
ACTA IMEKO
ISSN: 2221-870X
September 2021, Volume 10, Number 3, 72 - 80

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 72

Human–robot collision predictor for flexible assembly

Imre Paniti1,2, János Nacsa1,2, Péter Kovács1, Dávid Szűr1

1 ELKH SZTAKI, Centre of Excellence in Production Informatics and Control, Kende Street 13–17, 1111 Budapest, Hungary
2 Széchenyi Istán Egyetem, Egyetem Square 1, 9026 Győr, Hungary

Section: RESEARCH PAPER

Keywords: Collaborative robot; human–robot collaboration; virtual reality; collision prediction

Citation: Imre Paniti, János Nacsa, Péter Kovács, Dávid Szűr, Human-robot collision predictor for flexible assembly, Acta IMEKO, vol. 10, no. 3, article 12,
September 2021, identifier: IMEKO-ACTA-10 (2021)-03-12

Section Editor: Bálint Kiss, Budapest University of Technology and Economics, Hungary

Received February 15, 2021; In final form August 16, 2021; Published September 2021

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the TKP2020-NKA-14 grant and by the H2020 project EPIC grant no. 739592.

Corresponding author: Imre Paniti, e-mail: imre.paniti@sztaki.hu

1. INTRODUCTION

According to the International Federation of Robotics 2019
report, the average robot density in the manufacturing industry
has grown to a new global record of 113 units per 10,000
employees [1]. Although the automation of small- and medium-
sized enterprises (SMEs) is supported within the European
Union according to the European Commission’s Digital
Economy and Society Index Report 2019 [2], the share of large
enterprises that use industrial or service robots is four times
higher than that of SMEs, and the use of robots varies widely
with company size.

One of the most commonly asked questions in the semi-
robotised industry is how to make production more efficient,
which is related to a study [3], where robots in an assembly
operation could reduce the idle time of an operator by 85 %.
Therefore, using collaborative robots (cobots) in a factory for
assembly tasks could lead to greater efficiency, which means
shorter production times. This statement can also be useful for
the assembly of different products or product families, which
requires a set of different fixtures or reconfigurable fixtures, such

as those based on the parallel kinematic machine in [4] or the
fixed but flexibly useable gripper presented in this article.

However, the problem is that despite well-defined task
sequences, the changeover from one product to another in a
collaborative operation could lead to human failures and,
consequently, to collisions with the cobot due to the previous
habitual sequence of actions.

By definition, a cobot has to operate with strict safety
installations (protective stop execution when a certain force in a
collision is reached), as outlined in ISO/TS 15066:2016 [5], ISO

10218‑1:2011 [6] and ISO 10218‑2:2011 [7], but these protective
stops could cause a significant cumulative delay in production.
This depends largely on how the robot program has been written,
i.e. whether operations can be continued after a protective stop.

Review articles such as those of Hentout et al. [8] and
Zacharaki et al. [9] present solutions for pre-collision approaches
in the frame of human–robot interaction (HRI). Pre-collision
control methods, referred to as ‘prevention’ methods, are
techniques intended to ensure safety during HRI by monitoring
either the human, the robot or both and modifying robot control
parameters prior to incidence of collision or contact [9]. Pre-
collision approaches can be distinguished between reactive
control strategies, proprioceptive sensor-based strategies and

ABSTRACT
The performance of human–robot collaboration can be improved in some assembly tasks when a robot emulates the effective
coordination behaviours observed in human teams. However, this close collaboration could cause collisions, resulting in delays in the
initial scheduling. Besides the commonly used acoustic or visual signals, vibrations from a mobile device can be used to communicate
the intention of a collaborative robot (cobot). In this paper, the communication time of a virtual reality and depth camera-based system
is presented in which vibration signals are used to alert the user of a probable collision with a UR5 cobot. Preliminary tests are carried
out on human reaction time and network communication time measurements to achieve an initial picture of the collision predictor
system’s performance. Experimental tests are also presented in an assembly task with a three-finger gripper that functions as a flexible
assembly device.

mailto:imre.paniti@sztaki.hu

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 73

exteroceptive sensor-based control [8]. However, these
approaches are all manifested in robot control parameter
modification rather than in operator warnings.
Both the above studies refer to the work of Carlos Morato et al.
[10], who presented a similar solution by creating a framework
using multiple Kinects to generate a 3D model with bounding
spheres for human movements in real time. The proposed
framework calculates human–robot interference in a 3D space
with a physics-based simulation engine. The deficiency of the
study is the pre-collision strategy for safe human–robot
collaboration because this results in the complete stoppage of the
robot. This is indeed a safe protocol, as it reduces the production
break time, but it does not eliminate it completely.

The aim of this paper is to highlight the importance of a new
pre-collision strategy that does not modify the trajectories but
relies fully on the warning of the operator (using a non-safety-
critical system), especially when flexible/reconfigurable fixtures
are used.

Section 2 provides an overview of standards and definitions
related to robotic and cobotic systems, especially in relation to
protective separation distance, which is crucial for the proposed
solution. Section 3 presents an experimental environment and
use cases in which the proposed solution can be used. Section 4
describes the new pre-collision approach and its system elements
in detail, together with some communication measurement
results to demonstrate the feasibility of the solution. Finally,
Section 5 presents a summary with conclusions.

2. STANDARDS AND DEFINITIONS FOR COBOT USE

In general, when using a robotic arm with a gripper the
2006/42/EC Machinery Directive [11] and the 2014/35/EU
Low Voltage Directive [12], together with ISO/TS 15066:2016
[5] and 16 standards, have to be considered [13]. These are
detailed in Table 1.

According to ISO 10218‑1:2011 [6], a collaborative
workspace is a space within the operating space where the robot
system (including the workpiece) and a human can perform tasks
concurrently during production operations, and a collaborative

operation is a state in which a purposely designed robot system
and an operator work within a collaborative workspace.

According to ISO/TS 15066:2016 [5], collaborative
operations may include one or more of the following methods:

• a safety-rated monitored stop,

• hand guiding,

• speed and separation monitoring,

• power and force limiting.
In power- and force-limiting operations, physical contact

between the robot system (including the workpiece) and an
operator can occur either intentionally or unintentionally. Power-
and force-limited collaborative operations require robot systems
specifically designed for this particular type of operation using
built in measurement units. According to ISO/TS 15066 [5], risk
reduction is achieved, either through inherently safe processes in
the robot or through a safety-related control system, by keeping
hazards associated with the robot system below threshold limit
values, which are determined during the risk assessment.

If an operator wants to maintain a safe distance in a
collaborative operation, ISO/TS 15066:2016 Robots and robotic
devices - Collaborative robots (clause 5.5.4: Speed and separation
monitoring) [5], EN ISO 13850:2015 [19], EN ISO 13855:2010
[15], EN IEC 60204-1:2018 [20] and EN IEC 62046:2018 [26]
should be applied together with the following regulations and
standards: Directive 2006/42/EC [11], EN ISO 10218-1:2011
[6] and EN ISO 10218-2:2011 [7]. In addition, EN ISO
12100:2010: Safety of machinery - General principles for design
- Risk assessment and risk reduction [18] should be considered.

In speed and separation monitoring, the protective separation
distance is the shortest permissible distance between any moving
hazardous part of the robot system and any human in the
collaborative workspace, and this value can be fixed or variable.

During automatic operations, the hazardous parts of the
robot system should never get closer to the operator than the
protective separation distance, which is calculated based on the
concepts used to create the minimum distance formula in ISO
13855:2010 [15].

The protective separation distance Sp can be described by
formula (1):

𝑆p(𝑡0) = 𝑆h + 𝑆r + 𝑆s + 𝐶 + 𝑍d + 𝑍r, (1)

where
Sp(t0) is the protective separation distance at time t0 (present or
current time);
Sh is the contribution to the protective separation distance
attributable to the operator’s change in location;
Sr is the contribution to the protective separation distance
attributable to the robot system’s reaction time;
Ss is the contribution to the protective separation distance due to
the robot system’s stopping distance;
C is the intrusion distance, as defined in ISO 13855, which is the
distance that a part of the body can intrude into the sensing field
before it is detected;
Zd is the position uncertainty of the operator in the collaborative
workspace as measured by the presence sensing device resulting
from the sensing system measurement tolerance; and
Zr is the position uncertainty of the robot system, resulting from
the accuracy of the robot position measurement system [5].
Based on this, the authors propose to extend the protective
separation distance (1) with an extra distance based on the
communication time of a pre-collision system (Spc) and with a
contribution to the protective separation distance attributable to

Table 1. Standards in manufacturing when using a robotic arm with a gripper.

Standard Ref.

EN ISO 10218-1:2011 [6]

EN ISO 10218-2:2011 [7]

ISO/TR 20218-1:2018 [14]

EN ISO 13855:2010 [15]

EN ISO 13849-1:2015 [16]

EN ISO 13849-2:2012 [17]

EN ISO 12100:2010 [18]

EN ISO 13850:2015 [19]

EN IEC 60204-1:2018 [20]

EN IEC 62061:2005 [21]

EN ISO 11161:2007 [22]

EN ISO 13854:2017 [23]

EN ISO 13857:2019 [24]

EN ISO 14118:2017 [25]

EN IEC 62046:2018 [26]

EN ISO 13851:2019 [27]

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 74

the robot operator’s reaction time (Sort) to avoid speed reductions
or protective stops. This would result in a modified protective
separation distance (Sp*):

𝑆p
∗ = 𝑆p + 𝑆pc + 𝑆ort . (2)

However, the proposed system in this paper is, as has already
been mentioned, an extra non-safety certified solution. The
purpose of the presented measurements in this paper is to
determine the above-mentioned time parameters
(communication time and reaction time) of the additional
distances (Spc and Sort) in this specific environment.

3. EXPERIMENTAL ENVIRONMENT AND USE CASES

Robots are usually moved on prespecified trajectories that are
defined in the robot’s program, and, in most cases, a new task
involves starting a new robot program. Another method is to
move the high-level robot control from the robot to a computer,
and the robot then continuously receives the required
movements and other actions via a stream. In this case, the robot
runs a general-purpose program or framework that interprets
and executes the external instructions received. In this scenario,
the framework is called URSZTAKI, developed by the SZTAKI
Research Laboratory for Engineering and Management
Intelligence. URSZTAKI has three kinds of instructions: (a)
basic instructions that constitute the robot's programming
language, (b) instructions for the robot add-ons (e.g. the gripper
and force sensor) integrated into the robot language by the
accessory suppliers and (c) frequently used, more complex task
instructions (e.g. putting down or picking up an object when the
table distance is unknown). The third type of instruction
constitute the real features of URSZTAKI.

It should also be mentioned that the expansion of the UR
robot's functions and language is possible with the help of so-
called URCAPs (which is a platform where users, distributors
and integrators can demonstrate accessories that run successfully
in UR robot applications [28]), and currently, URSZTAKI can
also be installed as an URCAP.

The experimental layout consists of a UR10 robot with a force
sensor and a two-finger gripper. The environment was designed

to support different assembly tasks, either fully robotised or
collaborative. To equip partly or even fully different
components, universal mounting technology was required
instead of special fixtures. Another gripper (with three fingers)
was used that allowed a wide variety of fixings. All three fingers
could be moved independently of the selected adaptive gripper
fixed to the robot worktable (Figure 3).

The three-finger gripper from RobotiQ [29] has four different
modes for operating the fingers (Figure 2). In the ‘pinch’ mode
on the top left side of Figure 1, the gripper acts as a two-finger
model, and the fingers move closely together to be able to pick
up small objects. The next mode is the ‘scissor’ mode in which
the closing–opening ability of the gripper is used to pick up an
object. In the third ‘wide’ mode, the fingers are fan-like, and they
provide a firm wide grip for longer objects. For the leftmost
‘normal’ grip, the three fingers move in parallel and, depending
on the relative position of the object, the fingertips also turn for
greater precision in ‘normal’ and ‘wide’ mode. This is the
encompassing grip.

From the software point of view, both grippers can be directly
programmed from the robot's program code. Despite the fact
that both grippers are from the same manufacturer, which could
make the development easier, the commands of one of the
grippers had to be modified to avoid conflict between the
individual instructions.

A typical scenario is that the robotic arm picks up and
transfers a part to the fixed gripper, which grabs it, and after that,
another part is placed or pressed with the desired force by the
robotic arm on the part fixed by the immobile gripper. There are
some detailed tasks, such as the insertion of a spring into a
housing, which have to be performed by the human operator.

In this environment, it is also possible for the robot to hold a
screwdriver and fasten the assembled parts with screws at the set
torque limit (Figure 3 and Figure 4).

The prototype was designed specifically for the previously
shown push-button element. However, it can be easily
redesigned for another part, or a universal piece can be made to
support different types of product assembly.

Following the parallel movement of the fingers, a form-fitting
shape is created that holds the part motionless while the required
actions are carried out. Because the holder is connected to the
fingertips, slippage is also prevented in cases where the pressing

Figure 1. Demonstration environment.

Figure 2. The four different modes of the three-finger RobotiQ gripper [29].

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 75

force applied is too great or an inappropriate human movement
occurs.

The proposed solution with the immobile three-finger gripper
satisfies the requirements of a flexible fixture for certain parts. In
this scenario, human–robot collision problems might occur if the
human operator forgets the predefined assembly task sequence
when beginning the assembly of a new product, reaches for an
assembly part and the hand trajectory intersects that of the robot.

To demonstrate a flexible assembly with the three-finger
gripper, an additional application was developed in which both
grippers were used to perform the assembly task, requiring
human intervention at certain points of the assembly process at

the same time. In the task, a didactic element, which had been
packaged with a transparent plastic lid and a metal base, were
pushed together at the beginning of the operation (presumably,
this packaging material came from the supplier). The operation
steps of the complete assembly were the following:

1. Pick up the packaging material with the robot arm and
fix the base with the three-finger gripper.

2. Remove the lid from the base and put it down (Figure 5).
3. Pick up the didactic element and place it onto the metal

base.
4. Put the plastic lid back on the base.
5. Fix the packed object, release the three-finger gripper

and put it back in its starting position.
Inserting the didactic element is the bottleneck in the

assembly process. Normally, the robot finds the hole with a small
spiral movement using force sensing. Since the gap between the
meter and the base is narrow, this operation is not always
successful (see Figure 6), in which case, human intervention is
possible or necessary to avoid any wastage.

In some instances, the next operation (putting the lid back)
corrected the skewed didactic element, and it slipped into the
base. However, the success of a process should not be based on
coincidence, and this is when a collision predictor system can be
very useful. An easy movement by the operator can prevent
wastage, thereby reducing costs.

It is a simple operation sequence, but because of the
positioning errors, human intervention may be required during
two of the steps.

Figure 3. Illustration of the robotised screwdriving of a push-button element
in which the spring has to be inserted manually.

Figure 4. Illustration of the robotised screwdriving of a ball valve element.

Figure 5. Illustration of the second step.

Figure 6. Illustration of the failed insertion of the didactic element.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 76

4. PRE-COLLISION APPROACH AS A PREDICTOR

In order to avoid collisions with the robot, either the robot
trajectory has to be modified in real time (which might cause
additional production time, something companies want to avoid)
or the human operator has to be warned with a pre-defined
understandable signal so the human movement can be modified
in time.
The warning signal can be given to the operator in several ways:
visual, acoustic or tactile. In this paper, the latter has been
developed as part of a PREdictor of Human–RObot COllision
(PREHUROCO) framework. The subject of the prediction in
this case is the predetermined movement of the robot, which can
be recorded and will occur after a certain time, so a similar
framework had to be created to that described in [10]. However,
instead of a digital twin of the robot (real-time 3D visualisation
of the robot), a pre-played robot model motion was used
together with the 3D skeleton model of the operator. The virtual
collisions of the two models were used as trigger signals to warn
the operator before a real collision.

4.1. Requirement analysis

The following features were needed for the candidate
software library, based on the requirement analysis of
PREHUROCO:

1) Fully open source: the system must fulfil all the
security requirements of a real manufacturing
system; therefore, complete control of the source
code is obligatory.

2) Modular: the system should be divided into various
software components, so the candidate software
library must support responsibility encapsulation.

3) Distributed: in a manufacturing system, many
computers and Internet-of-Things (IoT) devices can
be connected; therefore, the PREHUROCO
software components must have the ability to run
on different computers or IoT devices.

4) Cross platform: as the distribution requirement is
for many computers and devices with different
operating systems to be connected, the candidate
framework should be cross platform.

5) Programming language variability: as the
distribution and cross-platform requirements are for
different devices and computer operating systems in
manufacturing scenarios, the candidate software
library should support different application
programming interfaces (APIs).

6) Scalability: PREHUROCO software components
should be developed independently of whether they
run on the same computer or not. In terms of
performance, the software components should be
be easily put together in one machine or one
application and easily distributed.

7) Rapid prototyping: the candidate framework should
provide examples or even pre-made components
that can be improved during PREHUROCO
implementation because the proposed system
should deal with
• rigid-body simulation,
• visualisation (including VR or AR),
• real-time 3D scanning,
• an X3D model format and
• various communication protocols.

Unity Engine [30] and Unreal Engine [31] are well-known cross-
platform game engines. ApertusVR [32] is a software and
hardware vendor-free, open-source software library. It offers a
no-vendor-lock-in approach for integrating VR technologies into
industrial software systems.

The comparison of the candidate frameworks considering the
requirements is summarised in Table 2.

Based on the PREHUROCO requirement analysis, the
ApertusVR software library was chosen for implementing the
system. With the help of this software library, a distributed
software ecosystem was created via the Intranet/Internet, which
was divided into two main parts, the core and plugins. The core
system is responsible for the Internet/Intranet communication
between the elements of the distributed software ecosystem, and
it synchronises the information between them during the session.
The plugin mechanism makes it possible to extend the capability
of any solution created by the ApertusVR library. Plugins can
access and manipulate the information within the core system.

4.2. Explanation of the PREHUROCO system

The system is distributed into five major responsibilities:
1) 3D scanning of the human operator,
2) streaming the joint angles of the robot,
3) collision detection between the human and the

robot,
4) alerting the human to the possible collision and
5) visualising the whole scenario.

In the present study, these responsibilities were implemented
with the help of the ApertusVR library, and each responsibility
was encapsulated into six plugins [33]: the collision detection
plugin, the visualisation plugin, the Kinect plugin, the WebSocket
server plugin, the X3D loader plugin and the NodeJS plugin.

The seventh element was a WebSocket client, which was
implemented in the form of an HTML site using the jQuery
JavaScript library and the vibration API method [34] for mobile
phones; but for more comfortable use, the WebSocket client
could also run on a smart watch.

Figure 7 shows the realised system with the connections and
applied protocols in an experimental set up with an UR5 robot.

Collision detection plugin [35]: this plugin was created based
on the pre-made ApertusVR ‘bulletPhysics’ plugin. Previously,
this plugin had been able to run rigid-body simulations, but
collision events were not created during these simulations. The
ApertusVR rigid-body abstraction was enhanced by the
functionality of collision events.

Visualisation plugin [36]: this plugin was used as-is from the
ApertusVR repository for visualisation purposes.

Kinect plugin [37]: this plugin was created based on the pre-
made ApertusVR ‘Kinect’ plugin. Previously, this plugin had

Table 2. Comparison of different frameworks in relation to the PREHUROCO
requirements.

Requirement Unity Engine Unreal Engine ApertusVR

Open source Partially Yes Yes

Modular Yes Yes Yes

Distributed Partially Corner Case Yes

Cross platform Yes Partially Partially

Prog. lang. variability Partially Corner Case Yes

Scalability Partially Partially Yes

Rapid prototyping Yes Yes Yes

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 77

been able to create the skeleton of the tracked human or even its
point cloud, but rigid bodies were not created. For collision
detection, rigid bodies are mandatory; therefore, rigid bodies
were created based on the geometries of the human skeletons.

Websocket server plugin [38]: this plugin was created based
on the pre-made ApertusVR ‘WebSocketServer’ plugin.
Previously, this plugin had been able to forward all events
developed in the core. For collision detection, only the collision
event of the rigid bodies is necessary. During the implementation
of that plugin, a filter feature was added to forward only the
desired event into the WebSocket connection.

X3D loader plugin [39]: this plugin was created based on the
pre-made ApertusVR ‘X3DLoader’ plugin. Previously, this
plugin had been able to parse the X3D format and create only
the geometries of the robot. For collision detection, rigid bodies
are mandatory; therefore, rigid bodies were created based on the
parsed geometries.

NodeJS plugin [40]: this plugin was used as-is from the
ApertusVR repository and allows a web server to be run to
receive the joint angle of the UR5 robot via HTTP requests.

In the PREHUROCO system, these plugins are encapsulated
in different applications. These different applications can be run
on different computers to distribute the computational power
and achieve real-time collision prediction. As the diagram in

Figure 7 shows, these applications communicate through
Internet/Intranet communication via different protocols.

The collision detection application has to be run on a high-
performance computing (HPC) server to process the virtual
collisions in real time.

The Kinect application can run on a dedicated computer for
the Kinect device or on the same computer that calculates the
virtual collisions.

The X3DLoader and the NodeJS plugins are integrated into
one application and can run on the dedicated computer for the
UR5 robot.

The WebSocket server application can also be run on a
different computer to ensure security and locality requirements.

The joint positions are stored in a jsonlist file, which is
generated by executing the whole robot program. During the
execution, the joint positions are ‘grabbed’ and saved with a
given frequency.

The speed of the simulation is equal to the speed of the robot
movement, and the ‘forecast’ can be determined by the delay
between the simulation starting time and the real robot execution
start time.

4.3. Modified PREHUROCO system and measurements

During the validation process, the PREHUROCO system
was reconfigured to eliminate any unnecessary delay in the
system. The reconfiguration process was achieved by the
ApertusVR configuration feature; thus, all the plugins were re-
used without any modification. The previously distributed
PREHUROCO system was therefore easily reconfigured to form
a single application (Figure 8) and was able to run on a single
computer.

The elimination of unnecessary network connections/delays
was a crucial step in avoiding any latency in the system. Through
this approach, the human–robot-collision calculation time and
the human-operator reaction time were measured precisely.
Timestamps were buffered before and after the collision events,
the WebSocket message transmission/receipt and the human
operator pressing the button on a Bluetooth keyboard.

The proposed framework was tested on two local network
topologies. In the first case, the calculations were divided into a
cloud-service-based computer (with four virtual CPUs, 8 GB
RAM, running a Windows 10 operating system) and an HPC
server (Ideum with Intel i7-8700, RTX 2080 8 GB GDDR6
NVIDIA graphics card, dual 250 GB NVMe M.2 SSD, 32 GB
2400 MHz DDR4 RAM, running a Windows 10 operating
system), and the collision events were delivered to the
WebSocket client with significant delay.

By running all ApertusVR plugins on the Ideum and sending
only the collision events via a wireless LAN connection (2.4 GHz
Wi-Fi) the user experience was quasi real-time.

Figure 9 shows a virtual collision test running on the Ideum
(HPC server) with the skeleton model of a single operator (1),
virtual UR5 robot movement simulation (2), a real robot (3), a
Kinect sensor (4) and a mobile phone (5) with an android
operating system running the WebSocket client to vibrate the
device. The 3D scene was visualised with a top camera view, but
arbitrary camera views are possible.

To avoid the execution of large JavaScript files locally on the
android mobile phone, external calls to cdn.jsdelivr.net and
code.jquery.com were used. The ping time to these services were
measured with an android application (PingTools version 4.52),
which gave 9 ms and 30 ms as the average from three
measurements, respectively.

Figure 7. PREHUROCO system elements and connections with the applied
protocols.

Figure 8. Reconfigured PREHUROCO system.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 78

The second network topology was used to measure the
communication time of the system with five more people of
different genders and ages (see Figure 10). The reaction time of
each operator was measured using an android application
(Reaction Test version 1.3), which vibrates at randomised short
time intervals (a couple of seconds) and calculates the average of
five measurements.

The average calculation time of the human–robot model
collision until the HTTP-request send was 98 ms, the average
time from the HTTP-request send to the keypress event was
1,355 ms and the average reaction time was 449 ms. Each virtual
collision with keyboard pressing as confirmation was tested three
times. According to a Bluetooth keyboard performance test,
‘Microsoft delays in a non-interference test environment by
approximately 40 to 200 milliseconds’ [41], so the calculation
time for the human–robot collision together with the network
communication time would be less than 1 s using this
PREHUROCO configuration.
However, by using RakNet instead of HTTP requests the
performance of the system can be significantly improved.
RakNet communication time measurements from 223 collision
events showed that only 36.52 ms was needed on average.
Furthermore, it is worth mentioning that with 5G

communication an average two-way latency of 1.26 ± 0.01 ms
would be possible, as noted in [42].

The Kinect plugin creates a simplified skeleton model from
the human operator, which needs improvement. An
anthropomorphic skeleton model or voxelisation could be a
solution in the future.

It should be highlighted that the communication time
increased by the human reaction time should not exceed the ΔT
time between the pre-played simulated motion and the actual
motion of the robot. A jsonlist file of the simulated UR5 robot
movement is provided in [43].

5. CONCLUSION

In this paper, a commercially available gripper as a flexible
fixture for assembly and a new pre-collision approach as a
predictor for human–robot collaboration were presented. The
proposed framework was realised with the help of a modular,
distributed, open-source cross platform (ApertusVR) with
different programming API support and scalability solutions.

Seven interconnected system modules were developed with
the goal of monitoring the movement of the human operator in
3D space, calculating collisions with a virtual robot (with pre-
played movements rather than the movement of a real robot) and
alerting the human operator before a real collision could occur.
Successful virtual collision tests with six candidates showed that
the operator received the warning signal immediately (under 1 s)
in the form of a mobile-device vibration to modify the planned
movement.

In some cases, real-time path planning is required, especially
in a changing environment, such as when the position of the
workpiece to be gripped is variable (e.g. litter picking). In a
collaborative environment, this is a serious security challenge that
the whole system has to manage. The static parts of the
environment can be checked regularly through collision
detection, but the presence of the human means that ‘simple’
collision detection is not sufficient. This was the main reason for
the current research and development presented in this paper.

ACKNOWLEDGEMENT

This research has been supported by the ‘Thematic
Excellence Program – National Challenges Subprogram –
Establishment of the Center of Excellence for Autonomous
Transport Systems at Széchenyi István University (TKP2020-
NKA-14)’ project and by the European Commission through the
H2020 project EPIC (https://www.centre-epic.eu/) under grant
no. 739592.

REFERENCES

[1] IFR Press Releases. Online [Accessed 16 August 2021]
https://ifr.org/ifr-press-releases/news/robot-race-the-worlds-
top-10-automated-countries

[2] European Commission, Digital Economy and Society Index
Report 2019, Integration of Digital Technology. Online [Accessed
16 August 2021]
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=59
979

[3] J. Shah, J. Wiken, B. Williams, C. Breazeal, Improved human-
robot team performance using chaski, a human-inspired plan
execution system, Proc. of the 6th Int. Conf. on Human-Robot
Interaction, Lausanne Switzerland, 8-11 March 2011, pp. 29-36.
DOI: 10.1145/1957656.1957668

Figure 9. Virtual collision test.

Figure 10. Virtual collision measurements with five additional candidates.

https://ifr.org/ifr-press-releases/news/robot-race-the-worlds-top-10-automated-countries
https://ifr.org/ifr-press-releases/news/robot-race-the-worlds-top-10-automated-countries
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=59979
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=59979
https://doi.org/10.1145/1957656.1957668

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 79

[4] T. Gaspar, B. Ridge, R. Bevec, M. Bem, I. Kovač, A. Ude, Z.
Gosar, Rapid hardware and software reconfiguration in a robotic
workcell, Proc. of the 18th IEEE Int. Conf. on Advanced
Robotics (ICAR), Hong Kong, China, 10-12 July 2017, pp. 229-
236.
DOI: 10.1109/ICAR.2017.8023523

[5] ISO/TS 15066:2016, Robots and robotic devices - Collaborative
robots. Online [Accessed 16 August 2021]
https://www.iso.org/standard/62996.html

[6] ISO 10218‑1:2011, Robots and robotic devices - Safety
requirements for industrial robots - Part 1: Robots. Online
[Accessed 16 August 2021]
https://www.iso.org/standard/51330.html

[7] ISO 10218‑2:2011, Robots and robotic devices - Safety
requirements for industrial robots – Part 2: Robot systems and
integration. Online [Accessed 16 August 2021]
https://www.iso.org/standard/41571.html

[8] A. Hentout, M. Aouache, A. Maoudj, I. Akli, Human–robot
interaction in industrial collaborative robotics: a literature review
of the decade 2008–2017, Advanced Robotics 33 (2019) pp. 764-
799.
DOI: 10.1080/01691864.2019.1636714

[9] A. Zacharaki, I. Kostavelis, A. Gasteratos, I. Dokas, Safety bounds
in human robot interaction: A survey, Safety Science 127 (2020)
104667.
DOI: 10.1016/j.ssci.2020.104667

[10] C. Morato, K. Kaipa, B. Zhao, S. K. Gupta, Safe Human Robot
Interaction by Using Exteroceptive Sensing Based Human
Modeling, Proc. of the ASME 2013 International Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference. Volume 2A: 33rd
Computers and Information in Engineering Conference. Portland,
Oregon, USA. 4-7 August 2013, 10 pp.
DOI: 10.1115/DETC2013-13351

[11] European Commission, 2006/42/EC Machinery Directive.
Online [Accessed 16 August 2021]
https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX%3A32006L0042

[12] European Commission, 2014/35/EU Low Voltage Directive.
Online [Accessed 16 August 2021]
https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:32014L0035

[13] COVR project database for directives and standards. Online
[Accessed 16 August 2021]
https://www.safearoundrobots.com/toolkit/documentfinder

[14] ISO/TR 20218-1:2018 Robotics - Safety design for industrial
robot systems - Part 1: End-effectors. Online [Accessed 16 August
2021]
https://www.iso.org/standard/69488.html

[15] EN ISO 13855:2010 Safety of machinery - Positioning of
safeguards with respect to the approach speeds of parts of the
human body. Online [Accessed 16 August 2021]
https://www.iso.org/standard/42845.html

[16] EN ISO 13849-1:2015 Safety of machinery - Safety-related
parts of control systems - Part 1: General principles for design.
Online [Accessed 16 August 2021]
https://www.iso.org/standard/69883.html

[17] EN ISO 13849-2:2012 Safety of machinery - Safety-related
parts of control systems - Part 2: Validation. Online [Accessed 16
August 2021]
https://www.iso.org/standard/53640.html

[18] EN ISO 12100:2010 Safety of machinery - General principles
for design - Risk assessment and risk reduction. Online [Accessed
16 August 2021]
https://www.iso.org/standard/51528.html

[19] EN ISO 13850:2015 Safety of machinery - Emergency stop
function - Principles for design. Online [Accessed 16 August 2021]
https://www.iso.org/standard/59970.html

[20] EN IEC 60204-1:2018 Safety of machinery - Electrical
equipment of machines - Part 1: General requirements. Online

[Accessed 16 August 2021]
https://standards.iteh.ai/catalog/standards/sist/e7d3ec34-16ab-
476d-b979-1de5762a3ed7/sist-en-60204-1-2018

[21] EN IEC 62061:2005 Safety of machinery - Functional safety
of safety-related electrical, electronic and programmable electronic
control systems. Online [Accessed 16 August 2021]
https://standards.iteh.ai/catalog/standards/sist/4c933a51-d926-
457b-b3da-4bfaef9908ac/sist-en-62061-2005

[22] EN ISO 11161:2007 Safety of machinery - Integrated
manufacturing systems - Basic requirements. Online [Accessed 16
August 2021]
https://www.iso.org/standard/35996.html

[23] EN ISO 13854:2017 Safety of machinery - Minimum gaps to
avoid crushing of parts of the human body. Online [Accessed 16
August 2021]
https://www.iso.org/standard/66459.html

[24] EN ISO 13857:2019 Safety of machinery - Safety distances to
prevent hazard zones being reached by upper and lower limbs.
Online [Accessed 16 August 2021]
https://www.iso.org/standard/69569.html

[25] EN ISO 14118:2017 Safety of machinery - Prevention of
unexpected start-up. Online [Accessed 16 August 2021]
https://www.iso.org/standard/66460.html

[26] EN IEC 62046:2018 Safety of machinery - Application of
protective equipment to detect the presence of persons. Online
[Accessed 16 August 2021]
https://standards.iteh.ai/catalog/standards/sist/b62f0bb2-9011-
413a-a717-caf55f66f289/sist-en-iec-62046-2018

[27] EN ISO 13851:2019 Safety of machinery - Two-hand control
devices - Principles for design and selection. Online [Accessed 16
August 2021]
https://www.iso.org/standard/70295.html

[28] Universal Robots, URCap Software Platform of Universal Robots.
Online [Accessed 16 August 2021]
https://www.universal-robots.com/

[29] RobotiQ website. Online [Accessed 16 August 2021]
www.robotiq.com

[30] Unity, Cross-platform game engine. Online [Accessed 16 August
2021]
https://unity.com

[31] Unreal Engine, Cross-platform game engine. Online [Accessed 16
August 2021]
https://www.unrealengine.com/en-US/

[32] ApertusVR Documentation, GitBook. Online [Accessed 16
August 2021]
https://apertus.gitbook.io/vr/

[33] PREHUROCO sample files on Github. Online [Accessed 16
August 2021]
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/sam
ples/collisionDetection

[34] Vibration API (Second Edition), W3C recommendation, 18
October 2016. Online [Accessed 16 August 2021]
https://www.w3.org/TR/vibration/

[35] Collision detection plugin, ApertusVR on Github. Online [Accessed
16 August 2021]
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugi
ns/physics/bulletPhysics

[36] Visualisation plugin, ApertusVR on Github. Online [Accessed 16
August 2021]
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugi
ns/render/ogreRender

[37] Kinect plugin, ApertusVR on Github. Online [Accessed 16
August 2021]
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugi
ns/track/body/kinect

[38] Websocket server plugin, ApertusVR on Github. Online
[Accessed 16 August 2021]
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugi
ns/languageAPI/webSocketServer

https://doi.org/10.1109/ICAR.2017.8023523
https://www.iso.org/standard/62996.html
https://www.iso.org/standard/51330.html
https://www.iso.org/standard/41571.html
https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.1016/j.ssci.2020.104667
https://doi.org/10.1115/DETC2013-13351
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006L0042
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006L0042
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014L0035
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014L0035
https://www.safearoundrobots.com/toolkit/documentfinder
https://www.iso.org/standard/69488.html
https://www.iso.org/standard/42845.html
https://www.iso.org/standard/69883.html
https://www.iso.org/standard/53640.html
https://www.iso.org/standard/51528.html
https://www.iso.org/standard/59970.html
https://standards.iteh.ai/catalog/standards/sist/e7d3ec34-16ab-476d-b979-1de5762a3ed7/sist-en-60204-1-2018
https://standards.iteh.ai/catalog/standards/sist/e7d3ec34-16ab-476d-b979-1de5762a3ed7/sist-en-60204-1-2018
https://standards.iteh.ai/catalog/standards/sist/4c933a51-d926-457b-b3da-4bfaef9908ac/sist-en-62061-2005
https://standards.iteh.ai/catalog/standards/sist/4c933a51-d926-457b-b3da-4bfaef9908ac/sist-en-62061-2005
https://www.iso.org/standard/35996.html
https://www.iso.org/standard/66459.html
https://www.iso.org/standard/69569.html
https://www.iso.org/standard/66460.html
https://standards.iteh.ai/catalog/standards/sist/b62f0bb2-9011-413a-a717-caf55f66f289/sist-en-iec-62046-2018
https://standards.iteh.ai/catalog/standards/sist/b62f0bb2-9011-413a-a717-caf55f66f289/sist-en-iec-62046-2018
https://www.iso.org/standard/70295.html
https://www.universal-robots.com/
http://www.robotiq.com/
https://unity.com/
https://www.unrealengine.com/en-US/
https://apertus.gitbook.io/vr/
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/samples/collisionDetection
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/samples/collisionDetection
https://www.w3.org/TR/vibration/
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/physics/bulletPhysics
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/physics/bulletPhysics
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/render/ogreRender
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/render/ogreRender
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/track/body/kinect
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/track/body/kinect
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/webSocketServer
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/webSocketServer

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 80

[39] X3D loader plugin, ApertusVR on Github. Online [Accessed 16
August 2021]
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugi
ns/languageAPI/jsAPI/nodeJsPlugin/js/plugins/x3dLoader

[40] NodeJS plugin, ApertusVR on Github. Online [Accessed 16
August 2021]
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugi
ns/languageAPI/jsAPI/nodeJsPlugin

[41] Bluetooth keyboard performance test. Online [Accessed 16
August 2021]
http://www.technical-direct.com/en/bluetooth-keyboard-
performance-test/

[42] Interactivity test: examples from real 5G networks (part 3) . Online
[Accessed 16 August 2021]
https://www.rohde-schwarz.com/us/solutions/test-and-
measurement/mobile-network-testing/stories-insights/article-
interactivity-test-examples-from-real-5g-networks-part-3-
_253380.html

[43] Jsonlist file of the simulated UR5 robot movement. Online
[Accessed 16 August 2021]
https://github.com/MTASZTAKI/ApertusVR/blob/89aefbc9
b2a0e7524092b87d728ad539cfc0a856/plugins/languageAPI/jsA
PI/nodeJsPlugin/js/plugins/httpSimulator/ur5.jsonlist

https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/jsAPI/nodeJsPlugin/js/plugins/x3dLoader
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/jsAPI/nodeJsPlugin/js/plugins/x3dLoader
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/jsAPI/nodeJsPlugin
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/jsAPI/nodeJsPlugin
http://www.technical-direct.com/en/bluetooth-keyboard-performance-test/
http://www.technical-direct.com/en/bluetooth-keyboard-performance-test/
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/mobile-network-testing/stories-insights/article-interactivity-test-examples-from-real-5g-networks-part-3-_253380.html
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/mobile-network-testing/stories-insights/article-interactivity-test-examples-from-real-5g-networks-part-3-_253380.html
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/mobile-network-testing/stories-insights/article-interactivity-test-examples-from-real-5g-networks-part-3-_253380.html
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/mobile-network-testing/stories-insights/article-interactivity-test-examples-from-real-5g-networks-part-3-_253380.html
https://github.com/MTASZTAKI/ApertusVR/blob/89aefbc9b2a0e7524092b87d728ad539cfc0a856/plugins/languageAPI/jsAPI/nodeJsPlugin/js/plugins/httpSimulator/ur5.jsonlist
https://github.com/MTASZTAKI/ApertusVR/blob/89aefbc9b2a0e7524092b87d728ad539cfc0a856/plugins/languageAPI/jsAPI/nodeJsPlugin/js/plugins/httpSimulator/ur5.jsonlist
https://github.com/MTASZTAKI/ApertusVR/blob/89aefbc9b2a0e7524092b87d728ad539cfc0a856/plugins/languageAPI/jsAPI/nodeJsPlugin/js/plugins/httpSimulator/ur5.jsonlist

