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Abstract: In this paper the design of an eco-cruise control system with learning-based agent
for automated vehicles is proposed. The control design is based on the robust Linear Parameter-
Varying (LPV) framework, in which performance levels of the system can be guaranteed. The
motivation of the learning-based agent is to reduce the required on-line computation of the eco-
cruise control signal, in which several environmental factors are involved, e.g. the forthcoming
terrain characteristics, speed limits. In the proposed method the design of the LPV controller
and the selection of scheduling variables are performed in an iterative method. As a result,
the proposed system is able to handle the degradation of the learning-based agent, while the
performance of the system is guaranteed.
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1. INTRODUCTION AND MOTIVATION

Novel requirements against the automated vehicle pose
complex decision and control challenges to the research
teams in the field of the vehicle control design. A possible
solution for the adaptation to the varying environment of
the vehicle is to build-in learning features in the control
systems, with which the economy and comfort perfor-
mances can be improved. It leads to the concept of eco-
cruise control, whose purpose is to design the speed of
a vehicle in order to reduce driving energy while keep-
ing traveling time (Sciarretta and Vahidi [2019]). In the
design the road information, such as road slopes and
speed limits and the local traffic information such as the
current speed, the traffic flow and the movement of the
surrounding vehicles are taken into consideration. Due to
the eco-cruise control the fuel consumption of the vehicle
can be significantly reduced, as it has been demonstrated
through implementation and test experiments in truck-
freeway environment (Gáspár and Németh [2019]).

In the recent years several design methodologies in the
field of eco-cruise control systems have been developed,
which can provide excellent results theoretically. Most of
them are based on on-line optimization processes, which
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can require high on-line computational demand. Although
several methods have been developed to avoid this draw-
back, it can make difficult to use on-line optimization-
based eco-cruise control in practice. In Padilla et al. [2018]
a method was proposed to reformulate and discretize the
design task by avoiding additional nonconvex terms. A
sequential quadratic programming algorithm was provided
to find the global optimal solution. The multi-objective
optimization problem was handled by using a receding
horizon control and evaluated in real experiments in Hell-
ström et al. [2009], Saerens et al. [2013]. Another challenge
of the cruise control design is that it can be difficult to
describe formally the traveling comfort or the attributes
of the human driving.

Learning-based approaches may provide a solution to the
previous problems through the joint application of the
conventional control (e.g. model-based robust and optimal
solutions) and machine-learning-based methods. The role
of the learning-based agent in the structure is to learn the
a-priori computed optimal control interventions and the
human comfort requirements through samples. In case of
deep neural networks several optimal solutions, such as the
members of a training set are learned offline. In the imple-
mentation of the neural networks the vehicle intervention
can be performed online. In Bougiouklis et al. [2018] Q-
learning algorithm was applied to achieve the optimum
speed for the minimization of electric vehicle consump-
tion. Similarly, in Abou-Nasr and Filev [2013] recurrent
neural networks were implemented, in which the informa-
tion about the road slopes was exploited effectively.Deep
learning-based eco-driving solution for electric vehicles was
presented in Wu et al. [2019], in which information about
the surrounding vehicles was also incorporated.
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Despite the promising results on the application of
machine-learning methods in the eco-cruise control strate-
gies, a crucial difficulty is the lack of performance guar-
antees. In eco-cruise control the variation of the velocity
concerning to the difference from velocity limit must be
bounded, which is a safety performance of the system. It
must be guaranteed during the entire route of the vehicle,
even if the fuel consumption is increased temporarily.
Thus, an important challenge in control theory is how
performance levels of machine-learning-based agent can be
quantified and guaranteed, which motivates the formula-
tion of several new control problems. As an example, neu-
ral networks have been used to approximate the output of
the model predictive control through a training process on
the optimal solutions of various scenarios in Hertneck et al.
[2018]. It resulted in the computational time reduction
of the control signal, while the stability and constraints
are guaranteed.Repetitive learning approach is presented
in Rosolia and Borrelli [2018]. The goal of the method
is to construct recursively terminal set and terminal cost
from state and input trajectories of previous iterations.
The feasibility and the nondecreasing property of the
performances are guaranteed, because the learning feature
is incorporated in the predictive optimal framework, such
as the learning of the terminal set and the terminal cost
through iterations. However, the method is incompatible
with the distinct machine-learning structures, which is a
disadvantage of the method. Since learning methods can
be used effectively in the design problem of the eco-cruise
control, it may be fruitful to take them to the part of the
control without significant modification. The motivation of
this paper is to provide a design framework for the problem
of performance guarantees in eco-cruise control systems, in
which the machine-learning-based agent can be designed
independently.

The method proposes an design method for eco-cruise
control in which machine-learning-based agent for the
computation of the optimal velocity profile can be in-
corporated. The design process is based on the robust
Linear Parameter-Varying (LPV) framework, with which
the selected velocity performance of the eco-cruise control
can be guaranteed. The motivation behind the robust LPV
formalism is flexibility, which may be achieved through
the scheduling variable. In the method control the force
intervention of the vehicle is expressed as a multiplication
of the LPV controller output and the scheduling variable,
together with an known additive disturbance. By using the
scheduling variable and the disturbance a wide range of
machine-learning outputs can be covered. The principle of
the method is that a robust LPV control is designed whose
output signal is equivalent to the output signal of the
machine-learning-based control in a predefined domain.
If the LPV control can be designed, the performance
level of the machine-learning-based control inside of the
domain is achieved. Outside of the predefined domains the
performance level of the control system is equivalent to
the guaranteed performance level of the LPV control. The
most important advantage of the proposed method is that
it is independent of the structure of the applied machine-
learning technique. Moreover, the resulted eco-cruise con-
trol architecture requires significantly less on-line compu-
tation effort compared to the classical predictive solutions,
which requires expensive on-line optimization processes.

The paper is organized as follows. Section 2 proposes
the concept of the method, the control rule and the
structure of the control architecture are presented. The
iterative design of the LPV control together with the
optimization of the scheduling variable and the known
disturbance domains are proposed in Section 3. In Section
4 an optimization-based selection method of the values
for the scheduling variable and the known disturbance are
provided. The effectiveness of the method for eco-cruise
control is presented in Section 5, while the consequences
are summarized in Section 6.

2. FUNDAMENTALS OF THE CONTROL DESIGN
CONCEPT

The basic idea of the control strategy is to design a
model-based controller, which approximates the output
of the learning-based agent. Although the learning-based
agent is able to control the vehicle individually, due
to the problems in performance guarantees it can be
disadvantageous. Nevertheless, the performance of the
model-based controller is guaranteed in theory and the
performance degradation of the learning-based-agent is
avoided through the overriding of its output. In this paper
the LPV framework has been used to design the model-
based controller.

The output of the machine-learning-based control is rep-
resented as

uL = F(yL) (1)

where yL vector contains the inputs of the controller
with mL elements and F represents the machine-learning-
based controller itself. In the present eco-cruise control
problem F is a neural network, which is fitted on the
control force intervention Fl of a multi-objective predictive
optimal controller, in which the road and traffic conditions
on the forthcoming road section are considered (Gáspár
and Németh [2019]). The numbers of the hidden layers
and the neurons are selected by using the so-called k-fold
cross validation technique (Arlot and Celisse [2010]) and
the Levenberg-Marquardt algorithm is used for training
purposes (Hagan et al. [1996]). Thus, yL contains the road
inclinations and velocity limitations in distinct segment
points on the predicted horizon, while uL is the actual
longitudinal control force.

Moreover, the control signal uK is defined, which is the
output of a robust LPV controller, such as

uK = K(ρK , yK) (2)

where K represents the LPV controller and yK is the vector
of the measured signals with mK elements. In (2) ρK ∈ �K
vector contains the scheduling variable of the controller,
which is derived from the following control rule.

The fundamental assumption of the proposed method
is that the control input signal of the system u can
be expressed in a linear form of uK , under predefined
conditions. The relationship between u, uK and uL with
the conditions is formed as

u = ρ∗LuK +∆∗
L := uL, if ρ∗L ∈ �L, ∆∗

L ∈ ΛL, (3)

where ρ∗L and ∆∗
L are time-dependent weighting signals.

�L = [ρL,min; ρL,max], ΛL = [∆L,min; ∆L,max] represent
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Despite the promising results on the application of
machine-learning methods in the eco-cruise control strate-
gies, a crucial difficulty is the lack of performance guar-
antees. In eco-cruise control the variation of the velocity
concerning to the difference from velocity limit must be
bounded, which is a safety performance of the system. It
must be guaranteed during the entire route of the vehicle,
even if the fuel consumption is increased temporarily.
Thus, an important challenge in control theory is how
performance levels of machine-learning-based agent can be
quantified and guaranteed, which motivates the formula-
tion of several new control problems. As an example, neu-
ral networks have been used to approximate the output of
the model predictive control through a training process on
the optimal solutions of various scenarios in Hertneck et al.
[2018]. It resulted in the computational time reduction
of the control signal, while the stability and constraints
are guaranteed.Repetitive learning approach is presented
in Rosolia and Borrelli [2018]. The goal of the method
is to construct recursively terminal set and terminal cost
from state and input trajectories of previous iterations.
The feasibility and the nondecreasing property of the
performances are guaranteed, because the learning feature
is incorporated in the predictive optimal framework, such
as the learning of the terminal set and the terminal cost
through iterations. However, the method is incompatible
with the distinct machine-learning structures, which is a
disadvantage of the method. Since learning methods can
be used effectively in the design problem of the eco-cruise
control, it may be fruitful to take them to the part of the
control without significant modification. The motivation of
this paper is to provide a design framework for the problem
of performance guarantees in eco-cruise control systems, in
which the machine-learning-based agent can be designed
independently.

The method proposes an design method for eco-cruise
control in which machine-learning-based agent for the
computation of the optimal velocity profile can be in-
corporated. The design process is based on the robust
Linear Parameter-Varying (LPV) framework, with which
the selected velocity performance of the eco-cruise control
can be guaranteed. The motivation behind the robust LPV
formalism is flexibility, which may be achieved through
the scheduling variable. In the method control the force
intervention of the vehicle is expressed as a multiplication
of the LPV controller output and the scheduling variable,
together with an known additive disturbance. By using the
scheduling variable and the disturbance a wide range of
machine-learning outputs can be covered. The principle of
the method is that a robust LPV control is designed whose
output signal is equivalent to the output signal of the
machine-learning-based control in a predefined domain.
If the LPV control can be designed, the performance
level of the machine-learning-based control inside of the
domain is achieved. Outside of the predefined domains the
performance level of the control system is equivalent to
the guaranteed performance level of the LPV control. The
most important advantage of the proposed method is that
it is independent of the structure of the applied machine-
learning technique. Moreover, the resulted eco-cruise con-
trol architecture requires significantly less on-line compu-
tation effort compared to the classical predictive solutions,
which requires expensive on-line optimization processes.

The paper is organized as follows. Section 2 proposes
the concept of the method, the control rule and the
structure of the control architecture are presented. The
iterative design of the LPV control together with the
optimization of the scheduling variable and the known
disturbance domains are proposed in Section 3. In Section
4 an optimization-based selection method of the values
for the scheduling variable and the known disturbance are
provided. The effectiveness of the method for eco-cruise
control is presented in Section 5, while the consequences
are summarized in Section 6.

2. FUNDAMENTALS OF THE CONTROL DESIGN
CONCEPT

The basic idea of the control strategy is to design a
model-based controller, which approximates the output
of the learning-based agent. Although the learning-based
agent is able to control the vehicle individually, due
to the problems in performance guarantees it can be
disadvantageous. Nevertheless, the performance of the
model-based controller is guaranteed in theory and the
performance degradation of the learning-based-agent is
avoided through the overriding of its output. In this paper
the LPV framework has been used to design the model-
based controller.

The output of the machine-learning-based control is rep-
resented as

uL = F(yL) (1)

where yL vector contains the inputs of the controller
with mL elements and F represents the machine-learning-
based controller itself. In the present eco-cruise control
problem F is a neural network, which is fitted on the
control force intervention Fl of a multi-objective predictive
optimal controller, in which the road and traffic conditions
on the forthcoming road section are considered (Gáspár
and Németh [2019]). The numbers of the hidden layers
and the neurons are selected by using the so-called k-fold
cross validation technique (Arlot and Celisse [2010]) and
the Levenberg-Marquardt algorithm is used for training
purposes (Hagan et al. [1996]). Thus, yL contains the road
inclinations and velocity limitations in distinct segment
points on the predicted horizon, while uL is the actual
longitudinal control force.

Moreover, the control signal uK is defined, which is the
output of a robust LPV controller, such as

uK = K(ρK , yK) (2)

where K represents the LPV controller and yK is the vector
of the measured signals with mK elements. In (2) ρK ∈ �K
vector contains the scheduling variable of the controller,
which is derived from the following control rule.

The fundamental assumption of the proposed method
is that the control input signal of the system u can
be expressed in a linear form of uK , under predefined
conditions. The relationship between u, uK and uL with
the conditions is formed as

u = ρ∗LuK +∆∗
L := uL, if ρ∗L ∈ �L, ∆∗

L ∈ ΛL, (3)

where ρ∗L and ∆∗
L are time-dependent weighting signals.

�L = [ρL,min; ρL,max], ΛL = [∆L,min; ∆L,max] represent

domains in (3), where ρL,min, ρL,max, ∆L,min, ∆L,max are
scalars. The sets of the domains are denoted by �L, ΛL.

If both conditions of (3) are guaranteed, the control input
of the system u approximates uL through the appropriate
selection of ρ∗L and ∆∗

L. But, if ρ
∗
L �∈ �L or ∆∗

L �∈ ΛL, the
variables ρ∗L, ∆

∗
L are limited with the boundaries of �L and

ΛL during the computation of the control signal u. In this
case u can significantly differ from uL. The general control
rule, which contains both scenarios is formed as

u = ρLuK +∆L, (4)

where

ρL = min

(
max

(
ρ∗L; ρL,max

)
; ρL,min

)
, (5a)

∆L = min

(
max

(
∆∗

L; ∆L,min

)
; ∆L,max

)
. (5b)

The relations (5a)-(5b) guarantee that ρL ∈ �L and ∆L ∈
ΛL.

The architecture of the proposed control strategy is shown
in Figure 1. In the eco-cruise control process the machine-
learning-based agent and the robust LPV controller are
taken into consideration, uL and uK are computed simul-
taneously. The role of the control force Fl optimization
block is to select ρL, ∆L and to generate u based on the
rule (4). The selection of ρL, ∆L is based on a constrained
quadratic optimization procedure, which is detailed in Sec-
tion 4. Although the eco-cruise control strategy contains
an on-line optimization process, it requires significantly
less computation effort than the classical predictive eco-
cruise control methods.

vehicle

robust LPV

machine-learning yL

yK
optimization

uL

uK

u

eco-cruise control

controller

dynamics

control force

ρL

Fig. 1. Scheme of the eco-control strategy

The architecture presents the main idea of the proposed
concept. The minimum performance level of the eco-cruise
control from the aspect of the velocity variation is deter-
mined by the LPV controller in the entire operation do-
main of the system. But, inside of the domains �L,ΛL the
performance level is enhanced through machine-learning-
based control. Through the proposed control strategy
the advantages of machine-learning-based control can be
achieved, while its drawback, such as performance degra-
dation in some scenarios, is eliminated through the guar-
anteed minimum performance level.

3. ITERATIVE DESIGN OF THE LPV CONTROL

The representation of the system is formed in the following
control-oriented state-space representation as

ẋ = Ax+B1w +B2u, (6)

where x represents the state vector, w vector contains
the disturbances and u vector incorporates in the control
input. A,B1, B2 are matrices in the system representation.
In the design of the eco-cruise control system the simplified
longitudinal model of the vehicle is applied (Gáspár and
Németh [2019]) as

mξ̈ = Fl + Fd, (7)

where m is the mass of the vehicle. The state vector is
x =

[
ξ̇ ξ

]T
, where ξ represents the longitudinal motion

of the vehicle and w = Fd contains the longitudinal
disturbance force and u = Fl involves the longitudinal
control force.

The goal of the design is to derive the robust controller
which guarantees a minimum performance level for the
closed-loop system, considering the predefined control rule
(4). The output of the controller uK is used in the
expression u = ρLuK + ∆L. Therefore, the state-space
representation of the system (6) is reformulated through
the relationship between u and uK as

ẋ = Ax+B1wK +B2(ρK)uK , (8)

where the disturbance vector wK of the state-space repre-

sentation (8) is composed as wK = [w ∆L]
T
and the ma-

trices are B1 = [B1 B2] and B2(ρK) = B2ρL. (8) relation
contains ρL in B2(ρK), which is selected as a scheduling
variable ρK = ρL. Thus, the system is transformed to an
LPV representation.

In the robust LPV framework the role of the controller
is to guarantee a minimum performance level (Wu et al.
[1996]). Performance zK of the closed-loop system with
K(ρK , yK) is expressed through the control inputs u and
the existing disturbances w in a general form as

zK = C2x+D21w +D22u. (9)

In the eco-cruise control problem two performances are
defined. First, it is necessary to minimize the velocity
tracking error |ξ̇ref−ξ̇|, where ξ̇ref is the reference velocity.

In the proposed control ξ̇ref is selected as the maximum
velocity limit on the road section. The second performance
is the minimization of |u|. Similarly to the state-space rep-
resentation (6)-(8), the performance equation (9) through
uρLuK +∆L is also reformulated as

zK = C2x+D21wK +D22(ρK)uK , (10)

where the matrices are D21 = [D21 D22], D22(ρK) =
D22ρL.

Similarly to zK , the measured outputs yK can be expressed
in the form of

yK = C1x+D11wK +D12uK , (11)

where the matrices of (11) are D11 = [D11 D12],
D12(ρK) = D12ρL. In the eco-cruise control design the
measured signal is defined as the velocity tracking error
yK = ξ̇ref − ξ̇.

The quadratic LPV performance problem is to choose the
parameter-varying controller K(ρK , yK) in such a way that
the resulting closed-loop system is quadratically stable and
the induced L2 norm from the disturbance wK to the
performances zK is less than the value γ (Wu et al. [1996]).
The minimization task is the following:
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inf
K(ρK ,yK)

sup
ρK∈�K

sup
‖wK‖2 �= 0,

wK ∈ L2

‖zK‖2
‖wK‖2

. (12)

The existence of a controller that solves the quadratic LPV
γ-performance problem can be expressed as the feasibility
of a set of LMIs, which can be solved numerically. Fi-
nally, the state-space representation of the LPV control
K(ρK , yK) is constructed (Wu et al. [1996], Sename et al.
[2013]), which leads to the control input uK . The input
signal uK is incorporated in the computation of u together
with the selection of ρL, ∆L. The control rule results in
that the minimum performance level of the closed-loop
system is determined by K(ρK , yK).

Iterative control design and domain selection

The optimization problem (12) shows that the resulted
controller depends on the domains �K ,ΛK . If the ranges
of the domains are selected small, uL is often saturated by
the boundaries of the domains, see (5). But, if the ranges
have insufficiently high values, the resulted LPV controller
can be conservative and the tracking performance level
is reduced. Thus, it is necessary to find a balance in the
selection of the domain, which is based on an iteration
process.

The goal of the iteration is to fit the velocity of the vehicle
ξ̇ on the velocity of a reference vehicle ξ̇L, which has the
control input uL. In this concept the reference vehicle has
the ability to move by the eco-cruise controlled strategy.
Through the optimization the domains are selected to
approximate the motion of the vehicle to the motion of
the reference vehicle as

min
ρL,min, ρL,max

N∑
j=1

|ξ̇L,j − ξ̇j |, (13)

where j expresses the time step and N is the length of a
given scenario. Using the results of (13) the boundaries of
the domain ΛL = [∆L,min; ∆L,max] are computed based
on the rule (4) as

∆L,min = min

(
uL − ρL,minuK

)
, (14a)

∆L,max = max

(
uL − ρL,minuK

)
. (14b)

The solution of the optimization problem (13) begins with
domains with high ranges, which are reduced through the
following iteration process.

(1) The domains �L = [ρL,min; ρL,max] and ΛL =
[∆L,min; ∆L,max] are selected high in the first step,
which can result in a conservative LPV controller.

(2) The LPV control with the selected domains is de-
signed using (12).

(3) The closed-loop system with the incorporation of the
designed K(ρK , yK) and the domains �L, ΛL are
analyzed through various scenarios. It yields in the
signals ξ̇ref and ξ̇, from which the cost in (13) for the
scenario is calculated.

(4) Due to the results of the scenarios the boundaries
are modified to reduce the cost function of the opti-
mization problem (13). The setting of the optimiza-

tion variables can be performed through e.g. simplex
search or trust-region-reflective methods, see Lagarias
et al. [1998], Coleman and Li [1996].

(5) The LPV design, the scenarios and the evaluation
(steps 2-4) are performed until the minimum of (13)
is reached.

The results of the entire iteration process are the robust
LPV controller K(ρK , yK) and the domains �L, ΛL. The
optimization processes (12) and (13), together with the de-
sign of F are performed off-line, with which the quantity of
the on-line computation is significantly reduced, compared
to the classical optimal eco-cruise control strategies.

4. SELECTION OF THE VALUES FOR SCHEDULING
VARIABLES AND MEASURED DISTURBANCE

The selection strategy of ρL and ∆ is based on the relation
between uL and uK , see (4). During the selection of ρL, ∆L

various criteria must be guaranteed, while the constraints
ρL ∈ �L, ∆L ∈ ΛL are satisfied.

(1) The control input u must be as close as possible to
uL, which leads to the objective

|u− uL| → min. (15)

Through (15) the traction force intervention of the
eco-cruise control system is close to the machine-
learning-based intervention, which is required if the
performance of the machine-learning-based control is
acceptable.

(2) The control signal u must be in the set of the
robustness, which can be expressed as

∆ = u− uK = (ρL − 1)uK +∆L. (16)

The robustness of the closed-loop system is guaran-
teed, if ∆ is bounded with a predefined value ∆max,
which is incorporated in the robust control design.
Thus, the following constraint during the selection of
ρL, ∆L must be satisfied:

|(ρL − 1)uK +∆L| ≤ ∆max. (17)

The criterion (17) can be transformed as[
−uK −1
uK 1

] [
ρL
∆L

]
≤

[
∆max − uK

∆max + uK

]
(18)

(3) In the scenarios, when uL is unacceptable, the in-
tervention uK,i is preferred. The selection of ρL =
1,∆L = 0 guarantees the criterion (17) and u = uK

is achieved, which leads to the objective

|ρL − 1| → min, (19a)

|∆L| → min. (19b)

The formulated objectives and constraints can be trans-
formed into the following optimization task, whose results
are ρL, ∆L. The objective function contains (15) and (19),
such as

Q1(u− uL)
2 +Q2

(
(ρL − 1)2 +∆2

L

)
, (20)

which can be transformed to a quadratic optimization form
through the relation u = ρLuK +∆L. Using the constraint
(17) and the bounds on ρL,∆L, the following optimization
problem is yielded
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The existence of a controller that solves the quadratic LPV
γ-performance problem can be expressed as the feasibility
of a set of LMIs, which can be solved numerically. Fi-
nally, the state-space representation of the LPV control
K(ρK , yK) is constructed (Wu et al. [1996], Sename et al.
[2013]), which leads to the control input uK . The input
signal uK is incorporated in the computation of u together
with the selection of ρL, ∆L. The control rule results in
that the minimum performance level of the closed-loop
system is determined by K(ρK , yK).

Iterative control design and domain selection

The optimization problem (12) shows that the resulted
controller depends on the domains �K ,ΛK . If the ranges
of the domains are selected small, uL is often saturated by
the boundaries of the domains, see (5). But, if the ranges
have insufficiently high values, the resulted LPV controller
can be conservative and the tracking performance level
is reduced. Thus, it is necessary to find a balance in the
selection of the domain, which is based on an iteration
process.

The goal of the iteration is to fit the velocity of the vehicle
ξ̇ on the velocity of a reference vehicle ξ̇L, which has the
control input uL. In this concept the reference vehicle has
the ability to move by the eco-cruise controlled strategy.
Through the optimization the domains are selected to
approximate the motion of the vehicle to the motion of
the reference vehicle as

min
ρL,min, ρL,max

N∑
j=1

|ξ̇L,j − ξ̇j |, (13)

where j expresses the time step and N is the length of a
given scenario. Using the results of (13) the boundaries of
the domain ΛL = [∆L,min; ∆L,max] are computed based
on the rule (4) as

∆L,min = min
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uL − ρL,minuK

)
, (14a)

∆L,max = max
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uL − ρL,minuK

)
. (14b)

The solution of the optimization problem (13) begins with
domains with high ranges, which are reduced through the
following iteration process.

(1) The domains �L = [ρL,min; ρL,max] and ΛL =
[∆L,min; ∆L,max] are selected high in the first step,
which can result in a conservative LPV controller.

(2) The LPV control with the selected domains is de-
signed using (12).

(3) The closed-loop system with the incorporation of the
designed K(ρK , yK) and the domains �L, ΛL are
analyzed through various scenarios. It yields in the
signals ξ̇ref and ξ̇, from which the cost in (13) for the
scenario is calculated.

(4) Due to the results of the scenarios the boundaries
are modified to reduce the cost function of the opti-
mization problem (13). The setting of the optimiza-

tion variables can be performed through e.g. simplex
search or trust-region-reflective methods, see Lagarias
et al. [1998], Coleman and Li [1996].

(5) The LPV design, the scenarios and the evaluation
(steps 2-4) are performed until the minimum of (13)
is reached.

The results of the entire iteration process are the robust
LPV controller K(ρK , yK) and the domains �L, ΛL. The
optimization processes (12) and (13), together with the de-
sign of F are performed off-line, with which the quantity of
the on-line computation is significantly reduced, compared
to the classical optimal eco-cruise control strategies.

4. SELECTION OF THE VALUES FOR SCHEDULING
VARIABLES AND MEASURED DISTURBANCE

The selection strategy of ρL and ∆ is based on the relation
between uL and uK , see (4). During the selection of ρL, ∆L

various criteria must be guaranteed, while the constraints
ρL ∈ �L, ∆L ∈ ΛL are satisfied.

(1) The control input u must be as close as possible to
uL, which leads to the objective

|u− uL| → min. (15)

Through (15) the traction force intervention of the
eco-cruise control system is close to the machine-
learning-based intervention, which is required if the
performance of the machine-learning-based control is
acceptable.

(2) The control signal u must be in the set of the
robustness, which can be expressed as

∆ = u− uK = (ρL − 1)uK +∆L. (16)

The robustness of the closed-loop system is guaran-
teed, if ∆ is bounded with a predefined value ∆max,
which is incorporated in the robust control design.
Thus, the following constraint during the selection of
ρL, ∆L must be satisfied:

|(ρL − 1)uK +∆L| ≤ ∆max. (17)

The criterion (17) can be transformed as[
−uK −1
uK 1

] [
ρL
∆L

]
≤

[
∆max − uK

∆max + uK

]
(18)

(3) In the scenarios, when uL is unacceptable, the in-
tervention uK,i is preferred. The selection of ρL =
1,∆L = 0 guarantees the criterion (17) and u = uK

is achieved, which leads to the objective

|ρL − 1| → min, (19a)

|∆L| → min. (19b)

The formulated objectives and constraints can be trans-
formed into the following optimization task, whose results
are ρL, ∆L. The objective function contains (15) and (19),
such as

Q1(u− uL)
2 +Q2

(
(ρL − 1)2 +∆2

L

)
, (20)

which can be transformed to a quadratic optimization form
through the relation u = ρLuK +∆L. Using the constraint
(17) and the bounds on ρL,∆L, the following optimization
problem is yielded

min
ρL,∆L

[
ρL
∆L

]T
β

[
ρL
∆L

]
+ ωT

[
ρL
∆L

]
(21a)

subject to[
−uK −1
uK 1

] [
ρL
∆L

]
≤

[
∆max − uK

∆max + uK

]
(21b)

ρL ∈ �L (21c)

∆L ∈ ΛL, (21d)

where

β =

[
Q1u

2
K +Q2 Q1uK −Q2

Q1uK −Q2 Q1 +Q2

]
, (22a)

ωT =

[
−2Q1uLuK

−2Q1uL

]
. (22b)

The weights Q1, Q2 have high importance to guarantee
the priority between (15) and (19). Since the (15) leads to
u → uL, while (19) results in u → uK , both criteria cannot
be satisfied simultaneously. Criterion (15) has importance,
when uL is acceptable and (19) has relevance in the further
scenarios. Focusing on the problem of eco-cruise control
system, uL is acceptable, when the safety criteria on the
velocity profile of the vehicle is guaranteed, such as

ξ̇ ∈ [ξ̇min; ξ̇max], (23)

where ξ̇ is the velocity of the vehicle. ξ̇min, ξ̇max values
represent the domain, in which the velocity of the vehicle
is acceptable. These values are determined by the velocity
limits on the road sections, from which ξ̇ can vary in a
predefined range.

The criterion (23) is built in the selection of Q2 by the
following way

Q2 �




0, if ξ̇ ∈ [ξ̇∗min; ξ̇
∗
max]

Q∗
2

ξ̇∗min−ξ̇

ξ̇∗
min

−ξ̇min
, if ξ̇ /∈ [ξ̇min; ξ̇

∗
min]

Q∗
2

ξ̇−ξ̇∗max

ξ̇max−ξ̇∗max

, if ξ̇ /∈ [ξ̇∗max; ξ̇max]

Q∗
2, if ξ̇ /∈ [ξ̇min; ξ̇max]




, (24)

where ξ̇∗min > ξ̇min and ξ̇∗max < ξ̇max are design param-
eters and Q∗

2 is the maximum value of Q2. Q
∗
2 must be

selected to be significantly higher than Q1, which guar-
antees that has high priority against (15) in unacceptable
scenarios (19).

5. ILLUSTRATION OF THE ITERATIVE DESIGN

In this section the effectiveness of the proposed method
for eco-cruise control is illustrated through simulation
examples. In the simulations three control strategies are
compared, such as the optimization-based eco-cruise con-
trol (Gáspár and Németh [2019]), the machine-learning-
based control F with input uL and the proposed robust
LPV-based control strategy. The training set for F and
the scenarios for the iterative LPV control design have
been generated by vehicle dynamic simulations on var-
ious European freeway sections. The dynamic model of
the vehicle is based on the parameters of a conventional
passenger car. The aim of the examples is to show that
the proposed method is able to guarantee that the velocity
profile of the vehicle is inside of a predefined range, even
at the performance degradation of the machine-learning-
based control.

Figure 2 shows an example on a section of the Hungarian
freeway M1 between Budapest and Vienna with 90km/h
velocity limitations between 8.2km . . . 13.5km. This route
is contained by the training set of F . The velocity signals
in Figure 2(b) illustrates that the training process and also
the iteration process have been successful. The resulted ve-
locity profile with the machine-learning-based control and
with the LPV-based control are close to the velocity with
the original eco-cruise control, see Figure 2(b). It resulted
that the difference in the driving energy of the original
eco-cruise control and the proposed control strategy is
only 1.75%. Thus, the proposed control strategy is able to
achieve the same performance level in the velocity selection
with significantly less on-line computation requirement.
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Fig. 2. Simulation scenario on the freeway section of M1

Another example on the effectiveness of the LPV-based
control strategy is illustrated in Figure 3. In this scenario
the vehicle is driven along a section of the French freeway
A36 between Mulhouse and Belfort (Figure 3(a)) with
varying velocity limitations between 80km/h . . . 130km/h.

In the simulation ξ̇min, ξ̇max are selected as −20%,+5%
variation compared to the actual velocity limit. This sce-
nario contains several road sections, which are out of
the training set of F . Therefore, the velocity profile with
the machine-learning-based control can significantly dif-
fer from the velocity with the original eco-cruise control.
It also results in critical situations, when the vehicle is
stopped on the freeway (Figure 3(b)) due to unacceptable
uL, see Figure 3(c) around 12km. Nevertheless, the pro-
posed robust LPV-based control strategy is able to handle
the performance degradation via the appropriate selection
of Q2. Figure 3(b) shows that the velocity with the ro-
bust LPV-based control is close to the velocity with the
optimization-based control during the entire simulation.
The significant reduction of the velocity can be avoided
through the limitation of ∆L and ρL, see Figure 3(d)-(e).

6. CONCLUSIONS

The proposed robust LPV-based control strategy is able
preserve the benefits of the machine-learning-based agent
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(c) Longitudinal control force intervention
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Fig. 3. Simulation scenario on the freeway section of A36

in the eco-cruise control. The resulted LPV-based eco-
cruise control requires low quantity of on-line optimiza-
tion, which facilitates the implementation of the method.
The expensive computation processes, such as the learning
and the iterative control design are performed off-line.
Simultaneously, the minimum performance level of the
controlled system is successfully guaranteed, even at the
degradation of the machine-learning-based agent of it.
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