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• 

1H NMR evidenced 17 metabolites significantly different between healthy and 
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Proteomics and metabolomics successfully suggested putative biomarkers for 

CKD. 

Abstract 

Chronic kidney disease (CKD) is a progressive and irreversible disease. Although 

urine is an ideal biological sample for proteomics and metabolomics studies, sensitive 

and specific biomarkers are currently lacking in dogs. This study characterised dog 

urine proteome and metabolome aiming to identify and possibly quantify putative 

biomarkers of CKD in dogs. Twenty-two healthy dogs and 28 dogs with spontaneous 

CKD were selected and urine samples were collected. Urinary proteome was 

separated by SDS-PAGE and analysed by mass spectrometry, while urinary 

metabolome was analysed in protein-depleted samples by 1D 1H NMR spectra. The 

most abundant proteins in urine samples from healthy dogs were uromodulin, albumin 

and, in entire male dogs, arginine esterase. In urine samples from CKD dogs, the 

concentrations of uromodulin and albumin were significantly lower and higher, 

respectively, than in healthy dogs. In addition, these samples were characterised by a 

more complex protein pattern indicating mixed glomerular (protein bands ≥65 kDa) 

and tubular (protein bands <65 kDa) proteinuria. Urine spectra acquired by NMR 

allowed the identification of 86 metabolites in healthy dogs, belonging to 49 different 

pathways mainly involved in amino acid metabolism, purine and aminoacyl-tRNA 

biosynthesis or tricarboxylic acid cycle. Seventeen metabolites showed significantly 

different concentrations when comparing healthy and CKD dogs. In particular, 

carnosine, trigonelline, and cis-aconitate, might be suggested as putative biomarkers 

of CKD in dogs. 

Significance 

Urine is an ideal biological sample, however few proteomics and metabolomics 

studies investigated this fluid in dogs and in the context of CKD (chronic kidney 

disease). In this research, applying a multi-omics approach, new insights were gained 

regarding the molecular changes triggered by this disease in canine urinary proteome 

and metabolome. In particular, the involvement of the tubular component was 



highlighted, suggesting uromodulin, trigonelline and carnosine as possible biomarkers 

of CKD in dogs. 
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1. Introduction 

Chronic kidney disease (CKD) is a progressive and irreversible disease characterised 

by the presence of structural or functional abnormalities in one or both kidneys over a 

period of three months or longer [1]. CKD is one of the most common renal diseases 

in dogs with an estimated prevalence varying from 0.5 to 3.64% depending on the 

inclusion criteria of the cases [[1], [2], [3]]. Early diagnosis of CKD may hinder the 

disease progression and improve patient quality of life. International Renal Interest 

Society (IRIS) guidelines for staging and treatment of CKD help clinicians to 

correctly classify patients and establish the best therapies [4]. Nonetheless, sensitive 

and specific biomarkers for early detection and monitoring of CKD in dogs are 

currently lacking. The gold standard to evaluate the renal function is the determination 

of the glomerular filtration rate (GFR); however, this value does not provide 

information on CKD aetiology and the available methods for its estimation are 

difficult to be applied in the routine clinical practice [5,6]. Renal biopsy is considered 

the gold standard for determining the type of renal damage, but it is an invasive 
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procedure and not always feasible [7]. Therefore, the assessment of the kidney 

function is currently based on conventional blood (serum creatinine or urea) and urine 

(proteinuria and specific gravity) clinicopathological variables, whose alterations are 

usual findings of CKD, but have limitations when used as early indicators of the 

disease [7]. For these reasons, other sensitive and specific biomarkers measurable in 

non- or minimally invasive biological samples are required in clinical practice to 

identify early renal damage in dogs. 

Over the last years, significant efforts have been made in veterinary medicine to apply 

proteomics to search for new biomarkers or for validating detection methods for 

proteins already considered as potential early indicators of kidney disease in dogs and 

cats [[8], [9], [10], [11], [12], [13], [14], [15], [16], [17]]. However, proteins are only 

some of the molecular species present in urine and a broader approach with the aid of 

metabolomics can offer additional clinical information. 

Metabolomics enables the assessment of a broad range of endogenous and exogenous 

small molecular mass metabolites, potentially useful to investigate the physiologic 

status and the pathogenesis of the diseases, and to discover new biomarkers of altered 

biochemical pathways [[18], [19], [20], [21]]. Metabolites are in general not specific 

for a single metabolic pathway and in most cases different biochemical reactions 

contribute to the production of the same metabolite; this peculiarity offers the 

opportunity to obtain a more comprehensive insight into the complexity of a 

biological sample. In human medicine, metabolomics was extensively applied to urine 

to analyse the healthy metabolome [22] and to search for small molecules as potential 

biomarkers of different diseases, such as immune-mediated inflammatory diseases 

[23], different cancers [[24], [25], [26]], and renal diseases [19,[27], [28], [29], [30]]. 

However, in veterinary medicine, the application of metabolomics techniques to urine 

is still limited [[31], [32], [33], [34], [35]]. 

Owing to the metabolic and protein complexity of urine, the aim of this work was to 

combine the analytical power of proteomics and metabolomics to obtain a more 

comprehensive characterisation of the urine in healthy dogs and to compare it with the 

urine of CKD patients with our ultimate goal to suggest new biomarkers of CKD in 

the canine species. 

2. Materials and methods 
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2.1. Animal selection and sample collection 

The present study was performed on urine samples collected at the Veterinary 

Teaching Hospital of the University of Bologna from owned dogs. The dogs were 

divided into two experimental groups and specimens considered as biological 

replicates. Upon arrival, all dogs were subjected to physical examination and routine 

laboratory tests, including complete blood count, serum chemistry and complete 

urinalysis with urine protein to creatinine ratio (UPC). 

Blood samples were collected by venipuncture using a vacuum collection system 

(Vacutest Kima, Arzergrande, Italy) after at least a 12-h fasting period. Blood samples 

were processed within one hour after collection. Serum samples were collected in 

tubes with clot activator (Vacutest Kima, Arzergrande, Italy), centrifuged at 

3000 g for 10 min and analysed in an automated chemistry analyser (AU 480, 

Olympus/Beckman Coulter, Atlanta, GE, USA). 

Urine samples were collected by ultrasound-guided cystocentesis. All urine specimens 

were processed on a routine basis and evaluated in our laboratory within 24 h after 

collection. In particular, urinalysis consisted in macroscopic examination, urine 

specific gravity (USG) measured by manual refractometer (American Optical, 

Buffalo, New York), urine dipstick test (Combur10Test, Roche Diagnostic, 

Mannheim, Germany) applied on an automated reader (Urisys 1100, Roche 

Diagnostic, Mannheim, Germany) and microscopic sediment evaluation. Urine 

sediment was obtained after centrifugation at 500 g for 10 min. Urine supernatants 

were immediately analysed (dipstick examination), divided in aliquots and stored at 

−80 °C for the subsequent proteomics and metabolomics analysis. Urine chemistry 

was performed on a refrigerated (+4 °C) aliquot if performed within 24 h after the 

sample processing or on an aliquot kept frozen at −20 °C for a maximum of 7 days. 

Dogs were considered healthy or diseased on the basis of history, clinical signs and 

the results of the above-mentioned routine laboratory tests. The control group 

included 22 healthy dogs presented at the hospital as blood donors. The 22 healthy 

dogs were 10 males (3 castrated) and 12 females (7 spayed) with an average age of 

37 ± 20 months. Mixed-breed dogs were 7/22 (32%), while purebred dogs were 15/22 

(68%) (3 Galgo Espanol, 3 Labrador Retriever, 2 Australian Shepherd, 1 Great Dane, 



1 Border Collie, 1 Flat-Coated Retriever, 1 German Shepherd, 1 Miniature Pinscher, 1 

Boxer, 1 Weimaraner). The diseased group included 28 dogs affected by naturally 

occurring CKD. The 28 CKD dogs were 14 males (5 castrated) and 14 females (9 

spayed) with a mean age of 111 ± 61 months. Mixed-breed dogs were 10/28 (36%), 

while purebred dogs were 18/28 (64%) (3 Jack Russell Terrier, 2 Chinese Shar-Pei, 2 

Labrador Retriever, 2 Cavalier King Charles spaniel, 1 Beagle, 1 Bernese mountain 

dog, 1 Boxer, 1 German Shepherd, 1 English Springer spaniel, 1 American 

Staffordshire terrier, 1 Bull terrier, 1 German shorthaired pointer, 1 Lagotto 

Romagnolo). The diagnosis of CKD was based on history, clinical signs, 

clinicopathological and imaging results, according to the literature [3,4]. In particular, 

the presence of clinical findings, abdominal imaging results and (a) persistent 

pathologic renal proteinuria based on the UPC (UPC > 0.5), assessed and confirmed 

over a one-month period, and/or (b) serum creatinine (sCrea) 

concentration ≥ 1.40 mg/dL and/or (c) urine specific gravity (USG) <1.030 were 

considered diagnostic. The IRIS CKD guidelines were used to subsequently stage 

CKD dogs [4]. Basing on serum creatinine, 8 dogs were classified with CKD stage 1, 

6 with stage 2, 9 with stage 3 and 5 with stage 4. On the basis of UPC, 4 dogs were 

non-proteinuric (UPC < 0.2), 6 dogs were borderline proteinuric (UPC 0.2-0.5) and 18 

were proteinuric (UPC > 0.5). 

The study was conducted according to the EU Directive 2010/63/EU for animal 

experiments and approved by the Institutional Scientific Ethical Committee of the 

University of Bologna for animal testing. 

2.2. Urine protein to creatinine ratio 

Five mL of urine were collected from each animal by ultrasound-guided cystocentesis. 

After centrifugation at 500 g for 10 min, urine total proteins and creatinine were 

measured using commercial kits (Urinary/CSF Protein, OSR6170, and Creatinine 

OSR6178, Olympus/Beckman Coulter, Atlanta, GE, USA) on an automated chemistry 

analyser (AU 480, Olympus/Beckman Coulter, Atlanta, GE, USA). The UPC was 

calculated with the following formula: UPC = urine protein (mg/dL)/urine creatinine 

(mg/dL). 

2.3. SDS-PAGE and protein identification 
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Urine proteins were separated using an electrophoresis system (NuPAGE, Thermo 

Fisher Scientific, Waltham, MA, USA) as previously described [8,36]. Briefly, three 

to five μg of protein were loaded on 4–12% polyacrylamide gel in MOPS buffer with 

SDS (Thermo Fisher Scientific, Waltham, MA, USA). The gels were stained with 

Coomassie brilliant blue (PageBlu protein staining solution; Thermo Fisher Scientific, 

Waltham, MA, USA) compatible with mass spectrometry analysis. After staining, 

each gel was digitalised (ChemidocMP, BioRad, Hercules, California, USA) and the 

pherograms were obtained using a commercial software (ImageLab, BioRad, 

Hercules, California, USA). The bands at 100, 67 and 18 kDa were cut and identified 

by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-

TOF/MS) as previously reported [8,36]. 

To quantify the bands at 100 kDa and 67 kDa, on each sample, one μg of protein, 

obtained from a solution containing 1 μg/μL of lactate dehydrogenase (LDH), (Sigma-

Aldrich/Merck KGaA, Darmstadt, Germany) was added as internal standard of 

quantity. The ImageLab software estimated the volume of each protein band based on 

pixel density within the band boundaries in the digital image. The volume of the band 

of interest was then compared to the internal standard (LDH) of the corresponding 

lane and the concentration was calculated as 

follows:Xmg/dL=Vband/VLDH/μLsample∗100. 

X = concentration of the protein at 100 kDa or at 67 kDa. 

Vband = volume of the band at 100 kDa, or at 67 kDa determined by the software. 

VLDH = volume of the band of the internal standard (LDH) determined by the software. 

μLsample = μL of the sample loaded in the gel. 

Subsequently, the respective ratios with urine creatinine (uromodulin [mg/dL]: 

creatinine [mg/dL], UMC; albumin [mg/dL]: creatinine [mg/dL], UAC) were 

calculated. 

2.4. NMR sample preparation 

Urine metabolites were extracted for NMR as follows: 500 μL of urine supernatants 

were mixed with 550 μL of chloroform and 550 μL of methanol, vortexed for 1 min, 

left to rest for 15 min at +4 °C and centrifuged at 12000 g for 15 min at room 

temperature. Nine hundred μL of the upper phase (urine/methanol) were dried in a 

https://www.sciencedirect.com/science/article/pii/S1874391920301639?via%3Dihub#bb0040
https://www.sciencedirect.com/science/article/pii/S1874391920301639?via%3Dihub#bb0180
https://www.sciencedirect.com/science/article/pii/S1874391920301639?via%3Dihub#bb0040
https://www.sciencedirect.com/science/article/pii/S1874391920301639?via%3Dihub#bb0180


vacuum centrifuge (SpeedVac, Thermo Fischer Scientific, Waltham, MA, USA) 

overnight at 30 °C. The resulting pellets were suspended with 200 μL of phosphate 

buffer (PB, 240 mM pH 7.4 in D2O with trimethylsilylpropanoic acid [TSP] and 

sodium azide [NaN3]) and 400 μL of D2O to a final concentration of 80 mM PB, 

0.087 mM TSP and 0.022% (v/v) NaN3. Samples were vortexed for 1 min, centrifuged 

at 12,000 g for 1 min and 560 μL transferred into a 5 mm NMR tubes. 

2.5. NMR acquisition 

NMR spectroscopy was conducted on an 800 MHz spectrometer with a triple 

resonance HCN Z-gradient probe, at 298 K (Bruker AvanceII+, Ettlingen, Germany). 

Acquisition and processing were carried out using standard software (Topsin 3.2, 

Bruker Biospin, Billerica, MA, USA). One dimensional 1H NMR spectra with Carr-

Purcell-Meiboom-Gill (CPMG) filter to attenuate signals from macromolecules were 

acquired using a standard vendor pulse sequence (cpmgpr1d). Spectra were acquired 

at 25 °C, with a 20 ppm spectral width, spin lock duration of 78.72 ms, presaturation 

for 4 s using 20 μW and acquisition time of 2 s. A total of 16 dummy scans and 128 

scans were acquired for each sample. All spectra were processed with an exponential 

window function with 1 Hz line broadening and automated phasing and baseline 

correction. For the chemometric analysis, the processed data were further processed in 

the “nmrprocflow” platform [37]. Bins were obtained using manually curated, 

intelligent binning after referencing, baseline correction, water signal removal and 

peak alignment. For selected samples, additional homonuclear and heteronuclear 

spectra (1H J-resolved, 1H 1H COSY, and 1H 13C HSQC) were also collected to 

assist with compound identification. 

2.6. Metabolite annotation and identification 

The bins obtained from the “nmrprocflow” platform [37] were annotated with the help 

of database assisted spectral decomposition using commercial software (Chenomx 8.2 

NMR Suit, Edmonton, Alberta, Canada) and the internal reference library (Version 

10) as well as the Biological Magnetic Resonance Data Bank 

(BMRB, http://www.bmrb.wisc.edu) reference spectra for compounds absent in the 

internal reference library. Buckets were attributed to multiple metabolites where peaks 
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were found to overlap. Pathway analysis module of a free web-based analytical 

platform (Metaboanalyst 4.0, www.metaboanalyst.ca), that used the high-quality 

Kyoto encyclopaedia of genes and genomes (KEGG) metabolic pathways as the 

backend knowledgebase, was used to search for the metabolic pathways. 

2.7. Statistical analysis 

Serum and urine chemistry data were analysed with statistical software (R version 

3.4.4). Normal distribution was tested graphically and by Shapiro-Wilk normality test, 

and data were expressed as mean ± standard deviation (SD) or median (range; 

minimum – maximum value) if normally or non-normally distributed, respectively. 

Variables were compared between healthy (N = 22) and CKD (N = 28) dogs using the 

Student t-test or the Mann-Whitney U test depending on their distribution, 

assuming P < .05 as a significant probability. The Kruskal-Wallis rank sum test was 

applied to evaluate differences among healthy and CKD stages (stages 1–4, basing on 

serum creatinine and according to the IRIS guidelines [4]) and adjusted P-values 

lower than 0.05 were considered statistically significant. 

For metabolomics statistical analysis, processed spectra were aligned, baseline 

corrected and divided into 397 variable width spectral regions or ‘buckets’ with the 

intensity of each bucket divided by the bucket width. To identify the signals 

differentially present in the two groups, the buckets were loaded into a web-based 

platform (Metaboanalyst 4.0, www.metaboanalyst.ca) which uses the R package of 

statistical computing software [38]. For multivariate analysis, buckets were scaled by 

auto-scaling (mean-centred and divided by the standard deviation of each variable) 

while, for univariate analysis, and in order to remove the influences attributed to 

muscle mass and urine concentration, the bucket intensities were normalised to the 

peak of creatinine (bucket 3.0360 ppm). Both univariate and multivariate statistics 

were employed. t-test and fold change analysis were used to identify the buckets with 

differential presence, while the list was supplemented with the use of unsupervised 

principal components analysis (PCA) and supervised partial least squares discriminant 

analysis (PLS-DA). Both PCA and PLS-DA can identify signals (buckets) whose 

importance becomes significant via correlated variance. In addition, PCA provides a 

global view of the differentiability between the two experimental conditions and the 
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groups of observables that are mostly responsible. In contrast, PLS-DA, since it is a 

supervised method, highlights the variables most responsible for the differences 

between groups as previously used in other metabolomics approaches [39,40]. The 

small sample size that is typical in such studies and the inherent large number of 

variables obtained may affect the consistency of the multivariate analysis used. To 

evaluate the consistency of the results, the software performs a number of tests and 

reports the parameters Q2 and R2 as quality parameters of the models. Q2 indicates the 

predictive ability of the model, while R2 is the indicator of the suitability of the fit. For 

PLSDA Q2 > 0.6 were selected as acceptable models. Variable importance in 

projection (VIP) scores greater than 1 and t-test with a P value <.05 were used to 

identify metabolites as differentially expressed. 

3. Results 

3.1. Clinical data 

Mean clinical data, serum and urine biochemistry of healthy and CKD dogs are 

reported in Table 1, while the results for each dog are reported in Supplement Table 1. 

Table 1. Clinical data for healthy and CKD dogs. Data are reported as mean ± SD or 

median (range) depending on normal or non-normal distribution, respectively. 

Signalment Healthy (N = 22) CKD (N = 28) 
  

P 

Age in months 37 ± 20 112 ± 61   <0.0001 

Female n (entire/neutered) 12 (5/7) 14 (5/9)    

Male n (entire/neutered) 10 (7/3) 14 (9/5)    

Serum biochemistry Healthy CKD N (%) CKD < / > RI RI  

Total Proteins (g/dL) 6.4 ± 0.4 6.0 ± 0.8 5 (17.9) < / 1 (3.6) > 5.6–7.3 0.109 

Albumin (g/dL) 3.4 ± 0.3 3.0 (1.1–3.8) 12 (42.9) < 2.8–3.9 <0.0001 

Creatinine (mg/dL) 1.1 ± 0.2 2.0 (0.6–9.8) 1 (3.6) < / 20 (71.4) > 0.8–1.4 <0.0001 

Urea (mg/dL) 33 ± 8 110 (17–519) 22 (78.6) > 17–48 <0.0001 
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Signalment Healthy (N = 22) CKD (N = 28) 
  

P 

Phosphorus (mg/dL) 4.6 ± 0.9 4.9 (2.6–14.1) 11 (39.3) > 2.7–5.4 0.056 

Urine biochemistry Healthy CKD N (%) CKD < / > RI RI  

UPC 0.07 (0.04–0.19) 0.78 (0.09–12.8) 18 (64.3) > < 0.5 <0.0001 

USG 1.052 (1.034–1.064) 1.014 (1.006–1.062) 27 (96.4) < > 1.030a <0.0001 

IRIS Stage  N (%)  RI  

I  8 (28.6)  < 1.4  

II  6 (21.4)  1.4–2.0  

III  9 (32.1)  2.1–5.0  

IV  5 (17.8)  > 5.0  

RI, reference intervals; N, number of samples; UPC, urine protein to creatinine ratio; USG, urine specific 

gravity; 

a 

Considered as adequate USG in dogs. 

CKD dogs were significantly older (P < .0001), had significantly higher concentration 

of serum creatinine (P < .0001), urea (P < .0001) and UPC (P < .0001), while USG 

(P < .0001) was significantly lower than in the healthy dogs. CKD patients were also 

staged according to serum creatinine concentration following IRIS guidelines [4] and 

the differences of UPC and USG were evaluated. USG was significantly lower in each 

CKD stage group than in the healthy dogs (P < .01), and samples classified as CKD 

stage 1 had higher USG than those classified as Stage 3 (P = .016) and 4 (P = .007). 

UPC was significantly higher in each CKD stage group than in healthy dogs (P < .05), 

however, no significant differences were found among CKD stages. 

3.2. SDS-PAGE proteomics analysis 
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Representative gels and pherograms from healthy and CKD dog urines are reported 

in Fig. 1. 
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Fig. 1. Representative SDS-PAGE gels of urine samples from healthy and CKD dogs. 

Black continuous box indicates uromodulin (103 kDa); black dotted box indicates 

albumin (67 kDa); black dashed box indicates the internal standard of quantity (1 μg); 

black dashed and dotted box indicates arginine esterase (18 kDa). M, male; MC, male 

castrated; F, female; FS, female spayed. LMM, low molecular mass (kDa < 67 kDa); 

HMM high molecular mass (kDa > 67 kDa). S1–4 under each lane indicate the CKD 

stage of the patient according to IRIS guideline. NP (non-proteinuric, UPC < 0.2), BP 

(borderline proteinuric, UPC 0.2–0.5) or P (proteinuric, UPC > 0.5) under each lane 

indicate the classification of proteinuria according to IRIS guideline. 

Urine samples from the healthy group presented similar profiles characterised by the 

presence of three most abundant bands at apparent molecular mass (MM) of 103, 80 

and 67 kDa, respectively. The bands at 103 and 67 kDa were identified by mass 

spectrometry as uromodulin and albumin, respectively (Table 2). Moreover, most of 

the samples presented other three to five low abundance bands at apparent MM 

between 55 and 14 kDa and two bands at MM < 14 kDa. In addition, urine samples 

from entire males presented other two evident bands at apparent MM of 18 and 

12 kDa. The band at 18 kDa was identified as arginine esterase (Table 2). 

Table 2. Proteins identified in dog urine by mass spectrometry. 
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Protein name Protein entry name a MM (kDa) b Score c Pept d Sign Pept e Seq f Sign seq g 

Uromodulin UROM_CANFA 73 2298 138 113 15 13 

Albumin ALBU_CANFA 69 5802 470 321 44 39 

Arginine esterase ESTA_CANFA 29 532 111 52 10 9 

a 

Protein entry name from UniProt knowledge database. 

b 

Theoretical protein molecular mass. 

c 

The highest scores obtained with Mascot search engine. 

d 

Peptides: total number of peptides matching the identified proteins. 

e 

Significant peptides: total number of significant peptides matching the identified proteins. 

f 

Sequence: total number of distinct sequences matching the identified proteins. 

g 

Significant sequences: total number of significant distinct sequences matching the identified proteins. 

CKD samples presented different and more variable electrophoretic profiles. The 

disappearance of uromodulin and/or the increase of intensity of albumin and of the 

band at 80 kDa were clearly evident in all the analysed samples. The increase in 

number and intensity of the bands at high (>67 kDa) and low (<67 kDa) MM was also 

evidenced. Particularly, two samples presented an increase in number and intensity of 
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the bands at high (>67 kDa) MM only, nine samples showed an increase in number 

and intensity of the bands at low (<67 kDa) MM only, while the remaining 17 

samples presented an increase in number and intensity of the bands at both high and 

low MM. Additionally, in 12 samples (Fig. 1; Lanes 2, 4, 6, 9) was evidenced a band 

at 21 kDa that was not present in healthy samples. 

Concentrations of uromodulin and albumin and their ratio with creatinine (UMC and 

UAC) are reported in Table 3. Urine samples from healthy dogs presented a low 

amount of albumin (3.1 ± 1.4 mg/dL) and a high amount of uromodulin 

(11.9 ± 2.3 mg/dL). CKD dogs presented a significantly higher concentration of 

albumin (P = .0025) and UAC value (P = .0002) and a significantly lower 

concentration of uromodulin (P < .0001) and UMC value (P = .0044), compared to 

healthy animals. 

Table 3. Data for albumin and uromodulin quantification by SDS-PAGE. Data are 

reported as mean ± SD or median (range) depending on normal or non-normal 

distribution, respectively. 
 

Healthy CKD P 

Albumin (mg/dL) 3.1 ± 1.4 26.6 (1.4–228.9) 0.0025 

UAC 0.010 ± 0.007 0.213 (0.028–1.395) 0.0002 

Uromodulin (mg/dL) 11.9 ± 2.3 0 (0–5.1) <0.0001 

UMC 0.038 ± 0.012 0 (0–0.044) 0.0044 

3.3. Metabolites annotation and identification 

Representative NMR spectra from healthy and CKD dog urine samples are reported 

in Fig. 2. 
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Fig. 2. Representative NMR spectra of urine samples collected from healthy and CKD 

dogs. 

An overview of the NMR spectra of samples from healthy dogs evidenced similar 

profiles, while the urine from CKD patients showed more variable spectra and 

differences in metabolite abundance. From the 397 buckets, 86 metabolites were 

identified in healthy samples, with different biological functions and belonging to 

different pathways. An entire spectrum of the urine of an healthy dog with the 

assigned metabolites is reported in Fig. 3. The five most abundant metabolites were 

creatinine, urea, taurine, lactate and 1-methylnicotinamide, while the list of all the 

identified metabolites is reported in Table 4. After MetaboAnalyst pathway analysis, 

metabolites were shown as belonging to 49 different pathways, and 23 of these 

pathways were represented by at least 3 different metabolites. The most represented 

pathways are mainly involved in amino acid metabolism, purine and aminoacyl-tRNA 

biosynthesis and tricarboxylic acid cycle (Table 5). In particular, 10 metabolites 

belonged to glycine, serine and threonine metabolism and aminoacyl-tRNA 

biosynthesis, while 8 metabolites were involved in phenylalanine metabolism and 

purine metabolism. 
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Fig. 3. Representative spectrum of urine from an healthy dog. For a better visualisation, 

the spectrum has been divided into four parts. a) From 0.0 to 2.8 ppm; b) from 2.4 to 

4.9 ppm; c) from 4.6 to 7.0 ppm; d) from 7.0 to 10.0 ppm. The reported metabolites are: 1 

valine; 2 fucose; 3 lactate; 4 alanine; 5 acetate; 6 N6-acetyllysine; 7 N-acetylgycine; 8 

acetylcisteine; 9 succinate; 10 pyridoxamine; 11 citrate; 12 dimethylamine; 13 

methylguanidine; 14 trimethylamine; 15 N,N-dimethylglycine; 16 creatine; 17 creatinine; 

18 choline; 19 phosphorylcholine; 20 carnitine; 21 taurine, trimethylamine N-oxyde, 

betaine; 22 taurine; 23 trans-aconitate; 24 3-hydroxyphenilacetate; 25 3-methylxantine; 

26 2-hydroxyphenilacetate; 27 glycine; 28 N-phenyilacetylglicine; 29 7-methylxantine; 

30 creatine, creatine phosphate, glycolate; 31 pseudouridine; 32 trigonelline; 33 1-

methylnicotinamide; 34 allantoine; 35 cis-aconitate; 36 urea; 37 xanthosine; 38 cytosine; 

39 urocanate; 40 tyramine, tyrosine; 41 1-methylhistidine; 42 histidine; 43 3-

indoxylsulphate; 44 tyramine; 45 hippurate; 46 hypoxanthine. 

Table 4. Assigned metabolites in the urine of healthy dogs. 

Query HMDB PubChem KEGG 

1,7-Dimethylxanthine HMDB0001860 4687 C13747 

1-Methyladenosine HMDB0003331 27476 C02494 

1-Methylguanine HMDB0003282 70315 C04152 

1-Methylhistidine HMDB0000001 92105 C01152 

1-Methylnicotinamide HMDB0000699 457 C02918 

2-Furoylglycine HMDB0000439 21863 NA 

2-Hydroxybutyric acid HMDB0000008 11266 C05984 

2-Hydroxyphenylacetic acid HMDB0000669 11970 C05852 

2-Ketobutyric acid HMDB0000005 58 C00109 

2-Methylglutaric acid HMDB0000422 12046 NA 

3-Aminoisobutyric acid HMDB0003911 64956 C05145 

3-Hydroxyphenylacetic acid HMDB0000440 12122 C05593 
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Query HMDB PubChem KEGG 

3-Indoxylsulfic acid HMDB0000682 10258 NA 

3-Methyl-2-oxovaleric acid HMDB0000491 47 C03465 

3-Methylglutaric acid HMDB0000752 12284 NA 

3-Methylxanthine HMDB0001886 70639 C16357 

4-Aminohippuric acid HMDB0001867 2148 NA 

4-Hydroxybenzoic acid HMDB0000500 135 C00156 

4-Hydroxyphenylacetic acid HMDB0000020 127 C00642 

4-Pyridoxic acid HMDB0000017 6723 C00847 

7-Methyladenine HMDB0011614 71593 C02241 

7-Methylxanthine HMDB0001991 68374 C16353 

Acetic acid HMDB0000042 176 C00033 

Acetylcisteine HMDB0001890 12035 C06809 

Adenosine HMDB0000050 60961 C00212 

Alanine HMDB0000161 5950 C00041 

Allantoin HMDB0000462 204 C01551 

Arabinitol HMDB0001851 439255 C00532 

Ascorbic acid HMDB0000044 54670067 C00072 

Betaine HMDB0000043 247 C00719 

Carnitine HMDB0000062 2724480 C00318 

Choline HMDB0000097 305 C00114 

cis-Aconitic acid HMDB0000072 643757 C00417 



Query HMDB PubChem KEGG 

Citric acid HMDB0000094 311 C00158 

Creatine HMDB0000064 586 C00300 

Creatine phosphate HMDB0001511 587 C02305 

Creatinine HMDB0000562 588 C00791 

Cytosine HMDB0000630 597 C00380 

Dimethylamine HMDB0000087 674 C00543 

Ferulic acid HMDB0000954 445858 C01494 

Formic acid HMDB0000142 284 C00058 

Fucose HMDB0000174 17106 C01019 

Galactonic acid HMDB0000565 128869 C00880 

Galactose HMDB0000143 439357 C00984 

Glucaric acid HMDB0000663 33037 C00818 

Glucuronic acid HMDB0000127 444791 C00191 

Glycine HMDB0000123 750 C00037 

Glycolic acid HMDB0000115 757 C00160 

Glyoxylic acid HMDB0000119 760 C00048 

Hippuric acid HMDB0000714 464 C01586 

Histidine HMDB0000177 6274 C00135 

Hypoxanthine HMDB0000157 790 C00262 

3-Methylhistidine HMDB0000479 64969 C01152 

Indole-3-lactic acid HMDB0000671 92904 C02043 



Query HMDB PubChem KEGG 

Isobutyric acid HMDB0001873 6590 C02632 

Isoleucine HMDB0000172 6306 C00407 

Kynurenic acid HMDB0000715 3845 C01717 

Lactic acid HMDB0000190 107689 C00186 

Lysine HMDB0000182 5962 C00047 

Mannitol HMDB0000765 6251 C00392 

Methylguanidine HMDB0001522 10111 C02294 

N,N-Dimethylglycine HMDB0000092 673 C01026 

N6-Acetyllysine HMDB0000206 92832 C02727 

N-Acetylglycine HMDB0000532 10972 NA 

N-Phenylacetylglycine HMDB0000821 68144 C05598 

Oxoglutaric acid HMDB0000208 51 C00026 

Phosphorylcholine HMDB0001565 1014 C00588 

Pseudouridine HMDB0000767 15047 C02067 

Pyridoxamine HMDB0001431 1052 C00534 

Serine HMDB0000187 5951 C00065 

Succinic acid HMDB0000254 1110 C00042 

Taurine HMDB0000251 1123 C00245 

Threonine HMDB0000167 6288 C00188 

trans-Aconitic acid HMDB0000958 444212 C02341 

Trigonelline HMDB0000875 5570 C01004 



Query HMDB PubChem KEGG 

Trimethylamine HMDB0000906 1146 C00565 

Trimethylamine N-oxide HMDB0000925 1145 C01104 

Tryptophan HMDB0000929 6305 C00078 

Tyramine HMDB0000306 5610 C00483 

Tyrosine HMDB0000158 6057 C00082 

Uracil HMDB0000300 1174 C00106 

Urea HMDB0000294 1176 C00086 

Urocanic acid HMDB0000301 736715 C00785 

Valine HMDB0000883 6287 C00183 

Xanthine HMDB0000292 1188 C00385 

Xanthosine HMDB0000299 64959 C01762 

Xanthurenic acid HMDB0000881 5699 C02470 

Table 5. Significant pathways obtained by the pathway analysis module of 

MetaboAnalyst. 

Pathway Total a Hits b Raw p Metabolites 

Glycine, serine and 

threonine metabolism 
48 10 1.94E-06 

Serine; Choline; Betaine; Dimethylglycine; Glycine; Threonine; 

Creatine; 2-Ketobutyric acid; Glyoxylic acid; Tryptophan 

Phenylalanine 

metabolism 
45 8 7.59E-05 

Hippuric acid; N-Phenylacetylglycine; Succinic acid; 2-

Hydroxyphenylacetic acid; 4-Hydroxybenzoic acid; 4-

Hydroxyphenylacetic acid; Tyrosine; 3-Hydroxyphenylacetic 

acid 

Aminoacyl-tRNA 

biosynthesis 
75 10 0.00012 

Histidine; Glycine; Serine; Valine; Alanine; Lysine; Isoleucine; 

Threonine; Tryptophan; Tyrosine 

Caffeine metabolism 21 6 0.000452 
1,7-Dimethylxanthine; 3-Methylxanthine; 7-Methylxanthine; 

Xanthosine; Xanthine; Glyoxylic acid 
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Pathway Total a Hits b Raw p Metabolites 

Methane metabolism 34 6 0.000666 
Glycine; Formic acid; Trimethylamine; Trimethylamine N-

oxide; Dimethylamine; Serine; 

Glyoxylate and 

dicarboxylate 

metabolism 

50 7 0.001004 
cis-Aconitic acid; Glyoxylic acid; Oxoglutaric acid; Formic acid; 

Glycolic acid; Citric acid; Succinic acid; 

Nitrogen metabolism 39 6 0.001418 Tyrosine; Tryptophan; Taurine; Histidine; Glycine; Formic acid; 

Citrate cycle (TCA 

cycle) 
20 4 0.00349 Succinic acid; Oxoglutaric acid; cis-Aconitic acid; Citric acid; 

Propanoate 

metabolism 
35 5 0.005027 

2-Ketobutyric acid; Succinic acid; Lactic acid; 2-Hydroxybutyric 

acid; Valine; 

Valine, leucine and 

isoleucine 

biosynthesis 

27 4 0.010619 Threonine; Valine; Isoleucine; 2-Ketobutyric acid; 

Taurine and 

hypotaurine 

metabolism 

20 3 0.025942 Taurine; Alanine; Acetic acid; 

Purine metabolism 92 8 0.029144 
Xanthine; Adenosine; Xanthosine; Hypoxanthine; Urea; 

Glyoxylic acid; Glycine; Allantoin 

Alanine, aspartate and 

glutamate metabolism 
24 3 0.041947 Alanine; Oxoglutaric acid; Succinic acid; 

Pyrimidine 

metabolism 
60 5 0.044772 

Cytosine; Uracil; Pseudouridine; Urea; 3-Aminoisobutanoic 

acid; 

a 

Total metabolites belonging to the pathway as reported by the pathway analysis module of 

MetaboAnalyst. 

b 

Metabolites assigned in urine of healthy dogs belonging to the pathway as obtained by the pathway 

analysis module of MetaboAnalyst. 

https://www.sciencedirect.com/science/article/pii/S1874391920301639?via%3Dihub#tf0045
https://www.sciencedirect.com/science/article/pii/S1874391920301639?via%3Dihub#tf0050


By univariate t-test, 83 buckets resulted significantly different between healthy and 

CKD dog urine samples. Unsupervised multivariate analysis (PCA) was able to 

distinguish between healthy and CKD dogs (Fig. 4). The supervised multivariate 

analysis using PLS-DA (Fig. 4, Table 6) indicated that the optimal model comprised 5 

components (R2 = 0.99, Q2 = 0.74), but also the model with only one component had 

reasonable predictive value (R2 = 0.73, Q2 = 0.62). Both univariate and multivariate 

analysis were used to identify the differentially abundant metabolites. Of the 83 

significantly different buckets, 21 were assigned to 17 metabolites (Table 6). The 

metabolites showing the highest increase in CKD samples were carnosine, 7-

methylxanthine and cis-aconitic acid, while the metabolites showing the most evident 

decrease were trigonelline and urocanic acid. 
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Fig. 4. a) Principal component analysis (PCA) score plot of healthy (crosses and dark 

grey circle) and CKD (triangles and faint grey circle) urine samples. b) Partial Least 

Square – Discriminant Analysis (PLS-DA) distribution plot of healthy (crosses and dark 

grey circle) and CKD (triangles and faint grey circle) urine samples. c) Variable 

Importance in Projection (VIP) scores for the 25 most influential buckets of PLS-DA. 

Table 6. Metabolites showing significant differences between healthy and CKD dogs. 

Bucket Metabolite Fold change CKD/Healthy VIP score a P value 

B6_9876 Carnosine 3.15 1.922 0.001 
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Bucket Metabolite Fold change CKD/Healthy VIP score a P value 

B3_9190 7-Methylxanthine 2.94 1.444 0.037 

B5_6610 cis-Aconitic acid 2.67 1.754 0.014 

B2_7085 Dimethylamine 1.86 1.512 0.017 

B2_8135 Methylguanidine 1.80 1.415 0.025 

B7_8490 Kynurenic acid 1.77 1.333 0.045 

B5_8415 Xanthosine 1.72 2.054 0.002 

B4_2825 Pseudouridine 1.70 1.886 0.002 

B7_6681 Pseudouridine 1.59 2.294 0.000 

B5_3745 Allantoin 1.47 2.051 0.007 

B7_3740 Urocanic acid 0.49 1.323 0.032 

B0_9355 2-Hydroxybutyrric acid 0.48 1.343 0.005 

B1_0360 Valine 0.44 1.583 0.010 

B7_7874 4-Hydroxybenzoic acid 0.40 1.278 0.042 

B7_1303 Ferulic acid 0.34 1.566 0.009 

B8_1155 7-Methyladenine 0.32 1.360 0.030 

B7_7217 Indole-3-lactic acid 0.26 1.450 0.018 

B6_3648 Ferulic acid 0.26 1.590 0.009 

B6_3739 Urocanic acid 0.21 1.713 0.005 

B8_8262 Trigonelline 0.15 1.284 0.043 

B9_1121 Trigonelline 0.10 1.345 0.034 

a 
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Variable Importance in Projection (VIP) scores. 

4. Discussion 

The aim of the present research was to characterise the urinary proteome and 

metabolome in healthy dogs and to compare it with that of urine collected from CKD 

patients, to suggest biomarkers of the disease that would be useful in veterinary 

medicine. 

In the present study, SDS-PAGE allowed the separation of the urinary proteins based 

on their molecular mass, giving information about the localisation of the nephronal 

damage. Most urine samples (17/28) of CKD dogs analysed in this study had protein 

bands at both high and low MM, indicating a mixed glomerular and tubular pattern. It 

is generally recognised that the renal proteinuria with an UPC > 2 is strongly 

indicative of glomerular involvement [41,42]. Our data support this evidence, as the 

electrophoretic profiles of the seven urine samples with an UPC > 2 were 

characterised by protein bands with high MM. However, in all these samples, bands 

with low MM were also present, suggesting a concomitant tubular damage. Other 

authors reported a tubular impairment in dogs with UPC > 2 [42,43]. On the other 

hand, in our study, 7 of the 21 samples with UPC < 2 indicated also a glomerular 

involvement and hence the evaluation of proteinuria by UPC could lead to 

misinterpretation regarding the nephronal origin of the proteinuria, as previously 

suggested by other authors [41,[43], [44], [45], [46]]. 

In the present study, 8 dogs with early stages of CKD (I and II; serum creatinine < 

2.1 mg/dL), classified as non-proteinuric (UPC < 0.2) or borderline proteinuric (UPC 

0.2–0.5), showed altered electrophoretic profiles with the decrease of uromodulin and 

the increase in number and intensity of low MM bands. Chacar et al., [43] also 

reported the prevalence of tubular pattern in urine samples of dogs with early stages of 

CKD. On the other hand, out of 14 dogs affected by CKD at advanced IRIS stages (III 

and IV; serum creatinine > 2.1 mg/dL), 10 patients had a mixed profile, while 4 dogs 

presented a clear tubular pattern, with absent or mild glomerular involvement. Tubular 

epithelium seems to be more susceptible to ongoing stress and dysregulation 

promoting interstitial inflammation and fibrosis [47]. Therefore, it can be 

hypothesised that, in general, dogs with CKD in the initial phases (serum creatinine 
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<2.1 mg/dL and UPC < 0.5) might present a prevalent tubulointerstitial involvement 

followed by a gradual glomerular impairment leading to an increase of albumin and 

higher MM proteins in urine. In this complex scenario, the analysis of qualitative 

proteinuria could be essential to better characterise the kidney damage and the 

nephronal involvement. 

In addition to the evaluation of the electrophoretic protein profiles, SDS-PAGE 

allowed the quantification of urinary uromodulin and albumin. In urine samples of 

healthy dogs, the abundance of uromodulin associated with the low concentration of 

albumin is confirmatory of data previously reported by other authors 

[43,[48], [49], [50]]. In our study, the quantification of these two proteins, followed 

by UMC and UAC calculation, represents an additional step for their clinical use. In 

fact, uromodulin and albumin are known markers of renal dysfunction or damage, in 

particular of CKD [51,52]. Raila et al., [50] reported a decrease of uromodulin in 

azotaemic and proteinuric dogs affected by renal disease and, despite the different 

method used for protein quantification (western blot), UMC values determined in the 

healthy dogs were comparable to our results. In addition, Chacar et al., [43] quantified 

uromodulin by western blotting and reported a decrease of uromodulin only in the late 

stages of CKD (IRIS 3–4), suggesting this protein as a marker of CKD progression 

rather than of early diagnosis. Differently, in the present study, the decrease of 

uromodulin was observed by SDS-PAGE already in stage 1 non-proteinuric CKD 

dogs, suggesting uromodulin as a promising and early biomarker of renal dysfunction 

in dogs. 

Urinary albumin concentration is low in healthy dogs and an increase occurs in the 

presence of renal involvement [11,53]. Accordingly, in the present study, healthy dogs 

have low values of albumin and UAC, in the range of those reported by other authors 

[11,[54], [55], [56], [57]]. Different authors determined albuminuria in dogs affected 

by a variety of diseases and conditions, including CKD 

[11,[53], [54], [55], [56],[58], [59], [60], [61], [62]]. However, despite the clinical 

importance of albumin quantification in urine, the reference intervals for albuminuria 

are still lacking for dogs and should be the aim of further research. 

Finally, the presence of arginine esterase in urine of entire male dogs was also 

evidenced and needs to be considered to correctly interpret urine electrophoretic 

profile and to exclude false tubular involvement as previously reported [15,42]. 
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The second part of the study focused on the application of NMR to characterise the 

urinary metabolome of healthy dogs and to evaluate the differences with CKD 

patients. As most CKD samples contained high protein concentrations, to avoid 

interferences on NMR spectra and possible false positives, a further step in sample 

preparation was added by precipitating the proteins. This step allowed the enrichment 

of urine metabolome, improving the quality of the spectra and the identification of a 

higher number of metabolites. Moreover, since the high repeatability of NMR 

metabolomics is well known [20,21], no technical replicates were analysed and only 

biological replicates were considered. From the corresponding spectra, 86 metabolites 

were identified in healthy samples, a number higher than those previously reported in 

dog urine by other authors [32,33,63,64] and producing, so far and to the best of our 

knowledge, one of the most complete dataset of canine urinary metabolome. Most of 

these metabolites are of endogenous origin, while others, like ferulic acid, are of 

exogenous or mixed origin. Most of the identified metabolites were previously 

reported in urine of healthy or diseased dogs [32,33,65], in human urine [19,22] and 

also in feline urine [31]. The majority of these metabolites is involved in amino acids 

metabolism, purine and pyrimidine metabolism, tricarboxylic acid cycle and methane 

metabolism. 

Nine metabolites were significantly increased in urine of CKD dogs. Carnosine, a 

dipeptide composed by alanine and histidine acting as an antioxidant scavenger, 

showed the most evident increase. This molecule is filtered by the glomerulus and 

then reabsorbed at the level of the proximal tubule by the proton-coupled 

oligotransporter PEPT2 [66]. It has been recently reported that the kidney has an 

intrinsic carnosine metabolism with carnosine synthase and carnosinase 1 activity in 

the glomeruli and tubular cells [67,68]. In CKD dogs, the increased urinary excretion 

of carnosine may reflect an oxidative stress suffered by the kidney, a condition 

hypothesised also by other authors in obese dogs [32,65]. Moreover, since carnosine 

is present at high concentrations in muscle tissues, and muscle weakness and atrophy 

are common findings in CKD patients, the increase of this molecule in urine may also 

reflect an increased muscle catabolism [65]. Finally, as a causative event, a damage of 

the epithelium of the proximal tubule might also be hypothesised, leading to impaired 

reabsorption of carnosine; this hypothesis is supported by the decrease of uromodulin 

evidenced by SDS-PAGE and by the increase of cis-aconitic acid in urine of CKD 
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dogs. Cis-aconitic acid, an intermediate in the tricarboxylic acid cycle, was observed 

in the urine of type 2 diabetic human patients. In fact, increased excretion of this 

metabolite reflects local effects on tubular transport in the kidneys [69]. Therefore, a 

damage of the tubular epithelium might determine an inefficient reabsorption leading 

to an increased concentration of urinary cis-aconitic acid and carnosine. 

Regarding other urinary metabolites increased in urine of CKD dogs, xanthosine, 

allantoin, and 7-methylxanthine are of interest. These metabolites belong to the 

complex pathways of purine metabolism; in particular, during purine catabolism, the 

nucleoside xanthosine is transformed into xanthine, which in turn is oxidized to uric 

acid by uricase. In humans, uric acid is the end product of purine catabolism, while in 

dogs an additional reaction transforms this metabolite into allantoin. In humans, some 

of these metabolites were suggested as possible markers of diabetic nephropathy [70], 

end stage renal disease [71] or other kidney disorders [72], while an increase of 

allantoin and xanthine to creatinine ratios were previously reported in urine of dogs 

affected by CKD [73]. Despite the possible influence of medications, such as 

allopurinol or diuretics received by two CKD dogs included in the present study, that 

could have affected purine metabolism, these data show evidence that CKD is 

associated with alterations in urinary concentrations of purine metabolites, and thus, 

this issue deserves more attention in further research. 

Three additional metabolites increased in urine of CKD dogs. They were 

methylguanidine (MG), kynurenic acid (KnA) and dimethylamine (DA). These 

molecules are well known uremic toxins that accumulate in serum and urine due to the 

impairment of renal function [74,75]. MG derives from creatinine and is often 

detected in serum and urine of uremic human patients [76,77]. MG was detected also 

in serum of uremic dogs and was shown to increase in urine of dogs affected by 

transitional cell carcinoma [33,78]. In the present study, 14 samples were collected 

from dogs at advanced CKD stages (serum creatinine > 2.1 mg/dL; IRIS 3 and 4). 

Therefore, the increase of MG in urine of CKD dogs might be considered in further 

studies as a possible biomarker of advanced CKD stages. KnA is a key inflammatory 

metabolite of the tryptophan catabolic pathway: the degradation of tryptophan occurs 

through the formation of kynurenine, which in turn can be transformed into KnA and 

other related metabolites. Kidneys are involved in tryptophan metabolism either 

eliminating the catabolites or producing the enzymes involved in tryptophan 
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metabolism. In case of renal failure, these metabolites, which are physiologically 

excreted in urine, accumulate in the blood, contributing to uremia. Accordingly, the 

study of Rhee et al., [79] reported that serum levels of KnA increased with CKD 

development and severity. Moreover, increased KnA urinary excretion was associated 

with adverse clinical outcomes in critically ill patients with acute kidney injury [80] 

and four tryptophan metabolites, including urinary KnA, were reported to be 

associated with an estimated glomerular filtration rate (eGFR) decline and with 

oxidative stress after eight years follow-up [81,82]. 

Eight metabolites were significantly reduced in urine of CKD patients and the most 

consistent decrease was evident for trigonelline, which can be obtained from the diet, 

or alternatively produced as a niacin-derived metabolite. Proximal tubule epithelia 

synthesize NAD from precursors taken up from urine and an excess of metabolites of 

the biosynthetic pathway, including trigonelline, is normally secreted in urine. In case 

of tubular damage, a reduced/absent absorption of nicotinamide or nicotinic acid 

occurs leading to a reduced/absent trigonelline secretion. Accordingly, in a mice 

model of acute kidney injury, trigonelline removal from urine was reported as a 

consequence of tubular damage [[83], [84], [85]]. 

Significant decrease was observed also for urocanic, indole-3-lactic and ferulic acids. 

The two first metabolites derive from hepatic histidine and tryptophan catabolism, 

respectively. In particular, histidine can be converted to histamine, 3-methylhistidine 

or urocanic acid by different pathways, while indole-3-lactic acid is obtained through 

the reduction of indolepyruvic acid derived by oxidative deamination of tryptophan. 

Finally, ferulic acid is a phenolic acid widely distributed in plants that can be 

absorbed by the small intestine and excreted through the urine. All these metabolites 

can be found in plasma and urine [22,31,86]. Serum indole-3-lactic acid was recently 

associated to eGFR in human CKD patients [87], but, to the best of our knowledge, no 

information is available in the literature on the decrease of these metabolites in the 

urine of CKD patients. Further studies are therefore needed to clarify their role as 

possible biomarkers. 

This study presents some limitations. The first one is related to the different age 

between healthy and diseased dogs. Since CKD is a disease of older animals, and 

adult/old dogs are usually presented to the Veterinary Teaching Hospital due to 

pathologic conditions, it was not possible to collect samples from age-matched 
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controls. However, none of the different metabolites identified between healthy and 

CKD dogs were reported by Wang et al., [88] as affected by age in healthy dogs. 

Therefore, despite a possible age effect on urine metabolome cannot be completely 

excluded, we hypothesise that the effect of CKD was more consistent than the effect 

of the age. In addition, numerous dog breeds were included in the two study groups; 

therefore, breed-specific differences or effects on the urinary proteome and 

metabolome could not be determined in the present study. Secondly, the limited 

number of CKD samples did not allow to highlight significant differences among 

CKD stages for both proteomics and metabolomics results and it was not possible to 

highlight clear trends in biomarkers as the disease worsens. The final limitation relates 

to the absence of technical replicates for the evaluation of the robustness of our data. 

The technical evaluation of the performance of NMR applied to the dog urine was out 

of the scope of the present research, especially since the high repeatability of NMR 

metabolomics is well-known [20,21]. 

5. Conclusions 

The integrated application of proteomics and metabolomics on urine samples yielded 

new insight into the molecular complexity of urine in healthy dogs and highlighted 

biochemical changes in response to CKD. SDS-PAGE evidenced the involvement of 

the tubular compartment with the decrease of uromodulin and the presence of low 

MM bands also in non-proteinuric and non-azotaemic dogs and could be considered a 

useful and complementary diagnostic tool for clinical pathologists, clinicians and 

researchers working in veterinary nephrology and urology. 

NMR metabolomics was successfully applied to canine urinary samples allowing the 

identification of 86 metabolites. Of these, 17 showed significant differences in CKD 

dogs. In particular, the increase of carnosine and cis-aconitic acid and the decrease of 

trigonelline are indicative of the tubular involvement, adding further evidence to the 

results of SDS-PAGE. Additional studies are needed to clarify the molecular 

mechanisms underlying the pathophysiology of CKD and to confirm the role of the 

discovered metabolites as biomarkers of this disease in dogs. In particular, increasing 

the number of urine samples collected from dogs affected by all stages of CKD should 
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be the focus of future research to confirm early biomarkers and highlight trends as the 

disease worsens. 
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