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Abstract 

In addition to content knowledge, critical and independent thinking, scientific reasoning, and 

problem-solving skills are essential in preparing next generation of successful workforce. Since 

one of the biggest advantages of STEM disciplines is a “must-have” hands-on laboratory 

experience, it is intuitive to exploit this learning space to reinforce afore-mentioned skills. In this 

context, project-based (PBL) or inquiry-based (IBL) laboratory experiences are rapidly becoming 

mainstream pedagogical choice for many STEM instructors across United States.[1-4] PBL, and 

IBL are learning experiences that offer students an opportunity to experience realistic scientific 

process of discovery through carefully designed inquiry-driven and/or open-ended investigative 

laboratory experiences.[1-4] PBL and IBL learning experiences also provide instructors with an 

opportunity to create projects that are related to real-world problems.[1-4] In this context, the work 

described in this thesis sought to adapt and redesign a semester long project on phytoremediation 

of copper from soil, published in the Journal of Chemical Education [5], into a collection of mini-

projects to be done by students over a period of 3 – 4 weeks. Specifically, work presented herein 

focuses on general chemistry (CHEM 142L) students exploring the effects of mass, pH and 

temperature of a commercially available garden soil on its adsorption capability of copper ions 

and understanding these effects in terms of equilibrium processes and thermodynamics of 

adsorption processes. The motivation for this work stems from the fact that the Chemistry 

Department at BSU is currently redesigning its second semester of general chemistry laboratory 

(CHEM 142L) curriculum with an environmental science focus.   
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1. Introduction 

At Bridgewater State University (BSU), for a very long-time students have been working with 

“cook-book” style chemistry laboratory experiences. Research [1-5] shows that these types of 

experiments, by nature, do not fully challenge student’s intellect and many times fail to help 

students actively think about the work they are doing or the results they are observing. Among the 

student skills required by American Chemical Society [6], critical thinking skills are essential in 

order to produce chemistry graduates that are ready to tackle real world issues. An excellent way 

of developing these skills is by exposing students to project-based, inquiry-based, and problem-

based laboratory projects that foster curiosity by challenging them to connect the course content 

to real world issues. [1-5] For this reason, this type of hands-on, undergraduate research focused 

pedagogy is gaining popularity across many other universities in the United States. Further, 

project-based laboratory experiences have the following additional advantages: [1-5] 

(a) Fostering high level of student engagement by providing an opportunity to design 

experiment protocols;  

(b) Encouraging independent and critical thinking and reasoning; 

(c) Providing an opportunity to gain research-like experiences;  

(d) Allowing them to perceive chemistry as a scientific process of discovery; 

(e) Providing an opportunity to learn and gain proficiency in common and advance scientific 

instrumentation; 

(f) Allowing students to gain proficiency in scientific writing skills and science 

communication skills.   

Therefore, many universities across U.S., including BSU, are adapting inquiry/project-based 

learning (IBL/PBL) experiences into their undergraduate chemistry laboratory curricula.  

 

In 2018, BSU’s Chemistry Department was one of the 24 departments (from 12 U.S. 

institutions) selected by the Council of Undergraduate Research (CUR) to participate in their 

‘Transformations Project’ [7], which is funded by National Science Foundation. This project’s goal 

is to study various factors (e.g. student, faculty, and discipline), that influence the integration of 

research experiences throughout the undergraduate curriculum in a scaffolded fashion.[7] As a 

result of this grant, BSU’s Chemistry Department is committed to incorporating research-like 

experiences via IBL/PBL exercises in all of its undergraduate courses, starting from its 
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introductory chemistry laboratory course sequence, namely CHEM 141L and CHEM 142L. Since 

the field of environmental science has been steadily gaining attention from researchers and general 

public alike [5,8-10], new CHEM 142L curriculum intends to incorporate three small  IBL projects 

(3 – 4 weeks per project) in the area of environmental chemistry and the project described in this 

thesis is one of these small-scale projects.  

 

The impetus for the current project stems from a recent article by Cessna et.al.[5], in the Journal 

of Chemical Education, which describes a semester long project illustrating the equilibrium 

thermodynamics principles associated with copper phytoremediation from soil. Phytoremediation 

is a type of remediation process that uses plants to remove or break down toxic contaminants from 

soil, water, and other environments [5,8-10]. For example, while Lemna minor and Elodea are known 

to absorb copper from wastewater, and soil respectively [9], Egeria densa and Brassica rapa are 

known for their silver uptake [10]. Copper was chosen because:[9] 

 

(a) It is  one of the naturally occurring trace elements present in soil, sediment, air and water; 
 

(b) It is an essential micronutrient that plays an important role in making red blood cells as 

well as maintaining nerve cells and the immune system; 
 

(c) Relatable sources of contamination such as corrosion of household plumbing, manure, 

sewage sludge and fertilizers/pesticides;   
 

(d) Its salts are relatively inexpensive to use in large classroom setting and the colored nature 

of many of aqueous Cu2+
(aq) complexes has an added advantage of visually engaging the 

students. 

 

As mentioned earlier, the project described herein is one of the three mini-projects to be 

implemented into a one-semester CHEM 142L course and therefore, the semester long project 

described by Cessna et.al.[5] cannot be adapted “as-is”. Hence, this project focused on developing 

experimental protocols students can use to study the influence of various factors on Cu2+
(aq) ⇌ 

Cu2+
(soil) equilibrium, including its partition coefficient, and connect it to equilibrium and 

thermodynamics principles they would have learned in CHEM 142 lecture. Specifically, this thesis 

develops student protocols to evaluate the effect of soil mass, copper concentration, pH, and 

temperature on the adsorption of copper by soil.  
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This project’s overarching goal is to deepen students’ understanding of concepts learned 

in CHEM 142 course and showcase their connection to environmental pollution. Specifically, by 

completing the individual projects described in this thesis, students will:  

(a) Learn about principles behind chelation and redox chemistries and adsorption equilibrium 

processes; 
 

(b) Gain proficiency in dilution and aqueous solution preparation, including correct pipetting 

techniques;  
 

(c) Gain proficiency in analyzing equilibrium processes under various experimental 

conditions; 
 

(d) Learn about UV-Visible spectrophotometry and the Beer Lambert law and their application 

in measuring concentration of an analyte; 
 

(e) Develop a standard curve and use it to analytically determine concentration in aqueous 

solutions; 
 

(f) Experimentally determine Gibbs free energy, enthalpy and entropy changes associated 

with equilibrium processes; 
 

(g) Develop skills such as critical thinking, using Microsoft Excel for data plotting and linear 

fitting, scientific writing, and communication skills; 
 

(h) Learn to work in a team environment. 
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2. Experimental Details 

Table 2.1 summarizes the optimal working conditions identified during the early stages of this 

project. These conditions should allow the students to complete each experiment within a three-

hour laboratory period while yielding reproducible results.  

 

Table 2.1. Optimal general experimental conditions identified through trial and error.  

Parameter Optimal value 

Mass of Vigoro all-purpose garden soil 1.00 g 

Volume & concentration of Cu2+
(aq) solution added to soil 5 mL & 1000 ppm 

Wait time for equilibration of soil and copper solution 60 min 

After equilibration, volume of Cu2+
(aq) tested   0.2 mL 

Volume & concentration of glucose used for [Cu2+]aq determination  2 mL & 100 g/L 

Volume of commercially bought BCA used for [Cu2+]aq determination  2 mL 

Incubation time and temperature 15 min & ~50 C 
 

 

2.1. Reagents and other materials   

Reagent grade copper sulfate pentahydrate (CuSO45H2O, CAS# 7758-99-8), D(+)-glucose 

(C6H12O6, CAS# 50-99-7), Bicinchoninic acid protein assay reagent A (BCA, CAS# 1245-13-2), 

0.10 M aqueous hydrochloric acid (HCl, CAS# 7647-01-0) and 0.10 M aqueous sodium hydroxide 

(NaOH, CAS# 1310-73-2) were all purchased from Fisher Scientific and were used without further 

purification. Vigoro all-purpose garden soil (see Fig. 2.1) was purchased from local home 

improvement store and was sifted using a household kitchen swifter with fine mesh, to remove 

larger particles. In-house deionized (DI) water was used to prepare all the solutions. 

 

2.2. Preparation of solutions 

2.2.1. Copper(II) solution: Initial experiments tested 10, 100 and 1000 ppm aqueous Cu2+ 

solutions and based on the reproducibility of results and ease of preparation and use, 1000 ppm 

was chosen as the appropriate concentration for the entirety of this project. Desired volume of this  
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Figure 2.1. Image of the commercial garden soil used in this project. 

 
concentration was prepared fresh for each experiment. For example, since 1000 ppm equals to 1 g 

in 1000 mL, to prepare 25 mL of 1000 ppm copper solution, 9.82*10-3 g of CuSO45H2O was 

added to a 25 mL volumetric flask and DI water was slowly added until the salt dissolved 

completely. Flask was filled up to the mark with DI water and was gently shaken to ensure 

homogeneity was achieved.  

 

2.2.2. Glucose solution: As mentioned in the Introduction, purpose of glucose is to reduce Cu2+ 

to Cu+ to facilitate its binding with BCA. Initial experiments tested 0.01 g/L, 0.1 g/L, 1 g/L and 

100.0 g/L aqueous glucose solutions and based on the reproducibility of results and ease of 

preparation and use, 100 g/L was chosen as the appropriate concentration for the entirety of this 

project. The desired volume of this concentration was prepared fresh for each experiment. For 

example, to prepare 50 mL solution of this concentration, 5 g of glucose was added to a 50 mL 

volumetric flask and DI water was slowly added until glucose dissolved completely. After filling 

the flask up to the mark with DI water, it was gently shaken until the solution was homogeneously 

mixed.  

 

2.2.3. Other solutions: As mentioned in Introduction section, BCA was chosen for detecting Cu2+ 

in aqueous solutions. The commercially purchased BCA assay reagent was stored in the 

refrigerator and a desired volume of this solution was retrieved as needed. It is worth pointing out 

that BCA assay reagent used in this project contains BCA, sodium carbonate, sodium tartrate and 

sodium bicarbonate in 0.10 M NaOH (pH = 11.1 – 11.3). To test the pH effects on the partition 
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coefficient (K) of Cu2+
(aq) ⇌ Cu2+

(soil) equilibrium, 0.10 M HCl(aq) (pH = 1) and 0.1 M NaOH(aq) 

(pH = 13) solutions were used as purchased. Solutions with pH values 3 and 11, respectively, were 

obtained by diluting these stock solutions to the desired volume.   

 

2.3. Ultraviolet–visible (UV-Vis) spectroscopy  

A table-top UV-Vis spectrophotometer (Perkin Elmer Lambda XLS+) capable of operating from 

400 nm to 700 nm was utilized to monitor the absorption spectrum of [Cu(BCA)2]
+ complex. This 

instrument was chosen because this will be the one that students at BSU will use. All the analytes 

showed a broad peak with an absorption maximum (Amax) at 562 nm. DI water was used as the 

blank solution for all the experiments. Absorbance and wavelength values corresponding to the 

peak maximum were recorded for all the samples. 

 

2.4. Analytical determination of copper concentration  

2.4.1. General procedure to determine copper(II) ion concentration in aqueous phase, 

[Cu2+]aq: Based on the procedure described by Cessna et.al.[5], 0.2 mL of aqueous copper solution 

of desired concentration was added to a test tube containing a mixture of 2 mL of 100 g/L glucose 

solution and 2 mL of BCA reagent. The mixture slowly starts turning purple. The test tube was 

then placed in a ~60 C water bath and the mixture was allowed to incubate for ~15 minutes, at 

the end of which it turns to a darker shade of purple. Mixture was then cooled to room temperature 

and ~3 mL of the purple-colored solution was transferred to a disposable plastic cuvette to collect 

its UV-vis spectrum in the 400 - 700 nm range. Since glucose can reduce Cu2+ to Cu0, Cessna et. 

al., suggested pre-mixing glucose and BCA to ensure that as soon as Cu+ is formed, BCA reacts 

with it and thereby preventing any further reduction to Cu0. Further, the volumes of reagents were 

doubled from the original work[5] in order to minimize experimental error in the measurements, 

because it was predicted that it would be difficult for the students to accurately measure the small 

volumes used in the reference paper. 

 

2.4.2. Standard curve: To construct a standard calibration curve for copper concentration in 

aqueous phase, its concentration was varied between 0 – 10 ppm or 0 – 100 ppm or 0 – 1000 ppm 

in three different sets of experiments and Amax at max = 562 nm for [Cu(BCA)2]
+ complex was 

obtained using the general procedure described earlier. 
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2.4.3. General procedure to determine [Cu2+]soil: Earlier experiments were carried out by 

altering the ratio of amount of soil to volume of aqueous copper solution and it was found that 

~1:2 ratio yielded reliable results. Further, earlier experiments also evaluated the soaking times 

ranging from 15 minutes to 7 days and it was found that ~60 mins soaking time provides reliable 

results while allowing students to finish the experiment within a three-hour lab period.  

For a given set of experimental conditions, desired amount of sifted soil was added to a 20 mL 

scintillation vial and soaked in an appropriate of volume of 1000 ppm aqueous copper solution for 

60 minutes. After the waiting period, aqueous copper solution layer was carefully extracted using 

a syringe and then filtered using a 0.25 m syringe filter. Analyte absorbance was then determined 

following the afore-mentioned procedure using BCA and glucose solutions. Finally, concentration 

of copper adsorbed by soil can be obtained as:  

[Cu2+]soil (in ppm) = [Cu2+]0 – [Cu2+]aq = 1000 ppm – [Cu2+]aq (in ppm)                       (2.1) 

 

2.5. Effect of soil mass on [Cu2+]soil 

To study the relationship between the amount of soil and its capacity for copper adsorption, soil 

mass was varied from 0.10 g to 1.00 g, as shown in Table 2.2. Exactly 5.00 mL of 1000 ppm 

copper(II) solution was added to each sample and was left to equilibrate for 60 min. After 60 mins, 

each sample was analyzed for copper ion concentration in soil using the method mentioned in 

subsection 2.4.3.  

 

2.6. Effect of soil pH on the amount of copper adsorbed 

As a first attempt to test the effect of soil pH on the partition coefficient for the Cu2+
(aq) ⇌ Cu2+

(soil) 

equilibrium, soil was equilibrated at desired pH for 60 minutes using water or HCl(aq) or NaOH(aq) 

solutions. However, due to a lot of scattering in the data (data not shown), experiment was repeated 

by soaking the soil in the pH altering reagent for 7 days. After the desired equilibration time has 

passed, the excess aqueous layer was carefully removed with a syringe without disturbing the soil 

and 5.00 mL of aqueous copper(II) solution was added to the soil. The mixture was left to 

equilibrate for another 60 minutes and the Cu2+ solution layer was extracted using a syringe and 

analyzed according to the procedure mentioned in subsection 2.4.1 and Cu2+ concentration in soil 

was estimated using equation 2.1.   

 



Table 2.2. Summary of final experimental parameters used to study various effects on Cu2+ adsorption by soil. 

Soil mass 

(g) 

Vol. of DI 

water (mL); 

pH 

Vol. of 

HCl(aq) (mL); 

pH 

Vol. of 

NaOH(aq) (mL); 

pH 

Soaking time 

with pH reagent 

Vol. of 1000 ppm 

Cu2+ (aq) (mL) 

Soaking time 

with Cu2+ (aq) 

 

Temperature 

(C) 

Effect of soil mass 

0.102  

N/A; 7 

 

N/A 

 

N/A 

 

N/A 

 

5 

 

60 min 

 

21 
0.302 

0.700 

1.002 

Effect of pH 

1.000 0; N/A 5.00; 1.00 0; N/A  

 

5 days 

 

 

5 

 

 

60 min 

 

 

21 

1.000 0; N/A 5.00; 3.00 0; N/A 

1.000 5.00; 7 0; N/A 0; N/A 

1.000 0; N/A 0; N/A 5.00; 11 

1.000 0; N/A 0; N/A 5.00; 13 

Effect of temperature 

1.000  

N/A; 7 

 

N/A 

 

N/A 

 

N/A 

 

5 

 

60 min 

~0 

1.000 22 

1.000 40 

1.000 60 

 



2.7. Effect of soil temperature on the equilibrium constant (K)  

Four soil samples, each containing 1.00 g soil, were used to study the temperature effects on 

copper adsorption by the soil. To each of the soil samples, ~ 5 mL 1000 ppm aqueous copper(II) 

solution was added and allowed to equilibrate for 60 min at ~0 C, ~22 C (room temperature), 40 

C and 60 C. The 40 C and 60 °C temperatures were achieved with the help of hot water baths, 

while the 0 °C temperature was achieved by placing the soil sample in an ice bath.  Removal and 

analysis of excess aqueous Cu2+ solution was carried out according to procedures described earlier 

in subsections 2.4.1 and 2.4.3. 

 

 

 

 

 



Page | 13  
 

3. Results and Discussion 

3.1. Why BCA to detect [Cu2+]aq? 

Although many analytical methods are available for the determination of copper 

concentration in a variety of samples, UV-visible spectroscopy remains popular for aqueous 

solutions because of its simplicity, low cost, instrument accessibility and familiarity to 

undergraduate students. [11] Among the available spectrophotometric reagents [11], a quinoline 

derivative 4,4-Dicarboxy-2,2-biquinoline acid (aka bicinchoninic acid, BCA, with 𝑝𝐾𝑎1
= 1.87 

and 𝑝𝐾𝑎2
 = 2.85) is a well-known complexing agent with a high sensitivity and selectivity for 

Cu(I) in aqueous media. Hence, it has been widely used to directly determine copper in soil and to 

indirectly determine proteins, sugars, ascorbic and uric acids.[11,12] In the indirect method, species 

like proteins or sugars reduce copper(II) to copper(I) which then binds with aqueous BCA to 

produce an intensely purple colored complex with a formula [Cu(BCA)2]
+ and a molecular 

structure shown in Fig. 3.1. For example, reaction of Cu(II) with glucose, a reducing sugar, and 

BCA in a basic medium is shown below. The [Cu(BCA)2]
+ complex exhibits an absorption 

maximum at ~560  2 nm with a molar absorptivity coefficient in the range of 7.7  103 – 8.7  

103 L/molcm.[11,12]  

2Cu2+
(aq) + 4BCA(aq) + C6H12O6(aq) + 3OH− (aq)  → 2[Cu(BCA)2]+

(aq) + C6H11O7
−

(aq) + 2H2O 

 

Figure 3.1. Chemical structure of purple [Cu(BCA)2]
+ chelate complex. Image is adapted from 

reference [13]. Sodium ions shown in the picture are from the commercially purchased BCA assay 

reagent solution used in this project. See subsection 2.2.3 for details.  
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In this project, glucose/BCA pair was chosen to detect Cu2+ ion concentration in aqueous 

media using UV-Vis spectroscopy because of the following reasons.   

(a) Glucose is one of the simplest reducing sugars that the students will be familiar with and it 

is a very inexpensive reagent; 
 

(b) [Cu(BCA)2]
+ complex shows a strong absorption maximum at ~560 nm which falls in the 

400 – 700 nm range of the table top Perkin Elmer UV-Vis spectrometers widely available 

at BSU; 
 

(c) Absorbance of [Cu(BCA)2]
+ complex can be measured at any wavelength between 550 – 

570 nm with less than 10% signal loss.[12,13]  
 

(d) BCA chelation with Cu+ in alkaline medium, allows one to introduce chelation and redox 

chemistries at the general chemistry level; 
 

(e) Dark purple color of [Cu(BCA)2]
+ complex provides an easy visualization of reaction 

progress; 
 

(f) Finally, as suggested by Cessna et. al.[5], using BCA/glucose pair allows students to 

potentially estimate the ratio of [Cu2+] to [Cu+] in aqueous and soil media.    
 

If the instructors of CHEM 142 find the detection method using glucose/BCA to be too tedious or 

overwhelming activity for general chemistry students, alternate methods such as chelation with 

NH3 (max ~ 610 nm), titration with EDTA or atomic absorption spectroscopy may be used to 

determine [Cu2+]aq and [Cu2+]soil concentrations. 

 

3.2. Construction of standard curve for [Cu2+]aq using BCA and glucose  

To understand the partitioning of copper ions between soil and water i.e., the 

equilibrium Cuaq
2+  ⇌  Cusoil

2+ , students will need the values of Cu2+ ion concentration in water layer 

and in soil. Hence, they need to construct a standard curve with various concentrations of Cu2+ 

ions in water. Standard curves generated using UV-Vis spectrophotometric method rely on the 

Beer-Lambert Law (cf. Eq. 3.1). According to this law, absorbance (A) versus concentration (c) 

should yield a straight line with a slope equal to l, where  is the molar extinction coefficient (aka 

molar absorptivity) and l is the light path length or the width of a cuvette. Since the standard ~1 

cm  1 cm  5 cm cuvettes are used, slope in the current case should be  with ppm−1cm−1.  

A = cl                             (3.1) 
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Figure 3.2. Calibration curve to determine copper concentration in aqueous solutions. Absorbance 

data (black circles) was collected for [Cu(BCA)2]
+ complex’s max = 562 nm peak and the solid 

red line represents a fit to Beer Lamberts equation shown in Eq. 3.1.  

 

As a first attempt to create a standard curve, [Cu2+] was varied from 100 – 1000 ppm. 

However, because of large molar absorptivity of [Cu(BCA)2]
+

(aq) complex,[12,13] concentrations 

above 100 ppm turned out to be too concentrated for the table top UV-Vis spectrometer and had 

to be diluted by 10 times in order to collect the absorption spectra (data not shown). Hence, to 

simplify the number of steps for the students, copper concentration was changed from 0 – 100 ppm 

and a second standard curve, shown in Fig. 3.2,  was obtained as A = 0.0102 [Cu2+]aq  with R2 = 

0.9977. Finally, our attempts to construct a standard curve for copper ion concentrations from 0 – 

10 ppm (data not shown) yielded poorly fit data (R2 = 0.8893), probably because of poor sensitivity 

of the tabletop UV-Vis spectrometer or instrumental deviation from Eq. 3.1 or experimental errors 

such as slightly warm BCA, not enough incubation etc. Hence, asking students to work with copper 

concentrations of 0 – 100 ppm, while keeping the number of required steps to a minimum, will 

provide students not only with a working standard curve they can use for all their analytes but also 

provide an opportunity to practice developing it. 

 

3.3. Relation between soil mass and amount of copper adsorbed 

 Intuition suggests that increasing the amount of soil increases the copper adsorbed by soil. 

To confirm this relationship, an experiment was designed where the soil mass was varied while 

keeping the initial copper concentration constant at 1000 ppm. All samples were equilibrated for  
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Figure 3.3. (a) Concentration of copper adsorbed as a function of soil mass at room temperature 

and atmospheric pressure. Data was obtained by monitoring the max = 562 nm peak for 

[Cu(BCA)2]
+ complex. Dotted line is added as a guide to the eye. (b) Cartoon diagram showing 

the interactions between Cu2+ ions and the soil surface. Image is adapted from reference [14]. 
 

60 minutes at room temperature and atmospheric pressure. While the proportionality between soil 

mass and copper sorbate is confirmed, it is interesting to note that the observed plateau behavior  

 (see Fig. 3.3) resembles the adsorption isotherms for systems with a limited number of adsorption 

sites.[14,15] This resemblance may be understood in terms of the increased number of pockets with 

surface functional groups (see Fig. 3.3b) as the soil mass increases, which in turn results in an 

increase of the amount of copper adsorbed by the soil. Based on Fig. 3.3, it may be concluded that 

~1.00 g of Vigoro all-purpose garden soil is capable of adsorbing ~1000 ppm of copper ions. It 

may also be worth noting that this resemblance may be purely coincidental and may depend on the 

type of soil, constituents of the soil, and the size of the pocket spaces. For example, initial 

experiments done using the backyard soil from Dr. Nellutla’s home were not successful. It is 

suspected that the poor porosity and/or absence of necessary functional groups might be the reason 

behind poor adsorption qualities of the backyard soil. Therefore, the idea of using backyard soils 

for this project is discarded. Also, further experimentation should be conducted for pre-existing 

amounts of copper in the soil samples used in order to ensure a greater accuracy of the results. 

Regardless of these variations, it is still expected that as the amount of soil is increased, the amount 

of copper adsorbed should also increase. 
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3.4. Effect of soil pH on the amount of copper adsorbed  

To test the effect of soil pH on its adsorption capacity for copper, soil pH was adjusted by 

soaking it in aqueous HCl or NaOH solution of desired pH. Aqueous HCl and NaOH were chosen 

because they are the most common acid and base, respectively, and commercial solutions of 

varying concentrations are readily available in the Chemistry Department. Separate experiments 

to optimize parameters such as soil mass, volume and concentration of pH altering reagent, soaking 

times with or without Cu2+ ions were also carried out but not included in this thesis. These 

experiments indicate that soaking the soil in the desired pH solution for 5 days without the copper 

ions gave the best results. Detailed experimental parameters are listed in Table 2.2 but briefly, 

1.00 g of soil was soaked in either aqueous HCl or NaOH or plain water for 5 days before testing 

the effect of pH on the copper adsorption. Copper adsorption experiments were carried out as 

described in section 2.6 of this thesis, after the aqueous layer is carefully removed through 

pipetting. Although most of the aqueous layer was removed, soil was still wet, and the volume of 

this aqueous ‘solution’ was ignored in our [Cu2+]soil calculations. Filtration method was not 

employed to separate the soil to prevent its loss during filtration and transfer. 

 

Table 3.1 lists the results from 5 day soaking. Here, the initial pH refers to the aqueous 

layer pH measured immediately after adding HCl or water or NaOH to the soil and final pH refers 

to the aqueous layer pH after it was in contact with the soil for 5 days. It is worth to point out that 

the final soil pH is assumed to be the same as the final pH of the solution in which it was soaked. 

Considering that the soil was in contact with the pH altering reagent in a sealed vial for five days 

and the typical recommendation is to make a soil-water slurry in ~1:2 ratio and measuring its 

pH[17], the assumption is reasonably valid. It is quite interesting to note that after 5 days, the final 

pH values seem to “converge” towards ~7  3 pH units, with the middle three values being nearly 

identical. While an exact reason for this behavior is not clearly understood at this time, it may be 

attributed to the nature of soil used in this project which has various amendments and fertilizers 

(see Fig. 3.4). 

It is well established that soil pH can have a significant effect on its ability to adsorb ionic 

pollutants.[14,16] Specifically, an ‘S-curve’ type behavior is observed for various soils and cations 

[14,16] and as an example effect of pH on Cu2+ adsorption in two types of clays is shown in  
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Table 3.1. Absorbance, initial and final pH values of soil collected at room temperature and 

atmospheric pressure. Initial pH refers to the pH of source at time 0 and final pH refers to the pH 

of the aqueous layer measured after 5 days of equilibration. See Table 2.2 for further details. 
  

Source to alter pH Initial pH Final pH Amax of [Cu(BCA)2]+ at 562 nm 

0.1 M HCl(aq) 1 4.47 1.536 

0.001 M HCl(aq) 3 7.11 1.198 

DI water ~7 7.17 1.326 

0.1 M NaOH(aq) 11 7.22 1.426 

0.001 M NaOH(aq) 13 9.18 0.788 

 

 

 

 

Figure 3.4. Fertilizers and ingredients present in Vigoro all-purpose garden soil. These contents 

are attributed to soil’s “buffering” nature observed in the experiments measuring pH. See text for 

further details. 

 

 

Fig. 3.5a.[16] This behavior suggests that the copper adsorption rate is expected to steadily increase 

until a certain pH, rise sharply in a narrow pH range and finally level off steadily at high pH values. 

Fig. 3.5b depicts the equilibrium constant, K, as a function of final soil pH from 5 day soaking 

experiment. K values are evaluated using Eq. 3.2. K vs. pH trend observed for Vigoro garden soil 

is consistent with Cu2+ adsorption in clays. [16]  

𝑲 =  
[𝐂𝐮𝟐+]𝐬𝐨𝐢𝐥,𝐞𝐪𝐮𝐛

[𝐂𝐮𝟐+]𝐚𝐪,𝐞𝐪𝐮𝐛
                       (3.2) 
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Figure 3.5. K vs. pH graph for: (a) Cu2+ ions adsorption by two types of clay[16]. Circles represent 

Kaolin, squares represent Montmorillinite and the solid line depicts the expected ‘S’ type pH 

dependence behavior[14,16] and (b) Cu2+ adsorption by Vigoro Garden soil used in this project. Data 

represents the results from 5 days soil soaking in pH altering agent. See text for further details.   

 

 

In Eq. 3.2, [Cu2+]aq,equb and [Cu2+]soil,equb, respectively, represent the equilibrium concentration of 

Cu2+ ions in aqueous phase and in the sorbent soil. Difference in the magnitude of K values is 

tentatively attributed to the difference in the soil types. At the molecular level, pH dependence can 

be understood by examining the interactions between soil and ionic contaminants. According to 

Thompson et. al.[14], as the solution pH increases, −OH and −COOH functional groups present in 

the soil deprotonate thereby increasing the density of the negative charge in the soil. This enhanced 

negative charge density facilitates the adsorption of cations such as Cu2+. Leveling of K at high 

pH values suggest that all the −O− and −COO− groups being ‘occupied’ by Cu2+ ions.      
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3.5. Temperature effect on copper adsorption by soil 

 Thermodynamics of the copper adsorption process by soil can be understood by examining 

the equilibrium Cuaq
2+  ⇌  Cusoil

2+  and by analyzing the associated partition coefficient, or 

equilibrium constant shown in Eq. 3.2. Further, since the equilibrium constant is connected to 

Gibbs free energy and thereby to enthalpy and entropy by the relation[18] shown in Eqs. 3.3 and 

3.4, one can obtain the latter values by monitoring K as a function of temperature, T. Specifically, 

according to the Van’t Hoff equation[18] shown in Eq. 3.4, slope of lnK vs. (1/T) gives enthalpy 

changes associated with the adsorption process, while the y-intercept gives the entropy associated 

with the adsorption of copper by soil. It should be noted that the Van’t Hoff equation assumes that 

H and S do not change significantly as the temperature changes. 

 

−𝑹𝑻𝐥𝐧𝑲 =  ∆𝑮°𝐬𝐨𝐫𝐩 =  ∆𝑯°𝐬𝐨𝐫𝐩 − 𝑻∆𝑺°𝐬𝐨𝐫𝐩              (3.3) 

 

 

𝐥𝐧𝑲 =  
−∆𝑯°𝐬𝐨𝐫𝐩

𝑹𝑻
−

∆𝑺°𝐬𝐨𝐫𝐩

𝑹
                   (3.4) 

 

Adsorption of copper ions by soil at its natural pH was studied at four different 

temperatures: 0 C, 22 C, 40 C and 60 C, with an error of about  2 C. This temperature study 

was repeated three times to ensure the reproducibility of the expected linear trend. At each 

temperature, the soil and aqueous copper solutions were allowed to equilibrate for 60 minutes 

before analyzing the left over [Cu2+] in the aqueous phase. Further experimentation in which soil 

is pre-equilibrated at a desired temperature, say for 30 minutes, before the addition of copper 

solution will ensure that the soil temperature is ‘truly’ changed without any interference from 

copper ions. Figure 3.6 shows the lnK as a function of (1/T) for one of the data sets along with a 

straight line fit. As can be seen from the figure, data fits very well (R2 = 0.9985) to: 

𝐥𝐧𝑲 =
−𝟐𝟎𝟒𝟓.𝟔

𝑻
+ 𝟏𝟎. 𝟕𝟕                          (3.5) 

Comparison of Eq. 3.5 with Eq. 3.4 suggests that Hsorp = +17.0 kJ/mol, Ssorp = +89.5 

J/mol and at 25C Gsorp = −9.67 kJ/mol. These results indicate that the copper adsorption process 

is entropy driven and as suggested by authors in references [5,19], this may be attributed to the 

fact that in the aqueous phase Cu2+ ions are surrounded by water molecules, represented as  
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Figure 3.6. lnK is plotted as a function of inverse temperature. Data were collected soil’s natural 

pH using 1.0 g of soil and monitoring the maximum absorbance of [Cu(BCA)2]
+ complex at max 

= 562 nm peak. Solid red line represents a linear fit to Van’t Hoff equation shown in Eq. 3.4. 

 

Table 3.2. Comparison of thermodynamic data obtained in this work with that of the literature 

reports. 

Parameter This work Cessna et.al. [5] Yavuz et.al [19] 

Hsorp (kJ/mol) +17.0 +10.9 +39.5 

Ssorp (kJ/molK) +0.0895 +0.0891 +0.117 

−TSsorp (kJ/mol) @ 298 K −26.7 −26.6 −34.9 

(Gsorp)25 (kJ/mol) −9.67 −15.7 +4.61 

 

[Cu(H2O)n]
2+, and upon coordination to soil surface, the water molecules are released thereby 

increasing the entropy of the system. 

As can be seen from Table 3.2, while the sign and magnitude of Hsorp, Ssorp and 

(Gsorp)25 match the data reported by Cessna et.al[5], they do not match, except for the sign of 

Hsorp and Ssorp, the ones reported by Yavuz et.al[19]. As Cessna et.al.[5] suggested, the 

disagreement between the magnitudes and sign of (Gsorp)25 could be due to the use of garden 

soil containing multiple components instead of pure clay used by Yavuz et.al.[19] Nevertheless, this 

experiment provides an excellent way to teach equilibrium thermodynamics associated with 

adsorption processes and allow students an opportunity to learn about data analysis using Van’t 

Hoff relation. 
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4. Conclusions 

 

In conjunction with the increasing need to better prepare students to the ever-demanding 

new work environments, skills such as critical and independent thinking, scientific reasoning, and 

problem-solving are essential to their success in the workplace. Project-based (PBL) or inquiry-

based (IBL) laboratory experiences can provide excellent opportunities for students to learn the 

skills necessary to thrive in any situation. These types of pedagogical methods pose questions, 

problems, or scenarios with the goal of facilitating learning and understanding of concepts covered 

in a course.  

 

The results from the work described in this thesis can be summarized as follows: 

(a) Calibration curve for determination of aqueous copper concentration using BCA and 

glucose was successfully constructed. Results yield the Beer Lamberts equation as A = 

0.0102 [Cu2+]aq with R2 of 0.9977 for copper concentrations between 0-100ppm. 

 

(b) Increasing the mass of soil shows the expected trend of increased amount of copper 

adsorbed by the soil. Specifically, results suggest an exponential relation between Vigoro 

garden soil and the adsorption of copper ions. It should be noted that this behavior might 

be exclusive to the type of soil used in this project. However, in general the adsorption of 

copper ions is expected to increase proportionally with the increase of mass of the soil. 

 

(c) Preliminary results reported in this work suggests that adsorption of copper by Vigoro 

garden soil increases as its pH increases. The graph of copper adsorbed by the soil as a 

function of final soil pH has a rudimentary S-shaped format which is somewhat consistent 

with the results found in the literature[14,16], but further experimentation is needed to 

determine the right parameters for this study and to confirm that the adsorption of copper 

by Vigoro soil is truly ‘S’ shaped.  

 

(d) As the soil temperature increases, the amount of copper adsorbed by the soil increases. 

Van’t Hoff analysis showed that adsorption of copper by the Vigoro commercial garden 

soil is endothermic and driven by favorable entropy changes resulting from the release of 

water molecules surrounding the copper ions when the latter are adsorbed by the soil.[5,14]  
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While the adsorption of copper by Kaolinite clay is predicted[19] to be endergonic at 298 

K, our results indicate that the adsorption process in the Vigoro garden soil is exergonic 

because of the TS term. This discrepancy, similar to what is observed by Cessna et.al.[5], 

is attributed to the differences between clay and commercial garden soil.    

 

The ideas evaluated in this thesis can be implemented as mini inquiry-driven projects that 

spread over 3 - 4 weeks, with each week focusing on different concepts covered in CHEM 141 

and CHEM 142 courses. Specifically, students would be exploring the effects of mass, pH, and 

temperature of a commercial garden soil, such as VigoroTM All-purpose Garden Soil, on its 

adsorption capability for copper ions. These experiments can be implemented in CHEM 142L 

course at BSU under the theme of ‘Environmental Contamination’. We believe that doing so 

should attract students’ attention, encourage their active participation as well as promote a better 

conceptual understanding of chemical equilibria and related concepts and develop critical thinking 

and important laboratory skills. A proposed 3-wek timeline is as follows. 

 

The first week should focus on the development of a calibration curve using UV-Vis 

spectroscopy because students will need this to assess the amount of copper adsorbed by the soil. 

Additionally, this gives the students an opportunity to learn and practice with solution preparation, 

collecting spectra on Perkin Elmer Lambda XLS+ table-top UV-Vis spectrometer, applying Beer 

Lambert law to analyze the data and using Microsoft Excel for plotting and trend line fit. 

 

The second week should focus on understanding the effect of mass on the adsorption 

equilibrium [Cuaq
2+] ⇌ [Cusoil

2+ ]. A variation that may be useful is to ask one half of the class to 

change soil mass by keeping initial copper ion concentration at 1000 ppm and ask the other half 

of the class to change the initial copper ion concentration by keeping soil mass constant. While the 

former effect is tested in this work, the latter was not tested due to time limitations. These 

experiments will allow students to learn about the relation between mass and the copper adsorption 

rate. In addition, they can understand the adsorption process at a molecular level by explaining 

their results in terms of physical and chemical properties of soil.  

 

The third week can focus on evaluating the temperature effects in terms of thermodynamics 

of adsorption processes. Specifically, students will experimentally find the value of the equilibrium 
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constant (K), defined in Eq. 3.2 at various temperatures and analyze the data in terms of Van’t 

Hoff equation given in Eq. 3.4. This will give the students a comprehensive way to understand the 

relation between K and change in standard Gibbs free energy (G) as well as the relation between 

K, change in standard enthalpy (H), and change in standard entropy (S) associated with 

adsorption of copper ions by the soil. Further they will learn about enthalpy driven vs. entropy 

driven processes and correlate these to the molecular interactions between soil and copper ions. 

 

The effect of pH on the Cuaq
2+ ⇌ Cusoil

2+  equilibrium was the most difficult to study probably 

due to complex nature of commercial garden soil’s chemical and physical structure, its ‘buffering’ 

nature against pH changes, and soil amendments such as fertilizers and organic matter and even 

traces of copper. Hence, time permitting, this study may be introduced as the 4th week mini-project 

in CHEM 142L course. Varying the soil pH and monitoring the [Cu2+]soil will allow students to see 

the Le Chatelier’s principle in action, according to the qualitative chemical equation shown below.  

Soil(COOH)n + nCu2+
(aq) ⇌ nSoil(COO−)(Cu2+) + nH+

(aq) 

Instead of a full-scale evaluation of pH (i.e., generating a plot shown in Fig. 3.5b) using aqueous 

HCl and NaOH solutions, soil could be mixed with agents such as lime to raise soil pH to a desired 

value and/or use salts such as iron or aluminum sulfate to lower soil pH to a desired value. But it 

is should be noted that these processes require careful planning and extensive experimentation 

since their use can alter the binding process of copper, thus affecting the results. Another option 

to illustrate the Le Chatlier’s principle is to alter the pH of Cu2+ and BCA reaction. Again, further 

experimentation is needed to ensure that altering the pH doesn’t drastically effect the formation of 

[Cu(BCA)2]
+ complex or (max, Amax) doesn’t go out of range of the table top UV-Vis spectrometer. 

Finally, the generation of a curve similar to Fig. 3.5a and evaluation of buffering capacity of soil 

could be a nice project for sophomore and upper-level chemistry laboratory courses such as 

Quantitative Chemical Analysis (CHEM 351L) and Physical Chemistry I (CHEM 381L). 

 

Appendix 1 provides step by step instructions for each of the activities described above 

and can be modified, as needed, on the inquiry-driven spectrum i.e., anywhere between 

“cookbook-style” to completely “open-ended style”.  
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Appendix 1 

Step by step instructions for three week timeline proposed in Conclusions 

Week 1: 

Materials: 

a. Balance, pipettes, volumetric flasks, hot water bath @60 °C 

b. 1000ppm Cu2+, BCA and 100g/L Glucose stock solutions 

c. Syringes, 0.25 m syringe filters, syringe needles, and scintillation vials  

 

Standard curve generation  

Students will be required to construct a standard curve for copper concentration in aqueous phase, 

by changing the Cu2+ concentration between 0 – 100 ppm. 

1. The calibration curve must contain at least 5 points in the 0 – 100 ppm range. 

2. After the desired concentrations in this range are determine, students can make the desired 

volume of these concentrations by diluting an initial 1000ppm Cu2+ solution prepared. 

Alternately, students can be asked to make the stock solution to be used by the class. 

3. Then, 2 mL of BCA and 2 mL of the 100g/L Glucose must be added to each of the testing 

vials. 

4. 0.2 mL of each Cu2+ concentration should be added to a different testing vial of BCA and 

Glucose. 

5. The solutions testing vials should then be carefully shaken and inserted in the hot bath for 

approximately 15 minutes. 

6.  After the 15 minutes the solutions should be allowed 5-10 to cool down to room 

temperature before being analyzed using the Uv/Vis spectrometer and have the 

absorbances recorded.  

 

Week 2: 

Materials: 

a. Balance, pipettes, volumetric flasks, hot water bath @60 °C 

b. 1000ppm Cu2+, BCA and 100g/L Glucose stock solutions 

c. Syringes, 0.25 m syringe filters, syringe needles, and scintillation vials  

 

Evaluating the relation between soil mass and amount of copper sorbate  

1. 4 soil samples (0.100-1.000g) of provided soil samples must be measured and added to 

glass vails. 

2. A 25 mL of 1000ppm Cu2+ copper solution must be prepared. 
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3. 5 mL of the 1000ppm Cu2+ must be added to the soil samples and left undisturbed for 60 

minutes. 

4. In the meantime, a 10 mL of 100g/L Glucose must be prepared. 

5. A hot bath @60 °C must be prepared and ready before the 60 minutes are completed. 

6. After the 60 minutes are completed the remaining aqueous solution of Cu2+ must be 

removed and filtered using a different syringes and filters and added to a labeled beaker. 

7. 2 mL of BCA and 2 mL of the 100g/L Glucose must be added to 4 separated testing vials. 

8. Then, 0.2 mL of each filtered remaining Cu2+ aqueous solution should be added to a 

different testing vial of BCA and Glucose. 

9. The solutions testing vials should then be shaken and inserted in the hot bath for 

approximately 15 minutes. 

10.  After the 15 minutes the solutions should be allowed 5-10 to cool down to room 

temperature before being analyzed using the Uv/Vis spectrometer. 

 

Week 3:  

Materials: 

a. Soil, balances, pipettes 

b. 1000ppm Cu2+, BCA and 100g/L Glucose stock solutions 

c. Filters and syringes 

d. Hot water bath @40 °C and @60 °C; Ice bath (~0 °C) 

 

Evaluating the temperature effect on copper adsorption by soil  

1. Students must prepare 2 hot baths, 1 @40 °C and another @60 °C and An Ice bath at 

approximately 0 °C. 

2. 4 soil samples of 1.000g each of the provided soil must be measured and added to a glass 

vail. 

3. A 25 mL of 1000ppm Cu2+ copper solution must be prepared. 

4. 5 mL of the 1000ppm Cu2+ must be added to the soil samples. 

5. 1 sample must be left at room temperature and the remaining 3 must be added each to one 

of the hot/ice baths and left undisturbed for 60 minutes. 

6. In the meantime, a 10 mL of 100g/L Glucose must be prepared. 

7. After the 60 minutes are completed the remaining aqueous solution of Cu2+ must be 

removed and filtered using different syringes and filters and be added to a labeled beaker. 

8. 2 mL of BCA and 2 mL of the 100g/L Glucose must be added to 4 separated testing vials. 

9. Then, 0.2 mL of each filtered remaining Cu2+ aqueous solution should be added to a 

different testing vial of BCA and Glucose. 

10. The solutions testing vials should then be shaken and inserted in the hot bath @60 °C for 

approximately 15 minutes. 

11. After the 15 minutes the solutions should be allowed 5-10 to cool down to room 

temperature before being analyzed using the Uv/Vis spectrometer.  
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Appendix 2 

Data tables corresponding to the figures presented in the Results chapter of this work 

 

Table A2.1. Summary of experimental data from the study of the relation between soil mass and amount of copper adsorbed. Standard 

curve  

Mass of soil 

(g) 

Vol. of Cu2+ 

added (mL) 

Conc. Of Cu2+ 

added (ppm) 

Soaking time 

(min) 

Amax of [Cu(BCA)2]+ 

complex at 562 nm 

Equilibrium 

[Cu2+] in aqueous 

layer (ppm)* 

Equilibrium 

[Cu2+] adsorbed 

by soil (ppm) 

0.1015 5 1000 60 min 3.66 359 641 

0.3019 5 1000 60 min 1.70 167 833 

0.7001 5 1000 60 min 0.461 45.2 955 

1.0016 5 1000 60 min 0.145 14.2 986 
 

* Values are obtained from the standard curve A = 0.0102[Cu2+]aq,equb 

 

Table A2.2. Summary of experimental data from the study of the effect of soil pH on the equilibrium constant K. Soil was soaked in 5 

mL of the pH altering agent for 5 days. After the aqueous layer was removed, 5 mL of 1000 ppm Cu2+
(aq) solution was added to the pH 

altered soil followed by 60 mins of incubation.    

Soil 

Mass (g) 

Initial pH 

of soil 

Final pH  

of soil 

Conc. of aqu. Cu2+ 

added (ppm) 

Amax of [Cu(BCA)2]+ 

complex at 562 nm 

Equilibrium [Cu2+] in 

aqueous layer (ppm)* 

Equilibrium [Cu2+] 

adsorbed by soil (ppm) 

K§ 

(L/kg) 

1.000 1 4.47 1000 1.536 151 849 5.64 

1.000 3 7.11 1000 1.198 117 883 7.51 

1.000 7 7.17 1000 1.326 130 870 6.69 

1.000 11 7.22 1000 1.426 140 860 6.15 

1.000 13 9.18 1000 0.788 77 923 11.9 
 

* Values are obtained from the standard curve A = 0.0102[Cu2+]aq,equb 
§ K is obtained from Eq. 3.2 
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Table A2.3. Summary of experimental data from the study of the effect of temperature on the equilibrium constant K. 5 mL of 1000 

ppm Cu2+
(aq) solution was added 1.00 g soil followed by 60 mins of incubation at the desired temperature.  

T£ 

(Kelvin) 

1/T  

(Kelvin-1) 

Conc. Of Cu2+ 

added (ppm) 

Amax of [Cu(BCA)2]+ 

complex at 562 nm 

Equilibrium [Cu2+] in 

aqueous layer (ppm)* 

Equilibrium [Cu2+] 

adsorbed by soil (ppm) 

K§ 

(L/kg) 
lnK 

273.15 0.00366 1000 0.369 36.2 964 26.6 3.28 

295.15 0.00339 1000 0.219 21.5 979 45.6 3.82 

313.15 0.00319 1000 0.141 13.8 986 71.3 4.27 

333.15 0.00300 1000 0.100 9.80 990 101 4.62 
 

* Values are obtained from the standard curve A = 0.0102[Cu2+]aq,equb 
§ K is obtained from Eq. 3.2 
£ Error is about  2 C 
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