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Abstract 

A SPATIOTEMPORAL ASSESSMENT OF FISH ASSEMBLAGE RESPONSE TO LAND-

USE CHANGE AND THE EVALUATION OF EDNA METABARCODING FOR 

DESCRIBING DIVERSE FISH COMMUNITIES 

 

By Timothy M. Owen, M.S. Environmental Studies 

 

A thesis submitted in partial fulfillment of the requirements for the 

degree of Master of Science 

at Virginia Commonwealth University 

 

Virginia Commonwealth University, 2021 

Major Advisor: Stephen P. McIninch Ph.D. 

 

 Fish assemblages are often assessed as a biological proxy for environmental health. 

While humans value healthy environments for the ecosystem services and recreational 

opportunities they provide, it is increasingly evident that such resources can be paradoxically 

degraded by anthropogenic activities. In this investigation, we studied the relationship between 

different intensities of anthropogenic land-use change and habitat-driven fish assemblage 

response across multiple spatiotemporal scales. Secondarily, we explored the efficacy of eDNA 

metabarcoding against conventional electrofishing techniques for the purpose of describing 

complete fish communities. This study was conducted in the Tuckahoe Creek basin near 

Richmond, Virginia. This James River tributary serves as an optimal case-study due to a myriad 

of land-use changes that have continued to occur throughout the basin, in conjunction with a 

diverse fish assemblage that has been studied across a unique fisheries dataset that originated in 

1869. Our findings indicate that fish assemblage dynamics are driven by localized, low-intensity 

development, and are therefore longitudinally discontinuous throughout the Tuckahoe Creek 

basin. Further, we observed that eDNA metabarcoding outperformed electrofishing in 

determining fish biodiversity throughout the system. 
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Chapter 1 : Localized Low-Intensity Anthropogenic Land-Use Change Drives 

Heterogeneous Response in Fish Assemblage Diversity and Distribution 
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Abstract 

Although intact native fish communities are valued for their ecosystem services, economic value, 

and recreational opportunities, they are often paradoxically degraded by increasing levels of 

anthropogenic activity. While studies investigating fish assemblage response to anthropogenic 

land-use change have often documented results consistent with the urban stream syndrome, 

others have resulted in findings to the contrary. In this study, we investigated the relationship 

between anthropogenic land-use changes and habitat driven fish assemblage response across 

multiple temporal and spatial scales. This case study was conducted at established sampling 

locations within Tuckahoe Creek, a Chesapeake Bay watershed near Richmond, Virginia. 

Tuckahoe Creek contains a diverse fish assemblage that is associated with a unique set of 

fisheries datasets that span up to sixty-two years. We found fish assemblage response to land 

cover change is best predicted by low intensity development quantified at smaller spatial scales 

(r2 = 0.937; p < 0.01). While some sites we observed exhibited symptoms of urban stream 

syndrome, we found that fish assemblage changes were longitudinally discontinuous throughout 

nested sampling sites in the watershed, and at least partially correlated to the habitat needs of 

each site’s baseline assemblage. Our results indicate that assessing fish diversity in systems 

subject to anthropogenic land-use change may benefit from higher sampling intensities.  

 

 

 



2 
 

Introduction 

 

Healthy native fish communities are a key indicator of a functioning aquatic ecosystem. 

These natural resources are highly valued by an array of stakeholders for their environmental 

services, as well as the recreational opportunity they provide (Cooke et al., 2020). As human 

populations continue to shift toward more condensed areas, anthropogenic land-use activities are 

increasingly encroaching on natural environs (Sala et al., 2000). As such, anthropogenic land-use 

changes (ALUC) are considered a paramount threat to ichthyofaunal diversity and the natural 

function of the aquatic ecosystems they inhabit (Sala et al., 2000; Marchetti et al., 2006; 

Giacomozo et al., 2020; Pugh et al., 2020).  

Fish assemblage response observed in lotic systems affected by ALUC include aquatic 

habitat degradation and a decrease in total fish species richness (Lodge et al., 2012). These 

degradations may result from hydrologic volatility, decreased recruitment of woody debris to the 

stream channel, increased substrate embeddedness, or disruption of the system’s natural thermal 

regime. While these factors are certainly influenced by stochastic events, such as climactic 

conditions, ALUC can exacerbate these factors through increased coverage of impervious 

surfaces, loss of proximal terrestrial vegetation, and increased soil compaction (Phelan et al., 

2017; Rapp et al., 2017).  

Although many studies have assessed land-use change – fish response (LUCFR) 

dynamics, specific outcomes vary throughout the literature (Scott and Helfman 2001; Walters et 

al., 2003; Walsh et al., 2005; Burcher et al., 2007; Armstrong et al., 2011; Booth et al., 2016). 

These studies often encompass dissimilar study areas, chronological timelines, sampling 

intensities, spatial lenses, or fish communities (Weaver and Garman 1994; Smith et al., 2014; 

Cervantes-Yoshida et al., 2015; Le Pichon et al., 2017). As ALUC often occurs throughout a 
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continuum of timing and duration, along a spectrum of intensity and proximity, the reproduction 

of results concerning LUCFR research is innately difficult. Such confounding variables may be 

exacerbated in long-term studies, of which there is a scarcity of opportunity.  

While many LUCFR studies have quantified trends by extrapolating relationships from 

probabilistically generated sampling locations, a growing number of studies have shown a 

significant connection between more localized, site-specific environmental factors and the 

observed fish assemblage response (Strayer et al. 2003; Hawkins et al., 2015; Patterson et al., 

2017). This may indicate that localized ALUC drives fish response semi-independently of 

dynamics occurring elsewhere in a given system.  

In the present study, we conducted a LUCFR investigation at established survey locations 

within the Tuckahoe Creek basin, located in Henrico County, Virginia. Our research builds upon 

a series of historical investigations that occurred within the basin in 1958, 1990, and 2014 

(Flemer and Woolcott 1966; Weaver and Garman 1994; Stickley 2015). Weaver and Garman 

(1994) first described LUCFR dynamics within the Tuckahoe Creek basin by quantifying a long-

term relationship (32 years; r2= -0.84, P < 0.05) between community-level fish diversity and the 

percentage of anthropogenic development within the riparian area of each survey location. 

Stickley (2015) later documented a similar relationship by indicating fish diversity from 1958 to 

2014 was significantly affected by the coverage of impervious surfaces within the stream’s 

riparian area, but found no significant relationship between the two variables had occurred 

between 1990 and 2014.  

Although previous studies within the Tuckahoe Creek basin collectively describe long-

term fish assemblage responses to ALUC, our objective was to investigate LUCFR dynamics at 

spatiotemporal scales that haven’t been previously assessed. Further, we believe LUCFR 
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throughout the basin is longitudinally discontinuous, and attribute such effects to a combination 

of heterogeneity in the habitat needs of site-specific fish communities, and variation in the 

timing, intensity, and proximity of ALUC being assessed. Lastly, we theorize that many LUCFR 

dynamics within the basin have gone undocumented, and attribute this to the range of ALUC 

present at established survey sites versus that which has occurred at unobserved locations 

throughout the watershed.  

 

Methods 

 

Study Area 

 Tuckahoe Creek is a third order tributary of the James River, a major artery to the 

Chesapeake Bay, and its catchment spans the counties of Goochland, Hanover, and Henrico near 

Richmond, Virginia (Fig. 1.1). The stream system transcends a single geophysical province, 

encompassing characteristics of both the Virginia Piedmont and Virginia Coastal Plain 

throughout its 28-kilometer length.  
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Figure 1.1 Study Area – Tuckahoe Creek watershed and region 

 

Sites A and B are located at medium-gradient portions of the basin and are comprised of 

characteristics typical of Virginia Piedmont systems. Sites C-F are lower gradient, and are 

characterized by sprawling swampy habitats more commonly associated with Virginia Coastal 

Plain systems (Flemer and Woolcott 1966). Our sampling locations contained first order (Site 

A), second order (Sites B and C), and third order (Sites D-F) segments of the stream network 

(Table 1.1). The total study area is relatively similar in elevation, consisting of about a twenty-

meter elevation difference from the most upstream site (Site A) to the most downstream site (Site 

F; Table 1.1).  
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Table 1.1 Physical characteristics of Tuckahoe Creek sampling locations. 

 

Dynamic land cover changes have occurred within the basin throughout the study period, 

with the majority of changes being indicative of a system experiencing long-term urbanization 

(Weaver and Garman 1994; Stickley 2015). Although much of the watershed has experienced an 

increase in anthropogenic activity, there are exceptions, where patchy areas of the basin have 

transitioned between various natural ecosystems and agricultural use. From 1953 to 2014, the 

area of natural land cover within the basin decreased from 73% to 33%, while land classified as 

impervious surface increased from 3% to 47%, and agricultural lands remained relatively 

constant decreasing from 24% to 20% (Stickley 2015). 

Historical Fisheries Dataset 

A distinctive long-term dataset of the Tuckahoe Creek fish assemblage originated with 

qualitative fisheries observations in 1869 (Cope 1869) and 1937 (Raney 1950). Subsequent 

quantitative fisheries surveys were conducted in 1958 with a seine (Flemer and Woolcott 1966), 

1990 via seine and backpack electrofishing (Weaver and Garman 1994), and 2014 by backpack 

electrofishing (Stickley 2015). While the exact survey locations for the 1869 and 1937 

observations are not known, each of the 1958, 1990, and 2014 fisheries surveys were conducted 

within the same established observation sites (Fig. 1.1).  
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Although the sampling gears used in the past investigations of the Tuckahoe Creek fish 

assemblage varied with contemporary practices, each of the quantitative surveys was performed 

with the intent of capturing a complete representative community fish sample at each of the sites 

(Flemer and Woolcott 1958; Weaver and Garman 1994; Stickley 2015). Collectively, these 

surveys have resulted in documenting the presence, relative abundance, and distribution of 38 

species of fish. Site E (Fig. 1.1) had to be excluded from this study, as it was unable to be 

sampled in 2014 and 2020 due to drastically changing site conditions and increased water depth 

(Stickley 2015). 

Land Cover Change 

Our study period spanned seven decades, and therefore it was necessary to obtain land-

use data using a variety of methods across different resolutions (Table 1.2). Land cover 

classification definitions were examined from each of the datasets, and aggregated into either 

Natural Cover, Agricultural Cover, or Anthropogenic Development. Anthropogenic 

Development was then partitioned into Low Intensity, Medium Intensity, or High Intensity 

development for each of the study periods, based on the available descriptions within the land 

cover metadata (Table 1.3). The Open Water cover type was emitted from all datasets, as this 

classification fluctuated between describing natural areas of still water, and artificially dammed 

waterways that didn’t fall into a single development classification.  
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Table 1.2 Datasets used for landscape analysis 

 

All spatial analyses were performed in ArcGIS Pro v10.2 (ArcPro). Percentages of each 

land cover classification were analyzed for sites A, B, C, D, and F across three relevant spatial 

scales (Fig. 1.2; Wang et al., 2001). The catchment scale (Fig 1.2a) represented the largest spatial 

lens by area, and was generated using the Spatial Analyst Toolset in conjunction with Digital 

Elevation Model (DEM) data obtained from Virginia GIS Clearinghouse (VGIN). The riparian 

corridor scale (Fig 1.2b) was delineated by generating streamlines from DEM data using the 

Hydrology Toolset, and buffering streamlines by 100 meters, as recommended by the United 

States Environmental Protection Agency (Mayer et al., 2005), on both sides of the stream. 

Consistent with other contemporary land-use studies (Wang et al., 2001; Cervantes-Yoshida et. 

al, 2015), a local 3-kilometer site-catchment lens (Fig 1.2c) was generated by creating a 3-km 

buffer circle from the centroid of each of the sample sites and then intersected with that of the 

site’s total catchment geometry. Land cover composition was assessed at each of the spatial 

scales by performing Tabulate Area with every combination of spatial scale and land cover 

dataset. Changes were derived by calculating percent composition differences for each of the 

designated land cover types between each study period.  
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Figure 1.2 Spatial scales of land-use change assessed within the study. 

 

Fisheries Sampling 

 Single-pass electrofishing surveys were performed at sites A, B, C, D, and F in July, 

August, and September of 2019 and 2020 (Fig. 1.1). These investigations took place within the 

same season, and at the same locations previously sampled in 1958 (Flemer and Woolcott 1966), 

1990 (Weaver and Garman 1994), and 2014 (Stickley 2015). Electrofishing was completed using 

either one or two SmithRoot LR-30 backpack electrofishing units, and three to six netters, as 

needed for accurate catch efficiency.  



10 
 

 Each electrofishing survey was performed in an upstream manner, following the same 

Environmental Protection Agency approved protocol that was utilized in the 2014 sampling 

effort (Stickley 2015). Fishes were netted and held in aerated containers throughout the duration 

of each sampling effort. Collected fish were identified to species, enumerated, and released back 

into the transect at survey completion. At each of the sites, a small sub-sample of collected 

specimens were treated with a lethal dose of MS-222, and preserved for a separate investigation 

(following IACUC protocol #AD10000441).  

Fish Assemblage Change Analyses 

 All data entry was completed in Microsoft Excel and imported to R Studio V3.62 (R) for 

statistical analysis and display. Fish assemblage metrics were quantified by enumerating each 

species observed throughout each of the survey periods. Individual sampling efforts were 

deemed non-independent, and were therefore aggregated by site into either 1958, 1990, 2014, or 

2020 observations. Each observed species was categorized by spawning habitat guild based on 

descriptions from Jenkins and Burkhead (1994). In the few cases where multiple spawning 

habitats preferences were documented, only the primary spawning habitat preference was listed 

for guild classification. Changes in relative abundance of each species and habitat-guild category 

were calculated by dividing the number of individuals in a category by the total number of 

species in all categories. 

Fish assemblages at each site were categorized by species and spawning habitat guild, 

and assemblage changes between sites and survey periods were calculated by deriving Bray-

Curtis Dissimilarity coefficients (BCD). Species-level LUCFR relationships were calculated 

using multiple linear regression analysis of the average sample-period BCD coefficient against 

percent land cover change across each combination of sample period (1958-1990, 1958-2014, 
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1958-2020, 1990-2014, 1990-2020, 2014-2020) and spatial scale (Catchment, Riparian, Local). 

The Akaike information criterion (AIC) tool in R was used to identify the model best fit for 

describing land-use driven fish assemblage changes. 

Principal Component Analysis (PCA) was used to visualize the site-specific fish 

assemblage changes in species occupancy when grouped by their spawning habitat guilds. 

Change in representation of each spawning habitat guild was defined by the BCD for that time 

period, and grouped by sample site.  

Basin-Wide Assessment of Observed LUCFR Dynamics 

Upon analysis of the LUCFR dynamics observed at our long-term survey locations, 

additional spatial analysis was conducted to assess the heterogeneity of localized low-intensity 

development throughout the entire stream continuum. This was completed by following the 

ArcPro process detailed in section 2.3 and repeated for points that were generated every one-

hundred meters, longitudinally, throughout the entirety of the Tuckahoe Creek mainstem 

corridor. Lastly, we compared the representativeness of localized land cover changes within the 

established long-term survey locations to those in unobserved areas of the watershed using a 

violin plot to indicate site-specific ALUC, relative to the basin-wide distribution of ALUC. 

 

Results 

Land Cover Change 

The Tuckahoe Creek watershed has continued to experience land cover loss in natural 

and agricultural land cover types (Table 1.3) consistent with previously conducted studies within 

the basin (Weaver and Garman 1994; Stickley 2015). These land cover types were largely 

converted into low, medium, or high intensity anthropogenic development. Although land cover 
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changes varied extensively by site throughout each observation period, the increase in low 

intensity development was the most common change observed at the basin-wide lens. 

Table 1.3 Land cover change throughout each iterative study period. 

 

 

Fish Assemblage Dynamics 

A total of thirty-nine species of fish, comprising 4,667 individuals were collected across 

fisheries surveys completed in 1958, 1990, 2014, and 2020. Bray-Curtis dissimilarity coefficients 

for each combination of the sample periods observed indicate that species diversity in the 1958 

and 2014 fish communities were most different, while 2014 and 2020 were most similar (Table 

1.4). In general, fish assemblage dissimilarity had a positive correlation to the time between 

sampling events. Total taxa represented within the basin was observed at 32 (1958), 27 (1990), 

32 (2014), and 25 (2020) species.  
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Table 1.4 Bray-Curtis Dissimilarity Coefficients for relative abundance of fish species change 

between all observation periods. Higher numbers indicate greater degree of species-level change. 

 

Multiple linear regression analysis of BCD coefficients for relative species abundance 

showed that percent change in low intensity development at the local scale (ΔLIDL) was the best 

fit predictor of fish assemblage change within the basin (R2=0.937, P=0.0015; Fig. 1.3).  

 

Figure 1.3 Simple linear regression of Bray-Curtis dissimilarity and percent change in low-

intensity development at the local spatial scale. 
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Throughout the aggregate of sample periods, mean species dissimilarity was significantly 

correlated to mean spawning habitat dissimilarity when grouped by sample site (Pearson Product 

Correlation = 0.83; Table 1.5). For both categories of fish assemblage change (Species and 

Spawning Habitat), Site F was found to have experienced the most fish assemblage change 

between sample periods, while Site D was found to have changed the least.   

 

Table 1.5 Spatial distribution of fish assemblage dissimilarity with fishes grouped by species and 

spawn-habitat guilds (Pearson Product Correlation = 0.83). 

 

The relative abundance of the extant habitat spawning guilds varied temporally (Fig. 1.4), 

although some generalized basin-level trends did occur. Species reliant on pool habitats for 

spawning activity continued to trend toward higher relative abundance, while those spawning in 

riffle-run habitats experienced the largest relative decline. Backwater and pool-run spawning 

species have appeared to stabilize in abundance after initially displaying a significant decline in 

the earlier surveys. Riffle spawning species were most uncommon in the baseline 1958 fisheries 

surveys, and therefore had the least ability to exhibit a decrease in relative abundance, however, 

they have remained relatively constant. 
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Figure 1.4 Change in relative abundance of fishes by spawning habitat guild by sample period. 

 

The PCA results suggest that the observed trends are spatially distinct responses (Fig. 

1.5). PC1 is indicative of the range of habitat-grouped fish community changes that have 

occurred throughout the study period at each location. PC2 is representative of the site-specific 

variance in habitat-grouped fish diversity within the same timeframe. The highest amount of total 

fish assemblage change was observed at Site F, the most downstream site in the drainage. Site F 

is also the second-most homogenous location and is dominated by pool dependent species. In 

contrast, Site D, the most homogenous location, exhibited the least amount of total change and 

the least amount of variation. Site C exhibited the highest level of assemblage diversity in regard 
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to spawning habitat requirements. Sites B and A are responsible for the largest declines in riffle-

run, pool-run, and riffle dependent species of fish.  

 

 

 

Figure 1.5 PCA of change in habitat guild species between sites over all sampling periods. 

 

Basin-Wide Assessment of Observed LUCFR Dynamics 

Extrapolating the results of our linear regression analysis, ΔLIDL at unobserved locations 

within the watershed displays high variability throughout the basin. This is best visualized over 

the longest chronological period of land cover changes we observed (1953-2016; Figures 1.6, 1.7 

respectively). The areas least affected by ΔLIDL exist above Sites A and B. Locations near Site 
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C are subject to moderate levels of localized development, and large levels of ΔLIDL from 1953 

to 2016 occurred between sites D and F.  

 

Figure 1.6 Variability of delta low intensity development (local scale) from 1953-2019. 

 

Further, the intensity of ΔLIDL acting upon our sampling locations did not encompass 

the range of ΔLIDL intensity throughout basin within any of the survey periods (Fig. 1.7). 

Longer survey periods (e.g., 1958-2020) were associated with higher quantities, and greater 

levels of heterogeneous distribution of ΔLIDL, and therefore resulted in less site 

representativeness. Shorter survey periods (e.g., 2012-2020) indicate a smaller range of ΔLIDL 
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heterogeneity, and as a consequence, the observed sites encompassed a higher degree of 

representativeness.  

 

Figure 1.7 Distribution and site representation of the change in low intensity development (local 

scale) throughout the Tuckahoe Creek system. 

 

Discussion 

The results presented herein indicate that increasing levels of ALUC has been a primary 

driver of fish assemblage change within the Tuckahoe Creek watershed. Further, our findings 

reveal that fish assemblage shifts are at least partially due to habitat alterations resulting from 

ALUC, and that localized low-intensity development is more significantly driving LUCFR 

dynamics than the other predictor variables tested. In addition, while basin-level metrics show a 

general trend of increased ALUC throughout the Tuckahoe Creek watershed, there were 

exceptions to this trend when examined at different spatiotemporal scales.  
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Basin-wide fish assemblage changes occurred across the entire study period, our findings 

however, suggest that LUCFR is longitudinally discontinuous, and that the observed 

heterogeneity in fish response is not solely a result of geomorphological differences (i.e., 

elevation, stream order, ecoregional designation). These conclusions are highlighted by results 

observed for sites D and F, which are most similar in baseline fish assemblage, stream order, 

elevation, and slope, yet the fish assemblage at Site D was found to have changed the least, and 

Site F exhibits the most fish assemblage dissimilarity between any of the observed locations and 

timeframes.  

 Our study shows the relationship between fish assemblage composition and low intensity 

disturbance within the basin is best quantified at a local catchment scale, and was less connected 

to disturbance at the other spatial lenses we assessed. We suggest that future efforts aimed at 

describing fish assemblage diversity in watersheds subject to ALUC would benefit from 

implementing higher sampling intensities than those conducted in watersheds comprised of 

homogenous landscapes. This is further supported by the ΔLIDL analysis of unobserved 

locations throughout the Tuckahoe Creek stream corridor, which provided evidence that the 

established long-term survey locations were not fully representative of the spectrum of ALUC 

intensity, and the corresponding spectrum of LUCFR, present within the study area.  

Further reinforcing our findings of longitudinal stream discontinuity in fish response, our 

results indicate that the Tuckahoe Creek ecosystem possesses site-specific resistance, or the 

ability of a location to resist change, and site-specific resilience, the ability to recover from 

previous disturbances. Site resistance is best observed at site D, where dissimilarity scored 

lowest between all temporal lenses. This is in stark contrast to upstream locations, Sites A, B, 

and C, which were more dissimilar within the same periods of time (Table 1.5). Site resilience 
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was most evident at Site C, where the Bray-Curtis Dissimilarity Coefficient between the 1958 

fish assemblage decreased by six from 1990 to 2020. Similarly, resilience was evident at the 

basin level as shown by the mean Bray-Curtis Dissimilarity Coefficients decreasing between the 

1958 fish assemblage from 1990 to 2020 

We conclude that variability in ΔLIDL should be considered when determining the 

sampling intensity necessary to describe fish assemblages at a basin-wide scale. The lack of a 

longitudinal pattern in fish assemblage dissimilarity within our results allows us to conclude that 

sampling locations are spatially unique and possess an array of characteristics that either 

exacerbate or alleviate the degradation factors of disturbances within the stream continuum. 

Additionally, the scale at which these locations exhibit discontinuity may be smaller than 

previously considered. Temporal fluctuations in fish presence and absence throughout our study 

period, either by individual taxon or when grouped by habitat guilds, suggests that individuals 

emigrate degraded sites in search of locations that are more optimally suited for their ecological 

needs. Our findings imply that our sampling efforts have adequately described the fish 

assemblage changes within the sampled transects, but due to the spectrum of ALUC throughout 

the Tuckahoe Creek watershed, additional sampling efforts would be necessary to accurately 

characterize basin-wide fish diversity.   
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Abstract 

Electrofishing is currently the most common method used to assess freshwater fish communities. 

Although conventional electrofishing practices are considered effective, there are inherent 

limitations. A complimentary fish detection tool known as eDNA sequencing has gained 

popularity in recent years, however its use across an array of fisheries applications remains 

novel. The purpose of this study was to compare results derived from simultaneously conducted 

eDNA metabarcoding and capture-based electrofishing surveys. Results were also assessed 

against historical observations that originated from the same watershed beginning in 1869. This 

study was conducted on a species rich fish assemblage spanning a variety of abiotic habitats to 

better assess the efficacy of metabarcoding technology across a range of environs and fish 

assemblages. The results of this study indicate that metabarcoding outperforms electrofishing in 

determining community-level fish diversity. Metabarcoding was most advantageous in detecting 

numerically uncommon species of fish and may have future utility in quantifying relative species 

abundance.  

 

Introduction 

Community level fish diversity is often assessed to better inform fisheries management 

decisions, but also functions as an optimal proxy for tracking changes in the ecological condition 

of aquatic ecosystems (Bunn and Arthington 2002; Reid et al., 2009). In freshwater applications, 

capture-based sampling methods, such as electrofishing, are frequently used to conduct these 
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assessments (Dunham et al., 2009). The continuous refinement of this gear has resulted in 

contemporary practices that are ultimately considered effective, safe, and conventionally ethical 

(Bennett et al., 2016). Despite advancements, there are still innate risks, biases, and other 

limitations associated with electrofishing that may be suboptimal in some applications (Bohlin et 

al., 1989; Niemelä et al., 2000; Snyder 2003; Quist et al., 2009).  

An emerging fish sampling technique, derived from the analysis of environmentally 

sourced organismal deoxyribonucleic acid (DNA), provides an alternative non-invasive method 

of fish assemblage characterization (Lodge et al., 2012; McDevitt et al., 2019). All living 

organisms, including fish, continuously release DNA into their environment through cell 

regeneration, waste excrement, spawning, and a plethora of other natural metabolic processes 

(Bergman et al., 2016). The collection and analysis of this shed genetic material via Polymerase 

Chain Reaction amplification (PCR), for the purpose of species level detections, is known as 

genotyping (Tillotson et al., 2018). By analyzing environmentally sourced DNA samples 

(eDNA) via high-throughput multi-species genotyping, it may be advantageous to conduct 

community-level fish assemblage assessments using a technique known as eDNA metabarcoding 

(Jerde et al., 2019).   

While reducing risk to study subjects and their environment is a primary consideration 

for fisheries investigations, non-invasive sampling methods, such as eDNA sampling, may be 

particularly advantageous when studying rare and sensitive fishes. This is compounded when 

target fishes are present alongside other endemic organisms of concern such as mussels, 

amphibians, or invertebrates. Conventional fish sampling gears can result in knowledge gaps that 

stem from limited human resources, insufficient spatial coverage (Foley et al., 2015), unsuitable 

in-situ sampling conditions, or inadequate sampling frequency. In contrast, previous studies have 
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demonstrated that eDNA sampling can be performed at a higher frequency, with fewer 

personnel, and at an array of environs. Studies utilizing eDNA often result in higher species 

richness than those derived from traditional sampling alone, however, there are exceptions (Perez 

et al. 2017; Ulibarri et al. 2017). Such research has been particularly successful in investigations 

aimed at morphologically small, and numerically uncommon fishes (Thomsen et al. 2012; 

McKelvey et al., 2016; Valentini et al., 2016; Wilcox et al., 2016).  

Despite its advantages and the increasing use of metabarcoding within the fisheries 

discipline, many methodological constraints still exist, and further research is required to 

progress its applicability in fisheries science. For instance, the representation of metabarcoding 

research performed on species-rich fish assemblages in complex and dynamic natural systems is 

rather limited, with many studies focusing on relatively few fish species in artificial 

environments. Additionally, these studies often vary in collection gear and sampling mediums 

(Goldberg et al., 2011; Turner et al., 2015). Finally, less is known about DNA’s environmental 

dispersion dynamics, spatiotemporal decay, and variation in shed rates by species, age, sex, and 

individual activity level. As such, using eDNA to quantify relative species abundance is not 

unanimously accepted (Strickland and Roberts 2019; Zhang et al., 2020; Sales et al., 2021). 

In the present study, we assessed fish assemblage diversity and distribution at nested 

sampling locations through the implementation of simultaneously conducted eDNA 

metabarcoding and electrofishing (SCEME) techniques. In addition to SCEME, this study 

compares our metabarcoding effort against historical capture-based fisheries surveys that 

occurred within the same study area beginning in 1869 (Flemer and Woolcott 1966; Weaver and 

Garman 1994). We fortified our metabarcoding efforts by conducting this analysis using two 

metabarcoding detection primers (cytb and 12S; ) across intra-site replicates with two 
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independent sampling mediums (surface water and sediment; ). Specifically, this study sought to 

(1) compare the efficacy of eDNA metabarcoding for characterizing the presence, absence, and 

relative species abundance of a diverse fish assemblage within a complex aquatic ecosystem, and 

(2) assess surface water and stream substrate as mediums for conducting additional 

metabarcoding investigations.  

 

Methods 

 

Study Area and Historical Dataset 

 This study was conducted in Tuckahoe Creek, a Chesapeake Bay Watershed located in 

the western portion of the metropolitan area of Richmond, Virginia. The Tuckahoe Creek basin 

is unique in that it is located within the geological Fall zone, and therefore encompasses abiotic 

characteristics in its upper sections that define the Virginia Piedmont, and downstream areas that 

are more similar to the Atlantic Coastal Plain (Figure 2.1). As the system flows across this 

geological gradient towards its confluence with the James River, a multiplicity of abiotic 

characteristics is formed, and consequently, the system consists of an equally rich fish 

assemblage that is complex in ecological function.  
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Figure 2.1 The Tuckahoe Creek study area. Geologic gradients are a proxy for geophysical 

province transition and basin heterogeneity. 

 

The Tuckahoe Creek fish assemblage is described by a series of historical surveys that 

span over one-hundred-and-fifty-years. The first fishes identified within the basin were 

documented at unspecified locations in 1869 and 1937 (Cope 1869; Raney 1950). Later, capture-

based surveys were conducted in 1958, 1990, 2014, and 2019 (Flemer and Woolcott 1966; 

Raney 1950; Weaver and Garman 1994; Stickley 2015). Sampling gears varied in these historical 

surveys, defined by the conventional norms of each respective sampling period. Collections in 

1958 were the result of seining, while a combination of seining and electrofishing was used in 

1990. Electrofishing was used as the single gear in 2014 and 2019. Each of these historical 
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investigations were repeated at the same established survey transects, within the same season, 

and with the intent of describing each site’s comprehensive fish assemblage. 

We conducted our research at five of the established fisheries survey locations. Although 

a sixth location, Site E, was sampled near Virginia State Highway 6 in 1958 and 1990, it was 

excluded from our investigation due to site changes that prevented it from being sampled in 

2014, 2019, and 2020. In addition, Site E historically contained the same species observations 

and abiotic characteristics present at other established transects (Flemer and Woolcott 1966). The 

upper-most sampling location investigated, Site A, is representative of the dendritic network of 

first-order streams that comprise the basin’s medium-gradient, gravel-dominated headwaters. As 

Tuckahoe Creek grows into a second-order stream (Sites B and C), the system becomes 

progressively lower in gradient, and the stream substrate gradually changes from gravel to sand. 

Just upstream of its confluence with the James River, Tuckahoe Creek is a third-order stream. In 

this reach, Sites D and F are characterized by numerous slow-moving swamps and beaver 

complexes. Here, the stream is low-gradient, and substrate consists almost exclusively of silt and 

clay.  

Fish Sampling Procedures 

 Our fisheries investigation consisted of simultaneously performed eDNA metabarcoding 

and electrofishing surveys in July of 2020. In an effort to minimize sample contamination and 

increase the confidence in our findings, each of the survey components was completed in an 

upstream manner, beginning at the most downstream sampling location, Site F, and ending at 

Site A, the most upstream sampling location (Figure 2.1). At the downstream terminus of each 

survey transect, a total of seven eDNA samples were filtered prior to initiating electrofishing. 

These consisted of three independent surface water samples and three independent sediment 
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samples. In an effort to account for highly localized occurrences of uncommon species, each of 

the surface water and sediment samples were collected at approximately 25%, 50%, and 75% of 

the wetted width, respectively. The seventh and final eDNA sample, a negative field control, was 

filtered in-situ from double-distilled bottled water. 

Surface water samples were collected using a Smith-Root ® eDNA system (i.e., ANDe 

backpack in conjunction with Smith-Root single-use 5 micrometer filters; ). Pressure settings for 

the ANDe unit was placed at ten pounds per square inch, with a one liter per minute flow rate, 

and a target filtration volume set to four liters. At the conclusion of each filtration, which was 

initiated by obtaining either the target volume, or a low-pressure pump alarm, each filter was air 

dried for one minute by allowing the ANDe pump to draw in air. The entire filter housing was 

then removed from the ANDe system, and stored within double-layered, sterile whirl-packs. 

Sediment samples were obtained using single-use plastic sterile scoops to obtain a mass of at 

least one-hundred grams of stream substrate. Sediment was then poured into sterile double-

layered whirl-packs. All eDNA samples were labeled in a coded sequence for the purpose of 

blinding the processing lab to site location, as well as positive and negative field samples. All 

samples were immediately placed within an iced cooler in the field, held under the same storage 

conditions prior to being transported on dry ice, and stored at -20°C until DNA extraction. 

Field contamination was further mitigated throughout the investigation using USGS 

approved sampling procedures. During all eDNA sampling procedures, researchers abstained 

from entering the stream when possible. At sites where this proved infeasible, a single collector 

entered the water downstream of the collection zone and allowed natural streamflow to clear the 

sampling area for one minute before collecting a sample. Latex gloves were worn by all 

personnel during eDNA collections, and gloves were changed between each of the individual 
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samples. Negative field controls were filtered last at each site, in theory, to test for any 

cumulative contamination that occurred within the previous six eDNA collections. 

At each survey location, single-pass electrofishing surveys immediately proceeded the 

conclusion of eDNA filtering. Consistent with previous historical surveys, each electrofishing 

effort was conducted in an upstream manner, with the intent of collecting a representative sample 

of the entire fish assemblage present within each site (Weaver and Garman 1994). Electrofishing 

was completed using one or two Smith Root LR-30 backpack electrofishing units, and three to 

six dip-netters, as required for efficient fish capture. Fish were netted and placed into aerated 

holding tanks until the completion of each sample, at which time each individual was identified 

to species, enumerated, and released back into the sampling area. A small number of individuals 

were photographed, and received non-fatal caudal fin clips, which were later used to generate 

genomic sequences for species-specific 12S markers that were absent from any public genomic 

database during our initial query. 

Molecular Analysis 

All molecular methods and laboratory procedures were performed as designed by a 

USGS approved protocol, and are further detailed in appendix 1, and a separate, ongoing 

molecular study. 

DNA Extraction 

The extraction, amplification, and analysis of DNA from each of the eDNA samples was 

performed within a project-isolated eDNA laboratory, under a laminar flow hood, separate from 

any PCR product handling, at the United States Geological Survey (USGS) Eastern Ecological 

Science Center (EESC). Samples were removed from -20°C storage and allowed to thaw for 

fifteen minutes. For surface water samples, half of each filter membrane was placed in a 5 mL 
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screw-cap tube for subsequent DNA extraction using the materials and procedures provided with 

the Qiagen DNEasy Blood and Tissue Kit. For sediment samples, 250mg of material was taken 

from each of the samples, and subjected to the extraction procedures provided in the Qiagen 

Powersoil extraction kit.  

Reference Library Construction and Sequencing 

For the purpose of increasing confidence in species-level detections, we chose two 

metabarcoding primer pairs. One primer pair targets a ~224 base pairs (bp) portion of the 

mitochondrial 12S gene in fishes (Miya et al., 2015). The second primer pair targets a ~209 bp 

portion of the mitochondrial cytb gene in fishes (Snyder and Stepien 2020). Preparation of 

sequencing libraries generally followed Illumina (2016). For the cytb and 12S amplicons, all 

complete and partial mitogenomic sequences were downloaded from the Mitofish database 

(Iwasaki et al. 2013). The original taxonomic annotation by the sequence authors was assumed to 

be correct for each sequence. Each sequence accession number was then used to retrieve the 

corresponding taxid from GenBank. All species of fish previously observed within the study area 

had a cytb reference sequence, however multiple species of interest were missing a 12S reference 

(Appendix 1). Therefore, tissue samples of each missing specimen with a historical presence in 

Tuckahoe Creek were provided to USGS-LSC for DNA extraction and 12S reference 

sequencing. 

Index Hopping and Bioinformatics 

Recent metabarcoding literature has demonstrated that there is a low level of “index-

hopping” in MiSeq sequencing runs, where reads (i.e., the detection of species-specific DNA) 

from one library are assigned to the wrong library at the demultiplexing stage (Snyder and 

Stepien 2020).  As a result of this phenomenon, the number of mis-assigned reads in a library is 
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assumed to be approximately 0.1%. This can be problematic when trying to determine if a rare 

organism is present in a sample or not. To empirically determine the level of read misassignment 

in our study, and to establish a threshold for counting a species as present, we created a pooled 

library of marine fishes not expected to be observed in Tuckahoe Creek, a freshwater system. 

Using a Qiagen DNEasy Kit, DNA was extracted, amplified, and indexed (Illumina 2016) from 

tissue samples of six deep-sea marine fishes collected from the Atlantic Ocean.  

To apply the results of the marine mock community for determining the threshold for 

presence of a taxon in the eDNA samples, all taxonomic assignments to a marine fish were 

identified, and the sum of the marine species reads in each sample was divided by the total 

number of reads in the sample to get a ‘percent of marine representation’. The average of the 

marine species representation was taken across all samples and applied as the threshold for 

species-level detections in the Tuckahoe Creek eDNA assessment. In order to enumerate the 

quantity of reads of each species observed at each site, the number of reads per sequence was 

summed across each of the three site replicates, and divided by the total number of reads among 

all species at each respective location. For a species to be deemed present, this percentage, or the 

concentration of species specific DNA, needed to exceed the threshold determined from the 

marine mock community. 

Fish Dataset Analysis 

 Fisheries data from historical capture-based surveys conducted in 1958, 1990, 2014, and 

2019 were compiled with our original 2020 electrofishing and eDNA sampling data using 

Microsoft Excel. Fisheries survey data collected during the 1869 and 1937 Tuckahoe Creek 

investigations were not independently compared in this study, as these surveys did not contain 

any unique fish species. All data analysis and display outputs were generated in R Studio V3.62.  
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Each of the observed fishes from our study were categorized as either “Established”, 

“Intermittent”, or “Uncommon” species. These species-level occupancy categorizations were 

determined by their historical frequency of occurrence within the Tuckahoe Creek Watershed 

(Table 2.1). This categorical structure allowed us to contrast eDNA metabarcoding to 

conventional methods in distribution and detection sensitivity across different historical 

concentrations of species composition throughout the Tuckahoe Creek basin. 

Table 2.1 Categorization of fish species observed throughout the Tuckahoe Creek watershed. 

 

For each species category designation, presence or absence was noted for each species, 

sampling event, and sampling location. Species detections for eDNA samples was attributed to 

the sample-specific quantity of species independent reads surpassing the threshold of necessary 

reads for either of the 12S or cytb markers, as detailed in section 2.7. Quantities of species-

specific DNA within the samples that did not reach the minimum threshold of reads was 

considered null, and the associated species was designated as absent from that sample. The 

proportion of species-specific DNA within each eDNA was calculated by summating the number 

of species-specific reads from both of the 12S and cytb pairs, standardizing the resulting value by 

sample filtration volume, and dividing the product by the total number of reads for all species at 

each respective location. Similarly, percent composition for electrofishing was calculated by 

dividing number of individuals observed for a particular species by the total number of 

individuals observed at both the basin-wide and site-specific spatial scale.  
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Results 

Fisheries Dataset 

Electrofishing surveys conducted in July, 2020 resulted in an aggregate of twenty-seven 

species of fish collected throughout the basin’s five established sampling locations. Each of the 

species collected during electrofishing had been previously documented as one of the thirty-nine 

extant species known to exist within the same locations in the 1958, 1990, 2012, or 2019 

investigations.  

In contrast, our eDNA metabarcoding effort detected the presence of forty-seven species 

of fish. Each of these detections was derived from the surface water component of the eDNA 

survey. Sediment samples were found to contain only trace levels of fish DNA, and thus were 

not examined further. Although additional investigation may be needed to investigate the role of 

PCR inhibition in this outcome, this is not a likely explanation, as our extraction process 

contained an inhibitor removal step. Qubit values indicated the absence of any DNA within our 

negative field controls, and these samples were not sequenced. Similarly, lab controls showed 

very small numbers of reads, suggesting there was not a contamination issue within our analysis.  

Thirty-one of the species detected by metabarcoding were observed by both the 12S and 

cytb detection primers (Table 2.2). Six species detections were unique to the 12S primer, while 

nine were detected by only the cytb primer. Of these primer-specific disparities in species 

detections, Longnose Gar Lepisosteus osseus was the only aberration resulting from an 

unavailable primer, in which a cytb sequence was not available for our reference library at the 

time of sequencing. One disparity in primer-specific species detection occurred within the darter 

family, where the cytb marker detected Johnny Darter Etheostoma nigrum and Tessellated Darter 
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Etheostoma olmstedi, whereas the 12S marker only detected the latter species. We also observed 

a latitudinal variation within our same-site replicates (Table 2.2), with the highest concentration 

of detections being collected from the 25% wetted width samples, regardless of species 

occupancy category.   

Table 2.2 Species occupancy results by method and latitudinal sampling location. 

 

 

Unsurprisingly, we also found surface water eDNA samples contained quantifiable DNA 

from non-target organisms, and species that were not previously defined in our reference 

genomic library. These genetic sequences were manually blasted against the National Center for 

Biotechnology Information (NCBI) database, and indicated that DNA from Cattle Bos taurus, 

Whitetail Deer Odocoileus virginianus, Common Snapping Turtle Chelydra serpentina, and two-

lined salamander Eurycea wilderae was also present in the water column during the time of our 

collection. Two-lined salamanders were physically observed and noted during electrofishing 

surveys at the same locations that DNA was detected, while each of the other three non-target 

detections are locally present, but were not specifically noted during the collection events. 

Species Diversity and Distribution 

 The detection and distribution of fishes derived from surface water metabarcoding 

generally outperformed the simultaneously conducted electrofishing efforts (Positive Control) 

across each of the species occupancy categories (Table 2.1). For the established fish species, 

which represents the most stable populations of fishes within the Tuckahoe Creek watershed, 
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eDNA and electrofishing successfully detected the presence of all eighteen species of fish (Table 

2.3).   

Table 2.3 Basin-wide detection status of Established Fish Species by sampling event. 

 

 

At a site-specific lens, eDNA detected a higher number of established species at each of 

the sampling locations (Table 2.4). Fifty-five presence or absence designations matched between 

the simultaneously conducted eDNA and electrofishing surveys for species in the established 

classification, and none of the species observed during the 2020 electrofishing effort were 

undetected by eDNA within the same sample site. In twenty-seven instances, established species 

of fish observed within the eDNA samples were absent from that locale’s electrofishing survey, 

but had been previously observed at that site in at least one of the historical investigations (e.g., 
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American Eel Anguilla rostrata, Site A). In just four instances, species-specific eDNA was 

detected at a location without any previous historical or simultaneous capture-based observation 

(1. Creek Chubsucker Erimyzon oblongus, Site F; 2. Bluehead Chub Nocomis leptocephalus, Site 

D and F; 3. Eastern Blacknose Dace Rhinichthys atratulus, Site C and F; 4. Torrent Sucker 

Thoburnia rhothoeca, Site C; Table 2.4). 

Table 2.4 Site-specific community-level presence and absence of Established Fish Species by 

sampling event. HP= Historical Presence (1958, 1990, 2014, and 2019 cumulative), PC = 

Positive Control, EDNA= Surface Water eDNA. 

 

 

All fourteen of the intermittent species of fish were detected by eDNA, while just nine of 

these species were collected during the simultaneous electrofishing sample (Table 2.5). Unique 

eDNA detections within this category included the Swamp Darter Etheostoma fusiforme, which 
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had not been observed by any of the capture-based surveys throughout the basin in over thirty 

years.  

Table 2.5 Basin-wide detection status of Intermittent Fish Species by sampling event. 

 

 

For intermittent species, surface water metabarcoding resulted in forty-one site-specific 

detections (Table 2.6). This was substantially higher than the eighteen observations derived from 

electrofishing alone. Forty-two observations within this category were congruent between the 

two gears. There were three instances of species-specific DNA being detected at locations not 

previously documented by capture-based surveys (e.g., Black Crappie Pomoxis nigromaculatus, 

Site C and D. In contrast, there are nine instances in which historical records indicate a species 

was present, but the species was not detected during SCEME, which further demonstrates the 

complexity and dynamic nature of the fish assemblage within the study area. 
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Table 2.6 Site-specific community-level presence and absence of Intermittent Fish Species by 

sampling event. HP= Historical Presence (1958, 1990, 2014, and 2019 cumulative), PC = 

Positive Control, EDNA= Surface Water eDNA. 

 

 

The largest disparity in species detections between sampling gears during SCEME 

occurred within the uncommon species occupancy category. None of the fifteen fishes within 

this classification were observed in the simultaneous electrofishing component of the survey, but 

fourteen were observed within the metabarcoding effort (Table 2.7). Detections for uncommon 

species included three species that were last observed in 1958, the Satinfin Shiner Cyprinella 

analostana, Roseface Shiner Notropis rubellus, and Fallfish Semotilus corporalis. Stripeback 

Darter Percina notogramma, was absent from both components of SCEME. Only two Stripeback 

Darter individuals have been observed within the basin, with the last observation occurring 

during the 1958 investigation. 
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Table 2.7 Basin-wide detection status of Uncommon Fish Species by sampling event. 

 

 

 Similar to the trend observed at the basin-wide lens, the most disparity in site-specific 

detections existed within the uncommon fish species classification. Although the two SCEME 

gears aligned on fifty “absent” designations, all twenty-three “present” site occupancy 

observations resulted solely from the metabarcoding component of SCEME (Table 2.8). Among 

the six uncommon fishes previously documented in Tuckahoe Creek, three eDNA detections 

occurred at the same sample site described by the historical capture-based surveys (e.g., Bowfin 

Amia calva, Site F).  
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Table 2.8 Site-specific community-level presence and absence of Uncommon Fish Species by 

sampling event. HP= Historical Presence (1958, 1990, 2014, and 2019 cumulative), PC = 

Positive Control, EDNA= Surface Water eDNA. 

 

 

Relationship between Relative Species Abundance and Proportional Species-Species DNA 

 Consistent with previous investigations of the Tuckahoe Creek fish assemblage, both 

SCEME techniques concurred that Bluegill Lepomis macrochirus remained the most abundant 

species of fish within the basin (Figure 2.2). For fishes within the established species category, 

the variance in basin-wide relative abundance estimates derived from electrofishing, and the 

proportion of corresponding species-specific DNA present at each sampling location was within 

five percent for all eighteen species. When ranked by order of relative abundance, three species 

in the established category shared the same ordered rank, which includes the most and least 

abundant species, Lepomis macrochirus and Centrarchus macropterus, respectively. 

Electrofishing derived relative abundance and proportional species-specific DNA had a higher 

deviation in the intermittent (Figure 2.3) and uncommon (Figure 2.4) classifications of fish. The 
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ordered rank of percent occupancy in intermittent species was congruent in just two species, 

Lepomis cyanellus and Semotilus atromaculatus. Because the electrofishing component of 

SCEME failed to capture any of the uncommon species, no comparisons for this occupancy 

category could be made.  

 

Figure 2.2 Basin-wide relative abundance of Established Fish Species observed by 2020 survey 

method; numbers denote the ranked order determined by relative abundance for each method. 
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Figure 2.3 Basin-wide relative abundance of Intermittent Fish Species observed by 2020 survey 

method; numbers denote the ranked order determined by relative abundance for each method. 
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Figure 2.4 Basin-wide relative abundance of Uncommon Fish Species observed by 2020 survey 

method; numbers denote the ranked order determined by relative abundance for each method. 

 

 Site-specific estimates of relative abundance reflect a unique fish community at each of 

the locations sampled. This was evident regardless of sampling gear. Quantities of species-

specific eDNA as described by percent composition did not indicate a strong downstream 

accumulative pattern of DNA throughout the continuum of nested sites for either of the 

categorical occupancy designations (e.g., Bluehead Chub Nocomis leptocephalus Figure 2.5, 

Green Sunfish Lepomis cyanellus Figure 2.6, Tessellated Darter Etheostoma olmstedi Figure 

2.7).  
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Figure 2.5 Site-specific relative abundance of Established Fish Species observed by 2020 survey 

method. 
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Figure 2.6 Site-specific relative abundance of Intermittent Fish Species observed by 2020 survey 

method. 
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Figure 2.7 Site-specific relative abundance of Uncommon Fish Species observed by 2020 survey 

method. 

 

Discussion 

 The metabarcoding component of SCEME in this study has resulted in a more 

comprehensive fish community dataset for the Tuckahoe Creek watershed than had previously 

been accomplished by historical capture-based surveys originating in 1869. This is highlighted 

by the added documentation of eight novel species of fish within the basin. Based on the 

metabarcoding techniques we assessed against the simultaneously conducted electrofishing 

survey, in addition to the historical capture-based surveys, our findings indicate that eDNA 

metabarcoding outperforms traditional sampling methods in describing both site-specific and 

basin-wide fish diversity. Through evaluating SCEME on a species rich assemblage, within a 
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natural system that is both dynamic and exhibits a plethora of abiotic characteristics, our study 

indicates that metabarcoding is an efficacious tool that has application across many fish 

communities, aquatic habitats, and environmental circumstances.  

By performing SCEME across nested sites within the same basin, our results indicate that 

eDNA metabarcoding has the potential to be spatially discrete within the same watershed, which 

could further aid in describing longitudinal species-level distributions. Localized detection 

sensitivity of metabarcoding was also apparent in our study where species-level detection varied 

on a latitudinal scale among same-site replicates. This result coincides with other eDNA research 

which has shown highly varied DNA dispersal and decay qualities, which may be dependent on 

the preferred habitats of target species, in combination with site-specific abiotic characteristics 

such as streamflow dynamics. Although sediment sourced eDNA ultimately proved inadequate 

in our study, we believe additional research is warranted to investigate the cause of DNA 

degradation in this medium, and if different techniques can improve upon its utility in the future. 

Although we aimed to compare the relative abundance of fishes between metabarcoding 

and electrofishing in this study, and generally found a pattern of similarity, it is likely that 

different communities were being simultaneously assessed by each SCEME technique. While the 

species compositions derived from electrofishing directly reflect the assemblage of the 

corresponding transect, and no additional area, the spatial extent of the fishery being assessed by 

each of the eDNA samples is unknown in our study. Based on findings in related literature that 

show eDNA dispersal and decay to be situationally varied, it is likely that the eDNA samples in 

our study reflect fish communities over varying longitudinal scales. However, given our 

exhaustive electrofishing efforts within the site-specific transects, we conclude that 

metabarcoding characterized the fish community across a greater upstream longitudinal distance 
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than each respective electrofishing survey. Under this assumption, in addition to the known 

species-specific biases associated with electrofishing, it is feasible that relative abundance as 

characterized by the proportion of species-specific DNA within the metabarcoding analysis in 

our study describes fish community composition at a higher accuracy than electrofishing, 

particularly at spatial scales not feasible for capture-based methods (i.e., basin-wide). 

Of the eight novel species detected by metabarcoding in our study, Florida Largemouth 

Bass Micropterus floridanus, Tessellated Darter Etheostoma olmstedi, and Western Mosquitofish 

Gambusia affinis, may have been recently introduced to the system, as they are commonly 

spread by recreational anglers for bait or sport. Another possibility is that these species were 

misidentified in previous capture-based surveys due to sharing morphologically indiscriminate 

features with the similar group of previously observed species, Largemouth Bass Micropterus 

salmoides, Johnny Darter Etheostoma nigrum, and Eastern Mosquitofish Gambusia holbrooki, 

respectively. The final possibility is that these species have integrated and resulting hybrids may 

exhibit more phenotypical expression of characteristics associated with the latter set of species 

(Jenkins and Burkhead 1994).  

The remaining novel fishes, the Common Carp Cyprinus carpio, Longnose Gar 

Lepisosteus osseus, Blue Catfish Ictalurus furcatus, Channel Catfish Ictalurus punctatus, and 

Flathead Catfish Pylodictis olivaris, were documented as having a low abundance as determined 

by the proportion of their DNA within the metabarcoding analysis. Finally, while each of the 

eight novel species have been previously described throughout Tuckahoe Creek’s parent 

watershed, the James River basin, only the Tessellated Darter and Longnose Gar are considered 

native. This alludes to the possibility that metabarcoding is an extremely useful tool for locating 
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undesirable or introduced species (Baudry et al., 2021), allowing for more expedient 

management responses.  

In addition to data-centric advantages made possible by metabarcoding, as evidenced in 

this study, a number of ethical and logistical considerations also exist. With the well-being of the 

study subjects in mind, metabarcoding may be ethically advantageous for assessing fish 

communities during periods of drought or elevated water temperatures, as well as during 

vulnerable life history phases that can include migration, active reproduction, or thermal refugia. 

Further, eDNA sampling can be replicated across higher spatial intensities at a faster rate than 

conventional sampling techniques (Civade et al., 2016), and sampling frequency likely has little 

or no effect on the fishery or an ecosystem’s abiotic components. Our study also indicates that 

samples may contain DNA from more distant upstream sources, potentially allowing for an 

increased flexibility in logistics due to site access, as well as water quality parameters such as 

depth, conductivity, depth, temperature, and turbidity. Lastly, metabarcoding results are not 

biased by an individual surveyor’s ability to see, net, or correctly identify specimens. As a result, 

metabarcoding is highly duplicable regardless of the individuals performing the collection. 

Along with using a combination of complimentary detection primers, we increased the 

validity of our metabarcoding findings by developing and abiding by a structured field and 

laboratory protocol. While additional measures may paradoxically increase the cost of laboratory 

analysis, we believe this practice is invaluable to the metabarcoding process. Additional 

legitimacy in our results can be attributed to the partial blinding measures that were undertaken 

from the inception of the study. Laboratory analysts received only coded identifiers for each 

sample, which were absent of descriptive information, and were given an exhaustive list of 

plausible species that far exceeded the expected detections with which to build the reference 
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database. Lab personnel also remained blind to the capture-based results until the study was 

concluded.  

This study builds upon a growing body of evidence that suggests surface water 

metabarcoding is an optimal technique for assessing fish assemblage diversity. We found the 

advantage of metabarcoding was particularly evident when looking at species of fish that we 

categorized as intermittent or uncommon within the study area. As contemporary fisheries 

investigations increasingly prioritize the monitoring and conservation of rare, sensitive, and 

threatened species, it is likely that the application of eDNA techniques will see increased usage 

in fisheries science. Despite limitations, our study demonstrates that eDNA metabarcoding is a 

tool that must be considered for describing fish assemblages in dynamic environments. We 

believe and advocate for additional research using SCEME techniques, which will advance the 

understanding of metabarcoding and benefit fisheries science at a disciplinary level.  
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Appendix 

Table 2.9 Presence and absence of genetic sequence availability for final reference database (* 

denotes that the sequence was generated in this study). 
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Table 2.9 (cont.) 
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Table 2.9 (cont.) 
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