
Tutorial on Graph Stream Analytics
András Benczúr, Ferenc Béres, Domokos Kelen∗

{benczur,beres,kdomokos}@sztaki.hu
Institute for Computer Science and Control, Hungary

Róbert Pálovics
palovics@stanford.edu

Stanford University, California, USA

ABSTRACT
In this short tutorial, we cover recent methods to analyze and
model network data accessible as a stream of edges, such as inter-
actions in a social network service, or any other graph database
with real-time updates from a stream. First we introduce the data
streaming computational model and give examples of the so-called
temporal networks. We describe how traditional graph proper-
ties (sampling, subgraph counting, graph query evaluation, etc.),
low-rank approximation, network embedding, link prediction, and
centrality algorithms can be implemented and updated while the
edge stream is processed. As an outlook, we discuss among oth-
ers distributed data stream processing engines and concept drift
detection in streams. For most part, we provide sample data and
implementation as Python codes packaged in a Docker image.

KEYWORDS
temporal networks, data stream processing

ACM Reference Format:
András Benczúr, Ferenc Béres, Domokos Kelen and Róbert Pálovics. 2021.
Tutorial on Graph Stream Analytics. In The 15th ACM International Con-
ference on Distributed and Event-based Systems (DEBS ’21), June 28-July
2, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3465480.3468293

1 INTRODUCTION
In this short tutorial, we discuss methods to analyze data streams
of temporal graphs [19]. The main topic of the tutorial involves
data stream processing [43] and its application to temporal net-
works [19]. Applications include the analysis of Twitter [60], cryp-
tocurrency [12] and sensor network [21] data, as well as tree and
graph search queries in streaming data [57], the streaming version
of retrieving graphs quickly from a large database via graph-based
indices [65].

We showcase the relevance of the edge steaming model for social
media and networked sensor data, and experiment with sample
Python implementations of selected algorithms. In this tutorial,
we assume some level of familiarity with algorithms both for data
streaming and for network analysis. Knowledge of word embedding
methods such as the skip-gram model [46] is an advantage. For

∗The research was supported by the Ministry of Innovation and Technology NRDI
Office within the framework of the Artificial Intelligence National Laboratory Program.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
DEBS ’21, June 28- July 02, 2021, Milan, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8555-8/21/06. . . $15.00
https://doi.org/10.1145/3465480.3468293

the sample program codes, knowledge of the Python programming
language and the Jupyter Notebook environment1 is needed.

The tutorial is organized around the data streaming model, the
notion and examples of an edge stream, and specific algorithms for
processing edge streams, in the order of the next Sections. As an
overview and instructions to install all experiments as a packaged
Docker image, visit the GitHub page of the tutorial2.

2 THE DATA STREAMING COMPUTATIONAL
MODEL

A few years ago, the term fast data [39] arose to capture the idea
that streams of data are generated at very high rates from network
measurements, call records, web page visits, sensor readings, fi-
nancial applications [12, 70], network monitoring [1, 7], security,
sensor networks [21], Twitter analysis [10, 13, 60], and more [22].
Traditional data processing assumes that data is available for mul-
tiple access, even if in some cases it resides on disk and can only
be processed in larger chunks. In this case, the data is at rest, and
we can perform batch processing. Database systems, for example,
store large collections of data and allow users to initiate queries
and transactions. Fast data, or data in motion is closely connected
to and in certain cases used as a synonym of the data stream com-
putational model [6, 48]. In this model, data arrives continuously in
a potentially infinite stream that has to be processed by a resource-
constrained system. The fact that only a small portion of the data
can be kept available for immediate analysis [29] has both algorith-
mic and statistical consequences for machine learning. Suboptimal
decisions on earlier parts of the data may be difficult to unwind,
and if needed, require low memory sampling and summarization
procedures. Many of the usual data processing operations would
need random access to the data [6]. For example, only a subset
of SQL queries can be served from the data stream. As surveyed
in [48], data stream algorithms can tackle this constraint by a vari-
ety of strategies, including adaptive sampling in sliding windows,
selecting representative distinct elements, and summarizing data in
low-memory data structures, also known as sketches or synopses.

For graphs, there are two data streaming models, the adjacency
stream model where the graph is presented as a sequence of edges
in arbitrary order and there is no bound on the degree of a vertex,
and the incidence streammodel where graphs are of bounded degree
and all edges incident to a vertex are presented successively [8]. In
the tutorial, we consider the adjacency stream model.

1https://jupyter.org/
2https://github.com/ferencberes/DEBS-graph-stream-tutorial/

DEBS 2021 Tutorial

168

https://doi.org/10.1145/3465480.3468293
https://doi.org/10.1145/3465480.3468293
https://doi.org/10.1145/3465480.3468293
https://jupyter.org/
https://github.com/ferencberes/DEBS-graph-stream-tutorial/

DEBS ’21, June 28- July 02, 2021, Milan, Italy Benczúr, Béres, Kelen, Pálovics

3 EXAMPLES OF TEMPORAL NETWORKS
AND EDGE STREAMS

Most of the networks in nature, society, and technology change
over time. In graph theory terminology, nodes and edges get addi-
tional temporal characteristics and form a temporal network [19].
A large variety of temporal network algorithms have appeared for
connectivity, spanning trees, matchings, and many more, which
are surveyed, for example, in [2, 31].

The usual approach for analyzing temporal graphs is to create a
series of snapshots, and track dynamics for various parameters in
these static graphs [37, 54, 59]. However, for high temporal granu-
larity networks, the frequent execution of graph mining algorithms
on the recent snapshots could cause a significant running time
overhead. Instead, high temporal granularity networks are consid-
ered in the edge or graph stream model [44] where edges must be
processed once they arrive in the stream. Algorithms designed for
graph streams usually have only a limited possibility to store past
data [14], thus they must be online updateable.

Social interactions as temporal networks can be considered as
edge streams [60]. We can collect all “retweets” on Twitter with
corresponding hashtags to track popularity of a political party dur-
ing the election period to estimate the popularity [5, 25]. Similarly,
the network of cryptocurrency transactions can be analyzed for as-
sessing anonymity [12]. Other applications include tree and graph
search queries in streaming data [57], the streaming version of
retrieving graphs quickly from a large database via graph-based
indices [65].

As a hands-on exercise, we demonstrate how the Twitter API [10,
13, 60] can be deployed as a graph stream source that provides a
“retweet” and an “@-mention” edge stream. A key issue for temporal
network analysis is the difficulty of evaluation. For the evaluation
of link prediction, we only require the set of edges that arrive
at a given time, but other tasks such as importance or centrality
rely on external ground truth labels, which often require tedious
human effort even for a static network analysis. In a dynamic graph,
depending on time granularity, the same human data curation may
be required in each time step. As one example that we consider in
this tutorial, we provide external ground truth labels for a tennis
tournament Twitter collection based on the tournament schedule
as an external source [10, 11].

4 BASIC GRAPH ALGORITHMS
Certain graph statistics such as degree have natural temporal vari-
ants applicable in the edge stream model. For example, in [34]
several temporal tasks such as degree, closeness, betweenness are
listed; however, they give algorithms only for static graph snap-
shots. Note that time-decayed degree of a set of nodes is relative
straightforward to maintain in an edge stream [11].

Graph streaming algorithms that arise in database queries in-
clude finding the node with maximum degree, largest connected
component, and node pair connected by the larges number of
paths [30]. An essential yet highly nontrivial streaming graph prop-
erty computation task is triangle counting [18, 58], a key step in
computing the so-called clustering coefficient [42] of the network.
Another, general direction towards handling edge streams is graph

sampling [3], which provides a general way to weight edge sam-
pling to accomplish various estimation goals of graph properties
such as subgraph counts. Finding and online updating frequent
graph patterns can be based on direct indexing of the most frequent
subgraphs [57] or path indexing [65].

5 LINK PREDICTION
A common task in network analysis is the prediction of future
links [41]. In a streaming setting this translates to the online link
prediction task where the model should forecast the next edge that
will appear in the stream. We consider two variants of this problem.
In node specific link prediction, the goal is to predict the next edge
adjacent to a predefined node. And in the general task, the next
edge in the stream must be predicted.

To train and evaluate a time-sensitive or online link prediction
method, we can use the predictive sequential, abbreviated as pre-
quential method [20] in the following steps: (1) Based on the next
unlabeled instance in the stream, we cast a node specific, or a gen-
eral prediction, usually a ranked list of next edge candidates; (2)
As soon as the actual next edge becomes available, we evaluate
the prediction; (3) We update the model with the new edge before
proceeding with the next one.

We showcase streaming link prediction by Alpenglow3, a stream-
ing recommender system research prototyping tool [23]. Note that
user specific link prediction can be considered a special case of
recommendation where both the “users” who enter the recommen-
dation service and the “items” that we recommend for the users are
nodes of the graph, and an edge is a recommendation of another
node for a given node.

6 REPRESENTATION LEARNING ON GRAPHS
Embedding methods on graphs encode the nodes of the network
to vectors in a low-dimensional vector space. In general, repre-
sentations in the embedded space should reflect the structure of
the original graph. Perhaps the most popular embedding method,
adjacency matrix factorization [36] or SVD [68], can be applied for
several tasks [38] such as visualization [35], clustering [17] and link
prediction [45]. Incremental algorithms applicable in a streaming
setting are known both for SVD [68] and for stochastic gradient
descent matrix factorization [50].

Recently, random walk-based static embedding approaches have
been proposed, like Node2Vec [27], LINE [62], and DeepWalk [52].
These methods sample node pairs that co-occur in random walks,
and then optimize for their similarity in the embedded space, mo-
tivated by the skip-gram model from natural language process-
ing [46].We briefly review themethodology of the above approaches
by following [28]. Static embedding methods learn an embedding
vector 𝑞𝑢 for each node 𝑢 in the graph. Usually the objective is
to learn vectors that are similar for neighboring nodes. Let 𝑠 (𝑢)
denote the neighborhood of 𝑢; then our goal is to satisfy 𝑞𝑣 ≈ 𝑞𝑢
for 𝑣 ∈ 𝑠 (𝑢). Shallow embedding approaches for static graphs differ
in the objective function they use to ensure the similarity of the
embeddings, and in the definition of the network neighborhood
𝑠 (𝑢). Random walk-based approaches [27, 52] sample vertices from
the neighborhood of a node. Sampling is done by initiating random
3https://github.com/rpalovics/Alpenglow

169

https://github.com/rpalovics/Alpenglow

Tutorial on Graph Stream Analytics DEBS ’21, June 28- July 02, 2021, Milan, Italy

walks from node 𝑢. These methods optimize for cross-entropy loss:∑
𝑢

∑
𝑣∈𝑠∗ (𝑢)

= − log
[

exp(𝑞𝑢𝑞𝑣)∑
𝑤 exp(𝑞𝑢𝑞𝑤)

]
; (1)

where 𝑠∗ (𝑢) is a random sample from the neighborhood of 𝑢. Most
algorithms use the Word2Vec [46] model as an underlying abstrac-
tion by training the model, using sampled walks analogously to
sentences to build an embedding model [53] as the vector space
representation of the graph.

Partial or full online incremental updates are proposed for sev-
eral variants of the walk-based embedding methods [10, 40, 49, 52,
66, 69]. We showcase the applications of graph stream embedding
for Twitter [10] and cryptocurrency transaction [12] network anal-
ysis using the source code available on Github4. As a promising
direction for computing the embedding dynamically, we mention
recurrent neural networks, for example, Long Short-Term Mem-
ory networks [64], although we note that their applicability for
embedding graphs is not yet explored.

7 GRAPH CENTRALITY MEASURES
To quantify the importance of a node, several graph centrality
measures have been proposed [15]. The definitions of centrality
vary greatly and incorporate both global and local factors of a
node’s location within the network. For temporal networks, a few
generalizations of static centrality measures to dynamic settings
have been suggested recently [4, 11, 26, 34, 55, 61, 63]. In these
works, tracking centrality of a single node and determining its
variability play a major role [63], as it has been observed in the
literature that centrality of nodes can change drastically from one
time period to another [16]. With the exceptions of [11, 55] and the
degree in [34], the above results cannot be used for computing and
updating centrality online.

We demonstrate how the generalizations of PageRank and the
Katz-index for edge streams [11, 55] can be applied in social network
analysis. Both of these centrality metrics build upon the concept
of time respecting paths, in which adjacent edges must be ordered
in time. We build on the online available Twitter centrality experi-
ments5 of [11].

8 OUTLOOK
We briefly cover data stream processing systems, concept drift
detection, online training of neural networks [33] and other top-
ics related to machine learning in big data streams [9]. Apache
Spark [67] and Apache Flink [43], have the most active develop-
ment for learning from streams. Other systems usually provide
machine learning functionalities by interfacing with SparkML, a
Spark-based machine learning library, or SAMOA [47], a stream
learning library designed to work as a layer on top of general DSPEs.

Data streaming is not just a technical restriction on machine
learning. Fast data is not just about processing power but also about
fast semantics. Large databases available for mining today have
been gathered over months or years, and the underlying processes
generating them have changed during this time, sometimes radi-
cally [32]. In data analysis tasks, fundamental properties of the data
4https://github.com/ferencberes/online-node2vec
5https://github.com/ferencberes/online-centrality

may change quickly, which makes gradual manual model adjust-
ment procedures inefficient and even infeasible [71]. Traditional,
batch learners build static models from finite, static, identically
distributed data sets. By contrast, stream learners need to build
models that evolve over time. Processing will strongly depend on
the order of examples generated from a continuous, non-stationary
flow of data. Modeling is hence affected by potential concept drifts
or changes in distribution [24].

SHORT BIO OF THE SPEAKERS
AB received his Ph.D. in 1997 at the Massachusetts Institute of
Technology. He is leading a Data Science research laboratory of
the Institute for Computer Science and Control, Hungary. He is the
scientific director of the Artificial Intelligence National Laboratory,
a consortium of 10 institutions in Hungary founded in 2020. The
tutorial is prepared together with his doctoral students FB, DK, and
RP. Since the completion of his doctoral studies, RP is postdoctoral
fellow at Stanford University.

AB, DK and RP kept a hands-on Tutorial on Open Source Online
Learning Recommenders [51] at RecSys 2017. AB and RP together
with Levente Kocsis authored a survey on online machine learning
in big data streams [9] that appeared as chapters of the Encyclopedia
of Big Data Technologies [56].

REFERENCES
[1] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-

vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003.
Aurora: a new model and architecture for data stream management. The VLDB
Journal—The International Journal on Very Large Data Bases 12, 2 (2003), 120–139.

[2] Charu Aggarwal and Karthik Subbian. 2014. Evolutionary network analysis: A
survey. ACM Computing Surveys (CSUR) 47, 1 (2014), 10.

[3] Nesreen K Ahmed, Nick Duffield, Theodore Willke, and Ryan A Rossi. 2017. On
sampling from massive graph streams. arXiv preprint arXiv:1703.02625 (2017).

[4] Ahmad Alsayed and Desmond J Higham. 2015. Betweenness in time dependent
networks. Chaos, Solitons & Fractals 72 (2015), 35–48.

[5] Pablo Aragón, Karolin Eva Kappler, Andreas Kaltenbrunner, David Laniado, and
Yana Volkovich. 2013. Communication dynamics in twitter during political
campaigns: The case of the 2011 Spanish national election. Policy & Internet 5, 2
(2013), 183–206.

[6] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. 2002. Models and issues in data stream systems. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM, 1–16.

[7] Shivnath Babu and Jennifer Widom. 2001. Continuous queries over data streams.
ACM Sigmod Record 30, 3 (2001), 109–120.

[8] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. 2002. Reductions in streaming
algorithms, with an application to counting triangles in graphs. In SODA, Vol. 2.
623–632.

[9] András A Benczúr, Levente Kocsis, and Róbert Pálovics. 2018. Online Machine
Learning in Big Data Streams. arXiv preprint arXiv:1802.05872 (2018).

[10] Ferenc Béres, Domokos M. Kelen, Róbert Pálovics, and András A Benczúr. 2019.
Node embeddings in dynamic graphs. Applied Network Science 4, 64 (2019), 25.

[11] Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. 2018. Temporal
walk based centrality metric for graph streams. Applied Network Science 3, 32
(2018), 26.

[12] Ferenc Béres, István András Seres, András A Benczúr, and Mikerah Quintyne-
Collins. 2020. Blockchain is Watching You: Profiling and Deanonymizing
Ethereum Users. arXiv preprint arXiv:2005.14051 (2020).

[13] Albert Bifet and Eibe Frank. 2010. Sentiment knowledge discovery in twitter
streaming data. In International conference on discovery science. Springer, 1–15.

[14] Albert Bifet, Richard Kirkby, and B Pfahringer. 2011. Data stream mining: a
practical approach. Technical Report. University of Waikato.

[15] Paolo Boldi and Sebastiano Vigna. 2014. Axioms for centrality. Internet Mathe-
matics 10, 3-4 (2014), 222–262.

[16] Dan Braha and Yaneer Bar-Yam. 2006. From centrality to temporary fame:
Dynamic centrality in complex networks. Complexity 12, 2 (2006), 59–63.

[17] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. 2016. Recent advances in graph partitioning. Algorithm engineering

170

 https://github.com/ferencberes/online-node2vec
https://github.com/ferencberes/online-centrality

DEBS ’21, June 28- July 02, 2021, Milan, Italy Benczúr, Béres, Kelen, Pálovics

(2016), 117–158.
[18] Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-

Spaccamela, and Christian Sohler. 2006. Counting triangles in data streams.
In Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. 253–262.

[19] Hassan Nazeer Chaudhry. 2019. FlowGraph: Distributed temporal pattern detec-
tion over dynamically evolving graphs. In Proceedings of the 13th ACM Interna-
tional Conference on Distributed and Event-based Systems. 272–275.

[20] A Philip Dawid. 1984. Present position and potential developments: Some per-
sonal views: Statistical theory: The prequential approach. Journal of the Royal
Statistical Society. Series A (General) (1984), 278–292.

[21] Gianmarco De Francisci Morales, Albert Bifet, Latifur Khan, Joao Gama, and
Wei Fan. 2016. Iot big data stream mining. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
2119–2120.

[22] Óscar Fontenla-Romero, Bertha Guijarro-Berdiñas, David Martinez-Rego, Beat-
riz Pérez-Sánchez, and Diego Peteiro-Barral. 2013. Online machine learning.
Efficiency and Scalability Methods for Computational Intellect 27 (2013).

[23] Erzsébet Frigó, Róbert Pálovics, Domokos Kelen, Levente Kocsis, and András
Benczúr. 2017. Alpenglow: Open source recommender framework with time-
aware learning and evaluation. (2017).

[24] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. 2013. On evaluating
stream learning algorithms. Machine learning 90, 3 (2013), 317–346.

[25] Daniel Gayo-Avello. 2013. A meta-analysis of state-of-the-art electoral prediction
from Twitter data. Social Science Computer Review (2013).

[26] Peter Grindrod and Desmond J Higham. 2014. A dynamical systems view of
network centrality. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, Vol. 470.

[27] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[28] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

[29] Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. 1998.
Computing on data streams. External memory algorithms 50 (1998), 107–118.

[30] Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. 1999. Com-
puting on data streams. In External Memory Algorithms, DIMACS Book Series vol.
50. American Mathematical Society, 107–118.

[31] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics reports 519, 3
(2012), 97–125.

[32] Geoff Hulten, Laurie Spencer, and Pedro Domingos. 2001. Mining time-changing
data streams. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 97–106.

[33] Lakhmi C Jain, Manjeevan Seera, Chee Peng Lim, and Pagavathigounder Bala-
subramaniam. 2014. A review of online learning in supervised neural networks.
Neural computing and applications 25, 3 (2014), 491–509.

[34] Hyoungshick Kim and Ross Anderson. 2012. Temporal node centrality in complex
networks. Physical Review E 85, 2 (2012), 026107.

[35] Yehuda Koren. 2003. On spectral graph drawing. In International Computing and
Combinatorics Conference. Springer, 496–508.

[36] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[37] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. 2010. Structure and evolution
of online social networks. In Link mining: models, algorithms, and applications.
Springer, 337–357.

[38] Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner,
Ernesto W De Luca, and Sahin Albayrak. 2010. Spectral analysis of signed
graphs for clustering, prediction and visualization. In Proceedings of the 2010
SIAM International Conference on Data Mining. SIAM, 559–570.

[39] Wang Lam, Lu Liu, STS Prasad, Anand Rajaraman, Zoheb Vacheri, and AnHai
Doan. 2012. Muppet: MapReduce-style processing of fast data. Proceedings of the
VLDB Endowment 5, 12 (2012), 1814–1825.

[40] J. B. Lee, G. Nguyen, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim. 2020. Dynamic
Node Embeddings From Edge Streams. IEEE Transactions on Emerging Topics in
Computational Intelligence (2020), 1–16.

[41] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for
social networks. Journal of the American society for information science and
technology 58, 7 (2007), 1019–1031.

[42] R Duncan Luce and Albert D Perry. 1949. A method of matrix analysis of group
structure. Psychometrika 14, 2 (1949), 95–116.

[43] Volker Markl. 2018. Mosaics in Big Data: Stratosphere, Apache Flink, and Beyond.
In Proceedings of the 12th ACM International Conference on Distributed and Event-
based Systems. 7–13.

[44] Andrew McGregor. 2014. Graph stream algorithms: a survey. ACM SIGMOD
Record 43, 1 (2014), 9–20.

[45] Aditya Krishna Menon and Charles Elkan. 2011. Link prediction via matrix
factorization. In Joint european conference on machine learning and knowledge
discovery in databases. Springer, 437–452.

[46] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111–3119.

[47] Gianmarco De Francisci Morales and Albert Bifet. [n.d.]. SAMOA: scalable
advanced massive online analysis. Journal of Machine Learning Research 16, 1
([n. d.]).

[48] Shanmugavelayutham Muthukrishnan et al. 2005. Data streams: Algorithms and
applications. Foundations and Trends® in Theoretical Computer Science 1, 2 (2005),
117–236.

[49] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In 3rd International Workshop on Learning Representations for Big Networks.

[50] Róbert Pálovics, András A Benczúr, Levente Kocsis, Tamás Kiss, and Erzsébet
Frigó. 2014. Exploiting temporal influence in online recommendation. In Proceed-
ings of the 8th ACM Conference on Recommender systems. ACM, 273–280.

[51] Róbert Pálovics, Domokos Kelen, and András A Benczúr. 2017. Tutorial on Open
Source Online Learning Recommenders. In Proceedings of the Eleventh ACM
Conference on Recommender Systems. ACM, 400–401.

[52] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[53] Ofir Press and LiorWolf. 2016. Using the Output Embedding to Improve Language
Models. CoRR abs/1608.05859 (2016).

[54] Martin Rosvall and Carl T Bergstrom. 2010. Mapping change in large networks.
PloS one 5, 1 (2010).

[55] Polina Rozenshtein and Aristides Gionis. 2016. Temporal pagerank. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 674–689.

[56] Sherif Sakr and Albert Y Zomaya. 2019. Encyclopedia of big data technologies.
Springer International Publishing.

[57] Dennis Shasha, Jason TL Wang, and Rosalba Giugno. 2002. Algorithmics and
applications of tree and graph searching. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 39–52.

[58] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. 2017.
Triest: Counting local and global triangles in fully dynamic streams with fixed
memory size. ACM TKDD 11, 4 (2017), 1–50.

[59] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. 2007.
GraphScope: Parameter-free Mining of Large Time-evolving Graphs. In Proceed-
ings of the 13th International Conference on Knowledge Discovery and Data Mining
(KDD).

[60] Abhijit Suprem and Calton Pu. 2019. Assed: A framework for identifying physical
events through adaptive social sensor data filtering. In Proceedings of the 13th
ACM International Conference on Distributed and Event-based Systems. 115–126.

[61] John Tang, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Vincenzo Nicosia.
2010. Analysing information flows and keymediators through temporal centrality
metrics. In Proceedings of the 3rd Workshop on Social Network Systems. ACM, 3.

[62] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067–1077.

[63] Dane Taylor, Sean A Myers, Aaron Clauset, Mason A Porter, and Peter J Mucha.
2017. Eigenvector-based centrality measures for temporal networks. Multiscale
Modeling & Simulation 15, 1 (2017), 537–574.

[64] Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai Zhao. 2015. A unified
tagging solution: Bidirectional LSTM recurrent neural network with word em-
bedding. arXiv preprint arXiv:1511.00215 (2015).

[65] Xifeng Yan, Philip S Yu, and Jiawei Han. 2004. Graph indexing: A frequent
structure-based approach. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data. 335–346.

[66] Yanwei Yu, Huaxiu Yao, Hongjian Wang, Xianfeng Tang, and Zhenhui Li. 2018.
Representation Learning for Large-Scale Dynamic Networks. In International
Conference on Database Systems for Advanced Applications. Springer, 526–541.

[67] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10
(2010), 95.

[68] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. 2018. Timers:
Error-bounded svd restart on dynamic networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[69] D. Zhu, P. Cui, Z. Zhang, J. Pei, andW. Zhu. 2018. High-Order Proximity Preserved
Embedding for Dynamic Networks. IEEE Transactions on Knowledge and Data
Engineering 30, 11 (2018), 2134–2144. https://doi.org/10.1109/TKDE.2018.2822283

[70] Yunyue Zhu and Dennis Shasha. 2002. Statstream: Statistical monitoring of
thousands of data streams in real time. In Proceedings of the 28th international
conference on Very Large Data Bases. VLDB Endowment, 358–369.

[71] Indre Žliobaite, Albert Bifet, Mohamed Gaber, Bogdan Gabrys, Joao Gama, Lean-
dro Minku, and Katarzyna Musial. 2012. Next challenges for adaptive learning
systems. ACM SIGKDD Explorations Newsletter 14, 1 (2012), 48–55.

171

https://doi.org/10.1109/TKDE.2018.2822283

	Abstract
	1 Introduction
	2 The data streaming computational model
	3 Examples of temporal networks and edge streams
	4 Basic graph algorithms
	5 Link prediction
	6 Representation learning on graphs
	7 Graph centrality measures
	8 Outlook
	References

