A SNEVILY-TYPE INEQUALITY FOR MULTISETS

A. GÁSPÁR¹ and G. KÓS^{2,3,*}

¹Mathematical Institute, Loránd Eötvös University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary e-mail: gsprati99@gmail.com

²Institute for Computer Science and Control (SZTAKI), P.O.Box 63, H-1518 Budapest, Hungary e-mail: kosgeza@sztaki.hu

³Alfréd Rényi Institute of Mathematics, P.O.Box 127, H-1364 Budapest, Hungary

(Received May 20, 2020; revised October 7, 2020; accepted October 9, 2020)

Abstract. Alon [1] proved that if p is an odd prime, $1 \le n < p$ and a_1, \ldots, a_n are distinct elements in Z_p and b_1, \ldots, b_n are arbitrary elements in Z_p then there exists a permutation of σ of the indices $1, \ldots, n$ such that the elements $a_1 + b_{\sigma(1)}, \ldots, a_n + b_{\sigma(n)}$ are distinct. In this paper we present a multiset variant of this result.

Motivation. Let G be a finite group of odd order and suppose that $a_1, \ldots, a_k \in G$ are pairwise distinct and $b_1, \ldots, b_k \in G$ are pairwise distinct. Snevily's conjecture states that there is a permutation σ of the indices $1, 2, \ldots, n$ for which $a_1b_{\sigma(1)}, a_2b_{\sigma(2)}, \ldots, a_kb_{\sigma(k)}$ are pairwise distinct. The conjecture has been proved for cyclic groups of prime order by Alon, for cyclic groups by Dasgupta et al. [4] and for commutative groups by Arsovski [3].

Our motivation was to attack Snevily's conjecture in an inductive approach. Let N be a maximal normal subgroup of G, so p = G : N is an odd prime, for |G| is odd and thus G is solvable. We look for a suitable matching of the cosets a_1N, \ldots, a_nN and b_1N, \ldots, b_nN first, to proceed among the elements in the cosets. Since we have n > p in general, we cannot expect the cosets $a_i b_{\sigma(i)}N$ to be distinct. Instead we try to control the multiplicities in the sequence $(a_1b_{\sigma(1)}N, \ldots, a_nb_{\sigma(n)}N)$ and compare it with the multiplicities in (a_1N, \ldots, a_nN) and (b_1N, \ldots, b_nN) . For such a program, we need a suitable multiset variant of Snevily's conjecture in the group $G/N \simeq Z_p$.

0236-5294/\$20.00 © 2021 Akadémiai Kiadó, Budapest, Hungary

^{*} Corresponding author.

Supported by National Research, Development and Innovation Office NKFIH Grant K 120154. *Key words and phrases:* Combinatorial Nullstellensatz, polynomial method, sumset, multiset, multiple point.

Mathematics Subject Classification: 05E40, 12D10.

Notation. Throughout the paper, p refers to an odd prime and $1 \le n < p$ is an integer. Sym(n) denotes the set of permutations of (1, 2, ..., n). For $\sigma \in \text{Sym}(n)$, sgn σ denotes the sign of σ ; that is, +1 for even permutations and -1 for odd permutations.

The boldface symbols denote sequences of n objects, indiced by $1, 2, \ldots, n$; in particular, $\mathbf{0} = (0, \ldots, 0)$ is the *n*-dimensional null vector. For any sequence $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ and any permutation $\sigma \in \text{Sym}(n)$, we define $\mathbf{x}^{\sigma} = (x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})$.

For any polynomial $P(\mathbf{x})$ with n variables and nonnegatve integer vector $\mathbf{d} = (d_1, \ldots, d_n) \in \mathbb{N}^n$, $\partial^{\mathbf{d}} P(\mathbf{x})$ abbreviates the partial derivative $\partial x_1^{d_1} \ldots \partial x_n^{d_n} P(x_1, \ldots, x_n)$.

 $V(\mathbf{x}) = V(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$ is the Vandermonde polynomial with *n* variables.

Results. We start with the following theorem of Alon:

THEOREM 1 (Alon [1]). Let p be an odd prime, $1 \leq n < p$, and suppose that $a_1, \ldots, a_n \in \mathbb{F}_p$ are distinct and $b_1, \ldots, b_n \in \mathbb{F}_p$ arbitrary. Then there exists a permutation σ of the indices 1, 2, ..., n such that $a_1 + b_{\sigma(1)}, \ldots, a_n + b_{\sigma(n)}$ are distinct.

Alon proved this theorem as an easy application of his powerful nonvanishing criterion (Theorem 1.2 in [2]), by examining the coefficient of $(x_1 \cdots x_n)^{n-1}$ in the polynomial $V(\mathbf{x})V(\mathbf{x} + \mathbf{b})$. Here we replicate a variant of the proof that can be extended to partial derivatives directly.

In order to state a multiset analogue, we define a quantity that measures the number of coinciding elements. For any finite sequence $\mathbf{x} = (x_1, \ldots, x_n)$, let $N(\mathbf{x})$ be the number of ordered index pairs (i, j) with $1 \le i < j \le n$ and $x_i = x_j$. Notice that if there are k different elements among x_1, \ldots, x_n and they occur m_1, \ldots, m_k times, respectively, then $N(\mathbf{x}) = \sum {\binom{m_i}{2}}$; if x_1, \ldots, x_n are distinct, then $N(\mathbf{x}) = 0$. We will prove the following

THEOREM 2. Let p be an odd prime, $1 \leq n < p$, and let $\mathbf{a}, \mathbf{b} \in \mathbb{F}_p^n$. Then there exists a permutation $\sigma \in \text{Sym}(n)$ such that

$$N(\mathbf{a} + \mathbf{b}^{\sigma}) \leq N(\mathbf{a}).$$

Since $N(x^{\sigma}) = N(x)$, hence $N(a + b^{\sigma}) = N(b + a^{\sigma^{-1}})$, an equivalent formulation is

$$N(\mathbf{a} + \mathbf{b}^{\sigma}) \leq \min(N(\mathbf{a}), N(\mathbf{b})).$$

Alon's proof for Theorem 1 can be modified for this theorem; the necessary tools are presented in [5]. We prefer to give two independent proofs as below. A. GÁSPÁR and G. KÓS

LEMMA 1. For any $\mathbf{b} \in \mathbb{F}_n^n$,

(1)
$$\sum_{\sigma \in \operatorname{Sym}(n)} V(\mathbf{x} + \mathbf{b}^{\sigma}) = n! \cdot V(\mathbf{x}).$$

PROOF. Consider the polynomial

$$P(\mathbf{x}, \mathbf{y}) = \sum_{\sigma \in \operatorname{Sym}(n)} V(\mathbf{x} + \mathbf{y}^{\sigma}) = \sum_{\sigma \in \operatorname{Sym}(n)} (\operatorname{sgn} \sigma) \cdot V(\mathbf{x}^{\sigma^{-1}} + \mathbf{y}).$$

Given that $\operatorname{sgn}(\nu^{-1}) = \operatorname{sgn}\nu$ and $\operatorname{sgn}(\nu\tau) = \operatorname{sgn}(\nu)\operatorname{sgn}(\tau)$, this polynomial alternates in the variables in \mathbf{x} , so $P(\mathbf{x}, \mathbf{y})$ is divisible by $V(\mathbf{x})$. Since P and V have the same degree, $P(\mathbf{x}, \mathbf{y})$ must be some constant times $V(\mathbf{x})$; this constant can be determined by substituting $\mathbf{y} = \mathbf{0}$. Hence,

$$\sum_{\sigma \in \operatorname{Sym}(n)} V(\mathbf{x} + \mathbf{b}^{\sigma}) = P(\mathbf{x}, \mathbf{b}) = P(\mathbf{x}, \mathbf{0}) = n! \cdot V(\mathbf{x}). \quad \Box$$

PROOF OF THEOREM 1. Substituting $\mathbf{x} = \mathbf{a}$ in (1) provides

$$\sum_{\sigma \in \operatorname{Sym}(n)} V(\mathbf{a} + \mathbf{b}^{\sigma}) = n! \cdot V(\mathbf{a}) \neq 0.$$

Therefore there is at least one nonzero term on the left-hand side, so there is a permutation $\sigma \in \text{Sym}(n)$ such that $V(\mathbf{a} + \mathbf{b}^{\sigma}) \neq 0$, indicating that the elements in $\mathbf{a} + \mathbf{b}^{\sigma}$ are distinct. \Box

LEMMA 2. Let $\mathbf{a} \in \mathbb{F}_p^n$. Then

(a) For any $\mathbf{d} \in \mathbb{N}^n$ with $d_1 + \cdots + d_n < N(\mathbf{a})$ we have $\partial^{\mathbf{d}} V(\mathbf{a}) = 0$. (b) There exists $\mathbf{a} \mathbf{d} \in \mathbb{N}^n$ such that $d_1 + \cdots + d_n = N(\mathbf{a})$ and $\partial^{\mathbf{d}} V(\mathbf{a}) \neq 0$.

PROOF. (a) Notice first that in $V(\mathbf{a}) = \prod_{1 \le i \le j \le n} (a_j - a_i)$ there are exactly $N(\mathbf{a})$ zero factors.

Suppose $d_1 + \cdots + d_n = k < N(\mathbf{a})$. Notice that

$$\partial^{\mathbf{d}} V(\mathbf{x}) = \partial^{\mathbf{d}} \left(\prod_{1 \le i < j \le n} (x_j - x_i) \right)$$

is a signed sum of subproducts of $\prod_{1 \le i \le j \le n} (x_j - x_i)$, with each such product consisting of $\binom{n}{2} - k$ factors. Substutiting $\mathbf{x} = \mathbf{a}$, each product contains at least $N(\mathbf{a}) - k \geq 1$ zero factors.

(b) For j = 1, ..., n, let d_j be the number of indices i with $1 \le i < j$ and $a_i = a_j$. Then obviously $d_1 + \cdots + d_n = N(\mathbf{a})$. Like in part (a), $\partial^{\mathbf{d}} V(\mathbf{x})$ is a is a signed sum of subproducts with $\binom{n}{2} - N(\mathbf{a})$ factors. It can be seen that

Acta Mathematica Hungarica 164, 2021

there is only one nonzero among them, which is the product of all nonzero factors, so with this choice of \mathbf{d} , we have $\partial^{\mathbf{d}}V(\mathbf{a}) \neq 0$ indeed. \Box

FIRST PROOF FOR THEOREM 2. By part (b) of Lemma 2, there is some $\mathbf{d} \in \mathbb{N}^n$ such that $d_1 + \cdots + d_n = N(\mathbf{a})$ and $\partial^{\mathbf{d}} V(\mathbf{a}) \neq 0$. Taking the **d**-th partial derivative of (1),

$$\sum_{\sigma \in \operatorname{Sym}(n)} \partial^{\mathbf{d}} V(\mathbf{a} + \mathbf{b}^{\sigma}) = n! \cdot \partial^{\mathbf{d}} V(\mathbf{a}) \neq 0.$$

Hence, there is a $\sigma \in \text{Sym}(n)$ such that $\partial^{\mathbf{d}} V(\mathbf{a} + \mathbf{b}^{\sigma}) \neq 0$; by part (a) of Lemma 2, we have

$$N(\mathbf{a} + \mathbf{b}^{\sigma}) \le d_1 + \dots + d_n = N(\mathbf{a}).$$

SECOND PROOF FOR THEOREM 2. We prove by induction on n. The claim is trivial for n = 0. Let $1 \le n < p$, and assume that Theorem 2 is true for smaller values of n.

Let k be the number of different elements among a_1, a_2, \ldots, a_n . Rearrange the elements in such an order that a_1, a_2, \ldots, a_k are distinct.

Notice that each of a_{k+1}, \ldots, a_n is listed exactly once among a_1, a_2, \ldots, a_k , so there are exactly n-k pairs i, j of indices with $i \leq k < j$ and $a_i = a_j$. Therefore,

(2)
$$N(a_1, \dots, a_n) = (n-k) + N(a_{k+1}, \dots, a_n).$$

By Theorem 1 there is a permutation σ_1 of 1, 2, ..., k such that $a_1 + b_{\sigma_1(1)}, a_2 + b_{\sigma_1(2)}, \ldots, a_k + b_{\sigma_1(k)}$ are distinct. By the induction hypothesis, there is a permutation σ_2 of $k + 1, k + 2, \ldots, n$ such that

(3)
$$N(a_{k+1} + b_{\sigma_2(k+1)}, \dots, a_n + b_{\sigma_2(n)}) \le N(a_{k+1}, \dots, a_n).$$

Merge σ_1 and σ_2 to a new permutation σ .

By the definition of σ_1 , the elements $a_1 + b_{\sigma(1)}, \ldots, a_k + b_{\sigma(k)}$ are distinct. For each j with $k < j \le n$, there is at most one index $i \le k$ with $a_i + b_{\sigma(i)} = a_j + b_{\sigma(j)}$. For this reason, (4)

$$N(a_1+b_{\sigma(1)},\ldots,a_n+b_{\sigma(n)}) \le (n-k)+N(a_{k+1}+b_{\sigma(k+1)},\ldots,a_n+b_{\sigma(n)}).$$

The estimates (2)-(4) together provide

$$N(a_1 + b_{\sigma(1)}, \dots, a_n + b_{\sigma(n)}) \le N(a_1, \dots, a_n)$$

completing the induction step. \Box

At the end we remark that Theorems 1 and 2 are not true for n = p; an easy counter-example is $\mathbf{a} = (0, 1, 2, \dots, p-1)$ and $\mathbf{b} = (1, 0, 0, \dots, 0)$.

Acta Mathematica Hungarica 164, 2021

50 A. GÁSPÁR and G. KÓS: A SNEVILY-TYPE INEQUALITY FOR MULTISETS

References

- [1] N. Alon, Additive Latin transversals, Israel J. Math., 117 (2000), 125–130.
- [2] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput., 8 (1999), 7–29.
- [3] B. Arsovski, A proof of Snevilys conjecture, Israel J. Math., 182 (2011), 505–508.
- [4] S. Dasgupta, Gy. Károlyi, O. Serra and B. Szegedy, Transversals of additive Latin squares, Israel J. Math., 126 (2001), 17–28.
- [5] G. Kós and L. Rónyai, Alon's Nullstellensatz for multisets, Combinatorica, 32 (2012), 589–605.