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We adopted an unpaired neural network training
technique, namely CycleGAN, to generate brightfield
microscope-like images from hologram reconstructions.
The motivation for unpaired training in microscope
applications is that the construction of paired/parallel
datasets is cumbersome or sometimes not even feasi-
ble, for example, lensless or flow-through holographic
measuring setups. Our results show that the proposed
method is applicable in these cases and provides com-
parable results to the paired training. Furthermore, it
has some favorable properties even though its metric
scores are lower. The CycleGAN training results in
sharper – from this point of view – more realistic object
reconstructions compared to the baseline paired setting.
Finally, we show that a lower metric score of the un-
paired training does not necessarily imply a worse im-
age generation, but a correct object synthesis yet with a
different focal representation.
© 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Recent development in the field of deep learning provided
methods that were successfully applied in different imaging
tasks in microscopy outperforming classical image process-
ing algorithms. For example in coherent imaging, it was ap-
plied on phase recovery and hologram reconstruction [1–4], on
phase-unwrapping [5, 6], on label-free sensing [7–9], on super-
resolution [10], and even on transforming between coherent and
incoherent imaging domains [11]. In the latter, the authors gen-
erate a brightfield microscope image from a single reconstructed
hologram and thus combine the benefits of both domains. A
brightfield image is sharper, visually more appealing and natu-
ral as our eyes are accustomed to incoherent images but its depth
of field (DOF) is narrow (few µm) while a hologram image en-
codes information of a larger volume (few hundred µm) but the
reconstructed hologram (at a given depth) is rich in artifacts

(caused by the characteristics of the coherent imaging and the
noise of the in-line hologram reconstruction) which degrades
the image quality. Wu et al. in [11] utilized the generative ad-
versarial network (GAN) [12] training technique to learn the
transformation between the two domains, after that they could
generate a brightfield z-scan from a single hologram. In their
training process, there is a generator network and a discrimi-
nator network that are trained together and compete with each
other. The discriminator is trained to recognize generated (fake)
and real images, while the generator is trained to synthesize
images that can fool the discriminator. In addition to that, the
generator network is conditioned with a reconstructed holo-
gram and encouraged to generate the corresponding brightfield
image minimizing the L1 loss between target and prediction.
The adversarial training allows high-quality image synthesis
while the L1 criterion constrains the generation so that the net-
work won’t create random brightfield images but that which
corresponds to the given reconstructed hologram input. Thus,
this method requires paired (and pixel-wise aligned) dataset.
However, the collection of such a paired dataset is hard and
sometimes it is not even possible. For example, in the case of
a lensless holographic system [13], it is impossible to measure
parallel holographic and brightfield images without significant
modifications of the setup. Furthermore, in the case of holo-
graphic measuring setups that measure flow samples – where
subtraction of the static background diffractions can consider-
ably improve the quality of the acquired holograms – there is
no way to implement the required parallel measurements. Un-
paired training data, on the other hand, can be easily collected
from different instruments or even from existing datasets bypass-
ing the image alignment/registration issues. A recent technique
called CycleGAN [14] enables us to train on unpaired dataset
which has been already applied on many practical problems, for
example virtual staining [15, 16], hologram reconstruction [17],
and virtual brightfield and fluorescence staining of recovered
fourier ptychographic microscopy (FPM) images [18]. Most
recently, Zhang et al. proposed a physics-driven unpaired tech-
nique [19] for hologram phase retrieval and compared it with
CycleGAN. In this study, our aim is to investigate the application
of the CycleGAN technique for "brightfield holography", where
a brightfield image is generated from a reconstructed hologram
similarly to [11] but without the use of aligned training data. We
also implement the method proposed in [11] which requires par-
allel dataset, and compare its results with the label-free training
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method.

2. METHODS

The training method is illustrated in Fig. 1. Assume that we
have unpaired samples from two image domain: A denotes the
holographic domain and B denotes the brightfield domain. Our
objective is to learn the A to B transformation: GAB : A → B.
The process includes four neural networks: two generators (GAB
for A → B and GBA for B → A transformation) and two dis-
criminators (DA, DB), but for inference only one generator (GAB)
is used. This means that we have to train an additional gener-
ator network that transforms from the brightfield to the holo-
graphic domain even if our goal is only to transform from holo-
graphic to brightfield domain. The loss functions to be mini-
mized for the generators (L{GAB},L{GBA}) and discriminators
(L{DA},L{DB}) are the following respectively:

L{GAB} = L
(AB)
adv + λAL

(ABA)
cyc (1)

where Ladv denotes the adversarial loss (train the generator to
fool the discriminator):

L(AB)
adv =

1
N ∑

xA∼A
[1− DB(

x̂B︷ ︸︸ ︷
GAB(xA))]

2

︸ ︷︷ ︸
fake sample→ 1

and Lcyc denotes the cycle consistency loss:

L(ABA)
cyc =

1
N ∑

xA∼A
|

x̃A︷ ︸︸ ︷
GBA(GAB(xA))−xA|

where N is the number of training samples, x̂B denotes the
generated fake sample, x̃A denotes the reconstructed sample,
and λA is the weight parameter for the cycle consistency loss.
And finally, the discriminator loss:

L{DB} =
1
N ∑

xB∼B
[1− DB(xB)]

2

︸ ︷︷ ︸
real sample→ 1

+
1
N ∑

xA∼A
DB(

x̂B︷ ︸︸ ︷
GAB(xA))

2

︸ ︷︷ ︸
fake sample→ 0

(2)
The first part of this equation trains the discriminator to output
1 when the input is real, and the second part trains it to output 0
when the image is fake – note that the latter is the opposite of
Ladv. The losses in the reverse direction (L{GBA} and L{DA})
can be similarly constructed. There is also an optional identity
constrain for the generators which effect on the learning is also
investigated in this study:

Lid{GAB} = λid
1
N ∑

xB∼B
|GAB(xB)− xB| (3)

and similarly for GBA. λid is the weight parameter.
We used the Adam optimizer and the following hyperpa-

rameter settings: λA = λB = 10, λid = 0.5 or 0., lr = 0.0002
(learning rate).

3. RESULTS AND DISCUSSION

To evaluate the different methods we utilized the frequently ap-
plied objective structural similarity index measure (SSIM) [20],
root mean squared error (RMSE), and subjective human per-
ceptual assessments too. The scores of the objective metrics are
shown in Tab. 1 and few real and fake sample pairs are depicted
in Fig. 2 along with the corresponding SSIM score1. We exam-
ined several UNet architectures with different layer depths for
the generator networks: unet32 has 5 downsampling and upsam-
pling layers (which halves and doubles the spatial dimensions
respectively), unet64 has 6, and unet256 has 8. The baseline
method [11] with labelled training used the unet32 architecture
for the generator. For the discriminator networks we used the
PatchGAN [21] architecture. We also inspected several train-
ing considerations: training with or without identity constraint
(denoted with "widt" and "woidt" respectively); training with
or without hologram phase information (if trained with phase
it is denoted with "wang"); training with multi-scale structural
similarity [22] as the distance measure in the cycle loss functions
instead of L1 (denoted with "mssim").

We used a paired dataset to be able to measure the accu-
racy of the unpaired training and the same time, to be able to
compare it with the results of the paired training method. Of
course, the paired property of the dataset was not exploited
during the unpaired training. The training dataset contained
approximately 3000 samples while the test set around 300 sam-
ples. The specimens are centrifuged and recorded in a plane, but
due to the field curvature of the optics and due to the automatic
focusing mechanism, our dataset contains not only in-focus but
also slightly defocused objects2 in both domain correspondingly.
The methods are implemented using the PyTorch deep learning
framework based on [14] and the training was run on an Nvidia
RTX 2080-Ti graphics card (GPU). We let the training run for
200 epochs which took around 16 hours on the mentioned GPU,
but the generated image quality was already satisfactory around
epoch number 100.

Table 1. Overall metric scores calculated on the test set for
different models.

model mode RMSE SSIM

unet32-wang paired 0.0623± 0.0242 0.741± 0.126

unet32-woidt unpaired 0.1136± 0.0348 0.502± 0.133

unet32-wang unpaired 0.1072± 0.0332 0.492± 0.134

unet32-widt unpaired 0.1121± 0.0376 0.475± 0.134

unet32-mssim unpaired 0.1275± 0.0384 0.461± 0.142

unet64-widt unpaired 0.1156± 0.0369 0.495± 0.135

unet256-widt unpaired 0.1248± 0.0377 0.473± 0.139

The unpaired training results were very similar with the dif-
ferent architecture sizes and training techniques (see Tab. 1 and
samples in Fig. S2 and Fig. S3), therefore our choice of architec-
ture is the smallest unet32. The best unpaired models based on
the results in Tab. 1 are unet32-woidt where we use hologram

1For more samples and a more detailed evaluation (utilizing more metrics and
boxplots) we refer to the supplementary material.

2Note that we use the "slight defocus" term for that the objects are recorded at
variable cross-sectional planes and not as a synonym for blur.
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Fig. 1. Illustration of cycle consistent adversarial training in one direction. The generator is trained to fool the discriminator (and
minimize the cycle constraint) while the discriminator is trained to distinguish real and fake samples.
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Fig. 2. Test samples and corresponding SSIM values. The
paired training achieves better SSIM scores but the generated
images are more blurry. The generator with unpaired training
synthesizes sharp brightfield images but with random focal
representation.

amplitude data only and no identity constraint, and unet32-
wang where we utilize hologram phase information too (as a
two-channel input for the brightfield generator). Despite the
slight variation in the metric values the generation quality per-
ceptually was very similar (samples can be found in Fig. S2).
We conclude that adding the hologram phase information does
not considerably improve the model performance and that the
identity constraint has only a minor degrading effect on learning.
As we can see in Tab. 1 the paired training method outperforms
the unpaired technique in objective metric scores. This is not
surprising as the paired setup includes more information: we
can directly show to the network what is the desired output

while in the unpaired setting it is indirect. In spite of all these,
we claim that the generator neural network with unpaired train-
ing has some advantages over the other and that sometimes a
lower metric score does not indicate per se inferior quality of the
object synthesis. Primarily, it generates sharper images while the
other one is more blurred (see Fig. 2 samples 1, 5, 7 and cut-line
curves in Fig. S4). This blurriness may originate from the fact
that classic paired training is known to average (blur) all possi-
ble solutions [23], while the unpaired method draws a unique
sample from the learned distribution. Furthermore, as the SSIM
scores and generated samples in Fig. 2 suggest, the synthesized
images in the unpaired case may deviate from the real one, yet it
is not always an erroneous discrepancy but may arise from that
the generated image might have a different focal representation
of the same object. In a brightfield image the properly focused
objects usually appears to be gray (for example samples 1b, 2b,
4b in Fig. 2), while the slightly defocused ones shows up a bit
brighter or darker (eg. samples 3b and 7b in Fig. 2, accordingly).
In the paired setting the generator could mimic the imprecise,
slightly defocused label (see sample 3a-b in Fig. 2) because of the
direct L1 loss between the output and target3 – which results in
high SSIM score. On the other hand, in the unpaired setting the
output brightfield image focus does not corresponds to the input
hologram focus, but a slightly refocused object is synthesized,
see samples 3, 4, 8 in Fig. 2. This discrepancy can be eliminated
if we have only (or mainly) in-focus objects in our dataset.

The degradation of SSIM score in different focus representa-
tions is illustrated in Fig. 3. In this example we picked a defo-
cused sample-pair from our dataset. The generator with paired
training synthesizes the corresponding defocused brightfield
image which results in a high SSIM score. It can produce high
SSIM score, as the reconstruction and the reference correspond
to each other, but both of them are out of focus. By adjusting the
reconstruction distance of the input hologram, we can improve
the focus of the hologram reconstruction and using it we can
generate an in-focus brightfield image. Although, in this case
the quality of the generated image considerably improves, its
difference from the reference increases and the corresponding
SSIM score drops. This phenomenon can be observed in Fig. 2
sample 3 where 3b and 3a is both out-of-focus (resulting in high

3and because the focus of the reconstructed holograms and the brightfield
images are related in our dataset
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SSIM score) while 3c is in-focus – but resulting in significantly
lower SSIM score.

We also mention the slightly increased number of distorted
predictions (when the synthesized objects differs from the real
ones, e.g. Fig. 2. sample 6) in the unpaired setup that is caused
by the looser constraints. There was also a decrease in the per-
formance of the unpaired setup in case of dense samples when
many objects were near to each other. In this case, the hologram
reconstruction is more intermingled which makes the cycle trans-
formations indeterminate.
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Fig. 3. This figure illustrates that metric scores are not always
a reliable measure of quality and that the generator in the
paired training setup learned to generate a slightly defocused
brightfield image if the input reconstructed hologram was also
defocused. If we generate in-focus brightfield image from the
same object the corresponding SSIM score will be smaller –
even though the result is better.

Note that the byproduct of the unpaired training is an addi-
tional generator which transforms from the brightfield domain
to the hologram domain. This generator synthesizes hologram
like images, but not a true hologram in the sense that it can not
be propagated – which is not an issue for us as we have interest
only in the transformation regarding the opposite direction.

4. CONCLUSIONS

This study investigates the application of unpaired training tech-
nique (CycleGAN) for "brightfield holography" which aims to
generate brightfield microscope-like images from single holo-
gram reconstructions; furthermore, it compares the aforemen-
tioned method with a paired training technique [11]. The moti-
vation for unpaired training is that it is much easier to collect un-
paired data, and in some cases, it is infeasible to create a paired
one. We tested several models and found the unet32 architecture
to be ideal with L1 distance, and that including the hologram
phase information or identity constraint has only a minor effect.
The examinations show that: (1) the synthesized samples are
sharper in the unpaired case; (2) the unpaired generator tends
to output brightfield objects with random focal representation;
(3) this results in the drop of the SSIM score. We conclude in this
study that it is feasible to apply an unpaired training method for
"brightfield holography".
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