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Abstract. Alon [1] proved that if p is an odd prime, 1 ≤ n < p and a1, . . . ,
an are distinct elements in Zp and b1, . . . , bn are arbitrary elements in Zp then
there exists a permutation of σ of the indices 1, . . . , n such that the elements
a1 + bσ(1), . . . , an + bσ(n) are distinct. In this paper we present a multiset variant
of this result.

Motivation. Let G be a finite group of odd order and suppose that
a1, . . . , ak ∈ G are pairwise distinct and b1, . . . , bk ∈ G are pairwise distinct.
Snevily’s conjecture states that there is a permutation σ of the indices
1, 2, . . . , n for which a1bσ(1), a2bσ(2), . . . , akbσ(k) are pairwise distinct. The
conjecture has been proved for cyclic groups of prime order by Alon, for cyclic
groups by Dasgupta et al. [4] and for commutative groups by Arsovski [3].

Our motivation was to attack Snevily’s conjecture in an inductive ap-
proach. Let N be a maximal normal subgroup of G, so p = G : N is an odd
prime, for |G| is odd and thus G is solvable. We look for a suitable matching
of the cosets a1N , . . . , anN and b1N , . . . , bnN first, to proceed among the
elements in the cosets. Since we have n > p in general, we cannot expect the
cosets aibσ(i)N to be distinct. Instead we try to control the multiplicities
in the sequence (a1bσ(1)N, . . . , anbσ(n)N) and compare it with the multiplic-
ities in (a1N, . . . , anN) and (b1N, . . . , bnN). For such a program, we need a
suitable multiset variant of Snevily’s conjecture in the group G/N � Zp.
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Notation. Throughout the paper, p refers to an odd prime and
1≤n<p is an integer. Sym(n) denotes the set of permutations of (1,2, . . . , n).
For σ ∈ Sym(n), sgnσ denotes the sign of σ; that is, +1 for even permuta-
tions and −1 for odd permutations.

The boldface symbols denote sequences of n objects, indiced by 1,2, . . . , n;
in particular, 0 = (0, . . . , 0) is the n-dimensional null vector. For any se-
quence x = (x1, x2, . . . , xn) and any permutation σ ∈ Sym(n), we define
xσ = (xσ(1), xσ(2), . . . , xσ(n)).

For any polynomial P (x) with n variables and nonnegatve integer
vector d = (d1, . . . , dn) ∈ N

n, ∂dP (x) abbreviates the partial derivative
∂xd1

1 . . . ∂xdn

n P (x1, . . . , xn).
V (x) = V (x1, . . . , xn) =

∏
1≤i<j≤n(xj − xi) is the Vandermonde polyno-

mial with n variables.

Results. We start with the following theorem of Alon:

Theorem 1 (Alon [1]). Let p be an odd prime, 1 ≤ n < p, and suppose

that a1, . . . , an ∈ Fp are distinct and b1, . . . , bn ∈ Fp arbitrary. Then there

exists a permutation σ of the indices 1, 2, . . . , n such that a1 + bσ(1) , . . . ,
an + bσ(n) are distinct.

Alon proved this theorem as an easy application of his powerful non-
vanishing criterion (Theorem 1.2 in [2]), by examining the coefficient of
(x1 · · · xn)n−1 in the polynomial V (x)V (x+ b). Here we replicate a vari-
ant of the proof that can be extended to partial derivatives directly.

In order to state a multiset analogue, we define a quantity that measures
the number of coinciding elements. For any finite sequence x = (x1, . . . , xn),
let N(x) be the number of ordered index pairs (i, j) with 1 ≤ i < j ≤ n and
xi = xj . Notice that if there are k different elements among x1, . . . , xn and
they occur m1, . . . , mk times, respectively, then N(x) =

∑(
mi

2

)
; if x1, . . . ,

xn are distinct, then N(x) = 0. We will prove the following

Theorem 2. Let p be an odd prime, 1 ≤ n < p, and let a,b ∈ F
n
p . Then

there exists a permutation σ ∈ Sym(n) such that

N
(
a+ bσ

)
≤ N(a).

Since N(xσ) = N(x), hence N(a+ bσ) = N(b+ aσ
−1

), an equivalent formu-
lation is

N
(
a+ bσ

)
≤ min

(
N(a),N(b)

)
.

Alon’s proof for Theorem 1 can be modified for this theorem; the neces-
sary tools are presented in [5]. We prefer to give two independent proofs as
below.
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Lemma 1. For any b ∈ F
n
p ,

(1)
∑

σ∈Sym(n)

V (x+ bσ) = n! · V (x).

Proof. Consider the polynomial

P (x,y) =
∑

σ∈Sym(n)

V (x+ yσ) =
∑

σ∈Sym(n)

(sgnσ) · V (xσ−1

+ y).

Given that sgn(ν−1) = sgn ν and sgn(ντ) = sgn(ν) sgn(τ), this polynomial
alternates in the variables in x, so P (x,y) is divisible by V (x). Since P
and V have the same degree, P (x,y) must be some constant times V (x);
this constant can be determined by substituting y = 0. Hence,

∑
σ∈Sym(n)

V (x+ bσ) = P (x,b) = P (x,0) = n! · V (x). �

Proof of Theorem 1. Substituting x = a in (1) provides
∑

σ∈Sym(n)

V (a+ bσ) = n! · V (a) �= 0.

Therefore there is at least one nonzero term on the left-hand side, so there
is a permutation σ ∈ Sym(n) such that V (a+ bσ) �= 0, indicating that the
elements in a+ bσ are distinct. �

Lemma 2. Let a ∈ F
n
p . Then

(a) For any d ∈ N
n with d1 + · · · + dn < N(a) we have ∂dV (a) = 0.

(b) There exists a d ∈ N
n such that d1+ · · ·+dn = N(a) and ∂dV (a) �= 0.

Proof. (a) Notice first that in V (a) =
∏

1≤i<j≤n(aj − ai) there are ex-
actly N(a) zero factors.

Suppose d1 + · · · + dn = k < N(a). Notice that

∂dV (x) = ∂d

( ∏
1≤i<j≤n

(xj − xi)
)

is a signed sum of subproducts of
∏

1≤i<j≤n(xj −xi), with each such product
consisting of

(
n
2

)
− k factors. Substutiting x = a, each product contains at

least N(a)− k ≥ 1 zero factors.
(b) For j = 1, . . . , n, let dj be the number of indices i with 1 ≤ i < j and

ai = aj . Then obviously d1 + · · ·+ dn = N(a). Like in part (a), ∂dV (x) is a
is a signed sum of subproducts with

(
n
2

)
−N(a) factors. It can be seen that
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there is only one nonzero among them, which is the product of all nonzero
factors, so with this choice of d, we have ∂dV (a) �= 0 indeed. �

First proof for Theorem 2. By part (b) of Lemma 2, there is some
d ∈ N

n such that d1 + · · ·+ dn = N(a) and ∂dV (a) �= 0. Taking the d-th
partial derivative of (1),

∑
σ∈Sym(n)

∂dV (a+ bσ) = n! · ∂dV (a) �= 0.

Hence, there is a σ ∈ Sym(n) such that ∂dV (a+ bσ) �= 0; by part (a) of
Lemma 2, we have

N(a+ bσ) ≤ d1 + · · · + dn = N(a). �

Second proof for Theorem 2. We prove by induction on n. The
claim is trivial for n = 0. Let 1 ≤ n < p, and assume that Theorem 2 is true
for smaller values of n.

Let k be the number of different elements among a1, a2, . . . , an. Rear-
range the elements in such an order that a1, a2, . . . , ak are distinct.

Notice that each of ak+1, . . . , an is listed exactly once among a1, a2, . . . ,
ak, so there are exactly n− k pairs i, j of indices with i ≤ k < j and ai = aj .
Therefore,

(2) N(a1, . . . , an) = (n− k) +N(ak+1, . . . , an).

By Theorem 1 there is a permutation σ1 of 1, 2, . . . , k such that
a1 + bσ1(1), a2 + bσ1(2), . . . , ak + bσ1(k) are distinct. By the induction hy-
pothesis, there is a permutation σ2 of k + 1, k + 2, . . . , n such that

(3) N(ak+1 + bσ2(k+1), . . . , an + bσ2(n)) ≤ N(ak+1, . . . , an).

Merge σ1 and σ2 to a new permutation σ.
By the definition of σ1, the elements a1 + bσ(1), . . . , ak + bσ(k) are dis-

tinct. For each j with k < j ≤ n, there is at most one index i ≤ k with
ai + bσ(i) = aj + bσ(j). For this reason,
(4)
N(a1+bσ(1), . . . , an+bσ(n)) ≤ (n−k)+N(ak+1+bσ(k+1), . . . , an+bσ(n)).

The estimates (2)–(4) together provide

N(a1 + bσ(1), . . . , an + bσ(n)) ≤ N(a1, . . . , an),

completing the induction step. �

At the end we remark that Theorems 1 and 2 are not true for n = p; an
easy counter-example is a = (0, 1, 2, . . . , p− 1) and b = (1, 0, 0, . . . , 0).
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