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Abstract: The paper focuses on the control challenge of intersections related to the appearance
of autonomous vehicles on the roads, which established mixed traffic situations with human-
driven vehicles or scenarios with only autonomous vehicles. The goal of the research is to
control autonomous vehicles by Model Predictive Control method to guarantee the collision-
free passage at the intersection. Generally the outcome of a traffic situation can be varied
by human-driven vehicles and fully automated vehicles. Therefore the results of the proposed
coordination method used for a given intersection scenario is compared to solution of human-
driven vehicles. For the comparison the simulation examples were made in VISSIM and CarSim

simulation environments.

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0)

Keywords: intersection control, optimization, model predictive control, autonomous vehicle

control.

1. INTRODUCTION

The development of automation in the automotive in-
dustry raises several questions to be answered before the
appearance of autonomous vehicles in traffic. At the ini-
tial time of the introduction of highly automated vehi-
cles on the roads, mixed traffic with human-driven and
autonomous vehicles will be typical. In case of human-
driven cars, the traffic rules are respected by the driver,
the solution of traffic situations is depended on the drivers’
intention. On the other hand, constraints and performance
purposes of the control design are defined in case of au-
tonomous vehicles to operate in traffic without danger and
collision. For the development of autonomous vehicles, sev-
eral research focus on the description of the human driver,
its behavior, driving intentions and driving techniques
to be built in the control design of automated vehicles.
Xinli Geng et al. (2016) analysis human drivers’ velocity
planning to use the observations for autonomous vehicles.
In his research neural network-based models are used to
perform the analysis of the velocity profiles. Another paper
focuses on the intent of human-driven vehicles to guarantee
the collision avoidance in mixed traffic situation consisted
of autonomous and human-driven vehicles, see Osipychev
et al. (2017). Algorithms for the collision-free driving are
developed using multi-stage Gaussian Processes and tested
through simulation examlpes in intersection and high-
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way scenarios. Mixed traffic situations with autonomous
and human-driven vehicles motivated Liu et al. (2018) to
design control for safe intersection crossing of vehicles.
Several different constraints are built in the control ac-
cording to the type of the vehicle (being human-driven or
automated). For autonomous vehicles a Model Predictive
Control is used while human-driven cars drive according to
the traffic lights, signs and rules. Verma and Del Vecchio
(2011) also analyse the situation of collision between an
autonomous and a human-driven vehicles. The research fo-
cuses on human driving behavior to be used to solve safety
problems between vehicles in mixed traffic situations.

Related to the development of autonomous vehicles, in
2010 the National Highway Traffic Safety Administration
drew the attention of the academic researchers to an
important traffic situations and challenges. In the report
Administration (2010) it is stated that the 36 percentages
of the crashes are related to intersection crossing and 96.1
percent of these intersection-related crashes were caused
by the drivers. Therefore the coordination of autonomous
vehicles passing through intersections has become impor-
tant topic. Farkas et al. (2020) propose an iterative control
strategy for autonomous vehicles to cross the intersection
without collision. The coordination method aims to reach
minimum traveling time and efficient energy consumption.
Gédspdr and Németh (2018) take the performances into
consideration in their model demonstrated by an inter-
section scenario of three vehicles with different charac-
teristics. Hult et al. (2019) proposed a model predictive
controller having coordination and vehicle levels to secure
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collision-free passage of autonomous vehicles at intersec-
tions. A distributed Sequential Quadratic Programming
method was used for the solution of the optimization prob-
lem. Mihdly et al. (2020) also present a centralized Model
Predictive Controller to guarantee collision avoidance at
the intersection. Minimization of traveling time and energy
consumption are the targeted performances to be achieved,
but a scheduling variable is built in the control to reach
the balance between them.

The comparison of the operation of autonomous vehicles
and human-driven vehicles has become the focus of several
academic research. Beside the analysis of human drivers’
behavior and intentions, it is an important control task to
build the results in the design of automated vehicles. Zhou
et al. (2020) propose a hierarchical model consisted of a
logic model using Bayes’ theorem and a plan layer to give
the trajectory. The novelty of the paper is the verification
of the proposed model demonstrated in simulated intersec-
tion scenario, giving better results in case of autonomous
vehicles. Meng and Cassandras (2018) also developed con-
trol methods for intersection management for autonomous
vehicles, focusing on performance requirements as travel
time and energy consumption minimization. In this paper
the performance of autonomous vehicles is compared to
the performance of human-driven vehicles giving better
results in case of unmanned automated vehicles.

Although several control solutions are given for au-
tonomous vehicles to avoid collision and satisfy the per-
formances (like minimum traveling time and energy ef-
ficiency) in crossing intersection, the contribution of the
paper is a Model Predictive Control strategy that is proved
to be more efficient than the driving operation of human-
driven vehicles. For autonomous vehicles, there are con-
straints like speed limit, defined accelerations, built in the
control design to secure safety at intersections. In this
way sudden movement and actions of a human driver can
be eliminated to enhance performances. The difference
between the operation of human-driven and autonomous
vehicles, demonstrated by the simulations, contributes to
the change of research directions in the field of autonomous
vehicles.

The paper is organized as follows. The motivation of the
research is defined in Section 2. Section 3 describes the
intersection scenario, defines the conditions for control de-
sign as well as traveling time. It shows the steps of control
procedure. The comparison of the method for autonomous
vehicles and the performance of human-driven vehicles
is presented through simulation examples in Section 4.
Conclusion remarks are presented in Section 5.

2. MOTIVATION

Researchers of several academic fields are encouraged to
consider more comprehensive challenges related to the
future applications of autonomous vehicles. Before the
introduction of highly automated vehicles in traffic system,
significant numbers of scenarios, situations and condition
must be revised to prepare for the fully intelligent traf-
fic. With the appearance of autonomous vehicles on the
roads, a transitional period of mixed traffic will bring
people closer to the application of autonomous vehicles. In
case of mixed traffic, vehicles with human driver and also

with autonomous functions, pedestrians and other actors
of the traffic system have to get the solution for traffic
situations. These days, the traffic scenarios are controlled
by traffic rules, signs and lights, the drivers additionally
define the outcome of these situations by their behavior,
intentions and adherence of rules. Therefore the academic
sector and the automotive manufacturers must identify the
opportunities for autonomous vehicles to get the solution
of complex traffic situations, like crossing an intersection.
Passing through a non-signalized intersection scenario can
be varied by the behavior of human-driven vehicles and
also by the controlled automated vehicles. With the in-
troduction of autonomous vehicles in traffic new control
methods and strategies are designed to solve traffic situa-
tions more efficient. Basically efficiency can be expressed
by minimum crossing time of vehicles, collision avoidance,
low fuel consumptions, effective design of velocity profiles.

The proposed Model Predictive Control (MPC) method
considers design conditions and criteria to secure the safe
passage of autonomous vehicles at the intersection. The
minimization of traveling time spent at the intersection is
in the focus of the coordination strategy. The comparison
of the operation of autonomous vehicles with the MPC
and human-driven vehicles’ performance demonstrates the
real advantages of the development and application of
autonomous functions in road vehicles.

3. MPC CONTROL DESIGN
3.1 Intersection scenario

The type of intersection considered in the paper is a double
lane four-directional intersection, where vehicles can head
straight or turn left/right. Therefore, the risk of collision
is present in the scenario, see Shen et al. (2019). The goal
of the proposed MPC intersection controller is to ensure
collision-free passage for the autonomous vehicles while
minimizing the total traveling time spent in the intersec-
tion. Hence, congestion developing at the intersections can
be avoided, as well as energy consumption of vehicles can
be reduced. Moreover, with the automation of intersection
crossing, safety of the passengers can also be enhanced.
The aim of the design, is to determine the crossing order
of the vehicles along with their prescribed accelerations to
guarantee collision free passage, while the performance of
the control design is to minimize traveling time.

The MPC controller design is based on some preconditions.
First of all, the considered intersection is separated into
different zones, as shown in Figure 1.

Before entering the control zone, autonomous vehicles are
guided independently. After reaching the control zone,
based on their initial states and turning intentions their
velocity trajectories will be calculated by the proposed
MPC method and controlled by the centralized controller
of the intersection. For sending and receiving position
and velocity data among autonomous vehicles and the
centralized controller, V2I communication techniques are
required. Note, that although the presented iterative calcu-
lation considers four vehicles at the same time, the method
can consider newly entering vehicles by reconfiguring the
initial conditions.
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Fig. 1. Intersection scenario with control zones

8.2 Limitations for the MPC design

Due to the different possible trajectories followed by the
autonomous vehicles in the intersection, in order to avoid
instability or skidding of the controlled vehicles due to loss
of adhesion in the cornering maneuver, it is necessary to
define safe velocities connected to the turning intentions
of each vehicles. Hence, using simplified vehicle dynamic
equations, the velocity limit of turning left is defined as
vy = +/Rigu, while the right turn as v,/ R,.gu. Here,
R; and R, are the turning radius of left and right turn
trajectories in the intersection calculated based on the
intersection geometry. The gravitational constant is noted
with g = 9.81 m/s?, u is the tire-road adhesion coefficient
which can be estimated, see e.g. Gustafsson (1997); Li
et al. (2007); Alvarez et al. (2005). Note, that in case
the autonomous vehicle heads straight at the intersection,
Vs = Uum 1S set as a constraint, which is the speed
limit at the given intersection. For instant, at a four-
directional intersection having a lane width of 5 meters
and assuming a road adhesion of u = 0.8, v; ~ 28 km/h
and v, & 16 km/h are calculated for the safety velocities,
while the speed limit in connection to the straight heading
is typically vy, = 50 km/h.

Another constraint is introduced in the control design in
connection with the comfort of the passengers. In order to
avoid abrupt changes in the velocity of autonomous vehi-
cles, minimal and maximal acceleration threshold values
are given as @i, = —H m/s? and e = 5 m/s? based
on Bichiou and Rakha (2019).

More importantly, for avoiding possible collisions in the
intersection, another constraint is built in the MPC design.
Namely, it is expected that in the conflict zone of the
intersection only one autonomous vehicle can stay at a
given time. Hence, independently of the designed trajec-
tory, oncoming vehicles can only enter the conflict zone at
the time instant when the previous vehicle has already left
the conflict zone of the intersection.

3.8 Time-optimal MPC design

One of the possible control goal in the design of the cen-
tralized controller is to minimize total traveling time T}ozq;
of autonomous vehicles. If this performance is prioritized,
the possibility of congestion forming at the intersection can
be reduced significantly. To achieve this goal, autonomous
vehicles are ordered and accelerated to reach the highest
allowed velocity in the intersection. Hence, the proposed
algorithm firstly defines constant accelerations a; (i €
[1...n]) for vehicles reaching the entering zone, by which
the maximal velocities v; mq, for the given trajectories can
be achieved reaching the conflict zone.

Thus, as a initial step for the MPC method, the following
equation is applied for all vehicles entering the intersec-
tion:
2 2
a; = Vi,mazx Vi,0 (1)
25i,ent

where v; ¢ are initial speeds, whereas s;.,; are initial
distances from the origin of the intersection.

Note, that a; = {@maz;amin} are substituted for the
accelerations given by (1) if the previously defined limits
are exceeded.

The time-optimal control method is based on the com-
parison of autonomous vehicle traveling times. Conflict
situation among vehicles are analyzed and accelerations
are modified to avoid any possible accidents. The core
of the coordination method is founded on detecting the
overlaps in traveling times of autonomous vehicles when
they cross the conflict zone. In case of a detected conflict
situation, priority is given to the vehicle having the small-
est traveling time, i.e. leaving the conflict zone first. In
order to give priority, other conflicting vehicles reduce their
accelerations iteratively until the time overlap with the
first vehicle disappears. The calculation is then followed
by analyzing the conflict situations among the remaining
vehicles, and handled in a similar manner. In case of
multiple vehicle conflict, it might be necessary to calculate
a waiting time for some vehicles.

First, based on (1) entrance and exit times at the intersec-
tion conflict zone is calculated. For defining the entrance
times, a second order equation must be solved:

2
§ai,0ti,ent + V5,0t5,ent — Si,ent = 0 (2)

where #;ene > 0 i € [l..n] is the entrance time for
autonomous vehicles. Assuming constant accelerations for
the entering zone, (2) can be rearranged as follows:

Si,ent
tient = ’ 3
ent (Ui,maw + Ui,O)/Q ( )

Next, assuming vehicles to maintain their speeds constant
in the conflict zone, time spent inside is calculated as
follows:

ti7con = Si,int/vi,maxa (4)
where s; 5+ is the trajectory length in the conflict zone
given in coherence with the vehicle turning intention.
Moreover, if the situation arises when a vehicle has to stop
to give priority, a waiting time t; ,,q44¢ is calculated based on
the difference between the final time of the previous vehicle
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and the entering time of the subject vehicle. For restarting
the vehicle, the autonomous vehicle selects the predefined
maximal acceleration a,,,;, hence the time spent in the
conflict zone is

ti,con =\ 2Si,int/ama£~ (5)

The traveling time of each autonomous vehicle is then
given as the sum of the entrance time, waiting time and
the time spent in the intersection conflict zone:

ti,fin = ti,ent + ti,wait + ti,con (6)

Hence, total traveling time is given as Tjotqr = max(t; rin)
[1...n].

The analytical calculation is evaluated in an iterative
manner with the following steps:

e Safe maximal velocities v;mqes ¢ € [l...n] of au-
tonomous vehicles are calculated based on the geom-
etry of the intersection.

e A constant acceleration a; i € [1...n] is given for ve-
hicles using (1). In case threshold values are reached,
safe maximal velocities must be altered by substitut-
ing a; = (amam’; amin)'

e For all vehicles participating the algorithm, entrance
and exit times t; ¢ns and t; i, € [1...n] are calculated.
By analyzing overlaps in the time domain, conflict
situations are detected in this step of the procedure.

e In case no conflict is found between autonomous ve-
hicles, every vehicle applies above calculated acceler-
ation values.

e In case of detected conflict situation, vehicle having
the smaller exit time ¢; f;, ¢ € [1...n] gets priority.
The other vehicle or vehicles must reduce their accel-
eration until their entering time t; op,; is larger than
the exit time of the priority vehicle. This iterative
calculation is done for every conflicting situation de-
tected. Note, that in case a vehicle must stop before
the conflict zone to give priority, a waiting time ¢; 144t
is calculated as well. Hence, if the waiting time ¢; 144+
is greater than zero, the autonomous vehicle stops for
the calculated time at the beginning of the conflict
then accelerates with a; = amaq.

e Finally, the resulting accelerations a; i € [l...n] are
prescribed for each vehicle at the intersection through
the vehicle control model detailed in Section 3.5.

3.4 Operation of the MPC Controller

The scheme of the proposed time-optimal MPC control is
depicted in Figure 2. Note, that the control method works
with a discrete time step k, with a corresponding sampling
time T. For the operation of the centralized controller, the
intersection coordinator receives position and velocity data
Sient(k), Vient(k) ¢ € [1..n] of all autonomous vehicles
approaching the intersection entering zone, along with
their turning intention d;. Note, that in case of a vehicle
entering the intersection, firstly a decision has to be made
based on the preceding vehicle (being in the conflict zone)
position. In case the preceding vehicle left the intersection
conflict zone, the newly entered vehicle is added to the
optimization method, otherwise the coordinator switches
to an adaptive cruise control mode.

Vi e

Next, at every time step k the solution of the time-optimal
analytical calculation detailed in Section 3.3 is given for
a time horizon T = max(t; fin) ¢ € [1...n], resulting in
the ordering of vehicles and their prescribed accelerations.
Note, that although a constant sampling time 75 = 0.1s is
applied, the time horizon for the calculation is a function
of the intersection geometry and initial conditions of the
autonomous vehicles. Hence, in every time step a control
input a;(k 4+ 1) i € [1..n] is given by the optimization
method, which is followed by the controlled vehicles until
the subsequent time step, when the analytical optimization
is repeated with a shifted time horizon.

Since the calculation is very sensitive to the data of vehicle
states, it is necessary to handle uncertainties related to
communication links (noises, packet drops, delays), see
Chohan (2019); Khayatian et al. (2018).

a;(k+1)

Adaptive Cruise
Control Mode

Autonomous Vehicle Preceding Vehicle

Entering Intersection

Sient(k)
vio(k)
Lio(k)

Model Predictive
Control d;

Autonomous Vehicle

Inside Intersection

ai(k+1)

Fig. 2. Intersection control process

3.5 Vehicle control model

The control of the autonomous vehicles with the proposed
MPC method is realized by defining the necessary longi-
tudinal force coherent with the calculated acceleration a;
i € [1...n]. The sufficient forces for the vehicles are given
as F;; = mya;, + F, 4, where m; ¢ € [l..n] is the mass
of the vehicle, F; 4 is the disturbance force affecting the
longitudinal dynamics. Note, that disturbance force F; 4
consists of the aerodynamic drag, the rolling resistance
and the effect of road slope on the vehicle calculated as
detailed in Rajamani (2005). In the CarSim simulation
listed in the next section, the given longitudinal force F;
i € [1...n] is realized by applying longitudinal wheel forces
equally for all four wheels.

4. SIMULATION RESULTS

In order to demonstrate the effectiveness of the proposed
MPC method for autonomous vehicles, as an example two
different simulations have been evaluated and compared.
First, human driven vehicles approaching an intersection
have been simulated in VISSIM environment. Next, au-
tonomous vehicles using the proposed MPC intersection
control have been simulated in CarSim environment with
similar intersection setup and vehicle initial conditions.

For the sake of comparison, a four-directional double
lane intersection has been chosen with four approaching
vehicles having initial conditions and turning intentions
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Fig. 3. Simulation setup with four vehicles

shown in Figure 3. As it can be seen, Vehicle 1 and Vehicle
3 are intending to head straight at the intersection, while
Vehicle 2 and Vehicle 4 are intending to turn left, with
all vehicles approaching the intersection with different
velocities.

=
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3 B Eo@

Fig. 4. VISSIM simulation setup

Firstly, VISSIM simulation has been built and ran with the
above detailed scenario, as depicted in Figure 4. Note, that
VISSIM uses a built-in car-following driver model, which
is founded on a psychophysical model. The Wiedemann
model defines four type of modes for the human drivers:
free driving, approaching, following and braking mode.
These modes are applied based on the distance and speed
differences among vehicles, see Olstam and Tapani (2004).

Next, the introduced MPC intersection controller has been
implemented in CarSim environment for the autonomous
vehicles as illustrated in Figure 5. Note, that in contrast
to the previous VISSIM simulation with built-in driver
models, here all of the vehicles are controlled with the
proposed centralized controller.

MATLAR 4
SIMULINK

l

Trajectory 5_') sivite
generator —

Longitudina Fi >

Force calc.

carsm

CarSim S-
function

Fig. 5. MPC intersection control in CarSim

The results of the VISSIM and CarSim simulations with
human drivers and autonomous vehicles are depicted in
Figure 6. It is well demonstrated, that both the ordering
of the vehicles and their velocity profiles are significantly
different. With human drivers following the right hand rule
at the intersection as depcited in Figure 6 (a), Vehicle 3
crosses firstly, followed by Vehicle 4 and Vehicle 2, while
Vehicle 1 finally leaves the intersection at 11.2 seconds. It
is well demonstrated, that following the right hand rule
requires the driver of Vehicle 1 and Vehicle 2 to decrease
their velocities heavily, with the driver of Vehicle 1 coming
to a complete halt and restarting after giving way to
Vehicle 2.

In contrast, with the proposed MPC centralized controller,
autonomous vehicles select a completely different cross-
ing strategy, as it is shown in Figure 6 (b). As in the
previous case, Vehicle 3 with the largest initial velocity
leaves the intersection first, increasing its speed similarly
to the human driver. Next, Vehicle 1 and Vehicle 2 cross
the intersection, while Vehicle 4 finally exits the inter-
section at 10.45 seconds. Thus, compared to the simula-
tion results of the human driven vehicles, the proposed
MPC intersection controller guides the autonomous ve-
hicles through the intersection almost one second faster.
Even more importantly, speed profiles of the autonomous
vehicles are smooth without deceleration, whereas human
drivers brake and accelerate abruptly due to the imperfect
perception of human drivers and the obligatory right hand
rule followed by them. Note, that these uneven velocity
profiles significantly increase energy consumption of the
vehicles, while passenger comfort is also harmfully effected.
Hence, application of the proposed MPC intersection con-
troller can decrease traveling times while increase passen-
ger comfort and fuel economy of the vehicles.

5. CONCLUSION

The paper proposed a time-optimal MPC intersection
controller for autonomous vehicles and analyzed its perfor-
mance by multiple simulations evaluated in VISSIM traffic
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Fig. 6. Velocities of human driven and autonomous vehicles

and CarSim vehicle simulator environment. The goal of the
analysis was to compare the velocity trajectories of vehicles
entering the intersection with two different strategy: in
a conventional manner with human drivers via with the
proposed MPC centralized control assuming autonomous
vehicles. Although the simulation results validated the
efficiency of the proposed method, future work must focus
on analyzing the performance of the MPC intersection
controller with larger traffic densities, showing a more
detailed comparison with the conventional intersection
management.
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