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ABSTRACT
In this short tutorial, we cover recent methods to analyze and
model network data accessible as a stream of edges, such as inter-
actions in a social network service, or any other graph database
with real-time updates from a stream. First we introduce the data
streaming computational model and give examples of the so-called
temporal networks. We describe how traditional graph proper-
ties (sampling, subgraph counting, graph query evaluation, etc.),
low-rank approximation, network embedding, link prediction, and
centrality algorithms can be implemented and updated while the
edge stream is processed. As an outlook, we discuss among oth-
ers distributed data stream processing engines and concept drift
detection in streams. For most part, we provide sample data and
implementation as Python codes packaged in a Docker image.
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1 INTRODUCTION
In this short tutorial, we discuss methods to analyze data streams
of temporal graphs [19]. The main topic of the tutorial involves
data stream processing [43] and its application to temporal net-
works [19]. Applications include the analysis of Twitter [60], cryp-
tocurrency [12] and sensor network [21] data, as well as tree and
graph search queries in streaming data [57], the streaming version
of retrieving graphs quickly from a large database via graph-based
indices [65].

We showcase the relevance of the edge steaming model for social
media and networked sensor data, and experiment with sample
Python implementations of selected algorithms. In this tutorial,
we assume some level of familiarity with algorithms both for data
streaming and for network analysis. Knowledge of word embedding
methods such as the skip-gram model [46] is an advantage. For
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the sample program codes, knowledge of the Python programming
language and the Jupyter Notebook environment1 is needed.

The tutorial is organized around the data streaming model, the
notion and examples of an edge stream, and specific algorithms for
processing edge streams, in the order of the next Sections. As an
overview and instructions to install all experiments as a packaged
Docker image, visit the GitHub page of the tutorial2.

2 THE DATA STREAMING COMPUTATIONAL
MODEL

A few years ago, the term fast data [39] arose to capture the idea
that streams of data are generated at very high rates from network
measurements, call records, web page visits, sensor readings, fi-
nancial applications [12, 70], network monitoring [1, 7], security,
sensor networks [21], Twitter analysis [10, 13, 60], and more [22].
Traditional data processing assumes that data is available for mul-
tiple access, even if in some cases it resides on disk and can only
be processed in larger chunks. In this case, the data is at rest, and
we can perform batch processing. Database systems, for example,
store large collections of data and allow users to initiate queries
and transactions. Fast data, or data in motion is closely connected
to and in certain cases used as a synonym of the data stream com-
putational model [6, 48]. In this model, data arrives continuously in
a potentially infinite stream that has to be processed by a resource-
constrained system. The fact that only a small portion of the data
can be kept available for immediate analysis [29] has both algorith-
mic and statistical consequences for machine learning. Suboptimal
decisions on earlier parts of the data may be difficult to unwind,
and if needed, require low memory sampling and summarization
procedures. Many of the usual data processing operations would
need random access to the data [6]. For example, only a subset
of SQL queries can be served from the data stream. As surveyed
in [48], data stream algorithms can tackle this constraint by a vari-
ety of strategies, including adaptive sampling in sliding windows,
selecting representative distinct elements, and summarizing data in
low-memory data structures, also known as sketches or synopses.

For graphs, there are two data streaming models, the adjacency
stream model where the graph is presented as a sequence of edges
in arbitrary order and there is no bound on the degree of a vertex,
and the incidence streammodel where graphs are of bounded degree
and all edges incident to a vertex are presented successively [8]. In
the tutorial, we consider the adjacency stream model.

1https://jupyter.org/
2https://github.com/ferencberes/DEBS-graph-stream-tutorial/
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3 EXAMPLES OF TEMPORAL NETWORKS
AND EDGE STREAMS

Most of the networks in nature, society, and technology change
over time. In graph theory terminology, nodes and edges get addi-
tional temporal characteristics and form a temporal network [19].
A large variety of temporal network algorithms have appeared for
connectivity, spanning trees, matchings, and many more, which
are surveyed, for example, in [2, 31].

The usual approach for analyzing temporal graphs is to create a
series of snapshots, and track dynamics for various parameters in
these static graphs [37, 54, 59]. However, for high temporal granu-
larity networks, the frequent execution of graph mining algorithms
on the recent snapshots could cause a significant running time
overhead. Instead, high temporal granularity networks are consid-
ered in the edge or graph stream model [44] where edges must be
processed once they arrive in the stream. Algorithms designed for
graph streams usually have only a limited possibility to store past
data [14], thus they must be online updateable.

Social interactions as temporal networks can be considered as
edge streams [60]. We can collect all “retweets” on Twitter with
corresponding hashtags to track popularity of a political party dur-
ing the election period to estimate the popularity [5, 25]. Similarly,
the network of cryptocurrency transactions can be analyzed for as-
sessing anonymity [12]. Other applications include tree and graph
search queries in streaming data [57], the streaming version of
retrieving graphs quickly from a large database via graph-based
indices [65].

As a hands-on exercise, we demonstrate how the Twitter API [10,
13, 60] can be deployed as a graph stream source that provides a
“retweet” and an “@-mention” edge stream. A key issue for temporal
network analysis is the difficulty of evaluation. For the evaluation
of link prediction, we only require the set of edges that arrive
at a given time, but other tasks such as importance or centrality
rely on external ground truth labels, which often require tedious
human effort even for a static network analysis. In a dynamic graph,
depending on time granularity, the same human data curation may
be required in each time step. As one example that we consider in
this tutorial, we provide external ground truth labels for a tennis
tournament Twitter collection based on the tournament schedule
as an external source [10, 11].

4 BASIC GRAPH ALGORITHMS
Certain graph statistics such as degree have natural temporal vari-
ants applicable in the edge stream model. For example, in [34]
several temporal tasks such as degree, closeness, betweenness are
listed; however, they give algorithms only for static graph snap-
shots. Note that time-decayed degree of a set of nodes is relative
straightforward to maintain in an edge stream [11].

Graph streaming algorithms that arise in database queries in-
clude finding the node with maximum degree, largest connected
component, and node pair connected by the larges number of
paths [30]. An essential yet highly nontrivial streaming graph prop-
erty computation task is triangle counting [18, 58], a key step in
computing the so-called clustering coefficient [42] of the network.
Another, general direction towards handling edge streams is graph

sampling [3], which provides a general way to weight edge sam-
pling to accomplish various estimation goals of graph properties
such as subgraph counts. Finding and online updating frequent
graph patterns can be based on direct indexing of the most frequent
subgraphs [57] or path indexing [65].

5 LINK PREDICTION
A common task in network analysis is the prediction of future
links [41]. In a streaming setting this translates to the online link
prediction task where the model should forecast the next edge that
will appear in the stream. We consider two variants of this problem.
In node specific link prediction, the goal is to predict the next edge
adjacent to a predefined node. And in the general task, the next
edge in the stream must be predicted.

To train and evaluate a time-sensitive or online link prediction
method, we can use the predictive sequential, abbreviated as pre-
quential method [20] in the following steps: (1) Based on the next
unlabeled instance in the stream, we cast a node specific, or a gen-
eral prediction, usually a ranked list of next edge candidates; (2)
As soon as the actual next edge becomes available, we evaluate
the prediction; (3) We update the model with the new edge before
proceeding with the next one.

We showcase streaming link prediction by Alpenglow3, a stream-
ing recommender system research prototyping tool [23]. Note that
user specific link prediction can be considered a special case of
recommendation where both the “users” who enter the recommen-
dation service and the “items” that we recommend for the users are
nodes of the graph, and an edge is a recommendation of another
node for a given node.

6 REPRESENTATION LEARNING ON GRAPHS
Embedding methods on graphs encode the nodes of the network
to vectors in a low-dimensional vector space. In general, repre-
sentations in the embedded space should reflect the structure of
the original graph. Perhaps the most popular embedding method,
adjacency matrix factorization [36] or SVD [68], can be applied for
several tasks [38] such as visualization [35], clustering [17] and link
prediction [45]. Incremental algorithms applicable in a streaming
setting are known both for SVD [68] and for stochastic gradient
descent matrix factorization [50].

Recently, random walk-based static embedding approaches have
been proposed, like Node2Vec [27], LINE [62], and DeepWalk [52].
These methods sample node pairs that co-occur in random walks,
and then optimize for their similarity in the embedded space, mo-
tivated by the skip-gram model from natural language process-
ing [46].We briefly review themethodology of the above approaches
by following [28]. Static embedding methods learn an embedding
vector 𝑞𝑢 for each node 𝑢 in the graph. Usually the objective is
to learn vectors that are similar for neighboring nodes. Let 𝑠 (𝑢)
denote the neighborhood of 𝑢; then our goal is to satisfy 𝑞𝑣 ≈ 𝑞𝑢
for 𝑣 ∈ 𝑠 (𝑢). Shallow embedding approaches for static graphs differ
in the objective function they use to ensure the similarity of the
embeddings, and in the definition of the network neighborhood
𝑠 (𝑢). Random walk-based approaches [27, 52] sample vertices from
the neighborhood of a node. Sampling is done by initiating random
3https://github.com/rpalovics/Alpenglow
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walks from node 𝑢. These methods optimize for cross-entropy loss:∑
𝑢

∑
𝑣∈𝑠∗ (𝑢)

= − log
[

exp(𝑞𝑢𝑞𝑣)∑
𝑤 exp(𝑞𝑢𝑞𝑤)

]
; (1)

where 𝑠∗ (𝑢) is a random sample from the neighborhood of 𝑢. Most
algorithms use the Word2Vec [46] model as an underlying abstrac-
tion by training the model, using sampled walks analogously to
sentences to build an embedding model [53] as the vector space
representation of the graph.

Partial or full online incremental updates are proposed for sev-
eral variants of the walk-based embedding methods [10, 40, 49, 52,
66, 69]. We showcase the applications of graph stream embedding
for Twitter [10] and cryptocurrency transaction [12] network anal-
ysis using the source code available on Github4. As a promising
direction for computing the embedding dynamically, we mention
recurrent neural networks, for example, Long Short-Term Mem-
ory networks [64], although we note that their applicability for
embedding graphs is not yet explored.

7 GRAPH CENTRALITY MEASURES
To quantify the importance of a node, several graph centrality
measures have been proposed [15]. The definitions of centrality
vary greatly and incorporate both global and local factors of a
node’s location within the network. For temporal networks, a few
generalizations of static centrality measures to dynamic settings
have been suggested recently [4, 11, 26, 34, 55, 61, 63]. In these
works, tracking centrality of a single node and determining its
variability play a major role [63], as it has been observed in the
literature that centrality of nodes can change drastically from one
time period to another [16]. With the exceptions of [11, 55] and the
degree in [34], the above results cannot be used for computing and
updating centrality online.

We demonstrate how the generalizations of PageRank and the
Katz-index for edge streams [11, 55] can be applied in social network
analysis. Both of these centrality metrics build upon the concept
of time respecting paths, in which adjacent edges must be ordered
in time. We build on the online available Twitter centrality experi-
ments5 of [11].

8 OUTLOOK
We briefly cover data stream processing systems, concept drift
detection, online training of neural networks [33] and other top-
ics related to machine learning in big data streams [9]. Apache
Spark [67] and Apache Flink [43], have the most active develop-
ment for learning from streams. Other systems usually provide
machine learning functionalities by interfacing with SparkML, a
Spark-based machine learning library, or SAMOA [47], a stream
learning library designed to work as a layer on top of general DSPEs.

Data streaming is not just a technical restriction on machine
learning. Fast data is not just about processing power but also about
fast semantics. Large databases available for mining today have
been gathered over months or years, and the underlying processes
generating them have changed during this time, sometimes radi-
cally [32]. In data analysis tasks, fundamental properties of the data
4https://github.com/ferencberes/online-node2vec
5https://github.com/ferencberes/online-centrality

may change quickly, which makes gradual manual model adjust-
ment procedures inefficient and even infeasible [71]. Traditional,
batch learners build static models from finite, static, identically
distributed data sets. By contrast, stream learners need to build
models that evolve over time. Processing will strongly depend on
the order of examples generated from a continuous, non-stationary
flow of data. Modeling is hence affected by potential concept drifts
or changes in distribution [24].

SHORT BIO OF THE SPEAKERS
AB received his Ph.D. in 1997 at the Massachusetts Institute of
Technology. He is leading a Data Science research laboratory of
the Institute for Computer Science and Control, Hungary. He is the
scientific director of the Artificial Intelligence National Laboratory,
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tutorial is prepared together with his doctoral students FB, DK, and
RP. Since the completion of his doctoral studies, RP is postdoctoral
fellow at Stanford University.

AB, DK and RP kept a hands-on Tutorial on Open Source Online
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