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 22 

Abstract 23 

Background and Aims: The development of an efficient clonal selection process requires 24 

the study of genotype-by-environment (G×E) interaction. This work aims to evaluate the 25 

variability of the G×E interaction among genotypes and to identify the less sensitive ones. 26 

Methods and Results: The approach involves the fitting of mixed models to yield data taking 27 

into account the correlation induced by the repeated measurements of the same plot over the 28 

years. A measure for comparative evaluation of the G×E interaction among genotypes is 29 

proposed (Interaction Sensitivity, IS), based on the variance of the values of the empirical best 30 

linear unbiased predictors of G×E interaction effects across environments. In all cases studied 31 

significant G×E interaction variability was found, and the proposed measure to rank the 32 

sensitivity to G×E interaction varied widely among genotypes. 33 

Conclusions: The existence of a common contribution shared by all observations made in the 34 

same plot was detected, independently of the lag between years. The proposed measure to 35 

rank the sensitivity to G×E interaction permitted identification of stable genotypes. 36 

Significance of the Study: This work studied G×E interaction problem in the context of 37 

grapevine and proposes a measure for the comparative evaluation of the G×E interaction 38 

among genotypes.  39 

 40 

Keywords: clonal selection, G×E interaction, grapevine, multi-environmental trial, mixed 41 

models 42 

 43 
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Grapevine (Vitis vinifera L.) is one of the most important crops in the Mediterranean region 45 

and it is grown in many countries worldwide. As for any crop the genetic quality of the 46 

propagated materials is of utmost importance. For an ancient variety, the selection 47 

methodology currently used in Portugal by the Portuguese Association for Grapevine 48 

Diversity (PORVID) consists of three steps (Martins and Gonçalves 2015). The first is a 49 

random prospection of plants in old vineyards of the variety’s main growing regions with the 50 

objective of obtaining a representative sample of the intravariety genetic diversity. To each 51 

single plant (genotype) prospected a code is given and it is vegetatively propagated originating 52 

a clone (a set of genetically identical plants). The second step is the planting of a large field 53 

trial according to an adequate experimental design using that sample (i.e. hundreds of 54 

genotypes/clones of the variety under selection) to quantify genetic diversity within the variety 55 

and perform selection of groups of superior genotypes (usually the selection of the top ranked 56 

7–20 clones according to the target traits for the variety, polyclonal selection). This polyclonal 57 

selected material becomes available for new plantings. The third step of the methodology is 58 

implemented when the objective is to undertake clonal selection. It consists of the selection 59 

of a superior group of about 30–40 clones from the previous stage, in the establishment of 60 

several field trials in different locations, and in the evaluation during several years (usually 61 

two–four locations, if possible during 5–8 years). The main concern is to select individual 62 

clones which ideally present simultaneously good performance for the target traits and low 63 

sensitivity to genotype by environment (G×E) interaction. The development of an efficient 64 

clonal selection process requires knowledge about this type of interaction. Despite major 65 

advances concerning G×E analysis in plant breeding programs, such developments have not 66 

been routinely adopted in most of the grapevine clonal selection programs worldwide. 67 
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The phenotypic value of an individual for a given trait is controlled by its genotypic 68 

effect, the environmental effect and the G×E interaction effect. Such interaction exists when 69 

the comparative performance of genotypes vary according to the environment. Lynch and 70 

Walsh (1998) consider the G×E interaction can comprise two major types: (i) rank-change 71 

interaction, wherein genotypes are ranked in different orders in different environments 72 

(crossover interaction); and (ii) level-of-expression interaction, wherein the expression of 73 

genotypic differences varies across environments, but not necessarily with any change in the 74 

order of the genotype rankings. For selection purposes, rank-change interaction will generally 75 

be of greater interest to study (Li et al. 2017). The objective of the breeder is often to address 76 

G×E interaction either by selecting stable genotypes that are not sensitive to environmental 77 

changes, or by selecting genotypes for specific environments. According to Lynch and Walsh 78 

(1998) spatial aspects of the environment (such as location) tend to contain more predictable 79 

features than temporal aspects (such as yearly variation). Thus, breeders have to face two 80 

competing tasks. First, if there are different mega-environments (group of locations within 81 

which only modest G×E interaction occurs), genotypes that are widely adaptive within each 82 

mega-environment can often be found and selected. Second, if the environment has significant 83 

unpredictable components (such as year-to-year variation), G×E interaction cannot be 84 

exploited and, as an alternative, the breeder must try to mitigate its effects, for example, by 85 

selecting genotypes which are more stable over environments. As Lynch and Walsh (1998) 86 

stressed, G×E interaction is highly context-specific: is almost inevitable if genotypes are 87 

studied in a sufficiently large set of environments; if genotypes are examined within a small 88 

and appropriate chosen set of environments, G×E may largely disappear.  89 
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The subject of G×E interaction has been a research focus among biometricians and 90 

quantitative geneticists since the early 1900s (Yan and Tinker 2006). With the idea that it is 91 

an undesirable phenomenon which confounds genotype evaluation, much work has been 92 

devoted to developing new methods to study it. In fact, there are numerous methods for 93 

studying G×E interaction. Probably the simpler methods and the most intuitive ones use 94 

nonparametric statistics, which are based on the idea that a genotype is stable over 95 

environments if its ranks are similar over environments (Nassar and Hühn 1987). Historically, 96 

however,  the most widely used techniques were focused on the regression analysis of the 97 

observations of the genotype on environmental indices (Finlay and Wilkinson 1963), on the 98 

genetic correlations between environments (Falconer and Mackay 1996), and on the use of 99 

biplots for the interpretation of G×E interactions (Kempton 1984, Yan and Tinker 2006). The 100 

additive main effects and multiplicative interaction (AMMI) and the genotype main effects 101 

and interaction effects (GGE) are the two main biplot analysis methods (Gauch, 2006, Yan et 102 

al. 2007, Gauch et al. 2008, Yang et al. 2009). Both are based on ANOVA (treat the main and 103 

interaction effects as fixed effects) and principal component analysis (PCA). The difference 104 

between them is that GGE biplot analysis is based on an environment-centred PCA, whereas 105 

AMMI analysis refers to a double-centred PCA. Other common approaches to assess the 106 

magnitude of genotype-by-environment interaction are based on the theory of mixed models 107 

(Smith et al. 2005, Yang 2007). According to Smith et al. (2005), the advantages of the linear 108 

mixed models include the ease to handle incomplete data, the ability to use more realistic 109 

within-trial models for error variance and the ability to assume some sets of effects (e.g. 110 

variety and/or environment effects) to be random rather than fixed. Thus linear mixed models 111 

have become popular for the analysis of multi-environmental trials (MET) data. Among these 112 
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approaches, one of the most mentioned is the factor analytic (FA) models (Piepho 1998, 113 

Burgueño et al. 2008, Cullis et al. 2014, Smith et al. 2015). According to these authors, those 114 

models can provide a reliable parsimonious and holistic approach for estimation of genetic 115 

correlations between all pairs of trials and provide a natural framework for modelling G×E 116 

patterns in complex multi-environment experiments. The use of FA models in multi-117 

environment trials is based on the use of eigenvectors from PCA and extended to 118 

accommodate both additive and non-additive effects. In this approach predicted genotypic 119 

effects for each environment are obtained (Smith et al. 2015).  120 

As mentioned above, G×E interaction analysis in plant breeding programs have long 121 

been implemented worldwide, mainly in annual crops. Commonly, potential new varietys are 122 

evaluated in a large number of designed field experiments that cover a range of geographic 123 

locations and years. For example, in Australia over 600 trials are conducted annually by 124 

National Variety Trials (NVT) and cover a range of crops including wheat, barley, canola, 125 

chick peas, faba beans, field peas, lentils, lupins, oats and triticale (Smith et al. 2015). Under 126 

the grapevine clonal selection context, the evaluation of G×E interaction is also a key point in 127 

the selection process. However, studies related to G × E interaction in grapevine clones are 128 

scarce. In Germany, Laidig et al. (2009) studied the performance of Riesling clones at 16 129 

locations but with a highly unbalanced data structure and some locations without replications. 130 

In Portugal, some approaches have been conducted including graphical representation of 131 

clones’ ranking over environments, calculation of the coefficient of variation of phenotypic 132 

values of one genotype in different environments, computation of non-parametric rank 133 

measures (Martins et al. 1998, Martins and Gonçalves 2015). Another approach was the 134 

quantification of G×E interaction from the genetic correlation between environments 135 
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(Gonçalves et al. 2016) from the fitting of a linear mixed model assuming different genetic 136 

variances and different genetic correlations among sites, and using an unstructured structure 137 

for genetic and error covariance matrices. These authors separated the two causes of G×E 138 

interaction as Cooper et al. (1996) proposed: the heterogeneity of genetic variance between 139 

environments (i.e. interaction due to scale) and heterogeneity of correlation between 140 

environments (i.e. interaction due to crossover) which affects the ranking of genotypes and 141 

hence selection. Concretely, in the work conducted by Gonçalves et al. (2016) the G×E 142 

interaction was studied for different traits (yield, and probable alcohol and acidity of the must) 143 

using different locations and years within each location. The results showed the presence of 144 

G×E interaction for all the studied traits. The effect of the year was also a remarkable result. 145 

Data from different years within a site were not genetically more strongly correlated than data 146 

from different sites.  147 

Despite all these efforts, other approaches should be developed for a better 148 

understanding and interpretation of the G×E interaction in grapevine clones. In this context, 149 

there are some hurdles to overcome. One problem is related with the difficulty of field 150 

experimentation with this perennial crop, which is time consuming and implies high costs. As 151 

a consequence, few locations are used (frequently two to four) but the same genotypes are 152 

evaluated during several years in the same location. Under such conditions, some methods 153 

seeking specific adaptation, such as GGE and AMMI, are rarely applied in the grapevine 154 

context. Therefore, the objective should be to select genotypes that ideally show stability (low 155 

environmental sensitivity) over environments instead of attempting to select for locally-156 

adaptive genotypes. 157 
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This work attempts to frame the G × E interaction problem in the context of grapevine. 158 

The main purpose of this work is to develop an expedient measure to easily rank genotypes 159 

according to their sensitivity to G×E interaction in the studied environments. The objective is 160 

to provide another criterion, besides those related to general performance of yield and quality 161 

traits of the must, to support selection decisions, and to inform grapegrowers about G×E 162 

interaction of selected clones. The theoretical approach involves the fitting of mixed models. 163 

The paper is arranged as follows: (i) analysis of yield data based on mixed models that 164 

combines the information across locations and across years within the location, and 165 

accommodates correlation induced by the repeated measurements of the same plot along the 166 

years in the same location; the specific objective is to know if there is significant G×E 167 

interaction variability among the clones of the same variety in the final stage of selection; and 168 

(ii) the development of a statistical measure for comparative evaluation of the G×E interaction 169 

among genotypes in order to identify the less sensitive ones.  170 

  171 
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Materials and methods 172 

Plant material  173 

To validate the methodology proposed in this study to analyse G×E interaction, multi-174 

environmental trials of four grapevine varietys were considered: Alvarinho, Antão Vaz, 175 

Aragonez and Síria. The genotypes evaluated in these trials were selected from a previous 176 

stage of selection according to the yield in the varietys Antão Vaz, Aragonez and Síria. All 177 

plants were free of grapevine leafroll associated virus type 3 and grapevine fanleaf virus. 178 

All information about the field trials can be found in Tables 1 and 2. For each variety, 179 

trials in two–three locations were available and the same genotypes were grown in all trials. 180 

They were planted in the main growing regions of the varietys in Portugal, and for each 181 

location, wine region, soil texture, altitude, and climate conditions are described in Table 1. 182 

In all trials, the training system was a vertical shoot position and the pruning system was a 183 

bilateral Royat cordon system, except for the variety Alvarinho, which was a double cordon 184 

system (high and low) alternated. The trials were laid out as a randomised complete block 185 

design, and the number of repetitions, number of plants per plot (experimental unit), rootstock, 186 

year of grafting, and planting density of each trial are presented in Table 2. Several traits were 187 

measured in these experiments, but the one under consideration to exemplify the methodology 188 

proposed in this paper is the yield. For each location, yield data from 2–11 years were 189 

collected. During these years, this trait was evaluated in all replicates of each field trial. That 190 

is, the mass of the grapes of all plants in each plot of each genotype was taken and in the 191 

statistical analysis the mean yield of each plot (kg/plant) was used for each repetition of each 192 

genotype. Additionally, previously to G×E interaction analysis, a preliminary data analysis 193 

for each year in each field trial was conducted to assess the broad sense heritability (the 194 
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proportion of phenotypic variance explained by genotypic causes), and thus, to evaluate 195 

genotypic variance component associated to yield data in those trials. The high values 196 

observed for this genetic parameter indicate the suitability of these field experiments to 197 

perform selection (Table 2). For each variety, the years evaluated in each location and the 198 

mean yield and the coefficient of variation of the mean yield phenotypic values in each 199 

environment are presented in Table 3. 200 

In order to analyse G×E interaction, it is desirable to have a sample of the possible 201 

growing conditions to which those genotypes could be exposed to. Thus, the specific location-202 

year combination was considered an ‘environment’. It covers the specific conditions of the 203 

location, such as edapho-climatic conditions, rootstock and cultural practices, and the unique 204 

climatic features of the year.  205 

 206 

Statistical methods 207 

Mixed models for the analysis of G×E interaction in grapevine clones. A multi-environment single 208 

stage analysis was performed. In matrix formulation, the general model can be described as 209 

follows: 210 

 211 

𝒀 = 𝑿𝜷 + 𝒁𝒖 + 𝒆, 212 

𝒀(𝑛×1) is the random vector of observations (mean yield of each plot), ordered by location, 213 

environment (combination location/year) and plot within each environment; 214 

𝜷(𝑝×1) is the vector of fixed effects (includes the overall mean and the main effects of the 215 

environments);  216 
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𝑿(𝑛×𝑝) is the design matrix of fixed effects; 217 

𝒖(𝑞×1) is the vector of random effects (includes the effects of the blocks nested in 218 

environment, the genotypic main effects and the genotype by environment interaction 219 

effects);  𝑞 = ∑ 𝑞𝑖
𝑟
𝑖=1 , where 𝑞𝑖 is the number of levels of random effects factor 𝑖 and 𝑟 the 220 

number of random effects factors studied; 221 

𝒁(𝑛×𝑞) is the design matrix of random effects;  222 

𝒆(𝑛×1) is the vector of random errors.  223 

The vectors 𝒖 and 𝒆 are assumed mutually independent with multivariate normal 224 

distribution with vector of mean values 𝟎(𝑛×1) and covariance matrices 𝑮(𝑞×𝑞) and 𝑹(𝑛×𝑛), 225 

respectively: 226 

𝑪𝒐𝒗[𝒖, 𝒆] = 𝟎, 𝒖 ∩ 𝓝𝒒(𝟎, 𝑮), 𝒆 ∩ 𝓝𝒏(𝟎, 𝑹). 227 

Consequently, the distribution of 𝒀 is multivariate normal with mean value 𝑿𝜷 and 228 

covariance matrix 𝑽 = 𝒁𝑮𝒁𝑻 + 𝑹, where 𝒁𝑻 is the transpose of 𝒁: 𝒀~𝓝𝒏(𝑿𝜷, 𝑽). 229 

 230 

Concerning the vector of random effects 𝒖(𝑞×1), it takes the form 𝒖 =231 

(𝒖𝟏
𝑻, 𝒖𝟐

𝑻, ⋯ 𝒖𝒓
𝑻 )

𝑻
 where each sub-vector corresponds to the random effects of each factor. 232 

For the vector of random effects of factor 𝑖 the covariance matrix is defined as 𝑉𝑎𝑟[𝒖𝒊] =233 

𝑮𝒊 = 𝜎𝑖
2 𝑰𝑞𝑖

, ∀𝑖 = 1, … , 𝑟, where 𝑰𝑞𝑖
 is the identity matrix of order 𝑞𝑖; and 𝐶𝑜𝑣[𝒖𝒊, 𝒖𝒊′] =234 

𝟎, ∀𝑖 ≠ 𝑖′. Therefore the covariance matrix of vector 𝒖 is defined as 𝑮 =
𝑟
⨁

𝑖 = 1
𝑮𝒊., where ⨁ 235 

is the direct sum of matrices. 236 
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Concerning the vector of random errors 𝒆(𝑛×1), the simplest way to treat the problem 237 

is to assume that the elements of this vector are independent and identically distributed random 238 

variables, that is, 𝑹 = 𝜎𝑒
2𝑰𝒏 (hereafter named as model IND). It considers that random errors 239 

associated with observations made in different years in the same plot are independent random 240 

variables. With grapevine, however, this basic assumption is violated due to the sequential 241 

nature of the data on each plot over the years in the same location. 242 

Let us consider vector 𝒆(𝑛×1) , with 𝑛 = ∑ 𝑛𝑗
𝑙
𝑗=1  , hhere 𝑛𝑗   is the number of 243 

observations in location j, ordered by environment and plot hithin each location, takes the 244 

form 𝒆 = (𝒆𝟏
𝑻, 𝒆𝟐

𝑻, ⋯ 𝒆𝒍
𝑻 )

𝑻
, where each sub-vector corresponds to the random errors for each 245 

location. For location j the error covariance matrix, 𝑉𝑎𝑟[𝒆𝒋] = 𝑹𝒋 ,  ∀ 𝑗 = 1, ⋯ , 𝑙  and 246 

C𝑜𝑣[𝒆𝑗 , 𝒆𝑗′] = 𝟎,  ∀𝑗 ≠ 𝑗′. Therefore the covariance matrix of vector 𝒆 is defined as 𝑹 =247 

𝑙
⨁

𝑗 = 1
𝑹𝑗. 248 

The next step was to define the structure for the error covariance matrix in each 249 

location, that is, the structure of 𝑹𝑗. In the following approaches, in the same location random 250 

errors associated to different experimental units were assumed to be independent; 251 

consequently covariance different from zero was only assumed for measurements on the same 252 

experimental unit (plot).  253 

In location 𝑗  with 𝑝  plots matrix 𝑹𝑗  takes the form 𝑹𝒋 = 𝑰𝑝⨂∑𝑒𝑗
, where 𝑰𝑝 is the 254 

identity matrix of order 𝑝 , ⨂  is the Kronecker product. There are several options to 255 

characterise this phenomenon with an appropriate covariance structure ∑𝑒𝑗
. The most general 256 
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and complex form for ∑𝑒𝑗
 is a so-called unstructured matrix that involves separate error 257 

variances for each year and separate correlations for all pairs of years. The objective, however, 258 

is to choose among those that make sense in this biological context and to find a structure that 259 

fits data adequately but is as simple as possible. From the specificity of the grapevine, emerges 260 

the following most probable covariance structures: the compound symmetry and the first order 261 

autoregressive model (when years are consecutive).  262 

The compound symmetry (hereafter named as model CS): ∑𝑒𝑗
  is a matrix hith 263 

diagonal elements 𝜎𝑒𝑗

2  (the error variance for location j) and non-diagonal elements defined as 264 

𝜎𝑒𝑗

2 𝜌 (𝜌 is the correlation between pairs of observations in the same plot of location 𝑗). This 265 

structure is a parsimonious covariance model which specifies that measures at all years have 266 

the same variance, and that all pairs of measures on the same plot have the same correlation. 267 

The implication is that the only aspect of the covariance between repeated measures is due to 268 

the plot contribution, independently of the lag between years. 269 

The other matrix that makes sense to consider, hhen the evaluated years are 270 

consecutive, is the first order auto-regressive matrix (hereafter named as model AR1). In this 271 

case, matrix ∑𝑒𝑗
 has diagonal elements 𝜎𝑒𝑗

2  and non-diagonal elements defined as 𝜎𝑒𝑗

2 𝜌|𝑘−𝑘′| , 272 

where |𝑘 − 𝑘′| is the lag between year 𝑘 and 𝑘′. This model specifies that measures at all 273 

years have the same variance and considers that correlation between observations in the same 274 

plot is a function of their lag in time: nearby observations tend to be more highly correlated 275 

than observations farther apart in time.  276 

The covariance model parameters were estimated by residual maximum likelihood 277 

method (REML) (Patterson and Thompson 1971), with average information algorithm. For 278 
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nested models, models IND and CS, and IND and AR1, model selection was performed by 279 

conducting a residual likelihood ratio test (REMLRT). These models were also compared 280 

using the Akaike information (AIC), defined as minus twice the residual log likelihood plus 281 

twice the number of variance parameters. Comparison of non-nested models (models CS and 282 

AR1) was based only using AIC criterion. Lower values of this criterion correspond to a best 283 

model fit. 284 

Linear mixed models above described were fitted in R (R Core Team 2018), package 285 

ASReml-R (Butler et al. 2018). 286 

 287 

A measure to select genotypes with low sensitivity to G×E interaction. The G×E interaction was 288 

assessed directly by testing the null hypothesis if the G×E variance component is zero 289 

(𝐻0: 𝜎𝐺×E
2 = 0 𝑣𝑠 𝐻1: 𝜎𝐺×𝐸

2 > 0) by a REML ratio test (REMLRT), comparing minus twice 290 

the residual log-likelihood obtained with the fitting of two models, one with the interaction 291 

term (full model) and the other without it (reduced model, null hypothesis). The intravariety 292 

genetic variability among the tested genotypes (𝐻0: 𝜎𝐺
2 = 0 𝑣𝑠 𝐻1: 𝜎𝐺

2 > 0) was also tested 293 

using a REMLRT. Under the null hypothesis that defines that a variance component is zero, 294 

the asymptotic distribution of the REMLRT statistic is a 50:50 mixture of chi-square 295 

distributions with zero and one degrees of freedom (Self and Liang 1987).  296 

 297 

With the estimated covariance matrices, through the mixed model equations, the 298 

empirical best linear unbiased estimators (EBLUEs) of the fixed effects and the best linear 299 

unbiased predictors (EBLUPs) of the random effects were obtained as follows (Henderson 300 

1975, Searle et al. 1992): 301 
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�̃�𝑬𝑩𝑳𝑼𝑷 = �̂�𝒁𝑻�̂�(𝒚 − 𝑿�̂�𝑬𝑩𝑳𝑼𝑬), with 𝑿�̂�𝑬𝑩𝑳𝑼𝑬 = 𝑿(𝑿𝑻�̂�−𝟏𝑿)
−

𝑿𝑻�̂�−𝟏𝐘. 302 

Ideally, a breeder would prefer to select for genotypes with both high mean performance (high 303 

EBLUPs of genotypic effects) for the target traits and low sensitivity to G×E interaction (i.e. 304 

increased stability in performance over environments, which means EBLUPs of G×E 305 

interaction close to zero). Once rejected the null hypothesis for the G×E interaction, the study 306 

was focused on the EBLUPs of G×E interaction effects (𝐸𝐵𝐿𝑈𝑃𝐺×𝐸). 307 

The EBLUPs of the G×E interaction effects depend on the variance components estimates. 308 

When the estimated variance 𝜎𝐺×𝐸
2  is zero, the EBLUPs of G×E are all zero; when the �̂�𝐺×𝐸

2  309 

is higher than zero, not all the EBLUPs of the interaction are zero. For each clone there are as 310 

many EBLUPs of the interaction as the number of evaluated environments. Desiring that all 311 

these EBLUPS are close to zero and knowing that the mean of the EBLUPs converges to zero 312 

(Searle et al. 1992), then the variance of the EBLUPs of the effects of the interaction of a clone 313 

will be a measure of its sensitivity to G × E interaction. But the meaning of the values of these 314 

effects depends on the yield mean of the environment, therefore, it is desirable to define the 315 

𝐸𝐵𝐿𝑈𝑃𝐺×𝐸 for the genotype 𝑖 in the environment 𝑘 as the proportion of the yield mean of the 316 

environment 𝑘 (𝐸𝐵𝐿𝑈𝑃𝐺𝑖×𝐸𝑘
(%)): 317 

𝐸𝐵𝐿𝑈𝑃𝐺𝑖×𝐸𝑘
(%) = (𝐸𝐵𝐿𝑈𝑃𝐺𝑖×𝐸𝑘

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑚𝑒𝑎𝑛 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑘⁄ )  × 100. 318 

The variance of the values 𝐸𝐵𝐿𝑈𝑃𝐺𝑖×𝐸𝑘
(%) across the 𝑎 environments studied is the 319 

measure proposed to evaluate sensitivity of the genotype 𝑖 to G × E interaction, hereafter 320 

named as Interaction Sensitivity (IS):  321 

𝐼𝑆 =
∑ (𝐸𝐵𝐿𝑈𝑃𝐺𝑖×𝐸𝑘

% − 𝐸𝐵𝐿𝑈𝑃𝐺×𝐸(%)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑎
𝑘=1

𝑎 − 1
, 322 
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where 𝐸𝐵𝐿𝑈𝑃𝐺×𝐸(%)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean of the values 𝐸𝐵𝐿𝑈𝑃𝐺𝑖×𝐸𝑘
(%) across the 𝑎 environments 323 

for the genotype 𝑖, which will be close to zero. The lower the value of 𝐼𝑆, the lower the 324 

sensitivity of the genotype to the G×E interaction. Calculating the 𝐼𝑆 for each genotype it will 325 

be possible to select the less sensitive ones. In this analysis the inference to other environments 326 

will be weaker as the number and diversity of studied environments is lower.  327 

 328 

Results 329 

Models for the analysis of G×E interaction in grapevine clones 330 

For the four varietys studied, the results to identify the best structure of the covariance matrix 331 

of the vector of random errors (matrix R) are shown in Tables 4, 5 and 6. In all studied varietys, 332 

models CS and AR1 were better than the model considering independent errors among 333 

observations of the same plot (IND). The latter always revealed higher values for AIC. This 334 

conclusion was also supported by the results obtained with the REML ratio test comparing 335 

models IND and CS and models IND and AR1. In either case, the result of the REMLRT was 336 

the rejection of the model IND for any usual significance level. Comparing models CS and 337 

AR1, lower values for AIC were observed for model CS in all the studied cases (Table 4), 338 

thus, CS model always revealed a better fit. 339 

The estimates of the covariance parameters are illustrated in Table 5. Error variance 340 

heterogeneity among locations was observed from the fitting of models CS and AR1 (this can 341 

be seen through the values of the random errors variance component estimates for each 342 

location, �̂�𝑒𝐿.
2 ). It changed according to the varietys and was higher for Alvarinho and Antão 343 

Vaz. Additionally, depending on the varietys and location, low to moderate correlations 344 
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among observations of the same plot (�̂�𝐿.) were found. With a time lag of 5 or more years, the 345 

correlation between observations were approximately zero according to model AR1. The 346 

higher correlations among observations of the same plot were observed for Alvarinho in 347 

location L1, and Antão Vaz in location L2 (0.423 and 0.357, respectively). With regard to 348 

genotypic and block within environment variance components estimates, lower values were 349 

found for models CS and AR1 than for model IND. The opposite was observed for the G×E 350 

interaction variance component estimate, accomplished by an increase in its precision (higher 351 

value for the ratio �̂�𝐺×𝐸
2 /SE). With the fitting of models CS and AR1, significant G×E 352 

interaction variability was found (rejection of hypothesis 𝐻0: 𝜎𝐺×E
2 = 0 , P<0.05) for all 353 

studied cases (Table 6). The difference between residual log-likelihood of the models with 354 

and without interaction effects was higher in models CS and AR1, resulting in a high value 355 

for the REMLRT test statistic.  356 

To sum up, variability concerning G×E interaction was detected for all the studied 357 

cases, genotypic variability was also significant (P<0.05), except for Antão Vaz (Table 6).  358 

 359 

A measure to identify genotypes with low sensitivity to G×E interaction: interaction sensitivity 360 

(IS) 361 

The EBLUPs of G×E interaction effects resulting from model CS (the best covariance 362 

structure for the matrix R for all varietys) were used to study the sensitivity to G×E interaction. 363 

The results obtained for the Interaction Sensitivity (IS) and for the predicted genotypic yield 364 

performance are provided in Table 7. The differences observed between the lowest and the 365 

highest values for 𝐼𝑆 demonstrate that this measure permits to differentiate the behaviour of 366 
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clones concerning their sensitivity to G×E interaction. For example, for Alvarinho, the highest 367 

value for 𝐼𝑆 was about 96 times superior to the lowest value (ranged from 52.45 to 5067.15). 368 

The genotypic predicted yield varied from 4.29 kg/plant to 7.64 kg/plant, but the three 369 

genotypes that revealed higher G×E sensitivity were the same that showed the lower yield 370 

predicted genotypic performance. The less sensitive genotypes revealed an average yield 371 

performance.  372 

The differences between the maximum and minimum 𝐼𝑆 values for the clones of the 373 

other varietys were lower than the range observed for Alvarinho, however, the highest values 374 

for 𝐼𝑆 were about 10 times superior to the lowest values. The range for the yield predicted 375 

genotypic values for the other varietys studied was also lower. The predicted genotypic values 376 

among the tested genotypes ranged only from 3.48 kg/plant to 3.83kg/plant for Antão Vaz, 377 

from 2.89 kg/plant to 3.95 kg/plant for Aragonez, and from 2.51 kg/plant to 3.31 kg/plant for 378 

Síria. For these varietys, the less sensitive genotypes to G×E interaction usually revealed a 379 

mean yield performance (Table 7). The complete information about IS, predicted genotypic 380 

values, EBLUPs of the genotypic effects, and EBLUPs of the G×E interaction effects over the 381 

studied environments for all studied genotypes is provided in supporting information (Tables 382 

S1–S4). 383 

For the four varietys studied, the EBLUPs of the effects of the G×E interaction as the 384 

proportion of the environment mean (𝐸𝐵𝐿𝑈𝑃𝐺×𝐸(%)) for the clones with the lowest and the 385 

highest 𝐼𝑆 values are represented in Figures 1– 4. In these figures the overall yield mean 386 

obtained for each environment is also presented. It should be noted that 𝐸𝐵𝐿𝑈𝑃𝐺×𝐸(%) of the 387 

clones with the lowest 𝐼𝑆 values were closer to zero. This means that those clones revealed 388 
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less sensitivity to G×E interaction. An opposite behaviour was observed for the clones that 389 

showed the highest  𝐼𝑆 values. In this latter case, the oscillation around zero of 𝐸𝐵𝐿𝑈𝑃𝐺×𝐸% 390 

increased. 391 

In more detail, in variety Alvarinho (Figure 1), the genotype with the highest IS value 392 

(AI35) showed high positive G×E interaction effects of the yield in several environments, 393 

with EBLUPs of the G×E interaction effects higher than 30% of the yield mean of the 394 

respective environments. A peak of 306% higher than the yield mean of the environment was 395 

reached in L3-1994. This means that this genotype reacted better in these environments than 396 

in the other ones, but this increasing in yield due G×E interaction does not mean that it had 397 

the best yield among the genotypes studied. In fact, this genotype showed the lowest genotypic 398 

mean yield performance (Table 7). In other environments, however, the same genotype 399 

showed negative G×E interaction effects of the yield, less 30% of the mean of the 400 

environments. Therefore, this means that it reacted worse in these environments than in the 401 

others. Those variations resulted in a high value for IS. For the clone that showed the lowest 402 

 𝐼𝑆 value (AI1), the variation of EBLUPs of the G×E interaction effects around zero was 403 

smaller, ranging from -13.2% to +9.3% of the mean yield of the environments. The same 404 

behaviour was also found in the genotypes of Antão Vaz variety (Figure 2). In this case, in 405 

the clone that showed the highest value of IS (AN40), the variation of EBLUPs of the G×E 406 

interaction effects ranged from -8.2 to +33.5% of the mean yield of the environments, whereas 407 

for the clone with the lowest IS (AN1), it varied from -4.8 to +6.3%. For the genotypes of 408 

Aragonez variety (Figure 3), the one that showed the highest value of IS (RZ40), the variation 409 

of EBLUPs of the G×E interaction effects ranged from -19 to +10% of the mean yield of the 410 
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environments, whereas for the clone with the lowest IS (RZ1), it varied from -5.6 to +3.0%. 411 

Finally, for Síria variety (Figure 4), the genotype that showed the highest value of IS (CR40) 412 

presented a range of EBLUPs of the G×E interaction effects from -11% to +30.5% of the mean 413 

yield of the environments, whereas for the one with the lowest IS (CR1), it varied from -7.5% 414 

to +4.6%. 415 

Importantly, for the four varietys studied, there was no relation between positive or 416 

negative effects of the G×E interaction and the overall yield mean of the environment (Figures 417 

1–4). That is, it cannot be said that negative effects of G×E interaction always occur in ‘poor’ 418 

environments (with low overall mean yield) nor positive effects in ‘good’ environments (with 419 

high overall mean yield), or vice-versa. Similarly, it cannot be inferred that negative or 420 

positive effects of G×E interaction are dependent on the climate conditions. This latter finding 421 

is drawn from the results of Antão Vaz, Aragonez and Síria varietys (Table 1, Figures 2–4). 422 

In fact, for these field trials the temperature and precipitation varied according to location 423 

(Table 1 and Figures 2–4) and no pattern associated to the signal of G×E interaction effects 424 

among locations was detected. This type of variation is undesirable because it reveals the 425 

inconsistency of the genotype. Additionally, no systematic signal differences of G×E 426 

interaction effects and location were found. That is, over years in each location both genotypes 427 

under analysis reacted with positive and negative G×E interaction effects and, thus, no 428 

systematic behaviour was observed in each location (namely, all years with negative effects 429 

or positive effects). This finding reinforces the idea of unpredictable behaviour of a genotype. 430 

This is the most undesirable interaction, therefore genotypes revealing the highest values of 431 

IS should not be selected.  432 

 433 
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Discussion 434 

Numerous methodologies are used worldwide to study G×E interaction in plant breeding. 435 

However, they are not currently and appropriately applied to grapevine clonal selection, 436 

particularly those techniques that search for specific adaptation, such as AMMI and GGE 437 

(Gauch 2006, Yan et al. 2007, Gauch et al. 2008, Yang et al. 2009). These practices are 438 

focused on performing mega-environment analysis, that is, to define a group of locations that 439 

consistently share the best set of genotypes across years. For this purpose the same set of 440 

genotypes is tested at the same set of test locations across multiple years (Yan et al. 2007). In 441 

viticulture, however, grapevine clones are studied only in a few locations and wine regions. 442 

Therefore, it is difficult to perform an analysis which recommends clones for a specific region. 443 

For example, in the practical examples handled in this work, which reflect what is usually 444 

done in grapevine clonal selection trials, the available number of locations and the number of 445 

trials in each one, do not permit to define specific adaptation. In fact, the genotypes of 446 

Alvarinho were studied in three different trials in one location (Monção); iwith Aragonez and 447 

Síria, the genotypes were evaluated in two locations, but only one trial in each one was 448 

planted; and, for Antão Vaz three locations were considered with only one trial in each one. 449 

But, as multiple years in each trial were evaluated, the most of the environmental contribution 450 

to G×E studied is unpredictable, such as year-to-year variation (for example, average 451 

temperature or rainfall during a growing season). As Lynch and Walsh (1998) mentioned, 452 

under such conditions, the best approach is to attempt to average performance of the genotype 453 

and to select for stability. The methodology proposed in this study responds precisely to this 454 

strategy: (i) permits the prediction of the genotypic effect for each clone at a global level of 455 

the environments; (ii) permits the prediction of the G×E interaction deviations for each clone 456 
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per environment; and (iii) takes into account that the random errors associated with 457 

observations among different years in the same plot are correlated.  458 

Considering the context of grapevine, the repeated measurements (yearly yield 459 

observations) occur at a long enough interval so that a correlation close to zero relative to 460 

other variation could be acceptable and, thus, the covariance structure IND could be 461 

acceptable too. However, this study showed that, even with a low level of correlation among 462 

repeated measurements, CS and AR1 models were always better than IND. Comparing CS 463 

and AR1 models, an advantage of CS over AR1 was observed. Therefore, the existence of a 464 

common contribution, such as the soil, radicular structure,  shared by all observations made 465 

in the same plot was detected, independently of the lag between years. Additionally, the 466 

correlation among repeated measurements varied according to location, which can be 467 

explained by the specific edapho-climatic conditions of each one. Importantly, the CS model 468 

showed advantages for the study of G×E interaction, which is the key issue of the current 469 

study. Indeed, regarding the estimates of the parameters obtained for the different fitted 470 

models, in general the G×E variance component estimate increased with CS model and as 471 

well as the ratio �̂�𝐺×𝐸
2 /SE, which reveals an increase in the precision of this estimate. 472 

Consequently, with the fitting of CS model, a higher precision in the prediction of the EBLUPs 473 

of the effects of G×E interaction was also observed. On the other hand, the genotypic variance 474 

component estimate obtained with the fitting of the latter model was lower, because the part 475 

of this component resulting from scale differences was taken into account by the heterogeneity 476 

variances assumed in R matrix. Considering other perennial crops, Piepho and Eckl (2014) 477 

analysed ryegrass trials with 3 harvest years and found similar results for AR1 and CS models. 478 
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Still regarding the statistical methodology, a model that included the effects of the 479 

location (L) and the effects of the year nested in location (Y) could have been fitted in. In this 480 

way, the variability of G×E interaction could have been separated into G×L and G×Y 481 

interactions. This approach, however,  was not followed. In previous studies conducted in 482 

grapevine clonal selection trials, differences between genotype-by-location and genotype-by-483 

year within location interactions were not found (Gonçalves et al. 2016). On the other hand, 484 

in the context of grapevine clonal selection trials, the number of locations and years are few, 485 

and the estimation of G×L and G×Y variance components would be problematic. For this 486 

reason, the study was focused on a global level of the environments (each one including the 487 

effects of the local, year, cultural practices, and rootstock). As a result, a higher number of 488 

environments is achieved and a more accurate and precise estimate for the G×E variance 489 

component is obtained. This last issue is of the utmost importance in the context of this study 490 

because the measure proposed, Interaction Sensitivity (IS), is based on the EBLUPs of the 491 

G×E effects. In this case, the rankings of the predicted G×E interaction effects are required to 492 

be as close as possible to the rankings of the true effects. And, according to Searle et al. (1992), 493 

the estimates of the variance parameters have to be sufficiently precise to ensure that the 494 

optimality of BLUP is maintained with EBLUP. Additionally, if the effects of the location 495 

and the effects of the year nested in location are not separated in the analysis, the most correct 496 

approach is to select for stability, which is precisely the objective of the proposed measure. In 497 

this sense, IS is unbiased regarding these two components of interaction because it evaluates 498 

the overall genotype sensitivity to G×E interaction. 499 

The measure proposed in this study, Interaction Sensitivity, to rank the sensitivity of 500 

clones to G×E interaction is expeditious and showed a wide range of variation among 501 
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genotypes, which reveals its ability to differentiate the genotypes concerning their sensitivity 502 

to G×E interaction. It should be noted, however, that there is no guarantee that genotypes with 503 

lower values for this measure could not exhibit an unexpected behaviour in a new 504 

environment. There is always the uncertainty linked to the cultivation of genetically 505 

homogeneous material. This type of behaviour was clearly observed through the analysis of 506 

Figures 1–4. Likewise, we will not be able to infer the results obtained in the studied 507 

environments to other climatic conditions. However, clones that show a more stable behaviour 508 

in the studied environments may tend to be more indifferent to new environmental conditions. 509 

The issue of the extrapolation of the results obtained from the environments studied to other 510 

environments is also dependent from the sample of the environments studied. As Lynch and 511 

Walsh (1998) mentioned, G×E interaction is almost inevitable if genotypes are studied in a 512 

sufficiently large set of environments; if genotypes are examined within a small and 513 

appropriate chosen set of environments, G×E may largely disappear.  514 

 Although the main objective at this stage of selection is to select for low sensitivity to 515 

G×E interaction, it is also important to match this information with the performance of the 516 

genotype to support the final selection decision. Ideally, a breeder wants to find genotypes 517 

which present simultaneously good performance for the target traits and low sensitivity to 518 

G×E interaction. Considering the data analysed in this study, what is desirable is to have 519 

genotypes with high EBLUPs of yield genotypic effects and EBLUPs of G×E interaction 520 

effects close to zero (which is reflected in a lower IS). The achievement of such objective will 521 

depend on the genetic diversity among the evaluated genotypes and the selection criteria used 522 

in the previous selection cycle. For example, if no significant yield genetic variability is found 523 

among the studied genotypes, the selection criterion should be based only on the lower 524 
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sensitivity to G×E interaction. In contrast, if significant genetic variability is found, genotypes 525 

with high EBLUPs of yield genotypic effects and low IS values, and genotypes with high 526 

EBLUPs of yield genotypic effects and high IS values can be found. In this latter case, it means 527 

that the genotype may be excellent in some environments and in others that might not happen 528 

(the genotype effect does not always overlap the negative effect of interaction). 529 

 The cases studied in this work exemplify the considerations previously made. For 530 

example, a narrow range of the yield predicted genotypic values was found among the 531 

genotypes studied in the varietys Antão Vaz, Aragonez and Síria, which is justified because 532 

those genotypes were selected from a previous stage according to the yield and its stability 533 

across years. In fact, in the Antão Vaz variety, the yield genetic variance found among the 40 534 

studied genotypes was not significant. In these circumstances, the selection criterion should 535 

be based only on the sensitivity to G×E interaction. For Aragonez and Síria, although the null 536 

hypothesis 𝜎𝐺
2 = 0 has been rejected, the main selection criterion should also be focused on 537 

the lower sensitivity to G×E interaction, given the narrow yield range observed among 538 

genotypes. For Aragonez, however, genotypes with high predicted genotypic values are 539 

among the genotypes with the least sensitivity (RZ3, RZ4, RZ9) (Table 7).  540 

 For Alvarinho the conditions were different. In Portugal, this variety has a high natural 541 

frequency of occurrence of grapevine leafroll associated virus type 3. Thus, the selection 542 

criterion from the previous stage was based on the condition to be free for this virus. As a 543 

result, the genotypic predicted yield differences found in the studied trials were higher. In this 544 

case, the three genotypes which are furthest from the mean yield (with the lowest EBLUPs of 545 

the genotypic effects) are those with higher sensitivity to G×E interaction. Several genotypes 546 

with the highest EBLUPs of the genotypic effects are ranked for IS from AI26 to AI32, 547 
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revealing sensitivity to G×E interaction (Tables 7, S1). As a consequence, their selection 548 

should be viewed with caution and, above all, if selected, the information about their 549 

sensitivity to G×E interaction should be provided to grapegrowers.  550 

 It should be highlighted that, in grapevine, G×E interaction is also found for other 551 

important traits, for example, in compositional traits of the must, and the degree of G×E 552 

interaction depends on the trait and variety (Gonçalves et al. 2016). For example, in the 553 

aforementioned study, the highest G×E interaction was found for the yield in the case of 554 

Fernão Pires variety, and for acidity in the case of the varietys Malvasia Fina and Rabo de 555 

Ovelha. As a result, once detected G×E interaction, the EBLUPS of the effects of G×E 556 

interaction for all the traits studied can be used to apply the proposed measure of interaction 557 

sensitivity, and for each trait each genotype has an IS value. Hence, besides the criteria related 558 

to general performances of yield and quality traits of the must, the IS for each trait should be 559 

taken into account for final selection decisions. Usually, the final selection tries to prioritise 560 

the most important traits of each variety, looking for genotypes that minimise the weaknesses 561 

of the variety under selection. In practice, a table summarising the ranks of both IS and 562 

EBLUPS of genotypic effects of the clones for the several traits evaluated should be the basis 563 

for clonal selection. Alternatively, a selection index comprising all the previous information 564 

could also be constructed. And, most importantly, the information about the sensitivity to G×E 565 

interaction of the selected clones should be provided to grapegrowers. 566 

In summary, the study of G×E interaction in grapevine clones should be strongly 567 

implemented. In fact, it is inappropriate to study a clone in only one specific region taking 568 

into account that it will be grown in other regions or even other countries. Finally, this new 569 
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approach for the study of G×E interaction in grapevine clones can also be applied to other 570 

perennial species. 571 

 572 

 573 

Conclusions 574 

Nowadays clonal materials are widely used worldwide to plant new vineyards. However, the 575 

clone is genetically homogenous, therefore it is likely to be sensitive to G×E interaction.  576 

In order to implement a successful grapevine clonal selection, a multi-environmental trial 577 

should be conducted to provide information to grapegrowers about the sensitivity to G×E 578 

interaction of the available clones for planting new vineyards. The methodology proposed in 579 

this work to study G×E interaction is adapted to the context of grapevine and other perennial 580 

crops usually studied in few locations during several years. The existence of correlation 581 

among observations made in the same plot was detected, independently of the lag between 582 

years.  583 

When using the proposed measure to evaluate the sensitivity to G×E interaction, 584 

differences among genotypes were found. This demonstrates the usefulness of this measure 585 

as an additional tool in grapevine clonal selection. 586 
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Table 1. Description of the field trials of the four grapevine varietys studied. 

 

†Source: http://www.ipma.pt/pt/oclima/normais.clima/ (accessed 1-12-2019). Tmax, average maximum air temperature of the hottest month (°C); Tmin, average minimum air 

temperature of the coldest month (°C) over a period of 30 years (1971–2000). 

 
 

 

 

 

 

 

 

Table 2. Viticultural description of the field trials of the four grapevine varietys studied  

 

Variety Location Portuguese  wine region 
Soil 

texture 
Altitude (m) 

Precipitation 

(mm)† 
Tmax (°C)† Tmin (°C)† 

Alvarinho  
Monção (A-L1) VinhoVerde Sandy loam 81 1465.7 27.5 4.1 

Monção - Pias (A-L2) Vinho Verde Sandy loam 78 1465.7 27.5 4.1 

Monção - Ceivães (A-L3) Vinho Verde Sandy 91 1465.7 27.5 4.1 

Antão Vaz  
Évora (AN-L1) Alentejo Slaty 

 

259 609.4 30.2  5.8 

Palmela (AN-L2) Península de Setúbal Sandy 

 

21 715.9 29.5  4.7 
Vidigueira (AN-L3) Alentejo Clayey 

 

177 571.8 32.8  5.3 

Aragonez  
Estremoz (RZ-L1) Alentejo Clayey 506 609.4 30.2 5.8 
Tabuaço (RZ-L2) 

 

Douro Clayey 254 1073.7 28.7 2.1 

Síria  
Estremoz (CR-L1) Alentejo Clayey 506 609.4 30.2  5.8 

Pinhel (CR-L2) Beira Interior Sandy 590 882 24.6  1.2 

http://www.ipma.pt/pt/oclima/normais.clima/
https://www.linguee.pt/ingles-portugues/traducao/slaty.html
https://www.linguee.pt/ingles-portugues/traducao/sandy.html
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Variety Location 
 

Rootstock† 

Year of 

grafting 

Planting 

density 

(m) 

RCBD 

Ngen/Nrep/Nplant 
H2‡ 

Number of 

environments§ 

Alvarinho  
Monção (A-L1) 1103P 1988 3.0 × 1.25 35 / 3 / 5 0.699 20 
Monção - Pias (A-L2) SO4 1992 3.0 × 1.25 35 / 9 / 3 0.872 

Monção - Ceivães (A-L3) 196/17 1993 3.0 × 1.25 35 / 9 / 4 0.856 

Antão Vaz  
Évora (AN-L1) 99R 1986 3.0 × 1.20 40 / 5 / 5 0.688 14 
Palmela (AN-L2) 1103P 1991 2.80 × 1.20 40 / 8 / 7 0.432 

Vidigueira (AN-L3) 140RU 1993 3.0 × 1.20 40 / 8 / 7 0.586 

Aragonez  
Estremoz (RZ-L1) 99R 1990 3.0 × 1.10 40 /8 / 6 0.738 13 

Tabuaço (RZ-L2) 

 

1103P 1991 2.50 × 1.10 40 /8 / 7 0.514 

Síria  
Estremoz (CR-L1) 99R 1990 3.0 × 1.10 40 /8 / 6 0.899 10 
Pinhel (CR-L2) 99R 1986 2.50 × 1.10 40 /5 / 4 0.777 

†For each trial, a single clone for the rootstock; ‡ maximum value of broad sense heritability for the yield observed in each location; § 

total number of studied environments (combination location-year). Ngen, number of genotypes per variety; Nplant, number of plants 

per plot;  Nrep, number of replicates; RCBD, randomised complete block design. 
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Table 3. Environmental code  and the mean yield of the four 

varietys obtained in each environment.  

 

† Combination of the location and year; ‡ coefficient of 

variation (CV) of the mean yield phenotypic values. 

 

Variety Environmental 

code† 
Mean yield (SE) 

(kg/plant) 

CV (%)‡ 

Alvarinho 

AI-L1-1990 2.433 (0.112) 27.34 

AI-L1-1991 4.380 (0.102) 13.80 

AI-L1-1992 3.373 (0.155) 27.12 

AI-L2-1995 1.662 (0.060) 21.47 

AI-L2-1996 11.372 (0.321) 16.69 

AI-L2-1997 7.406 (0.195) 15.54 

AI-L2-1998 6.230 (0.263) 24.93 

AI-L2-1999 15.565 (0.355) 13.48 

AI-L2-2001 14.780 (0.544) 21.77 

AI-L3-1994 0.587 (0.031) 31.32 

AI-L3-1995 3.035 (0.149) 29.06 

AI-L3-1996 3.595 (0.177) 29.17 

AI-L3-1997 4.592 (0.158) 20.39 

AI-L3-1998 1.991 (0.121) 36.01 

AI-L3-1999 7.485 (0.340) 26.88 

AI-L3-2000 3.853 (0.236) 35.51 

AI-L3-2001 8.766 (0.360) 24.07 

AI-L3-2002 7.156 (0.417) 34.09 

AI-L3-2003 6.804 (0.341) 29.35 

AI-L3-2004 13.085 (0.546) 24.53 

Antão Vaz  

AN-L1-1988 1.756 (0.048) 17.34 

AN-L1-1989 1.860 (0.057) 19.49 

AN-L1-1990 8.010 (0.114) 9.02 

AN-L2-1993 1.552 (0.050) 20.41 

AN-L2-1994 2.638 (0.068) 16.21 

AN-L2-1995 4.520 (0.103) 14.46 

AN-L2-1996 6.687 (0.167) 15.84 

AN-L2-1997 3.260 (0.086) 16.67 

AN-L2-1998 6.555 (0.135) 13.08 

AN-L3-1998 3.553 (0.078) 13.92 

AN-L3-1999 3.253 (0.070) 13.67 

AN-L3-2000 3.401 (0.080) 14.87 

AN-L3-2001 1.834 (0.072) 24.91 

AN-L3-2002 2.532 (0.096) 24.01 

Aragonez  

RZ-L1-1992 2.679 (0.039) 9.15 

RZ-L1-1993 4.088 (0.070) 10.80 

RZ-L1-1994 2.056 (0.058) 17.84 

RZ-L1-1995 4.720 (0.070) 9.40 

RZ-L1-1996 6.807 (0.080) 7.42 

RZ-L1-1997 5.819 (0.116) 12.60 

RZ-L1-1998 1.182 (0.036) 19.13 

RZ-L1-1999 5.559 (0.091) 10.36 

RZ-L2-1993 2.277 (0.046) 12.69 

RZ-L2-1994 2.378 (0.064) 17.04 

RZ-L2-1996 4.845 (0.090) 11.73 

RZ-L2-1997 2.027 (0.057) 17.91 

RZ-L2-1998 1.819 (0.050) 17.56 

Síria  

CR-L1-1992 2.674 (0.065) 15.25 

CR-L1-1993 1.958 (0.050) 16.11 

CR-L1-1994 1.584 (0.058) 23.20 

CR-L1-1995 4.630 (0.097) 13.31 

CR-L1-1996 5.844 (0.125) 13.50 

CR-L1-1997 3.471 (0.086) 15.76 

CR-L1-1998 1.308 (0.054) 25.90 

CR-L1-1999 2.444 (0.083) 21.39 

CR-L2-1988 3.224 (0.060) 11.69 

CR-L2-1989 2.037 (0.056) 17.45 
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Table 4. Comparison of the three models fitted to yield data of the four grapevine varieties studied  

 
Variety Model lr npar AIC REMLRT (P-value) 

Alvarinho 

IND -5509.5 4 11027.0  

CS -5202.5 9 10423.0 614.0 (<0.001) 

AR1 -5224.9 9 10467.8 569.2 (<0.001) 

Antão Vaz 

IND -3506.1 4 7020.2  

CS -3155.9 9 6329.9 700.4 (<0.001) 

AR1 -3167.7 9 6353.3 676.9(<0.001) 

Aragonez 

IND -1820.8 4 3649.6  

CS -1573.4 7 3160.9 494.7 (<0.001) 

AR1 -1711.0 7 3435.9 219.6 (<0.001) 

Síria  

IND -1303.9 4 2615.9  

CS -1250.1 7 2514.2 107.7 (<0.001) 

AR1 -1285.7 7 2585.5 36.4 (<0.001) 

Residual log-likelihood (lr), number of covariance parameters (npar), Akaike information criterion (AIC) obtained from the fitting 

of the models with matrix diagonal (IND), compound symmetry (CS) and first order autoregressive (AR1), and residual likelihood 

ratio test (REMLRT) for nested models IND and CS, and IND and AR1. 
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Table 5. Covariance parameters estimates (and respective standard errors (SE)) obtained from the fitting of the models IND, CS 

and AR1.: 

 

Model 

Covariance 

parameters  

estimates 

Variety 

Alvarinho Antão Vaz Aragonez Síria 

IND 

�̂�𝐺
2 (SE) 0.936 (0.246) 0.041 (0.015) 0.054 (0.015) 0.056 (0.017) 

�̂�𝑏
2 (SE) 0.233 (0.046) 0.506 (0.083) 0.177 (0.029) 0.145 (0.029) 

�̂�𝐺×𝐸
2  (SE) 0.883 (0.090) 0.072 (0.021) 0.046 (0.010) 0.084 (0.014) 

�̂�𝑒
2 (SE) 3.684 (0.087) 1.830 (0.044) 0.775 (0.018) 0.757 (0.021) 

CS 

�̂�𝐺
2 (SE) 0.797 (0.215) 0.013 (0.012) 0.037 (0.014) 0.040 (0.016) 

�̂�𝑏
2 (SE) 0.161 (0.037) 0.468 (0.078) 0.164 (0.027) 0.138 (0.028) 

�̂�𝐺×𝐸
2  (SE) 0.808 (0.077) 0.100 (0.018) 0.065 (0.009) 0.093(0.014) 

�̂�𝑒𝐿1
2  (SE) 1.251 (0.139) 1.842 (0.112) 0.819 (0.030) 0.741 (0.024) 

�̂�𝐿1 (SE) 0.423 (0.072) 0.089 (0.046) 0.273 (0.024) 0.142 (0.020) 

�̂�𝑒𝐿2
2  (SE) 5.862 (0.223) 2.496 (0.108) 0.702 (0.030) 0.875 (0.067) 

�̂�𝐿2 (SE) 0.087 (0.023) 0.357 (0.027) 0.284 (0.029) 0.110 (0.075) 

�̂�𝑒𝐿3
2  (SE) 2.571 (0.092) 1.026 (0.042)   

�̂�𝐿3 (SE) 0.189 (0.023) 0.190 (0.027)   

AR1 

�̂�𝐺
2 (SE) 0.842 (0.224) 0.019 (0.012) 0.048 (0.014) 0.054 (0.017) 

�̂�𝑏
2 (SE) 0.168 (0.038) 0.464 (0.077) 0.170 (0.028) 0.144 (0.029) 

�̂�𝐺×𝐸
2  (SE) 0.805 (0.078) 0.091 (0.017) 0.058 (0.009) 0.090 (0.014) 

�̂�𝑒𝐿1
2  (SE) 1.247 (0.130) 1.850 (0.113) 0.813 (0.025) 0.735 (0.022) 

�̂�𝐿1 (SE) 0.394 (0.066) 0.106 (0.055) 0.232 (0.019) 0.120 (0.021) 

�̂�𝑒𝐿2
2  (SE) 5.840 (0.219) 2.479 (0.096) 0.697 (0.027) 0.882 (0.067) 

�̂�𝐿2 (SE) 0.056 (0.028) 0.438 (0.020) 0.271 (0.024) 0.116 (0.075) 

�̂�𝑒𝐿3
2  (SE) 2.607 (0.089) 1.029 (0.041)   

�̂�𝐿3 (SE) 0.305 (0.021) 0.258 (0.029)   

�̂�𝐺
2 – genotypic variance component estimate; �̂�𝑏

2 – block nested in environment variance component estimate; �̂�𝐺×𝐸
2  - genotype by 

environment interaction variance component estimate; �̂�𝑒
2 - random errors variance component estimate for model IND; �̂�𝑒𝐿.

2  - 

random errors variance component estimates for each location for models CS and AR1; �̂�𝐿. – correlation estimates between 

observations in the same plot across years for each location (in AR1 model in two consecutive years) 
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Table 6. Residual likelihood ratio tests for genotype×enviroment (G×E) interaction and genotypic (G) variance components.  

 

Variety Modelo 𝑹𝑬𝑴𝑳𝑹𝑻𝑮×𝑬 (P-value)  𝑹𝑬𝑴𝑳𝑹𝑻𝑮 (P-value)  

Alvarinho 

IND 238.5 (<0.001) 228.5 (<0.001) 

CS 253.0 (<0.001) 176.7 (<0.001) 

AR1 257.2 (<0.001) 212.2 (<0.001) 

Antão Vaz 

IND 15.9 (<0.001) 24.3 (<0.001) 

CS 57.1 (<0.001) 1.8 

AR1 51.4 (<0.001) 4.3 

Aragonez 

IND 35.0 (<0.001) 93.3 (<0.001) 

CS 97.7 (<0.001) 21.4 (<0.001) 

AR1 71.0 (<0.001) 56.3 (<0.001) 

Síria 

IND 64.6 (<0.001) 46.1 (<0.001) 

CS 95.9 (<0.001) 17.0 (<0.001) 

AR1 81.2 (<0.001) 37.6 (<0.001) 

Residual maximum log-likelihood ratio test (REMLRT) for the G×E variance component ( 𝑅𝐸𝑀𝐿𝑅𝑇𝐺×𝐸 ) (  𝐻0: 𝜎𝐺×E
2 =

0 vs  𝐻1: 𝜎𝐺×E
2 > 0) and for the intravariety genetic variability among the tested genotypes (𝑅𝐸𝑀𝐿𝑅𝑇𝐺) ( 𝐻0: 𝜎𝐺

2 = 0 vs  𝐻1: 𝜎𝐺
2 >

0) according to the fitted models with matrices diagonal (IND), compound symmetry (CS) and first order autoregressive (AR1) 
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Table 7. Interaction sensitivity (IS) for each genotype and variety, listed from the lowest (AI1, AN1, RZ1, CR1) to 

the highest (AI35, AN40, RZ40, CR40) sensitivity to G×E interaction, and predicted genotypic value (PGV) of the 

yield (kg/plant) for each genotype and their respective ranking number (rank) and prediction standard error (PSE§) 

Alvarinho Antão Vaz Aragonez Síria 

𝑰𝑺 (rank) 𝑷𝑮𝑽(rank) 
(PSE=0.220) 

𝑰𝑺 (rank) 𝑷𝑮𝑽 (rank)/ 
(PSE=0.115) 

𝑰𝑺 (rank) 𝑷𝑮𝑽 (rank) 
(PSE=0.115) 

𝑰𝑺 (rank) 𝑷𝑮𝑽 (rank) 
(PSE=0.118) 

52.45 (AI1) 6.49 (18) 9.81 (AN1) 3.63 (28) 7.80 (RZ1) 3.58 (19) 16.95 (CR1) 2.76 (31) 

60.15 (AI2) 6.27 (23) 12.43 (AN2) 3.73 (12) 9.29 (RZ2) 3.45 (35) 22.47 (CR2) 2.91 (21) 

75.39 (AI3) 6.12 (24) 12.75 (AN3) 3.62 (32) 13.78 (RZ3) 3.68 (7) 23.35 (CR3) 2.85 (23) 

79.28 (AI4) 6.66 (16) 12.93 (AN4) 3.69 (22) 14.68 (RZ4) 3.62 (11) 23.46 (CR4) 2.57 (38) 

89.97 (AI5) 6.33 (21) 13.86 (AN5) 3.62 (31) 14.72 (RZ5) 3.56 (22) 23.57 (CR5) 2.75 (34) 

105.44 (AI6) 6.35 (20) 16.06 (AN6) 3.63 (29) 15.41 (RZ6) 3.48 (28) 23.68 (CR6) 2.82 (29) 

134.44 (AI7) 6.04 (25) 17.95 (AN7) 3.83 (2) 15.52 (RZ7) 3.57 (20) 25.08 (CR7) 3.01 (15) 

135.00 (AI8) 6.50 (17) 19.63 (AN8) 3.64 (25) 16.03 (RZ8) 3.59 (16) 25.22 (CR8) 2.93 (20) 

147.13 (AI9) 6.31 (22) 20.21 (AN9) 3.71 (17) 17.22 (RZ9) 3.84 (2) 30.03 (CR9) 2.71 (37) 

173.69 (AI10) 6.86 (14) 21.56 (AN10) 3.79 (3) 18.28 (RZ10) 3.34 (39) 30.32 (CR10) 3.02 (14) 

204.71 (AI11) 5.89 (27) 22.59 (AN11) 3.70 (19) 18.39 (RZ11) 3.60 (13) 30.50 (CR11) 2.85 (24) 

211.86 (AI12) 6.88 (13) 22.75 (AN12) 3.69 (20) 18.84 (RZ12) 3.58 (18) 31.98 (CR12) 2.51 (39) 

212.67 (AI13) 5.77 (28) 26.16 (AN13) 3.55 (35) 19.05 (RZ13) 3.66 (9) 33.98 (CR13) 2.75 (32) 

257.12 (AI14) 6.47 (19) 27.53 (AN14) 3.66 (23) 20.18 (RZ14) 3.45 (36) 37.34 (CR14) 3.15 (5) 

276.94 (AI15) 6.97 (12) 28.30 (AN15) 3.77 (5) 21.15 (RZ15) 3.34 (37) 40.68 (CR15) 2.85 (27) 

323.48 (AI16) 5.96 (26) 28.58 (AN16) 3.48 (40) 21.32 (RZ16) 3.48 (29) 41.03 (CR16) 2.74 (36) 

330.85 (AI17) 7.06 (10) 28.60 (AN17) 3.62 (30) 22.68 (RZ17) 3.46 (32) 41.95 (CR17) 2.74 (35) 

468.93 (AI18) 6.84 (15) 30.14 (AN18) 3.51 (38) 23.46 (RZ18) 3.52 (27) 42.41 (CR18) 2.76 (30) 

503.38 (AI19) 7.08 (9) 31.09 (AN19) 3.71 (16) 23.78 (RZ19) 3.46 (31) 42.94 (CR19) 2.94 (18) 

517.98 (AI20) 6.99 (11) 32.34 (AN20) 3.59 (34) 26.06 (RZ20) 3.95 (1) 46.38 (CR20) 2.75 (33) 

531.68 (AI21) 5.52 (30) 32.58 (AN21) 3.53 (36) 26.53 (RZ21) 3.55 (24) 49.10 (CR21) 3.04 (12) 

543.30 (AI22) 7.13 (7) 34.08 (AN22) 3.72 (14) 27.64 (RZ22) 3.54 (25) 49.22 (CR22) 2.85 (25) 

587.17 (AI23) 5.68 (29) 34.66 (AN23) 3.75 (10) 29.78 (RZ23) 3.80 (3) 53.95 (CR23) 2.51 (40) 

625.74 (AI24) 5.35 (31) 34.88 (AN24) 3.52 (37) 30.39 (RZ24) 3.53 (26) 54.60 (CR24) 2.85 (26) 

627.82 (AI25) 5.28 (32) 35.09 (AN25) 3.61 (33) 30.90 (RZ25) 3.48 (30) 56.69 (CR25) 3.03 (13) 

644.16 (AI26) 7.13 (8) 35.39 (AN26) 3.72 (13) 31.01 (RZ26) 3.65 (10) 62.76 (CR26) 2.89 (22) 

700.57 (AI27) 7.55 (3) 40.34 (AN27) 3.75 (7) 31.22 (RZ27) 3.61 (12) 65.47 (CR27) 3.10 (7) 

819.01 (AI28) 7.46 (5) 43.02 (AN28) 3.77 (4) 31.26 (RZ28) 3.45 (33) 66.30 (CR28) 3.04 (11) 

829.26 (AI29) 7.31 (6) 44.42 (AN29) 3.50 (39)  35.06 (RZ29) 3.56 (23) 70.79 (CR29) 3.23 (2) 

914.74 (AI30) 7.62 (2) 45.86 (AN30) 3.74 (11) 36.82 (RZ30) 3.59 (14) 71.13 (CR30) 2.97 (17) 

937.57 (AI31) 7.64 (1) 46.17 (AN31) 3.64 (26) 40.29 (RZ31) 3.56 (21) 72.65 (CR31) 3.19 (3) 

982.68 (AI32) 7.47 (4) 50.52 (AN32) 3.76 (6) 41.46 (RZ32) 3.71 (6) 73.93 (CR32) 3.07 (9) 

2459.84 (AI33) 4.69 (33) 51.45 (AN33) 3.69 (21) 44.17 (RZ33) 3.77 (5) 79.56 (CR33) 3.05 (10) 

4204.49 (AI34) 4.41 (34) 51.51 (AN34) 3.65 (24) 45.19 (RZ34) 3.34 (38) 80.51 (CR34) 3.00 (16) 

5067.15 (AI35) 4.29 (35) 58.64 (AN35) 3.70 (18) 53.21 (RZ35) 3.59 (15) 81.57 (CR35) 3.18 (4) 

  64.37 (AN36) 3.75 (9) 53.23 (RZ36) 3.58 (17) 95.28 (CR36) 2.94 (19) 

  73.11 (AN37) 3.71 (15) 53.85 (RZ37) 3.45 (34) 95.90 (CR37) 3.10 (8) 

  80.04 (AN38) 3.83 (1) 72.11 (RZ38) 3.67 (8) 112.21 (CR38) 3.14 (6) 

  80.91 (AN39) 3.75 (8) 74.00 (RZ39) 2.89 (40) 114.03 (CR39) 3.31 (1) 

  106.74 (AN40) 3.63 (27) 89.34 (RZ40) 3.77 (4) 176.34 (CR40) 2.84 (28) 

 

Overall mean  
𝑃𝐺𝑉=6.41  

Overall mean  
𝑃𝐺𝑉=3.67  

Overall mean 

𝑃𝐺𝑉 =3.56  

Overall mean 

𝑃𝐺𝑉 =2.92 
§ For each variety, PSE is the same for all genotypes because the design is balanced - all genotypes were evaluated in the same number of environments and 

repetitions. 
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Figure 1. EBLUPs of the effects of the G×E interaction as the proportion of the environment mean 1 

[𝐸𝐵𝐿𝑈𝑃𝐺×𝐸  (%)] over the studied environments [after the environment code, in brackets, is presented the 2 

overall mean yield of the environment, kg/plant (pt)], for the genotypes with the highest (AI35) (●) and the 3 

lowest (AI1) (●)sensitivity to G×E interaction in Alvarinho variety.  4 

 5 

Figure 2. EBLUPs of the effects of the G×E interaction as the proportion of the environment mean 6 

(𝐸𝐵𝐿𝑈𝑃𝐺×𝐸%) over the studied environments [after the environment code, in brackets, is presented the overall 7 

mean yield of the environment, kg/plant (pt)], for the genotypes with the highest (●) and the lowest (●) 8 

sensitivity to G×E interaction in Antão Vaz variety.  9 

 10 

Figure 3. EBLUPs of the effects of the G×E interaction as the proportion of the environment mean 11 

(𝐸𝐵𝐿𝑈𝑃𝐺×𝐸%) over the studied environments [after the environment code, in brackets, is presented the overall 12 

mean yield of the environment, kg/plant (pt)], for the genotypes with the highest (●) and the lowest (●) 13 

sensitivity to G×E interaction in Aragonez variety.  14 

 15 

Figure 4. EBLUPs of the effects of the G×E interaction as the proportion of the environment mean 16 

(𝐸𝐵𝐿𝑈𝑃𝐺×𝐸%) over the studied environments [after the environment code, in brackets, is presented the overall 17 

mean yield of the environment, kg/plant pt)], for the genotypes with the highest (●) and the lowest (●) 18 

sensitivity to G×E interaction in Síria variety. 19 

  20 
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Supporting information 21 

Table S1. List of Interaction Sensitivity (IS) ranked from the lowest to the highest, predicted genotypic values 22 

(PGV) of the yield (kg/plant), EBLUPs of the genotypic effects as the proportion of the yield overall mean 23 

(EBLUP(G) (%)) and EBLUPs of the G×E interaction effects as the proportion of the environment mean 24 

(EBLUP(G×E) (%)) over the studied environments for each genotype in the Alvarinho variety. 25 

 26 

Table S2. List of Interaction Sensitivity (IS) ranked from the lowest to the highest, predicted genotypic values 27 

(PGV) of the yield (kg/plant), EBLUPs of the genotypic effects as the proportion of the yield overall mean 28 

(EBLUP(G) (%)) and EBLUPs of the G×E interaction effects as the proportion of the environment mean 29 

(EBLUP(G×E) (%)) over the studied environments for each genotype in Antão Vaz variety. 30 

 31 

Table S3. List of Interaction Sensitivity (IS) ranked from the lowest to the highest, predicted genotypic values 32 

(PGV) of the yield (kg/plant), EBLUPs of the genotypic effects as the proportion of the yield overall mean 33 

(EBLUP(G) (%)) and EBLUPs of the G×E interaction effects as the proportion of the environment mean 34 

(EBLUP(G×E) (%)) over the studied environments for each genotype in Aragonez variety. 35 

 36 

Table S4. List of Interaction Sensitivity (IS) ranked from the lowest to the highest, predicted genotypic values 37 

(PGV) of the yield (kg/plant), EBLUPs of the genotypic effects as the proportion of the yield overall mean 38 

(EBLUP(G) (%)) and EBLUPs of the G×E interaction effects as the proportion of the environment mean 39 

(EBLUP(G×E) (%)) over the studied environments for each genotype in Síria variety. 40 
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