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Abstract: In Extreme Value Theory, we are essentially interested
in the estimation of quantities related to extreme events. Whenever
the focus is in large values, estimation is usually performed based on
the largest k order statistics in the sample or on the excesses over
a high level u. Here we are interested in modelling (and forecast-
ing) extremes in time series. For modelling and forecasting classical
time series, Boot.EXPOS is a computational procedure built in the

environment that has revealed to perform quite well in a large
number of forecasting competitions. However, to deal with extreme
values, a modification of that algorithm needs to be considered and
is here under study.

1 Introduction and Motivation

Time series analysis deals with records that are collected over time.
The records are usually dependent, and the time order of data is
important. Depending on the application, data may be collected
hourly, daily, weekly, monthly, yearly, etc. Time series arise in many
different contexts. Its impact on scientific, economic and social ap-
plications is well recognized by the large list of fields in which impor-
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tant time series problems may arise. Time series can show different
displays. Let us illustrate a few time series, two of them existing in
the packages datasets and fma, see Fig.1.
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Figure 1: Number of airplanes in the FIR Lisbon(left), see [6]; Deaths and
serious injuries on UK roads (center); and Sales of printing and writing paper
(right).

In time series analysis, there are several challenging topics among
which the treatment of extreme values has been capturing the in-
terest of researchers. Modelling and predicting the behaviour of
extreme (often maximum) values of the time series (e.g. security
reasons) need special procedures.

The paper is structured as follows. In Section 2, basic results in
extreme value theory both for independent and for dependent se-
quences are briefly reviewed. A new parameter that can appear in
the limit law of the maximum of a stationary sequence, under some
conditions, is described. Resampling techniques and their applica-
tion together with exponential smoothing methods for modelling and
prediction of a time series are reviewed in Section 3. In this section,
a modification of that computational procedure, already introduced
in [27] is again considered and used in extreme value theory estima-
tion. More efficient bootstrap procedures can lead to more reliable
estimates.
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2 Basics in statistical analysis of univa-
riate extremes

Statistical analysis of the extremes in time series was initially dedi-
cated to problems in hydrology and insurance, but in the last decades
the applications have spread out to a huge variety of areas, such as
climatology, finance, environmental sciences (here mainly because of
the direct impact in the society), etc.
The classical limiting results in Extreme Value Theory (EVT) were
initially obtained through arguments that assumed an underlying
process consisting of a sequence of independent and identically (i.i.d.)
random variables, (X1,...,Xn), with common and unknown distribu-
tion F . Suppose we want to know the distribution of Mn ≡ Xn:n :=
max(X1,...,Xn).

Given that Xn:n
P
−→ xF =: sup{x ∈ R : F (x) < 1}, the right end-

point of F , we are facing the situation of a degenerate distribution.
First results for the existence of a non-degenerate limit for that
probability date back to the beginning of the last century but were
completely established by [12] and [16] that gave conditions for the
existence of sequences {an} ∈ R+ and {bn} ∈ R such that,

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim

n→∞
Fn(anx+ bn) = EVξ(x), (1)

when n → ∞ and ∀x ∈ R. EVξ is a nondegenerate distribution
function. It is called Extreme Value d.f., and is given by

EVξ(x) =

{
exp[−(1 + ξx)−1/ξ], 1 + ξx > 0 if ξ 6= 0
exp[− exp(−x)], x ∈ R if ξ = 0,

where ξ, the extreme value index, is the primary parameter in ex-
treme value theory because it measures the weight of the right tail
function, F = 1− F , of the underlying model.
A function F for which the limit in (1) holds is said to be in the
max-domain of attraction of EVξ, and we write F ∈ DM(EVξ).



192 Neves & Cordeiro

These models can also incorporate location (λ) and scale (δ > 0)
parameters, and are generally represented by

EVξ(x;λ,δ) ≡ EVξ((x− λ)/δ).

2.1 From i.i.d. to a dependent set-up

In many applications, temporal independence is unrealistic. When-
ever the original scheme is no longer identically distributed, but it
remains independent, those limiting results may hold true. However,
when it is not possible to assume independence, we are faced with
new situations. For many real problems the stationarity is the first
realistic situation to be considered. In the last decades, many pro-
gresses have been made in parameter estimation of extreme values in
time series, with relevance to asymptotic results. By the 1990s there
was an increased interest in extremal time series, see [29, 5, 2, 4, 24],
to mention a few.
Temporal dependence is common in univariate extremes of time se-
ries leading to clusters of extremes, which means that extreme values
are likely to occur in temporal proximity. An excellent overview of
the topic of extremal clustering is provided by [8].
As an illustration, let us consider the following sequences:

Example 2.1 Let {Xn} be a sequence of i.i.d. variables from the

model F (x) = (1− exp(−x))
2
, x ≥ 0, and {Yn}n≥1 a two-dependent

sequence defined by Yn = max(Zn+1,Zn), n ≥ 1, where Zn are unit

exponential i.i.d..

We have then the underlying model for Yn given by F (y) = P[Zn+1 ≤

y,Zn ≤ y)] = (1− exp(−y))
2
y ≥ 0.

Plotting some values from {Xn} and from {Yn}, clusters of ex-
ceedances of high levels of size equal to 2, for the {Yn} sequence,
can be seen, Fig.2. It can also be seen a shrinkage of the largest ob-
servations for the 2-dependent sequence, although we have the same
model underlying both sequences.
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Figure 2: One realization of an i.i.d. process (solid) and a 2-dependent process
(dot dash) with the same marginal d.f.

Let {Xn}n≥1
be a stationary sequence. Under adequate conditions,

the d.f. of the maximum, Xn:n, of a stationary sequence may be
directly related to the maximum Yn:n of the associated i.i.d. se-
quence, through a new parameter, the so-called extremal index. The
extremal index, θ, 0 < θ ≤ 1, appears as

P (Xn:n ≤ x) ≈ Fnθ(x) ≈ EVξ

(
x− b′n
a′n

) {
a′n = anθ

ξ

b′n = bn + an
θξ−1

ξ .

In [23] conditions were established under which a stationary sequence
has the same limiting EVξ as the associated i.i.d. sequence, but
different scale and location parameters,

λθ = λ+ δ
θξ − 1

ξ
, δθ = δθξ ξθ = ξ,

where (λ, δ, ξ) are the location, scale and shape parameters of EVξ,
respectively. A reliable estimation of θ is then required, not only by
itself but because of its influence on the estimation of other param-
eters of interest.
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2.2 The extremal index and its estimation

One common interpretation of θ is as being the reciprocal of the
“mean time of duration of extreme events” which is directly related
to the exceedances of high levels, see [20, 22]. Parameter θ can then
be defined as θ = 1/(limiting mean size of clusters).
Now, identifying clusters by the occurrence of downcrossings (or
upcrossings), we can write

θ = lim
n→∞

P[X2 ≤ un|X1 > un] = lim
n→∞

P[X1 ≤ un|X2 > un]

and the interpretation of θ has suggested the so-called Up-Crossing
estimator, see [25, 10, 11], defined as:

Θ̂UC
n :=

∑n−1

i=1
I (Xi ≤ un < Xi+1)∑n
i=1

I(Xi > un)
, (2)

where I(A) is the indicator function of A. Consistency of this es-
timator is obtained provided that the high level un is a normalized
level, i.e. if with τ ≡ τn fixed, the underlying distribution function
F verifies

F (un) = 1− τ/n+ o(1/n), n→∞ and τ/n→ 0.

Other estimators have appeared in the literature, motivated by other
forms of cluster identification, such as the blocks estimator and the
runs estimator, see [18, 19, 30, 31]. Conditions for the asymptotic
normality of those estimators can be seen in [19, 30, 31].
As usual in semiparametric context, the estimators considered, de-
spite having good asymptotic properties, present high variance for
high levels vs high bias when the level decreases, showing then a
strong dependence on the high threshold un, for finite samples.

3 Resampling procedures

Resampling computer-intensive methodologies, like the generalised
jackknife, [15], and the bootstrap, [9], have been revealing them-
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selves as important tools for a reliable semi-parametric estimation
of parameters of extreme events. Let us briefly see the application
of those methodologies in the θ estimation.

3.1 The Generalized Jackknife methodology

By using generalized jackknife methodology, [13] proposed a reduced-

bias Generalized Jackknife estimator of order 2, Θ̂GJ , based on the
estimator Θ̂UC computed at three levels: k, ⌊k/2⌋+1 and ⌊k/4⌋+1,
(⌊x⌋ – integer part of x), defined as

Θ̂GJ(k) := 5Θ̂UC(⌊k/2⌋+ 1)− 2
(
Θ̂UC(⌊k/4⌋+ 1) + Θ̂UC(k)

)
. (3)

More generally [13] considered the levels k, ⌊δk⌋+ 1 and ⌊δ2k⌋+ 1,
depending on the tuning parameter δ, 0 < δ < 1, and got then a
class of estimators. Actually Θ̂GJ , in (3), is obtained with δ = 1/2.
This estimator illustrates the simulation study performed with the
“Max-Autoregressive Process (ARMAX process)”, see [2].

Example 3.1 Let {Zi}i≥1 be a sequence of independent, unit-Fréchet

distributed random variables. For 0 < θ ≤ 1, let

X1 = Z1 Xi = max{(1− θ)Xi−1, θZi} i ≥ 2.

For un = nx, 0 < x <∞, P
{
Mn ≤ un

}
→ exp

(
− θ/x

)
, as n→∞,

being θ the extremal index of the sequence.

The reduced-bias estimator in (3) outperforms the associated classi-
cal estimator. However, for a given sample, the choice of the number
of upper order statistics to be used is a difficulty not yet solved. See
Figure 3, where three different samples were generated, considering
three different values for the parameter, in an ARMAX model. The
estimates paths show how difficult it is to choose k and to obtain a
reliable estimate of θ.
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Figure 3: One sample path for UC and GJ estimates in the ARMAX model
for three simulated samples with θ = 0.9, 0.5, 0.1 (from the left to the right).

3.2 The bootstrap under dependence

For modelling and forecasting time series [6, 7] developed a compu-
tational procedure, built in the environment, based on Exponential
Smoothing Methods jointly with “adequate” bootstrap procedures. When
applied to a large set of time series, competitive results were obtained
compared with the best procedures available, see [7].
So the main motivation of this work is to explore and to modify that
automatic procedure in order it can be an alternative for modelling and
(forecasting) extreme values in time series. Preliminary results have been
presented in [27] and are used here in the θ estimation.
The aforementioned computational procedure, for modelling and forecast-
ing time series, chooses among a set of models, that one that best fits the
data. Sieve bootstrap principle is applied to the residuals; an autoregres-
sive model with increasing order is fitted to the residuals; stationarity is
tested; transformations or differentiations are performed when necessary,
and after bootstrapping the second level of residuals a bootstrap esti-
mated series is obtained. Forecast is performed based on the bootstrap
estimated values and on the model parameters estimated at the initial
step. Measures of forecast errors are also included in the algorithm. A
description and sketch of the algorithm is presented in [6, 7, 26] among
others.
Fig.4 illustrates the result of forecasting twelve months applying Boot.EXPOS
and ets

7 [21], using the dataset UKDriverDeaths available in . The good

7Stands for error, trend and seasonality.
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performance of the Boot.EXPOS procedure is clearly illustrated both for
point forecast values and for forecasting intervals.
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Figure 4: True values (•) compared with Boot.EXPOS values (– + –) and ets

values (– △ -).

3.3 Modelling time series extremes

The classical bootstrap does not work in a dependent context. This was
referred to [3] and later in [1], who showed that in extreme value theory
the bootstrap version for the maximum (or minimum) does not converge
to the extremal limit laws. Actually, [32] pointed out “... to resample the
data for approximating the distribution of the k largest observations would
not work because the “pseudo-samples” would never have values greater
than Xn:n”. A bootstrap method considering to resample a smaller size
than the original sample was proposed in [17] for estimating mean squared
error and smoothing parameter in nonparametric problems. The idea in
[17] was to choose the resample size, n1, to be less than the original sample
size, n, and use knowledge of the amount by which the two samples differ
to estimate mean squared error and to select the optimal smoothing pa-
rameter for deriving a bootstrap estimator of a functional of (X1, . . . , Xn).
He suggested resampling a subsample of size n1 = O(n1−ǫ) with 0 < ǫ < 1.
The procedure developed in [17] was illustrated for nonparametric den-
sity estimation, nonparametric regression and tail parameter estimation.
In this latter case, the tail parameter estimators in a semi-parametric ap-
proach need an adequate choice of the number, k, of upper order statistics,
that should be chosen such that the asymptotic mean squared error of the
estimator is minimized. The [17] bootstrap procedure suggests the follow-
ing: to draw a resample of size n1 from de original sample of size n, to
obtain the bootstrap estimate of the mean squared error of the estimator
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considered, let us denote it as M̂SE(n1,k1), where k1 are the upper order
statistics of the n1−sized resample. Supposing that the asymptotically
optimal k is of the form Cnγ , where 0 < γ < 1 is a known constant and
C is unknown, what is a common result, [17] proposed, for a given class
of models, if the optimal k1 is asymptotic to Cnγ

1
, then

k̂0 ≃ k̂1,0(n/n1)
γ , (4)

is asymptotic to Cnγ . For several models, [17] showed that γ = 2/3.
This idea was exploited in a very preliminary study in [27], where the
funcional under study was the maximum, taking advantage of the good
performance of Boot.EXPOS for modelling and forecasting time series.
A subsample of size n1 = ⌊n0.995⌋ of the residuals in the algorithm was
considered. Values of the resampled series were then “improved” on basis
of the relation (4) – this is now called Boot.EXPOS with subsampling. See
Fig.5 as an illustration.

1980 1981 1982 1983 1984 1985

12
00

16
00

20
00

Figure 5: Subset of observed UKDriverDeaths values (solid grey) and forecasts
obtained using Boot.EXPOS (dashed), Boot.EXPOS with subsampling (dotted).

The Boot.EXPOS with subsampling, was applied to a simulated data set
and to a real data set, the UKDriverDeaths time series. The interest is to
estimate θ. Figures 6 and 7 show sample paths for the θ-estimator, Θ̂UC

n ,
in (2), and Θ̂GJ , in (3), and the associated bootstrap estimates calculated

using Boot.EXPOS with subsampling, Θ̂UC∗

n and Θ̂GJ∗

, respectively.
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Figure 6: UC and GJ θ-estimates in an ARMAX process with θ = 0.1. UC∗

and GJ∗ θ-estimates using Boot.EXPOS with subsampling.
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Figure 7: UC and GJ θ-estimates in the UKDriverDeaths time series and the
associated UC∗ and GJ∗ θ-estimates using Boot.EXPOS with subsampling.

4 A brief discussion

The procedure here proposed and based on [17] results seems to be a
promising bootstrap approach for modelling and forecasting extremes,
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providing more stable paths to the parameters estimates. Other values
for the θ parameter in the ARMAX process have been considered, leading
to similar results, not shown for reasons of space. More research needs to
be performed. A large simulation study is now in progress.
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