
Short Text Classification with Tolerance Near Sets

by

Vrushang Patel

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the Department of Applied Computer Science

© Vrushang Patel, 2021
University of Winnipeg

All rights reserved. This dissertation may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

Short Text Classification with Tolerance Near Sets

by

Vrushang Patel

Supervisory Committee

Dr. Sheela Ramanna, Supervisor
(Department of Applied Computer Science)

Dr. Talal Halabi, Member
(Department of Applied Computer Science)

Dr. Ketan V. Kotecha, External Member
(Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis Interna-
tional, Pune, India)

iii

ABSTRACT

Text classification is a classical machine learning application in Natural Language
Processing, which aims to assign labels to textual units such as documents, sen-
tences, paragraphs, and queries. Applications of text classification include sentiment
classification and news categorization. Sentiment classification identifies the polarity
of text such as positive, negative or neutral based on textual features. In this thesis,
we implemented a modified form of a tolerance-based algorithm (TSC) to classify sen-
timent polarities of tweets as well as news categories from text. The TSC algorithm
is a supervised algorithm that was designed to perform short text classification with
tolerance near sets (TNS). The proposed TSC algorithm uses pre-trained SBERT
algorithm vectors for creating tolerance classes. The effectiveness of the TSC algo-
rithm has been demonstrated by testing it on ten well-researched data sets. One of
the datasets (Covid-Sentiment) was hand-crafted with tweets from Twitter of opin-
ions related to COVID. Experiments demonstrate that TSC outperforms five classical
ML algorithms with one dataset, and is comparable with all other datasets using a
weighted F1-score measure.

Keywords: Sentiment Classification, machine learning, tolerance near sets, Trans-
former, News Classification and Natural Language Processing.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements x

Dedication xi

1 Introduction 1
1.1 Problem Definition . 2
1.2 Proposed Approach . 3
1.3 Contributions . 3
1.4 Thesis Layout . 4

2 Related Work 5
2.1 Machine Learning-based approach . 5

2.1.1 Supervised Learning Approach 6
2.1.2 Unsupervised Learning Approach 7
2.1.3 Semi-supervised Learning Approach 8

2.2 Lexicon-based Sentiment analysis approach 9
2.3 Deep Learning-based approach . 10

3 Theoretical Framework, Tolerance Class Learner and Vector Gen-
eration Methods 12

v

3.1 Rough Sets and Tolerance Rough Sets 12
3.2 Preliminaries - Tolerance Near Sets 13

3.2.1 Examples of TNS . 15
3.3 Transformer . 17

3.3.1 Vector Embeddings with SBERT 18
3.3.2 Importance of position encoding 19

3.4 Tolerance Sentiment Classifier - TSC 20
3.4.1 Phase I: Creating Prototype Classes 21
3.4.2 Phase II: Text Classification 22

3.5 TF-IDF Vectorization . 22

4 Dataset 25
4.1 Covid-Sentiment Dataset . 25
4.2 Other Datasets . 27

5 Experiments, Results and Discussion 31
5.1 Operational Machine Learning Algorithms 31
5.2 Vector Generation . 33
5.3 Sample Vectors . 33
5.4 Performance Measures . 34
5.5 Analysis of Results . 35

5.5.1 Experiments with the TSC algorithm 35
5.5.2 Experiments with the Covid-Sentiment Dataset 37
5.5.3 Experiments with the U.S. Airline sentiment Dataset 39
5.5.4 Experiments with the IMDB Movie Review Dataset 40
5.5.5 Experiments with the SST-2 Dataset 41
5.5.6 Experiments with the Sentiment 140 Dataset 42
5.5.7 Experiments with the SemEval2017 Dataset 43
5.5.8 Experiments with the Sanders corpus 44
5.5.9 Experiments with the UCI Sentence Dataset 44
5.5.10 Experiments with the AG-News Dataset 45
5.5.11 Experiments with the 20-Newsgroups Dataset 47
5.5.12 Overall Analysis . 47

6 Conclusion and Future Work 51

vi

A Selected Code Snapshots 53
A.1 Appendix . 53

A.1.1 Execution Flow . 53
A.1.2 Pipeline for BERT and Scikit-learn 54

Bibliography 56

vii

List of Tables

Table 4.1 Covid-Sentiment Tweet Examples 27
Table 4.2 Text classification Dataset Information 29
Table 4.3 AG News Dataset Information 29
Table 4.4 20-Newsgroups dataset . 30

Table 5.1 Example of Vectors in Covid-Sentiment dataset 34
Table 5.2 Best ε value for the TSC algorithm and Tolerance Class sizes . . 37
Table 5.3 Best ε value for the TSC algorithm and Tolerance Class size for

AG News dataset . 37
Table 5.4 20-Newsgroups dataset for best ε value of 0.19 38
Table 5.5 TF-IDF-based weighted F1-score Results 49
Table 5.6 Transformer vectors-based weighted F1-score Results 50

viii

List of Figures

Figure 1.1 Text Classification Pipeline . 3

Figure 3.1 Rough sets and set approximation 13
Figure 3.2 Distance matrix for T . 16
Figure 3.3 SBERT Architecture for vector embedding 19
Figure 3.4 Cosine Distance comparison with other embeddings 20
Figure 3.5 Highlevel Flow chart showing overview of TSC 20
Figure 3.6 cosine distance matrix of TF-IDF vectors for Covid-Sentiment

dataset . 24

Figure 5.1 TSC-Mean for all datasets . 35
Figure 5.2 TSC-Median Approach for all datasets 36
Figure 5.3 Results of Covid-Sentiment dataset 38
Figure 5.4 Results of U.S. Airline sentiment dataset 39
Figure 5.5 Results of IMDB Movie Review dataset 40
Figure 5.6 Results of SST-2 dataset . 41
Figure 5.7 Results of Sentiment 140 dataset 42
Figure 5.8 Results of SemEval2017 dataset 43
Figure 5.9 Results of Sanders corpus . 44
Figure 5.10Results of UCI Sentence dataset 45
Figure 5.11Results of AG-News dataset . 46
Figure 5.12Results of 20-Newsgroups dataset 47
Figure 5.13Overall comparison with TF-IDF-based approach with TSC al-

gorithm . 48
Figure 5.14Overall comparison with Transformer vectors-based approach

with TSC algorithm . 49

Figure A.1 Distance matrix for Covid-Sentiment dataset 53
Figure A.2 BERT Embedding python code 55

ix

Figure A.3 ML pipeline code for scikit-learn 55

x

ACKNOWLEDGEMENTS

Learning is a continuous process and every journey you traverse brings you some-
thing new. I take this great opportunity to thank everyone, who has rendered his or
her valuable support in my academic life at and out of the university. Many many
thanks to Dr. Sheela Ramanna for giving me this opportunity to do my studies under
her guidance. Support and encouragement from my professor Dr. Ramanna helped
me accomplish my goals throughout my research. I am grateful for the knowledge,
experience and guidance I received from her during this study. I would like to take
this opportunity to acknowledge and express my gratitude to the professors in the
Department of Applied Computer Science at the University of Winnipeg, for their in-
valuable instructions. The courses I attended under my professors were educative and
showcased the opportunities and future possibilities. The knowledge I obtained from
them was critical and essential in the success of my research. I would like to thank
Dr. Talal Halabi who is not only my former professor but also my committee member
and provided his guidance resulting in my first conference paper. I would also like
to thank the Dean of Graduate Studies Dr. Mavis Reimer and the staff of Graduate
Studies, Ms. Dagmawit Habtemariam, Dylan Jones and Mr. Eric Benson. I would
like to show appreciation to Ms. Connie Arnhold from the ACS department. Lastly,
I would say special thanks to Resty Jimenez and Ferdinand Borillo for providing a
GPU machine for this research. Thank you to my family who consistently encouraged
me and gave me strength in times of adversity and most importantly for having faith
in me. Thank you to all my friends who have assisted me and helped me in ways
that I cannot measure. Finally, I would like to thank everyone who has assisted me
and supported me which has allowed me to achieve my goal. This research has been
supported by the funds from Dr.Ramanna’s NSERC Discovery Grant, and also by
the Faculty of Graduate Studies, UW President’s Distinguished Graduate Student
Scholarship (PDGSS), UW Discretionary Grant, and UW Graduate Studies Travel
Grant. We are very grateful to Professor James F. Peters, University of Manitoba
who founded near set theory and gave me a chance to extend his research for text
analysis. Last but not least, I would like to thank my parents and family for their
support during my tough time

Vrushang Patel

xi

DEDICATION

To my family for having faith in me,
to my professor for encouraging me,

to my friends for helping me,

Chapter 1

Introduction

The popularity of World Wide Web (WWW) and the internet users are increasing day
by day1. Several websites allow users to share their views on internet via social media
platforms. It creates an opportunity for researchers to analyze such massive data
with the help of machine learning and deep learning techniques. The data can be a
text, video, image or audio. The analysis of text data falls into the domain of Natural
Language Processing (NLP). Text classification, also known as text categorization,
is a classical problem in NLP, which aims to assign labels to textual units such as
documents, sentences, paragraphs, and queries. It has a wide range of applications
including sentiment analysis, news categorization, question answering, user intent
classification, spam detection, content moderation, and so on [80]. Text data can
come from many sources like email, social media, movie reviews, news headlines,
chats, and questions and answers from customer services. There are several algorithms
in machine learning that perform text classification.

Opinion mining and sentiment analysis are two popular NLP research areas that
where the opinions of users are analyzed to detect sentiment polarity [36]. Polarity
determination has been performed for product reviews, forums, blogs, news articles,
and micro-blogs. The advent of microblogging platforms such as Twitter, having
a large user-base, has led to a vast amount of information for sentiment analysis.
The tasks of Twitter sentiment analysis include sentiment polarity detection, Twitter
opinion retrieval, tracking sentiments over time [1], irony detection, emotion detec-
tion [12, 27, 58, 57, 69]. Due to the word limit of 280 characters, micro-blogs do not
contain complete sentences. Moreover, micro-blogs often contain abbreviations and

1https://www.internetworldstats.com/emarketing.htm

2

noisy texts. Therefore, it needs standard pre-processing techniques such Parts-of-
Speech (POS) tagging, removing of URLs, Hashtags, @usernames, stopwords, stem-
ming, and spelling correction are applied to tweets due to the nature of messages
posted by users. Twitter sentiment classification, which identifies polarity such as
positive, negative, or neutral, is based on textual features: i) syntactic (e.g., n-grams,
term frequencies, dependency trees), ii) semantic (e.g., opinion and sentiment words),
and usually with the aid of lexicons, iii) stylistic (e.g., emoticons) and iv) twitter-
specific features (e.g., hashtags and retweets). Two main challenges encountered
with tweets are the length of the text (max. of 280 characters) and incorrect or
improper use of language. Different machine learning approaches: supervised [37],
semi-supervised [71] and unsupervised [35, 21] were applied to text classification which
included well-known learning algorithms such as Naive Bayes (NB), Maximum En-
tropy (ME), and Support Vector Machines (SVM). Well-known sentiment lexicons
such VADER (Valence Aware Dictionary for Sentiment Reasoning) [18] was devel-
oped which was an improvement over NLTK2 and Textblob3 tools. These methods
used either sentiment lexicons and/or a variety of hand-crafted textual features for
short text sentiment classification. Deep learning (DL) approaches that were ini-
tially used to learn word embeddings from large amounts of text corpus are now used
extensively in sentiment analysis [11, 68, 79, 20].

1.1 Problem Definition
In this thesis, we consider the application tolerance near sets for short text classifi-
cation. Near set theory was introduced by [43, 44]. Tolerance near sets [45] (TNS)
provide an intuitive as well as a mathematical basis in defining what it means for pairs
of objects to be similar. Near sets are disjoint sets that resemble each other. Resem-
blance is determined by considering set descriptions defined by feature vectors [42].
Descriptively near sets have been successfully applied in the following areas: content
based image retrieval [15, 67], solar flare detection in images [47], audio signal and
music genre classification [52, 63, 72] and community detection in social networks
with the TCD algorithm [23, 19]. The TCD algorithm is now included in CDlib4

which is Python software package that allows to extract, compare and evaluate com-
2https://www.nltk.org/
3https://textblob.readthedocs.io/en/dev/
4https://cdlib.readthedocs.io/en/latest/reference/algorithms.html#ensemble-methods.

3

munities from complex networks. In this work, set descriptions are textual features
represented by vectors.

1.2 Proposed Approach
We address the short text classification problem by using tolerance classes from near
set theory. The notion of tolerance is directly related to the idea of closeness be-
tween objects, such as image, audio or text segments that resemble each other with
a tolerable level of difference. The term tolerance space was coined by Zeeman in
modelling visual perception with tolerances [81]. Mathematically, a tolerance space
(X,≃) consists of a set X supplied with a binary relation ≃ (i.e., a subset ≃ ⊂ X×X)
that is reflexive (for all x ∈ X, x ≃ x) and symmetric (for all x, y ∈ X, x ≃ y and
y ∼ x) but transitivity of ≃ is not required. The tolerance relation provides us with
a mechanism for clustering text into groups termed as tolerance classes. The motiva-
tion for using tolerance classes is that the tolerance relation defines similarity rather
than equivalence. The tolerance classes are directly induced from the feature vectors
using the tolerance level ε and a distance function. The proposed sentiment/text
classification pipeline is given in Figure 1.1 where feature vectors are generated using
two pre-trained deep learning models BERT [10] and SBERT [54].

Figure 1.1: Text Classification Pipeline

1.3 Contributions
The contributions of this work are as follows [38]:

• We propose a novel algorithm (TSC) to perform short text classification using
a tolerance form of near set theory. This is the first application of TNS in the
NLP domain. The orginal supervised classifier was first introduced in [47].

• We provide a practical implementation of transformer-based vectors for our
proposed TSC algorithm and the following supervised ML algorithms: Sup-
port Vector Machine (SVM), Maximum Entropy (ME), Random Forest (RF),

4

Stochastic Gradient Descent (SGD), and Light Gradient Boosting Machine
(LGBM) implementations from the Scikit-learn library 5. In addition, TF-IDF-
based vectors were also used for the above mentioned supervised ML algorithms.

• We present empirical evidence on the performance of our proposed TSC algo-
rithm in terms of the size of the dataset as well as number of classes applied to
ten well researched text datasets using a weighted F1-score.

• We handcrafted a dataset referred to as Covid-Sentiment which is a subset
derived from [5] from the opinions of people related to COVID-19.

• Our proposed TSC algorithm outperforms all transformer vector-based super-
vised ML algorithms with three datasets, and outperforms TF-IDF-based su-
pervised ML algorithms with two datasets. In addition, TSC algorithm achieves
the best performance with a dataset having 20 classes.

1.4 Thesis Layout
The rest of this thesis organized as follows:

Chapter 2 provides an overview of previous work in text classification.

Chapter 3 provides a theoretical framework for the TSC algorithm with the trans-
former architecture.

Chapter 4 explains the ten various text datasets used as a case study in this thesis.

Chapter 5 gives experiments conducted on the datasets with various algorithms
followed by a discussion of the results.

Chapter 6 concludes the thesis and provides future research directions.

5https://scikit-learn.org/stable/

5

Chapter 2

Related Work

There are three popular approaches for text classification: 1) Machine Learning-
based approach, 2) Lexicon-based approach 3) Deep Learning-based approach. The
text classification task is not only for Twitter, but it also considers news classification
and reviews classification.

2.1 Machine Learning-based approach
The Machine Learning (ML) approach employs a ML method to classify sentiments
of the text based on training data provided to it. These approached can be broadly
classified as: supervised, unsupervised and semi-supervised learning. The supervised
approach requires a training set to train the model and use a test set to evaluate
performance of that model. The unsupervised approach finds hidden patterns from
the data and assigns a sentiment based on the discovered pattern to the dataset. The
semi-supervised approach is combination of supervised and unsupervised approaches.
Supervised algorithms require a set of representative labeled data for building classi-
fication models. However, labeled data are usually difficult and expensive to obtain,
which motivates the interest in semi-supervised learning. This type of learning uses
both labeled and unlabeled data in the training process and is particularly useful in
applications such as tweet sentiment analysis, where a large amount of unlabeled data
is available.

6

2.1.1 Supervised Learning Approach

ML based text classification was pioneered in [37] by applying Naive Bayes (NB),
Maximum Entropy (ME), and Support Vector Machine (SVM) for binary sentiment
classification of movie reviews. For experiments, movie reviews were collected from
IMDB.com where SVM outperformed all other algorithms with the highest accuracy
of 82.9% with unigrams features. SVM was used to classify sentiments with different
feature selection methods in [9]. Experiments were performed on 305 positive reviews
and 307 negative reviews on digital cameras. SVM was trained on three features
set based on domain free, domain dependent, and sentiment features. To reduce the
number of features the Information Gain (IG) was applied. The reduced features set
performed better on the multi-domain dataset than the digital camera dataset and
yielded an accuracy of 84.15% for kitchen appliances.

The Restaurant reviews written in the Cantonese language were classified [83]
by using NB and SVM. The authors studied the effects of feature representations
and feature size on classification performance. Experiments were performed on 1500
positive and 1500 negative reviews. They experimented with different feature repre-
sentations like unigram, unigram_freq, bigram, bigram_freq, trigram, trigram_freq,
and a varying number of features in the range of 50 to 1,600 features. The highest
accuracy reported was 95.67% using NB for 900–1100 features. The performance of
three popular ensemble methods bagging, boosting, and random subspace based on
five base learners, namely NB, ME, Decision Tree (DT), K Nearest Neighbour (KNN),
and SVM for sentiment classification were studied in [74]. The authors experimented
with ten different datasets and reported better accuracy over base learners at the cost
of computational time.

A supervised learning approach was used in [13] where different n-gram features
were combined with parts-of-speech (POS) tags. Three supervised algorithms were
employed: NB and SVM trained with POS and unigrams, and ME trained with un-
igrams and bigrams. The ME algorithm outperformed the other two algorithms by
almost 3%. IMDB Movie Review dataset and classification with a combination of
unsupervised and supervised methods were introduced in [31] where TF-IDF vec-
torization was applied to the dataset. A semi-supervised learning method was used
in [84] to Sina microblog data to annotate as well classify sentiments.

The ensemble classification on large-scale twitter dataset was applied in [30] with
the help of linearly combined ME classifiers. Their research was only limited for

7

one algorithm with only one dataset. The bootstrapping ensemble framework was
proposed in [14] which was able to cope with class imbalance using unigram, bigram
and POS for the analysis.

2.1.2 Unsupervised Learning Approach

One of the most fundamental modes of understanding and learning is organizing data
into sensible grouping. The formal study of methods and algorithms for grouping, or
clustering, objects according to similarities and same characteristics is Cluster anal-
ysis. The training data does not require labels in this type of learning. A sentiment
analysis system named Document based Sentiment Orientation System was proposed
in [62]. It uses an unsupervised approach which determines the sentiment orienta-
tion of the movie reviews and Word Net lexicon was used to identify synonyms and
antonyms of opinion word list. Negation was also handled in the proposed system.
The documents were classified as positive, negative or neutral. The approach provides
a summary of the total number of positive and negative documents.

Authors in [24] applied natural language analysis on seven different languages from
India using an unsupervised learning approach to perform text classficiation on an
unlabelled dataset. An interesting unsupervised sentiment analysis method (ESSA)
based on emotional signals was proposed in [17]. The emotional signals were divided
into two categories: emotion correlation and emotion indication. The ESSA method
was built on the orthogonal nonnegative matrix tri-factorization model. Two different
datasets were used for the evaluation of the ESSA approach.

An unsupervised, lexicon-based classifier that estimates the level of emotional va-
lence in text in order to make a prediction introduced in [35]. Classifier contains an
extensive list of linguistically driven functionalities, such as: negation/capitalization
detection, intensifier/diminisher detection and emoticon/exclamation detection, all
of which contribute to the final prediction. The proposed algorithm was applicable in
two different but complementary settings: opinion detection (i.e., detecting whether
the text contains an expression of opinion or is objective) and polarity detection
(i.e., predicting whether a subjective text is negatively or positively oriented), over-
all constituting a solution that can be applied without any modification or training
to a wide set of environments and settings. Extensive experiments using real-world
datasets from social Web sites and annotated by human assessors, demonstrate that
the lexicon-based approach performs surprising well in the vast majority of cases,

8

persistently outperforming state-of-the-art machine learning solutions, even in envi-
ronments where there is a significant number of training instances for the latter.

Aspect-based sentiment analysis (ABSA) that is focused on the use of a knowledge
base for the extraction of aspects and the use of grammatical relationships proposed
in [21]. It was an unsupervised approach used with lexicon-based approach to classify
sentiments. This research is based on comparison analysis of three sentiment lexicons
to determine what is the best combination for polarity classification at aspect-level.
Authors compared their algorithm with supervised approach to get performance of
unsupervised appraoch.

2.1.3 Semi-supervised Learning Approach

The first work on sentiment classification that does not require labeled data was
proposed in [71], in which a document is classified as either positive or negative
by taking into account the average semantic orientation of its phrases that contain
adjectives or adverbs. This approach was assessed on automobile reviews and movie
reviews, which are data sources that are very different from the type of short texts
found in tweets.

An improved semi-supervised learning framework for twitter sentiment classifica-
tion was introduced in [8]. Authors combined unsupervised information, captured
from a similarity matrix constructed from unlabeled data, with a classifier. The
authors state that such a similarity matrix is a powerful knowledge-discovery tool
that can help to classify unlabeled tweet sets. Their framework makes use of the
C3E − SL Self-training algorithm to induce a better tweet sentiment classifier. Ex-
perimental results demonstrate that their algorithm outperformed the lexicon-based
and stand-alone SVM algorithms on real world datasets.

A topic-based modeling for sentiment analysis with semi-supervised approach was
introduced in [78]. The authors performed cluster analysis and several classification
phases on the same dataset (a training set). As a result, a sentiment mixture model
was obtained and then used to predict the class of unlabeled tweets, from which
a subset was chosen to augment the training set. The authors considered a large
unlabelled data of 2 million tweets and 9684 labelled tweets to report their results.
As the topic structure formed by clustering comes exclusively from the training set, an
important gap in this approach is that no topic analysis takes place in the unlabeled
tweets, where this supplementary information could be useful.

9

2.2 Lexicon-based Sentiment analysis approach
Lexicon-based methods leverage lists of words annotated by polarity or polarity score
to determine the overall opinion score of a given text. The main advantage of these
methods is that they do not require training data. One of the most well-known
lexicon-based algorithms developed for social media is SentiStrength introduced in
[70]. SentiStrength can effectively identify the sentiment strength of informal text
including tweets using a human-coded lexicon that contains words and phrases that
are frequently confronted in social media. Apart from the sentiment lexicon that
contains about 700 words, SentiStrength uses a list of emoticons, negations, and
boosting words to assign the sentiment to a text. Initially, the algorithm was tested
on MySpace comments. SentiStrength was compared with many machine-learning
approaches and tested on six different datasets, including a dataset with tweets posts.

A Lexicon-based model VADER (Valence Aware Dictionary for Sentiment Rea-
soning) was introduced in [18] for sentiment classification. It is a simple rule-based
model for general sentiment analysis, and compares its effectiveness to eleven typical
state-of-practice benchmarks. Using a combination of qualitative and quantitative
methods, they first constructed and empirically validated a gold standard list of
lexical features along with their associated sentiment intensity measures, which are
attuned explicitly to sentiment in microblog like contexts and combining these lex-
ical features with consideration for five general rules that embody grammatical and
syntactical conventions for expressing and emphasizing sentiment intensity. VADER
is able to get better results only for short microblogs like tweets. In addition, a well-
known sentiment lexicon for microblog-like contexts was also developed, which was an
improvement over NLTK1 and Textblob2 tools. In [59], semantic patterns were used
as features for the classification of tweets using the concept of a bag of senti-circles
to capture contextual semantic similarities among words. The above methods used
either sentiment lexicons and/or various hand-crafted textual features for Twitter
sentiment classification.

1https://www.nltk.org/
2https://textblob.readthedocs.io/en/dev/

10

2.3 Deep Learning-based approach
Feed-forward networks are among the simplest deep learning models for text repre-
sentation. These models view a text as a bag of words. For each word, they learn a
vector representation using an embedding model such as Word2vec [32], and Glove
[41], by taking vector sum or average of the embedding as a representation of text and
passing it through many feed-forward layers called as Multi-Layer Perceptron(MLP).

Recurrent Neural Networks (RNN) based models view text as a sequence of words,
and these models are intended to capture word dependencies and text structures
for text classification. Among many variants to RNNs, Long Short-Term Memory
(LSTM) is the most well-known architecture designed to capture long-term depen-
dencies better. LSTM introduces memory cells to remember values by using three
gates. It has input gate, output gate and forget gate to obtain input/output from
the memory cells and addresses the gradient vanishing or exploding problems. A
Tree-LSTM model was introduced in [66] which is a generalization of LSTM to tree-
structured network typologies to learn rich semantic representations. The Tree-LSTM
is a better model than the traditional chain-structured LSTM for NLP tasks. The
authors validated effectiveness of Tree-LSTM on sentiment classification and predict-
ing the semantic relatedness of two sentences. RNNs face difficulties remembering
long-range dependencies but they are good at capturing the local structure of a word
sequence.

To overcome the limitations of deep networks such as RNN and its variants Long
Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) both in terms of
memory and sequential execution, attention-based Transformer Architecture BERT
(BERT: Bidirectional Encoder Representations from Transformers) was introduced
by [73] and later improved by [10]. Attention is motivated by how we pay visual
attention to different regions of an image or correlate words in one sentence. At-
tention has become an increasingly popular concept and helpful tool in developing
Deep Learning models for NLP. In a nutshell, attention in language models can be
interpreted as a vector of importance weights. To predict a word in a sentence, the
attention vector how strongly it is correlated with, or “attends to,” other words is
estimated and the sum of their values weighted by the attention vector is taken as
the approximation of the target.

These models rely primarily on transfer learning and pretrained models. BERT
has several variants such as RoBERTa, ELECTRA, DistilBERT, and ALBERT [33].

11

In this thesis, we used the vectors generated by SBERT and Distil-BERT [60] was
used for classification experiments. SBERT (Sentence-BERT), which is a modification
of the pre-trained BERT network [54].

12

Chapter 3

Theoretical Framework, Tolerance
Class Learner and Vector
Generation Methods

In this chapter, a brief introduction to the main definitions underlying near sets is
given. In addition, we give the algorithm used to generate the tolerance classes and
representative vectors. We also briefly describe the specific transformer model used
in our experiments.

3.1 Rough Sets and Tolerance Rough Sets
Rough Set theory was introduced by Zdzisław Pawlak during the early 1980s [39] as a
mathematical framework for reasoning about ill-defined objects and applied to many
areas machine learning and knowledge discovery [40]. In classical rough set theory
a universe of objects is partitioned into disjoint classes or granules i.e., equivalence
classes by using an equivalence relation. Given a concept that is determined to be
vague (not precise), this theory makes it possible to express the vague concept by
a pair of precise concepts called the lower and the upper approximation. A vague
concept is defined as a category (or decision) that cannot be properly classified. In-
formally, the elements of the lower approximation can be classified with certainty.
However, the elements of the upper approximation may not be classified with cer-
tainty. Figure 3.1 shows the regions that emerge using the two set approximation
operators namely lower approximation LA(X) and UA(X) where X represents the

13

concept (example) that needs to be classified. The regions are depicted as squares
only for the sake of illustration, but they can be of arbitrary shape. We should note
that each granule can contain an arbitrary number of objects or may be empty [51].
The difference between these two regions (also known as the boundary region) con-
tains objects that may belong to more than one category or class or concept.

Universe

�

Knowledge

Granule

Target

Concept

Lower

Appx.

!"()

Upper

Appx.

�"()

Figure 3.1: Rough sets and set approximation

However, there are certain applications such as document classification [16] and
natural language processing [61, 34] where overlapping classes are necessary with a
tolerance form of rough sets [64]. A tolerance model uses a tolerance relation instead
of equivalence where the transitivity property is relaxed which enables overlapping
classes (in other words, objects can belong to more than one class). Tolerance rela-
tions can be considered as generalizations of equivalence relations [48]. A history of
tolerance rough sets from an axiomatic point of view can be found in [51].

3.2 Preliminaries - Tolerance Near Sets
Near set theory was influenced by rough set theory [43, 44]. Disjoint sets containing
objects with similar descriptions are near sets provided the intersection of the sets is
nonempty. Near sets do not require set approximation operators (lower and upper
approximation). Tolerance near sets [45] provide an intuitive as well as mathematical
basis in defining what it means for pairs of objects to be similar. The basic structure
which underlies near set theory is a perceptual system which consists of perceptual
objects (i.e., objects that have their origin in the physical world [44]). Near sets are
characterized by i) a perceptual system ii) a nearness relation and iii) near set [77].

Definition 1. Perceptual System [44]
A perceptual system is a pair ⟨O,F ⟩, where O is a nonempty set of perceptual objects
and F is a countable set of real-valued probe functions ϕi : O → R.

14

An object description is defined by means of a tuple of probe function values Φ(x)

associated with an object x ∈ X, where X ⊆ O as defined by Eq.3.1:

Φ(x) = (ϕ1(x), ϕ2(x) . . . , ϕn(x)) (3.1)

where ϕi : O → R is a probe function of a single feature. The probe functions give
rise to a number of perceptual relations. This approach is useful when decisions on
nearness are made in the context of a perceptual system i.e., a system consisting
of objects and our perceptions of what constitutes features that best describe these
object. The notion of tolerance is directly related to the idea of closeness between
objects, that resemble each other with a tolerable level of difference. A tolerance
space (X,≃) consists of a set X endowed with a binary relation ≃ (i.e., a subset
≃ ⊂ X ×X) that is reflexive (for all x ∈ X, x ≃ x) and symmetric (for all x, y ∈ X,
x ≃ y and y ∼ x) but transitivity of ≃ is not required.

Definition 2. Perceptual Tolerance Relation[45]
Let ⟨O,F ⟩ be a perceptual system and let B ⊆ F ,

∼=B,ϵ= {(x, y) ∈ O ×O : ∥ ϕ(x)− ϕ(y) ∥2≤ ε} (3.2)

where ∥·∥2 denotes the L2 norm of a vector.

Definition 3. Text-based Tolerance Relation ∼=T ,ϵ

Let ⟨T, F ⟩ be a perceptual system for a nonempty set of objects T and let T ⊆ F

where T represents textual features. A tolerance space ⟨T,∼=T ,ϵ⟩ is defined as:

∼=T ,ϵ= {(ti, tj) ∈ T × T : dist(ti, tj) ≤ ε} (3.3)

where dist(ti, tj) denotes the Cosine distance of a vector given in Eq. 3.4. The tol-
erance relation ∼=T ,ϵ induces a tolerence class TC where ε is a user-defined tolerance
level.

dist(ti, tj) =
ϕ(ti).ϕ(tj)

∥ϕ(ti)∥ ∥ϕ(tj)∥
(3.4)

In other words, given a set of text (objects) T , where ti ∈ T , i ∈ N , each tweet or
text ti can be represented as a k-dimensional word vector ϕ(ti) where text similarity

15

is measured using the cosine distance measure.

Remark 3.2.1. Our universe of text T described by set of vectors ϕ, is spread amongst
tolerance classes with a tolerance level ε for semantic textual similarity, where a
tolerance class TC is maximal with respect to inclusion [75].

3.2.1 Examples of TNS

In this section, we illustrate our formal model with examples (sentences) drawn from
the UCI1 sentence dataset.

Example 1. T = {t0, t1, t2, t3, t4} is set of tweets elaborated as:
T = {”So there is no way for me to plug it in here in the US unless I go by a

converter.”, ” Good case, Excellent value.”, ” Tied to charger for conversations lasting
more than 45 minutes.MAJOR PROBLEMS!!”, ”He was very impressed when going
from the original battery to the extended battery.”, ”The design is very odd, as the ear
clip is not very comfortable at all.”}

Example 2. The Φ is set of 768 dimensional SBERT vectors ϕ(ti) representation
for the set T .

Φ = { [7.22507477e-01, 1.02917385e+00,....., -6.84888303e-01, 2.86179781e-01], [-
2.96921253e-01, 7.52622932e-02,...., -4.93599415e-01, -1.82238102e-01], [1.55841690e-
02, 7.04942644e-02,...,3.76997262e-01, -2.59568900e-01], [7.95753375e-02, -2.57343829e-
01,..., 6.54604957e-02, -2.85186619e-01], [4.41945344e-01, 5.39983749e-01,....,-4.36222434e-
01, 1.82313472e-01] }

Example 3. Figure 3.2 shows the cosine distance matrix created by using Eq.3.4.

1https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

16

Figure 3.2: Distance matrix for T

Example 4. Based on the distance matrix shown in Figure 3.2, and ε ≤ 0.79, we
can derive the following following tolerance classes:
dist(t0, t4) = 0.56

dist(t4, t2) = 0.65

dist(t0, t2) = 0.77

since all of the pairs satisfy ε ≤ 0.79 which creates the first tolerance class TC0.
TC0 = {t0, t2, t4} .
dist(t1, t3) = 0.32

TC1 = {t1, t3} which creates the second tolerance class.
dist(t2, t4) = 0.65

dist(t2, t3) = 0.74

dist(t4, t3) = 0.786

TC2 = {t2, t3, t4} which creates the third tolerance class.
The final tolerance class is union of all above classes TC0, TC1, TC2.
TC = {{t0, t2, t4}, {t1, t3}, {t2, t3, t4}}

Remark 3.2.2. The set of all text objects with similar value vectors creates similarity
classes TC0, TC1, TC2. The tolerance space T is covered by overlapping classes where
tweets t2, t3 and t4 appear in more than one class.

Remark 3.2.3. The higher ε values increases the number of tolerance classes and
lower tolerance value decreases the number of tolerance classes. We can get best ε

value by only experiments. Algorithm 1 gives the method for generating tolerance
classes from the training set and Algorithm 2 gives the method for generating tolerance
classes from the test set. In classification, we consider labelled text ti where si is a
sentiment label for ti and si ∈ {positive, negative} for a two-class classification.

17

3.3 Transformer
One of the computational disadvantages suffered by RNNs is the sequential process-
ing of text. RNN cannot parallelize text processing. Although CNNs are less se-
quential than RNNs, the computational cost to capture relationships between words
in a sentence also increases with the sentence’s increasing length, similar to RNNs.
Transformers [73] overcome this limitation by applying self-attention to compute in
parallel for every word in a sentence or document an “attention score” to model the
influence each word has on another.2 Due to this feature, Transformers allow for much
more parallelization than CNNs and RNNs, which makes it possible to efficiently train
huge models on large amounts of data on GPUs.

Since 2018, there is a rise of a set of large-scale transformer-based pre-trained
language models (PLMs). Compared to earlier contextualized embedding models
based on CNNs [6] or LSTMs [46], Transformer-based PLMs use much deeper
network architectures (e.g., 48-layer transformers [50]), and are pre-trained on much
more significant amounts of text corpora to learn contextual text representations by
predicting words conditioned on their context. These PLMs are fine-tuned using
task-specific labels, and have created a new state of the art in many downstream
NLP tasks, including text classification. Although pre-training is unsupervised (or
self-supervised), fine-tuning is supervised learning. A recent survey [49] categories
popular PLMs by their representation types, model architectures, pre-training tasks,
and downstream tasks.

PLMs can be grouped into two categories, autoregressive and autoencoding PLMs.
One of the earliest autoregressive PLMs is OpenGPT [50], a unidirectional model
that predicts a text sequence word by word from left to right (or right to left), with
each word prediction depending on previous predictions. One of the most widely used
autoencoding PLMs is BERT [10]. Unlike OpenGPT, which predicts words based on
previous predictions, BERT is trained using the masked language modeling (MLM)
task that randomly masks some tokens in a text sequence, and then independently
recovers the masked tokens by conditioning on the encoding vectors obtained by a
bidirectional Transformer. There have been numerous PLMs over the BERT Base
vector embeddings. Reimers et al. [54] introduced SBERT to get better semantically
meaningful vector embeddings.

2Transformer is an instance of hybrid models, since each Transformer layer is a composite struc-
ture consisting of a feed-forward layer and a multi-head attention layer.

18

3.3.1 Vector Embeddings with SBERT

Sentence-BERT (SBERT), a modification of the pre-trained BERT network that uses
siamese and triplet network structures to derive semantically meaningful sentence
embeddings that can be compared using cosine-similarity. SBERT is fine-tuned on
SNLI [3] and the Multi-Genre NLI [76] data, which creates sentence embeddings
that significantly outperforms other state-of-the-art sentence embedding methods like
InferSent [7] and and Universal Sentence Encoder [4]. The SBERT architecture is
shown in 3.5.

The sentence is tokenized in first step and each token get its respective vector
embedding, and then positional encoding [73] is added to those vectors based on the
position of the token. The odd positions are added with cosine equation 3.6 and even
positions are added with sin equation 3.5. In the equations 3.5 and 3.6 the dmodel is
dimension of the model which is 768 for SBERT.

PE(pos,2i) = sin(pos/10002i/dmodel) (3.5)

PE(pos,2i+1) = cos(pos/10002i/dmodel) (3.6)

The linear layer adds final positional encoding with the BERT tokenized embed-
ding. These vectors are projected into three linear projections Query (Q), Key (K),
and Value (V). The Self-Attention [73] computed by the Key, Query, and Value
parameters of the transformers by using softmax function shown in equation 3.7.

Self − Attention(Q,K, V) = softmax(
Q ∗KT

√
dk

) ∗ v (3.7)

There are 12 Self-Attention blocks in the SBERT where each block is pair of Self-
Attention and Feed Forward Network (FFN). The output of Self-Attention blocks
works as input for the FFN. FFN learns the representation of the word, and it im-
proves every time with different weights of the network. There are several black-boxes
in the transformer architecture. After getting output from Decoder, the SBERT uses
Mean Pooling to derive semantically more meaningful vectors than BERT.

19

Figure 3.3: SBERT Architecture for vector embedding

3.3.2 Importance of position encoding

The position encoding shown by Equations 3.5 and 3.6 is an advantage of the
transformer architecture over other embedding algorithms. It is also one important
reason to choose the transformer embedding over other embedding options for the
TSC vector embedding. Due to positional encoding, transformers can understand
the meaning of the sentence with a position of that word. Figure 3.4 shows the

20

comparative analysis of cosine distance with Spacy, SBERT, and RNN-based Glove
model. The comparison is shown with two sentences where they have different mean-
ings but similar words. If the distance between two words is high, then it will have
lower similarity, and only SBERT provides a higher distance compare to other two
approaches.

Figure 3.4: Cosine Distance comparison with other embeddings

3.4 Tolerance Sentiment Classifier - TSC
In this section, we present our proposed Tolerance Sentiment Classifier (TSC) in terms
of a supervised learning algorithm in two parts. We first give a high-level flow chart
of the TSC classifier shown in Fig. 3.5 followed by the discussion of the algorithms 1
and 2.

Figure 3.5: Highlevel Flow chart showing overview of TSC

21

3.4.1 Phase I: Creating Prototype Classes

In the training phase, given a tolerance level ε, tolerance classes are induced from
the training set, and the representative of each tolerance class is computed. The
representative class is determined as the mean value of the feature vector. The text
category is determined based on majority voting. In the testing phase, the cosine
distance is computed for each element in the test set with all of tolerance class repre-
sentatives obtained in the training phase and assigned the category of the tolerance
class representative based on the lowest distance value.

Algorithm 1: Training Phase: Generating class representative vectors
Input : ε > 0, // Tolerance level

TR = {TR1, . . . , TRM} , // Training Data Set
Output: (NC, {R1, . . . , RNC} , {TextCat1, . . . , T extCatNC})

1 for i← 1 to M do
2 for j ← i+ 1 to M do
3 computeCosine(TRi, TRj, Cosineij);

4 for i← 1 to M do
5 for j ← i+ 1 to M do
6 generateToleranceclass(Cosineij, ε; SetOfPairs);

computeNeighbour(SetOfPairs, i, TR;Ni); // Compute the
neighbourhood Ni of ith training data TRi

7 for all x, y ∈ Ni do
8 if x, y /∈ SetOfPairs then
9 Ci ← Ni; // Include y from class Ni into Ci

10 H ← H ∪ {Ci};
11 // Ci is one tolerance class induced by the tolerance relation
12 computeMajorityCat(Ci;TextCati); // Determine Category by majority

voting for each Ci

13 NC ← |H|; // Number of classes
14 // End of defineClass
15 defineClassRepresentative(NC,H; {R1, . . . , RNC} , {TextCat1, . . . , T extCatNC});

// Based on mean value

The algorithms use the following notation:
procedure_name(input1, ..., inputn; output1, ..., outputm).

The cosine distance between each pair of training set elements is computed using
computeCosine. Next, by using the generateToleranceclass function, a set of training

22

set pairs within the tolerance level ε is obtained.
For a training set element TRi, its neighbourhood Ni is composed of all training

set elements within the tolerance level ε of TRi, including TRi computed by the
computeNeighbour function. If Ni = {TRi} then TRi is a tolerance class with only
one element. If a pair of neighbors in Ni does not satisfy the tolerance relation, the
corresponding element is excluded from the tolerance class Ci. In addition, for each
representative tolerance class Ci, the category information is obtained by a majority
vote. Lastly, the defineClassRepresentative function computes the representatives
(prototype) of each of the NC tolerance classes and assigns the majority class. The
tolerance class prototype is a vector whose values are computed as the mean of the
probe function values of those belonging to that class.

3.4.2 Phase II: Text Classification

In the classification phase, TSC uses class representatives of the training set and their
associated text category. The computeCosine function operates on the testing set
data and the representative class data. The DetermineTextCat function chooses the
representative class that is closest to the test set element. The chosen representative
class category will determine the text category of the test set element.

The complexity of the algorithms is fairly straight forward to determine. In phase
1, the complexity of computeCosine functions is O(n2). The complexity of gener-
ateToleranceclass function is O(n). In phase 2, the complexity of DetermineTextCat
function is O(n). The complexity of TSC is reduced by using some advanced python
programming packages like ”pandas”3, ”numpy”4 and ”scipy”5. These packages are
highly optimized and reduce the requirements of for loops.

3.5 TF-IDF Vectorization
Term Frequency-Inverse Document Frequency (TF-IDF) is evolved from IDF, which
is proposed by Sparck Jones [22, 55] with heuristic intuition that a query term that
occurs in many documents is not a good discriminator and should be given less weight
than one which occurs in few documents. Equation 3.8 is the classical formula of TF-
IDF used for term weighting. The values in the feature vectors are weighted to reflect

3https://pandas.pydata.org/
4https://numpy.org/
5https://www.scipy.org/

23

Algorithm 2: Assigning Phase: Assigning Sentiment Classes
Input : ε > 0, // Tolerance level

TS = {TS1, . . . , TSM} , // Testing Data Set
{R1, . . . , RNC} , {TextCat1, . . . , T extCatNC} // Representative

Class and their associated categories
Output: (TS ′ = {TS ′

1, . . . , TS
′
M}) // Testing Data Set with assigned

categories
1 for i← 1 to M do
2 for j ← i+ 1 to NC do
3 computeCosine(TSi, RCj,Cosineij);

4 DetermineTextCat(Cosineij;TS
′) // Computes min. distance and assigns

category

the frequency of words in the documents and the distribution of words across the
collection. The more times a word/term occurs in a sentence, the more it is relevant to
the text. The more times the word occurs throughout the document in the collection,
the more poorly it discriminates between sentences. The ”TfidfVectorizer”6 module
from ”sklearn” package was used for generating these vectors from the text data.

Wi,j = tfi,j ∗ log(
N

dfi
) (3.8)

where Wi,j is the weight for term i in document j, N is the number of documents
in the collection, tfi,j is the term frequency of term i in document j, and dfi is the
document frequency of term i in the collection.

For comparison analysis, TF-IDF Vectors are used with other machine learning
algorithms like Support Vector Machine (SVM), Random Forest (RF), Light Gradient
Boosting Machine (LGBM), and Stochastic Gradient Descent (SGD). The TF-IDF
Vectors are not applicable for the TSC because it generates null values for cosine
distance Matrix. The cosine distance matrix of TF-IDF vectors is shown in Figure
3.6.

6https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

24

Figure 3.6: cosine distance matrix of TF-IDF vectors for Covid-Sentiment dataset

25

Chapter 4

Dataset

We have used ten datasets to analyze the performance of TSC with other ML algo-
rithms. The datasets are a mix of long and short words as well as several sentiment
classes. The majority of the datasets are benchmark datasets that are commonly used
to perform NLP tasks.

4.1 Covid-Sentiment Dataset
We handcrafted a dataset referred to as Covid-Sentiment which is a subset derived
from [5] using Tweets ID for 1st April 2020 and 1st May 2020. Twitter is a rich source
of global information. It has approximately 192 million daily active users and users do
an average of 500 million tweets per day1. To get a specific source of information from
such a huge database, Twitter provides a hashtag feature to get specific information-
related tweets. The hashtag involves adding # before an unbroken word or phrase.
We used Twitter’s Developer API to scrap tweets related to the COVID-19 hashtags
such as #Covid19, #WHO, #Wuhan, #Corona. Algorithm 3 shows steps for the
tweet scraping method in Python 32.

We extracted 47,386 tweets with the help of Twitter API. The tweets in languages
other than English (ex: French, Hindi, Mandarin, Portuguese) were removed. Exten-
sive pre-processing of 29,981 English language tweets from the original dataset such
as removal of HTML tags, @Username, Hashtags, URLs, and incorrect spellings were
also performed. A significant amount of time was spent on hand labeling of 8003

1https://www.dsayce.com/social-media/tweets-day/
2https://www.python.org/downloads/

26

Algorithm 3: Tweet scraping
Input : Consumer-Key = ’xxxxxxxxxx’

Consumer-Secret = ’xxxxxxxxx’
Access-token = ’xxxxxxxxx’
Access-token-Secret = ’xxxxxxxxx’
Tweet_ID

Output: Return tweet information
1 for i← 1 to length(Tweet_ID) do
2 tweets = tweepy.Cursor(api.search, q = Tweet_ID[i]).items(count);//

get the tweets from api
3 for tweet← 1 to length(tweets) do
4 tweets_list = [tweet.text]

5 // extract text of the tweets

tweets into 3 categories: positive, negative, and neutral. These sentiments are shown
in Table 4.2. The average length is 12 words per tweet for this dataset.

The scope of this dataset is at the global level. The tweets are from various
geographic regions and represent different issues for different countries during the
pandemic time. Some countries were having problems with people dying and others
were having trouble with the lockdown. Majority of tweets in this dataset were related
to global politics, health, and economy from countries like U.S.A., India, Canada,
Australia, etc. Since the focus of different countries was on different issues related to
COVID, the content of these tweets showed less semantic similarity in the dataset.
Some examples of tweets are shown in the Table 4.1.

The original tweets required a lot of pre-processing. A tweet contains @Username,
hashtags, URLs, and stopwords which does not contribute to the semantic content of
a tweet for the sentiment classification task. It creates a new word in the dictionary
that does not exist for example #WeAreWithYou. Tweets also have a lot of grammar
and spelling mistakes that should be corrected, otherwise each spelling mistake is
considered as a new word for the vocabulary and will generate a different vector
representation for its classification. Python regex module, and NLTK stemming and
lemmatization were used in pre-processing before generating vector embedding for
this dataset.

27

Table 4.1: Covid-Sentiment Tweet Examples

Tweet Sentiment Tweet

Negative

RT @ANI: #WATCH Delhi Police release a video of its
warning to senior members of Markaz Nizamuddin to
vacate Markaz & follow lockdown guide

Negative

RT @shay_aiko Ismail Mohamed Abdulwahab from
Brixton... no underlying health conditions. Everyone is at
risk! in USA thaks to @Trump

Positive

RT @ANI On the appeal of Prime Minister Narendra Modi
to combat #COVID19, all paramilitary forces personnel
have contributed their one day

Neutral

RT @MrsGandhi As per Tamil Nadu’s Health Secretary, a
total 50 people from their state who attended the
#TablighiJamaat gathering

4.2 Other Datasets
U.S. Airline sentiment: The U.S. Airline sentiment dataset [53] consists of tweets
of reviews by passengers for five different US Airlines that are: United, US Airways,
Southwest, Delta, and Virgin America. The average length of tweets is 10 words per
tweet. The original dataset included 14,621 tweets and the pre-processed dataset of
13,000 tweets were used after the removal of duplicate and short tweets. The tweets
were a mix of positive, negative, and neutral sentiments. The tweets are pre-labeled
with the type of sentiment. This dataset has more negative reviews compared to the
other two sentiments. Table 4.2 gives the sizes of the training and testing sets.

The IMDB Movie Review dataset: IMDB dataset [31] consists of an average
of 230 words per review. It has the longest length among all other datasets. We used
a subset of 22,000 reviews of the original dataset consisting of 50,000 reviews. The
sentiment label distribution is balanced with each subset of the data.

The Stanford Sentiment Treebank (SST-2) dataset: SST-2 dataset con-
sists [65] of phrases with fine-grained sentiment labels in the parse trees of 11,855
sentences from movie reviews. The original dataset included 69,723 phrases and only
16,500 examples were used. The average length of the text in this dataset is 10 words
per sentence.

28

The Sentiment140 dataset: Sentiment 1403 was created by using emoticons
to label tweets where tweets with :), :-), :D, :), and =) are mapped as positive
and tweets with :(, : (and :-(symbols mapped as negative sentiments. The average
number of words per tweet is 8. The original dataset size 1,600,000 and we used a
subset of 16,000 tweets. The average length of the text in this dataset is 8 words per
tweet.

The SemEval 2017 dataset: SemEval 2017 introduced in [56] and includes
62,671 tweets in original dataset. We were able to use only 20,547 tweets in our
experiments due to memory limitation. The average sentence length for this dataset
is 12 words. The sentiment label distribution is imbalanced (low number of negative
tweets).

The Sanders Corpus: The Sanders Corpus 4 dataset consists of 5,074 manually
annotated tweets with respect to four different categories: Apple, Google, Microsoft,
Twitter. Each tweet was annotated as positive, negative, neutral, or irrelevant. The
average length of the text in this dataset is 10 words per tweet.

UCI Sentence dataset: UCI Sentence dataset was introduced in [26]. This
dataset is a combination of review datasets from Amazon, IMDB, and Yelp. The
authors considered only strong positive and negative reviews for this dataset. It is
the smallest dataset among all other datasets. It contains a total of 3000 sentences.
This dataset contains cell phones and accessories category reviews from Amazon,
Movie reviews from IMDB, and restaurant reviews from Yelp. Each dataset has 1000
samples and we considered 2700 samples for training and 300 samples for testing.
The Scikit-learn’s Train_Test_Split method is used for generating train and test
sets. There are 12 words per review in this dataset.

AG News: The AG News dataset introduced by Zhang et al [82] and includes
1,20,000 training samples and 7,600 testing news articles. This dataset is obtained
from the AG’s corpus of news articles on the web5. It contains 496,835 categorized
news articles from more than 2000 news sources. Only the 4 largest classes from this
corpus were selected to construct this dataset. The title and description fields are
included in this dataset. These two columns are used as features for classification.
To generate vector embeddings, these columns are combined into a single column. It
contains four categories of news such as ”World”, ”Sports”, ”Business” and ”Science”.

3https://www-cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
4http://www.sananalytics.com/lab/twitter-sentiment/
5http://groups.di.unipi.it/g̃ulli/AG_corpus_of_news_articles.html

29

We used 3,000 samples from each category as our training set for our experiments.
The average length of the dataset is 40 words per sentence. AG-News dataset does not
require any further pre-processing because it contains news headlines and descriptions
of news which is published after peer-reviewing by editors. It does not contain any
grammar or spelling mistakes. Table 4.3 shows the data distribution for the AG-news
dataset.

Table 4.2: Text classification Dataset Information

Dataset Type Size Positive Negative Neutral Irrelevant

Covid-Sentiment Train 7000 1542 2124 3334 -
Test 1003 236 374 393 -

U.S. Airline Sentiment Train 12000 2015 7322 2663 -
Test 1000 130 675 195 -

IMDB Movie Review Train 20000 10055 9945 - -
Test 2000 1007 993 - -

SST-2 Train 15000 8306 6694 - -
Test 1500 833 667 - -

Sentiment140 Train 15000 7500 7500 - -
Test 1000 500 500 - -

SemEval 2017 Train 17001 6915 2551 7534 -
Test 3546 1473 559 1513 -

Sanders corpus Train 4059 416 462 1837 1344
Test 1015 100 107 484 324

UCI Sentence Train 2700 1326 1374 - -
Test 300 174 126 - -

Table 4.3: AG News Dataset Information

Dataset Type Size World Sports Business Science

AG-News Train 12000 3000 3000 3000 3000
Test 1150 300 250 300 300

20-Newsgroups: The 20 Newsgroups dataset is a common benchmark used for
evaluating the performance of classification algorithms. The dataset, introduced in
[29], contains approximately 20,000 newsgroup posts and this dataset is partitioned
(nearly) evenly across 20 different newsgroups. Some of the newsgroups are very

30

closely related to each other (e.g. comp.sys.ibm.pc.hardware and comp.sys.mac.hardware),
while others are unrelated (for example, misc.forsale and soc.religion.christian). The
20 topics are organized into broader categories: computers, recreation, religion, sci-
ence, sale, and politics. Scikit-learn module (in Python) was used to prepare the
training and testing datasets to remove noisy data. This dataset has 10314 training
samples and 782 testing samples. In 20 newsgroups dataset, each document is stored
in a row as a pandas data frame. There are 209 words per document in this dataset.

Table 4.4: 20-Newsgroups dataset

News Category # Train documents # Test documents
alt.atheism 442 30
comp.graphics 534 38
comp.os.ms-windows.misc 528 48
comp.sys.ibm.pc.hardware 540 44
comp.sys.mac.hardware 527 38
comp.windows.x 561 31
misc.forsale 535 46
rec.autos 526 43
rec.motorcycles 548 39
rec.sport.baseball 554 27
rec.sport.hockey 551 39
sci.crypt 537 46
sci.electronics 547 30
sci.med 551 32
sci.space 525 55
soc.religion.christian 542 52
talk.politics.guns 499 38
talk.politics.mideast 511 41
talk.politics.misc 421 37
talk.religion.misc 335 28

31

Chapter 5

Experiments, Results and
Discussion

In this chapter, we discuss operational ML algorithms used in this thesis, vector gener-
ation pipeline and their importance for text classification with extensive experiments
and analysis of the results.

5.1 Operational Machine Learning Algorithms
There are five other machine learning algorithms considered for the analysis and com-
parison with TSC. These algorithms are supervised, and some are ensemble learn-
ing algorithms. TF-IDF and BERT Vectors were used for Support Vector Machine
(SVM), Maximum Entropy (ME), Random Forest (RF), Stochastic Gradient Decent
(SGD), and Light Gradient Boosting Machine (LGBM) for analysis.

SVM: This algorithm works on a simple strategy of separating hyperplanes. SVM
categorizes the test data into an optimal hyperplane based on training data. The data
points are plotted in an n-dimension vector space (n depends upon the features of
the data points). SVM algorithm is used for binary classification and regression tasks
but in our case, we have a multi-class text classification. We adopt the pairwise
classification technique where each pair of classes will have one SVM classifier trained
to separate the classes.

ME: Maximum Entropy is also known as Logistic Regression algorithm. This
algorithm was named after the core function used in it that is the logistic function.
The logistic function is also known as the sigmoid function. It is a S-shaped curve

32

that takes real values as input and converts it into a range between 0 and 1. The
sigmoid function is defined in equation 5.1.

S(x) =
1

1 + e−x
=

ex

ex + 1
(5.1)

RF: Random Forest classifier is an ensemble learning classification algorithm.
It is very similar to decision tree but contains a multitude of decision trees and the
class label is the mode value of the classes predicted by individual decision trees. This
algorithm is efficient in handling large datasets and thousands of input variables. This
model can deal with overfitting of data points. For a dataset, D, with N instances
and A attributes, the general procedure to build a Random Forest ensemble classifier
is as follows. For each time of building a candidate decision tree, a subset of the
dataset D, d, is sampled with replacement as the training dataset. In each decision
tree, for each node, a random subset of the attributes A, is selected as the candidate
attributes to split the node. By building K decision trees in this way, a RF classifier
is built which uses majority voting and returns the class label with maximum votes
by the individual decision trees.

SGD: Stochastic Gradient Descent is a fundamental and efficient method for dif-
ferentiating or differentiable learning in linear classifications under the convex loss
functions such as the Logistic regression and SVM. It was introduced in [2] to re-
duce complexity of ML algorithms on large-scale data. It uses Hinge loss or no-
differentiable loss with a support vector machine, and the model adopts the changes
over time. Its learning rate is fixed in a simple implementation of the vanilla model.
In addition to this, this model loss optimized through L2 penalty regularization ap-
proach, which is specially used SVM ML techniques. SGD classifier supports first-
order learning. However, this method iterates the training samples, and each cycle
the model updates the parameters. Operation of learning parameter also controls
the step size in space and similarly intercept is updated but without regularization.
Learning rate can be either constant or gradually decaying.

LGBM: LGBM is Gradient Boosting machine learning algorithm developed by ke
et al [25]. It is a Gradient Boosting Decision tree (GBDT) framework that uses leaf-
wise tree growth for learning, which results in faster training with better accuracy
of the result even by utilizing less memory. LightGBM combines two techniques
called Gradient-based One Side Sampling (GOSS) which reduces the size of data,
and Exclusive Feature Bundling (EFB) which reduces the number of features using

33

histogram-based algorithms instead of finding the best split point to solve the problem
of GBDT.

5.2 Vector Generation
The TSC algorithm was implemented using Python on a 16 GB RAM, Nvidia RTX
2060 GPU, 512 GB SSD machine. The process flow for the TSC algorithm is given
in Figure 3.5 (see Chapter 3). SBERT base vectors (1x768 dimensional vectors) were
used for the TSC algorithm. We considered mean and median values for determining
the prototype class vectors for the TSC algorithm. In addition, we experimented
using TF-IDF vectors with the TSC algorithm for all the datasets. However, the
classification results with TF-IDF vectors were unsatisfactory primarily because the
cosine similarity values started to converge to zero and hence resulted in a number of
null values in the distance matrix as shown in Figure 3.6 in Chapter 3.

Since TF-IDF vectors are not suitable for the TSC algorithm, we used an ad-
ditional method for generating vectors using two pre-trained deep learning models
BERT and SBERT. To compare the performance of the proposed TSC algorithm, we
used the following supervised algorithms: RF, ME, SVM, SGD and LGBM imple-
mentations from the Scikit-learn library 1. The vectors generated by the BERT model
were extracted using a pipeline parallelism from PyTorch and training the transformer
model of Python. SBERT vectors are generated by sentence transformers2 module
of Python which contains only pre-trained models and does not provide flexibility to
integrate with the Scikit-learn module. We used the ”BERT-base-NLI-Mean-Token”
model generated by SBERT for the TSC algorithm and ”BERT-based-uncased” model
vectors for the classical ML algorithms.

5.3 Sample Vectors
The vectors play an essential role in text classification. Table 5.1 shows the vectors
generated by TF-IDF, SBERT, and BERT for one tweet from the Covid-Sentiment
dataset: ”state_sca us india collaborated develop rotavirus vaccine expected save
80000 children india alone”. This tweet is already pre-processed before generating
vectors from it.

1https://scikit-learn.org/stable/
2https://www.sbert.net/

34

Table 5.1: Example of Vectors in Covid-Sentiment dataset

Type of embedding Dimension of vector Vector

TF-IDF 2743
[0.22987371, 0.0, 0.0,...., 0.0,
0.0]

SBERT 768

[-5.73375404e-01,
4.02642965e-01,
, 6.87391400e-01,
2.53910303e-01]

BERT 768

[4.24835116e-01,
1.49365336e-01,....
,-5.49187362e-01,
-3.73176634e-01]

The size of the TF-IDF vector is 2743 for the Covid-Sentiment dataset. This
dataset has only 8003 tweets and an average of 12 words per tweet. The length of
TF-IDF vectors is different for every dataset. Longer sentences result in longer TF-
IDF vectors, whereas BERT and SBERT vectors have a 768-dimensional vector which
remains constant for all datasets. The dimension of the TF-IDF vector depends on
unique words in a dataset.

5.4 Performance Measures
In our experiments, some datasets have an imbalanced class distribution and to eval-
uate them properly weighted F1-score is preferred because it considers each class, and
gives a weight based on the support3 for that class. The weighted F1-score is derived
from weighted Precision and weighted Recall. The calculation of Precision and Recall
for each class c is given in Equations (1) and (2) respectively. The Weighted_Precision
and Weighted_Recall given in Equations(3) and (4) is an average measure over all
samples by considering the support or true number of examples for each class. This
support is its weight denoted by Weightci where ci is the ith class and n is the number
of classes. Weighted F1-Score combines Weighted Precision and Weighted Recall as
shown in equation (5).

3the number of true instances for each class

35

Precisionc =
True_Positive

True_Positive + False_Positive
(1)

Recallc =
True_Positive

True_Positive + False_Negative
(2)

Weighted_Precision =

∑n
i=1 Precisionci ∗Weightci∑n

i=1Weightci
(3)

Weighted_Recall =

∑n
i=1Recallci ∗Weightci∑n

i=1Weightci
(4)

Weighted_F1− Score =
2 ∗Weighted_Precision ∗Weighted_Recall

Weighted_Precision+Weighted_Recall
(5)

5.5 Analysis of Results
We analyzed performance of the TSC algorithm with ten datasets with different
dataset sizes, unequal distribution of sentiment classes as well as more than one class.

5.5.1 Experiments with the TSC algorithm

In this section, we discuss the performance of the TSC algorithm on all datasets.

Figure 5.1: TSC-Mean for all datasets

36

Figure 5.2: TSC-Median Approach for all datasets

Figure 5.1 represents the weighted F1-Score for all datasets for various tolerance
values using the mean value for the prototype class vector and Figure 5.2 represents
the median value for the prototype class vector. The results with the mean value are
slightly better in terms of the weighted F1-score for all the datasets. Hence, we use
the mean value for the TSC algorithm in all our subsequent experiments.

The range of tolerance values is from 0.08 to 0.38. The UCI sentence dataset
performs best and Covid-Sentiment has the lowest score among all other datasets.
The 20-Newsgroups dataset shows a dramatic increment after a tolerance value of
0.12.

Table 5.2 shows the number of tolerance classes for the best tolerance value for
each dataset. The TSC algorithm generates these classes as described in Algorithm
1 (described in Chapter 3). The number of class representatives for each class plays
an important role during the testing phase of the TSC algorithm. It can be observed
that balanced tolerance classes (in terms of size) is an indication of good semantic
similarity between vectors generated by the transformer model.

Based on the results in Table 5.2, SST-2 and UCI sentence datasets have ap-
proximately similar number of tolerance classes. It should also be noted that the
experiments with these two datasets yield a weighted F1-score of over 85% using ε of
0.23 and 0.17 respectively shown in Figures 5.1 and 5.2. In addition, all algorithms
give the best result with these two datasets. Another observation is that these two
datasets contain binary classes. Other datasets in our experiments include three and
four sentiment classes as shown in Table 5.2. However, these datasets do not generate

37

balanced tolerance classes. Table 5.2 shows AG-News dataset with a well-balanced
tolerance class distribution. All algorithms perform (third best) on this dataset (see
Fig. 5.1 and 5.2).

Table 5.2: Best ε value for the TSC algorithm and Tolerance Class sizes

Dataset ε Value TC-Positive TC-Negative TC-Neutral TC-Irrelevant
Covid-Sentiment 0.23 249 1136 2590 -
U.S. Airline 0.32 2009 8202 1234 -
IMDB 0.26 6979 12956 - -
SST-2 0.23 6501 5531 - -
Sentiment140 0.16 926 1969 - -
SemEval 2017 0.26 6583 1755 5797 -
Sanders corpus 0.24 205 390 1415 1518
UCI Sentence 0.17 576 557 - -

Table 5.3: Best ε value for the TSC algorithm and Tolerance Class size for AG News
dataset

Dataset ε Value TC-World TC-Sports TC-Business TC-Science
AG-News 0.2 1900 2607 2563 2398

The 20-Newsgroups dataset has the highest number of news classes among all
other datasets. It has twenty sentiment classes and a fairly balanced tolerance class
distribution as shown in Table 5.4. Due to better semantic similarity of its vectors,
the performance on this dataset is better than Covid-sentiment and SemEval 2017
datasets.

5.5.2 Experiments with the Covid-Sentiment Dataset

Figure 5.3 shows the results of the Covid-Sentiment dataset. We considered seven
algorithms for analysis. The TF-IDF vectors and transformer vectors are considered.
Both mean and median value for the prototype class vector are considered for the
TSC algorithm.

38

Table 5.4: 20-Newsgroups dataset for best ε value of 0.19

News Category #Train documents # Tolerance Classes
alt.atheism 442 230
comp.graphics 534 238
comp.os.ms-windows.misc 528 498
comp.sys.ibm.pc.hardware 540 445
comp.sys.mac.hardware 527 428
comp.windows.x 561 400
misc.forsale 535 312
rec.autos 526 342
rec.motorcycles 548 189
rec.sport.baseball 554 319
rec.sport.hockey 551 332
sci.crypt 537 437
sci.electronics 547 146
sci.med 551 285
sci.space 525 272
soc.religion.christian 542 494
talk.politics.guns 499 380
talk.politics.mideast 511 335
talk.politics.misc 421 248
talk.religion.misc 335 130

Figure 5.3: Results of Covid-Sentiment dataset

As per Figure 5.3, TF-IDF-based RF performs best among all other algorithms
which is 62.62%. Overall, the TF-IDF vectors give the best results compared to

39

transformer vectors. As outlined in Chapter 5, Covid-Sentiment has diverse range
of opinions on different topics. Hence the transformer vectors are not able to es-
tablish proper semantic-similarity. TF-IDF vectors only consider the frequency of a
particular word from a sentence rather than the meaning of the sentence Hence, all
algorithms perform better with TF-IDF vectors than with transformer vectors. The
TSC algorithm gives very comparable results with transformer vectors-based ML al-
gorithms. The TSC-Mean performs slightly better than TSC-Median. TSC-Mean
and TSC-Median achieves 55.13% and 54.28% Weighted F1-score respectively. There
is a notable difference in the performance of the RF algorithm using TF-IDF vec-
tors (highest F1-score) and transformer vectors (lowest F1-score). Interestingly, the
RF algorithm also gives the best F1-score which shows the importance of quality of
vectors in text classification.

5.5.3 Experiments with the U.S. Airline sentiment Dataset

Figure 5.4 shows the performance of seven algorithms. The highest weighted F1-
score is achieved by TF-IDF-based LGBM which is 79.97%. The lowest F1-score
was achieved by transformer vectors-based RF which is 71.63%. The TSC-mean and
TSC-median performed equally and their weighted F1-score is 76.71%.

Figure 5.4: Results of U.S. Airline sentiment dataset

The ME-based algorithm shows similar results with both vectors. The results
show that TF-IDF-based algorithms perform better than transformer vector-based

40

algorithms. The Airline dataset has more negative tweets compared to positive and
neutral tweets and it causes the problem of imbalance tolerance classes as shown in
Table 5.2. However, it appears that the tweets have good semantic similarity with a
class. The U.S. Airline dataset is focused on customer reviews only from U.S.A. and
due to same geographic region there is more similarity in tweets.

5.5.4 Experiments with the IMDB Movie Review Dataset

Figure 5.5: Results of IMDB Movie Review dataset

The IMDB Movie review dataset contains movie reviews that are either positive
or negative. Each review is a document and has an average length of review is 230
words per review. Figure 5.5 shows that TF-IDF-based ML algorithms perform better
than transformer vectors-based algorithms for this dataset. The IMDB dataset has a
balanced class distribution-based on the Table 4.2 However, as can be seen in Table
5.2, the tolerance classes are highly imbalanced. Again, the transformers vectors do
not induce a good performance. The TF-IDF vectors perform best with the large
sentences because they can build more vocabulary for the analysis meanwhile it is
opposite for the transformer vectors because a similar word creates a new vector
representation. Transformer vectors have a dimension of only 1x768 which puts a
limitation to represent 230 words in a single vector meanwhile for other datasets which
have an average length of 10 to 16 words represent the same dimensional vector. Due
to that reason transformer vectors-based algorithms have a lower weighted F1-score

41

compared to TF-IDF-based ML algorithms.
The comparison of only transformer vectors-based algorithms shows that TSC-

mean and TSC-median outperformed all other transformer vectors-based other ML
algorithms. It shows the performance of TSC algorithm is better than other ML
algorithms in terms of similar architecture-based vectors. The TSC-mean and TSC-
median achieve 75.99% and 75.89% weighted F1-score respectively. The TF-IDF-
based SVM achieves the highest weighted F1-score which is 88.90% and the lowest
weighted F1-score achieved by the transformer vectors-based RF algorithm. The re-
sults demonstrate that transformer vectors-based supervised algorithms cannot per-
form well for document-level longer text classification compared to TF-IDF-based ML
algorithms.

5.5.5 Experiments with the SST-2 Dataset

Figure 5.6: Results of SST-2 dataset

The SST-2 dataset contains phrases of the Standford Sentiment treebank. Figure
5.6 shows the results of algorithms on this dataset. The results show that trans-
former vectors-based algorithms outperformed TF-IDF-based ML algorithms. The
SST-2 dataset is a very clean dataset and transformer vectors are able to establish
good semantic similarity with this dataset due to that reason TSC-mean and TSC-
median both outperformed all TF-IDF-based ML algorithms. The TSC-mean and
TSC-median algorithms give 85.34% and 85.49% weighted F1-score respectively. The

42

highest weighted F1-score was achieved by transformer vectors-based SVM which is
85.55% and the lowest score was achieved by TF-IDF-based LGBM which is 74.37%.

As per the Table 5.2, the SST-2 dataset generates balanced tolerance classes due
to good semantic similarity and it performed better than TF-IDF-based algorithms.
There is a difference of only 1% in weighted F1-score between TSC algorithm and
transformer vectors-based SVM. It shows the TSC algorithm performs well and gives
comparable and better results with other algorithms.

5.5.6 Experiments with the Sentiment 140 Dataset

Figure 5.7: Results of Sentiment 140 dataset

The sentiment 140 dataset is derived from the tweets have emoticons. The dataset
has two classes. Based on Table 4.2 there are an equal number of positive and negative
tweets for this dataset. However, the Table 5.2 shows an imbalance positive and
negative tolerance classes for this dataset due to less semantic similarity. The tweets
in this dataset were collected from all around the world. The authors only considered
emoticons to label the tweets which can be misleading since some tweets could be
interpreted as having sarcastic meaning.

The Figure 5.7 shows the results of TF-IDF-based and transformer vectors-based
algorithms. The lowest weighted F1-score is achieved by transformer vectors-based
SGD which is 65.80%. The highest weighted F1-score achieved by TF-IDF-based
ME which is 73.99%. The weighted F1-score for the TSC-mean and TSC-median is

43

69.78% and 69.62% respectively. which is almost 70% after rounding off. The results
of TF-IDF-based ML algorithms are still comparable with transformer vectors-based
algorithms.

5.5.7 Experiments with the SemEval2017 Dataset

Figure 5.8: Results of SemEval2017 dataset

The SemEval2017 has three classes positive, negative and neutral. Table 4.2 shows
the initial class distribution for this dataset. There are very few samples for the
negative class in this dataset and due to that reason the tolerance class distribution
is imbalanced as well as shown in Table 5.2. There are fewer negative classes when
compared to other categories. SemEval2017 contains tweets around the globe as a
result, there is less semantic similarity between the tweets.

The Figure 5.8 shows the performance of algorithms on this dataset. The TSC-
Mean achieves 59.56% weighted F1-score and TSC-Median achieves 59.09% weighted
F1-score. The TF-IDF-based LGBM performed better than all others. It achieved
65.33% weighted F1-score. The transformer vectors-based RF performed less com-
pared to all other algorithms. It achieved 54.17% weighted F1-score. The ME gives
the same results for both vectorization methods.

44

5.5.8 Experiments with the Sanders corpus

The Sanders corpus has four classes and it is a relatively small dataset. It has positive,
negative, neutral, and irrelevant hand-labeled tweets. This dataset is focused on
tweets related to technology based companies like Google, Microsoft. The Sanders
corpus has more neutral and irrelevant tweets compared to the positive and negative
tweets. The class boundaries between neutral irrelevant is unsharp. This makes
the classification task more interesting between these two classes. Figure 5.9 shows
that the three transformer vectors-based ML algorithms perform better than TF-
IDF-based ML algorithms. The RF and SVM perform better with TF-IDF vectors
compared to the transformer vectors.

Figure 5.9: Results of Sanders corpus

The TSC-mean and TSC-median achieve 69.32% and 69.10% weighted F1-score
respectively. The transformer vectors-based ME outperform all other algorithms.
It achieved 76.27% weighted F1-score. The lowest weighted F1-score was achieved
by TF-IDF-based LGBM. It achieved 69% weighted F1-score. The Sanders corpus
shows the advantage of transformer vectors-based ML algorithms compared to TF-
IDF-based ML algorithms.

5.5.9 Experiments with the UCI Sentence Dataset

The UCI Sentence dataset consists of strong positive and negative sentences and it
has an average of 12 words per sentence. This dataset is very small and it has a

45

balanced class distribution as shown in the Table 4.2. As per Table 5.2 the tolerance
classes are also balanced for this dataset which shows a very high semantic similarity
between transformer vectors. Figure 5.10 represents the performance of algorithms
for this dataset.

Figure 5.10: Results of UCI Sentence dataset

The transformer vectors-based algorithms outperform all TF-IDF-based ML algo-
rithms. The TSC-mean outperforms all other algorithms in this dataset. It achieves
88.73% weighted-F1-score and TSC-median achieves 88.40% weighted F1-score. The
transformer vectors-based SVM performs better than other ML algorithms. It achieves
87.05% weighted F1-score. The TF-IDF-based LGBM achieves the lowest weighted
F1-score which is 63.21%. The UCI Sentence dataset is the smallest dataset among all
datasets as a result TF-IDF vectors are not able to produce sufficient sized vocabulary
and algorithms-based on these vectors are not able achieve good results. The authors
of this dataset considered only strong sentiment reviews which play important role in
establishing semantic similarity for the transformer vectors. This dataset shows the
importance of the size of the dataset and semantic similarity for the TSC algorithm.

5.5.10 Experiments with the AG-News Dataset

The AG-News dataset is a news classification task with four different news categories.
The news dataset has correct grammar and spelling which is an advantage of news
classification over tweet classification. The correct grammar and spelling are very

46

helpful to establish semantic similarity between the news data. Table 4.3 shows that
all four categories are balanced at the dataset level. Table 5.3 shows a similar number
of tolerance classes for all four news categories which show the semantic similarity of
the TSC-mean algorithm. The Figure 5.11 shows the performance of all algorithms
for this dataset.

Figure 5.11: Results of AG-News dataset

The transformer vectors-based algorithms perform better than TF-IDF-based ML
algorithms except SVM and SGD. The TF-IDF-based SGD outperform all other
algorithms. The TF-IDF-based SVM achieves 84% weighted F1-score meanwhile
transformer vectors-based SVM gets 81% weighted F1-score. The SGD gets 84.53%
and 84.87% of weighted F1-score with TF-IDF and transformer vectors respectively.
The TF-IDF-based RF gets the lowest weighted F1-score which is 78.19%. The TSC-
mean and TSC-median achieve 80.77% and 80.37% weighted F1-score respectively.
The AG-News dataset has 40 words per the news which is higher than SST-2 and UCI-
sentence dataset. The TF-IDF vectors have the advantage of larger size and better
vocabulary. However, the transformer vectors produce better semantic similarity and
are able to give very comparative results with TF-IDF-based algorithms. There are
more number of transformer vectors-based ML algorithms which performs better than
their TF-IDF vector versions for example RF, ME and LGBM.

47

5.5.11 Experiments with the 20-Newsgroups Dataset

The 20-Newsgroups classification is document-level classification. Each row of this
data represents one document. It has 209 words per document and have twenty news
categories makes it a very interesting classification problem. It has the highest class
among all other datasets. Finding balanced data distribution and tolerance classes is
challenging in this dataset. Figure 5.12 shows the performance of all algorithms on
this dataset. Table 5.4 shows the tolerance class distribution for this dataset

Figure 5.12: Results of 20-Newsgroups dataset

The TF-IDF-based ML algorithms perform better than transformer vectors-based
algorithms due to very long length of the document size and each document rep-
resented by 1x768 dimensional transformer vectors meanwhile TF-IDF-based algo-
rithms has the advantage of a rich vocabulary which makes it a better choice over
the transformer vectors. The result shows that TSC-mean and TSC-median out-
performed all other transformer vectors-based ML algorithms and achieved 66% and
65% weighted F1-score respectively. The TF-IDF-based SGD performs best com-
pared to all other algorithms. It achieves 76% weighted F1-score. The transformer
vector-based RF gets the lowest weighted F1-score which is 41%.

5.5.12 Overall Analysis

The TSC algorithm shows comparative and better performance in some datasets.
Figure 5.13 shows the comparison of TSC algorithm with TF-IDF-based ML algo-

48

rithms for all datasets. The TSC algorithm outperforms all ML algorithms in SST-2
and UCI Sentence datasets. Table 5.5 includes numerical data of weighted F1-score
for all datasets with TSC algorithm and TF-IDF-based ML algorithms. The TSC
algorithm uses SBERT vectors which give the best performance since they are able
to establish good semantic similarity. The results show that TF-IDF-based ML algo-
rithms give the best results in longer sentences or document-level classification tasks
like IMDB and 20-newsgroups datasets. Due to long sentences, the SBERT vectors
are not performing better due to having a fixed size of 1x768 dimensional vector for
each document or sentence. The size of TF-IDF vectors depends on the vocabulary
of that dataset which means having longer sentences makes intense vocabulary for
the TF-IDF approach which is an advantage over transformer vectors.

Figure 5.13: Overall comparison with TF-IDF-based approach with TSC algorithm

The TSC-mean performs better than TSC-median in some datasets hence its prefer-
ence for analysis. Figure 5.14 shows the comparison between TSC algorithm and other
ML algorithms for all datasets. Table 5.6 represents numerical values of weighted F1-
score for every dataset and algorithms. The TSC algorithm performs outperforms
all other algorithms in IMDB, UCI Sentence, and 20-Newsgroups datasets. The ML
algorithms have transformer vectors but from different models. The TSC algorithm
has SBERT based vectors meanwhile other ML algorithms have BERT vectors. The

49

Table 5.5: TF-IDF-based weighted F1-score Results

Dataset TSC-mean TSC-median RF ME SVM SGD LGBM
Covid-Sentiment 55.13 54.28 62.62 58.88 61.47 61.65 57.76
U.S. Airline 76.71 76.71 77.70 78.90 79.23 79.53 79.97
IMDB 75.99 75.89 82.59 87.39 88.90 88.59 85.59
SST-2 85.34 85.49 82.12 81.65 82.36 82.36 74.37
Sentiment140 69.78 69.62 70.69 73.99 72.49 72.44 72.60
SemEval 2017 59.56 59.09 63.95 63.97 64.83 63.42 65.33
Sanders corpus 69.32 69.10 73.96 74.01 74.66 74.86 69
UCI Sentence 88.73 88.40 70.40 76.48 76.15 75.82 63.21
AG-News 80.77 80.37 78.19 84.44 84.19 84.53 82.29
20-Newsgroups 65.84 65.35 62.34 72.59 73.77 76.04 66.43

BERT and SBERT both are not able to give the best results in longer sentences but
SBERT achieves slightly better semantic similarity compared to the BERT model due
to that reason the TSC algorithm outperforms other ML algorithms in three datasets.

Figure 5.14: Overall comparison with Transformer vectors-based approach with TSC
algorithm

As per Table 5.6, the TSC algorithm performs second best in SST-2 dataset.
In SST-2, Transformer vectors-based SVM achieves the highest weighted F1-score
which is 85.55% and TSC-median gets 85.49% which is an ignorable difference. After

50

Table 5.6: Transformer vectors-based weighted F1-score Results

Dataset TSC-mean TSC-median RF ME SVM SGD LGBM
Covid-Sentiment 55.13 54.28 44.02 56.83 56.60 57.52 55.62
U.S. Airline 76.71 76.71 71.63 78.79 76.86 74.74 77.10
IMDB 75.99 75.89 68.79 73.19 72.99 72.24 72.29
SST-2 85.34 85.49 82.79 85.35 85.55 84.86 84.69
Sentiment140 69.78 69.62 68.30 72.19 71.59 65.80 70.19
SemEval 2017 59.56 59.09 54.17 63.82 62.99 62.55 60.28
Sanders corpus 69.32 69.10 70.19 76.27 74.42 75.90 75.38
UCI Sentence 88.73 88.40 83.73 86.06 87.05 86.73 83.44
AG-News 80.77 80.37 79.30 84.75 81.44 84.87 82.73
20-Newsgroups 65.84 65.35 40.52 57.89 52.27 52.05 52.54

rounding off the results of the Table 5.6, TSC algorithm performs second best in U.S.
Airline, SST-2, and Sentiment 140 datasets.These results demonstrate the efficacy of
the TSC algorithm on the chosen datasets

51

Chapter 6

Conclusion and Future Work

In this thesis, we implemented a modified form of a tolerance-based algorithm (TSC)
to classify the sentiment polarities as well as news categories from text. TSC algo-
rithm is a supervised algorithm that was designed to perform text classification with
tolerance near set (TNS). It is the first time where TNS is used for text classifica-
tion. The TSC algorithm is developed with the help of the Python programming
language which provides very powerful scientific computing packages like numpy,
pandas, and scipy. We applied two strategies TSC-mean and TSC-median in our
extensive experiments. The performance of TSC algorithm was tested with various
datasets related to natural language with some datasets having movie and restau-
rant reviews from customers, others having tweets and news headlines. The choice
of the dataset was motivated by the fact that this data has undergone extensive
pre-processing and is well-researched in terms of several published studies. We also
hand-crafted a dataset from Twitter regarding opinions on Covid-19 across the globe.
TSC algorithm achieves the best performance even in 20 newsgroups dataset which
has twenty categories for classification. In this work, we have compared the TSC al-
gorithm with the best-supervised algorithms that include ensemble learning, gradient
decent, and gradient boosting strategies. The results show the TSC algorithm gives
better and comparative results with such highly optimized algorithms.

We have compared the results of TSC algorithm with ten different datasets and
five other supervised algorithms. TSC algorithm outperforms reported ML algorithms
with two datasets using TF-IDF vectors and three datasets using transformer vectors.
TSC algorithm outperforms other ML algorithms in the UCI Sentence dataset. In
terms of execution time, the TSC algorithm takes a maximum of 780 minutes to
compute the distance matrix in the IMDB dataset which has the highest number of

52

training examples among all other datasets and it takes only 24 minutes to compute
the distance matrix for the UCI Sentence dataset. The advantage of TSC algorithm is
that we have to create a distance matrix only once for each dataset. This matrix can
then be reused by storing it in the local machine with numpy file format. The TSC
algorithm takes a maximum of 25 minutes to obtain results with the IMDB dataset
with higher tolerance values due to our optimized approach, and 3 minutes for each
tolerance value in the UCI Sentence dataset. The execution time of TSC algorithm
is highly dependent on the size of the dataset.

As future work, optimization of TSC algorithm in terms of computing tolerance
classes is a natural extension of the current work. It is also important to apply the
TSC algorithm to other larger data sets mentioned in the related works section of
this thesis. One of the major issues in dealing with these datasets is the cleaning and
removing unnecessary text. The dataset with clean text gives better results compared
to the original dataset, especially in tweets. The TSC algorithm takes much more
time in making distance matrix which can be reduced by applying parallel computing
with CUDA1. The TSC can also tested with Jaccard similarity to get comparative
analysis with cosine distance. The Self-Supervised Learning [28] is new emerging
area of research where we can explore it’s possibility for text classification.

1https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

53

Appendix A

Selected Code Snapshots

A.1 Appendix
A sample distance matrix and the steps of the TSC algorithm are given in this Ap-
pendix. In addition, python code for generating vector embedding and ML pipeline
is given.

A.1.1 Execution Flow

Based on the high level TSC algorithm Flow shown in Figure 3.5, The first step is
to load the dataset. We used pandas to load CSV file data into python environment.
We generated vectors from the SBERT algorithm and used those vectors to create
distance matrix for training set. Figure A.1 shows the distance matrix for the Covid-
sentiment dataset. We store this matrix in numpt file format (.npz) to reuse it for
experimenting with different tolerance values.

Figure A.1: Distance matrix for Covid-Sentiment dataset

54

Once the distance matrix is created, then TSC algorithm finds the tolerance classes
using the distance matrix. Using the tolerance classes, the tolerance class representa-
tive is computed using the mean and median class values of each tolerance class. The
decision (text category) of the tolerance class representative is determined based on
the majority voting process. At this point learning process is completed and testing
step of algorithm begins.

The test dataset loaded similar to the training set of the dataset. Then the
distance is calculated between the test samples with the representative class stored
from the learning process. The text classification of the test sample is based on which
representative class is the nearest to the test sample (minimum Cosine distance). By
comparing the predicted text class with the original text category of each test sample
in the dataset, the weighted F1-score of the algorithm is computed.

A.1.2 Pipeline for BERT and Scikit-learn

For comparison, we used BERT vectors with Scikit-learn-based classical Ml algo-
rithms. Figure A.2 shows python code to get vector embedding with BERT. Figure
A.3 shows the python code to make ML pipeline to combine BERT vectors with
classical ML models.

55

Figure A.2: BERT Embedding python code

Figure A.3: ML pipeline code for scikit-learn

56

Bibliography

[1] Johan Bollen and Alberto Pepe. Modeling public mood and emotion: Twitter
sentiment and socioeconomic phenomena. In Proceedings of the 5th International
AAAI Conference on Weblogs and Social Media (ICWSM’11, page 450–453, 2011.

[2] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[3] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. A large annotated corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 632–642, Lisbon, Portugal, September 2015. Association for
Computational Linguistics.

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar, et al.
Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[5] Emily Chen, Kristina Lerman, and Emilio Ferrara. Tracking social media dis-
course about the covid-19 pandemic: Development of a public coronavirus twitter
data set. JMIR Public Health and Surveillance, 6(2):e19273, 2020.

[6] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of machine learning research, 12(ARTICLE):2493–2537, 2011.

[7] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine
Bordes. Supervised learning of universal sentence representations from natu-
ral language inference data. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 670–680, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics.

57

[8] Nádia Félix Felipe da Silva, Luiz FS Coletta, Eduardo R Hruschka, and Este-
vam R Hruschka Jr. Using unsupervised information to improve semi-supervised
tweet sentiment classification. Information Sciences, 355:348–365, 2016.

[9] Yan Dang, Yulei Zhang, and Hsinchun Chen. A lexicon-enhanced method for
sentiment classification: An experiment on online product reviews. IEEE Intel-
ligent Systems, 25(4):46–53, 2009.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[11] Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, and Ke Xu. Adaptive
recursive neural network for target-dependent Twitter sentiment classification.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 49–54, 2014.

[12] Anastasia Giachanou and Fabio Crestani. Like it or not: A survey of twitter
sentiment analysis methods. ACM Computing Surveys, 49(2):46, 2016.

[13] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using
distant supervision. Processing, 150, 01 2009.

[14] Ammar Hassan, Ahmed Abbasi, and Daniel Zeng. Twitter sentiment analysis:
A bootstrap ensemble framework. In 2013 international conference on social
computing, pages 357–364. IEEE, 2013.

[15] C. J. Henry. Near Sets: Theory and Applications. PhD thesis, 2011.

[16] Tu Bao Ho and Ngoc Binh Nguyen. Nonhierarchical document clustering based
on a tolerance rough set model. International Journal of Intelligent Systems,
17:199–212, 2002.

[17] Xia Hu, Jiliang Tang, Huiji Gao, and Huan Liu. Unsupervised sentiment analysis
with emotional signals. In Proceedings of the 22nd international conference on
World Wide Web, pages 607–618, 2013.

[18] Clayton Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for
sentiment analysis of social media text. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 8, pages 216–225, 2014.

58

[19] Rajesh Jaiswal and Sheela Ramanna. Detecting Overlapping Communities Using
Ensemble-based Distributed Neighbourhood Threshold Method in Social Net-
works. Intelligent Decision Technologies Journal, IOS Press, 15(2):251–267,
2021.

[20] Zhao Jianqiang and Gui Xiaolin. Deep convolution neural networks for twitter
sentiment analysis. IEEE Access, PP, 01 2018.

[21] Salud M Jiménez-Zafra, M Teresa Martín-Valdivia, Eugenio Martínez-Cámara,
and L Alfonso Ureña-López. Combining resources to improve unsupervised sen-
timent analysis at aspect-level. Journal of Information Science, 42(2):213–229,
2016.

[22] Karen Sparck Jones. A statistical interpretation of term specificity and its ap-
plication in retrieval. Journal of documentation, 28:11–21, 1972.

[23] Vahid Kardan and Sheela Ramanna. Tolerance Methods in Graph Clustering:
Application to Community Detection in Social Networks. In International Joint
Conference on Rough Sets, pages 73–87. Springer, 2018.

[24] Jasleen Kaur and Jatinderkumar R Saini. A study of text classification natural
language processing algorithms for indian languages. The VNSGU Journal of
Science Technology, 4(1):162–167, 2015.

[25] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems, 30:3146–3154,
2017.

[26] Dimitrios Kotzias, Misha Denil, Nando De Freitas, and Padhraic Smyth. From
group to individual labels using deep features. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 597–606, 2015.

[27] Efthymios Kouloumpis, Theresa Wilson, and Johanna Moore. Twitter sentiment
analysis: The good the bad and the omg! In Proceedings of the International
AAAI Conference on Web and Social Media, volume 5, pages 538–541, 2011.

59

[28] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of
language representations. arXiv preprint arXiv:1909.11942, 2019.

[29] Ken Lang. Newsweeder: Learning to filter netnews. In Machine Learning Pro-
ceedings 1995, pages 331–339. Elsevier, 1995.

[30] Jimmy Lin and Alek Kolcz. Large-scale machine learning at twitter. In Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, pages 793–804, 2012.

[31] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and
Christopher Potts. Learning word vectors for sentiment analysis. In Proceed-
ings of the 49th annual meeting of the association for computational linguistics:
Human language technologies, pages 142–150, 2011.

[32] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[33] Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam
Chenaghlu, and Jianfeng Gao. Deep learning based text classification: A com-
prehensive review, 2021.

[34] Hoora Moghaddam and Sheela Ramanna. Harvesting Patterns from Textual
Web Sources with Tolerance Rough Sets. Patterns Journal, Cell Press, Elsevier,
1(1):1–20, 2020.

[35] Georgios Paltoglou and Mike Thelwall. Twitter, myspace, digg: Unsupervised
sentiment analysis in social media. ACM Trans. Intell. Syst. Technol., 3(4),
September 2012.

[36] B Pang and L Lee. Opinion mining and sentiment analysis. foundations and
trends (r) in information retrieval, 2 (1-2), 1-135, 2008.

[37] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? sentiment
classification using machine learning techniques. arXiv preprint cs/0205070,
2002.

60

[38] Vrushang Patel and Sheela Ramanna. Tolerance-based short text Sentiment
Classifier. In International Joint Conference on Rough Sets, Lecture Notes in
Artificial Intelligence, pages 239–245. Springer, 2021.

[39] Zdzislaw Pawlak. Rough Sets: Theoretical Aspects of Reasoning About Data.
Kluwer Academic Publishers, Norwell, MA, USA, 1992.

[40] Zdzislaw Pawlak and Andrzej Skowron. Rudiments of rough sets. Information
Sciences, Elsevier, 177(1):3–27, 2007.

[41] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empir-
ical methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[42] J. Peters and S. Naimpally. Applications of near sets. Notices of the American
Mathematical Society, 59:536–542, 2012.

[43] J.F. Peters. Near sets. General theory about nearness of objects. Applied Math-
ematical Sciences, 1(53):2609–2029, 2007.

[44] J.F. Peters. Near sets. Special theory about nearness of objects. Fundamenta
Informaticae, 75(1-4):407–433, 2007.

[45] J.F. Peters. Tolerance near sets and image correspondence. Int. J. of Bio-Inspired
Computation, 1(4):239–245, 2009.

[46] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. arXiv preprint arXiv:1802.05365, 2018.

[47] G. Poli, E. Llapa, J. Cecatto, J Saito, J. Peters, S. Ramanna, and M Nico-
letti. Solar flare detection system based on tolerance near sets in a GPU-CUDA
framework. Knowledge-Based Systems Journal, Elsevier, 70:345 – 360, 2014.

[48] L. Polkowski, A. Skowron, and J. Zytkow. Tolerance Based Rough Sets. In Lin,
T.Y., Wildberger, M. (eds.) Soft Computing: Rough Sets, Fuzzy Logic, Neural
Networks, Uncertainty Management, Knowledge Discovery, pages 55–58, San
Diego, 1994. Simulation Councils Inc.

61

[49] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing
Huang. Pre-trained models for natural language processing: A survey. Science
China Technological Sciences, pages 1–26, 2020.

[50] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[51] Sheela Ramanna, James F. Peters, and Cenker Sengoz. Application of tolerance
rough sets in structured and unstructured text categorization: a survey. In
Thriving Rough Sets, pages 119–138. Springer, 2017.

[52] Sheela Ramanna and Ashmeet Singh. Tolerance-based approach to audio signal
classification. In Proceedings of 29th Canadian AI Conference, LNAI 9673, pages
83—88, 2016.

[53] Ankita Rane and Anand Kumar. Sentiment classification system of twitter data
for us airline service analysis. In 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), volume 1, pages 769–773. IEEE, 2018.

[54] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing. Association for Computational Linguistics,
11 2019.

[55] Stephen Robertson. Understanding inverse document frequency: on theoretical
arguments for idf. Journal of documentation, 6:521–533, 2004.

[56] Sara Rosenthal, Noura Farra, and Preslav Nakov. Semeval-2017 task 4: Senti-
ment analysis in twitter. In Proceedings of the 11th international workshop on
semantic evaluation (SemEval-2017), pages 502–518, 2017.

[57] Hassan Saif, Miriam Fernandez, Yulan He, and Harith Alani. On stopwords,
filtering and data sparsity for sentiment analysis of twitter. In LREC 2014,
Ninth International Conference on Language Resources and Evaluation, pages
810–817, 2014.

[58] Hassan Saif, Yulan He, and Harith Alani. Alleviating data sparsity for twitter
sentiment analysis. In 2nd Workshop on Making Sense of Microposts: Big things

62

come in small packages at the 21st International Conference on theWorld Wide
Web (WWW’12), pages 2–9. CEUR Workshop Proceedings (CEUR-WS. org),
2012.

[59] Hassan Saif, Yulan He, Miriam Fernandez, and Harith Alani. Semantic patterns
for sentiment analysis of twitter. In International Semantic Web Conference,
pages 324–340. Springer, 2014.

[60] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,
a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

[61] Cenker Sengoz and Sheela Ramanna. Learning relational facts from the web: A
tolerance rough set approach. Pattern Recognition Letters, Elsevier, 67(P2):130–
137, 2015.

[62] Richa Sharma, Shweta Nigam, and Rekha Jain. Opinion mining of movie reviews
at document level. arXiv preprint arXiv:1408.3829, 2014.

[63] Ashmeet Singh and Sheela Ramanna. Application of tolerance near sets to au-
dio signal classification. In B. Zielosko, U. Stanczyk, and L. C. Jain, editors,
Advances in Feature Selection, and Data and Pattern Recognition. Springer In-
ternational Publishing, 2018. DOI 10.1007/978-3-319-67588-6 13.

[64] Andrzej Skowron and Jaroslaw Stepaniuk. Tolerance Approximation Spaces.
Fundamenta Informaticae, 27(2,3):245–253, August 1996.

[65] Richard Socher, John Bauer, Christopher D Manning, and Andrew Y Ng. Parsing
with compositional vector grammars. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
455–465, 2013.

[66] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic
representations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

[67] T.Alusaifeer, S.Ramanna, and C.Henry. GPU implementation of MCE approach
to finding near neighbourhoods. In Proceedings of the International Conference
on Rough Sets and Knowledge Technology (RSKT2013), Lecture Notes in Com-
puter Science, pages 251–262. Springer, 2013.

63

[68] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. Learning
sentiment-specific word embedding for twitter sentiment classification. volume 1,
pages 1555–1565, 06 2014.

[69] Diego Terrana, Agnese Augello, and Giovanni Pilato. Automatic unsupervised
polarity detection on a twitter data stream. In 2014 IEEE International Con-
ference on Semantic Computing, pages 128–134. IEEE, 2014.

[70] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas.
Sentiment strength detection in short informal text. Journal of the American
society for information science and technology, 61(12):2544–2558, 2010.

[71] Peter D Turney. Thumbs up or thumbs down? semantic orientation applied to
unsupervised classification of reviews. arXiv preprint cs/0212032, 2002.

[72] Arshia Ulaganathan and Sheela Ramanna. Granular Methods in Automatic
Music Genre Classification: A Case Study. Journal of Intelligent Information
Systems, Springer, 52(1):85–105, 2019.

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
arXiv preprint arXiv:1706.03762, 2017.

[74] Gang Wang, Jianshan Sun, Jian Ma, Kaiquan Xu, and Jibao Gu. Sentiment
classification: The contribution of ensemble learning. Decision support systems,
57:77–93, 2014.

[75] Piotr Wasilewski, James F. Peters, and Sheela Ramanna. Perceptual tolerance
intersection. Transactions on Rough Sets Journal, 13:159–174, 2011.

[76] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage chal-
lenge corpus for sentence understanding through inference. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 1112–1122, New Orleans, Louisiana, June 2018. Association for Computa-
tional Linguistics.

[77] Marcin Wolski. Perception and classification. A Note on Near sets and Rough
sets. Fundamenta Informatica, 101:143–155, 2010.

64

[78] Bing Xiang and Liang Zhou. Improving twitter sentiment analysis with topic-
based mixture modeling and semi-supervised training. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 434–439, 2014.

[79] Alec Yenter and Abhishek Verma. Deep cnn-lstm with combined kernels from
multiple branches for imdb review sentiment analysis. In 2017 IEEE 8th An-
nual Ubiquitous Computing, Electronics and Mobile Communication Conference
(UEMCON), pages 540–546. IEEE, 2017.

[80] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent
trends in deep learning based natural language processing. ieee Computational
intelligenCe magazine, 13(3):55–75, 2018.

[81] E.C. Zeeman and O.P. Buneman. Tolerance spaces and the brain. Towards a
Theoretical Biology, 1, pages 140–151, 1968. , Published in C.H. Waddington
(Ed.), Towards a Theoretical Biology. The Origin of Life, Aldine Pub. Co.

[82] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-
works for text classification. arXiv preprint arXiv:1509.01626, 2015.

[83] Ziqiong Zhang, Qiang Ye, Zili Zhang, and Yijun Li. Sentiment classification of
internet restaurant reviews written in cantonese. Expert Systems with Applica-
tions, 38(6):7674–7682, 2011.

[84] Shaojie Zhu, Bing Xu, Dequan Zheng, and Tiejun Zhao. Chinese microblog
sentiment analysis based on semi-supervised learning. In Semantic Web and
Web Science, pages 325–331. Springer, 2013.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Problem Definition
	Proposed Approach
	Contributions
	Thesis Layout

	Related Work
	Machine Learning-based approach
	Supervised Learning Approach
	Unsupervised Learning Approach
	Semi-supervised Learning Approach

	Lexicon-based Sentiment analysis approach
	Deep Learning-based approach

	Theoretical Framework, Tolerance Class Learner and Vector Generation Methods
	Rough Sets and Tolerance Rough Sets
	Preliminaries - Tolerance Near Sets
	Examples of TNS

	Transformer
	Vector Embeddings with SBERT
	Importance of position encoding

	Tolerance Sentiment Classifier - TSC
	Phase I: Creating Prototype Classes
	Phase II: Text Classification

	TF-IDF Vectorization

	Dataset
	Covid-Sentiment Dataset
	Other Datasets

	Experiments, Results and Discussion
	Operational Machine Learning Algorithms
	Vector Generation
	Sample Vectors
	Performance Measures
	Analysis of Results
	Experiments with the TSC algorithm
	Experiments with the Covid-Sentiment Dataset
	Experiments with the U.S. Airline sentiment Dataset
	Experiments with the IMDB Movie Review Dataset
	Experiments with the SST-2 Dataset
	Experiments with the Sentiment 140 Dataset
	Experiments with the SemEval2017 Dataset
	Experiments with the Sanders corpus
	Experiments with the UCI Sentence Dataset
	Experiments with the AG-News Dataset
	Experiments with the 20-Newsgroups Dataset
	Overall Analysis

	Conclusion and Future Work
	Selected Code Snapshots
	Appendix
	Execution Flow
	Pipeline for BERT and Scikit-learn

	Bibliography

