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Abstract

In the era of smart manufacturing, autonomous mobile robots have become affordable for numerous companies, although the fleet management 
remains a challenging problem. A novel approach is proposed, supporting the solution of vehicle assignment problem. The method relies on 
adaptive workstation clustering that considers not only complex environment layout, but also the main characteristics of the material flow. The 
technique combines network analytical and optimization tools with a greedy algorithm of refinement. The implementation is presented, and the 
impact of clustering techniques on selected performance metrics are analyzed within a series of experiments, taken from an industrial case study.
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1. Introduction

Production and logistics, though inseparably integrated and
interwoven as far as the flow of material is concerned, are
clearly distinguished in terms of their goals. While production
is responsible for meeting external market demand by perform-
ing value-added activities, internal logistics has to see that all
material conditions of these activities are satisfied all the time.
Albeit indirectly, logistics has a definite impact on the key per-
formance indicators (KPIs) of production, such as service level
and delivery performance, resource utilization, throughput and
lead time, as well as cost. The ideal logistics serves production
in an ”invisible” way, by making the required materials, com-
ponents, parts, tools and fixtures available for the primary pro-
duction resources, and, at the same time, by making the same
resources free from the results and by-products of their activi-
ties. Logistics, consequently, has to adapt to changes in produc-
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tion, let they be planned or unpredictable, long-term or immi-
nent [8, 9].

This work was motivated in particular by the specific needs
of the semiconductor industry, where advanced planning and
scheduling of even the primary production resources poses
some extreme challenges. Here production operations take rel-
atively long but often uncertain times, process routings are re-
entrant, some tight temporal constraints must be observed due
to the risk of contamination, while the in-process buffer sizes
are strictly limited. The main KPIs are to maximize resource
utilization, and, simultaneously, to minimize the throughput
time of orders [6]. It is generally accepted that production in
such a complex, dynamically changing environment burdened
both by product and process related uncertainties can only be
controlled by some dispatching logic which adapts to the actual
situation at hand and decides in real-time but only on the short
term what and where to do [10]. Logistics should flexibly ac-
commodate to this mode of operation. No wonder, automated
guided vehicles (AGVs) are predominant when providing inter-
nal logistics service for this industry.
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AGVs are versatile, driverless, free-ranging transport de-
vices with localization and autonomous control faculties [4].
They operate usually in a fleet, carrying loads of multiple types
and cardinality. Recently, their application in different indus-
trial settings has proliferated [2], and one can expect an even
more intensive expansion of their use with the advancement of
reconfigurable and changeable manufacturing technologies on
the one side, and of autonomous vehicle techniques on the other
side.

We were aimed at providing an internal logistics AGV ser-
vice for a complex, large-scale production environment where
processing times are fraught by uncertainties, changes in order
priorities as well as interrupts and re-entrant work may happen
any time. In face of all these difficulties, a smooth flow of mate-
rials had to be warranted, so as to maximize ultimately the uti-
lization of production resources. In any case (and at any cost),
the AGV service should not be made accountable for blocking
production either by shortage or by the accumulation of mate-
rial.

Following the recommendations of the literature on the state-
of-the-art [2], a hierarchical decomposition approach was taken
to the above AGV fleet management problem [7]. First, on the
strategic level, the material flow network model of the produc-
tion facility was decomposed into clusters, or zones. Next, on
the tactical level, AGVs were assigned to the zones so as to bal-
ance their expected load. Finally, on the operational level, ap-
propriate dispatching rules combining distance- and time-based
metrics decided about the actual assignment of vehicles to lo-
gistics tasks. After extensive simulation studies, elements of the
overall approach have already been deployed in a large-scale
real industrial environment, with unanimous success [6].

In our understanding, this workflow not only reduced the
complexity of the fleet management problem, but also pre-
pared the ground, with appropriate planning decisions covering
a longer horizon, the efficient application of otherwise short-
sighted dispatching rules. The formation of zones was done by
performing a so-called graph modularity analysis over the net-
work model of the production system which is comprised of
the material flow data collected in a longer past period. One
could deem this analysis an unsupervised learning over past
(big) operational data of the production system, which detected
the hidden, internal structure of the material flow. This structure
could then be exploited by AGV assignment and dispatching.
Learning in this sense could contribute to the most advanced,
prescriptive use of big data [12]. However, in a continuously
changing production environment one-shot learning is rarely
sufficient; one should rather observe the ”digital exhaust” of
the system continuously, and adapt its control – in this case, the
management of the AGV fleet – to the evolving conditions time
and again [13].

This paper investigates whether and how our hierarchical
AGV fleet management workflow can adaptively be applied
under changing work conditions. After exposing the problem
(Sect. 2), Sect. 3 introduces the basic concepts and phases of
the workflow, with an extension of refining the AGV assign-
ment to changing workload. Specifically, we use data accumu-
lated in the recent production period to evaluate overall system

performance and to decide, whenever needed, on the revision of
AGV assignments. Detailed computational experimental results
presented in Sect. 4 show a comparative advantage of the new
method. Finally, Sect. 5 gives a short outlook to future works
and concludes the paper.

2. Problem statement

The system under study consists of a set of machines and
buffers as active material processing and passive storage sta-
tions, respectively, and an AGV fleet that transports the items
among them in a completely automated way. Items are consid-
ered to be general container units of standard size, capable of
holding any kind of input/output material of production. The
AGVs are identical and can carry multiple items up to their
maximal capacity. The flow of materials is determined by the
routing, which defines the logical links among the stations, the
layout of the shop-floor and the actual workload of the produc-
tion system. Any link in the routing can be realized by alterna-
tive paths in the layout which imposes physical constraints on
the movements of vehicles. Hence, paths can be one- or bidi-
rectional, narrow or broad. Internal transport is subordinated
to production: stations generate time and again requests to the
AGV fleet in terms of tasks. Each task is specified by (1) the
item to carry, (2) its type which is either delivery or pickup, and
(3) its destination or source station, respectively. A machine can
only start its operation after the related AGV tasks are finished,
hence, waiting times due to shortage or accumulation of materi-
als are direct losses accounted to the AGV system. It is assumed
that information about tasks are accessible for each vehicle.

Given the above constraints and the dynamically incoming
stream of tasks, the AGV fleet as a whole is responsible for pro-
viding a transportation service which accomplishes each task in
a way that minimizes total losses on a given horizon. In a satu-
rated system typical in semiconductor industry, this implies the
objective of maximizing the utilization of active machine sta-
tions. Additional KPIs include the total number of AGV tasks
completed in a given period of time, as well as the average
task duration that spans between the task triggering and fin-
ishing time points. As for the functions required for supporting
the physical operation of vehicles like localization or collision
avoidance, it is assumed that execution monitoring and control
is capable to do these, whereas the workflow suggested below
greatly alleviates the prevention of collisions and deadlocks.

3. Methodology

The solution of the above problem consists of (1) finding an
initial appropriate assignment of AGVs to tasks, and (2) refin-
ing this assignment over time. Since tasks are generated on the
fly, the solution process would fit into some online scheduling
or dispatching scheme [2]. However, meeting the requirements
detailed in Sect. 1 calls for a broader perspective and a longer
horizon where AGV fleet planning with some look-ahead pre-
pares the ground for the right dispatching decisions. The core
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idea is to find and exploit the hidden structure of the overall ma-
terial flow. Hence, a novel network model is suggested to cap-
ture the flow of material over a given horizon. This represents
also the physical proximity of the stations. Departing from this
model and the specification of a given AGV fleet, the workflow
goes through the following phases (see also Fig. 1):

1. Network analysis finds non-overlapping clusters where the
flow within clusters highly dominates the flow between
clusters.

2. Load balancing assigns vehicles of the AGV fleet to the
zones in such a way that sufficient logistics capacity is pro-
vided to each zone, and the expected load of vehicles over
the planning horizon are balanced, as far as possible.

3. Online dispatching assigns—with a limited scope defined
by each zone—vehicles to the dynamically generated tasks
and determines their execution sequence.

4. Performance of the AGV management system is moni-
tored continuously, and if the value of some critical KPI
outruns its acceptable range, then the assignment model is
updated greedily.

(a) The best and the worst assembly workstation zones
are identified based on certain performance parame-
ter(s).

(b) The AGV with the least utilization is identified from
the best zone’s set of AGVs.

(c) The AGV in question is relocated to the zone with the
worst performance parameter.

The substeps of step 4 are repeated over time. This refine-
ment sequence of actions is activated automatically when a cer-
tain set of KPIs does not reach a preferable level. In some cases
it is advised to define a minimum length of time before starting
the refinement loop, since complex production systems require
ramp up time to achieve a stable state. The length of the ramp
up time depends on the characteristics of a given production
system, a general rule is to wait until (1) a steady state of the
system is achieved and (2) necessary and sufficient amount of
data can be collected. Fig. 2 shows the sequence of steps over
time.

The principle of aggregation is applied in two senses: ini-
tially, many details are disregarded (e.g., in the first step even
the specifics of the AGV fleet) but the horizon is relatively long.
However, as one gets closer to execution, the horizon is short-
ening while the model corresponds more and more the real
execution environment. This helps not only to decrease deci-
sion complexity considerably, but also to respond to the uncer-
tainties which inherently burden production, and thus, conse-
quently, the management of its internal logistics, too.

3.1. Network analysis

The initial problem is represented in terms of a network
which captures main properties of the layout. Nodes of this
network are the stations, whereas directed and weighted edges
stand for the routes between stations. The weight of any edge

Fig. 1. Structure of workflow. The first step (initialization) serves as a setup of
the environment. The middle part (digital twin) remains intact during the whole
process of refinement. Finally, the optimization step is repeated over time and
sends updates to the dispatcher in the hope of a better performance.

Fig. 2. Sequence of methodology over time. Initialization is performed only
once before the first simulation run. A trigger (e.g. insufficient KPI values)
stops all active processes, and the refinement optimization process starts. Its
results are sent back to the dispatcher and production is continued with the new
input.

is inversely proportional to the distance of the shortest path be-
tween the corresponding nodes. There is no distinction as for
the specific items transported, neither in the timing nor in the
distribution of transport tasks over time. Between two nodes
there could be two different edges, one in each direction. Note
that the AGV fleet is not part of this initial model.

The distance network is the input for an analysis which is
aimed at finding an internal structure of the problem. This struc-
ture is the basis for the decomposition of the networks’ stations
into non-overlapping clusters. As it is expected, confining the
movement of AGVs to single clusters and minimizing inter-
zone traffic will not only improve the performance of the system
but also alleviate the issues of collision and deadlock avoid-
ance. However, since neither the size nor the number of clusters
are known a priori, traditional methods of graph partitioning or
clustering cannot be applied here. Instead, a recent concept of
network science, graph modularity, is adopted for characteris-
ing and finding a good division of the distance network.

Modularity was originally introduced to capture the com-
munity structure in networks [1] [11]. Albeit it is still broadly
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investigated [3], there is a consensus that it reflects such a de-
composition of the network where (1) the links between clusters
are not only few, but fewer than expected, and (2) the fraction of
these links are dominated by the fraction of inter-cluster links.
This notion developed for standard graphs is tailored here to
the distance network with directed and weighted edges. How-
ever, if there are valid routes between every station pairs then
the distance matrix is a full directed and weighted network, so
edge reduction is very much endorsed by deleting links between
nodes that are relatively far from each other.

Formally, let V = {vi}Ni=1 be the set of stations and A the
adjacency matrix with weights Ai j =

max di j

di j
of edges from vi

to v j, where di j is the length of the shortest route from vi to
v j if i � j and Aii = 0 for all i. This way all edge weights
are at least 1, and smaller distances have higher edge weights.
The outdegree and indegree of node vi are noted as k−i and k+i
respectively, while the sum of all edge weights is m.

The modularity of a clustering C of the weighted and di-
rected graph is defined as

Q (C) =
1
m

∑
i j

Ai j −
k−i · k+j

m

 · δ
(
ci, c j

)
, (1)

where ci and c j are the zones of vi and v j nodes respectively,
and δ is the Kronecker-delta function [7]. Modularity quantifies
the strength of a division, measures the relative density of edges
inside communities with respect to edges outside communities.
In contrast to other clustering methods, modularity maximiza-
tion can detect not only the optimal membership but also the
optimal number of clusters. Identifying the strongest clustering
on the nodes of a network is identical to finding C∗ clustering
which maximizes the Q (C) modularity function.

3.2. Load balancing

The AGVs’ workloads are aimed at balancing uniformly, in
order to best utilize the fleet capacity and properly serve the ma-
chines. The load balancing model that defines the AGV-zone
assignments is formulated below as a mixed integer quadratic
problem (MIQP). In this problem, the cycle times of the ma-
chines are assumed to be known, and they define the average
time that an item is spending on a station while being processed.
Formally, let us denote the set of AGVs as A, the set of clus-
ters as C and the set of stations as V (referring to the nodeset
of the distance network). Using this notation, the MIQP of load
balancing can be formulated as:

minimize
∑
v∈V


∑

a

Xvca ·
1

CTv


2

(2)

subj. to:
∑

a

Xca > βc ∀c ∈ C (3)

∑
c

Xca > αa ∀a ∈ A (4)

Xca ∈ {0, 1} ∀c ∈ C,∀a ∈ A (5)

In the above model, Xca is the indicator of assigning AGV
a to zone c, vc is the cluster of station v, CTv is the cycle time
of station v, αa ≥ 1 is the minimal number of zones that AGV
a is assigned to, and βc ≥ 1 is the minimal number of AGVs
assigned to cluster c. These parameters must be tuned for ev-
ery individual MIQP regarding to the feasibility of the given
problem. Minimizing the objective function (Eq. 2) is equiv-
alent to balancing machine-AGV assignments based on their
cycle times. All the constraints are necessary for having a valid
AGV-zone assignment. Eq. 3 ensures that every station cluster
gets at least βc different AGV(s) to serve them. Without this
constraint it might happen that a cluster of stations does not re-
ceive any AGVs. The same explanation holds for Eq. 4. The
last constraint (Eq. 5) is technical, it symbolizes the fact that
any AGV is either assigned to a certain cluster or not.

3.3. Dispatching

On the dispatching level of the decision-making hierarchy,
tasks are assigned to vehicles, assuming a saturated system
where machine stations are continuously triggering tasks. Ev-
ery AGV maintains its own list of assigned tasks and their exe-
cution sequence is determined by the dispatcher. The proposed
distance- and time based (DTB) dispatching approach is dy-
namically switching between so-called delivery-task-first and
pickup-task-first rules [2]. Motivated by maximal vehicle uti-
lization, the assignment of delivery tasks starts only after the
AGV is already fully loaded, or no open pickup task is remain-
ing. An AGV completes all the assigned deliveries until it be-
comes empty, then starts to pick up items again. The prioritized
task type is registered in some parameter. Considering the task
assignment triggers, vehicle initiated rules are more commonly
applied in saturated systems where AGVs rarely wait. When-
ever a vehicle completes a task, the following procedure is ex-
ecuted to find the next task. The details of the used dispatching
logic are described in [7].

3.4. System refinement loop

Real life production systems are not free from random
events, unwanted failures or unpredictable breakdowns. The
pattern of workload can also change in time. Hence, these sys-
tems have ever-changing environment state, therefore the re-
finement of the dispatcher’s input is essential for maintaining a
valid and close-to-optimal operation. The method of refinement
can easily get over-complicated, since the external environment
is usually a very complex one. Hence, it is advised to work
with simple models to apply simple modifications at a time,
as even small changes can cause significant differences in the
operation of complex systems. The proposed refinement loop
is indeed such a greedy reallocation of AGVs between some
selected zones. Despite of its quite straightforward algorithm,
its positive impact on the main KPIs of production is clearly
visible in the next section.

The main idea of the refinement loop is to reallocate only
one AGV at a time. The reallocation shall be done from the
best station cluster to the worst one. The level of goodness can
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be measured in many ways, most commonly used metrics are
availability, utilization or quality. Let us now define a new met-
ric of goodness, which shall be the combination of performance
and availability. Performance is described by the number of as-
sembled (done) parts. The other ingredient will be the number
of potential parts. A potential part is a part that could be assem-
bled if the machine station were fully served by the AGV fleet.
A potential part comes from the time period(s) when the station
waits for new parts to assemble or when the station cannot start
working on a new part because the old part is not yet shipped
(i.e. the station is blocked).

Mathematically speaking, the number of potential parts are
the fraction of unused time (waiting plus blocked time) and cy-
cle time (Fig. 3). The measure of goodness is defined as the
fraction of potential parts and assembled parts. This fraction
literally shows what percentage of the assembled parts could
have been done in case of a perfectly served station. Of course
this value is highly unlikely to be reachable: it can be easily
seen that any AGV fleet has its limits in serving. Also, installing
more vehicles might result in higher number of assembled parts,
but a new AGV can bring at least two disadvantages: (1) au-
tonomous vehicles are quite expansive resources, and (2) bigger
fleet means more frequent and heavier traffic jams on the shop-
floor. Therefore it is not quite practical to solve performance
problems simply by adding/purchasing new AGVs.

Fig. 3. An example for assembly station state deviation. Each bar represents
one assembly station. Number of done parts is the green area multiplied by
passed time and divided it by the station’s cycle time. Number of potential
parts is defined as the sum of blue and yellow area multiplied by passed time
and divided by the station’s cycle time.

The defined measure of goodness (potential ratio) can be
used not only for single assembly stations, but also for set (clus-
ters) of stations or even for the whole production system. In case
of clusters, the potential ratio is defined as the fraction of (1) the
sum of potential parts of all stations in the cluster and (2) the
sum of assembled parts of the same set of stations.

One question remains open: which AGV should be reallo-
cated from the best to the worst zone? (Let us note that this
question is only appropriate if the best cluster has more than
one AGV assigned.) To be able answer the question it is neces-
sary for the AGVs to be comparable. Of course the best logic is
to send the most useless AGV to the new zone. The most use-
less AGV can be the one that spent the most time in the parking
area or the one that has the lowest number of completed task
per driving distance ratio. It is up to the user how to define use-
fulness.

Fig. 4. The heatmaps of the three different assembly station clusterings.

This refinement of the AGV-zone assignment is investigated
in the following section, where different zoning methods are
compared via simulation experiments, and the effects of peri-
odic refinement are discussed.

4. Experimental results

The effectiveness of the complete workflow is demonstrated
here via experimental results, taken from a large-scale industrial
case study. The discrete-event simulation model (with a 95%
validated accuracy) of the real system was used as a testbed
of the experiments [6]. The system consists of nearly 200 ma-
chines and 17 AGVs with the capacity for transporting at most
five items. The assembly stations have varying cycle times (2
- 7 hours) based on the technological requirements of the pro-
cessed job. Assuming a saturated system throughout the experi-
ments, the main objective was to maximize machine utilization
by efficient AGV fleet management.

The layout of the shop-floor is somewhat special, it consists
of a main rectangular section and a smaller island (Fig. 4). First,
three different clustering methods are compared: modularity-
based, naı̈ve and random clustering. Modularity is described in
Sect. 3.1. Naı̈ve clustering assigns the machines of the island
to a separate cluster, and it splits the main area into four clus-
ters of the same size. Random clustering assigns a cluster label
randomly to each assembly station.

Next, simulation experiments were run over a horizon of two
days to test the three zoning models. For each model 20 inde-
pendent experiments were performed, and their performance
was compared through the total number of completed AGV
task. Fig. 5 shows the results. It should not be surprising, that
random zoning brings the worst results with the highest stan-
dard deviation. The mean values of modularity-based and naı̈ve
clustering are not very far from each other, but the later has
much less stability. From now on random clustering is dis-
missed, the focus is on comparing the first two separations.

In the following experiments, 20 rounds of AGV assignment
refinement were completed on both the modularity-based and
naı̈ve clusters. The ramp up time of the system was set to 2
days, meaning that refinements cannot happen before this pe-
riod. When the ramp up phase was passed, the system was auto-
matically triggered if the utilization of AGVs was unevenly dis-
tributed or if their performance dropped below a certain thresh-
old. In Fig. 6, the evolution of total completed tasks shows how
reallocating AGVs improves the system’s overall performance.
Two unexpected valleys can be identified in case of naı̈ve clus-
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Fig. 5. Performance of the three clustering methods measured by the number
of completed AGV tasks. The middle points show the average values of 20
independent experiments (each mode), the width of whiskers are proportional
to the samples’ standard deviations.

Fig. 6. Effect of multiple refinements on two different zoning methods on num-
ber of completed AGV tasks and its trend.

Fig. 7. Effect of multiple refinements on two different zoning methods on the
ratio of potential and done parts and its trends.

tering. This phenomenon refers to the higher system instability
which was already discussed above.

Also, the previously defined potential ratio shows improve-
ment over refinement (Fig. 7). The two figures are nearly re-
flections of each other, which is a direct result of their connec-
tivity: more completed AGV tasks mean more assembled parts
and they are followed by lower potential ratio.

5. Conclusions

In the paper, a new AGV fleet management approach was
proposed that benefits from the analysis of the overall distance
network, and refines the production system model with a greedy
AGV reallocation. The proposed modularity-based clustering
detects the subsets of stations with strong dependencies, with-
out the need of declaring the expected number of zones. In this
way, the adaptability of the overall solution can be guaranteed,
as the network model can be updated from time to time when
changes in the material flow requires that. On the dispatching

level, the method is capable of responding to the specific needs 
of production control (i.e., dispatching with time windows even 
under uncertainty [5], or considering AGV as buffers as well). 
Considering the maximal utilization of machines as a key cri-
terion of AGV fleet operations, even i n case of complex pro-
duction and logistics systems, the proposed refinement method 
results in significant improvements, compared to conventional 
approaches that rely purely on spatial or time attributes.

Based on current outcome in the topic, future research is 
highly motivated. An interesting path would be the implemen-
tation of the initialization part into the refinement loop (Fig. 1), 
namely the effect of adaptive station clustering and AGV work-
load balancing. Although that would require a higher computa-
tion capacity than the current greedy optimizer, a better produc-
tion output is expected.
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