A SNEVILY-TYPE INEQUALITY FOR MULTISETS

A. GÁSPÁR ${ }^{1}$ and G. KÓS ${ }^{2,3, *}$
${ }^{1}$ Mathematical Institute, Loránd Eötvös University, Pázmány Péter sétány $1 / C$, H-1117 Budapest, Hungary
e-mail: gsprati99@gmail.com
${ }^{2}$ Institute for Computer Science and Control (SZTAKI), P.O.Box 63, H-1518 Budapest, Hungary e-mail: kosgeza@sztaki.hu
${ }^{3}$ Alfréd Rényi Institute of Mathematics, P.O.Box 127, H-1364 Budapest, Hungary

(Received May 20, 2020; revised October 7, 2020; accepted October 9, 2020)

Abstract

Alon [1] proved that if p is an odd prime, $1 \leq n<p$ and a_{1}, \ldots, a_{n} are distinct elements in Z_{p} and b_{1}, \ldots, b_{n} are arbitrary elements in Z_{p} then there exists a permutation of σ of the indices $1, \ldots, n$ such that the elements $a_{1}+b_{\sigma(1)}, \ldots, a_{n}+b_{\sigma(n)}$ are distinct. In this paper we present a multiset variant of this result.

Motivation. Let G be a finite group of odd order and suppose that $a_{1}, \ldots, a_{k} \in G$ are pairwise distinct and $b_{1}, \ldots, b_{k} \in G$ are pairwise distinct. Snevily's conjecture states that there is a permutation σ of the indices $1,2, \ldots, n$ for which $a_{1} b_{\sigma(1)}, a_{2} b_{\sigma(2)}, \ldots, a_{k} b_{\sigma(k)}$ are pairwise distinct. The conjecture has been proved for cyclic groups of prime order by Alon, for cyclic groups by Dasgupta et al. [4] and for commutative groups by Arsovski [3].

Our motivation was to attack Snevily's conjecture in an inductive approach. Let N be a maximal normal subgroup of G, so $p=G: N$ is an odd prime, for $|G|$ is odd and thus G is solvable. We look for a suitable matching of the cosets $a_{1} N, \ldots, a_{n} N$ and $b_{1} N, \ldots, b_{n} N$ first, to proceed among the elements in the cosets. Since we have $n>p$ in general, we cannot expect the cosets $a_{i} b_{\sigma(i)} N$ to be distinct. Instead we try to control the multiplicities in the sequence $\left(a_{1} b_{\sigma(1)} N, \ldots, a_{n} b_{\sigma(n)} N\right)$ and compare it with the multiplicities in $\left(a_{1} N, \ldots, a_{n} N\right)$ and $\left(b_{1} N, \ldots, b_{n} N\right)$. For such a program, we need a suitable multiset variant of Snevily's conjecture in the group $G / N \simeq Z_{p}$.

[^0]Notation. Throughout the paper, p refers to an odd prime and $1 \leq n<p$ is an integer. $\operatorname{Sym}(n)$ denotes the set of permutations of $(1,2, \ldots, n)$. For $\sigma \in \operatorname{Sym}(n), \operatorname{sgn} \sigma$ denotes the sign of σ; that is, +1 for even permutations and -1 for odd permutations.

The boldface symbols denote sequences of n objects, indiced by $1,2, \ldots, n$; in particular, $\mathbf{0}=(0, \ldots, 0)$ is the n-dimensional null vector. For any sequence $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and any permutation $\sigma \in \operatorname{Sym}(n)$, we define $\mathbf{x}^{\sigma}=\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$.

For any polynomial $P(\mathbf{x})$ with n variables and nonnegatve integer vector $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}, \partial^{\mathbf{d}} P(\mathbf{x})$ abbreviates the partial derivative $\partial x_{1}^{d_{1}} \ldots \partial x_{n}^{d_{n}} P\left(x_{1}, \ldots, x_{n}\right)$.
$V(\mathbf{x})=V\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$ is the Vandermonde polynomial with n variables.

Results. We start with the following theorem of Alon:
Theorem 1 (Alon [1]). Let p be an odd prime, $1 \leq n<p$, and suppose that $a_{1}, \ldots, a_{n} \in \mathbb{F}_{p}$ are distinct and $b_{1}, \ldots, b_{n} \in \mathbb{F}_{p}$ arbitrary. Then there exists a permutation σ of the indices $1,2, \ldots, n$ such that $a_{1}+b_{\sigma(1)}, \ldots$, $a_{n}+b_{\sigma(n)}$ are distinct.

Alon proved this theorem as an easy application of his powerful nonvanishing criterion (Theorem 1.2 in [2]), by examining the coefficient of $\left(x_{1} \cdots x_{n}\right)^{n-1}$ in the polynomial $V(\mathbf{x}) V(\mathbf{x}+\mathbf{b})$. Here we replicate a variant of the proof that can be extended to partial derivatives directly.

In order to state a multiset analogue, we define a quantity that measures the number of coinciding elements. For any finite sequence $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, let $N(\mathbf{x})$ be the number of ordered index pairs (i, j) with $1 \leq i<j \leq n$ and $x_{i}=x_{j}$. Notice that if there are k different elements among x_{1}, \ldots, x_{n} and they occur m_{1}, \ldots, m_{k} times, respectively, then $N(\mathbf{x})=\sum\binom{m_{i}}{2}$; if x_{1}, \ldots, x_{n} are distinct, then $N(\mathbf{x})=0$. We will prove the following

Theorem 2. Let p be an odd prime, $1 \leq n<p$, and let $\mathbf{a}, \mathbf{b} \in \mathbb{F}_{p}^{n}$. Then there exists a permutation $\sigma \in \operatorname{Sym}(n)$ such that

$$
N\left(\mathbf{a}+\mathbf{b}^{\sigma}\right) \leq N(\mathbf{a}) .
$$

Since $N\left(x^{\sigma}\right)=N(x)$, hence $N\left(a+b^{\sigma}\right)=N\left(b+a^{\sigma^{-1}}\right)$, an equivalent formulation is

$$
N\left(\mathbf{a}+\mathbf{b}^{\sigma}\right) \leq \min (N(\mathbf{a}), N(\mathbf{b})) .
$$

Alon's proof for Theorem 1 can be modified for this theorem; the necessary tools are presented in [5]. We prefer to give two independent proofs as below.

Lemma 1. For any $\mathbf{b} \in \mathbb{F}_{p}^{n}$,

$$
\begin{equation*}
\sum_{\sigma \in \operatorname{Sym}(n)} V\left(\mathbf{x}+\mathbf{b}^{\sigma}\right)=n!\cdot V(\mathbf{x}) \tag{1}
\end{equation*}
$$

Proof. Consider the polynomial

$$
P(\mathbf{x}, \mathbf{y})=\sum_{\sigma \in \operatorname{Sym}(n)} V\left(\mathbf{x}+\mathbf{y}^{\sigma}\right)=\sum_{\sigma \in \operatorname{Sym}(n)}(\operatorname{sgn} \sigma) \cdot V\left(\mathbf{x}^{\sigma^{-1}}+\mathbf{y}\right)
$$

Given that $\operatorname{sgn}\left(\nu^{-1}\right)=\operatorname{sgn} \nu$ and $\operatorname{sgn}(\nu \tau)=\operatorname{sgn}(\nu) \operatorname{sgn}(\tau)$, this polynomial alternates in the variables in \mathbf{x}, so $P(\mathbf{x}, \mathbf{y})$ is divisible by $V(\mathbf{x})$. Since P and V have the same degree, $P(\mathbf{x}, \mathbf{y})$ must be some constant times $V(\mathbf{x})$; this constant can be determined by substituting $\mathbf{y}=\mathbf{0}$. Hence,

$$
\sum_{\sigma \in \operatorname{Sym}(n)} V\left(\mathbf{x}+\mathbf{b}^{\sigma}\right)=P(\mathbf{x}, \mathbf{b})=P(\mathbf{x}, \mathbf{0})=n!\cdot V(\mathbf{x})
$$

Proof of Theorem 1. Substituting $\mathbf{x}=\mathbf{a}$ in (1) provides

$$
\sum_{\sigma \in \operatorname{Sym}(n)} V\left(\mathbf{a}+\mathbf{b}^{\sigma}\right)=n!\cdot V(\mathbf{a}) \neq 0
$$

Therefore there is at least one nonzero term on the left-hand side, so there is a permutation $\sigma \in \operatorname{Sym}(n)$ such that $V\left(\mathbf{a}+\mathbf{b}^{\sigma}\right) \neq 0$, indicating that the elements in $\mathbf{a}+\mathbf{b}^{\sigma}$ are distinct.

Lemma 2. Let $\mathbf{a} \in \mathbb{F}_{p}^{n}$. Then
(a) For any $\mathbf{d} \in \mathbb{N}^{n}$ with $d_{1}+\cdots+d_{n}<N(\mathbf{a})$ we have $\partial^{\mathbf{d}} V(\mathbf{a})=0$.
(b) There exists $a \mathbf{d} \in \mathbb{N}^{n}$ such that $d_{1}+\cdots+d_{n}=N(\mathbf{a})$ and $\partial^{\mathbf{d}} V(\mathbf{a}) \neq 0$.

Proof. (a) Notice first that in $V(\mathbf{a})=\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)$ there are exactly $N(\mathbf{a})$ zero factors.

Suppose $d_{1}+\cdots+d_{n}=k<N(\mathbf{a})$. Notice that

$$
\partial^{\mathrm{d}} V(\mathbf{x})=\partial^{\mathrm{d}}\left(\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\right)
$$

is a signed sum of subproducts of $\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$, with each such product consisting of $\binom{n}{2}-k$ factors. Substutiting $\mathbf{x}=\mathbf{a}$, each product contains at least $N(\mathbf{a})-k \geq 1$ zero factors.
(b) For $j=1, \ldots, n$, let d_{j} be the number of indices i with $1 \leq i<j$ and $a_{i}=a_{j}$. Then obviously $d_{1}+\cdots+d_{n}=N(\mathbf{a})$. Like in part (a), $\partial^{\mathbf{d}} V(\mathbf{x})$ is a is a signed sum of subproducts with $\binom{n}{2}-N(\mathbf{a})$ factors. It can be seen that
there is only one nonzero among them, which is the product of all nonzero factors, so with this choice of \mathbf{d}, we have $\partial^{\mathbf{d}} V(\mathbf{a}) \neq 0$ indeed.

First proof for Theorem 2. By part (b) of Lemma 2, there is some $\mathbf{d} \in \mathbb{N}^{n}$ such that $d_{1}+\cdots+d_{n}=N(\mathbf{a})$ and $\partial^{\mathrm{d}} V(\mathbf{a}) \neq 0$. Taking the \mathbf{d}-th partial derivative of (1),

$$
\sum_{\sigma \in \operatorname{Sym}(n)} \partial^{\mathbf{d}} V\left(\mathbf{a}+\mathbf{b}^{\sigma}\right)=n!\cdot \partial^{\mathbf{d}} V(\mathbf{a}) \neq 0
$$

Hence, there is a $\sigma \in \operatorname{Sym}(n)$ such that $\partial^{\mathbf{d}} V\left(\mathbf{a}+\mathbf{b}^{\sigma}\right) \neq 0$; by part (a) of Lemma 2, we have

$$
N\left(\mathbf{a}+\mathbf{b}^{\sigma}\right) \leq d_{1}+\cdots+d_{n}=N(\mathbf{a})
$$

Second proof for Theorem 2. We prove by induction on n. The claim is trivial for $n=0$. Let $1 \leq n<p$, and assume that Theorem 2 is true for smaller values of n.

Let k be the number of different elements among $a_{1}, a_{2}, \ldots, a_{n}$. Rearrange the elements in such an order that $a_{1}, a_{2}, \ldots, a_{k}$ are distinct.

Notice that each of a_{k+1}, \ldots, a_{n} is listed exactly once among a_{1}, a_{2}, \ldots, a_{k}, so there are exactly $n-k$ pairs i, j of indices with $i \leq k<j$ and $a_{i}=a_{j}$. Therefore,

$$
\begin{equation*}
N\left(a_{1}, \ldots, a_{n}\right)=(n-k)+N\left(a_{k+1}, \ldots, a_{n}\right) \tag{2}
\end{equation*}
$$

By Theorem 1 there is a permutation σ_{1} of $1,2, \ldots, k$ such that $a_{1}+b_{\sigma_{1}(1)}, a_{2}+b_{\sigma_{1}(2)}, \ldots, a_{k}+b_{\sigma_{1}(k)}$ are distinct. By the induction hypothesis, there is a permutation σ_{2} of $k+1, k+2, \ldots, n$ such that

$$
\begin{equation*}
N\left(a_{k+1}+b_{\sigma_{2}(k+1)}, \ldots, a_{n}+b_{\sigma_{2}(n)}\right) \leq N\left(a_{k+1}, \ldots, a_{n}\right) \tag{3}
\end{equation*}
$$

Merge σ_{1} and σ_{2} to a new permutation σ.
By the definition of σ_{1}, the elements $a_{1}+b_{\sigma(1)}, \ldots, a_{k}+b_{\sigma(k)}$ are distinct. For each j with $k<j \leq n$, there is at most one index $i \leq k$ with $a_{i}+b_{\sigma(i)}=a_{j}+b_{\sigma(j)}$. For this reason,

$$
\begin{equation*}
N\left(a_{1}+b_{\sigma(1)}, \ldots, a_{n}+b_{\sigma(n)}\right) \leq(n-k)+N\left(a_{k+1}+b_{\sigma(k+1)}, \ldots, a_{n}+b_{\sigma(n)}\right) \tag{4}
\end{equation*}
$$

The estimates (2)-(4) together provide

$$
N\left(a_{1}+b_{\sigma(1)}, \ldots, a_{n}+b_{\sigma(n)}\right) \leq N\left(a_{1}, \ldots, a_{n}\right)
$$

completing the induction step.
At the end we remark that Theorems 1 and 2 are not true for $n=p$; an easy counter-example is $\mathbf{a}=(0,1,2, \ldots, p-1)$ and $\mathbf{b}=(1,0,0, \ldots, 0)$.

References

[1] N. Alon, Additive Latin transversals, Israel J. Math., 117 (2000), 125-130.
[2] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput., 8 (1999), 7-29.
[3] B. Arsovski, A proof of Snevilys conjecture, Israel J. Math., 182 (2011), 505-508.
[4] S. Dasgupta, Gy. Károlyi, O. Serra and B. Szegedy, Transversals of additive Latin squares, Israel J. Math., 126 (2001), 17-28.
[5] G. Kós and L. Rónyai, Alon's Nullstellensatz for multisets, Combinatorica, 32 (2012), 589-605.

[^0]: * Corresponding author.

 Supported by National Research, Development and Innovation Office NKFIH Grant K 120154.
 Key words and phrases: Combinatorial Nullstellensatz, polynomial method, sumset, multiset, multiple point.

 Mathematics Subject Classification: 05E40, 12D10.

