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Abstract

In production management, efficient scheduling is key towards smooth and balanced production. Scheduling can be well-supported by real-time
data acquisition systems, resulting in decisions that rely on actual or predicted status of production environment and jobs in progress. Utilizing
advanced monitoring systems, prediction-based rescheduling method is proposed that can react on in-process scrap predictions, performed by
machine learning algorithms. Based on predictions, overall production can be rescheduled with higher efficiency, compared to rescheduling after
completion of the whole machining process with realization of scrap. Series of numerical experiments are presented to demonstrate potentials in

prediction-based rescheduling, with early-stage scrap detection.
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1. Introduction

In recent years, the application of data-driven models accel-
erated the optimization of production processes. In particular,
companies all over the world already apply Machine Learn-
ing (ML) to increase efficiency, reduce costs and ensure higher
service levels. First success stories reveal the potential of op-
timizing processes by using ML [1]. Predictive Quality (PQ)
is one of the most widely used approaches in order to reduce
scrap, rework and time for quality inspection [15, 14]. Simulta-
neously, PQ offers the potential to increase machine utilization
and overall equipment effectiveness (OEE) [2]. An early detec-
tion of scrap parts by predicting product quality can be used
to trigger a rescheduling and, thus, increase the OEE, since the
machine utilization by products that are going to be scrap is
reduced. However, the application of PQ for adaptive schedule
adjustment has not found use in the production environment to
date.
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In this paper, we provide a proof of concept for prediction-
based scheduling through predicting product quality during
manufacturing, in order to reduce waste and increase produc-
tivity. Based on the result of some ML-based product quality
prediction, an event-driven rescheduling is triggered. Once the
use-case is identified and process as well as product data are
acquired, data are prepared for further modelling. This data are
used to train ML-models that provide the opportunity of fore-
casting the product quality. Based on the data of each individ-
ual process in the process chain, the output of the classification
model is whether the product is expected to be in or out of spec-
ification after the completion of the process. If the product is
out of specification and thus a scrap part, the rescheduling is
triggered.

Although identification of waste or scrap can be solely bene-
ficial, even more business value can be brought by utilizing this
information in production planning and control. Overall equip-
ment effectiveness is known to have three major factors: quality,
productivity and availability. Improving any of them will con-
tribute to the OEE’s increase. The presented method aims at
investigating the second factor, namely, how productivity can
be improved by the prediction of improper production quality
using ML. The key idea is that the aforementioned trigger to
reschedule production can be done proactively by using ML-
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based scrap prediction techniques, rather than the reactive way,
when the scrap is already realized. If the entire order set is
rescheduled early in case a scrap is predicted confidently, then
the new schedule will deliver less total waste than implement-
ing the rescheduling after the realization of the total scrap loss
at the end of the given process. In order to evaluate the ben-
efit of such (re-)scheduling model, we use the discrete-event
simulation (DES)-model of a production system and the pro-
ductivity is quantified by the execution makespan of a given or-
der set. Through an experimental study, the proposed adaptive
technique is compared with conventional reactive rescheduling
methods.

2. Literature review

The goal of this paper is to perform adaptive scheduling
based on prediction of product quality at early stages of a pro-
cess chain. Therefore, we focus on the occurrence of already
existing success stories that use information from ML-models
for adaptive scheduling. The first step of literature review com-
prises the investigation of ML-based production quality predic-
tions. In a second step, efforts in terms of adaptive scheduling
are reviewed and current results presented.

2.1. ML-based Product Quality Prediction

A large overview on existing use-cases including product
quality prediction reveals general potential of applying ML-
models in production [9, 6]. Zhang et al. (2016) suggested the
approach to create predictive models for quality control using
a two-staged method. First, available data of a production line
is clustered into groups based on corresponding manufactur-
ing processes. Subsequently, supervised learning is used to pre-
dict failed products in each cluster leading to reduced data set’s
sparsity. Here, the random forest algorithm reached the highest
performance score [18]. In Groner et al. (2019), an application
of ML-based classifiers was presented aiming to predict flawed
products in an automated production. The study’s focus was on
products with diverse parameter combinations leading to prod-
uct defects. Among others, random forest classifier as well as
support vector machine (SVM) were implemented, where tree-
based algorithms outperformed the SVM [4].

Kuhnle and Lanza (2019) stated that production planning
needs to be dynamic enough to handle uncertainty and un-
expected incidents. For that purpose, cyber-physical produc-
tion systems (CPPS) provide real-time data about, among oth-
ers, order tracking, machine down times and inventory levels.
This enables the application of ML-algorithms, which could
be used for order dispatching and maintenance management.
There have been investigations, in which ML is used for order
scheduling using a method, where each resource and each or-
der is considered as intelligent agent. A ML-based solution is
presented to estimate the benefit of allocating a job to a spe-
cific resource [8]. In addition, Lee (2019) designed prediction
models for the product quality of camera lenses using convo-
lutional neural networks, while considering model outputs for

scheduling. Thus, defective products that are successfully pre-
dicted at an early stage of the manufacturing process can be
discarded without going to the next stage, avoiding unneces-
sary additional costs [10]. Krauf} et al. (2019) focused on the
prediction of product quality based on a process chain consist-
ing of six steps. For each process, a Classification And Regres-
sion Tree (CART)-algorithm was trained in order to classify,
whether products would be in or out of specification at the end
of the process chain. The CART-algorithm was assessed based
on the Matthews Correlation Coefficient (MCC) and achieved a
performance of MCC = 0.70 [7]. However, the model’s outputs
were not used to adjust production schedules.

2.2. Rescheduling strategies

The advantage of having multiple data sources can be uti-
lized only if the production management is ready for processing
the near-real time information, and able to react on unexpected
changes with least possible modifications in original plans. Fo-
cusing on scheduling as a critical part of the overall decision
making process, robust or reactive approaches are needed to
maintain the desired level of key performance indicators (KPI).
Robust approaches calculate schedules with a foresight of pos-
sible changes, and in case they happen, the original plan can
be followed with no or minimal modifications. Robustness al-
ways brings some costs by nature that is often displayed by
the overall effectiveness. In contrast, reactive approaches rely
on deterministic scheduling parameters, however, they provide
quick, possibly only local modifications of schedules in case of
certain deviations [13].

In this paper, rescheduling techniques are investigated that
aim at adjusting the schedule to certain changes in production
with least possible loss in selected KPIs: we focus on indi-
rectly improving the productivity of the system under study
by minimizing the manufacturing makespan as our primary
performance indicator in the objective function of scheduling.
Rescheduling actions are triggered by the predicted product
quality, in case a predefined threshold is achieved. Then, the
“live” schedule needs to be refined by leaving orders under
execution (and possibly within a so-called frozen period) un-
changed, as it is technologically required, and recalculating
the schedule considering the remaining set of work orders. A
general requirement towards rescheduling is to make it rapidly
and with least possible hurt of the original schedule [16]. Even
though time-based rescheduling triggers are most common, re-
alizing other condition changes may be also used in a simi-
lar way. A typical example for a deviation-based trigger might
be machine breakdowns, new job arrivals or product quality
changes [19, 3]. As for the latter, in case the product quality
is not sufficient, typically two major options are available: to
perform corrective rework actions, or to mark the part as scrap.
Both affect the production schedule, while in case of rework,
some corrective tasks need to be pasted in the plan. In case of
scrap identification, all tasks need to be rescheduled that any-
how relates to the rejected part.

In the following sections, the latter case is investigated, how-
ever, the scrap identification is done in a predictive way, ideally
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well before the machining process would be completed. This
requires both the in-process quality monitoring, as well as pre-
dictive analytics models that detect the quality deviation, and
triggers the rescheduling before processes would be finished.
In this case, the rescheduling algorithm should provide a new
schedule that do not influence other jobs in progress, and adap-
tively regenerates the schedule with least possible modifications
in a short response time [11]. There are several ways to regen-
erate a schedule while meeting the response time constraints,
among others, heuristics, rule- and constraint-based approaches
are most common ones [13]. For predictive rescheduling, var-
ious solutions are available, however, most of them typically
focus on the prediction of machine breakdowns as a triggering
event [17, 12]. In order to utilize the fault prediction in schedul-
ing, Ji and Wang (2017) propose a method that relies on big
data analytics [5]. They propose a method that relies on histor-
ical data to reduce the number of defect parts by proper task-
machine assignments.

2.3. Literature review findings

In conclusion, ML is already applied in production in order
to predict product quality. There are some single approaches to
use ML with the aim to make production systems more adap-
tive, however, most examples are focusing on the performance
enhancement of ML-models and the adaption of process pa-
rameters instead of using the outputs for a prediction-based
scheduling. As for the revised literature in the topics of robust
scheduling and rescheduling, it can be concluded that ML and
data-driven solutions are proven to perform well in schedul-
ing tasks. However, most of the approaches remain in a proto-
type phase without any transfer to real industrial environments.
Therefore, production engineers and planner still face the chal-
lenges related to the scheduling’s robustness, in form of unex-
pected levels of KPIs. Although, there are publications trying
to link efficiently the execution and calculation stages of sched-
ules, only a few efforts were made to combine them into a com-
plex scheduling system in production environment.

3. Prediction-based scheduling

Nowadays, ML-models and Al are widely preferred for pro-
cess parameter or product quality prediction. However, the ap-
plication of ML-models in production remain on a prototype
level since its development for stable usage requires not only
deep engineering knowledge and strong programming skills,
but also a broad experience in ML-algorithms and system
model building. Especially the prediction of product quality and
scrap ratio based on current system status offers a huge poten-
tial for adaptive scheduling and has not yet been investigated.

3.1. Problem Statement

Based on the previously discussed literature review, the
problem statement is specified. Along numerical experiments,
the optimal makespan is sought, producing a fix set of work

orders. A realistic job-shop environment is considered, where
manufacturing processes are imperfect, thus a certain amount
of scrap is always realized. It is also assumed that manufac-
turing processes can be fully monitored, and scraps can be pre-
dicted in-process, and completely identified post-process. There
are various jobs to be processed in the system, and each may
include several work orders. The orders are specified by their
duration and required technology, e. g. milling, drilling, that is
considered when assigning them to resources. For the order ex-
ecution, alternative resources are available. Considering these
constraint, an initial schedule of all orders is generated, and
maintained along with the execution by rescheduling if neces-
sary or triggered. Considering a given set of orders, the overall
objective of scheduling is to minimize the makespan, which in-
directly refers to increasing the resource productivity.

Original schedule without scrap

Al s
-

Adaptive rescheduling

Al s
Reactive scheduling

Time
1 I 2 3

Fig. 1. Impact of rescheduling illustrated on a small example case: given two
jobs (orange and blue) with three orders, and three resources (horizontal lanes)
different schedules are compared. The first schedule is the initial one, assuming
no scrap operation. During the execution, order A2 is identified/predicted to be
scrap, thus all blue orders are rescheduled. In the adaptive case, rescheduling
happens early in time, thus the overall makespan (Makespan_2) is significantly
shorter than in case of reactive scheduling (Makespan_3). The rescheduled or-
ders are indicated by a suffix ”s” in the order name.

During the schedule execution (manufacturing), we may re-
alize scraps. We assume that rework of scrap items is not pos-
sible, therefore, in case of a scrap job realization, all corre-
sponding tasks of the job need to be re-scheduled and executed.
Therefore, the key towards makespan minimization is prompt
rescheduling. Rescheduling can happen after orders are com-
pleted (reactive scheduling), or already during part processing
(based on the ML-based prediction, thus ideally earlier in time).
Anytime a scrap part is realized or predicted, a rescheduling is
performed and all orders (including the scrap related ones) are
scheduled again (Fig. 1).

3.2. Workflow of the data-driven prediction-based scheduling

The proposed scheduling architecture can be taken from
Fig. 2. Starting point is an initial job schedule, taking into
account the job/order and resource sets. This schedule is re-
leased to the simulated production environment, and online
ML-models are applied to forecast quality of products in real-
time. In case any scrap is predicted, the identified operation
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needs to be terminated, and all related orders, even those that
are completed already, are added to the order set again. When
receiving ML-based predicted product quality, the schedule for
the set of unreleased orders must be recalculated. Therefore, the
target architecture is structured in both ML-based product qual-
ity forecast and prediction-based scheduling, which uses infor-
mation of ML-models in order to adjust production schedule in-
stantly. Consequently, the quality of products is predicted based
on process parameters and initial data from product and envi-
ronment. The output of ML-models are two different classes:
scrap part and in-spec part. During and after completion of
each process it is assessed whether the product is classified as
scrap or as in-spec part. This information is then used as a trig-
ger for rescheduling in the way described above.

(Re-)calculate production schedule

(Re-)Scheduling
Minimize makespan
Assign tasks to
Tesources

Consder precedence
constraints

Machines
Capacity
Capability
(technology)

Jobs/Tasks
Technology
(machine)
requirements

ML prediction
Process monitoring
Scrap prediction
Online alarms

Duration

uononpoid 0} A[NPAYDS ISBI[IY

rap-related tasks

Monitoring, interaction

Add sc

Production (simulation)
Execution of a schedule
Detailed resource models

Fig. 2. Workflow of the ML-based scheduling approach.

4. Case study for proof-of-concept
4.1. ML-Based Product Quality Prediction

In order to perform quality prediction successfully, method-
ological approaches are used. Since commonly used method-
ologies are generic and do not cover expertise from domain ex-
perts, we use an approach that considers the relevant phases of
an Al-project by taking into account perspectives of data sci-
ence, production and IT-experts.

According to previously defined use-case, which is the pre-
diction of product quality in order to use this information for
a rescheduling, data is acquired on many different production
systems leading to numerous data sources. Various data for-
mats further result in the necessity of data integration. Since
integrating data is very use-case specific, the collaboration with
IT-experts and production experts is required to cover relevant

parameters and determine IT-infrastructure capabilities. Inte-
grated data may still comprise missing values, outliers and
noise that require further preparation. The preparation can be
structured into data architectures, in which data scientists se-
lect and implement suitable methods of data preprocessing on
the basis of initial data quality checks, as well as feature engi-
neering. New features may also be generated through intensive
collaboration between data scientist and production expert.

Based on high quality data, suitable ML-algorithms are
selected, trained and optimized. For the selection of ML-
algorithms, use case requirements, the underlying data quality,
and external requirements such as existing computing power is
considered. To understand the complexity of the problem, base-
line ML-algorithms are implemented such as decision trees.
Subsequently, more sophisticated algorithms are chosen. The
ML model optimization takes place by performing hyperparam-
eter tuning using state of the art tuning techniques such as ran-
dom search and Bayesian optimization. In order to cover two
scenarios stated in Chapter 3.2, a classification is selected, in
which two classes are predicted based on process and environ-
ment parameters. Based on the predicted class, the reschedul-
ing algorithm can be triggered. The ML-model results are as-
sessed as the final modelling step using metrics such as F1-
score, MCC, or recall. If ML-models meet the requirements,
models can further be deployed in production. For this reason,
the first step comprises the design of deployment, in which the
strategy, how the model is going to be implemented is spec-
ified as well as whether the model is trained online or offline.
Subsequently, models are productionized meaning that the ML-
model is made available for final software systems and con-
tinuously tested. Once ML-models are deployed, the system is
monitored and models retrained if necessary. Starting from a
deployed software system, the final phase comprises the devel-
opment of a certification strategy. Main action fields in regards
to certification are model transparency, fairness and reliability.
Moreover, data safety, protection as well as autonomy of the
system needs to be ensured.

4.2. Production environment

The presented research aims at identifying the business po-
tentials in ML-based adaptive scheduling, focusing on scrap
prediction. Therefore, a realistic yet simulated production envi-
ronment is considered as a testbed, assuming a generic machin-
ing shop with alternative resources and precedence constraints
among orders. The corresponding scheduling model is formu-
lated and implemented using the Kalis constraint programming
(CP) library of FICO Xpress. The investigated problem is a gen-
eral job-shop scheduling with alternative machines from set M,
and a set of jobs N. The set of work orders is denoted by O,
and each order has a given duration 7,, and a resource require-
ment m,. The set of process (and also machine) types is denoted
by S, each task has its own process type s, € S and machines
have process capabilities s,, € S. The machines are disjunctive
resources and they are capable to process a single order at a
time. The objective function minimizes the makespan 7', which
means the overall completion time of all jobs. Considering pro-
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cess plans of the jobs, the schedule includes some precedence
constraints that prevent to hurt the predefined sequence of or-
der completions. The precedence connection between tasks is
represented by a graph G(V, E) with arcs (i, j) € E symbolizing
that operation i precedes operation j. The binary decision vari-
ables a,,, determine, if order o is assigned (1) to machine m or
not (0). The scheduling model is formulated as it follows:

minimize max "¢ (1)
0e0
t(c;ml > tzmrt +1, Vo e O (2)
t;rart > t:}'tar! +1, VoeO:(o,p)€E 3)
Aom € 0;1 Yoe O,me M (4)
Z Aom = 1 Yo € O (5)
meM
Aoy < |M| VYme M,t<T (6)
O <O 21)
Aom * So = Qom * Sm Yoe O,me M 7)

The objective function (1) expresses the minimization of the
makespan of the schedule. Constraint (2) specifies the duration
of the tasks, while (3) represents the precedence limitations.
Constraints (4-7) define the machine capacities considering al-
ternative resources.

4.3. Numerical experiments

In the test scenarios, input data is generated with random
parameters. For the sake of comparability, the production en-
vironment remain unchanged in all test scenarios, while the
job attributes and all related order parameters are changed
randomly. The simulated production environment is character-
ized with the following parameters. The number of machines
is [M| = 7, including four different machine types that cov-
ers the whole set of machining operations. In the experiments,
milling, drilling, grinding and electric-discharging operations
are assumed, which require different machine types. The num-
ber of jobs is set to be |J| = 15, and each job has several op-
erations in the range of 1 to 10 and the overall set of orders
is |O] = [70, 100]. The orders’ (randomly) predefined duration
varies between 7, = [10,50] minutes. Considering the work-
load and the capacity, the short term scheduling covers 8-12
hours (makespan), equivalent to a working shift. Some orders
are randomly marked to result in scrap, and the scrap rate varies
between 1-5%. Along the experiments, it is assumed that the
ML-model can accurately identify scrap already at 25-40% of
the task completion progress. Therefore, a rescheduling event
can be triggered at the earliest time of 25% task completion.
This approach is compared with the traditional reactive method,
when rescheduling is triggered after the task completion. The
assumed prediction times are in very early, yet realistic stage of
the machining process; and important to highlight that the ob-
tained results are also idealistic based on the prediction time. In
case of false alarms and later prediction, the obtained business

values may decrease or significantly decrease compared to the
presented case.

The simulation model of the system is implemented in
Siemens Tecnomatix Plant Simulation, and callback functions
are implemented in Python to bridge the scheduler and simula-
tion models. In every experiment, the production is simulated
by using both adaptive and reactive rescheduling methods, and
the associated makespan values are compared. In every sce-
nario, the makespan value is converted to be relative, i.e., the
percentage value of it provides how shorter the makespan of
the adaptive scheduling is compared to the reactive one. Ac-
cordingly, negative values indicate improvement with a certain
percentage compared to the reactive approach, while positive
values indicate worse (i.e. longer) production. The scenarios are
also marked by the total number of work orders, as in case of
very complex instances, the CP solver may not return with an
optimal value, but the time limit of 1 minute is reached. Further-
more, the number of rescheduling actions is also highlighted,
indicated by the scrap rate. Scenarios with < 3 % scrap rate are
associated with a few rescheduling actions (1-2), in contrast to
those scenarios where the scrap rate is relatively high (3-5%),
thus rescheduling is more frequent.

Comparison of the rescheduling methods

™ Number of work orders o
Bl 7

10 B so
B 00

-10

Average makespan change [%]

-40

Secrap rate [%]

Fig. 3. Relative makespan results of the numerical experiments. Negative values
indicate that adaptive scheduling resulted in shorter (better) makespan than the
reactive one.

As indicated by the numerical results of 100 scenarios, the
prediction-based rescheduling method resulted in significantly
shorter makespan in most of the cases (Fig. 3). In case of rela-
tively simple scheduling problem with 70 work orders, the CP
solver terminated with a close-to-optima solution (in both meth-
ods), thus the results are easier to compare. In these cases, the
prediction-based method resulted in 8-11% shorter makespan
(median), and there were only a very few cases when the reac-
tive method resulted in a shorter execution time. As the number
of orders increases, the scheduling problem gets more complex
and the solver typically cannot find a close-to-optimum value,
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however, the prediction-based method still performs better in
these cases. Interesting to observe that scrap rate has no major
impact on the trend of the results, but in case of more frequent
rescheduling, the contribution of the prediction-based method
to the system performance is also slightly increasing.

The obtained positive results show the potentials of the pro-
posed methodology, although they are possibly biased by the
conditions in which the adaptive scheduling approach operates.
The outcome may vary in different circumstances, therefore the
solution shall be personalized for every given environment.

5. Conclusions and outlook

The application of ML for production process optimization
has been rapidly increased over the last years. Especially PQ
is one of the most common application of ML in production.
Primary goals of PQ are to reduce scrap and rework. Besides
enhancing product quality, PQ offers the potential to increase
machine utilization and overall equipment effectiveness (OEE)
through an early detection of scrap parts that triggers reschedul-
ing. In practice, this approach remain on concept level until
date. Therefore, in this paper, rescheduling techniques are in-
vestigated that aim at adjusting the schedule to certain changes
in production with the least possible loss in selected KPIs. For
this reason, a realistic yet simulated production environment is
considered as a testbed, assuming a generic machining shop
with alternative resources and precedence constraints among
the orders. Numerical results indicate the assumption that early
scrap identification has a significant positive impact on the pro-
ductivity, as the time saved by the ML-based prediction can
be 10-15 % of the overall makespan in the analyzed cases
and 100 scenarios. The proposed prediction-based scheduling
model is triggered by a scrap classifier, however "prediction-
based”-ness does not mean that the model always has to use
a scrap forecasting result. Thus, future work on this topic con-
sists of experimenting with different target variables (e. g. re-
work prediction) and comparing them. Also, certain combina-
tions of achieved models may bring promising results when us-
ing them jointly in prediction-based scheduling. As part of the
future work, the authors plan to investigate the outcome of mix-
ing all possible prediction scenarios (processing time, scrap, re-
work) as triggers of rescheduling. Furthermore, current efforts
are put in linking process monitoring, data collection and ML
tools to compile them in a common real time analytics frame-
work that enables further integration of production IT tools, e.
g., scheduling and dispatching tools.
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