 20 ml of 50 mmol/L borate buffer (pH 8.5) con-

taining β-mercaptoethanol (400 μl/L). This mixture was kept into an

ice-bath and homogenized in an Ultra-Turrax for 2 min at 8000 rpm.

Homogenates were centrifuged at 8000 g for 20 min at 4�C and the

supernatant collected, filtered (Whatman no.1) and used as crude

enzyme extract.

The PAL reaction mixture was performed by addition 2000 μl

of the borate buffer, 600 μl of L-phenylalanine (100 mmol/L)

substrate solution and 400 μl of crude enzyme extract. The blank

reactions were prepared as described using nanopure water as a sub-

stitute L-phenylalanine (100 mmol/L) substrate solution. The samples

were read before and after 1 hr of incubation in bath water (40�C) in

a spectrophotometer at 290 nm after being blanked with borate

buffer. The PAL activity was expressed as the amount of synthesized

t-cinnamic acid on a dry weight basis and reported in the units μmol.

h−1.g−1 (dry weight basis).

2.5.3 | Polyphenol oxidase activity

The extraction of polyphenol oxidase (PPO) followed a modified

method of Zhou, Dahler, Underhill, and Wills (2003). The sample

material (2 g) was homogenized with 20 ml 0.1 mol/L sodium phos-

phate buffer at pH 6.5 at 4�C, 10% polyvinylpolypyrrolidone (wt/wt)

and Triton X-100 for 2 min in an Ultra-Turrax at low speed

(8,000 rpm) in an ice-bath to avoid excess heating and to prevent pro-

tein denaturation. The homogenate was then centrifuged at 8000 rpm

for 20 min at 4�C and filtered (Whatman no.1). The supernatant was

used for PPO activity assay.

PPO activity was assayed spectrophotometrically by a modified

method based on Babu, Rastogi, and Raghavarao (2008). The assay

mixture consisted in 2.5 ml of substrate solution (50 mmol/L catecholT
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in 0.1 mol/L phosphate buffer, pH 6.5) and enzyme extract to a

final reaction volume of 3.0 ml. The rate of catechol oxidation was

followed at 420 nm for 1 min. An enzyme activity unit was defined as

the amount of the enzyme that causes an increase of 1.0 in absor-

bance per minute per milliliter (ΔAbs.min−1.g−1) (dry weight basis).

2.5.4 | Pectin methylesterase activity

The pectin methylesterase (PME) activity was assayed according to

Chakraborty, Rao, and Mishra (2014) and Pinheiro, Silva, Alegria,

Abreu, and Gonçalves (2012), with some modifications. PME from the

pineapple samples (2 g) was extracted using 20 ml 1.5 mol/L sodium

chloride solution and was mixed with homogenizer during 2 min at

low speed (8,000 rpm) in an ice-bath. The mixture was centrifuged at

8000 g for 20 min at 4�C, and the supernatant was filtered (Whatman

no.1) and adjusted to the pH 8.8 with NaOH 1 and 0.1 mol/L. The

reaction mixture contained 2,600 μl pectin from citrus fruits (0.5%),

150 μl cresol red (0.01%) in sodium phosphate buffer at 0.003 mol/L

and pH 8.8, and 250 μl enzyme extract. The absorbance was mea-

sured at 573 nm during 1 min. The definition used for 1 unit (U) of

enzyme activity was the amount of enzyme that produced a change in

absorbance of 1.0 per min per g of sample (ΔAbs.min−1.g−1) (dry

weight basis), under assay conditions.

2.5.5 | Pineapple extract preparation for TPC
and antioxidant activity

The pineapple extract preparation was evaluated following the

procedure of Heredia and Cisneros-Zevallos (2009) and Swain and

Hillis (1959), with some modifications. The extracts preparation was

carried out in a ratio of 1:10 (wt:vol) of three pineapple by-products

independent sample and methanol (100%) followed by Ultra-Turrax

homogenizer at 8000 rpm for 2 min. The homogenates were incu-

bated overnight (12–24 hr) at 4�C. The extracts were obtained by

centrifugation at 8000 rpm for 20 min (4�C), and the supernatants

were stored at 4�C, protected from light until analysis.

2.5.6 | TPC

The TPC were determined according Heredia and Cisneros-

Zevallos (2009), and Swain and Hillis (1959), with some modifica-

tions. The 150 μl extract aliquots were diluted with 2,400 μl nano-

pure water, followed by 150 μl of 0.25 mol/L Folin–Ciocalteu

and incubated for 3 min at room temperature. The reaction was

stopped by adding 300 μl of 1 mol/L Na2CO3 and the mixture was

incubated for 2 hr protected from light. The supernatant samples

were read at 725 nm absorbance. The total phenolics for each sam-

ple was determined by using a standard curve developed with equiv-

alent chlorogenic acid (CAE) and expressed as mg CAE/g−1 dry

weight.

2.5.7 | Antioxidant activity (DPPH assay)

The antioxidant capacity by DPPH (2,2-diphenyl-1-picrylhydrazyl)

method was evaluated following the procedure of Brand-Williams,

Cuvelier, and Berset (1995) with some modifications. The DPPH solu-

tion was prepared with methanol until reaching 1.1 units of absor-

bance at 515 nm. The sample extracts were prepared as described

above. The sample (100 μl) were taken from the supernatants and

then added with a 3,900 μl DPPH solution. This mixture was homog-

enized, and the reaction occurred for 40 min in the dark. Subse-

quently, the samples were read in a spectrophotometer at 515 nm.

The blank was prepared with methanol and used as a control. The

antioxidant activity was determined using Trolox for the standard

curve (100 to 1,500 μmol/L), and the results were expressed by the

Trolox Equivalent Antioxidant Capacity (TEAC [μmol/g] [dry weight

basis]).

2.5.8 | Antioxidant activity (FRAP assay)

The FRAP (Ferric Reducing Antioxidant Power) assay was performed

according to Benzie and Strain (1996) with some modifications. Ini-

tially the preparation of several solutions including 300 mM acetate

buffer (3.1 g sodium acetate [C2H3NaO2�3H2O] and 16 ml glacial

acetic acid [C2H4O2]), pH 3.6, 10 mmol/L TPTZ (2,4,6-tripyridyl-s-tri-

azine) solution in 40 mmol/L HCl, and 20 mmol/L FeCl3�6H2O solu-

tion. The working solution was prepared by mixing 35 ml acetate

buffer 300 mmol/L, 3.5 ml TPTZ solution, and 3.5 ml FeCl3�6H2O

solution. The reaction started with the mixture of 2.7 ml of the

FRAP solution, 270 μl H2O and 90 μl the extract samples and then

warmed in water bath at 37�C for 30 min. The colored product

(ferrous tripyridyltriazine complex) were read at 595 nm using water

as blank. The antioxidant capacity was calculated using a standard

curve established with Trolox and the results are expressed

as TEAC.

2.5.9 | Antioxidant activity (ABTS-assay)

Antioxidant activity was measured using ABTS (2,20-azino-bis

(3-ethylbenzothiazoline-6-sulphonic acid)) method as described by

Re et al. (1999) and Rufino et al. (2007) with some modifications.

Two stock solutions of ABTS (7 mmol/L) and potassium persulfate

(140 mmol/L) were prepared. The working solution was prepared

by mixing 2 ml of ABTS solution with 35.2 μl of potassium persulfate

solution and keeping it in the dark at room temperature for

12–16 hr. The ABTS solution was then diluted with methanol to

obtain an absorbance of 0.700 ± 0.05 at 734 nm. The reaction was

performed by mixture 2,970 μl ABTS solution with 30 μl sample

aliquots, during 6 min and the absorbance at 734 nm was immedi-

ately recorded. The absorbance of the reaction samples was com-

pared to the Trolox standard and the results were expressed in

terms TEAC.
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3 | RESULTS AND DISCUSSION

3.1 | General discussion

The experimental results of response variables [Enzymatic activity

(Bromelain, PAL, PPO, PME), TPC, antioxidant activity (DPPH, FRAP,

ABTS)] are shown in Tables 1 and 2 for pineapple shell and core,

respectively. Regression analysis was performed in order to statisti-

cally evaluate the quadratic models developed. Table 3 shows the lin-

ear and quadratic effects of the independent variables, as well as their

interaction, on responses for each studied dependent variable. Deter-

mination coefficients, R2 and Adj-R2 and significance of lack of fit are

also presented. Just the models with a determination coefficient (R2)

higher than 0.75, indicating a good fit to the experimental data, are

presented (Haaland, 1989).

3.2 | Bromelain activity

The quadratic models generated for bromelain activity in the pineap-

ple shell and core were significant in fitting of the experimental data

within a confidence level of 95%. High values for R2 and Adj-R2

(Table 3) indicated a good fit to the data. Furthermore, the adequacy

of the second-order polynomial models was confirmed by the not sig-

nificant lack of fit (p > .05).

From Table 3, linear and quadratic terms of pressure and time, as

well as their interaction, were significant on the response models for

bromelain activity in both pineapple shell and core samples. The

effect of linear terms was positive whereas the effect of quadratic

terms was negative. The interaction of the variables pressure and

time had a positive effect in the bromelain activity of the pineapple

core and negative effect in the activity of the bromelain in pineapple

shell.

Figure 1 exhibits the prediction of bromelain activity as a function

of pressure (MPa) and time (min) of the MHP treatment, based on the

regression models developed for shell (a) and core (b). The figures,

convex surfaces, show that bromelain tends to increase with increas-

ing time and pressure, but at higher pressures (> 300 MPa) the

enzyme activity decreases due to partial inactivation. The moderate

hydrostatic pressure (200–250 MPa) and treatment time (5–10 min)

promoted the increase of 134% in bromelain activity in pineapple shell

and 350% in pineapple core. The optimal pressure and time conditions

for the enzymatic activity of bromelain were 235.5 MPa and 6.74 min

for the pineapple shell and 211 MPa and 8.7 min for the pineapple

core samples.

A moderate pressure between 100 and 300 MPa has a protective

effect against thermal denaturation of fruit bromelain at temperatures

(30–70�C), while inactivation rate decrease with increasing pressure

at a given temperature (Chakraborty, Rao, & Mishra, 2016b).

Fruit bromelain resistance in crude extract depends on its

structure, and homology differs between eight diverse isoforms with

a wide molecular weight range that exhibit an additional stability

of this enzyme during processing with HP (Bhattacharyya, 2008;

Chakraborty et al., 2016b).

The increase in bromelain activity can be explained by the forma-

tion of enzymes through different biosynthesis pathways due to the

defense mechanism of plant tissues when subjected to stress, or

leaching of enzymes from other cell compartments after pressuriza-

tion (Orozco-Cardenas, Narvaez-Vasquez, & Ryan, 2001).

In other studies, the residual activity of bromelain in pineapple

puree increased firstly and subsequently decreased (Chakraborty,

Rao, & Mishra, 2016a). Enzyme activity presented the same behavior

TABLE 3 Regression coefficients of second-order polynomial equations for each decoded response variable [P - pressure (MPa) and t – time
(min)]: bromelain activity, phenylalanine ammonia-lyase activity (PAL), polyphenoloxidase activity (PPO), total phenolic compounds (TPC), and
antioxidant activity by methods DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power) and ABTS (2,20-azino-bis
(3-ethylbenzothiazoline-6-sulphonic acid))

Parameter
Pineapple
sample Equation R2 R2 adj Lack of fit

Bromelain activity (BRM) Shell BRM = − 5.613 + 0.173 P* − 0.0003 P2* + 3.847 t* −
0.183 t2* − 0.006 Pt*

0.95 0.91 Not significant

Core BRM = 6.453* + 0.038 P* − 0.0002 P2* + 1.513 t* −
0.154 t2* + 0.006 Pt*

0.97 0.95 Not significant

Phenylalanine ammonia−lyase
activity (PAL)

Shell PAL = − 390.908* + 3.825 P* − 0.008 P2* + 84.169 t* −
4.823 t2* − 0.026 Pt

0.97 0.94 Not significant

Total phenolic compounds (TPC) Shell TPC = 52.069* + 0.209 P* − 0.0005 P2* + 5.871 t* −
0.424 t2* + 0.002 Pt

0.93 0.86 Significant

Antioxidant activity (DPPH) Shell DPPH = 15.669 + 0.140 P* − 0.0003 P2* + 2.680 t* −
0.155 t2* − 0.004 Pt

0.86 0.74 Significant

Antioxidant activity (FRAP) Shell FRAP = 21.884* + 0.150 P* − 0.0004 P2* + 1.990 t −
0.161 t2* − 0.002 Pt

0.97 0.95 Significant

Antioxidant activity (ABTS) Shell ABTS = 50.075* + 0.044 P − 0.0002 P2* − 2.333 t* +

0.019 t2 + 0.004 Pt

0.88 0.78 Significant

*p < .05.
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during storage time (45 days at 4�C) of avocado paste and mango pulp

(Jacobo-Velázquez & Hernández-Brenes, 2010).

3.3 | PAL activity and TPC

The second-order polynomial model generated for PAL activity of the

shell samples presents a good fit to the data (R2 = 0.97 and Adj-

R2 = 0.94) and a not significant lack of fit (Table 3). The effect of linear

terms was positive whereas the effect of quadratic terms was nega-

tive, as well as the effect of the interaction of the variables.

Model obtained for TPC presents a good fit to the data (R2 = 0.93

and Adj-R2 = 0.86) but a significant lack of fit (Table 3), so these

results will be considered only as indicative of a trend. The signifi-

cance of each individual, interactive, and quadratic terms towards the

TPC is the same observed for the PAL activity.

The response surface presented in Figure 2 shows that the PAL

activity of the shell samples showed an increase for the treatments at

higher pressures (150–300 MPa) and longer dwell times (5–10 min),

despite a decrease occurs for higher pressures (> 300 MPa) and very

long times (> 12 min). Pineapple shell samples showed an increase in

the enzymatic activity of PAL (262%) and, consequently, an increase

of TPC (36%), compared with the raw material (Table 1). Moderate

pressures (150–300 MPa) and time treatment (5–10 min) also seems

to increase the content of TPC.

The pineapple shell presented optimum conditions of pressure

and time for the enzymatic activity of PAL at 221.5 MPa and 8.14 min.

Regarding pineapple core, models obtained for PAL activity and

TPC present an insufficient fit to the data (R2 < 0.75) and a corre-

spondingly significant lack of fit and thus are not presented.

PAL activity and TPC in pineapple core increased average 15 and

14%, respectively, in relation to raw material (Table 2). In stressed

samples the enzymatic activity of PAL ranged between 112.19 and

128.95 μmol t-cinnamic acid.h−1.g−1 dry matter and TPC values

ranged between 71.16–81.62 mg CAE.g−1 dry matter in the pineapple

core samples.

PAL is an important enzyme in the phenylpropanoid pathway

that has an important role in the secondary metabolism of plants,

and forms a diversity of phenolic compounds with structural

and protection-related functions, as well as lignins, phenolic

acids, stilbenes, and flavonoids (Chen et al., 2006; Solecka &

Kacperska, 2003).

The increase in TPC with moderate hydrostatic pressure treat-

ment can be explained by an increase in pressure-induced extraction

in the pineapple by-product samples, similarly to that observed in

pineapple puree (Chakraborty et al., 2016a). High-pressure treatments

may also origin variations in enzyme conformation and enzyme sub-

strates, which can facilitate or inhibit enzyme catalyzed reactions

(Mozhaev, Lange, Kudryashova, & Balny, 1996). The rate of enzymatic

reactions in the tissue of the plant may increase due to treatments

with moderate pressure, since there is rupture of plant tissues and

contact between enzyme and substrate (Ludikhuyze, Van Loey,

Smout, & Hendrickx, 2003).

F IGURE 1 Response surfaces
fitted for bromelain activity as a
function of pressure (MPa) and time
(min) treatment: (a) pineapple shell and
(b) pineapple core

F IGURE 2 Response surfaces fitted for phenylalanine ammonia-
lyase activity (PAL) as a function of pressure (MPa) and time (min)
treatment in pineapple shell
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The synthesis of TPC in plant tissues is related to the enzymatic

activity of PAL. The behavior of PAL activity is similar to the behavior

of TPC present in fruits, since the decrease in PAL activity caused a

decrease in TPC, thus demonstrating the importance of PAL in the

promotion of TPC (Zarei, Zamani, Fattahi, Salami, & Mousavi, 2016).

The main phenolic compounds found to be present in pineapple

were gallic acid, catechin, and epicatechin, contributing to a 40%

increase in antioxidant capacity, followed by vitamin C and β-carotene.

Phenolic concentration is related to the increase of PAL enzymatic

activity, which is influenced by fruit ripening (Rosas et al., 2018).

3.4 | PPO and PME activity

In general, the studied variables in experimental conditions do not

significantly influence the PPO and PME activities. Obtained models

present an insufficient bad fit to the data (R2 < 0.75) and a corre-

spondingly significant lack of fit and thus are not presented.

PPO activity values range from 81.24 to 155.71 U.g−1 of dry mat-

ter in pineapple shell and 75.80–123.42 U.g−1 of dry matter in pineap-

ple core. Although the model is not significant, the respective

response surface allows observing the trend described in the litera-

ture. The use of pressures lower than 100 MPa activates some

enzymes, particularly monomeric enzymes such as PPO (Buckow,

Weiss, & Knorr, 2009). In the present study, hydrostatic pressures

lower than 100 MPa during less than 8 min increased PPO activity

and pressures higher than 300 MPa and treatment times longer than

10 min decrease the activity of this enzyme. The behavior of PPO

enzymatic activity under the studied pressure and temperature condi-

tions can be seen as an advantage, since PPO activity is associated

with a negative impact on color of fruit products.

PPO showed reduced baroresistance in mixed beverages, like

fruit smoothies, when compared to PME. A PME inactivation of 83%

occurred at 700 MPa/55�C evidencing resistant to pressure in a

skim milk-orange juice beverage (Chakraborty, Kaushik, et al., 2014;

Keenan, Rößle, Gormley, Butler, & Brunton, 2012).

The effect of the pressure on enzyme activity depends on the

substrate. Moderate hydrostatic pressures (MHP) applied to mush-

room increased PPO activity by 140% after treatment at 400 MPa for

10 min, when compared with the unprocessed sample (Gomes &

Ledward, 1996). Carrot and apple extracts presented an increase

in PPO activity after pressure treatments between 100 and 300 MPa

for 1 min, which was attributed to the reversible configuration and/

or conformational deviations in enzyme and/or substrate particles

(Anese, Nicoli, Dall'aglio, & Lerici, 1994). The MHP applied in the

range 200–500 MPa at room temperature also produced an increase

in PPO activity of up to 65% in apple juice (Buckow et al., 2009).

As for the activity of PAL, the activity of PME points at some

activation with increasing pressure, although the model is not signifi-

cant and thus this cannot be quantified. In the experimental condi-

tions PME's enzymatic activity ranged from 7.71 to 11.76 U.g−1 of

dry matter in pineapple shell and 7.99–11.60 U.g−1 of dry matter in

pineapple core.

PME was considered a baroresistent enzyme in two studies

with pineapple puree, and stability depends on the enzyme origin

(Chakraborty, Rao, & Mishra, 2014; Chakraborty, Rao, & Mishra, 2019).

The PME has shown evidence of increased activity under MHP

in several studies (Eisenmenger & Reyes-De-Corcuera, 2009). Tomato

juice PME was activated by pressures greater than 300 MPa

(Hsu, 2008). In the case of carrot assays, PME activity in shredded sam-

ples was most evident at 50�C and 200–400 MPa and 100–400 MPa at

60�C in whole carrots (Sila et al., 2007). PME inactivation rate in carrot

samples was reduced (> 75%) at 300 MPa, compared with 100 MPa

(Ly-Nguyen et al., 2003). Green peppers subjected to pressure between

100 and 200 MPa showed increased activity of PME after treatment

compared with untreated samples (Castro et al., 2008).

3.5 | Antioxidant activity

Regarding antioxidant activity of pineapple core samples, the obtained

models present an insufficient fit to the data (R2 < 0.75) and a corre-

spondingly significant lack of fit and thus they are not presented.

Models obtained for antioxidant activity of pineapple shell

samples by DPPH, FRAP and ABTS methods presented a good fit

(R2 > 0.75) to the data but a significant lack of fit (Table 3), so these

results will be only considered as indicative of a trend and model fig-

ures are not shown.

The moderate pressures studied increase antioxidant activity 85%

by DPPH method, 79% by FRAP method and 76% by ABTS method,

in the pineapple shell samples (Table 2).

The second order model for the antioxidant activity in pineapple

core samples does not fit the data, although there is a trend for activa-

tion of antioxidant activity with increasing pressure. The antioxidant

activity of the pineapple core samples by the DPPH method ranged

between 32.71–43.61 μmol Trolox.g−1 dry matter, the FRAP method

ranged between 19.16 and 36.39 μmol Trolox.g−1 dry matter and the

ABTS method ranged between 29.91 and 51.60 μmol Trolox.g−1 dry

matter.

As a conclusion, intermediate pressures allow an increase of anti-

oxidant activity. Antioxidant activity is also influenced by treatment

time, with higher values being obtained for shorter or intermediate

studied treatment times.

Other authors have studied the behavior of antioxidant com-

pounds with HPP. The application of high pressure does not reduce

antioxidant compounds in the fruit sample but can increase the antiox-

idant capacity in pineapple (Chakraborty, Rao, & Mishra, 2015), orange,

lemon and carrot mixed juice (Butz et al., 2003), and strawberry and

blackberry purees (Patras, Brunton, Da Pieve, & Butler, 2009).

In another study, Sánchez-Moreno, Plaza, De Ancos, and

Cano (2006) observed that, at 50–400 MPa at 25�C for 15 min, the anti-

oxidant activity (DPPH) of the aqueous fraction of tomato puree

increased. A slight increase in antioxidant activity was observed at pres-

sures of�200 MPa (Sánchez-Moreno, Plaza, De Ancos, & Cano, 2004).

The explanation for the increase in antioxidant activity may be the

increase in extraction yields by hydrostatic pressure treatments.
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Pressure may increase permeability due to the ability to deprotonate

charged groups and disrupt salt bridges and hydrophobic bonds in cell

membranes (Corrales, Toepfl, Butz, Knorr, & Tauscher, 2008; Raso &

Barbosa-Cánovas, 2003). The higher amount of TPC and antioxidants

may also be influenced by the decrease in water dielectric constant cau-

sed by hydrostatic pressure treatments associated with temperature

(Fernández, Goodwin, Lemmon, Levelt Sengers, & Williams, 1997).

Polyphenol content in soluble extracts was significantly higher

(17–28%) compared to other extracts. This increase may result from a

rupture of plant cells caused by the treatment of moderate pressures

(250–400 MPa and 3–5 min), increasing the extraction capacity of

these compounds (Van Eylen, Oey, Hendrickx, & Van Loey, 2008).

Hydrological pressure applied to cashew apple samples (250 MPa for

3 min) did not change FRAP measured antioxidant capacity, but the

DPPH method presented a 40% increase in antioxidant capacity

(Queiroz et al., 2010). The antioxidant capacity of blackberry puree

increased after pressure treatment, but in strawberry puree this effect

was not observed (Patras et al., 2009).

3.6 | Optimization of moderate hydrostatic
pressure application conditions

The desirability function was applied for the simultaneous optimization

of the responses that fitted to the second order model for pineapple

shell samples (bromelain activity and phenylalanine ammonia-lyase

activity) and the desirability surface curves for optimal conditions are

shown in Figure 3. The curve allows observing a maximum point that

corresponds to the optimal conditions obtained for the results of the

models together.

The most suitable conditions found for the MHP treatment condi-

tions applied to pineapple shell were 225 MPa during 7.6 min, with

desirability values of 0.94. Under these conditions, the predicted

responses for independent studied variables are 28.61 μmol tyrosine.

min−1.g−1 dry matter and 388.48 μmol t-cinnamic acid.h−1.g−1 dry

matter for bromelain activity and phenylalanine ammonia-lyase activ-

ity, respectively.

In the case of the pineapple core, just the quadratic model

generated for bromelain activity was significant in fitting of the

experimental data. So, the optimized conditions for bromelain

activity will be considered to be 211 MPa of hydrostatic pressure and

8.7 min of treatment time. At these MHP treatment conditions the

predicted bromelain activity is 17.71 mg tyrosine.min−1.g−1 dry

matter.

4 | CONCLUSION

The abiotic stress treatments by moderate hydrostatic pressure pro-

mote enzyme activity and induced synthesis of bioactive compounds

from pineapple shell and core. The moderate hydrostatic pressure

treatments (150–250 MPa) during about 8 min could activate cellular

processes as a stress response, enhancing accumulation of bromelain

and phenolic compounds with antioxidant activity, whereas more

intense hydrostatic pressure treatments (> 300 MPa) could cause irre-

versible damage. The increased activity of bromelain is more evident

in the pineapple core, while the increase of PAL activity is more per-

ceptible in the pineapple shell.

The results obtained in this work showed that the interesting fea-

ture of the pineapple core is bromelain activity and in the pineapple

shell it is PAL activity, and consequently TPC. In order to maximize

these compounds, it is suggested to apply optimum conditions to

maximize bromelain (211 MPa and 8.7 min) in the pineapple core and

conditions that maximize PAL (221.5 MPa and 8.14 min) in the pine-

apple shell. Pineapple by-products subjected to abiotic stresses may

be a good source of bioactive compounds and proteolytic enzymes

(bromelain) to be incorporated directly or used in food preparation as

a co-product or raw material.

This work thus contributes to valorization of agroindustry wastes,

leading to economical (final product with higher added value) and

environmental (reduced waste production).
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