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Abstract: The dissipativity framework is widely used to analyze stability and performance of
nonlinear systems. By embedding nonlinear systems in an LPV representation, the convex tools
of the LPV framework can be applied to nonlinear systems for convex dissipativity based analysis
and controller synthesis. However, as has been shown recently in literature, naive application
of these tools to nonlinear systems for analysis and controller synthesis can fail to provide
the desired guarantees. Namely, only performance and stability with respect to the origin is
guaranteed. In this paper, inspired by the results for continuous-time nonlinear systems, the
notion of incremental dissipativity for discrete-time nonlinear systems is proposed, whereby
stability and performance analysis is done between trajectories. Furthermore, it is shown how,
through the use of the LPV framework, convex conditions can be obtained for incremental
dissipativity analysis of discrete-time nonlinear systems. The developed concepts and tools are
demonstrated by analyzing incremental dissipativity of a controlled unbalanced disk system.
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1. INTRODUCTION

Stability and performance analysis are important tools to
analyze quantitative properties of the behavior of a system
and for the formulation of control synthesis algorithms.
Many of these tools that are currently used in industry
still rely on the systematic results of the Linear Time-
Invariant (LTI) framework. Most notably, the dissipativ-
ity framework introduced in Willems (1972) allows for
the simultaneous analysis of stability and performance of
dynamical systems. These results form the cornerstone for
many of the powerful and computationally efficient Lin-
ear Matriz Inequality (LMI) based analysis and synthesis
procedures that exists for LTI systems, e.g. Ho and Ho
based analysis and control, see Scherer and Weiland (2015)
for an overview. However, as performance demands and
system complexity are ever increasing in many application
fields, the ability for LTI methods to cope with these
systems is getting increasingly more difficult. Hence, the
use of nonlinear analysis and control methods has become
of increasing interest over the last decades. Nevertheless,
many of the existing nonlinear control methods only focus
on ensuring stability of the closed-loop system and hence
have no systematic way to incorporate performance shap-
ing, as available in the LTI case. While some dissipativity
based results for £, performance and passivity analysis of
nonlinear systems exist (Van der Schaft (2017)), they are
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often cumbersome to use, requiring expert knowledge. The
Linear Parameter-Varying (LPV) framework (Shamma
(1988)) sought to overcome some of these issues by ex-
tending the results from the LTI framework to be used
with LPV models, see Hoffmann and Werner (2015) for an
overview. By embedding the behavior of a nonlinear sys-
tem in an LPV representation (Téth (2010)), and in turn
trading complexity of the problem for conservativeness of
the results, the convex analysis and synthesis results to
ensure stability and performance of the LPV framework
could easily and systematically be applied to nonlinear
systems.

However, in recent research it has been pointed out that
in some cases the results of the LPV framework fail
to provide the desired guarantees in order to analyze
or synthesize controllers for nonlinear systems (Scorletti
et al. (2015); Koelewijn et al. (2020)). Namely, the LPV
framework is only able to guarantee asymptotic stability
for the origin of the nonlinear system, hence, e.g. in the
case of disturbance rejection and/or reference tracking
this is violated. The core issue of this is the use of the
classical dissipativity framework, which expresses stability
of only the origin of the system. For LTI systems, such
classical dissipativity also implies stability of other forced
equilibria, while for nonlinear systems this is not the case.
Hence, in order to have a general stability and performance
analysis framework for nonlinear systems an equilibrium
independent notion of stability and dissipativity needs to
be adopted.
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Incremental stability (Angeli (2002)), convergence (Pavlov
et al. (2006)) and contraction (Lohmiller and Slotine
(1998)) are such equilibrium independent stability notions,
whereby stability of the differences between trajectories
or of the variation along trajectories is considered. In-
cremental and differential (based on contraction) notions
of dissipativity have also been considered which can be
thought of as modeling the energy storage between or
along trajectories analogous to the standard dissipativity
framework modeling the energy storage with respect to
single point of neutral storage. For Continuous-Time (CT)
nonlinear systems these results are discussed in Verhoek
et al. (2020). These methods have also been developed into
convex LPV based control methods, and have successfully
been applied to reference tracking and disturbance rejec-
tion of nonlinear systems (Scorletti et al. (2015); Koelewijn
et al. (2019)).

The aforementioned results on equilibrium independent
stability and dissipativity analysis offer great potential to
provide convex tools for nonlinear controller synthesis but
are currently limited to CT nonlinear systems. Neverthe-
less, most control algorithms are implemented digitally,
hence, analysis and control of Discrete-Time (DT) systems
plays an important role. Moreover, the recent resurgence in
data-based methods for analysis and control of nonlinear
systems also rely on DT systems analysis. While incre-
mental and contraction based stability results have been
extended to DT domain, see e.g. Tran et al. (2018), similar
extensions to incremental dissipativity have not yet been
made to the authors’ knowledge. Hence, in this paper the
main contribution is to propose an extension of the CT
incremental dissipativity results to DT nonlinear systems,
analogous to results in Verhoek et al. (2020), and propose
LPV based convex tools to carry out the analysis.

The paper is structured as follows. In Section 2, a formal
problem statement is given. In Section 3, incremental
dissipativity for DT systems is discussed and as our main
contribution, sufficient analysis conditions are derived to
guarantee it. Section 4 gives results on how the analysis
results of Section 3 can efficiently be tested through
the LPV framework. In Section 5, as an example, the
theoretical results are applied to incremental dissipativity
analysis of a closed-loop discrete-time system. Finally,
in Section 6, conclusions are drawn and future research
recommendations are given.

1.1 Notation

The set of natural numbers including zero is denoted
by N. The set of real numbers is denoted by R, where
the subset R™ C R corresponds to the non-negative real
numbers. The set of real symmetric matrices of size n
by n is denoted by S™. The space of square-summable
real valued sequences N — R is denoted by /5, with

Yol (k)]
Euclidian (vector) norm. A function f is of class C,, i.e.
f € C,, if it is n-times continuously differentiable. The
set of functions or sequences from X to Y is denoted
by YX. The column vector [xlT xZ]T is denoted as
col(z1, ..., zy,). The notation A > 0 (A > 0) indicates that
A is positive (semi-)definite while A < 0 (A < 0) means
that A is negative (semi-)definite. A function «a(z) with
x € X is positive (semi-)definite if a(z) > 0 (a(z) > 0),

the norm ||z, = , where ||-|| denotes the

Vz € X\{0} and a(0) = 0 and is negative (semi-)definite
if a(z) < 0 (a(x) <0), Vo € X\{0} and «(0) = 0. The
term that makes a matrix symmetric is denoted by (%), e.g.
(%) TQz = 2T Qx. Projection of elements or sets is denoted
by 7., where e.g. 7y ,(2,y,2) = (z, 2).

2. PROBLEM STATEMENT

Consider a nonlinear discrete-time (DT) dynamic system
z(k+1) = f(z(k), w(k)); (la)

(k) = h(x(k), w(k)); (1b)

x(0) = zo; (1c)

where z(k) € X C R™ is the state with initial condition
xg € X, w(k) € W C R™ is the generalized disturbance,
z(k) € Z C R™ the generalized performance and k € N
is the discrete-time instant. The sets X, W and Z are
open and convex, containing the origin. The solutions of
(1) satisfy (1) in the ordinary sense and are restricted to
k € N. The functions f : X x W — X and h : X x
W — Z are assumed to be Lipschitz continuous, such
that f(0,0) = 0 and h(0,0) = 0, and such that for
all initial conditions xy € X there is a unique solution
(z,w,2) € (X x W x Z)N. We define the set of solutions

of (1) as
B = {(:z:,w,z) € (X xWx2)N|
(z,w, z) satisfies (1)} (2)

Furthermore we define the state transition map ¢y : N x

N x X x WN — X, such that

I(k) :¢x(kak07x07w)a (3)
which is the state x(k) € X at discrete-time instant k € N,
with k& > kg, when the system is driven from xg € X at
time instant ko € N by input signal w € WY,

In order to simultaneously analyze performance and sta-
bility of nonlinear systems, dissipativity theory is widely
used, which has its roots in Willems (1972) for continuous-
time systems and has also been extended to DT systems,
see Byrnes and Lin (1994).

Definition 1. (Dissipativity (Byrnes and Lin (1994))).

A system of the form (1) is dissipative with respect to the
supply function s : W x Z — R if there exists a positive
definite storage function V : X — R* with V(0) = 0 such
that for all ¥ € N and (z,w, z) € B

Vi(z(k +1)) = V(z(k)) <

or equivalently, for all k € N, (z, w,
V(z(k+1)) = V(o) <

s(w(k), z(k)), (4)
z)€PBand zg € X

Z (w(j), 2(7))- ()
j=

Performance notions such as the 1nduced {2-gain and pas-
sivity of DT nonlinear systems can be analyzed by specific
choices of the supply function s (Van der Schaft (2017);
Scherer and Weiland (2015)). Furthermore, under some
restriction of the supply function, dissipativity implies
stability of the uncontrolled system.

Theorem 2. (Stability). If a system of the form (1) is dissi-
pative, according to Definition 1, with continuous positive
definite storage function V' and the supply function s satis-
fies that s(0,2) < 0, Vz € Z (negative semi-definite), then,
the origin, i.e. = 0, is a stable equilibrium point of (1).
In case s satisfies that s(0,2) < 0, Vz € Z\{0} (negative
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definite) and s(0,0) = 0 the origin is an asymptotically
stable equilibrium point.

Proof. If the system is dissipative with continuous posi-
tive definite storage function V and s(0,2) <0,Vz € Z it
holds from (4) that

V(z(k+1)) —V(z(k)) <0. (6)
Hence, the systems satisfies the condition for stability,

see Kalman and Bertram (1960), and V is a Lyapunov
function. Asymptotic stability can be proven similarly. O
Remark 3. The supply functlons corresponding to e.g.
ly-gain, s(w, 212 = 7?2 ||w k‘)r” — |l2(k)||?, and passivity,
s(w, z) = z(k) "w(k)+w(k ), satisfy the assumptions
on the supply function taken 1n Theorem 2.

As mentioned in the introduction, the standard dissipa-
tivity framework only analyzes the internal energy of the
system with respect to a single storage (equilibrium) point,
often taken as the origin of the state-space associated with
the nonlinear representation. However, it is often of intere-
sest to analyze a set of equilibrium points/trajectories, e.g.
in the case of reference tracking or disturbance rejection,
which is cumbersome to be performed with the standard
dissipativity results. Equilibrium independent dissipativ-
ity notions such as incremental dissipativity allow to effi-
ciently handle these cases. Incremental dissipativity is an
extension of the dissipativity results which takes into ac-
count multiple trajectories of a system and can be thought
of as analyzing the energy flow between trajectories. The
corresponding theory for CT nonlinear systems has been
developed in Verhoek et al. (2020); Van der Schaft (2017).
Next, we propose analogous results for incremental dissi-
pativity of DT nonlinear systems.

3. INCREMENTAL STABILITY AND
PERFORMANCE ANALYSIS

3.1 Incremental Dissipativity

Similar to the incremental dissipativity definition for CT
systems in Verhoek et al. (2020) we define incremental
dissipativity of DT nonlinear systems as follows:

Definition 4. (Incremental Dissipativity). A system of the
form (1) is incrementally dissipative with respect to the
supply function s : W x W x Z x Z — R if there exists a
storage function V : X x X — Rt with V(z,2) = 0 such
that for all k € N and (z,w, 2), (Z,w, 2) € B

V(z(k+1),2(k+1)) — V(x(k), (k) <
s(w(k),w(k),z(k), 2(k)), (7)
or equivalently, for all k € N, (z,w, 2),(Z,w,2) € B and

xo,fo cX
V(LL‘(/C + 1),@(/€ + 1)) — V(l‘o,:i‘o) S
k
> s(w(5), w(), 2(5), 2(7)). (8)
j=0

Similar to standard dissipativity, incremental dissipativity
also implies stability of the nonlinear system under some
restrictions of the supply function.

Theorem 5. (Incremental stability). If a system of the
form (1) is incrementally dissipative according to Defini-
tion 4 with a continuous storage function V' and the supply
function s satisfies that s(w,w,z,2) < 0,Vw € W and

Vz,2 € Z,z # Z (negative definite) and s(w,w,z, z) =
0,Vw € W,z € Z, then, the system is incrementally
asymptotically stable.

Proof. If s(w,w,z,2) <0,YVweWandVzz2€ Z, z# 2
and s(w,w,z,z) < 0,Vw € W,z € Z it holds from (7)
that for all k € N and z,% € 7B, = # &,
Vie(k+1),2(k+1)) — V(x(k),z(k)) <O0. (9)
Hence, the systems satisfies the conditions for incremental
asymptotic stability, see Tran et al. (2018), and V is an
incremental stability Lyapunov function. Similar results
implying (non-asymptotic) stability can be formulated for
the case that s(w,w,2,2) < 0,Vw € W, 2,2 € Z, 2 # 2
(negative semi-definite), see Van der Schaft (2017). O

In this work we will focus on supply functions of the form

AT _

swaza =07 [E A 02E o
where Q € S"v, R € S and S € R™*"=, We focus on
this particular family, often referred to as (incremental)
(Q,S,R) supply functions, as they allow formulation of
many useful performance notions, such as incremental
versions of £s-gain performance and passivity. Now we are
ready to state our main result.

Theorem 6. (Incremental (Q,S,R)-dissipativity). A system

of the form (1) with f,h € C; is incrementally (Q,S,R)-

dissipative, w.r.t. a supply function s given by (10) with

R < 0or R =0, if there exists a storage function
V(z, %) = (z — )" Pz — &),

with P > 0, such that for all (z,w) € X x W

e ] |0 ] [astea) B -

(1)

[05(2,111) Da(ﬂlxw)} [SQT }S%} [Cg(g,w) Dé(i’w)] =0,

(12)
where
As(z,w) = g—x(;mw), Bs(z,w) = g—i(x,w),
oh oh (13)
Cs(z,w) = %(x,w), Ds(z,w) = 8—w(x,w)

Proof. According to Definition 4, the system (1) is dis-
sipative with respect to a supply function s if (7) holds
for all £ € N and (z,w,z),(Z,w,2) € B. Hence, (1)
is incrementally (Q,S,R)-dissipative if for all k& € N and
(z,w,z2),(Z,w,2) € B it holds that, omitting dependence
on time for brevity,

Ay [(z — )Pz — )] - (w- )" Q(w — b)—
20w —w)"S(z—2) —(2—2)"R(z—2) <0, (14)
where Ay is the discrete-time difference operator, defined
as Agv(k) = v(k + 1) —v(k). For (x,w,2),(Z,w, Z) € B,
define the initial conditions as x(0) := z¢ and Z(0) := Ty

respectively, such that x(k) = ¢« (k,0,zo,w) and Z(k) =
¢« (k,0,Zg,w). Then, define
Zo(A) 1= Zo + Ao — Zo), (15)
w(k, \) == w(k) + Mw(k) — w(k)), (16)
with A € [0,1] and
T(k, ) := ¢x(k,0,Z0(A), w(N)), (17)
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such that (Z(k),w(k) = (z(k,0),w(k,0)) and

(x(k),w(k)) = (Z(k,1),w(k,1)). The dynamics of Z(\) are
then given by

Tk +1,0) = f(z(k,A), w(k, A)); (18a)

Z(k, A) = h(z(k, A), w(k, A)). (18b)

The first term on left hand side of inequality (14) can then
be expressed as

Ax [(z(k, 1) — 2(k,0)) " P(z(k, 1) — 2(k,0))] . (19)
Using the Fundamental Theorem of Calculus, (19) can be
expressed as

Ay [(/ dz(k, \) d)\) (/ dz(k, \) dA)] (20)

where 6z (k, A) = Z-2(k,\). As P = 0, by Lemma 16, see
Appendix A, it hol st hat

([ simre) o(f e

/ A [0x(k,\) T Pox(k,\)] dX.  (21)
0

Ay

The second term on the left-hand-side of inequality (14)
can be expressed, using (16), as

— (w(k,1) — w(k,0)) " Q(w(k,1) — w(k,0)) =
- /0 (@ (k, 1) — @k, 0) T Q@ (k, 1) — @k, 0)) d\

_/1 Sw(k,\) " Qow(k,\)dX, (22)
0

where sw(k,\) = Zw(k,\) = w(k) — w(k) (by definition
(16)). The third term in (14) can similarly be expressed as

— 2(w(k, 1) — @(k,0)) " S(z(k, 1) — 2(k,0)) =
— 2(w(k, 1) —w(k,@))TS/ 5z(k, N), d\ =
0

—2/1 Sw(k,\)TS6z(k,\)d\, (23)
0

where §z(k,\) = Zz(k, ). Finally, the fourth term in
(14) can be expressed as

— (2(k, 1) = 2(k,0)) T R((k, 1) — 2(k,0)) =

(/01 82(k, A) dA)T (—R) (/01 §2(k, ) dA) (24

Assuming that R < 0 or R =0, hence, —R > 0 or —R =0,
by Lemma 16 it holds that

(/01 6z(k, ) cl/\>T (—R) (/lgz(h)\) dA) <

/ 82(k, \)(—R)52(k, \) d\.

Combining the results of (21), (22), (23) and (25), we
obtain that, omitting dependence on time for brevity,

Ay [(z - B Pz — )] —(w- D) Q(w — )—
20w —w)"S(z—2)—(2—2)"R(z— %) <
/O A [62(N) T Poz(N)] — dw(N) T Qéw(N)—
20w(\) T S62(\) — 62(A)Rz(\) dA

(25)

(26)

Hence, if it holds that
1
/ A [02(k, \) T Péx(k, \)] — sw(k, \) T Qow(k, \)—
0

20w(k, \) " S8z(k, \) — 62(k,\) T ROz(k, ) d\ <0, (27)
then, condition (14) holds, meaning the system is incre-
mentally (Q,S,R)-dissipative. Furthermore, (27) holds if

A [02(k, ) T Péx(k,\)] — sw(k,\) " Qow(k, \)—
20w(k, \) T S0z(k, \) — 0z(k, \) T RS2(k,\) < 0. (28)

As f,h € Cq, taking the derivative w.r.t. A for (18) results
in

dx(k +1,\) = As(Z(k, \), w(k, X))oz (k, \)+
Bs(Z(k, ), w(k, X))dw(k, \); (29a)

5z2(k,\) = Cs(z(k, \), w(k, X))z (k, \)+
Ds(z(k,\), w(k,\))ow(k,\).  (29b)

Hence, (28) can be written, omitting dependence on time
for brevity, as

(x) " P(As(Z,w)0x + Bs (%, w)ow) — dx ' Pdx—
dw' Qdw — 26w’ S(Cs(z,w)dx + Ds(z,w)0w)—

(%) T R(C5(z, w)dx + Ds(&,w)éw) <0, (30)
which should hold for all ¥ € N and (z,w,z) € B. By
Willems (1972), condition (30) can equivalently be checked
by verifying (30) on the value set, hence, checking (30) for
all dx € R™ jw € R™, z € X and w € W implies that

(30) holds for all ¥ € N and (Z,w, Z) € B. Consequently,
(30) holds if

O [_()P Jg} [A(;(:i,w) Bé(ng):| [‘?ﬂ -

()" [SQT zb;] [05<2,w> Da(;wﬂ {gﬂ <0, (1

holds for all dx € R™, dw € R™ =z € X, and w € W.
Hence, equivalently, (31) holds if for all z,w € X x W
condition (12) holds. Consequently, if condition (12) holds,
condition (14) holds, which in turn implies that the system
is incrementally (Q,S,R)-dissipative. O

Remark 7. Like in the CT case in Verhoek et al. (2020),
the DT incremental dissipativity condition derived in
Theorem 6 can be related to differential dissipativity and
contraction analysis as we will show. Namely, based on the
original nonlinear system (1), which we will refer to as the
primal form of the system, with f,h € C;, we formulate
the system
6x(k +1)| _ [As(z(k), w(k)) Bs(x(k), w(k))| |dz(k)
0z(k) | [Cs(x(k), w(k)) Ds(x(k), w(k))] |dw(k)]|’
(32)
where (z,w,z) € B, dz(k) € R™, dw(k) € R™ and
0z(k) € R™, often referred to as the differential form of the
system, see Verhoek et al. (2020), or variational dynamics,
see Crouch and Van der Schaft (1987). It is straightforward
to derive that “standard dissipativity”, see Definition 1,
of the differential form (32), referred to as differential
dissipativity, is equivalent with verifying condition (12)
in Theorem 6. This is exploited in the next sections to
arrive at computationally efficient checks for incremental
dissipativity. See also Tran et al. (2018) and references
therein for more information on differential stability and
contraction analysis of DT systems.
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3.2 Nonlinear Performance

Using standard (Q,S,R)-dissipativity, many useful perfor-
mance notions can be retrieved such as f2-gain perfor-
mance and passivity. As we will show, incremental ver-
sions of these performance notions can be introduced and
analyzed using the results of Section 3.

Incremental l5-gain

Definition 8. ({i2-gain). A nonlinear system of the form
(1) is said to have a finite incremental fo-gain, denoted
as flip-gain, if for all w,w € ¥ and zp,Ty € X, with
(z,w,2),(Z,w,2) € B, there is a finite v > 0 and a
function {(x,Z) > 0 with {(x,2) = 0 such that

12 = Zlly < v llw — @l + ((0, o). (33)

The induced fjo-gain of the system is the infimum of ~y
such that (33) still holds.

Next we will show how the {i2-gain of a NL system (1) can
be analyzed using the results of Theorem 6.

Lemma 9. ({;2-gain through incremental dissipativity).

A nonlinear system of the form (1) has a finite #;3-gain of
7 if it is incrementally (Q,S,R)-dissipative with Q@ = 21,
S=0and R=—-1I.

Proof. If a nonlinear system of the form (1) is incre-
mentally (Q,S,R)-dissipative with Q@ = %I, S = 0 and
R = —1I, it holds that there exists a positive definite
storage function V : X x X — Rt with V(z,z) = 0 such
that for all k € N, (z,w, 2), (Z,w,2) € B and z,To € X
V(z(k+1),2(k + 1)) = V(zo, Zo) <
k

272(10(3') = (7)) (w(j) — w(3))
- = (2(5) = 2()) " (2(7) = 2(5)).  (34)

If the system is incrementally (Q,S,R)-dissipative with
Q =~%*,S = 0and R = —1I, it is also incrementally
stable, as R < 0 which implies that s(w, w, z, Z) is negative
definite, see Theorem 5. Hence, limy_, ||z(k) — Z(k)|| =
0. Therefore, limy_,o V(z(k + 1),2(k + 1)) = 0, as
V(z,z) =0, and (7) becomes

= V(wo,%0) < Y7 (w(j) — @()) " (w(f) — d(j))
j=0

— (2() = 2G) " (=(5) — 2())-
which can be written as
Iz = 2l <72 Jw = @[5 + Vzo, 7). (36)
Hence, this implies that there exist a ((z,Z) > 0 with
((z,x) = 0 such that (33) holds (Van der Schaft (2017)).
O
Theorem 10. (¢;2-gain analysis). A nonlinear system of
the form (1) with f,h € C; has a finite fj-gain of v if
there exists a P > 0 such that for all z € & and w € W
p A(;(:l:,w)p B(;(I,’LU) 0
PAJ (z,w) P 0 PCy{ (x,w)
By (z,w) 0o Al D] (z,w)
0 Cs(xz,w)P Ds(x,w) ~I

(35)

=0. (37)

Proof. Based on Lemma 9, a nonlinear system of the
form (1) has a finite £j2-gain if it is incrementally (Q,S,R)-
dissipative with Q@ = %I, S = 0 and R = —I. Further-
more, based on Theorem 6 a nonlinear system of the form

(1) with f,h € C; is incrementally (Q,S,R)-dissipative,
where R < 0 or R = 0, with a storage function of the
form (11) if (12) holds. For {i2-gain analysis, R = —I < 0,
hence, we can use Theorem 6. Combining these results
gives us that in order for (1) to have a finite {;>-gain the
following condition needs to be satisfied: there exists a
P = 0 such that for all (z,w) € X x W

[A5<§,w> Bé<g,w>]T [_op 103} [Aé(i’w) Ba(ng)} -

|:06(2,w) Da(fg’w)]T [7;-’ _OI] [05(2,10) Da(i,w)} =0.

This condition can simply be rewritten into (37) by
defining P = «P~!, taking a Schur complement and
applying a congruence transformation. O

Incremental passivity — Similar to the definitions in
Van der Schaft (2017); Verhoek et al. (2020) we define
(DT) incremental passivity as follows:

Definition 11. (Incremental passivity). A nonlinear sys-
tem of the form (1) is said to be incrementally passive if it
is incrementally dissipative, see Definition 4, with respect
to the supply function
s(w,,2,2) = (w—1)" (2= 2)+ (2 — 2) " (w—w). (39)
Theorem 12. (Incremental passivity analysis). A nonlinear
system of the form (1) with f,h € C; is incrementally
passive if there exists a P > 0 such that for all x € X and
we W
P Al (z,w)P Cy (z,w)
PAs(z,w) pP PBjs(xz,w)
Cs(z,w) By (z,w)P Ds(z,w)+ Dg (z,w)

> 0. (40)

Proof. According to Definition 11, a system of the form
(1) is incrementally passive if it is incrementally dissipative
with respect to the supply function s given by (39). This
supply function can also be written in (Q,S,R) form, see
(10), by taking @ = 0, S = —I and R = 0. By using
the results of Theorem 6, and filling in Q = 0, S = —1
and R = 0 in condition (12), it can simply be rewritten
into (40) by taking a Schur complement and congruence
transformation. m|

Remark 13. Note that the obtained conditions for fio-
gain and incremental passivity analysis result in checking
positive semi-definiteness of a matrix, while in literature
these, or similar conditions, are often found as positive
definiteness checks. The positive definite versions of the
conditions can simply retrieved by making the incremental
dissipativity check strict, i.e. changing < to < in (7), which
then imply the strict versions of the conditions found in
this paper.

4. CONVEX ANALYSIS USING THE LPV
FRAMEWORK

As shown in Section 3, the condition for incremental
dissipativity can be written in terms of LMIs which needs
to be checked for infinitely many pairs (z,w) € X x
W. This is similar to the problem for performance and
stability analysis of LPV systems where LMIs need to be
checked for infinitely many values of a scheduling-variable
p € P C R". Hence, we make use of the developed LPV
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approaches to make the proposed incremental dissipativity
conditions computationally feasible.

As we have shown in Section 3 the resulting incremental
dissipativity conditions for a system (1) are related to
standard dissipativity of its differential form (32). Hence,
we embed the differential form of the nonlinear system in
an LPV model.

Definition 14. (LPV embedding). Assume we have a non-
linear system of the form (1) with f,h € C; and with
differential form given by (32). The LPV state-space model
given by

5] = [l ][] v

where p(k) € P C R™ is the scheduling-variable is an
LPV embedding on the compact convex region 2 x #
of the differential form (32) if there exists a function,
called the scheduling-map, ¢ : R™ x R™ — R™ such
that under a given choice of function class for A, ..., D,
e.g. affine, polynomial, etc., A(¢(z,w)) = As(z,w), ...,
D(y(xz,w)) = Ds(z,w) for all z € 2, w € # and
W(Z, W) C P where P is a (minimal) convex hull with
n vertices. By specific choice of the embedding region
X x W, either the full state-space can be embedded of
the original NL model (1) in which case 2" X # 2D X x W
or part of the state-space can be embedded, in which case

X xW CXxW.

Theorem 15. (Incremental Dissipativity LPV Analysis).
Assume a system of the form (1) with f,h € C; and
with an LPV embedding on the compact region 2~ x #
of its differential form given by (41), see Definition 14,
with scheduling-variable p, scheduling-map @ and such
that ¢(2Z x #) C P. The system (1) is incrementally
(Q,S,R)-dissipative, on the region 2" x # with respect to
the supply function s, given by (10) with R < 0 or R = 0,
and with storage function V given by (11) with P > 0, if
forall pe P

sty 5] [ 9] [ 5] -

[C(()p) Dfp)]T [SC”QT Ii] [C(()p) Dfp)] 20

Proof. A system of the form (1) with f,h € Cp is
incrementally (Q,S,R)-dissipative on the region 2~ x #/,
there exists a P > 0 such that, for all (z,w) € " x ¥,
condition (12) holds. As p € P and ¥(Z,#) C P,
checking whether there exists a P > 0 such that for all
p € P condition (42) holds implies that for all (z,w) €
2 x W condition (12) holds.

(42)

The resulting condition that needs to be checked for in-
cremental (Q,S,R)-dissipativity using the LPV framework
in Theorem 15 is similar to the condition that needs
to be checked for standard (Q,S,R)-dissipativity of DT
LPV systems, see e.g. the f3-gain results in Apkarian
et al. (1995); De Oliveira et al. (2002). Note however the
proposed incremental dissipativity analysis uses an LPV
embedding of the differential form (32), while standard dis-
sipativity analysis uses an LPV embedding of the primal
form (1). As the proposed analysis results for incremental
(Q,S,R)-dissipativity can be casted a standard (Q,S,R)-
dissipativity analysis problem of an LPV system, all of

the techniques to reduce the evaluation of an infinite set
of LMIs to only checking a finite set of LMIs from the
LPV framework can be used. Often for this, A, ..., D are
needed to be restricted to an affine function in the embed-
ding (41). The most common techniques are polytopic,
multiplier or gridding-based approaches, see Hoffmann
and Werner (2015) for an overview. Although the same
tools from the LPV framework can be used for check-
ing incremental dissipativity and ‘standard’ dissipativity
of nonlinear systems, we would like to stress that the
underlying dissipativity and stability concepts are very
different. Namely, using the incremental dissipativity tools
developed in this paper, global stability and performance
guarantees can be given for the nonlinear system, while
standard dissipativity tools can only provide performance
and stability analysis with respect to single equilibrium
point, often the origin of the state-space representation of
the nonlinear system.

5. EXAMPLE

In this section, we apply the results from Section 3 in
order to analyze incremental dissipativity of a controlled
unbalanced disk. The CT dynamics of the unbalanced disk
system, see Fig. 1, can be expressed in nonlinear state
space form by neglecting the fast electrical dynamics:

1(t) = 2o (t); (43a)
ia(t) = M9 @) — %xz(t) + %u(t);

where M is the mass attached to the disk and z [rad] its
angular position, zo [rad/s] its angular velocity, u [V] is the
control input voltage, g is the gravitational acceleration, [
the length of the pendulum, J the inertia of the disk and
K, and 7 are the motor constant and friction coefficient
respectively. The values of the physical parameters of the
system are given in Table 1.

(43b)

We discretize equation (43) using a fourth order Runge-
Kutta (RK4) method, where the control input is assumed
to be constant over the sampling period. More specifically,
assuming the CT dynamics are ©(t) = fc(z(t),u(t)), we
have the RK4 discretized dynamics given by

2l 1) = 2(K) + (o1 (8) + 262(k) + 205(K) + a(),

(44)
where
Wl(k) = fe x(k)a u(k))v (453‘)
pa(k) = fe (x(k) + % E) p1(k), u(k)) (45b)
p3(k) = fc ((k) + Hoa(k), u(k)) (45¢)
pa(k) = fo (x(k )+T<p3(/f) (k)% (45d)

and where T is the sample time. Applying this method
to the CT dynamics of the unbalanced disk (43), with a
sample time Ty = 21—0 second, results in a DT nonlinear
state-space representation of the form

where (k) = col(z1(k), z2(k)). For the discretized version
of the unbalanced disk (46), a DT LTI controller is heuris-

tically designed in order to achieve reference tracking. This
controller is given by

ze(k + 1) = zc(k) + Beue(k);
yc(k) = Cc‘rc(k) + Dcuc(k);

(47a)
(47b)
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Table 1. Parameters of the unbalanced disk.

M g l J Km T
0.041

0.076 9.8 2.4107% 11  0.40

Fig. 1. Unbalanced disk setup.

2 |Uc w
> Yoy, U

.
o

Fig. 2. Closed-loop interconnection of DT controller K and
discretized dynamics of the unbalanced disk G.

I

where z. is the state, u. is the input and y. is the output
of the controller. For the LTI controller, B. = [1 0],
C. = —0.5 and D, = [-10 —1] are chosen, corresponding
to a PID controller. The closed-loop interconnection of
plant and controller is given in Fig. 2, where K is the DT
LTT controller (47), G is the discretized unbalanced disk
dynamics (46), w is the input disturbance and z the angle
of the disk. The controller K in this configuration can be
thought of as a PID controller for regulation of the disk
angle at zero and rejection of constant input disturbances.
The closed-loop interconnection results in a system of the
form (1).

Using Definition 14, the differential form of the closed-
loop dynamics of the DT LTT controller and discretized
unbalanced disk dynamics is computed and is embedded
in an LPV representation on the compact region! z; (k) €
[-m, 7], z2(k) € [-10,10] and u(k) € [—10,10], with
scheduling-variable p = col(p1, p2,p3) = col(xy,z2,u).
Next, an upper-bound for the induced /¢j>-gain of the
closed-loop interconnection on the compact region is com-
puted using the results of Theorem 10 and Theorem 15.
To reduce the infinite set of LMIs to a finite set of LMIs,
a gridding-based method is used, due to the complexity
of the discretized plant, whereby the compact region of
the LPV embedding is equidistantly gridded with 11 grid-
points in each dimension resulting in a total of 1331 grid-
points. Solving the optimization problem results in an
upper-bound for the induced {io-gain of v = 0.220 for
the closed-loop interconnection on the compact region. In
order to compute the closed-loop ¢5-gain of the closed-loop
interconnection, the DT primal form in the plant (46) is
embedded in a grid-based LPV model using the technique
described in Koelewijn and Téth (2021) on the aforemen-
tioned equidistant grid. The closed-loop interconnection of
the LTI controller and primal form of the plant obtains an
upper-bound for the f5-gain? of v, = 0.219

1 One can also restrict the controller state z. and the generalized
disturbance w to compact sets such that u(k) € [—10, 10], although
these are not explicitly given.

2 Note that the f2-gain is smaller than the £j5-gain, as the fjo-gain
is a stronger notion.

w(k) =0
04
3
£02
g0
0 50 100 150 200
Time instant (k) [-]
w(k) = —min(k, 70)
1 ~
= FEELN N
g 0 7 Ay
i—l 7 N -
g
-2 - 1 1 )
0 50 100 150 200

Time instant (k) [-]

Fig. 3. Angle of the disk in closed-loop with the LTI
controller (—) and LPV controller (--) for different
input disturbances w.

For comparison, an LPV version of the controller is also
heuristically designed, where B is taken the same as
for the LTI controller (47), but C. and D. are made
parameter-varying by taking Cec(p) = —0.5 — 55 sin(p1)
and D.(p) = [-10 — 2cos(p1) —1] (hence, they only vary
in p1 = z1). For the closed-loop interconnection of the
LPV controller and the primal form of the plant an upper-
bound for the ¢5-gain is computed using a standard grid-
based LPV method, resulting in ~,, = 0.179, which is
better than the closed-loop interconnection with the LTI
controller. However, unlike the closed-loop with the LTI
controller, the closed-loop with LPV controller does not
have a bounded f;2-gain.

In Fig. 3, simulation results of trajectory of the angle of
the disk for both the interconnection of the discrete-time
plant with the LTT controller and with the LPV controller
for different input disturbances w are shown > . In the case
that w(k) = 0, the closed-loop with the LPV controller
has a faster response and less overshoot compared to
the closed-loop with LTI controller. This is also to be
expected, as the closed-loop f5-gain with LPV controller
(e, = 0.179) is lower than that of the closed-loop system
with LTT controller (., = 0.219). However, in the case
that w(k) = —min(k,70), it can be seen that while the
LTT controller is still able to reject the disturbance when
it becomes constant (at k = 70), the closed-loop with the
LPV controller ends up in a limit cycle and is not able to
reject the disturbance as it is not incrementally dissipative.
This behavior is similar to what is seen in the continuous-
time case (Koelewijn et al. (2020)). This highlights the
importance of analyzing stability and performance of
nonlinear systems using incremental dissipativity instead
using only standard dissipativity based notions to fully
exploit the potential of controller synthesis methods, such
as LPV synthesis, for forced equilibrium stabilization and
tracking control of nonlinear systems.

6. CONCLUSION

In this paper extensions of the CT incremental dissi-
pativity framework to DT nonlinear systems have been

3 Note that during simulation all the scheduling-variables stayed
within the compact-set.
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proposed, along with convex conditions to analyze it. The
proposed analysis condition use the LPV framework for
efficient computation of the various incremental perfor-
mance notions. The DT incremental (Q,S,R)-dissipativity
results, analogous to the CT results, show that incremen-
tal (Q,S,R)-dissipativity of DT systems can be evaluated
by evaluating ‘standard’ dissipativity of their differen-
tial form, i.e. the dynamics of the variations along the
systems trajectory. Moreover, using the LPV framework,
this problem can then be casted as a standard dissipativ-
ity check of an LPV model, which allows for the many
computational techniques of the LPV framework to be
used to efficiently solve nonlinear performance analysis
problems using convex optimization. These results pave
the way for development of efficient synthesis techniques to
ensure incremental dissipativity of DT nonlinear systems.
For future research, we aim to develop such synthesis
techniques and extend the analysis results to allow for a
state dependent quadratic matrix of the storage function
in order to reduce conservativeness.
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Appendix A. NORM INTEGRAL INEQUALITY

Lemma 16. Given a positive definite M € R™ ", i.e.
M > 0, and a continuous function ¢ : [0,1] — R™, then

(/01 ¢(t)dt>TM</01¢(t)dt) < /Oléb(t)TMgb(t)(dt
Al

Proof. As M is positive, we can define the Euclidean
vector space with
vT M, (A.2)

where v € R™. By the Cauchy-Schwarz inequality, for a
continuous function ¢ : [0, 1] — R™

/¢ 1) dt /H¢ ) d,

see Rudin (1976). Furthermore, it also holds that for a
function ¢ : [0,1] = R

/Olw(t)dt 2 < (/Olldt) (/01 |w(t)|2dt) =
(/ 1 pOPa). (1)

Hence, using (A 3) and (A.4), with 1/)( = |lo(t)]], we get

‘/ sa| < ([ o0 |dt) < (1ot

Using the norm definition (A.2), this results in (A. 1)

o] :=

(A.3)




