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ABSTRACT 
This article is a preface to a special issue of 
the Journal of Mathematics and Science: 
Collaborative Explorations which features 
articles that describe (a) online components 
of mathematics specialist preparation and 
mentoring programs, (b) the mentoring and 
support of teachers preparing to serve as 
mathematics teacher leaders, and (c) the 
subsequent service of mathematics 
specialists in leadership roles. This preface 
describes the context within which the 
described online activities took place, 
provides a common glossary of terms that 
will be used consistently across all the 
articles, and briefly introduces each of the 
fourteen papers that constitute the special 
issue. 
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This special issue of the Journal of Mathematics and Science: Collaborative 
Explorations features articles that describe (a) online components of mathematics specialist 
preparation and mentoring programs, (b) the mentoring and support of teachers preparing to 
serve as mathematics teacher leaders, and (c) the subsequent service of mathematics specialists 
in leadership roles. This preface describes the context within which the described online 
activities took place, provides a common glossary of terms that will be used consistently across 
all the articles, and briefly introduces each of the fourteen papers that constitute the special issue. 
 

Mathematics Specialists 
 
Similar to the approach taken by McGatha and Rigelman (2017), throughout this special 

issue, the term mathematics specialist will refer to individuals in PK–12 schools who serve as 
mathematics coaches or program leaders. Indeed, the preparation programs described in this 
issue are primarily designed to prepare teachers to serve as mathematics coaches or program 
leaders. However, program graduates may and do, at the discretion of their school systems, serve 
in one or more of the following roles: mathematics teacher, mathematics interventionist, and 
mathematics coach or program leader. 

 
Research on the Impact of Mathematics Specialists 

 
While a large portion of the research on mathematics specialists has focused on the 

various mathematics specialist roles and responsibilities (e.g., Mudzimiri et al., 2014), 
researchers have investigated several areas in which the work of the mathematics specialist is 
important including (a) the exploration of the mathematics specialist’s relationship with and 
work with teachers (Chval et al. 2010; Gibbons & Cobb, 2012; Marsh et al., 2010; Polly, 2012; 
Race et al., 2002); (b) the knowledge and ongoing support required of the mathematics specialist 
(Baldinger, 2014; Bitto, 2015; de Araujo et al., 2017; Fennell et al., 2017; Shaughnessey et al., 
2017; Sutton et al., 2011); (c) the preparation of teachers to serve in these roles (Baker et al., 
2018; Myers et al., 2020); and (d) the design of the online learning environment (Baker & 
Hjalmarson, 2019). Furthermore, research has also explored the impact of mathematics 
specialists on teachers and students (Baker et al., 2017; Balfanz et al., 2006; Campbell et al., 
2017; Markworth, 2017; Polly, 2012; Race et al., 2002). 

In Virginia, several large-scale studies have been conducted on the impact of 
mathematics specialists in K–8 schools. In a three-year, randomized, control study, Campbell 
and Malkus (2010; 2011) found that over time mathematics specialists had a significant positive 
influence on student achievement in third, fourth, and fifth grades. The impact was evident after 
two years on the job with the increase in scores for students in schools with a trained 
mathematics specialist on average ten or more points higher on mathematics achievement tests 
when compared to students in schools without a specialist. Additionally, a two-year study 
explored the relationships among mathematics specialists, classroom teachers, and the building 
administrators in order to develop a deeper understanding of the processes that influence 
continuous improvement of K–8 mathematics achievement and effective mathematics teaching 
in school settings. Ellington et al. (2017) found that being highly engaged with the mathematics 
specialist had a significant impact on middle school teacher beliefs about how students learn 
mathematics and on student achievement. Over time, highly engaged teachers developed an 
understanding that students should work through ideas to make sense of them in order to develop 
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a deep understanding of mathematical concepts. With respect to student achievement, in grades 
six and seven, students of teachers who were highly engaged with the specialist performed 
significantly better on achievement tests than students of teachers who were not highly engaged.  

 
Online Professional Development for Teachers 

 
Online learning is an effective mode for delivering graduate and professional education. 

The benefits of online learning are well documented with respect to accessibility, efficacy, cost 
effectiveness, learner flexibility, and interactivity (e.g., Sinclair et al., 2016). Online 
communities of practice promote and deepen teacher reflective practice (Hough et al., 2004; 
Stiler & Philleo, 2003), afford opportunities for teachers to share their expertise and develop 
collegial, long lasting relationships (Hanson-Smith, 2006; Paulus & Scherff, 2008), enable 
educators to collaborate and integrate educational theory into their practice (Dibbon & Stevens, 
2008), and increase teachers' self-efficacy (Vavasseur & MacGreor, 2008). Dede et al. (2009) 
assert that teachers need access to professional development experiences that capitalize on 
“powerful resources often not available locally, and that can create an evolutionary path toward 
providing real-time, ongoing, work-embedded support” (p. 9).  

 
Virginia Mathematics Specialist Add-On Endorsement 

 
The K–8 Mathematics Specialist endorsement in Virginia requires that individuals be 

fully licensed teachers with at least three years’ experience. To meet these requirements, 
candidates complete a master’s degree that aligns with the national preparation standards for 
mathematics specialists (Association of Mathematics Teacher Educators, 2013; National Council 
of Teachers of Mathematics, 2012) and includes opportunities for candidates to develop a deep 
understanding of (a) K–8 mathematics in areas such as number and operations, rational numbers, 
geometry, algebra and functions, and probability and statistics; (b) pedagogical content 
knowledge across the K–8 curriculum; and  (c) leadership and coaching skills needed for 
working with teachers. Master’s level programs have been developed at a number of different 
universities across the state and are approved by the Virginia Department of Education. At most 
institutions, teachers who have previously earned a masters’ degree in a related area can earn the 
add-on endorsement by completing only the mathematics and leadership courses necessary to 
meet the endorsement requirements that were not satisfied by prior course work. 

 
Transition to Online Mathematics Specialist Preparation Programs 

 
In Virginia, the initial mathematics specialist preparation programs were taught in a face-

to-face format and fully engaged candidates in in-depth discussions of mathematical ideas to 
prepare them for work as mathematics coaches. Virginia Commonwealth University began to 
offer a blended program in 2010 and then, with support from a National Science Foundation 
Noyce grant that is also funding this special issue, offered fully online courses to its first cohort 
beginning in 2017. Many of the instructors for courses in this cohort had participated in or been 
candidates in face-to-face mathematics specialist preparation programs. George Mason 
University’s program has also offered an online hybrid format since 2010 and added a fully 
synchronous online format in 2017, so the instructors in that program have significant experience 
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with online instruction. The Longwood University program has been offered through a hybrid 
format for approximately 10 years. 

 
 Synchronous Online Learning Environment 
 

Each of the courses described in this special issue have significant synchronous learning 
components, during which all candidates are online concurrently. The online synchronous format 
permits lively whole group discussions. Candidates are also regularly placed in virtual breakout 
rooms where they can discuss the mathematical ideas under study in small groups.  

 
Asynchronous Online Learning Environment 
 

Some components of the courses are offered in an asynchronous format during which 
candidates complete assignments on their own time away from the synchronous learning 
environment. An example of this type of assignment is an assigned reading in which candidates 
respond to prompts in a discussion board or some other virtual medium, and their responses are 
subsequently read and responded to by other candidates as well as the course instructors. Select 
portions of the mathematics specialist courses described in this special issue involve this format. 

 
Co-Authors of Papers 

 
All of the papers in this special issue are co-authored. These teams typically consist of 

individuals who are endorsed mathematics specialists, school administrators, full-time university 
mathematics educators, or university mathematicians.  

 
Terminology 

 
• Instructor –– This term refers to any individual who teaches or co-teaches a mathematics 

or leadership course in a mathematics specialist preparation program.  
• Candidate –– This term refers to any K–12 teacher who is or was enrolled in a 

mathematics specialist preparation program. 
• Teacher –– This term describes any PK–12 school personnel who is primarily 

responsible for educating PK–12 students.  
• Student –– This term refers to any PK–12 student in both public and private settings.  

 
JMSCE Special Issue Articles 

 
The papers in the special issue describe transitioning from face-to-face to online learning 

environments, challenges and benefits of an online mathematics specialist preparation program, 
mentoring new mathematics coaches or on-going mentoring programs, using online tools to 
coach teachers; and specialists developing partnerships with principals. 

 
Online versus In-person Mathematics Instruction: A Comparison of Two 

Instructional Models explores the differences between online and traditional in-person teaching 
and learning modalities. The authors describe the preparation for and teaching of online 
mathematics, focusing on establishing norms and the use of technology. By identifying key 
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similarities and differences between instructional modalities and by reflecting on successes and 
challenges, a vision of online teaching and learning for mathematics courses emerges that can be 
effective, inclusive, and relational. 

Connected at a Distance: Experiences and Efforts Within a Synchronous, Online 
Mathematics Specialist Program describes the purposeful opportunities that were provided 
throughout a mathematics specialist preparation program for candidates to make ongoing 
personal and professional connections with each other. Based on the idea that learning is a social 
construct, instructors and candidates worked to form and sustain an online learning community. 
The authors share ways that intentional connectedness can be extended to other educational 
contexts.  

Instructor Perspectives: Transitioning from Face-to-Face to an Online or Hybrid 
Graduate Level Mathematics Education Course shares reflections and lessons learned from 
instructors at three different institutions as they made the transition from face-to-face to online or 
hybrid instructional models. The authors share their experiences in constructing lessons and 
facilitating class sessions. They describe their personal and professional growth through the 
experience and share takeaways for institutions planning to develop online professional 
development programs for teachers.  

Transitioning a Mathematics Specialist Preparation Program into an Interactive 
Online Program: Insights from the Developer and Candidate Perspectives describes how an 
entire preparation program transitioned from a set of face-to-face courses to an entirely online 
instructional format. Both the instructor and the candidate perspectives on the changes that were 
made are shared. The paper states that the goal was to use online tools and remote instruction for 
all aspects of the program while at the same time maintaining the highly interactive nature and 
the rigorous instruction that the face-to-face preparation program was known for. 

Developing Equity-Centered Leadership Knowledge and Skills via Lesson Study in 
an Online Mathematics Specialist Program describes coursework within a synchronous online 
mathematics specialist program that enhanced candidates’ leadership knowledge and provided 
structures that addressed issues of equity and access. The paper focuses on an online assignment 
grounded in Lesson Study that played a pivotal role in helping candidates develop equity-
centered leadership and instructional practices. The experiences shared by course instructors and 
recent program alumni support the broader goal of achieving a cohesive vision for the teaching 
and learning of K–8 mathematics, while promoting equitable practices in school-based work. 

 Learning to Anticipate in an Online Class: Perspectives of an Instructor and a 
Mathematics Specialist Candidate features the practice of anticipating how a learner will 
approach an activity from two perspectives: a course instructor and a mathematics specialist 
candidate. The authors note that learning to anticipate was one skill that helped to develop a rich 
community of learners that provided opportunities for everyone to grow through their 
interactions with and reflections on course content. 

Mathematical Representations in a Synchronous Online Mathematics Specialist 
Preparation Program addresses the possible concerns of compromising quality pedagogy for 
convenience when designing synchronous online courses. In addition to maintaining rich 
discussion and student collaboration in an online environment, mathematics content courses 
include the additional challenge of incorporating problem-solving with multiple representations. 
This paper focuses on how these mathematical representations emerge and develop during a 
synchronous online course for mathematics specialists. 
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Team Teaching for Discourse: Perspectives of Instructors and a Student in an 
Online Probability and Statistics Course for Preparing Mathematics Specialists describes 
the interactions of and reflections from three course instructors and a mathematics specialist 
candidate during the planning and enactment of a Probability and Statistics course for 
mathematics specialists. The authors discuss the strengths of discourse in the planning stage as a 
way to create and sustain a sense of community and share multiple perspectives in an online 
course. They share how the experiences of a diverse team were crucial to successful 
implementation of a team-teaching approach to instruction. 

 Equity and Access: Empowering Change Agents shares how mathematics specialists 
are uniquely situated to contribute to the creation of access and equity for all learners by 
addressing three target areas with their mathematics teachers and administrators. Three possible 
obstacles to access and equity are: beliefs and expectations, curriculum and instruction, and 
intervention. Mathematics specialists can be prepared to address these obstacles through their 
preparation in leadership courses that are intentionally designed to help them practice negotiating 
the role of change agent. 

The Role of a Mathematics Content-Focused Coaching Project in Preparing 
Mathematics Specialist Candidates to Coach describes the mathematics content-focused 
coaching process from the perspective of mathematics specialists in their work with teachers. In 
particular, the paper outlines effective strategies and techniques used by the mathematics 
specialists as they work with teachers and focus on mathematics and student learning. The 
authors share an activity that provides novice mathematics specialists with the opportunity to 
reflect on all aspects of the coaching cycle. They share ways in which this reflective activity can 
be used to support learning. 

Online Education: Transferring Personal Experiences to Professional Development 
describes how participation in a mathematics specialist preparation program helped prepare one 
mathematics teacher leader to develop and offer online professional development for teachers. 
The paper highlights the importance of building relationships and using high-quality 
mathematical tasks in online professional development. This case study provides evidence that 
exposure to online learning environments as a learner can help lower the barrier of entry for 
planning and providing online learning experiences as a mathematics specialist. 

Virtual Mentorship of Teacher Leaders: The Ripple Effect describes a monthly 
online mentoring program for novice mathematics specialists. Two mathematics specialists 
serving as mentors and two candidates participating in the mentoring program share their 
thoughts and ideas on the support provided through online mentoring. The authors discuss the 
benefits and constraints of mentoring in an online environment and ways this particular program 
can be a model for other virtual mentoring programs. 

Providing Job-Embedded Professional Development for Mathematics Specialists 
highlights the importance of providing job-embedded professional development for mathematics 
specialists. Just as mathematics specialists provide coaching to teachers to help with their 
professional growth, similar opportunities for the growth must be identified for mathematics 
specialists. This paper identifies purposes of professional development for coaching to include 
supporting growth in content knowledge, pedagogical expertise, coaching skills, professionalism, 
and leadership. The authors advocate for a virtual network of mathematics specialists in similar 
positions. 

A Relationship Built to Impact Instruction: Developing and Sustaining Productive 
Partnerships between Mathematics Specialists and Principals emphasizes the importance of 
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a strong relationship between the mathematics specialist and school administrators to the success 
of the mathematics specialist’s work in the school building. The authors share examples of 
partnerships that are based on a shared vision for mathematics instruction and describe the 
impact on student mathematics achievement. The authors share examples from prior to the 
COVID-19 pandemic as well as examples of successful partnerships during the pandemic that 
required brainstorming and creativity on the part of teachers, mathematics specialists, and 
administrators.  
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ABSTRACT 
Our paper explores the differences between 
online and traditional, in-person teaching 
and learning modalities, looking specifically 
at courses preparing teachers to be 
mathematics teacher leaders. In the context 
of current research on the teaching and 
learning of mathematics in an online setting, 
we share our own experiences. We describe 
the preparation for and teaching of online 
mathematics, focusing on establishing 
norms and the use of technology. The 
changing teaching and learning 
opportunities of the 21st century require 
discussion of these vital issues. We include 
stories of interactions between candidates 
and teachers and among groups of 
candidates in mathematics courses, detailing 
not just the discursive and work-sharing 
tools but the nature and nuance of these 
interactions and how they mediate 
mathematics learning. We share our online 
teaching and learning experiences, drawing 
on research to frame our impressions. By 
identifying key similarities and differences 
between instructional modalities and by 
reflecting critically on our own successes 
and challenges, we present a vision of online 
teaching and learning for mathematics 
courses, in particular those for mathematics 
specialists, that can be effective, inclusive, 
and relational. 
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In the summer of 2017, a group of 30 elementary and middle school educators across 
Virginia logged into a virtual mathematics classroom. It was the first of several Virginia 
Commonwealth University (VCU) courses designed to prepare in-service teachers to serve as 
mathematics specialists. Mathematics courses were designed to broaden candidates’ 
understanding of both content and pedagogy, and leadership classes helped cultivate the 
professional dispositions unique to instructional coaches. This cohort represented a landmark 
change in the evolution of VCU’s program: their courses would be delivered entirely online 
through a Learning Management System (LMS) with video conferencing capabilities. 
Candidates were provided headsets and a drawing tablet for creating digital drawings. 
Throughout this paper we refer to technology tools in a general way, focusing on functionality, 
and we believe our findings to be relevant to online mathematics instruction overall regardless of 
specific tools. 

This mathematics specialist preparation program consisted of six mathematics courses, 
three mathematics education leadership courses, and a capstone project spanning two semesters. 
All courses were taught using a flipped classroom model. Candidates were provided with 
prerequisite work through the LMS for each class session including readings, mathematics 
activities, reflections, and small group activities. For all courses in the program, prerequisite 
work guided the activities and discussions during the following synchronous class sessions.  

 
Literature Review 

 
Our framework for reflecting on mathematics courses, from both an instructor and 

candidate point of view, is informed by the concept of a “community of inquiry,” developed by 
Garrison, Anderson, & Archer (2001; 2010). Features of this framework include the Deweyan 
notion of inquiry as a social activity, which despite the qualifier “social” also hinges on the 
private, reflective actions of the individual learner. In other words, we recognize that meaningful 
online mathematics learning happens when “students move repeatedly between reflection and 
discourse” (Garrison et al., 2001, p. 9). We also draw on their notion of “social presence,” which 
is related to group cohesion––a feature we believe develops from a strong sense of relationship 
and trust––and shared social identity, established early on by virtue of the common goal of state 
certification but strengthened over time by philosophical and methodological consensus (namely, 
a commitment to teaching mathematics for understanding).  

In comparing in-person to online teaching and learning modalities, we draw on the work 
of Claire Howell Major, who, in 2015, published a long overdue guide to the praxis of teaching 
online. Her prescient opening essay examines how teaching and learning are mediated by 
technology itself, how technology shapes both interactions and products, and indeed how virtual 
educational reality is experienced by all participants. When she states that the online instructor 
“interpret(s) the instructional experience with the technology,” (p. 11) she does not limit the 
“experience” to comments, solutions, models, and other such empirical products. Educational 
experience includes “feelings, thoughts and relationships,” which are no less refracted through 
the lens of technology. Pauses during class discourse, verbal and textual exchanges among 
students, fully-formed (rather than inchoate) posted solutions: these are interpretable “through 
and with technology” and hence influence the instructor’s judgment not just of student learning 
but of the overall affective domain of the online classroom.  

Our aim is to share both learner and instructor experiences in online mathematics courses, 
illuminating key differences between in-person and virtual classroom spaces. We emphasize the 
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need for nurturing strong interpersonal connections within the peculiar space of online learning, 
perhaps especially in contemporary mathematics courses where intellectual risk-taking and open 
discourse are generative forces. 

 
Comparing Online and In-person Mathematics Teaching and Learning 

 
Teachers transitioning from in-person to online mathematics instruction can benefit from 

reading testimonials about this paradigm shift, as the foray into online education can be uneasy 
or even unsettling. With synchronous class meetings, the virtual classroom is neither room-like 
nor entirely cold or inhuman. For instructors and candidates alike, the environment borders 
between the familiar and unfamiliar. Some hallmarks of in-person learning environments are 
reproduced in online instruction. For example, there are typically many students and few 
teachers, there may be a front-and-center “whiteboard,” and so on. Yet despite these traditions, 
virtual classrooms cultivate a markedly different classroom ecology. This section will compare 
online instruction to in-person instruction to help readers make connections between the styles of 
teaching and make suggestions for intentional change. We describe some of the struggles of 
online instruction and will include a discussion of strategies that can be used to address the 
challenges of online instruction.  

As a teacher new to online instruction said recently, “In an online class, it’s very hard to 
take the temperature of the room” (personal communication). In the context of an online 
mathematics class, this difficulty is especially problematic. Although physical and affective cues 
are not under complete erasure, they are surely less apparent. As Claire Howell-Major says, “We 
cannot see a student’s happiness at answering a question well or puzzlement over another 
students’ response” (2015, p. 12). Our ability to read the room––to know whether or not 
candidates understand a given mathematics problem, to sense when they are persisting or 
capitulating––is based less on interpersonal skills and more on the technology itself. For 
example, after we posed a mathematics problem and broke candidates into virtual small groups, 
instructors were able to “visit” these small groups to check in with students. On several 
occasions, when we entered a small group session, a candidate would immediately ask a 
clarifying question about what they were “supposed to do.” To the seasoned mathematics 
instructor, this might sound familiar. Indeed, appealing to the instructor for clarification and 
support is not uncommon in an in-person mathematics class. But in an online format, we are 
entirely dependent on the affordances of the technology (here, the “join group” feature that 
allowed instructors to enter small group forums) to support learning. 

Similarly, the chat feature became a means of clarifying questions and responses and 
even arguing for or against ideas. We recognize these actions as critical mathematical habits of 
mind. In a chat forum they are usually textual (we say “usually” because emojis were also 
featured prominently in whole group chats) and appear in rapid succession. But as a candidate in 
an online course said recently, “What you say in a chat––it’s just out there in print for everyone 
to see.” Might it have seemed riskier for candidates to contribute to a chat forum? Alternatively, 
some candidates may have sensed less risk in contributing to the chat forum, a forum that is not 
restricted to the “one-at-a-time” formality of group discourse. Since robust mathematical 
discourse requires some degree of risk-taking, the textual chat function may have mediated the 
quantity and quality of discourse.  
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Building Classroom Culture 
 
As with in-person courses, teachers of online mathematics courses spend time 

establishing norms and expectations and building a culture of collaboration through a community 
of inquiry. Fortunately, many online platforms incorporate tools to help establish norms, 
including “raise hand,” “thumbs up/thumbs down,” typing into a chat box, and sharing pictures 
(all experienced through on-screen notifications for the instructor). In our online cohort, 
candidates were expected to participate using these tools as a quick check for understanding. For 
establishing relationships, the use of breakout groups provided the opportunity for small group 
work before and during class. 

Camera use varied by instructor: some required candidates to have cameras on during 
whole group discussions, and others left it up to the individual. Most candidates preferred to use 
the cameras during small group interactions, even if their cameras were off in the large group. 
Through the use of the camera and other aforementioned platform tools, instructors could 
document student participation in a variety of ways. It is important for instructors to be specific 
with students about how participation will be evaluated, as “active participation” can look quite 
different online than in person. 

The norm of using physical manipulatives helped develop the mathematical content of 
our courses. When planning lessons, instructors made a list of required manipulatives for each 
class. Candidates were expected to have those manipulatives available for use during class. 
Virtual manipulatives were used at times but were not used in place of physical manipulatives. 
Frequently, instructors utilized discussion boards where candidates could contribute a photo of 
their manipulatives with a description of their work. These images were then used to guide 
conversation about the mathematical activities. 

Instructors provided some form of agenda document to drive instruction. Many 
professors opted for a slide presentation that included directions for activities and live links to 
external tools used for those activities. Frequently this agenda document would be shared with 
candidates prior to class, and it was always made available after class, along with a video 
recording of the synchronous session, through the online platform.  

Finally, attendance at synchronous sessions was mandatory for all candidates. As a 
graduate level mathematics specialist cohort, attendance overall was not an issue. On the rare 
occasion that a candidate missed a synchronous class, the video recording could be used to fill in 
learning gaps. However, watching the recorded session was not viewed as a substitute for in-
class learning.  

 
Candidate Experiences 

 
Patrick 
 

The VCU mathematics specialist preparation program was my first experience with an 
online class. I was nervous the first day because I knew the other candidates were also strong 
mathematics instructors. I wanted to do well not just for myself, but also because I was 
representing my district. I found that the strength of the other students in the program helped 
push me to perform beyond what I thought I was capable of accomplishing. 
  I had a preconceived idea that we would not be doing any group work since everyone 
was online. I found out otherwise on the first day of class. I was surprised the LMS had breakout 
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rooms where we could meet in small groups for discussion. The small group discussions were 
beneficial because I was able to hear strategies and ideas from mathematics teachers across the 
state. One strategy I learned from another candidate incorporated numberless word problems to 
build understanding of practical problems. I researched the concept of numberless word 
problems, used it in the classroom, and also facilitated a professional learning experience on the 
subject. That one strategy helped hundreds of students in my district. 
 We also had group work outside of class. At times, that became problematic due to short 
turnarounds and work obligations. It was difficult to find meeting times that worked for all group 
members. The use of a collaborative document improved our asynchronous communication. We 
would share the work and provide feedback for everyone to see and respond. As the classes 
progressed, this became the normal way we would complete the weekly group work. 

I prefer to “see” a concept to understand it. I wondered if I would have difficulties 
learning new concepts online. I found it was much easier than I expected. All of the candidates 
were instructed to have access to certain manipulatives for each lesson. We would build a model, 
take pictures of what we built, and upload to share and explain with the class. Seeing everyone’s 
pictures as they explained their model helped me learn a concept I was struggling to understand. 
 In an in-person classroom setting, I am an active participant and enjoy engaging with the 
instructor and class members. It was the same in an online setting. I had the ability to use the 
raise hand tool to ask any questions that were pertinent. But in a classroom, I can view other 
students' faces and body language to gauge their understanding of a concept and compare it to 
my own understanding. In an online setting, that was difficult to accomplish. I did not know if I 
was the only one having difficulty grasping a new concept, or if I was one of the few who 
immediately understood it. During the first few classes, the isolation made me question my 
ability at times. Through whole group and small group discussions, I found my understanding 
mirrored the majority of the cohort most of the time, and I was able to feel more comfortable 
learning new concepts and asking questions without fear of ridicule. 
 
Allison 

 
Prior to beginning the VCU program, I had taken an online mathematics course at 

another university. The class was asynchronous, so lessons were posted in the form of videos, 
digital presentations, textbook reading, and homework problems. I never met my professor or 
had any interaction with other students in the class. I found learning in this environment to be 
extremely challenging.  

VCU’s online mathematics specialist preparation program was vastly different from my 
previous experience. One of the aspects that made the biggest difference for me was the cohort 
of candidates. We spent two and half years learning together virtually, only meeting each other 
in person one time at the beginning of our program. Through the small group work, breakout 
rooms, and synchronous class time, we were able to build relationships and develop trust with 
one another. This allowed the learning experience to be authentic, for candidates to ask questions 
without fear of judgment, and for candidates to take risks. Additionally, the cohort represented a 
group with diverse backgrounds in teaching mathematics. I learned so much from candidates 
who were from the elementary world, giving me a window into how students learn before 
coming to middle school. The relationships I developed during this program continue to play an 
important role in my life, both professionally and personally. 
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Instructor Experiences 
 
In planning our mathematics instruction, we took activities that had previously been used 

for in-person classes and adapted them to an online format. Specifically, we used materials from 
the Developing Mathematical Ideas (DMI) professional development program1 and altered them 
to meet our online needs. It is important to note that the DMI materials were not originally 
designed for an online environment, but the program’s unique blend of classroom case studies 
and rich mathematics tasks generated, as we had hoped, strong mathematical and discursive 
engagement among the candidates. What follows are the testimonials of two instructors whose 
courses may be regarded as bookends of sorts: Numbers and Operations was the first course in 
the program, and Algebra and Functions II was the last.  

 
Cat 
  

When my colleagues and I began preparing for the course we taught in the summer of 
2017, Numbers and Operations, our discussions included familiar topics: What multi-base 
activities would help enrich candidates’ understanding of base ten numeration? What kind of 
models for fraction multiplication should we emphasize? Mathematics content and pedagogy 
were certainly in our wheelhouse, but when our discussions turned to the subject of technology, I 
was in new territory. There were tools both tangible (headphones, electronic personal slates, and 
pens) and intangible (tabs, links, menus, pages, and buttons) to contend with. In fairness, I was 
no stranger to digital technology. After all, I had used digital technology capably enough in an 
in-person classroom setting. This time, however, what was daunting was not the presence of 
digital technology but its primacy. In the online version of Numbers and Operations, the quality 
of mathematics teaching and learning would be tied inextricably to the capability of the tools 
and, of course, to user fluency. As instructors, we also felt strongly that the key to promoting a 
true “community of inquiry” was in using the candidates’ own responses and solutions to help 
move through mathematical content in a meaningful way. It was therefore crucial that we 
quickly adapt our digital presentations to reflect the mathematical thinking of candidates. 
 For each class session, my two co-instructors and I created a digital presentation using 
images of children's work featured in the DMI case studies. For example, we devoted a 
significant portion of a class session to a whole number division strategy involving an intentional 
decomposition of the dividend. Connected to what is formally called the “right distributive 
property of division,” this invented strategy is one we asked candidates to explore by (1) creating 
a contextual division problem, (2) using and modeling the targeted strategy, and (3) stating and 
defending whether or not the strategy would always work. Figure 1 represents how a candidate 
modeled a division strategy using snap cubes. The model demonstrates how 115 ÷ 5 is equal to 
(50 + 50 + 15) ÷ 5. 

To answer mathematical focus questions such as the one related to this division strategy, 
candidates frequently photographed, annotated, and uploaded their responses to discussion 
forums. After reviewing all submissions, instructors selected a few samples, with an eye towards 
diversity of mathematical representation, and embedded them in the presentation for the 
following session. Candidates’ solutions therefore did not function merely as assessments or as 
                                                
1 DMI was a project originally spearheaded by researchers Deborah Schifter, Virginia Bastable, and Susan Jo 
Russell and was an outgrowth of the Teaching to Big Ideas project funded by the National Science Foundation. (See, 
for example, Schifter, D., Bastable, V., & Russell, S., (2016)). 
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punctuation marks ending a particular mathematics topic. Rather, they drove group discussions 
focusing on the similarities and differences among models/solutions. 

 
Figure 1 
Division Modeling using Snap Cubes 

 
Note. The dividend, 115, is partitioned into “chunks” that are divisible by 5. To find the quotient, the partial 
quotients, 10, 10, and 3, are added together. 
 

The prompt, “Will the strategy always work? Why or why not?” was designed to deepen 
thinking and, when shared publicly, drive consensus or disagreement. Candidates used everyday 
language to defend their position on the generalizability of the division strategy. Some 
candidates indicated that this strategy would always work, while one in particular argued that the 
appropriateness of the strategy is entirely context-bound. In other words, if the problem were 
instead 116 ÷ 5 and the context involved putting people into equal groups, how would we wrestle 
with the remaining 1 ÷ 5? The tension among conflicting responses, and the conversation it 
generated, is one of the ways mathematical understanding was negotiated within the community 
of inquiry. 

The use of candidates’ own work helped the group build what Garrison et al. (2010) calls 
a “shared social identity,” that of teachers taking a deeper dive into the complexity of elementary 
mathematics. However, doing so was not without its challenges. We knew there was an element 
of risk in putting certain candidates’ work “on the spot,” so to speak. It is one thing for a 
candidate to speak up voluntarily in an online discussion or contribute to a chat forum, but it may 
have been awkward for candidates to find themselves involuntarily at the center of discussion. 
Periodically, it was even instructive to use examples that were mathematically incorrect, leaving 
it to the group to analyze. As stated earlier, it is far more difficult to read affective cues in an 
online course, so whether or not this was productive for all remains unclear. 

 
Chelsea 

 
When I taught Algebra and Functions II as the last class for the cohort, it was my first 

foray into teaching at the collegiate level, as well as my first time teaching online. After 
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attending a previous in-person cohort, I was very familiar with the material, but completely 
unfamiliar with the LMS. I co-taught the class with two other instructors who had more 
experience than I did, both in collegiate level teaching and online instruction.  

The teaching team took turns planning different parts of the lessons. Most classes began 
with a discussion of reading material, sometimes a discussion of homework assignments, at least 
one mathematics activity that corresponded to the readings or homework, and at least one 
summary closure activity. For many tasks, we divided candidates into small groups using the 
online platform. In doing so, the instructors all remained in the main “room,” and candidates 
moved to breakout rooms with two to three people in each. With three instructors, we were each 
able to visit two to three rooms to offer assistance to candidates and listen to their conversations. 
At times, I got caught in deep discussions with one room and did not get a chance to visit with all 
of the candidates. On the rare occasion that only two instructors could be present, attending to 
several rooms was much more challenging, as we were unable to spend significant time in any 
one discussion. My natural desire to reach every candidate was complicated by the need to move 
quickly between virtual rooms, a technology skill I am still developing. 

Another difficult aspect of teaching mathematics online is the required use of wait time, 
especially while in small groups. When teaching in person, I use wait time to allow students to 
process directions and gather their thoughts before discussing an answer to a question. During 
that time, I walk around and observe students working and see their thinking in action. In an 
online setting, I have to trust that students are engaging with the learning, and the amount of wait 
time required becomes guesswork. When I only see what is on camera (often not showing the 
‘work’ that students are completing), I have to fight the urge to continue talking just to fill the 
silence. To me, the wait time silence in an online format is excruciating compared to wait time 
when teaching in person. I find it best to explain the directions, answer clarifying questions, and 
then shut off my microphone entirely until students use virtual tools to signal they are ready to 
discuss. 

Gauging student understanding in a virtual environment can be challenging. During in-
person classes, I scan the room and watch students’ body language as an indication of 
understanding. I regularly make decisions about my next move by observing students nodding, 
shrugging, tilting their heads, etc. Some online tools are useful for that type of feedback. I 
regularly use the thumbs up/thumbs down tool to gauge student understanding, but I find it more 
time consuming to gather and interpret that quantitative feedback online than in person. 
Observing and engaging in small group discussions provides a crucial structure for connecting 
with students, without which it would be impossible to gauge student understanding. By building 
relationships, we are able to gather qualitative feedback that provides more insight into each 
student’s experience.  

 
Conclusion 

  
The interactions among instructors and candidates in the classroom are, importantly, both 

verbal and non-verbal. In an online setting, half of that interaction is missing. The challenge is 
that neither instructors nor candidates have the ability to read one another's non-verbal cues, thus 
limiting a mathematics instructor’s ability to assess whether a candidate’s struggle is productive 
or unproductive. Furthermore, in an online course, instructors can only view the end product 
(perhaps a solution to a mathematics problem), and it is more difficult to gauge how deep the 
candidate’s understanding of a concept is without non-verbal cues or without seeing problem 
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solving in action. With experience comes intuition: teachers and candidates alike can “read the 
room” in an in-person setting––sensing understanding, confusion, frustration, and even 
revelation. This intuitive ability is somewhat lost in online instruction. 
 Unquestionably, a major success of the online course was the small group interactions. 
The candidates in the program were mathematics teachers brought together from across the state, 
making it unlikely that relationships had been established prior to the onset of the program. 
Instead, candidates built relationships during small group interactions, which increased mutual 
trust and mathematical understanding, helping candidates feel more comfortable in asking 
questions of each other and developing an authentic community of inquiry (Garrison, 2001; 
Anderson & Archer, 2010).  
 A timely byproduct of the online coursework was that it prepared candidates for distance 
learning, which would prove invaluable during the COVID-19 pandemic. This preparation 
extends far beyond merely developing fluency with online tools, which are themselves rapidly 
changing and quickly rendered obsolete. Rather, candidates came to understand the unique 
ecology of online learning settings. After experiencing online learning, one candidate described 
empathizing with his students’ fears of the unknown as they made the unexpected transition to 
remote learning. Teaching and learning online “is a form of change that involves our 
instructional realities, forms, and attitudes” (Major, 2015, p. 15). While online learning has its 
communicative challenges, we strongly believe that the success of the virtual mathematics class 
is deeply rooted in human relationships. 
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ABSTRACT 
Online learning offers flexibility and 
convenience to students regardless of their 
proximity to a traditional campus. However, 
online programs can also feel isolating. 
Beth, a mathematics specialist candidate, 
completed a graduate program while living 
7000 miles and seven time zones away from 
her instructor and peers. Through intentional 
planning by instructors, Beth found 
community by making personal connections, 
celebrating life experiences, and sharing a 
passion for mathematics education with her 
peers. Furthermore, Beth felt empowered to 
take academic risks and expose professional 
vulnerabilities in the learning community. 
The instructors within the program valued 
learning as a social construct and therefore 
designed opportunities for candidates to 
make ongoing personal and professional 
connections. In this mathematics specialist 
program, participants and instructors each 
took responsibility for forming and 
sustaining the online community. Although 
the examples shared in this manuscript are 
one student’s experiences in a specific 
context, mathematics leaders may be able to 
extend the idea of forging connections into 
other virtual contexts. Specifically, we value 
and highlight the importance of creating an 
environment that recognizes the learner as a 
whole person with competing personal and 
professional priorities. 
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Learning is an inherently social endeavor because knowledge is socially constructed 
(Vygotsky, 1978) and takes place within communities of practice (Wenger, 1998). These beliefs 
have long guided teachers in face-to-face settings and have more recently been considered in 
regard to online learning environments. As we examine community and connectedness in our 
synchronous virtual learning experiences, we draw from Swan’s (2001) model that joins 
Community of Inquiry in online learning (Garrison et al., 1999; Rourke et al., 2001) with 
Moore’s (1989) theory of interactions between learners, content, and the instructor. This model 
posits that online learners’ experiences are products of interactions between learners, content, 
and the instructor, and that those interactions are influenced by teaching presence, cognitive 
presence, and social presence. Early research into online Communities of Inquiry focused on 
asynchronous learning experiences, and our work adds to the expanding literature base about 
synchronous learning (e.g., McDaniels et al., 2016; Brown, et al., 2016; Hjalmarson, 2017; 
Hoffman, 2019). In our references to community, we use Conrad’s (2005) definition, which 
describes community as “a general sense of connection, belonging, and comfort that develops 
over time among members of a group who share purpose or commitment to a common goal” (p. 
2). 
 Though students in synchronous courses meet and interact online in real-time, merely 
attending class sessions together does not ensure that students will have meaningful interactions 
with the content, instructor, or peers. Rather, research from asynchronous settings suggests that 
instructors and students both have agency in developing a sense of community within online 
courses (Arasaratnam-Smith & Northcote, 2017; Conrad, 2005). In synchronous online learning 
contexts, strong teaching presence can increase student engagement and sense of community. For 
example, to facilitate effective communication and connections between students, instructors can 
utilize and manage multiple modes of online communication, including the microphone and chat 
messages (Hoffman, 2019; McDaniels, et al., 2016). Also, Hjalmarson (2017) linked 
collaborative, authentic projects to students’ sense of community. To date, there is a dearth of 
research from the student perspective about forming community in synchronous online learning.  
 Working loosely in the tradition of narrative inquiry, this paper captures a recent 
graduate’s reflections on being a candidate in a synchronous online master’s degree program for 
mathematics specialists. We highlight links between her experiences and instructors’ intentional 
efforts to help students feel connected in a distance learning environment. The intent of our paper 
is for readers to experience “a vicarious testing of life possibilities…[and] a new sense of 
meaning and significance” (Clandinin & Connelly, 2000, p. 42) around creating community in 
online courses. Our narrative contributes to the literature base by exploring a student’s 
perspective about forming community in synchronous online learning while illuminating her 
instructors’ intentionality to facilitate such community. 
 

Context  
 
Mathematics specialists are professionals “with an advanced certification as a 

mathematics instructional leader or who works in such a leadership role” (McGatha & Rigelman, 
2017, p. xiv). Their titles, roles, and responsibilities vary, but nonetheless, they consistently act 
as leaders within their unique contexts, advocating for productive mathematics teaching and 
learning (Fennell, et al., 2013; National Council of Teachers of Mathematics, 2014).  

The Mathematics Specialist Leader (K–8) program at George Mason University was first 
established in 2005 as a traditional, face-to-face program, then, a few years later, transitioned to 
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a hybrid model (virtual and face-to-face courses) as well as offering fully online programs 
through synchronous classes. Upon completion of this 10-course program, candidates obtain 
state licensure as a K–8 mathematics specialist in addition to a master’s degree in Education 
Leadership with a concentration in Mathematics Specialist Leadership (K–8). The synchronous 
online courses are conducted through Blackboard Collaborate Ultra, which offers video, audio, 
screen, and text sharing, as well as small group formations in “breakout rooms” within a class 
session. During class, students also interact via shared Google presentation slides that function as 
media for both presentations and collaborative work, much like a whiteboard. Occasionally, 
candidates utilize their camera function to share work such as modeling with manipulatives, but 
the camera is not usually on during discussions.    
 Specialist candidates complete the ten courses in loosely formed cohorts. Based on 
course offerings each semester, most students follow a typical progression of course completion. 
However, students are not required to take courses in a lockstep order or begin and end the 
program on a rigid schedule. Though this is not a true cohort program, because of limited course 
offerings, many students complete most of the courses together.  
 

A Recent Graduate: Beth 
 
Beth attended the online synchronous classes from Bahrain, seven time zones ahead of 

her colleagues and instructors in Virginia. Because of the flexibility of being online and knowing 
colleagues who spoke highly of the program, Beth decided it would be worth the effort of 
completing the program from afar. She graduated in December 2019 and subsequently worked as 
a mathematics coach at an international school in the Middle East. 

 
Beth’s Reflections 

 
To explore feelings of connection while in the program, Beth retrospectively wrote a 

series of reflective memos for this paper. In these memos she freely wrote but allowed the 
following questions to guide her: 

• How, if at all, did I feel connected to my class peers?   
• What experiences stick out to me most, across the coursework, as a time that I felt 

connected to my class peers? 
• Why did it matter that I felt or wanted to feel connected to my class peers? 
• How else did I feel connected to learning within this program? 

Next, the first two authors holistically analyzed the memos for overall themes that best captured 
Beth’s experiences. In reading her memos, we saw how connections with peers allowed Beth to 
take risks in her own learning, which supported her knowledge development. We share 
purposeful selections of key recollections from her memos, as well as perspectives of intentional 
design behind the learning experiences that Beth highlights across several different courses. We 
understand that Beth’s experiences are unique, and we do not claim that they are representative 
of all program participants. Rather, we examine her experiences in the hope that “in-depth 
exploration of an individual life-in-context brings us that much closer to understanding the 
complexities of lives in communities” (Cole & Knowles, 2001, p. 11). 
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Feeling Connected to Class Peers  
 
I very clearly remember the first day (morning...2am in the morning) when I was sipping 
peppermint tea and nervously introducing myself to others via a Google Slide...It was my 
first time creating a Google Slide and using the various tools. I was nervous, but willing 
to take a risk. The community was supportive, and I was reminded that we are all there 
for the same reasons and the same goals. (B. Terry, personal communication) 

 Beth sat in front of her laptop, 7000 miles away from her instructor and peers. While the 
flexibility and relative convenience of the online program were appealing, the idea of isolation 
was a worry. Beth wondered, “Will I be successful in a program where I never see my class 
peers face-to-face? How will the instructors be able to support me from afar? Will I be motivated 
to attend class if I feel lonely?”  Delightfully, from the onset of her first class, Beth began to 
connect to her class peers.  

I learned on that day that there were teachers who knew some of my former co-workers, 
that a cohort member was expecting her first child, that there were members who were 
new to coaching and some who have never coached, that others were tuning in from 
outside of Virginia and that we ALL had a passion for mathematics education. This initial 
assignment and opportunity to work with Google Slides was day 1 of our learning 
community and I couldn’t wait for more. (B. Terry, personal communication) 
Not only did the instructors intentionally design opportunities for candidates to connect 

initially within a course, but we planned for ongoing personal and professional connections. 
Similar to how a face-to-face class session may have small talk or informal discussions as 
learners enter a space, we created an intentional space and time for our candidates to share and 
connect each time they entered our virtual classrooms. Within our interactive class slides, we 
provided space for candidates to use a textbox and/or upload pictures to share updates and 
celebrations. 

Throughout each course, we shared personal stories about our families, our health, our 
fears, our successes and were also encouraged to share about professional moments. It 
was this intentional invitation to reach out to each other that allowed us to feel recognized 
as individual humans with life beyond Blackboard and Google Slides. (B. Terry, personal 
communication) 

Through making such personal and professional connections, we believed that the candidates felt 
supported by one another. This support and trust enabled Beth and the other candidates to 
connect not only in a social sense but also as they developed their mathematical knowledge and 
leadership skills.  

With each small group discussion and collaborative assignment, I continued to grow in 
my own professional understanding while the personal connections continued to 
strengthen as well. As we continued to grow together and as our community was fostered 
by each other and the instructors, we became more comfortable in our abilities as leaders. 
By the end of our first two courses, we were also connecting, personally and 
professionally, with one another on social media. (B. Terry, personal communication)  

 
Connections Allowed for Risk Taking 

 
Because Beth felt connected to others in the class, she was willing to take risks in her 

learning. In instances when she lacked confidence to perform the mathematical task, she leapt 
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towards opportunities to learn the mathematical perspectives alongside her trusted peers.  
In one particular course, we were asked to form small groups to learn about and develop 
materials to demonstrate a progression of a particular content area. Not always a risk-
taker but always a learner, I chose to assign myself to a group focusing on proportional 
reasoning, an unfamiliar content area. (B. Terry, personal communication)  
Candidates are often given choice when forming small groups within our learning 

community and work in both grade level groups and among peers with a broad range of 
backgrounds. In the example above, Beth chose to partner with peers for a learning project that 
had a different grade-level focus than her own. She was uncomfortable due to her unfamiliarity 
with the mathematical topics related to the middle grades but trusted her peers to include her in 
what their experiences had been. She knew that in taking this risk, even within her distanced 
community, her own learning would increase. By trusting her connections with her peers, she 
was able to safely explore a mathematical topic out of her comfort zone.  

Even though the community provided trust through strong connections, there were times 
that Beth lacked confidence around her peers. 

In the third semester of the program, I was required to interview a student and select 
video clips to share with the whole class. I am admittedly nervous in situations like this 
and was not looking forward to sharing my video clip to my peers. (B. Terry, personal 
communication) 

After Beth presented her video-clip, the connections between her and her class peers allowed for 
meaningful feedback and mutual respect through the vulnerability.  

Immediately upon receiving peer feedback and suggestions for improvement, I was 
reminded of the support and network related to this community of adults. (B. Terry, 
personal communication) 

To align to practical experiences of mathematics specialists, instructors carefully planned 
assignments that often require shared video or a synchronous presentation among peers. Through 
such interactions, giving and receiving peer feedback—a practice common for mathematics 
specialists (Fennell et al., 2013)—was repeated and refined. Throughout the program, Beth was 
afforded the opportunity to learn from her trusted peers, working through feelings of 
vulnerability while also building confidence in a common practice of mathematics specialists. 
 

Discussion 
 
 Isolated from her fellow mathematics specialist candidate peers through distance and 
time zones, Beth found community in an online synchronous program. By making personal 
connections, celebrating life experiences, and sharing a passion for mathematics education with 
her peers, Beth felt empowered to take risks and expose vulnerabilities in the learning 
community. The instructors within the program valued learning as a social construct and 
therefore designed opportunities for candidates to make ongoing personal and professional 
connections. In this program, participants and instructors each took responsibility for forming 
and sustaining the online community.  

Returning to the online Communities of Inquiry model (Garrison et al., 1999), Beth’s 
meaningful learning experiences can be framed by the productive interactions she had with 
peers, instructors, and the content. Building on initial social and interpersonal connections during 
the five semesters of coursework, Beth deepened her cognitive presence to build knowledge 
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about mathematics content and best practices for coaches. This included risk-taking when 
working with course content and reflecting on her ongoing work as a coach.  

The lessons learned in the program about the importance and potential benefits of 
connections between professionals can be expanded outward from university coursework. 
Mathematics specialists often try to form a learning community or Community of Practice with 
stakeholders in their school and local contexts. It is our hope that Beth and other students in our 
program will understand that beneficial risk-taking and meaningful knowledge building can 
occur when participants feel socially and academically connected to colleagues. We hope that 
mathematics specialists who complete our programs value the community we intentionally built 
and see the potential for building such community within their own practices. 

Although the examples shared in this paper are one student’s experiences in a specific 
context, we feel that mathematics leaders may be able to extend the idea of forging connections 
into other virtual contexts. Specifically, we value and highlight the importance of creating an 
environment that values the learner as a whole person with competing personal and professional 
priorities. We ask our candidates to share and celebrate throughout each of the courses, and we 
ask instructors also do the same. For Beth, the social presence of instructors and peers ultimately 
allowed her to take risks in her learning, thereby further developing our online community of 
inquiry. 
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Transitioning from a face-to-face course to an online or hybrid course is challenging for 
instructors especially when they only have face-to-face teaching experiences to draw upon for 
course development and instruction. For the purposes of this paper, an online course will refer to 
a learning environment where the candidate and the instructor interact completely online. A 
hybrid course will refer to an environment where the candidate and instructor interact through a 
combination of online and face-to-face environments. It is important for online and hybrid 
courses to be comparable to their traditional counterparts in quality and content. The authors will 
share their personal learning experiences as they each designed and implemented a graduate 
course with the goal of maintaining the integrity of original face-to-face course designed prepare 
candidates to serve as mathematics specialists.  

 
Literature Review 

  
Due to their flexibility and accessibility, online programs have become common for in-

service teachers. As they become more common, instructors need guidance on how to design and 
implement courses online. Bailey and Card (2006) draw upon Chickering and Gamerson’s 
(1987) seven principles for high-quality post-secondary instruction and apply them to online 
learning. The principles are communicating high expectations, incorporating active learning, 
providing cooperative learning opportunities, emphasizing time on task, ensuring prompt 
feedback, maintaining frequent faculty and student interaction, and differentiating for diverse 
learning styles. Based on the personal experiences and perceptions of 15 online instructors, 
Bailey and Card (2006) identified eight high-quality online teaching principles. They are 
fostering relationships with students and between students, creating opportunities for student 
engagement, providing timely feedback and communication, being attentive to communication 
style and tone, creating a structured course organization, advocating for the use of technology, 
being flexible with students, and promoting high expectations. These principles are foundational 
for educators who are developing and implementing online courses. 

Experienced online instructors have found that providing prompt feedback supports high 
levels of student motivation (Adelstein & Barbour, 2016; Grant & Thornton, 2007, Martin et al., 
2019) and encourages student engagement both individually and in small groups (Grant & 
Thornton, 2007; Palloff & Pratt, 2005). Online learning instructors should provide “students the 
opportunity to work together to create knowledge and meaning, rather than providing facts and 
information that they memorize and retain in some fashion” (Palloff & Pratt, 2005, p. 126). 
Anderson (2004) states that motivation and engagement of students supports deep learning.  

Developing a high quality online course that implements the best principles described by 
Bailey and Card (2006) can affect teacher motivation and perseverance. The time it takes to 
communicate and provide feedback can lead to instructor dissatisfaction with online 
environments (Bollinger & Wasilik, 2009; Cavanaugh, 2005). Bollinger and Wasilik (2009) 
connected many issues like these to the use of technology in an online class. Online instructors 
felt overwhelmed with getting all of the necessary work accomplished (Hogan & McKnight, 
2007). The work of instructors outside of an online class can become overwhelming due to the 
pressure to be available to provide feedback and to answer student questions promptly. We 
provide insights to help future online graduate level instructors to persevere and find the ideal 
balance when teaching an online class. 
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Program Descriptions 
 

Virginia Commonwealth University: Transitioning to an Online Synchronous Program   
 

In 2017, Virginia Commonwealth University (VCU) transitioned from a three year, face-
to-face mathematics specialist preparation program to a two-year, online program. Each course 
in the revised program consisted of pre-class work that was completed individually and in small 
groups prior to the bi-weekly, synchronous class meetings. Three courses in a sequence of 
mathematics teacher leadership courses were each taught and developed by a team of three 
instructors. Each instructional team consisted of faculty from the School of Education, the 
mathematics department, and a Virginia school division. The team developed the course syllabi, 
all course assignments, and weekly pre-class and in-class content. The leadership course 
sequence addressed mathematics content pedagogy, learning progressions, instructional design, 
student learning, and effective school-based mathematics leadership. The semester-long courses 
ran concurrently with the K-8 school year to allow for the implementation of course activities 
and assignments in the candidates’ classrooms or schools. The experiences described by 
Instructor A and Instructor B below took place in the first and last courses in the leadership 
course sequence, Leadership I and Leadership III. 

 
Longwood University: Transitioning to a Hybrid Course 

 
In the spring of 2019, Longwood transitioned their mathematics teacher leadership 

program from a face-to-face format to a hybrid model of learning. The experiences described by 
Instructor C below took place during an eight-week Instructional Design course which included 
asynchronous, synchronous, and face-to-face instruction. The first four weeks consisted of 
weekly face-to-face meetings with participants meeting in two different locations. The instructor 
simultaneously taught 14 candidates in a face-to-face setting and seven candidates via 
teleconference. A practicing mathematics specialist supported the remote location. During the 
last four weeks, the candidates met twice synchronously. Coursework focused on problem 
solving and mathematics pedagogical content knowledge. Prior to each class meeting, candidates 
prepared for the meeting by completing reading assignments and participating in online 
discussions.  

 
Instructor Reflections 

 
Virginia Commonwealth University: Online Synchronous Reflections 
 
Instructor A 

As a twenty-plus year mathematics educator, I had taught several mathematics content 
courses in the mathematics specialist program before teaching Leadership I online. The 
objectives, goals, and assignments for Leadership I were developed as part of VCU’s original 
face-to-face program, but the instructional team worked over the summer to modify the course to 
meet the online structure. A learning management system course shell had been created for the 
program to help standardize the class formats. Although everything appeared to be ready before 
the first class meeting, there were still many things that I felt I needed to learn about online 
teaching. 
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I believe learners should be actively engaged both individually and in collaboration with 
others by listening, observing, and talking with others, and by using manipulatives. I had a level 
of doubt in my ability to actively engage the candidates in an online class. By developing the 
pre-course and course work activities, I learned the importance of implementing different 
activities using online learning tools. These tools permitted active learning in a manner similar to 
a face-to-face course. The instructional team integrated voice recordings, virtual bulletin boards, 
discussion posts, virtual manipulatives, breakout groups, and videos into the pre-course and in-
course activities. For example, a mathematics education theorist’s project in Leadership I 
required groups of three candidates to research the learning theories associated with a given 
theorist and create a five-minute, narrated presentation to share with the other candidates. 
Participants posted a reflection on a course blog as to which theorists closely aligned with their 
mathematical teaching and learning beliefs. Previously this project culminated in a class-led 
presentation. The implementation of these different technology tools into the online classroom 
gave me access to new teaching modalities for active student engagement. 

The necessity of regular communication with candidates and frequent feedback to 
candidates were components of the course that I reflected upon many times. The development of 
mathematical content and pedagogical skills was a set of building blocks that required frequent 
feedback for candidate growth. Several course assignments were embedded components of major 
course projects. A regular cycle of feedback allowed me to engage and monitor candidates as 
they grew in their pedagogical knowledge. Many times my feedback would receive a comment 
or a question from the candidate prompting a deeper conversation about their knowledge base. 

For me, there never seemed to be enough time to plan, teach, reflect, and provide 
feedback in an online course. A statement in an email that I wrote to program coordinators 
expressing my concern for the time candidates would spend on course work stated, “I think the 
hardest thing for me to wrap my brain around is the amount [of work] they will need to do 
outside of meeting with us.” If only I had known that the “they” in the email should have been a 
“we.” Classroom discussions and activities that we had anticipated would take twenty minutes 
often took forty minutes. Questioning whether to end a rich discussion was a problem when 
considering all of the content that needed to be covered during a class session. Our instructional 
team developed a detailed structure for course meetings, but very rarely did we cover all content 
we intended to cover. Outside of class, I felt obligated to respond to emails promptly at all times 
even outside of work hours. With the candidates completing most of their studies in the evenings 
after the end of the school day, this meant many interactions were late at night or on weekends. 
Finding work, life, and family balance was difficult.  

In a face-to-face class, I use a person’s body language to inform pedagogical decisions. A 
student’s gestures, posture, and facial expressions support me in knowing when to spend more 
time on a topic or move on. The lack of these visual cues in an online learning environment was 
a struggle for me. The inability to read body language meant many times I was not aware of a 
misconception until it was voiced in class or shared in an email. I provided time for questions 
during each class, but I felt that I missed other concerns or questions that may have been more 
evident in a face-to-face environment. 

 
Instructor B 

While I had taught many courses for in-service teachers in the past, I had never taught an 
online course. Team teaching and using technology were not difficult for me, but interacting with 
the candidates who I had only met once, briefly, was an adjustment for me as an instructor. My 
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first experience with the candidates was as an instructor for Leadership III. While I took cues 
from a co-instructor who had taught the candidates in the prior courses, I had to figure out how 
to lead activities and encourage online discussions. I found it challenging to adapt the aspects of 
face-to-face assignments that required candidates to be in close proximity to an online 
environment. 

Transferring a face-to-face course to an online format has its challenges. It can be 
difficult to decide whether assignments and projects will be effective in an online environment. 
For two assignments, a school-based data project and a lesson study project, I believe our 
instructional team had achieved success through the revisions we made to these projects as we 
developed the course. By integrating the appropriate technology, providing clear expectations, 
and utilizing collaborative learning, the projects were incredibly worthwhile and successful 
learning experiences for the candidates.   

The school-based data project required students to simulate engagement with data to 
identify and investigate a learning problem in their school. The project consisted of four clearly 
described steps completed over four weeks. Each week we checked in with the candidates as 
they progressed through the project. For many candidates this was their first time of looking 
carefully at testing data and it was overwhelming. The online environment made this project 
easier to facilitate since we were able to use online tools explore the data together. The 
candidates were comfortable using technology to gather and present data because of their 
previous online course experiences. After the course was over, the candidates identified the 
school-based data project as being beneficial in empowering them to collect, present, and discuss 
testing data with their administration.  

The lesson study project required a small group of candidates to complete a Lesson Study 
Cycle (Wang-Iverson & Yoshida, 2005) including planning, delivering, and reflecting to achieve 
the goal of perfecting a single mathematics lesson. The logistics of implementation were 
challenging since the candidates lived in diverse geographical locations. This made it difficult for 
a group to travel to different schools to observe a lesson. To make this project a success, 
flexibility on my part, as the course instructor, was essential. I facilitated candidates in creating 
lesson study groups that were either cohort-based or school-based. In the latter case, groups 
included teachers in a candidate’s school or district who were not taking Leadership III. 

Everyone was successful in completing the lesson study project in a way that worked best 
for their particular circumstances. Interestingly, groups formed exclusively from cohort members 
were the most successful. I believe this was because they were all aware of every aspect of the 
project and clearly understood their roles in the Lesson Study Cycle. Those that chose to do the 
project in school-based groups had to do more organizational work than those that worked in 
cohort-based groups. In school-based groups, the candidates had to find teachers willing to 
participate, explain the Lesson Study Cycle, and make sure that everyone provided feedback to 
synthesize and analyze the success of the lesson. While the school-based lesson study groups 
reflected more on logistical issues, the cohort-based groups reflected more on the lesson study 
process. Though the two different types of groups had varying degrees of success in the lesson 
study process, providing flexibility in implementation of the project and recognizing the 
differences in group structures was a successful learning experience for me.  

At VCU, one instructor led each instructional team for all three courses in the 
mathematics teacher leadership course sequence. Through their prior work in mathematics and 
leadership courses, a community of learners had been created in the online learning environment. 
Being the new instructor during the last leadership course in the sequence meant I had to figure 
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out my role within the cohort. I struggled with learning the class “climate” quickly enough to not 
have to be dependent on another instructor’s opinion of how to maximize everyone's strengths. I 
struggled to find my niche within the learning community. In a face-to-face class, I could have 
walked around during class to gauge how students worked and interacted with each other. This 
was not possible in the online class.  

 
Longwood University: Hybrid Course Reflection 
 
Instructor C 
 Though I have taught for almost 30 years with 15 of those teaching pre-service and 
practicing teachers, this was my first experience teaching a hybrid course. The course I taught 
was developed using a face-to-face design, but there were issues for me with transitioning to the 
hybrid format. My struggles and successes focused on the implementation of the course.  

I knew that switching to a hybrid learning environment would be a challenge for me. To 
help with this transition I implemented the ideas shared with me in a university program for 
switching to online course modalities. Due to the flexibility of course delivery with a hybrid 
model, I had three times the number of candidates when compared to prior face-to-face cohorts. 
As the only instructor for the course, I was concerned with how I could provide the necessary 
feedback for candidates in a condensed eight-week semester.  

Being able to balance the amount of feedback I wanted to provide the candidates with the 
number of hours it took to read and grade assignments was very difficult. I wanted to assign 
frequent activities for candidates to assimilate their learning but this would create an increase in 
the number of hours I would spend grading. I recognized that feedback and assessment could 
take on many different forms in an online learning environment. For me this meant that I did not 
need to grade every activity; instead, I needed to use the online tools that were available to me. 
Feedback could come from more than just me. Feedback would also come from the candidates 
themselves.  

Discussion boards were an important component of weekly feedback from the instructor 
and candidate peers. The integration of discussion posts and feedback from peers can empower 
candidates to realize that their thoughts are valuable as leaders in mathematics education. 
Initially, candidates were limited to 300 words per post, but after reflection, I began to require 
candidates to post a two-minute video discussion. I found that candidates were more organized 
and concise in their video posts. I believe the videos played to the candidates’ strengths as 
versatile presenters due to their teaching backgrounds. Video discussion posts were easy for me 
to view to assess a candidate’s content knowledge each week. They were also easily accessible 
so discussions could occur either in or out of class. The video discussion posts were a successful 
way to balance the time needed to assess student understanding with the number of assignments 
candidates completed. Even with incorporating the changes to the discussion post, finding 
balance in the number and type of assignments was important to being able to provide useful 
feedback on every assignment.  

Being a hybrid course, creating an online community with candidates in two different 
locations was difficult due to connectivity issues with technology. The frustration felt by 
everyone in the class, including me, made it hard for us all to develop relationships with each 
other. While teaching, I was often unaware that the remote location technology was not working 
since I only had one computer screen and I was unable to see the remote site when I was 
presenting. Overcoming these issues required switching online meeting platforms from WebEx 
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to Zoom and incorporating a remote site facilitator to increase student engagement and to address 
technical issues. Our re-envisioned program did not initially include the remote facilitator, but 
this role was deemed necessary for future courses. I added a second screen at my teaching 
location so everyone could see the slides and I could observe the remote location. A willingness 
to adapt and try new things was important for me when transitioning to a hybrid course. 

 
Conclusion 

  
Our experiences varied as we each transitioned to an online learning platform. We were 

each given a course template and goals from a prior face-to-face program, but making everything 
work within the confines of our different online situations was tough. Maintaining the integrity 
of the courses was important when transferring them online. Finding the perfect balance for each 
instructor was difficult. 

As instructors transitioning to an online learning environment, our lessons learned were 
tied to the effective practices for implementing and teaching online courses as described by 
Bailey and Card (2006). We each recognize the importance of setting clear goals and building a 
community of learners, but these things can be difficult when time is a factor. Managing our time 
and the time of the candidates meant that we had to be deliberate and flexible in the opportunities 
provided for candidate engagement. Learning how to fit the assignments into the new online 
format required careful planning. We each had success with using technology in course design 
and the implementation of online modalities. Incorporating these modalities did not change our 
instructional beliefs or practices, but allowed us to consider different ways to modify our 
teaching and the candidates’ learning experiences.  

 There are things, such as the number or format of assignments, which can be issues when 
transitioning a course to an online format. Successful online instruction requires flexibility or the 
implementation of new technologies. Finding the time to plan, provide feedback, and engage 
candidates in their learning is imperative for student success. Careful consideration of best 
practices for online instruction is essential as one develops and implements an online course. In 
each of our reflections, we recognize that what works can also be what challenges us. Our 
experiences as instructors at the graduate level parallel the literature research at the 
undergraduate level in how best practices can affect instructor effectiveness and motivation 
(Anderson, 2004; Bailey & Card, 2006; Hogan & McKnight, 2007).  
  Learning to adapt to an online learning environment and finding ways to integrate the 
technology can greatly influence the development and implementation of any course. Comparing 
and contrasting our situations, one thing that stands out to us is that having more than one 
instructor for a course and having the support of fellow online instructors is valuable. Talking to 
others provides a sounding board for personal growth and reflection. Teaching online is a cycle 
of planning, teaching, reflecting, and revising. This process is about growing as an educator and 
recognizing that not all online situations are the same. For us, teaching online did not mean that 
we had to change our pedagogical beliefs but instead demonstrated that perseverance was 
important in each of our situations and will be important as we continue to revise how we teach 
online. 
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ABSTRACT 
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program model that includes independent 
work, small group work, and in-class 
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Professional development and career advancement programs for teachers come in many 
different forms. In the 21st century, online digital platforms play a significant role in the delivery 
and implementation of these kinds of experiences. In addition to providing a wider variety of 
opportunities, online learning also allows participants to learn in the environment in which they 
are most comfortable and at times that are convenient for them, which are important factors 
when designing programs for adult learners (Knowles et al., 2015). A flipped classroom is an 
instructional model that provides participants with opportunities to work on course content on 
their own time prior to engaging in student-centered, in-class experiences (Stapleton, 2020), 
allowing for more dynamic interaction through small group and whole class activities. A 
community of inquiry (Garrison et al., 1999) is a social constructivist learning experience model 
for online instruction that emphasizes the importance of establishing cognitive, social, and 
teaching presence to ensure that all participants have a satisfying and meaningful learning 
experience.  

This paper describes the transition of a mathematics specialist preparation program from 
a face-to-face format into an online format that incorporates a flipped classroom model and 
utilizes a community of inquiry. We share information about the program including a sample 
mathematics activity and the program’s capstone experience. We describe the experiences of one 
candidate in the program including her in-school externship project. We begin by briefly 
describing the history of the mathematics specialist movement in Virginia and the origins of the 
preparation program featured in this paper. 

 
Early Statewide Work on Mathematics Specialist Preparation 

 
Under the leadership of the Virginia Mathematics and Science Coalition (VMSC), in 

2002 a new approach to K–8 mathematics teacher leadership began to emerge in Virginia and 
was soon followed by recommendations for the specialized preparation individuals should 
complete before assuming the leadership role. Over several years through the work of two 
different statewide working groups comprised of school district mathematics supervisors, K–8 
teachers, and higher education faculty, the role of the elementary mathematics specialist was first 
defined and then refined to also include the unique demands of middle school mathematics 
education. During this time, the Virginia Commonwealth University (VCU) Mathematics 
Outreach office under the leadership of Dr. Bill Haver and Dr. Reuben Farley received a series of 
four large-scale National Science Foundation (NSF) grants to develop a mathematics specialist 
preparation program and study the impact of mathematics teacher leadership in Virginia’s K–8 
schools. The courses were developed and offered in face-to-face formats through several state 
grants and the first in the series of NSF grants. This work was a collaborative effort of four 
institutions of higher education and 45 urban and rural school districts in Virginia. With the 
support of the next three NSF grants, the courses were refined and adapted as the program was 
completed by several cohorts of teachers across the state. Almost all of these initial course 
offerings took place in face-to-face formats including 5-week summer residency programs, 2-
week intensive summer courses, and semester courses. There was one notable exception in 
which a cohort of teachers in rural districts completed the program in a blended format including 
both online and in-person components. More information about the foundational work that led to 
the mathematics specialist movement in Virginia and early efforts to prepare mathematics 
specialists can be found in VMSC (2016). 
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This work culminated in a teaching license endorsement for mathematics specialists and a 
rich and rigorous program to prepare generalist teachers for this leadership role. In these early 
years, twelve state universities established master’s degree programs to prepare K–8 teachers to 
be mathematics specialists. The Virginia Board of Education also realized the importance of the 
mathematics specialist role to K–8 education and recommended one specialist for every 1,000 
students.  

In 2017, the VCU Mathematics Outreach office received an NSF Noyce Teacher 
Scholarship Program grant to modify the existing VCU face-to-face mathematics specialist 
preparation program into a fully online professional development and certification program and 
to enroll a cohort of teachers serving in high-need school districts across the state. In addition, 
program graduates served for three years as mathematics teacher leaders in their school districts. 

 
VCU Mathematics Specialist Preparation Program 

 
Through the statewide work described above, VCU developed a 36-hour master’s degree 

program consisting of (a) six core mathematics courses designed so candidates develop a deep 
understanding of the K–8 mathematics content; (b) three mathematics education leadership 
courses in which candidates develop the skills necessary to work with all members of the 
educational team (i.e., teachers, principals, parents, children, central office personnel, members 
of the community, etc.) and, most especially, work with adults; and (c) a capstone experience in 
the form of a two semester externship during which candidates design and implement a research-
based, in-school project using the knowledge and skills they acquired through the prior course 
work. Activities and assignments throughout the program target specific areas of need for 
mathematics specialists including (a) advanced middle school mathematics content; (b) methods 
for helping teachers work with diverse populations of students (i.e., English language learners, 
gifted students, students with learning disabilities, etc.); and (c) analysis and implementation of 
the current trends in mathematics education research. 

The courses in the program directly align with the standards set forth by the Conference 
Board of Mathematical Sciences (CBMS, 2010), the Association of Mathematics Teacher 
Educators (AMTE, 2013), the National Council of Teachers of Mathematics (NCTM, 2012), and 
the Teacher Leader Exploratory Consortium (TLEC, 2008). The mathematics courses provide an 
in-depth study of the content covered by the Common Core State Standards for Mathematics 
(National Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010). Specific details about each of the courses in the program can be found in VMSC 
(2016). 

The instructional team for each mathematics course consists of a VCU mathematician or 
mathematics educator and an experienced mathematics specialist. Candidates conduct an in-
depth study of K–8 mathematics and also connect the concepts and skills to teacher practice. 
Assignments and activities also allow candidates to make connections to higher-level 
mathematics. Throughout the courses, candidates engage in making conjectures, developing 
generalizations, and making mathematical arguments in order to deepen their understanding of 
the content. In particular, they build a working knowledge of the properties of arithmetic, 
proportional relationships, geometry, algebra, probability, and statistics. Class time is spent in 
small group and whole group discussions anchored in written and video case studies of 
children’s mathematics thinking; cooperative group work around mathematics content and 
pedagogy; and analyzing children’s work, including case studies from candidates’ practice. 
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The instructional team for each mathematics education leadership course consists of a 
mathematics educator and a district mathematics supervisor or an experienced mathematics 
specialist. Candidates conduct an in-depth analysis of their own teaching and learn to coach one-
on-one and in small groups. The leadership courses develop candidates’ skills related to working 
with adult learners and deepen their mathematics content and pedagogical content knowledge as 
they refine their philosophy about mathematics teaching and learning. The courses are interactive 
and project based. Discussions often begin with individual reflection, followed by pair 
conversations, expanding to small group and then whole group sharing.  

 
Transition from Face-to-Face to Online 

 
Our goal was to convert the existing mathematics specialist preparation program into an 

online program while maintaining the rigorous content and interactive nature of the activities and 
assignments in each of the courses. The online version of the program consists of technology-
enhanced active learning mathematics and mathematics education leadership courses and 
employs a modified flipped classroom model to provide an accessible and interactive learning 
environment for candidates. The instructional model is described in more detail below. 

The transition process took place over three summers and two academic years. Two 
separate course redesign teams, one team for mathematics courses and one for mathematics 
education leadership courses, worked to transition the courses to an online format. The team 
evaluated the existing content and pedagogical strategies; explored online learning technologies 
for delivering material, facilitating discussions, and completing activities; and made the 
necessary revisions to all aspects of the courses being taught during that year. The conversion 
was an iterative process. In addition to receiving guidance from course designers with extensive 
experience in making this type of transition and who specialize in online program development, 
the redesign teams considered the feedback gathered from candidates and instructors during the 
first year when selecting instructional tools and developing activities and assignments for the 
courses taking place during the second year.  

 
Online Program Structure 

 
While each course covers different mathematics and mathematics education content and 

has different requirements, all of the courses in the program use similar methods for content 
delivery and student preparation for whole class synchronous meetings. Each course has 
synchronous and asynchronous components. The amount of time spent in synchronous whole 
class meetings is significantly less than a traditional face-to-face class. Information is organized 
sequentially in the online course management system according to each synchronous whole class 
meeting, called course sessions. Each session contains 4–8 hours of prerequisite work for 
candidates to complete prior to the synchronous meeting.  

Prerequisite activities are carefully sequenced so that candidates can complete the 
activities independently or in small groups without instructor support. Activities are grounded in 
the principles of a community of inquiry (Garrison et al., 1999). A significant aspect of teaching 
presence is designing and facilitating educational experiences. While facilitation is primarily a 
role for course instructors, each course includes opportunities for candidates to assume the role 
of facilitator, with increased responsibility in later courses in the program. All readings and 
activities include prompts to help candidates initiate cognitive presence to explore ideas and 
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concepts. Social presence is purposefully integrated in all sessions through small group 
collaboration and providing an open, judgment-free environment for small group and whole 
group discussions. 

They begin their preparation by completing individual activities including reading case 
studies about children doing mathematics, writing responses to posed questions, and completing 
mathematics activities. The class is divided into small groups each one consisting of 3–4 cohort 
candidates. Each group meets online (through Blackboard Collaborate, Zoom, etc.) at least once 
a week at a time that fits the schedules of all group members to discuss activities, share ideas, 
and complete additional small group activities. Individual and group responses to all prerequisite 
work are uploaded into an online course management tool (e.g., Blackboard or Padlet) for easy 
access by everyone in the course. Before each synchronous session, the instructional team reads 
through the candidates’ responses to prerequisite assignments and activities to gain insight into 
candidates’ understanding of the concepts and to find ideas that should be reinforced or 
misconceptions that need to be addressed. In addition to addressing any pressing issues, time 
during the whole class meeting is spent working on activities that reinforce the most important 
concepts studied during that course session. An outline of prerequisite work for a sample 
Rational Numbers and Proportional Reasoning course session appears in Figure 1 below. 

 
Figure 1 
Rational Numbers and Proportional Reasoning Prerequisite Work Outline 

Note: Lamon refers to the book Teaching Fractions and Ratios for Understanding, 3rd Ed. YMW refers to the book 
Young Mathematicians at Work: Constructing Fractions, Decimals, and Percents. 
 

To illustrate the course session structure used throughout the program, we share a 
mathematics activity from one of the courses and one candidate’s experience with completing 
the activity as part of course session prerequisite work and working with a small group of 
candidates to develop a deep understanding of the mathematics under study. 

 
Sample Mathematics Activity 

 
Rational Numbers and Proportional Reasoning is typically the third mathematics course 

candidates complete in the preparation program. The course begins with the following rich task: 

1. Revisit Math Activity 1.3 Interpretations of 3/4 in the Concurrent Work: Session 1 folder. Make note of any 
adjustments you would make to your sort based on the 5 ways to interpret a/b: (1) part-whole comparison, (2) 
quotient, (3) measure, (4) operator, (5) ratio/rate.  

2. For Math Activity 2.1, read the handout, Some Thoughts on the History of Mathematics and individually answer 
the questions for addition and subtraction and solve the problems for multiplication and division.  

3. In small groups, complete Math Activity 2.2, Lamon, Chapter 6, p. 143 problem 5 parts a, b, c & d. For each part, 
give a brief explanation for what happens when the fraction is changed using the specified conditions. Provide an 
example to support your reasoning.  

4. Read YMW Chapter 6, pp. 92 - 107. Individually, develop responses to the Focus Questions. In small groups, 
discuss your responses to the questions. Be prepared to share your ideas during our next class meeting.  

5. On YMW page 95, Fosnot and Dolk paraphrase a statement from Liping Ma “One could argue that if we taught 
the algorithms conceptually, more understanding would develop.” The authors then pose several questions. In 
your small groups, in 3-4 sentences, craft a statement that addresses one of the authors' questions (see below).  
Groups Un & Deux: Should the algorithm be the goal of computational instruction?  
Groups Trois & Quatre: In today’s world, do we want learners to rely on paper and pencil?  
Groups Cinq & Six: Is the algorithm the fastest, most efficient way to compute?  
Groups Sept & Huit: When are the algorithms helpful? When does one pull out a calculator? 
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A class of fifth graders go on a field trip. They split into four groups and go to 
four different locations. Each group takes a number of submarine sandwiches with 
them. In the picture below, you can see the number of sandwiches each group 
received and the number of students in the group. Is this distribution of 
sandwiches fair? Why or why not? Solve the problem using a representation. 
Explain the reasoning behind your solution strategy without using a standard 
algorithm.  
 

Figure 2 
Fifth-Grade Field Trip Submarine Sandwich Distribution 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Purpose of the activity 

 
This problem, adapted from Fosnot and Dolk (2002), provides candidates with the 

opportunity to explore fair sharing, equivalence, and other proportional relationships. Candidates 
begin by solving the problem individually. They are encouraged to try multiple approaches to 
find a solution and to draw pictures as they explore different solution strategies. Then, in small 
groups, they share their strategies and develop one solution to post in an online course 
management tool. After they have reasoned through the problem for themselves, they read a 
chapter in Fosnot and Dolk which presents a case study of children exploring fair sharing and 
equivalence as they also solve the problem in small groups and then share their ideas and 
strategies with the whole class.  

This problem was chosen to start this course because it is a rich task based on concepts 
that are frequently revisited throughout the course. For example, in addition to fair shares and 
equivalence, other concepts that are explored are common denominators, common fractions, and 
the connections between fractions, division, and multiplication. Also, by delving into the Fosnot 
and Dolk (2002) case study, candidates have the opportunity to discuss children’s thinking about 
proportional relationships and ways to engage children in working through and discussing rich 
tasks like this problem. One candidate’s experience with this activity is described in Figure 3. 

To many, this problem may be a simple one exploring ideas of fair sharing or division. 
This is how some program candidates saw the problem at first glance. But like many rich 
mathematics tasks, the exploration can go much deeper than the concepts that are obvious on the 
surface. By studying the work that other groups posted to the course management system, 

 

 

 

3 sandwiches 
4 students 

4 sandwiches 
5 students 

 

3 sandwiches 
5 students 

7 sandwiches 
8 students 
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candidates saw new ways to solve the problem that they would not have thought of otherwise. 
During the whole class discussion, the class explored other big ideas like fraction equivalence 
and comparison. This problem also provided a strong foundation for exploring other rational 
numbers concepts and proportional reasoning strategies in subsequent course sessions. 

 
Figure 3 
A Candidate’s Experience with Completing the Submarine Sandwich Activity 

 
Externship 

 
The externship is a two-semester capstone experience in which candidates have the 

opportunity to integrate and apply what they have learned throughout the program through a 
practical, school-based project. An overarching goal is for candidates to further develop the skills 
and practices of a reflective practitioner by grounding their project goals in the appropriate 
mathematics education research, revising the project as needed, and using data they collected 
during project implementation to analyze and reflect on the entire process, including the project’s 
impact on the participating teachers or students. During the first semester, through a series of 
course sessions consisting of prerequisite work and small-group and whole-class discussions, as 
well as individual consultations with a course instructor, candidates develop an action research 
project and write a detailed proposal for the project. They then implement the project during the 
second semester and write a detailed final report. Information about the various components of 
the externship and one candidate’s externship experience are presented below. 

 
Proposal Writing 
  

The first semester begins with a prerequisite activity in which candidates develop a 
knowledge package for one of the mathematics concepts presented in Liping Ma’s (2010) book 
detailing differences between elementary school teachers’ understandings of mathematics in the 
United States and China. A knowledge package is a way of thinking about a mathematical topic 
as “group-by-group rather than piece-by-piece” (Ma, 2010, p. 18). Creating a knowledge 

As a middle school teacher, I often solved the mathematics activities throughout the 
courses with strategies I use with my students. My approach to this problem was no different. 
I started with a visual representation of each set of sandwiches (see Figure 2) and divided 
each sandwich into pieces based on the total number of students in the group. Every student 
could be given a piece from each sandwich and I could determine how much each student 
received by combining the unit fractions. Lastly, by comparing each fraction, I determined 
that across the groups, students received different fractional parts of a sandwich, thus it was 
not a fair distribution. After solving the problem one way, I would explore other ways to 
solve the problem, asking myself, “how might other students, younger or older, try to solve 
this problem?” This was often a challenge for me, thus working with a small group of 
candidates was essential to explore different ways of thinking and to deepen my 
understanding. Solving this problem involves ideas of fair share, division, equivalent 
fractions, and proportional relationships. It could be solved with manipulatives, models, or 
traditional algorithms. The rich and meaningful connections became more clear through the 
small group and whole class discussions.  
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package requires an understanding of what ideas and procedures support the mathematical topic 
of focus. Figure 4 shows an example of a knowledge package. The rectangles contain the 
mathematical topics of focus, and the supporting ideas and procedures are shown in ovals with 
lines representing the connections between concepts.  

 
Figure 4 
Knowledge Package for Linear and Area Measurement 

 
 
As the semester progresses, candidates spend time developing a knowledge package for 

the mathematics concepts featured in their project as well as conducting an in-depth review of 
the content and pedagogy literature for their topic. Based on this foundational work, candidates 
develop a detailed project proposal. They develop professional and pedagogical goals as well as 
a set of guiding questions to be answered by completing the project. The goals, supported by the 
literature review, provide a framework for both the mathematical and pedagogical work to occur 
during the implementation. The detailed implementation plan includes a description of the 
setting of where the project will occur as well as a list of daily learning objectives and activities. 
Candidates spend at least 120 hours preparing lessons and activities, analyzing data, and 
developing the final report. The proposal includes a timeline which outlines how each hour will 
be spent, spanning several months from preparation to final reflection. The plan includes 
research-based tools for evaluating the project outcomes and data analysis. Sample lesson plans 
are included as appendices to the proposal. The complete proposal is approved by the externship 
supervisor before the project is implemented. 

 
Proposal Implementation 
  

Early in the second semester, candidates make any final revisions to the proposal and 
prepare for implementation. They share the proposal with the school building principal or district 
supervisor and receive feedback on the plan. Each candidate is assigned a university supervisor 
who oversees and evaluates the externship. The candidates meet in an online whole group 
session to share their proposal goals and project questions and briefly outline their plans for 
implementation. Throughout the implementation and data analysis phases, each candidate 
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participates in a series of online check-in meetings with their university supervisor to discuss 
their progress and get feedback. The number and frequency of meetings depends on the nature of 
the project. At the end of the semester, candidates meet online as a whole group to share their 
project results through a 20-minute presentation and answer questions about the project and 
receive feedback from the group. One candidate’s experience developing and implementing the 
externship is described in Figure 5. 

 
Figure 5 
A Candidate’s Externship Experience 

The focus of my externship project was on teaching concepts of linear and area 
measurement through the math workshop model of instruction. Math workshop consists of 
three main components: number sense routines, mathematical tasks, and small group learning. 
This project took place in my sixth grade classroom with a high population of English 
Learners. The use of math workshop provides an opportunity for greater differentiation and 
the ability to support all students at their diverse levels of mathematical understanding. I first 
developed the knowledge package for the key area and perimeter concepts (see Figure 4). 
This helped me to better understand the necessary background knowledge for students to 
deeply understand these concepts. Using the knowledge package as a resource, I created a pre 
and posttest to help me determine the students’ current level of understanding and to show 
their growth after instruction.  
 Students who struggle mathematically often rely heavily on formulas in the study of 
geometry and do not develop a deep understanding of the concepts. My goals for the project 
were to develop number sense routines, mathematical tasks, and small group learning 
activities that would assist students in building a conceptual understanding of area and 
perimeter without emphasizing the traditional algorithms. Using the results of the pretest, I 
created small group mathematics activities to help students progress through the knowledge 
package.  
 The instruction took place over seven days and covered three main concepts: 
perimeter, area of squares and rectangles, and area of triangles. The routines for each day 
were largely the same. Each class started with a number sense routine focused on 
foundational ideas of the day’s work. A mathematical task was used to introduce the big ideas 
of each new concept, followed by small group learning and independent and partner practice. 
The results of this project revealed that math workshop is an effective way for a diverse group 
of students to learn the concepts of area and perimeter without relying on the use of formulas 
when problem solving.  
 This externship experience was a culmination of all I had learned through the 
preparation program. Each mathematics course pushed me to dig deeper to understand how 
different mathematical concepts build and connect with one another. I put my learning into 
action as I developed rich mathematical tasks, number sense routines, and assessments rooted 
in the knowledge package for linear and area measurement. Through what I learned in our 
education leadership courses I was prepared to support a diverse group of students, 
determining where they were in the knowledge package and providing them with appropriate 
and meaningful work to help them further develop their understanding. In addition to what I 
learned in this program, the relationships I developed with both candidates and professors 
were essential to my professional growth.  
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Conclusion 
 
The VCU mathematics specialist preparation program was successfully transformed to an 

online format utilizing interactive and collaborative learning experiences. All 26 members of the 
cohort who participated in the initial implementation of the online version of the program 
successfully completed the program. Candidates expressed satisfaction with their experiences in 
completing the course work and their preparation to serve as mathematics teacher leaders. Many 
individuals stated that the online learning experience was better than they could have ever 
imagined.  

The online model included all of the activities and assignments that had been developed 
for the face-to-face mathematics specialist preparation model and met all of the requirements for 
Virginia’s K–8 mathematics specialist add-on endorsement. Based on the principles of a 
community of inquiry (Garrison et al., 1999) but, most notably, social presence (e.g., open 
communication, group collaboration, and bonding), technology virtually connected a group of 
teachers from across the state and helped the cohort to develop and grow into a tight-knit 
professional learning community. The flipped classroom model including independent work, 
small group activities, and whole class discussions helped candidates to explore concepts and 
ideas in a variety of meaningful ways. The externship allowed the candidates to put what they 
learned into practice. The result of this experience was a new cohort of strong mathematics 
teacher leaders across the state, who are prepared to coach and mentor other teachers in 
mathematics content and pedagogical best practices. While online best practices were not 
explicitly taught during this program, they were constantly modeled during each course. 
Therefore, an unexpected but important by-product of this experience is that the candidates were 
fully prepared to transition to online instruction in their schools when schools unexpectedly had 
to close in March of 2020 due to the COVID-19 pandemic. This model of professional 
development was extremely successful and is replicable with other programs and in other 
contexts. 
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ABSTRACT 
This paper highlights how coursework 
within a synchronous online mathematics 
specialist program enhanced candidates’ 
leadership knowledge and provided 
structures that addressed issues of equity and 
access. A focus on one online assignment 
grounded in Lesson Study played a pivotal 
role in developing equity-centered 
leadership and instructional practices. 
Program instructors and recent alumni 
illuminate how designing, implementing, 
and reflecting on the Lesson Study 
experience served as a cornerstone for 
advancing their mathematics instruction in 
the following ways: (a) as instructors 
designing an online leadership course, (b) as 
learners within an online environment, and 
(c) as educators within their K–8 school 
settings. The description of these 
experiences supports the broader 
mathematics education community’s goal of 
achieving a cohesive vision for the teaching 
and learning of mathematics, while 
promoting equitable practices in school-
based work. 
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Educators across the nation are working towards the creation of equitable mathematics 
instruction in which every child has access to a “powerful learning environment” (National 
Council of Teachers of Mathematics [NCTM], 2020, p. 1). Equitable mathematics instruction 
should be designed in a manner that promotes “access and attainment for all students” (NCTM, 
2000, p.12). It should be responsive to individual student needs and integrate student background 
knowledge and experiences (NCTM, 2020; NCTM, 2014) so that students can develop 
mathematical agency and actively demonstrate the knowledge and skills they possess instead of 
passively receiving information (Berry, 2016; Lawler, 2012). However, to achieve this vision, a 
transformation of our current instructional practices is essential, and systematic support is 
required (National Council of Supervisors of Mathematics & TODOS, 2016). Mathematics 
specialists are one way in which this reconceptualization can occur.  

 
The Mason Mathematics Specialist Program 

 
Over the past 15 years, it has been the goal of George Mason University’s (Mason’s) 

Mathematics Specialist Program to support the initial preparation and professional development 
of mathematics specialists. As the program transitioned to a fully synchronous online program, 
multiple benefits have emerged. For instance, as Mason’s program has expanded beyond 
Virginia into other states along the East Coast and across international boundaries, the candidate 
population has diversified, leading to an increase in divergent thinking. Additionally, the online 
platform has amplified shared ownership in our learning communities and has become a model 
for enhancing instructional opportunities via technology (Baker & Hjalmarson, 2019). However, 
most importantly, candidates have implemented equity-centered instructional shifts within their 
K–8 school settings. This paper speaks to one key assignment, which serves as such a model, the 
Online Lesson Study Assignment.  

 
The Online Lesson Study Assignment: Instructors’ Perspective 

 
While there are many variations of lesson study throughout the United States, when 

designing the original Lesson Study Assignment, Mason instructors drew upon the Lewis and 
Hurd (2011) model. This model allowed for developing a professional learning community that 
values participants, emphasizing research-informed teaching and responding to individual 
student needs by integrating student background knowledge and experiences. In the transition to 
a synchronous online format, instructors were able to uphold and enhance the lesson study 
components we valued while allowing the candidates to implement these lessons in a face-to-
face context. Candidates continued to create task-based lesson plans that promoted engaging 
students in learning and doing mathematics aligned with national and state standards (NCTM, 
2000; National Governor’s Association Center & Council of Chief State School Officers, 2010; 
Virginia Department of Education, 2016). However, the work of examining learning 
progressions and research-informed curricular resources now occurred in virtual breakout rooms 
using interactive tools such as Google Docs and Google Slides. Instructors integrated video 
recordings of the implemented lessons into the assignment so that lesson study teams could 
collaboratively reflect on and adapt the lesson for future implementations. Furthermore, 
Courtney and Spencer [instructors/authors] increased the emphasis on equitable instruction 
(NCTM, 2014, 2020) by asking candidates to utilize resources and strategies to promote 
students’ mathematical agency. Designing online, collaborative, research-informed lessons 
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centered on equitable teaching afforded candidates multiple opportunities to ensure all students 
have equitable access to powerful mathematical learning while developing valuable leadership 
skills required to shift mathematics instructional practices.  

 
Candidates’ Online Experiences & Perspectives: Adrienne, Alyson, and Scarlett’s Stories 

 
In the following sections, three Mathematics Specialist Program alumni, Adrienne, 

Alyson, and Scarlett, describe their experiences with the Online Lesson Study Assignment and 
how the assignment influenced their teaching and leadership practice. The themes common 
across their learning and design experiences are presented first, followed by stories of their 
unique implementation experiences (see Table 1). 

 
Table 1 
Candidates’ Online Lesson Study Assignment Implementation Summaries 

Candidate Lesson title Grade(s) Mathematics topic Research goals 

Adrienne “Array-bow of 
Color” 

4th & 5th Multiplication within 
1000 

Explore strategies 
and representations 

Alyson Promoting problem 
solving 

4th & 5th Decimals and decimal 
operations 

Integrate multiple 
representations 

Scarlett Inventive strategies 
for subtraction 

4th Subtraction word 
problems 

Examine students’ 
conceptualization 

 
Designing Equitable In-Person Learning Experiences in a Synchronous Online Cohort 

 
Even though we (Adrienne, Alyson, and Scarlett [alumni/authors]) participated in 

different lesson study groups, we each worked “to challenge and build one another’s knowledge 
of subject matter and of student thinking” (Lewis & Hurd, 2011, p. 3). We participated in several 
preliminary discussions and activities to develop respectful and collaborative relationships. We 
established group norms and roles, shared our individual mathematics instructional goals, 
listened to each other’s project ideas, and wrestled with how we could address our individual 
goals while also meeting the group’s needs.  

Following the requirements of the Online Lesson Study Assignment, we discussed our 
different instructional styles and classroom experiences, which provided insight into who we are 
as educators and how to meet students’ instructional needs during the collaborative lesson. We 
ensured each group member felt heard and valued through our lesson study log, to which we all 
had online editing access. This afforded us the ability to record our thoughts, questions, sources, 
and lesson ideas in real time. By identifying commonalities and sharing strengths and 
weaknesses, we established a level of accountability and commitment to the lesson study cycle 
process. 

Our prior knowledge and pedagogical strategies began to coalesce during the lesson 
creation and development stage. Each of our lesson study groups began by having common, 
broad goals in mind: (a) to probe students through problem-solving activities, (b) to ask 
purposeful questions to deepen their learning, and (c) to help students connect mathematical 
tasks to real-world contexts. These goals guided the creation of student-centered lessons and 
built on our collective knowledge of mathematics content and pedagogy. Because we were 
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separated by physical distance, the online learning platform allowed us to stay connected, learn 
from one another’s contexts, and discuss the required research readings. It became apparent how 
imperative it was to listen to and honor each of our voices to make this experience purposeful 
and meaningful for all.  

While the lesson study exposed our pedagogical practices and how students responded to 
our carefully planned lesson, we felt the greatest learning opportunities came from the intense 
reflection process in which we engaged independently and as a group. The process of reviewing 
artifacts, such as student work, built systemic knowledge about and for teaching and learning 
(Lewis & Hurd, 2011). Through the collaborative examination of student work, we experienced a 
joint investment and insight that led to further refinement of teaching pedagogies that influenced 
our broader understandings of teaching and learning mathematics.  

One of the most valuable parts of our online lesson study experience was the recorded 
video component. The videos generated discussion, illuminated missed instructional 
opportunities, and prompted reflection that helped the teams make lesson improvements for 
subsequent implementations. Watching a video of one’s teaching and sharing it for discussion 
with colleagues is an incredibly vulnerable act. For example, Alyson’s reflection on her 
examination of the lesson video speaks to the importance of this element of the assignment. 

I found that watching and sharing the video of my own teaching was scary, humbling, 
and empowering. It’s one thing to be observed in real-time. It’s another thing to examine 
a video of your teaching. However, I knew that my team and I had created the plan 
together and it was our lesson even though I was the one teaching it. (A. Eaglen, personal 
communication) 

Alyson’s reflection further accentuates the need to build trust and develop community with 
lesson study team members prior to the lesson’s execution. The honest feedback we received 
from our lesson study teams provided us with the opportunity to reflect on and grow our 
pedagogical practice.  
 
Developing an Equitable Leadership Practice in an Online Environment 

 
Our graduate program’s online platform allowed us to seamlessly connect, create, and 

collaborate, which was pivotal to our mathematics leadership journey. Instead of basing our 
lesson study self-reflections on memory, we reviewed the lessons in their entirety using video 
recordings. We benefited from the diverse perspectives of our group members, unbounded by 
geography. The online platform of our graduate program provided consistent access to multiple 
educators from various grade levels and differing roles throughout the East Coast and 
international settings.  

Because we were never in the same room together, collaborating online required 
professionalism and collegiality when providing honest and constructive criticism. We achieved 
these goals in three ways. First, the online format allowed us to develop better time management 
due to candidate locations across multiple time zones. Second, we learned to communicate more 
succinctly because online communication prevented us from relying on facial expressions or 
body language. Having candid conversations enhanced and invigorated our leadership skills 
because we learned to courteously, yet frankly, critique our peers, which in turn provided 
invaluable practice for us aspiring mathematics teacher-leaders. Lastly, the online lesson study 
format was executed without the need for substitute coverage. During live lesson study 
experiences, teachers often have to get substitute coverage in order to be able to view and debrief 



Baker et al. | Developing Equity-Centered Leadership | 49 

 

the lesson. Using the online format, we were able to meet and discuss our lesson outside of the 
time constraints of a school day. This format’s flexibility makes it an interesting option for 
schools and districts looking to normalize in-house professional development. 

 
Our K–8 Students’ Experiences with Equitable Mathematics Instruction 

 
Students possessing mathematical agency participate in meaningful mathematics that 

connects to their background knowledge and experiences as well as those of their peers (NCTM, 
2020). The K–8 students who participated in each of our lesson studies engaged in rich 
mathematical tasks which were intentionally designed with multiple entry points so all students 
could access the problems. Holding true to our lessons’ student-centered design, our learning 
goals were driven by students learning from one another as they listened, questioned, and 
explored each other’s ideas and made mathematical connections independent of teacher input. In 
this way we embraced Catalyzing Change’s (NCTM, 2020) intent to ensure all students’ voices 
and ideas were welcomed into our classrooms and fostered others’ learning. Below are the 
stories from each of our lesson study implementations and how we cultivated an equitable 
mathematics practice that emphasized students’ mathematical agency.  

 
Adrienne’s Implementation: Equity in Exploration and Discovery 
 At the core of Three-Act Tasks is student-driven engagement and participation. The tasks 
cannot be solved without student input. Student input is rarely categorized as “correct” or 
“incorrect”; rather, it is considered integral to progressing along a solution path. Because the 
teacher serves as a facilitator, student input leads to understanding with pivotal observations, 
questions, exploration, risk-taking and decision-making. My (Adrienne’s) lesson study team’s 
plan was structured to maintain these critical aspects of the Three-Act Task. During the process, 
we designed my instructional role to shift from teacher to facilitator by explicitly contemplating 
how we could launch the task.  

In the first act of the task, I asked students to brainstorm the focus question that would 
guide their inquiry. Each student voiced an opinion that I recorded on our chart paper, which was 
posted for all to view. As each student actively contributed and listened to their classmates, they 
individually and collectively determined whether an idea could be further considered, developed, 
or eliminated. Every student played a leadership and collaborative role by sharing ideas, 
attempting to justify their thoughts, and critiquing others’ suggestions. During a 40-second turn-
and-talk, students shared their thinking and considered the ideas of one or more classmates. The 
students spent almost eight minutes discussing the possibilities of the main question, during 
which time they combined questions, eliminated unnecessary ones, and eventually realized that 
they would answer subsequent questions with an exploration of their selected focus question.  

This dynamic aspect of the task on which we focused in our lesson study helped students 
take ownership of their learning. They could not progress to the next act without making 
decisions collaboratively around the first act. At some point in the discussion, each student 
played both a follower and a leader, further developing a sense of mathematical confidence and 
agency. 

 
Alyson’s Implementation: Equity in Access 

A productive belief about children’s mathematical ability in Catalyzing Change (NCTM, 
2020) is that access to high-quality mathematics instruction is impacted by the labels we place on 
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children. Similarly, teachers must leverage student differences by considering how we can invite 
all students to participate by encouraging representations that support sense-making at all levels 
(NCTM, 2020). In my (Alyson’s) lesson study project, my group strove to create an accessible 
mathematical opportunity through which all students could engage in the same rich task. We did 
this by selecting a problem with multiple entry points, providing students with a variety of 
manipulatives, and encouraging student groups to investigate a solution strategy that made sense 
to them.  
 The task we selected was centered on a real-word activity with which most students in 
the classroom had personal experience: raking leaves. While launching the task, students were 
shown different manipulatives that they could use to help them explore and solve the problem, 
including play money, snap cubes, pattern blocks, counters, and color tiles. The variety of 
materials sent a clear message to students that varied representations and creative strategies were 
welcomed and invited students to construct their own meaning. Student groups were also given 
chart paper and markers to record their thinking as they collaborated to make sense of the task. 
While groups collaborated, I circulated from group to group, checking in on student thinking. I 
supported sense-making by asking purposeful questions that probed their mathematical 
understandings and encouraged divergent solution strategies. The freedom to develop their own 
strategies, along with verbal encouragement to represent strategies with manipulatives, pictures, 
words, and numbers encouraged all students in the class to be doers of mathematics. This belief 
that all students are capable of doing mathematics and the practice of giving them the means to 
access the problem and materials are huge steps towards creating equitable mathematics 
instruction. 

During the post-lesson reflection, our group realized that our purposefully planned lesson 
had positively impacted student learning. By creating the conditions whereby students had both 
access to the problem and the materials that enabled them to collectively reach a solution, 
students demonstrated a deeper understanding of the content and feelings of being valued as 
mathematical thinkers. 

 
Scarlett’s Implementation: Equity in Opportunity 

Equity does not mean that everyone gets the same instruction; it means that every student 
receives quality instruction and the opportunities that they individually need to find success in 
mathematics. One of the benefits of a lesson study is that it allows educators to plan and consider 
how to provide quality instruction for all learners. Lesson study becomes extremely important 
when planning effective and meaningful mathematics instruction, especially because students 
bring with them varied experiences and readiness for learning. 

In my (Scarlett’s) lesson study experience, students were given opportunities to discuss 
and evaluate strategies and consider strengths and weaknesses of their computation. Students 
were given time to analyze strategies based on their experiences with numbers and to decide why 
and how their strategies worked. Students identified and made connections between new 
strategies and ones they had used previously. Through this practice, students developed deeper 
conceptual understandings for how to decompose numbers into friendlier numbers to use when 
calculating. Through this lesson, students were able to build on the idea that there are multiple 
pathways to solving a problem in mathematics. Once students made a meaningful connection to 
a concept they understood, they experienced a “lightbulb” moment. As students analyzed the 
strategies more closely, their conceptual understanding and confidence increased, enabling them 
to move forward with problem-solving because they were able to find a point of familiarity.  
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 The mathematical insights students gained through making a mathematical connection 
during this lesson will support them as they continue to deepen their mathematical thinking. The 
lesson created in our Online Lesson Study Assignment offered a lens into how developing 
leadership skills fosters instructional practices which lead to equitable learning experiences for 
students. 

 
Final Thoughts 

 
Whether in a formal or informal leadership position (McGatha & Rigelman, 2017), 

mathematics specialists can be positioned as powerful change agents who support the 
transformation of mathematics instruction into collaborative spaces: spaces in which students are 
encouraged to take new approaches, advance their learning, and foster mathematical agency 
(NCTM, 2014). To accomplish these goals, mathematics specialists require targeted leadership 
knowledge and skills so that they can help transform mathematics instruction in their schools 
(AMTE, 2013; NCTM, 2012; Sutton et al., 2011). The Online Lesson Study Assignment in 
George Mason University’s Mathematics Specialist Program provided candidates with 
opportunities to intentionally design and facilitate lessons that provided multiple access points to 
ensure all students meaningful engagement with rich mathematical learning experiences. 
Ultimately, engaging in this experience allowed candidates the opportunity to transform their 
classrooms into mathematically powerful spaces in which teachers facilitated equitable learning 
opportunities and students increased their mathematical agency.  
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A mathematics specialist candidate was considering asking her middle school students to 
utilize mathematical symbols and order of operations to derive the numbers 1–20 using only four 
4s. Anticipating student responses prior to the activity, the candidate wrote, “I perceive students 
will have difficulty with solving an expression for 13, 17, 18, and 19.” The instructor responded, 
“Why? Can you give me a reason?” This simple interaction between an instructor and a 
mathematics specialist candidate in an online course sparked a relationship that would have a 
lasting impact on both of them. The candidate recognized the importance of anticipating student 
mathematical answers. The practice of anticipation provided the candidate with a means to 
integrate the content knowledge from her online mathematics courses with the pedagogical 
content knowledge in her mathematics leadership course. Learning to anticipate not only had an 
impact on the teaching practices of the candidate but also on the practices and perceptions of the 
instructor. For both individuals, the importance of learning to anticipate student responses in an 
online graduate course and a face-to-face middle school class supported the instructor and 
candidate in revising their pedagogical beliefs. 

 
Literature Review 

 
Smith and Stein (2011) provide five practices for supporting teachers in leading more 

purposeful mathematical discussions. In the first step, anticipation, the teacher solves the 
problem and reflects on possible student strategies and misconceptions. Monitoring, the second 
step, requires the teacher to observe student thinking. In the third step, selecting, the teacher must 
purposefully identify student solutions to highlight in the whole group discussion. Sequencing, 
the fourth step, asks the teacher to make “purposeful choices about the order in which students' 
work is shared, [so] teachers can maximize the chances that their mathematical goals for the 
discussion are achieved” (Stein et al., 2008, p. 329). In the last step, connecting, teachers must 
pose questions that support students in finding connections between the different student 
strategies to develop the key mathematical ideas for students.  

Embedding the practices into a class can change the way a teacher develops their 
mathematical understandings to support the learning of their students and improves their ability 
to lead productive discussions (Stein et al., 2008). Implementing the step of anticipation into the 
lesson planning process provides teachers a means to recognize different concepts, procedures, 
and practices that students can use to solve a mathematical task. Before a lesson, reflection on 
student responses supports a teacher in being prepared to address student misconceptions and 
solutions (Schoenfield, 1998). Anticipating allows the teacher to develop questions to assess and 
advance students' thinking. The process of anticipation not only promotes student-centered 
mathematical discussions that move beyond "show and tell discussions" (Stein et al., 2008, p. 
316), but it also provides a chance for teachers to reflect on mathematical content and 
pedagogical strategies needed for high-quality mathematics instruction.  

In any classroom, understanding effective teaching practices is imperative for student 
success. Research on online learning has focused on the importance of building a sense of 
community that includes and supports learners as they interact with the content (Barry, 2019; 
Swan, 2003). The instructor has to be visible and engaged in the online learning community. The 
benefit of the teacher and the student interactions can have a positive impact on student learning 
(Serdyukov & Sisteck-Chandler, 2015). Similar to interactions in a face-to-face classroom, in an 
online class "the quantity and quality of teacher interaction with students are linked to student 
learning" (Swan, 2003, p.25). Online teachers must be present in the online learning 
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environment, but the question is how does an instructor anticipate the level of engagement and 
the types of questions that will arise during the online interaction?  

 
Setting the Stage 

The Class 
 
Mathematics Education Leadership I is a course designed to develop effective school-

based mathematics teachers and leaders. Course readings, discussions, and assignments support 
the development of mathematical content knowledge and mathematical content pedagogical 
knowledge. Course objectives mirror the effective teaching practices and guiding principles 
presented in Principles to Actions: Ensuring Mathematical Success for All (National Council of 
Teachers of Mathematics [NCTM], 2014). Careful attention is given to the designing, teaching, 
and evaluating lessons and assignments that supported inquiry-based learning in the classroom.  

 
The Candidate 

  
I (Melody) had been a fifth-grade teacher for thirteen years and a middle school 

mathematics teacher for four years. I considered myself to be a successful, knowledgeable 
teacher when I enrolled in an online professional development program. I had completed one 
mathematics course in the program and, from that experience, knew that my interactions with the 
Leadership I course instructors would take place through email, phone calls, and online course 
meetings. During each course session, I was busy taking notes and digesting the new information 
that I learned through our class discussions. Initially, I was afraid to ask questions in the online 
class out of my fear of not having the skill set to be successful in this program. If the class met 
face-to-face, I would ask the instructor, Kristina, any questions or request clarification at the end 
of a class meeting. At times, I felt isolated in the class due to the geographical distance between 
program participants and the online nature of the program. 

 
The Instructor 

 
I (Kristina) had been a K–8 mathematics teacher and university instructor for over twenty 

years before teaching Leadership I. I thought of myself as a knowledgeable instructor, but I had 
concerns about teaching an online class on pedagogy when most of my prior work as an 
instructor had focused on mathematical content knowledge in a face-to-face setting. I had 
completed variations of the Leadership I course assignments when I completed a similar 
professional development program a few years ago. Through the process of anticipating the 
questions and misconceptions that could arise for candidates, I reflected on my own prior face-
to-face experiences. 

 
The Assignments 

 
The Task-Based Assignment 
 

One task-based assignment in the course began with each candidate selecting a 
cognitively demanding task to implement in a K–8 classroom. The purpose of the assignment 
was to help candidates in their development of listening, observing, and questioning skills. The 
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assignment consisted of two components. In the first component, candidates addressed the goals 
for the task, the purpose of the task, and the implementation of Smith and Stein’s (2011) five 
practices for orchestrating a productive mathematical discussion. Implementing the five practices 
in the development stage enabled the candidates to make meaningful connections between their 
mathematical knowledge and pedagogical knowledge to reflect on anticipated student 
mathematical ideas. The second component of the assignment was for candidates to write an 
analysis of the implementation of the task including providing a description of the mathematical 
thinking of several students as they worked through the task, the future instructional needs of the 
class, and a personal reflection on the entire process. Candidates received feedback on the first 
component before completing the second component of the assignment. This assignment 
afforded candidates the opportunity to reflect on their students’ mathematical thought process 
before, during, and after the task. 

 
The Candidate 

 
I had questions before the assignment even began. This was my first time doing an 

assignment like this, and I needed support. I reached out to other students, but they were not 
always able to help me. After feedback from other students and a conversation with Kristina, I 
chose the task “The Four 4s” (see youcubed.org). The task required my students to utilize 
mathematical symbols and order of operations to derive the numbers 1–20 using only four 4s. As 
part of the assignment, I anticipated student solutions. This was the first time I had chosen such 
an open-ended task to implement in my classroom, and I struggled to think like a middle school 
student. I had a (one) method for using fours to come up with each of the numbers 1–20 but had 
difficulty thinking of others.  

For the first component of the assignment, I stated that certain solutions would be a 
challenge for students because they were challenging for me. In her feedback to me, Kristina 
asked me why I thought the students might struggle with these solutions. I had to admit that the 
task was hard for me. When I implemented the lesson in my classroom, my students did not have 
difficulty with the same numbers that I did. This experience helped me to reflect on how I could 
anticipate student solutions and the approaches my students would utilize to complete the task. I 
had gone through the process of anticipating as part of the assignment, but I had not anticipated 
as thoroughly as I should have. For example, I had not thought through the possible 
misconceptions about the order of operations or misuse of grouping symbols. Connecting the 
learning experiences in the mathematics content course with what I was learning in the 
leadership course was important if I was to become a mathematics specialist. I needed to think 
about how there was more than one way to solve a problem. I had to challenge myself before I 
could challenge my students.  

 
The Instructor 

 
In the first component of assignment, candidates addressed three questions about the 

learning goals, the task description, and anticipated student strategies for the task they had 
chosen. The candidates uploaded their chosen task and question responses to a discussion thread 
that was used for providing feedback to each other. Melody initially picked a task on integer 
operations. Her classmates suggested reflecting on the open-ended nature of the task or 
developing context for the problems she had chosen. I agreed with the suggestions but also 
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noticed that in her response to the question about anticipated student strategies she had provided 
some general misconceptions instead of possible solutions. 

 Melody and I communicated several times about her concerns and questions about the 
initial task assignment. In our discussions, Melody shared that the task "Four 4s" was more open-
ended and provided multiple entry points for her students. As I graded her assignment, I read her 
statement about several of the numbers in the 1–20 range being hard for her represent with only 
4s and her conclusion that they would be hard for her students. I asked Melody about this. My 
question led to a conversation about what it meant to anticipate in a mathematics lesson. For me, 
I had not thought that anticipation would be an issue within the assignment; I assumed that her 
prior work in her previous mathematics content course had given her a foundation for exploring 
strategies and misconceptions to support her in learning to anticipate. Reflecting, I believe my 
prior experience in teaching mathematics and my lack of experience teaching a mathematics 
pedagogy course led to my inability to anticipate these types of issues.  

 
The Lesson Planning Project 

 
The Lesson Planning Project in Leadership I required candidates to revise and refine a 

lesson plan for their K–8 class. Candidates used their prior knowledge from course discussions 
and the task-based assignment to plan, teach, and analyze a student-centered mathematics lesson. 
Similar to the task assignment, this project was broken into two components. First, a current 
lesson plan or school division lesson plan had to be revised using backward design and the Smith 
and Stein (2011) five practices. After the lesson was completed, the second component of the 
assignment was for candidates to analyze student work and develop an instructional plan to meet 
student needs.  

 
The Candidate 
   

This project stood out to me because of its use of backward design. I had written many 
types of lesson plans, but I struggled to anticipate what the instructors wanted for this specific 
type of lesson plan. Connecting the mathematics content standards to students’ prior knowledge 
and to their post-lesson knowledge to rewrite a lesson plan was a new experience for me. My 
lessons tended to focus on the mathematics content my students needed to understand, with little 
consideration about what they needed to know after they left my classroom. This was a new form 
of anticipation that I needed to incorporate in my teaching practice. I had to anticipate where my 
students had been, where they needed to be, and how to help them bridge any gaps to aid their 
mathematical understanding. I was just beginning to learn to anticipate my students’ responses, 
but this added a new twist.  

 I choose to do a lesson on order of operations and mathematical properties. I remember 
the lesson plan template said, “Let go!”  But I was not ready to let go. I was working on handing 
over more responsibility to my students, learning to anticipate their strategies, and then I needed 
to let go so they could think about mathematics. This was all new for me. I knew I needed to 
anticipate strategies and misconceptions, but I would never have all the possible solutions. I 
knew I needed to anticipate their strategies to guide their thinking. I knew I could do this, but I 
needed support. 

I contacted Kristina. I asked her: What does "understand” mean in backward design? In 
the assignment, it said “understand,” but are these the “big ideas?” We would communicate 
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when I needed support. I think Kristina was learning to know when I needed clarity or just a 
probing question to help me reflect on what I was thinking. Sometimes it would just take a 
simple question of “what would you do if this happened?” or “how would you do this?” Through 
our communication, I realized that I could do the assignment. In my reflection on the lesson plan 
project, I shared how I had been narrowly focused on the skills at hand and had never thought 
about how my students would solve a problem. In our communication, I realized that I did know 
where my students would make mistakes from my prior experiences with them and with other 
students and I could be prepared to address them. As a teacher, when I can anticipate a student's 
mistakes, I can have strategies prepared to address my student’s needs.  

 
The Instructor 
  

In anticipation of the lesson plan project, the candidates worked in small groups on the 
steps of backward design planning. The instructors moved among the groups (in online breakout 
rooms) and supported the candidates as they worked. Again, I felt that the students were 
prepared for the assignment. I believed the assignment was written clearly and prior activities in 
the course had prepared the candidates to successfully complete the assignment. It was not long 
before I heard from Melody about her struggles in thinking about the “big ideas” and the 
meaning of “understand” in backwards design (Wiggins, 2005). As I talked with Melody, it 
appeared that the problem was not with the assignment itself but was related to her ability to 
communicate her thinking. Our conversations centered on what a concept meant for her and how 
it could be transferred to her classroom.  

I was not anticipating her questions, but what I was beginning to understand was that it 
was not about my helping Melody directly. Instead, she needed me to ask a probing question to 
support her in her understanding. Melody was learning to make sense of the pedagogical 
knowledge that she was gaining. Melody shared with me that she was allowing her students to 
take more chances in the classroom, and she was taking more chances as well. I was beginning to 
see a change in her, but at the same time, I was seeing a change in how I anticipated Melody’s 
needs. My concerns about teaching an online class made me unsure about how to anticipate and 
address student needs. Melody's needs were no different than any other student learning to make 
sense of new material, and what she needed was a place to feel comfortable asking questions. I 
needed to pose questions that allowed her to reflect on her thinking. 

 
Conclusion: Learning to Anticipate Together 

 
We each used the idea of learning to anticipate in different ways to inform our practice in 

our respective classrooms. Our takeaways from this experience are presented below. 
 

The Candidate 
 
A big takeaway from the Leadership I course was that I can prepare for student answers. I 

will never have all the possible solutions, but that is alright. Mathematical learning is not about 
the correct answer but is instead about guiding student thinking. Schoenfield (1998) stated that 
“having a deeper understanding of teaching should have real payoffs in the long run” (p. 92). I 
have learned the importance of building strategies and filling my student’s mathematical “tool-
box.”  I need to anticipate how students could solve a problem and what misconceptions they 
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might have as I guide their instruction. In my final written reflection during the course, I think I 
said it best: 

Anticipating was new for me. I had never really thought about how students might 
solve a problem. I would work the problems and I knew what the answer was, but 
here was this new concept of analyzing what I thought they might do. I always 
chose a student with the right answer to go up to the board and share. I didn’t look 
for different ways to solve the problem. If you didn’t solve it the same way as me, 
then it wasn’t correct. You had to do it the ONE and ONLY way. I sometimes 
wish I could go back and apologize to those early classes. (M. O’Quinn, personal 
communication) 

Learning to anticipate allowed me to connect the ideas from my mathematical content 
classes with the pedagogical ideas in the leadership courses. I now share the idea of 
anticipating students' work with others in my school building to help them see the 
importance of this step before teaching.  
 
The Instructor 
  

Learning to anticipate in an online class helped me to recognize that teaching in an online 
setting does not mean I have to be a different teacher. Instead, the mode that I use to 
communicate with my students needed to change. Just like in a face-to-face class, I cannot 
always anticipate all of the misconceptions that may arise, but what I can do is ask questions that 
make the student reflect on what they know and where they want to go. This is also true in a 
mathematics course or a mathematics education (leadership) course. Prior learning experiences 
had an impact on how I anticipated what took place during the class. I needed to remember that 
my experiences in any classroom are not the same as others. I need to take time to reflect on how 
others may interpret assignments based on their own classroom experiences to improve my 
teaching (Ball & Bass, 2003). Focusing on the interaction between my prior experiences, beliefs, 
and knowledge when anticipating will support my learning and the learning of my students 
(Schoenfield, 1998). Recognizing that this does not change in an online learning environment is 
important. 

 
 Learning Together 

 
Together, the instructor and student became learners in this online class. It was a new 

setting for both of us, but in learning to anticipate in our respective classrooms, we formed a 
community of inquiry. This community allowed both of us to reflect on our teaching practices 
and beliefs. Swan (2003) described the importance of engaging with the content and with each 
other in an online learning environment. Instructors cannot “give a sense of community to 
learners” (Conrad, 2003, p.17). Instead, the sense has to grow out of members being present and 
active in the community. 

Through our interactions during the Leadership I course, we both learned the importance 
of anticipating student strategies and misconceptions. The true mathematical and pedagogical 
learning did not emerge from the correct answers but developed through being reflective as part 
of the learning experiences that took place. Our interactions in the online learning environment 
were high quality (Swan, 2003). These interactions supported both of us as we worked to 
develop deep connections between content and pedagogy (Ball & Bass, 2000).  
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ABSTRACT 
Universities are implementing more online 
courses (Yamagata-Lynch, 2014). However, 
instructors may feel a sense of trepidation in 
transitioning a mathematics class to a 
synchronous online platform because they 
do not want to compromise quality 
pedagogy (Herrington et al., 2001) for the 
convenience of an online environment 
(Wills, 2021). Some courses have 
successfully transitioned to a synchronous 
online environment while maintaining rich 
discussion and student collaboration (Baker 
& Hjalmarson, 2019); however, 
mathematics content courses include the 
additional challenge of incorporating 
problem solving with multiple 
representations. This paper focuses on how 
mathematical representations emerge in a 
synchronous online course for mathematics 
specialists. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
KEYWORDS 
synchronous instruction, multiple 
representations, discourse, distance learning, 
face-to-face instruction, rich tasks 



62 | Journal of Mathematics and Science: Collaborative Explorations 17 
 

 

The purpose of this paper is to show how students recorded their representations in both 
face-to-face (F2F) and synchronous online mathematics content courses in a mathematics 
specialist preparation program at George Mason University and to show the intentional 
instructional planning that encouraged students’ use of multiple representations. We will guide 
readers through various mathematical representations (concrete, pictorial, and abstract) created in 
both F2F and online classrooms. Examples of the representations include pictures of student 
work and group posters presented in the F2F class and the student work visible on collaborative 
slides (e.g., Google Slides) in the online class. We will address the successes and challenges of 
implementing a mathematics education online course through the eyes of multiple stakeholders. 
Theresa Wills and Deborah Crawford are university instructors who have taught multiple 
mathematics courses in both F2F and online settings, and Deborah is also a district leader in 
Virginia. Shruti Sanghavi and Kate Roscioli are K–12 educators and alumni of George Mason 
University’s Mathematics Educational Leadership (MEL) program. Shruti experienced a 100% 
online program, and Kate participated in a hybrid program with four mathematics courses taught 
in a F2F format and one taught online.  

The National Council of Teachers of Mathematics (NCTM) (2014) states that “effective 
teaching of mathematics engages students in making connections among mathematical 
representations to deepen understanding of mathematics concepts and procedures as tools for 
problem solving” (p. 10). Representations come alive in F2F and online classrooms in many 
different formats, including drawings, physical manipulatives, formulas, tables, graphs, virtual 
manipulatives, and digital tools.  

 
Representations 

          
Mathematical representations are essential components in mathematics classrooms. 

Representations such as drawings, concrete models, and abstract symbols are necessary 
components to help students build deep conceptual understanding (Berry & Thunder, 2017). 
Comparing representations through discussion helps make connections to the mathematical goals 
(Smith & Stein, 2011). Lesh et al. (1987) emphasized the importance of students moving flexibly 
between representations to understand the mathematical concepts fully.  

 
Discourse and Rich Tasks 

 
Mathematical discourse involves the student to student discussion of models, 

representations, and strategies used in problem solving (Smith & Stein, 2011). Students must 
communicate and collaborate as they solve problems to develop a deep mathematical 
understanding (Steele, 1999; Walshaw & Anthony, 2008). Facilitating meaningful mathematical 
discourse is challenging because of the intricacies involved in the process (Stein, 2007). It 
requires student engagement with multiple, student-created representations and a teacher that 
possesses content knowledge, conceptual understanding, and a mindset to commit to changing 
their instruction (Smith & Stein, 2011; Firmender et al., 2014). It also requires the teacher to act 
as a facilitator to guide students’ thinking and understanding in the classroom (Steele, 1998) as 
students discuss how they arrive at a solution, not just the solution (Stein, 2007). Discourse about 
rich tasks serves as a tool for equity as students can access the tasks through multiple entry 
points (Sealey, 2016) and the voices of all students are valued through their different 
representations of the problem situation. 
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Rich tasks serve as the vehicle through which students’ mathematical thinking becomes 
visible. However, through mathematical discourse, students create a shared understanding of the 
big mathematical ideas in focus of the lesson (NCTM, 2014). Through discussion, students can 
compare and contrast multiple representations of different strategies used to solve a task and 
connect different representations to the underlying mathematical ideas and relationships (NCTM, 
2014) which are intertwined with other mathematics teaching practices (Smith et al., 2017).  
 

Representations, Discourse, and Synchronous Online Classrooms 
 
A synchronous online classroom setting is a live experience that takes place via a video 

conference tool at a specified time. “In synchronous online courses in higher education, there is a 
tremendous pressure to ensure our students are engaged in their online learning environments.” 
(Baker & Hjalmarson, 2019, p. 12). Rich tasks are a catalyst for engagement in mathematics 
education courses because they are designed to be accessible to all learners, are solved using 
various representations and strategies, and relate to students’ lived experiences (Wolf, 2015). 
Regardless of the classroom format, students must have the ability to create and compare 
mathematical representations to fully explore and transmit conceptual understanding (Wills, 
2019), which brings additional challenges for the planning and implementation of tasks in an 
online environment. 

When teaching in a synchronous online format, instructors must anticipate student 
representations and strategies which may be shared using the available technological tools such 
as virtual manipulatives and collaborative slides (Wills, 2021). In order to ensure that these 
representations are accessible to everyone involved, instructors need to consider Technological 
Pedagogical Content Knowledge (TPACK). TPACK (Mishra & Koehler, 2006) describes the 
intersectionality of technological knowledge (creating the digital representation), pedagogical 
knowledge (knowing a variety of representations and when to use them), and content knowledge 
(mathematical knowledge and skills). Deficits in any of these three pieces of knowledge will 
result in incomplete or incorrect representations in the synchronous online classroom. 

Additional challenges and opportunities arise in the types of representations used in the 
online classroom. Wills (2019) found various representations in synchronous online classes, 
including abstract, concrete, pictorial, and dynamic-pictorial (see Figure 1). Dynamic-pictorial 
representations are “pictorial models that use the advantages of technology to move 
representations on the screen in a way that could not be reasonably replicated using hand-held 
manipulatives'' (p. 1). In other words, it moves during the discussion. Dynamic-pictorial 
representations (see Figure 2) are unique to synchronous online learning. They allow students to 
easily work with large quantities (e.g., candidates can copy and paste hundreds of squares 
efficiently) and easily make visual connections between models (e.g., candidates can duplicate a 
representation to show both a before and after manipulation efficiently). 

 
Situation 

 
The MEL masters degree program, described in this paper, is offered in various formats. 

In one format all courses are offered 100% synchronously online, while another provides a 
hybrid experience for students including a mix of F2F and synchronous online courses. 
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Figure 1 
Multiple Representations in Multiple Formats 

 
 
Figure 2 
Dynamic Pictorial Representation 

 
 

Stakeholders and Diverse Perspectives 
 

The authors of this paper have various experiences in online and F2F mathematics 
content courses and describe these unique perspectives throughout the paper to explain the 
complexities of planning, implementing, and participating in online mathematics courses.  

 
University Instructors 

Deborah and Theresa, both university instructors, taught both F2F and synchronous 
online sections of the same course to prepare mathematics specialists. They co-planned their 
classes to ensure that the online sections incorporated the same tasks and activities as the F2F 
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section. This planning ensured that the content and pedagogy remained consistent and that the 
rich tasks, representations, and mathematical discussions were not compromised in the online 
course. 

 
District Supervisor 

Deborah is also a school division mathematics supervisor who hires mathematics 
specialists as classroom mathematics teachers, coaches, Title 1 mathematics teachers, STEM 
specialists, and other locally defined roles. Since teachers tend to teach or coach in the same way 
they were taught (Wiliam, 2011), she wants to ensure that the candidates learn mathematics 
content that models the Mathematical Teaching Practices (NCTM, 2014) and mathematics 
teacher leadership attributes such as coaching the Process Standards (NCTM, 2000). 

 
Students 

Kate and Shruti were both candidates in MEL masters degree program. Shruti was part of 
a 100% synchronous online cohort, while Kate experienced a hybrid instructional model with 
only one content course taught in the synchronous online setting and the other four content 
courses were F2F. They noticed that the structure of facilitating a task did not differ significantly 
in either format. Both had the experience of incorporating multiple representations when 
working with rich tasks in all of the mathematics content courses. Another critical part of 
facilitating a rich task is the discourse, which could be challenging in a synchronous online 
environment. However, through breakout rooms and collaborative slides, the experience was not 
very different from a F2F setting in which candidates sit around a classroom table. Shruti 
explained that although she had anticipated feeling disconnected from the other cohort members 
in an online environment, she found that, due to the synchronous format, the experience was 
collaborative with a strong focus on discussions. As a result, she never felt that her peers or the 
professors were not supporting her.  

 
Themes 

 
Through discussions, interviews, and journaling, these four stakeholders discovered three 

essential themes that were paramount for encouraging mathematical representations in the F2F 
and synchronous online classes: community, expectations, and mathematical discourse. These 
themes will be discussed below, first according to the similarities in both F2F and synchronous 
online settings and then by the characteristics exhibited only in the synchronous online 
environment. Each stakeholder provides unique perspectives and insights into each theme. 

 
Community 
 

Building a classroom community is critical in all mathematics classrooms, including 
synchronous online environments (Fisher et al., 2020; Garrison, 2015). Students require 
interaction and collaboration when exploring various strategies, perspectives, and 
representations. Theresa and Deborah intentionally planned activities that valued mistakes, 
persistence, and celebrated risks in solving problems using representations outside of the 
candidates’ comfort zones. From the first day of class, instructors used differentiated “getting to 
know you” activities for synchronous online students using interactive slides and small breakout 
groups to ask questions about the technology. In this way, instructors were able to pre-assess the 
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technology, mathematics, and other skills that the candidates would need throughout the class. 
Candidates had varied levels of expertise; some were technology experts; some were primary 
grade experts, and some were formulas and abstract notation experts. When instructors created 
heterogeneous groups based on expertise, they noticed characteristics such as patience, 
productive struggle, and willingness to make mistakes. These same traits were evident in 
different groups’ abilities to create multiple representations for rich tasks.  

Shruti remembers that her age and inexperience with computer programs and websites 
did not adversely impact her synchronous online learning experience because of the supportive 
community she was participating in. “At the beginning of each class, the professors would ask 
them to provide an update about their lives with pictures and a short narrative. It was so 
wonderful to know when people were getting engaged, receiving promotions, or having babies” 
(S. Sanghavi, personal communication). 

Kate also benefitted from participating in synchronous online communities. She enjoyed 
the random breakout room feature in the synchronous online class because candidates were able 
to work with different people and hear multiple in-depth perspectives. In F2F classes, she sat 
with the same group and did not get to know everyone else in the class. Both formats engendered 
camaraderie among the students, thus generating another support layer for the cohorts’ students. 

Building a community is a purposeful act prompted by instructors through activities, 
observations, and student groupings. As the communities grew, students felt safe taking risks and 
using digital means of connecting to collaborate and create mathematical representations. 

 
Expectations and Norms 

 
Instructors were explicit in setting expectations and norms to encourage students to create 

multiple representations. They modeled and practiced these expectations regularly in both F2F 
and synchronous online classroom settings.  

 
Problem Solving Oath  

The problem solving oath (see Figure 3) was an intentional structure implemented in both 
F2F and synchronous online classes. Students read the problem solving oath aloud in F2F classes 
and interacted with the oath in synchronous online classes by finding a line in the oath they 
would focus on during the work time on that particular day. Part of this oath reminded students 
to consider many different representations and misconceptions. Kate remembers that when 
everyone said the oath, they committed to using multiple representations. 

Deborah was explicitly looking for various types of representations to present during the 
whole group discussion. When she looked across the representations used by a diverse class of 
learners, she found many concrete, pictorial, abstract, and even dynamic-pictorial 
representations. Theresa describes the purposeful planning for encouraging different 
representations. They found that it was important that they provided a shared space for 
displaying the representations and reinforced the norm that multiple representations were 
required. Theresa also anticipated both student voice during class discussions and the multiple 
modalities necessary for interacting with the representations. For example, a candidate could take 
a photo of their paper-and-pencil work, share a video of their procedure, create shapes using the 
tools on the interactive slides, or provide a screen capture of a virtual manipulative. Once the 
candidates’ representations were visible, they could implement the rest of the problem solving 
oath by asking questions and finding another solution or representation. This structure resulted in 
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all students engaging in the task for the entire work time and provided a plethora of 
representations for the whole group discussion. 

 
Figure 3 
Problem Solving Oath. Reproduced with permission from theresawills.com 

 
 
Collaboration  

Another expectation was that candidates collaborate in small groups as they developed 
mathematical representations. Instructors in the F2F class observed the collaboration by listening 
to table discussions, watching candidates point to drawings in a notebook, and seeing pairs of 
students build a model with manipulatives. Similarly, it was observed in the synchronous online 
class through listening to small group discussions (each participant used a headset with a 
microphone within a breakout room), watching candidates use a virtual arrow to point at 
drawings on a shared slide, and seeing candidates share images of homemade manipulatives. 
Through collaboration, candidates made connections to different representations even as they 
were still emerging during an activity, as they developed a deeper conceptual understanding of 
mathematics.  

Shruti remembers that her cohort could interact in real-time, which included seeing each 
other, communicating, and answering questions together every day of the program. They were 
continuously able to share their thoughts about a task, question, or assignment. She could see 
how others answered the problem, asked questions, made side comments, or offered a different 
solution or strategy. She instantly had a couple of people to bounce ideas off of and knew that 
they would support her no matter what. 

During the whole group discussion, instructors could also see evidence of collaboration. 
Instructors were deliberate about how they facilitated a discussion by asking questions that 
required students to make connections with other peers’ work. Deborah noticed the candidates 
collaborated to collect, organize, display, and interpret their data to make decisions about a rich 
task, scenario, or game. Teams created slides in the class deck to share out their mathematical 
thinking in a virtual gallery walk. Groups visited each team’s slides, giving feedback through 
comments, symbols such as emojis, emboldening or highlighting, and via the virtual classroom 
chat box (see Figure 4). 
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Figure 4 
Solution Slide with Peer Feedback Via Emojis 

 
 
Ownership 
         A unique characteristic of synchronous online learning was a greater sense of ownership 
by candidates. In the F2F classes, the slides were static, but since candidates had full editing 
rights in the synchronous online class, they could add slides, change them, paste screenshots and 
create unique virtual representations. Deborah recalls that candidates used household items for 
physical manipulatives and various technology tools to simulate objects’ physical movement. 
Many times, they color-coded their virtual manipulatives to represent their thinking. Others 
began with drawings and sketches that they uploaded to the slide. If another student wanted to 
draw on a sketch, they could quickly duplicate it and share a different representation. While 
many virtual tools will allow students to upload pictures of their mathematical strategies, 
interactive slides allow for more flexibility as students can upload, modify, duplicate, and 
collaborate within the same document. The affordance of the interactive slides was critical in 
obtaining many mathematical representations for a rich task.  
 

Representations within Mathematical Discourse 
 
In both F2F and synchronous online environments, candidates engaged in mathematical 

discourse around representations developed from rich tasks. The most significant difference 
between the synchronous online and F2F experiences was the type of representations used for 
problem solving. Synchronous online students used homemade or virtual manipulatives in place 
of traditional, hand-held manipulatives. Shruti explored multiple representations through the 
mathematical tasks in every course. She solved a task using her strategy and posted it to a shared 
slide as she watched other strategies emerge alongside of hers, and then she tried to connect her 
work with the work of others through discussion. By communicating with other candidates, she 
was able to identify the similarities and differences as she developed her conceptual 
understanding of a mathematical procedure or concept. 

Similarly, Kate observed that no matter the location, whether it was at your table in a 
physical classroom or in a virtual breakout room, representations were used as a springboard for 
discussions. Both F2F and synchronous online classes began with small group discussions about 
incomplete representations. However, an advantage to the synchronous online class was 
duplicating an incomplete representation and modifying it without altering the original work. 
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Because of this, she experienced shared ownership in synchronous online classes as she modified 
and shared a different representation. 

Facilitating a productive mathematics discussion requires intense multi-tasking by the 
instructor. Deborah and Theresa watched the representations emerge on the group slides in real-
time as groups collaborated in breakout rooms. From the representations viewable on the shared 
slides, they could see the access point and first representation based on the comfort level and 
initial problem solving strategies used across different groups. They chose groups to listen to as 
they discussed their emerging solutions. They observed shifts in thinking as students shared their 
ideas as well as by how they responded during a small group discussion. They also used 
feedback to differentiate their responses to advance the thinking of individuals or groups. One 
group might receive scaffolding to bridge candidates to the next level, while another group might 
be challenged to think about a related question to extend their thinking beyond the task. The 
instructors also took copious notes while selecting and sequencing the pieces of student work to 
present during the whole group discussion. To alleviate instructor overload during the busy class 
session, Theresa found it critical to anticipate the mathematical strategies (Smith & Stein, 2011), 
the technical requirements, the applications being used, and also possible candidate 
misconceptions (Wills, 2021).  

 
Conclusion 

 
Similar to F2F courses, synchronous online mathematics courses must elicit multiple 

student-created representations of mathematical understanding. Three themes, community, 
expectations, and mathematics discourse should be explicitly planned before implementation to 
ensure that students have the required physical, social, and virtual resources to create and share 
their representations. Students who have a strong sense of community are more likely to 
participate and share their misconceptions as they explore problem solving. Clear expectations 
provide the structure for small group time and ensure that students explore multiple 
representations. Finally, mathematics discourse is the glue that brings the various representations 
together to form a clear image of the mathematics goal being explored. All of these themes can 
and should be implemented in synchronous online mathematics courses. 
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ABSTRACT 
Team teaching is a form of collaborative 
work where teachers plan lessons and/or 
teach together. We discuss the strengths of 
discourse in the planning stage for an 
intensive, team-taught, three-week 
probability and statistics course for 
mathematics specialists as a way to create 
and sustain a sense of community and show 
multiple perspectives in an online course. 
We delve into two cases of lessons––one 
about stem-and-leaf plots and another on 
averages––to describe the interactions of 
and reflections from three online instructors 
and a preparing mathematics specialist 
across the phases of planning, enactment, 
and the resulting student learning. The 
conversations about our understandings of 
probability and statistics concepts that arose 
between the three instructors with differing 
arenas of expertise––a mathematics 
educator, a probability instructor, and an 
expert teacher––often were predictors of 
conversations that occurred among 
candidates during class. Through these 
mirrored conversations, we were able to 
build off of and expand candidates’ 
conceptions regarding probability and 
statistics. We argue that when preparing 
mathematics specialists, having a team with 
diverse domain expertise but enough overlap 
to push each other’s thinking was crucial to 
successful planning and enactment in the 
team teaching setting. 
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Mathematics specialists have been and continue to be needed to support teachers 
(Dossey, 1984; Fennell, 2006). It is crucial, then, that teacher educators provide robust learning 
opportunities for specialists so that they can, in turn, provide accurate and effective learning 
experiences for classroom teachers. This reflection on a mathematical content course as 
described by one candidate (a preparing mathematics specialist) illustrates the importance of 
experience and community in an online environment: 

Over the duration of the program, and this course, I found myself explaining that I was 
in an online program, but it really wasn’t “online-online.” It could be because previously 
my perceptions of online learning were reading pages and pages, posting to a discussion 
board, and responding with very little real discussion with anyone. Instead, for this 
program, I had to be “in class.” The whole class and small group experiences took my 
online learning experience to the next level. Knowing my classmates and hearing their 
thoughts, ideas, and explanations improved my understanding a hundred times over.  

Taking time to reflect on my experiences made me realize that what took place 
during each class was not by chance but rather, the direct result of careful planning and 
negotiating among teams of instructors. The experiences, learning, and discussions that 
made our probability and statistics course rise above other courses can be attributed to 
the diverse group of instructors who not only broadened the view of statistics for their 
students, but also for themselves. (M. Swoyer, personal communication) 

We argue that discourse in the planning phase of team teaching with three instructors who had 
differing areas of expertise was vital to fostering this sense of community among candidates to 
bolster their learning.  

This paper explores the strengths of discourse within a team teaching approach in an 
online synchronous probability and statistics course as part of a mathematics specialists’ 
program. Through reflections from the instructional team and a candidate, we examine the 
impact of an experientially diverse instructional team on the course design process, enactment of 
lessons, and student learning. We discuss two pivotal scenarios from the course development 
phase and the online classroom about stem-and-leaf plots and the meaning of the word “average” 
to illustrate how instructors with differing yet overlapping expertise provide different 
perspectives that lead to rich class discussions that are beneficial for mathematics specialists.  

 
Literature Review 

 
Team teaching is a form of collaboration among teachers, which can take on various 

forms: (a) division of responsibilities; (b) cooperative planning but individual instruction; or (c) 
cooperative planning, instruction, and assessment (Sandholtz, 2000). Here, we use the term 
“team teaching” to refer to this last version, as it is the most collaborative. Under this view, both 
students and instructors themselves are exposed to different perspectives (Harris & Harvey, 
2000). Effective team teaching requires the honest exchange of ideas between instructors, a clear 
understanding of individual roles in the team, and adequate time for planning together (Shibley, 
2006). Though conversations on content are important, the negotiating of pedagogical decisions 
that occur during planning is also important for setting the stage for learning.  

Just as the curriculum development process in a team teaching environment should 
provide ample opportunities for instructor interaction, the structure of an online course should 
also actively engage students. We view learning from a classic social constructivist standpoint, 
where interactions promote thinking and reasoning through language (Vygotsky, 1978). Online 
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instructors must then plan opportunities for meaningful exchanges between students to foster 
understanding; social interactions between students and between teachers and students are key 
for learning in an online classroom (Hill et al., 2009). We use the term learning community in 
this paper to refer to a group of people coming together with shared goals and norms for 
learning. Even through an online medium, members of a learning community (teachers and 
students) all share the responsibility to contribute to the overall class learning experience (Harris 
& Harvey, 2000; Hill et al., 2009).  

 
Context of the Course 

 
The online course, co-taught by three faculty members from Virginia Commonwealth 

University, was a three-week, online probability and statistics course. The candidates in the 
course had been together for two years and were comfortable with the online structure, so the 
candidates knew and were accustomed to active participation. The course covered K–8 statistics 
and probability concepts. The course was guided by the five practices for orchestrating 
mathematical conversations: anticipation, monitoring, selecting, sequencing, and connecting 
(Smith & Stein, 2011). Using these principles, pre-session work completed by candidates prior to 
in-class meetings and delivered through a course management system (e.g., Blackboard) 
included case studies, independent activities, and small group discussions to facilitate class 
sessions. During in-class meetings, through a video conferencing tool (e.g., Blackboard 
Collaborate), candidates worked independently and in small groups on tasks; their group work 
was then selected, sequenced, and shared for whole group discussion.  

 
Instructor and Candidate Backgrounds 

 
Kristina is a mathematics educator with over twenty years of experience in the PK–12 

and university settings. Her experiences include working with K–8 students and pre-service and 
in-service teachers. Kristina brought her pedagogical and content knowledge from PK–12 
teaching and her prior experience teaching for the online math specialists program to the 
instructional team. 

Mita is a statistics educator with over fifteen years of experience teaching statistics full-
time at the undergraduate and graduate levels. She brought expertise with statistics to the 
instructional team. This was her first time team teaching, as well as teaching an online course on 
statistics and probability.  

Rani is a mathematician and mathematics educator. She brought a focus on student 
thinking to the instructional team. She has four years of experience teaching pre-service teachers 
in person. This was her first time teaching in-service teachers, synchronous online courses, and 
team teaching.  

Monica is an elementary school educator with thirteen years of teaching experience, and 
she is now serving as a K–4 mathematics coach. Prior to joining the mathematics specialist 
cohort, she participated in a literacy specialist cohort at another university and was a K–4 
mathematics interventionist for four years. She was a candidate enrolled in the online probability 
and statistics course. 
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Impacts of Team Teaching on Enactment 
  

We first describe the course design process and then two episodes that occurred during 
class. These episodes show how conversations across the instructional team during course 
development helped with anticipating and connecting to mathematical and statistical thinking 
during class online. For each case, Monica provides her reflection as a student. Through 
reflection, which is vital to improve professional practice (Hart et al., 1992), we illustrate how 
discourse before and during an online class can impact the learning experience for all.  

 
Course Design 
 

We, the instructors, co-developed the course over a six-week period prior to the first 
class. We drew on pre-existing materials from the in-person version of the course as had been 
taught by others and modified them for the online medium. In general, Kristina brought the 
teacher pedagogy, Rani drew out children’s thinking, and Mita provided ways to push 
candidates’ probability and statistics thinking. As a result of our differing lenses, we integrated 
into the class activities such as reading case studies of children’s thinking, watching classroom 
videos, doing rich mathematical and statistical tasks, and playing probability games.  

However, the curriculum design process was more than the sum of its individual 
instructors’ contributions. The group talked about all instructional decisions as we considered 
what our different perspectives could bring to the class. Individually, we completed all class 
activities prior to our team instructor meetings in which we expanded each activity by focusing 
on the big ideas and how to differentiate across the candidates’ grade levels. For example, in one 
activity, Mita and Kristina both looked at the same graphical representation of students and the 
number of teeth they had lost, and they each viewed the data differently. Mita interpreted the 
graph as asking, “How many students lost a given number of teeth?” Meanwhile, Kristina, 
coming from an elementary perspective, thought it was asking, “How many teeth did a given 
student lose?” This conversation led us to realize these were two different ways to interpret one 
graphical representation, that interpretation was influenced by grade level, and that it all 
depended on the question one was asking.  

Noticing how our conversations like the one above pushed our thinking, we chose to 
focus on the activities that pushed each of us in our mathematical thinking to be a driving force 
for class discussion. Our differing views were rooted in how probability and statistics courses 
vary; our conceptions were often based on our own learning experiences. Learning to question 
each other’s thinking and reflect on different mathematical and statistical views became a 
common occurrence during planning. 

The Statistics: Modeling with Data casebook (Russel, Schifter, & Bastable, 2018), part of 
the Developing Mathematical Ideas series, was our primary source for supporting candidates in 
working with mathematical concepts and learning to support the development of student 
understanding. Using the text as the foundation for the course, we planned for a variety of 
structures: out of class individual and small group pre-session work, in-class direct instruction, 
individual work, small group work, and whole group discussion. The course structure 
purposefully led candidates to engage in discourse within different groups, drawing on each 
person having years of rich and diverse experience to share. 
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Case A: Stem-and-leaf Plots Discussion 
 
Conversations during Planning 

A key idea throughout the course was understanding how to appropriately represent a 
dataset as a graphical display. One course activity that centered on this concept asked candidates 
to create a stem-and-leaf plot. Kristina and Rani knew to look at each number, separate the 
number into a “stem” and a “leaf,” and then organize the stems and then the leaves from least to 
greatest. Mita shared an extended stem-and-leaf plot for large datasets with a small range, which 
pushed Kristina’s and Rani’s K–12 understanding. She further shared that stem-and-leaf plots 
should have anywhere between 6–20 stems. Thus, if it has fewer than 6 stems, it is best to “split 
the stems” so that there are more stems. An extended stem-and-leaf plot (see Figure 1) better 
shows the shape and distribution of data, which in turn allows one to better describe and 
understand the data. Mita’s background expertise was crucial, as this idea was new to Kristina 
and Rani. But upon further conversation, it made sense when thinking about real-world data and 
the query: Given a particular “research” question, what would be the best way to display the 
data?  

 
Figure 1 
Standard Stem-and-Leaf and Extended Stem-and-Leaf Plot 

 
Note. The diagram on the left depicts a standard stem-and-leaf plot, drawing from the data at the top. The small 
number of stems and the multiple leaves for the “1” stem indicate the data may be better illustrated through an 
extended stem-and-leaf plot (on the right). 

 
Our conversations as an instructional team led us to recognize that K–8 teachers are (like 

Kristina and Rani) rarely exposed to large datasets, and so students are also rarely exposed to 
large datasets in the classroom. At first, we questioned the benefit of sharing the extended stem-
and-leaf plot: Kristina grappled with it from a K–8 perspective while Rani did from a 
mathematician’s perspective. Mita, however, showed us its benefits for even moderate sized 
datasets. We decided that understanding a stem-and-leaf plot involved more than just the 
construction procedure but also how this graphical display would be used in a research context 
and thus real-life applications. Sharing this idea would lead the candidates to understand how 
graphical displays can tell the story of the data: There are different ways to depict a data set, and 
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the shape of the distribution of a data set changes depending on the type of stem-and-leaf plot 
one constructs. 

Kristina and Rani's previous understandings of stem-and-leaf plots allowed the team to 
predict and relate to where the candidates' beginning understanding may be. This allowed the 
team to carefully and intentionally design the instruction to move the candidates to this deeper 
understanding of stem-and-leaf plots. 

 
Enactment 

Conversations around stem-and-leaf plots led to a pivotal moment in the first class. We 
gave candidates a data set and asked them to create a stem-and-leaf plot in small groups. The 
groups were intentionally a mix of elementary and middle school teachers, as we knew some 
candidates may not be familiar with this type of graph. We intended for each small group to be a 
learning community, to share and support each other in their mathematical thinking. Once small 
groups had completed their stem-and-leaf plots, we shared their representations in whole group 
discussion. All groups created a standard stem-and-leaf plot with little debate.  

Mita shared pictures of a standard and an extended stem-and-leaf plot with split stems for 
the same data set as seen in Figure 1. She asked the class for their thoughts; many candidates 
instantly raised their hands and asked questions through the chat feature in the online classroom. 
This was the first sign that candidates’ thinking had been perturbed. Mita, as the statistician, 
addressed each question, but because of our prior conversations, both Rani, as the 
mathematician, and Kristina, as the PK–12 teacher, were actively engaged in the conversation. 
Kristina and Rani shared with the candidates their misgivings and questions about splitting the 
stem during the planning stage but supported Mita. We explained that the conversations we had 
as the instructors during the planning stage uncovered our own misconceptions about stem-and-
leaf plots, which we now shared to support candidates' questions and misconceptions. This 
helped the candidates open up even more with the entire class about their current thinking. Then 
we, as instructors, helped them extend their understanding. By purposefully allowing candidates 
to question and argue their thinking and by sharing with them our own (lack of) understanding, 
we supported the candidates in understanding graphical displays from a broader context than a 
K–8 classroom, further solidifying our online learning community.  

 
Student Perspective 

This activity helped solidify my understanding of concepts like stem-and-leaf plots by 
allowing me to articulate what I understood to others. I had a narrow understanding of the 
mathematics being explored until I heard perspectives offered by my classmates. There were 
other times during the discussion when I was the “group expert” and explained the ideas I 
understood to my classmates. The instructors may not have seen how powerful that type of small 
group discussion would be for the candidates if they themselves had not grappled with their own 
understandings of stem-and-leaf plots as they planned and designed our experiences for the 
session. 

 
Case B: Averages Discussion 
 
Conversations during Planning 

Mathematical language played an important role in course development, as we saw in our 
lesson about averages. Words such as average have both a mathematical and everyday meaning. 
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One activity had candidates identify the average of five numbers in a set, e.g., 6, 7, 7, 7, and 8. 
Mita and Rani both thought of average and mean as synonyms, coming from statistical and 
mathematical perspectives. However, Kristina thought of the mode, arguing that for this set of 
numbers, the word average might imply to children the number that appeared the most. The 
mean, median, and mode were all mathematically the same in this problem (seven), so we looked 
at several variations of five numbers where the mean, median, and mode were the same or 
different. For example, in the case of 5, 7, 8, 9 and 12, each of us said we would calculate the 
arithmetic mean for the average based on the relationship of the numbers. We began to notice 
that depending on the numbers or context of the numbers, our personal choice of whether to use 
the mean, median, or mode to represent the average changed. 

As an instructional team, we had varying interpretations of the meaning of average; our 
different expertise had come into play. Kristina shared that in the Virginia Department of 
Education’s (2016) curriculum framework for fifth grade mathematics, the mean, median, and 
mode were all referred to as types of averages. The term arithmetic average is used to refer to 
the mathematical mean. We were forced to justify our thinking to each other, and these 
conversations helped us recognize the importance of providing a non-judgmental space for the 
candidates to have the same conversations with each other. Our roles as instructors were to 
support the candidates in justifying their thinking, so we planned for small group discussions 
across different grade levels to deepen their use and understanding of mathematical language in 
K–8 classroom discourse because it would push their thinking.  

 
Enactment 

In pre-session work, we prompted participants to think about the word average within the 
assigned case studies, which focused on K–8 students making meaning of the word in 
conversation and within mathematical content. Next, small groups found the average of various 
data sets consisting of five numbers. Similar to what had occurred during instructor discourse, 
when candidates shared their thoughts, the idea of average potentially referring to the middle 
arose. This could come from a person thinking about height, where there are several people 
shorter or taller than the middle height. Average could also refer to normal if thought of as what 
you see the most in a group. Several participants shared that average meant the mean of the data 
set, thinking about mathematical definitions.  

To our surprise, mirroring that of instructor conversations, candidates talked about how 
K–8 students need opportunities to explore mathematical language in context. The candidates 
drove the conversation forward on their own without instructor prompting. They sequenced their 
conceptions of the word average by grade levels. They then moved from mathematical language 
to representations which supported the class development of mathematical knowledge and 
addressed misconceptions. Unplanned, our role changed that evening from facilitating to 
reinforcing and questioning candidates’ thoughts. Our prior conversations as an instructional 
team prepared us for this unexpected turn. Because we had experienced as an instructional team 
the openness in interpretation of the word average and ensuing confusion, we were better able to 
support the candidates as they experienced this in real time. Mita, for example, nudged 
candidates to reflect on the statistical idea that mean and median are the only real measures of 
center, not mode. This idea challenged the candidates’ existing notions of measures of center. 
But because each of the instructors jumped in organically to add their thoughts, there was a 
conversational tone to the lesson, with little tension. Ultimately, this back-and-forth in discourse 
led candidates to a higher level of understanding.  
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Student Perspective 
The discussions around the idea of average and what average meant in different contexts 

were insightful. I spent a good part of that class building this common understanding and 
definition of average with the other candidates and instructors. There was definite discomfort in 
our small groups when some candidates’ clarity of the word average was challenged. These 
conversations made me more willing to look to and learn from my classmates to enhance my 
learning. I did not realize at the time how powerful my social connection to the other candidates 
was, nor how intentional the planning for these social connections was as well. I attribute my 
success and growth in statistics and probability to the intentional design and enactment of the 
course. 

 
Discussion 

 
Through these two episodes, we have shown how team teaching was beneficial in both 

the planning and enactment of an online statistics and probability course for preparing 
mathematics specialists. The conversations within the instructional team were crucial for 
effective team teaching, as they were often precursors to conversations that occurred in class. 
This meant we, as instructors, could anticipate candidates’ thinking prior to the online meetings, 
so we could facilitate more productive conversations (Smith & Stein, 2011). Instructors were 
also able to organically chime in when each other was speaking, to add and build off one 
another’s perspective. This normalized different ways of thinking about concepts and provided a 
more conversational atmosphere, which invited candidates to join in as well.  

We recommend team teaching for all content courses for mathematics specialists in order 
to draw out rich conversations that specialists will likely witness among teachers and students in 
the classroom. We especially recommend team teaching for probability and statistics, as this 
content area brings in ideas from different disciplines and is a struggle for many people. Each of 
the instructors professed that we would team teach again, with each other and with others.  

In terms of recommendations, we believe the facts that we were all new to teaching the 
course online and that we had set norms for working together were crucial for our success. We 
were all on equal footing in creating material for a new course together. Second, it is beneficial 
to co-develop (at least some) lessons together, rather than divide the work, for the sake of the 
discourse that ensues. Each instructor was aware of all the content, as we had collectively 
decided what to include and why. This drew out conversation about the content, which led to 
each individual instructor knowing each other’s thoughts, and so we were prepared to build off 
what one another said in a natural way during class.  

This work has implications for the importance and structuring of team teaching in order 
to develop robust learning experiences for mathematics specialist courses. An instructional team 
with different background expertise, where each instructor fulfilled a role and was an expert in 
their domain but with slight overlaps to push each other’s thinking, was crucial. Together, we 
formed a learning community, questioning and sustaining each other, even before the first class 
meeting. This instructor learning community then supported the creation and strengthening of 
candidate learning communities. This prior engagement allowed us as instructors to be active in 
all conversations as we knew what others were thinking, and the candidates’ discussions often 
mirrored ours. It also allowed us to share a common vision for the candidates’ online experience.  
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This work also illustrates the importance of a social environment and interaction for 
effective online instruction. Monica described how she saw our roles within the community at 
the end: 

Reflecting on the experience, I can see how I relied on each of the instructors differently 
during this course. I quickly learned to listen closely when it was Mita’s turn to share; she 
was going to share her vast knowledge of probability and statistics. Rani helped to clarify 
the big ideas being explored. Lastly, I relied on Kristina’s ability to break down the 
learning into manageable chunks, as I am accustomed to doing in my own elementary 
teaching experience. (M. Swoyer, personal communication)  

 By team teaching, our conversations and interactions support our specialists’ learning, and 
through them, we serve communities of teachers across Virginia. 
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ABSTRACT 
All learners must have access and 
opportunity to engage meaningfully in the 
highest levels of mathematics. Mathematics 
specialists are uniquely situated to 
contribute to the creation of access and 
equity for all learners by addressing three 
target areas with their mathematics teachers 
and administrators. In order to catalyze 
change, mathematics specialists need to be 
prepared to target three obstacles to access 
and equity: beliefs and expectations, 
curriculum and instruction, and intervention. 
This preparation can take place through 
leadership courses intentionally created to 
explore the role of change agent and provide 
practice in negotiating the role. 
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The National Council of Teachers of Mathematics’ (NCTM) Catalyzing Change series 
(2020) and Principles to Actions (2014) call for systematic action and change so that all learners 
have access and opportunity to engage meaningfully in the highest levels of mathematics. NCTM 
(2020) makes four key recommendations to catalyze this change: broaden the purposes of 
learning mathematics, create equitable structures in mathematics, implement equitable 
mathematics instruction, and develop deep mathematical understanding. These actions require 
educators who both recognize this call and have the knowledge and skills to be catalysts of 
change in their schools and school divisions. The mathematics specialist preparation program 
seeks to intentionally develop a cohort of mathematics teacher leaders who contribute to this 
purposeful “move from ‘pockets of excellence’ to ‘systemic excellence’ by providing 
mathematics education that supports the learning of all students at the highest possible level” 
(NCTM, 2014, p. 2). The goal of this paper is to share the work of five mathematics specialists in 
catalyzing change.  

 
Access and Equity Target Areas 

  
In one university mathematics specialist preparation program, a sequence of three 

leadership courses ran concurrently with mathematics content courses in order to simultaneously 
develop the leadership and coaching skills of the candidates as well as their pedagogical content 
knowledge across the K–8 curriculum. The leadership courses explicitly addressed three target 
areas identified by NCTM (2014) in order to overcome obstacles to access and equity:  

1. Beliefs and expectations of educators,  
2. Curriculum and instruction, and  
3. Interventions and support personnel (p. 64 – 66).  

With each leadership course, we cycled back to deepen and broaden our understanding in these 
areas as well as to facilitate the transfer of knowledge and skills from the roles of mathematics 
teachers to mathematics coaches to mathematics data coaches.  

As mathematics specialists, we are uniquely situated to contribute to the creation of 
access and equity for all learners by addressing the three target areas with our mathematics 
teachers and administrators. While systematic change takes time, our initial learning and transfer 
are important steps along the path to catalyzing change. We will share the ways we learned 
deeply about these areas and changed our beliefs and expectations, how we used these shifts and 
insights to learn deeply about equitable mathematics curriculum, instruction, and intervention, 
and how we began the initial transfer from coursework to our daily practice in order to assume 
the role of change agents. Figure 1 is a graphic representation of our learning and our transfer 
work. 

 
Beliefs and Expectations of Educators 
  

In each of the leadership courses, we examined and reexamined our beliefs and 
expectations as educators in light of both learning theories and current research. We studied the 
learning theories of equity and access advocates, such as Carol Dweck, Gloria Ladson-Billings, 
Deborah Ball, and Rico Gutstein. We read and reflected on Mathematical Mindsets (Boaler, 
2015) and Culturally Responsive Teaching and the Brain (Hammond, 2014) in order to use brain 
and mathematics-education research to explicitly correct myths and misconceptions. We 
conducted literature reviews in order to understand, appreciate, and teach in ways that engage 
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historically marginalized student populations, including learners with disabilities, English 
language learners, economically disadvantaged learners, African-American learners, and Latino 
learners.  

 
Figure 1 
Our Learning and Transfer to Practice 

 
We experienced a range of shifts in our beliefs and expectations as educators. We began 

to see the equitable and inequitable structures in mathematics teaching and learning and have 
conversations about them. For some, our eyes were opened to inequities, while for others, our 
lived experiences with inequities were recognized and appreciated. 

For example, we learned that students living in poverty are an infinitely diverse group 
who are repeatedly marginalized in schools through biases, inequitable access, and systemic 
classism (Gorski, 2013). Economically disadvantaged children may suffer high levels of 
environmental stress, which threatens brain development. Additionally, complex trauma, which 
is not confined to a single event, leads to feelings of hopelessness and desensitized emotions and 
can lead to significant changes in learners’ brains that negatively affect their working memory 
(Hammond, 2014). Many times the historical marginalization of learners who live in poverty 
leads to challenges when learning and applying mathematics. From an early age, children living 
in poverty may be placed in groups labeled “low” which begins the track they will inevitably 
follow. This limits learners’ self-concept, having a significant, adverse effect on learning 
(Haberman, 2010). These learners oftentimes face lower expectations of their thinking and 
ability, which can lead to many years of learning experiences that are not aligned with evidence-
based best practices, such as building sense-making through high cognitive demand tasks and 
communicating ideas through discourse. Ability grouping continues to be a very common 
practice that protects and facilitates educators’ deficit views and implicit bias related to class. 



84 | Journal of Mathematics and Science: Collaborative Explorations 17 
 

 

We reviewed related research to constructively examine inequities, and we developed the 
tools and learned the language to explicitly disrupt the beliefs and practices that sustain these 
inequities. This learning empowered us to initiate critical conversations with our teachers and 
administrators about their beliefs and expectations. 

 
From Deficit to Strength-Based 

We began by transferring our growing knowledge of brain research into our work in our 
schools. To be change agents, it was imperative to help the teachers and administrators in our 
schools understand neurological research and how it directly relates to learners. For example, 
Hammond (2014) explained how working memory can be engaged more effectively and 
efficiently for all learners when mathematical learning is grounded in sense-making, problem-
solving, and connections to lived experiences. Boaler (2015) explained the power of brain 
plasticity to grow all mathematical thinkers through deep mathematical learning. As mathematics 
specialists who regularly meet with grade-level teams, Professional Learning Communities 
(PLCs), and Collaborative Learning Teams (CLTs) within our schools, we were able to protect 
time and provide learning resources to engage teams in unpacking brain research over a series of 
collaborative meetings. Teams considered questions such as, “How does this new knowledge 
challenge what we previously knew and did?” and “What will we do differently now?” Then, we 
facilitated teachers’ continual use of brain research in the planning of mathematics teaching and 
learning for all students.  
 Our work to revolutionize educator mindsets continued with intentionally planned 
learning conversations that moved teachers away from deficit models of thinking. For example, 
one first grade teacher reflected: 

I have started to see just how much students are capable of understanding on their 
own. When I first started teaching math, I spent a lot of time showing children 
how to do math and get to the correct solution. Now I allow my kids to explore, 
experiment, and discuss. Very quickly, I saw that kids didn’t need me to tell them 
what to do or how to do math. They only needed me to give them opportunities to 
discover and opportunities to share what they know. I now feel willing to push the 
envelope and take risks in order to help our kids grow by leaps and bounds 
(personal communication).  

Because we learned that systematic marginalization and deficit views often intersect with 
academic tracking, which, in turn, negatively affects all learners, we targeted the beliefs and 
expectations of teachers that result from tracking as well as promote and enable tracking. Rather 
than thinking of learners as those who can and cannot do mathematics, we pushed teams to 
examine the idea that no one is a “math person” and that everyone can learn mathematics.  

Through the lens of brain research, we examined with our teachers how schema and 
connections are formed via productive struggle and making mistakes. For example, one third 
grade teacher said, “Giving the students the power to show their own strategies and thinking and 
teach each other their thoughts was very powerful and I think will help them gain confidence 
over time.” By being members of the team and actively participating in meetings, we were able 
to disrupt the labeling of learners, such as “low group” or “high group,” and instead facilitate in-
depth discussions around student work analysis to focus on learners’ strengths and the next steps 
based on learning trajectories.  

Gradually, team conversations evolved and became grounded in the belief that every 
learner deserves the opportunity and has the ability to be a mathematician and to engage in 
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inductive reasoning, mathematical argumentation, and meaningful discourse. Teachers began to 
recognize themselves as the creators and gatekeepers of these opportunities. Teachers’ talk about 
learners became strength-based. Ultimately, having these sustained conversations around brain 
research, growth mindset, and systemic marginalization with teachers at our schools led to 
critical changes in their beliefs and expectations about learners as mathematical doers. As 
mathematics specialists, we were able to initiate these critical conversations with our teachers 
about their beliefs and expectations because our coursework prepared us with awareness, 
language, research, and tools, and because of our unique role within PLCs, CLTs, and team 
planning meetings in our schools. We were able to catalyze change in educators’ beliefs and 
expectations. 

 
Curriculum and Instruction 
  

Across the three leadership courses, rich mathematical tasks resounded as an essential 
component of effective, equitable curriculum and instruction. Rich mathematical tasks (or high 
cognitive demand tasks) are mathematical problems that require learners to make connections 
among big ideas and do not have a clear, single path to a single solution (Boaler, 2015; Smith & 
Stein, 2011). We learned the significance of selecting or creating rich mathematical tasks aligned 
with learning goals, anticipating learner strategies and mistakes, and implementing the tasks in 
ways that maintain the depth of thinking and problem solving (Smith & Stein, 2011).  
 Implementing rich mathematical tasks is one way teachers enact their beliefs and 
expectations that all learners can learn and achieve mathematics at high levels. These tasks have 
high mathematical ceilings (i.e., can be extended and deepened) and low mathematical floors 
(i.e., can be accessed through multiple entry points using multiple strategies) so that all learners 
can engage in high cognitive demand problem solving and discussion. The power of rich 
mathematical tasks is reflected in the research we studied that shifted our beliefs and 
expectations (Boaler, 2015; Hammond, 2014) as well as in our deep examination of effective, 
equitable curriculum and instruction (Fennell et al., 2017; Hattie et al., 2017; Van de Walle et al., 
2018). These tasks are inherent in two of NCTM’s (2020) key recommendations for catalyzing 
change: broadening the purposes of learning mathematics and developing deep mathematical 
understanding. We practiced identifying, anticipating, and implementing rich mathematical tasks 
so that we could engage teachers in the same process through our roles as mathematics 
specialists.  
 
Rich Mathematical Tasks and Embedded Professional Learning 

Because mathematics specialists lead division-, school-, and PLC-level professional 
learning, we were able to collaborate with administrators to create sustained, embedded 
initiatives around rich mathematical tasks. To begin the school year, we engaged the teachers in 
our schools as learners: they collaborated, communicated, and used multiple representations and 
strategies to solve rich mathematical tasks. Then we facilitated reflective discussions about the 
ways rich mathematical tasks make lessons accessible and equitable for all learners. We 
examined the value of tasks with low mathematical floors and high mathematical ceilings as 
ways to ensure that historically marginalized learners have access to significant, meaningful, and 
deep mathematical content. We identified characteristics of rich mathematical tasks that allow 
for multiple entry points and problem-solving strategies, increase the growth mindset among all 
learners, and value a broad purpose for using mathematics and a personal connection with 
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mathematics. These initial explorations of rich mathematical tasks provided whole schools and 
grade-level teams with a common language and criteria for selecting rich mathematical tasks.  

The professional engagement continued into grade-level team meetings, PLCs, and 
individual coaching sessions. As mathematics specialists, we regularly met with teachers 
throughout the school year in order to deepen and extend their understanding of rich 
mathematical tasks. Some PLCs worked as a team to plan common, rich mathematical tasks. 
Then they implemented the tasks in their classrooms and met as a team to analyze student work. 
Other mathematics specialists coached individual teachers as they planned, implemented, and 
reflected on their use of rich mathematical tasks.  

In each case, we noticed the discussions became meaningfully focused on access and 
equity when teachers themselves engaged with the mathematical tasks first. This practice, called 
anticipating student strategies (Smith & Stein, 2015), was a regular part of our leadership 
coursework that we transferred to our daily work with teachers. When teachers anticipated, they 
considered tasks from the perspective of the learners, including mistakes that would make sense, 
common misconceptions, and a variety of strategies and solutions. During anticipation, each 
teacher solved the problem differently. Their strategies included the use of manipulatives, 
drawings, equations, and a combination. As the teachers shared their work, the conversation 
centered around how the task and its deep mathematical ideas were accessible across varying 
levels of mathematical knowledge.  

Teachers began to value the careful selection of rich mathematical tasks that provide all 
learners with opportunities for productive struggle and rich mathematical discussions with peers. 
Teachers also valued tasks that enabled learners to reason at multiple levels and to draw upon 
their personal experiences, contexts, culture, and language. As mathematics specialists, we were 
able to facilitate these discussions and continue to move teachers’ conversation, reflection, and 
practice forward around rich mathematical tasks. Rich mathematical tasks served as an 
opportunity to engage all learners, including and especially historically marginalized learners, in 
deep thinking and meaning making about mathematical concepts and skills. We used rich 
mathematical tasks as a tangible practice to enact beliefs and expectations that all learners can 
learn mathematics deeply and, therefore, to catalyze change. 

 
Intervention 

 
With each iteration of our leadership courses, we dove deeper into explicitly developing 

the tools for catalyzing change by addressing the three target areas that could be obstacles to 
access and equity in ourselves and in our schools. The third target area, intervention, is founded 
on the same principle as that of equitable beliefs and expectations and of equitable curriculum 
and instruction: all learners must have access and opportunity to engage meaningfully in the 
highest levels of mathematics (NCTM, 2014, 2020; Riccomini & Witzel, 2010; Tapper, 2012). In 
our coursework, we examined a variety of diagnostic and formative assessments (Fennell et al., 
2017; Tapper, 2012) to inform intervention and differentiation strategies. We practiced taking on 
the roles of data coaches and interventionists by analyzing multiple levels of learner data 
including state-, division-, and classroom-level assessments, setting goals and adjusting 
instruction based on this analysis, and creating equitable, data-driven instruction and intervention 
(DuFour et al., 2016; Love et al., 2008). We increased our pedagogical content knowledge to 
become change agents through studies of the impact cycle (Knight, 2018) and the content 
coaching cycle (West & Cameron, 2013) with individuals and teams of teachers. Our course 
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work challenged us to negotiate our agency, or grow our efficacy, to create equity and access 
both within our cohort of fellow mathematics specialists and in our schools, and to catalyze 
change. 

 
Data-Driven Conversations 

As we engaged teachers and PLCs in data analysis to make instructional decisions, we 
relied on our growing pedagogical content knowledge to identify the foundational need in order 
to catalyze change. Many issues arising around intervention were closely linked to other 
instructional issues: some teams of teachers needed to examine their use of formative 
assessments, others needed to bolster their differentiation strategies, and others needed to create 
equitable structures in intervention. 

We facilitated PLC meetings where the goal for teachers was to strategically meet each 
student’s needs. In our coursework, we learned instructional time becomes more effective when 
teachers put a greater emphasis on formative assessments (NCTM, 2014). Utilizing formative 
assessments often during instruction allows teachers to make learning visible and to proactively 
adjust instruction in the moment to meet learners’ needs (Fennel et al., 2017; Hattie et al., 2017). 
We put this learning into practice during PLC meetings by presenting different types of 
formative assessments to measure student progress, including documenting classroom discourse, 
concrete-representational-abstract (CRA) translations, and learners’ recorded work of problem 
solving strategies and explanations (Berry & Thunder, 2017; Tapper, 2012; Van de Walle et al., 
2018). The majority of the teachers were familiar with formative assessments; however, not all 
teachers were using or analyzing them. By committing to this work as a team and having a 
mathematics specialist to facilitate the work, teachers realized that intentionally using a variety 
of formative assessments and regularly analyzing the formative assessment data addressed their 
needs. They were able to make decisions about lesson pace and effectiveness as well as 
differentiated next steps, such as reteaching and extending. Formative assessments gave the 
teachers tools that maximized instructional time and more efficiently enabled them to analyze in-
the-moment data.  

Most importantly, formative assessments empowered teachers with the efficacy to share 
their areas of opportunities and best practices within PLCs in order to help their whole team 
improve access and equity for all learners. As teachers shared and analyzed formative 
assessments, they recognized areas of strength and opportunity within their own instruction. 
Together as a team, they supported each other in making intentional changes, using formative 
assessment to analyze those changes, and differentiating using rich mathematical tasks rather 
than ability grouping and lowering teacher expectations. 

In addition, we identified teachers’ need for differentiation strategies that maintained 
opportunities for deep mathematical understanding for all learners. In our coursework, we 
learned the importance and effectiveness of flexible grouping rather than tracking and labeling 
learners (Hattie et al., 2017). We also learned strategies for differentiating rich mathematical 
tasks, such as tiered problems, parallel tasks, and CRA modeling (Berry & Thunder, 2017; 
Tapper, 2012; Van de Walle et al., 2018). By coaching individual teachers, we were able to 
support selecting, practicing, and refining differentiation strategies that met learners’ specific 
needs. These one-on-one conversations with teachers helped illuminate the idea that 
differentiated instruction comes hand in hand with equity and access by recognizing and 
appreciating the varying ways that students learn and process information.  
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Finally, we led regular data meetings where teachers discussed the interventions they put 
in place and their effectiveness. Based on these conversations, we learned the team’s 
foundational need was to create equitable intervention structures. NCTM (2020) challenges 
teachers to maintain equitable structures by adding additional intervention time focused on 
problem solving and conceptual understanding to the grade-level instructional time rather than 
replacing it. In order for all learners to gain a deep conceptual understanding of mathematics, 
teachers need to revise and reframe intervention structures to use rich mathematical tasks 
combined with CRA modeling and focused on significant mathematical concepts and skills 
(Berry & Thunder, 2017; Riccomini & Witzel, 2010; Tapper, 2012). By analyzing formative 
assessment data, the team of teachers identified number sense, the foundation of the other 
content strands, as a pivotal area of need. We facilitated reflection and analysis of their grade-
level number sense instruction, and teachers realized they needed to increase both the rigor and 
time spent developing all learners’ number sense. Then, the team systematically planned ways to 
use intervention as a time for targeted learners to spend additional time growing their number 
sense with mathematics specialists through aligned instructional strategies, including rich 
mathematical tasks and CRA modeling. By facilitating data discussions, we were able to support 
teachers’ evaluation and revision of their intervention structures. Together, we put interventions 
in place so all learners could succeed, and as a result, we catalyzed change.  

 
The Mathematics Specialist: A Role of Advocacy 

 
As mathematics specialists, we are uniquely positioned in our daily work with teachers, 

grade-level teams, PLCs, administrators, and learners to catalyze change. We can push teachers 
and administrators outside of their comfort zones in order to engage all learners in meaningful, 
mathematically rich experiences. At a school-level, we can begin and sustain the work to 
transform separated classroom instruction into collective mathematics learning (NCTM, 2020).  

In order to catalyze change, mathematics specialists need to be prepared to target the 
three obstacles to access and equity focused on in this paper: beliefs and expectations, 
curriculum and instruction, and intervention. This preparation can take place through leadership 
courses intentionally created to teach and practice negotiating the role of change agent. Using 
tools, language, strategies, and research from coursework, mathematics specialists can then 
intentionally target teacher beliefs and expectations as well as curriculum, instruction, and 
intervention practices in their schools and school divisions. As we noted earlier, Figure 1 
represents the learning we engaged in through our coursework and our transfer of this learning to 
practice. We advocate for this structure for mathematics specialists’ training in order to 
systematically grow as change agents. 

Mathematics specialists are often perceived as content experts, instructional coaches, 
interventionists, and data coaches. But at the heart of our work is the role of advocacy. We can 
help teachers see that “the question is not whether all students can succeed in mathematics but 
whether the adults organizing mathematics learning opportunities can alter traditional beliefs and 
practices to promote success for all” (NCTM, 2014, p. 61). Our answer to that question and our 
ultimate goal is to become the change agents in our schools and school divisions that instill that 
belief in our teachers and provide the tools for them to help make it a reality. We have begun the 
work of catalyzing change and will not stop until all learners have the access and opportunity to 
engage meaningfully in the highest levels of mathematics. 
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Candidates from Virginia universities with mathematics specialist preparation programs 
complete a Mathematics Content-Focused Coaching (MCFC) video project as part of their 
leadership coursework. This project can be one of the most powerful experiences participants go 
through during their teacher leadership preparation, as it provides them with an opportunity to 
coach a teacher through all phases of a mathematics lesson, one of the critical roles they will 
undertake as school-based mathematics specialists. We will review the literature, provide an in-
depth look at the project, reflect on its strengths, and consider future directions for our research.  

 
 Literature Review  

 
Coaching 

 
The term “coach” conjures up many different images: coaches for sporting teams, voice 

coaches to prepare for choral performances, and even life coaches to help navigate the obstacles 
of everyday living. When applied to teaching and learning, the term has been defined in many 
different ways but most broadly as “a person who works collaboratively with a teacher to 
improve the teacher’s practice and content knowledge” (Yopp et al., 2011 p. 50). 

Likewise, there are a variety of different models and texts that describe the practice of 
coaching. Yopp et al. (2017) suggest there are four commonly used approaches: cognitive 
coaching (Costa & Garmston, 2002), content-focused coaching (West & Staub, 2003), 
instructional coaching (Knight, 2007), and mathematics coaching (Hull et al., 2009). Yopp et al. 
(2017) articulate commonalities and differences in the models. All four of these coaching models 
address the collaboration between the coach and teacher, but the point of emphasis and 
approaches differ. In cognitive coaching (Costa & Garmston, 2002) the coach helps the teacher 
negotiate the reflection on and refinement of their practice. The instructional coaching model 
(Knight, 2007) is that of an on-site professional developer who attends to the skills required of 
successful coaches. Mathematics coaching (Hull et al., 2009) blends the importance of 
implementing effective instructional strategies and deep knowledge of mathematical content. 

We have chosen to focus on Mathematics Content-Focused Coaching (MCFC) (West & 
Staub, 2003), as it is the model used by many mathematics specialist preparation programs in the 
Commonwealth of Virginia. In content-focused coaching, the coach has developed a deep 
understanding of mathematical pedagogical content knowledge and supports teachers’ 
instructional practices (Gibbons & Cobb, 2016). 

In the MCFC model, two types of coaching “moves” are involved in pre- and post- 
conferences: (a) those that invite teacher contributions, and (b) those that provide the teacher 
with direct assistance in designing mathematics lessons (West & Staub, 2003). Moves that invite 
teacher contributions are “statements or questions by the coach that initiate and invite the teacher 
to verbalize perceptions, thoughts, plans, deliberations, and arguments” (West & Staub, 2003, p. 
15). Moves that provide direct guidance are “statements by the coach that provide guidance and 
explanations for specific designs and ways of implementing a lesson” (West & Staub, 2003, 
p.15). Indeed, West and Staub (2003) suggest that the goal of a coach, as they gain more 
experience, is to employ more invitational moves in coaching conversations.  

Most MCFC conferences also involve conversations about mathematics content, 
pedagogical content knowledge, and other topics (e.g., classroom behavior and time 
management). It has been suggested that the most successful coaching conversations occur when 
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the focus of the conference is maintained on students and their work, not on the teacher (West & 
Cameron, 2013).  

 
Videos 
 

 Videos of teaching have been used prominently in pre-service and in-service learning 
opportunities (Barlow, 2014; Schoenfield, 2017). Videos capture nuances not found in printed 
transcripts and reduce ambiguity in trying to denote what is in the mind of the teacher (Hiebert et 
al., 2002). West and Staub (2003) and West and Cameron (2013) provide videos of the MCFC 
process featuring expert coaches.  

 
Reflection as a Professional Development Tool 
 

Reflection enables us to make meaning of our experiences. When applied to learning, it is 
a “reflexive activity which enables the learner to draw upon previous experience to understand 
and evaluate the present, so as to shape future action and formulate new knowledge” (Abbot & 
Ryan, 2001, p. 58). In coaching, reflection is a necessary activity for change but must occur 
before any action is initiated (Askew & Carnell, 2011). It is important for coaches to use 
reflective discussions with teachers to bring about change, remembering that these conversations 
must be had in a caring and sensitive way (Askew & Carnell, 2011). 

West and Staub (2003) consider reflection an important component of the coaching 
process that enables teachers to improve students’ content-specific learning. West and Staub 
(2003) discuss how a coach facilitates productive and purposeful conversations centered on 
supporting students’ mathematical learning and teachers’ professional expertise. The coach 
pivots conversations around what content the students will learn, how the teacher will address 
these content ideas during the lesson, and why the teacher plans to teach content in a particular 
way (West & Staub, 2003; West & Cameron, 2013). For West and Staub (2003), the why, is 
particularly important. By asking questions about why the teacher plans to structure lessons in a 
specific manner, the coach encourages teachers to be reflective about their practice. 

In his seminal work on reflective practice, Schon writes: 
A coach’s legitimacy does not depend on his scholarly attainments or proficiency as a 
lecturer but on the artistry of his coaching practice. The question is not how much you 
know, but rather how effectively you can help others to learn. . . . I believe the most 
effective organizations of the future will be led by coaches committed to helping others 
learn (1987, as cited in Askew & Carnell, 2011, p. 1). 
 

Description of the Project 
 

Overview  
 

Since the publication of Content-Focused Coaching: Transforming Mathematics Lessons 
(West & Staub, 2003), educators across the United States and Canada have acknowledged that 
content coaching is a powerful and effective approach to improving teacher practice in service of 
student learning (Gibbons & Cobb, 2016). MCFC is a very specific process that focuses on the 
core planning of instruction, teaching, reflecting on, and refining lessons. MCFC uses a three-
part cycle: plan, teach, and debrief. Candidates in the Virginia Commonwealth University and 
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Longwood University mathematics specialist leadership courses video record themselves 
conducting a pre-conference and post-conference with a teacher in their school. Candidates also 
view videos that feature experienced coaches working with a variety of teachers (e.g., reluctant 
teachers, beginning or experienced teachers). Currently, the videos viewed by candidates at these 
two institutions were created by West and Staub (2003) or West and Cameron (2013).  

 
MCFC Project Assignment Details 
 

Candidates identified a classroom teacher to plan and facilitate one MCFC cycle. The 
MCFC cycle included: (1) preparing for the pre-conference, (2) facilitating the pre-conference, 
(3) observing and possibly co-teaching the mathematics lesson, (4) preparing for the post-
conference, and (5) facilitating the post-conference. While engaging in the MCFC cycle, 
candidates maintained notes from the classroom observation of the lesson and from both pre- and 
post-conferences. After engaging in the MCFC cycle, candidates shared a video segment from 
the pre- and post-conference and their personal written reflection on the experience with their 
peers. 

 
The Role of the Coach 

 
Before the Pre-Conference 
 

One of the most important considerations is the selection of the teacher a coach is going 
to work with, whether the teacher volunteers or is invited by the coach. Equally important are the 
topics covered in pre- and post- conferences that may vary for a number of reasons (e.g., the 
experience levels of the coach and teacher, school and district initiatives, personal and 
professional goals). Before the pre-conference, the coach should approach the teacher for a copy 
of the lesson plan or lesson topic. The coach explores the mathematics involved in the lesson and 
investigates possible pedagogical delivery vehicles. Engaging in these activities helps the coach 
develop a set of written questions to guide the pre-conference and create ways to further develop 
the teacher’s mathematical pedagogical knowledge.  

West and Cameron (2013) suggest coaches consider questions like time allocated for the 
meeting, prioritization of goals for the planning session, teaching and learning issues that present 
instructional challenges, and the teaching style or experience level of the teacher being coached. 
A thorough overview of lesson design with potential coaching conversation questions can be 
found in West and Cameron (2013). Coaches are encouraged to make a concerted effort to 
include research-based best practices for mathematics teaching, like the five practices for 
orchestrating productive mathematics discussions (Smith & Stein, 2018) and the seven effective 
mathematical teaching practices in Principles to Actions (NCTM, 2014). 

 
Pre-Conference  

 
The coach will video record and take notes during the pre-conference using the set of 

questions developed previously to guide the conversation. The coach may guide the conversation 
to emphasize the mathematics of the lesson, how the mathematics will be developed, and the 
mathematical learning outcomes for the students. 
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The Lesson 
  

The coach will observe the lesson while focusing on not only the teacher’s actions but 
also on student interactions, misconceptions, connections, and strategies. Although in practice, 
coaches often co-teach a lesson, we encourage our candidates to observe for their first coaching 
experience, looking for how the mathematics content is being taught as well as any other 
previously agreed-upon topics. 

 
Post-Conference  

 
The coach will video record and take notes during the post-conference. The coach will 

come with a set of questions that encourage the teacher to think about the teaching and learning 
that occurred in the observed lesson. The set of questions is not a script but a collection of ideas 
that encourage the teacher to think deeply about the lesson. Coaches should be mindful of 
keeping the conversation grounded in evidence of student learning (e.g., observational notes or 
student work) while attending to common student misconceptions and struggles. 

 
MCFC Project Reflection  
  

Candidates must reflect on all aspects of the MCFC cycle. The reflections center around 
four components. First, how the candidate and teacher develop mathematical content and 
pedagogy during the pre-conference. Second, how the candidate, after watching the lesson, 
suggests possible refinements that could be made to the lesson. Third, how the candidate 
examines student work and considers the teacher’s plan for next instructional steps. Fourth, how 
the candidate determines next steps for their own professional growth as a coach. The reflection 
is both a summary of what happened during the MCFC cycle and a blueprint for next steps in the 
development of the candidate and the teacher they work with. 

 
Reflections from Instructors on the Project 

 
Instructor A 
 

The coaching project is one of the integral projects in my mathematics teacher leadership 
class. This is the last leadership class in the mathematics specialist preparation program, and it is 
essential that the candidates have the opportunity to study and practice the art of MCFC. At this 
point in the program, candidates are ready to put into practice all they have learned about 
mathematical content and pedagogy. All of the candidates have to share their pre- and post-
conference videos and give a presentation about their coaching experience. When the candidates 
in a recent cohort shared their videos with their colleagues, they began to see that everyone had 
some areas in which they could improve and where they had performed well. One thing that 
surprised my students was that they had many shared experiences, which I summarize next.  

Candidates realized it was a privilege to work with other teachers, and they wanted to 
make sure the teacher knew they valued them as the classroom expert. Further, candidates 
realized that having a productive conference meant they had to be prepared and focused. 
Candidates recognized the need to become better listeners while focusing on the mathematics 
content and pedagogy. Lastly, candidates realized they needed to use more invitational coaching 
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moves and less direct guidance moves. For example, an invitational coaching move would be 
one in which the candidate may ask the teacher, “What task were you planning to use to increase 
students’ understanding of equality?” as opposed to a direct guidance move in which the 
candidate provides a copy of an activity for the teacher to use in the lesson. 

In my opinion, this assignment shifted the candidates’ view of their own identity to 
include the role of a mathematics specialist. I believe the candidates greatly benefit from this 
project. I would have preferred that my students have more than one opportunity to complete the 
MCFC coaching cycle during the semester, but time constraints make this impossible. A video 
repository would provide candidates with access to coaching videos made by mathematics 
specialists. Access to the repository would provide candidates with a reference to help prepare 
them for future coaching and build confidence in their coaching abilities. 

 
Instructor B 
 

I have used the MCFC assignment for many years in my role as an instructor for cohorts 
of teachers in the mathematics specialist preparation program. I think this is the most valuable 
activity coaches participate in during their leadership courses because it gives them the 
opportunity to practice “coaching.”  Most of the candidates who participate in our project have 
similar opinions. In addition to the activity’s value to them as potential coaches, many 
participants find that it informs their practice.  

One participant from a recent cohort remarked, “I had a lot of uncertainty about what 
coaching looked, sounded, and felt like. After going through one coaching cycle, I have a clearer 
picture of what coaching is, and how I see myself in this role” (Monique, personal 
communication).   

Other participants liked it because it aligned with the same best practices they find critical 
for students:  

The content coaching cycle is the type of personalized professional development that our 
education system needs. We often talk about differentiating for students, but 
differentiation for teachers has never been a priority . . . I don’t think I would have known 
about any of Ms. C’s content needs if I had, for example, just led a workshop on 
strategies for teaching measurement. When prepared with good questions and resources, 
the content coaching cycle allows coaches to diagnose and meet individual teacher needs 
(Jordan, personal communication). 
Still others mentioned the fact that the MCFC cycle allows the coach and teacher the 

opportunity to be reflective about their practice. “The content coaching cycle is important 
because it provides a time for the teacher to reflect. Whether you reflect on positive aspects, or 
areas for improvement, reflection allows for growth”  (Cho, personal communication). 

With that said, I think there are two challenges with the assignment. First, there are no 
video exemplars, reflections or interviews except for a few that have been done by professional 
coaches. Most students in the program find these polished examples intimidating as they often 
feel they do not realistically portray work performed by emerging coaches. Creating an online 
video repository will make this issue less problematic. The second concern is that after viewing 
pre- and post-conference videos with prospective coaches, they often ask me, “So, how did I 
do?” They want targeted feedback about the effectiveness of their conferences. I find my 
responses to this question very subjective. I can point to what research says should be the goal of 
conferences, but I know that having an evaluation protocol to help frame the conversation would 
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improve my ability to give productive feedback. I think it would be helpful for me to know how 
coaches rate the effectiveness of their coaching sessions and what attributes of the sessions 
contributed to the overall effectiveness of the conference.  

 
Conclusions 

 
After studying the videos and reflections provided by participants while completing the 

MCFC project, we feel it is the most impactful of all projects completed in mathematics teacher 
leadership courses. It gives the participants an opportunity to coach and use many of the skills 
they have learned in their program up to this point. For many it is the first opportunity to do so. 
Creating their video and reflecting on the experience through the assignment prompts allows 
them to understand the role they will be expected to play as a mathematics coach. They learn 
how to offer their teachers personalized support that can have a positive impact on the work they 
do in the classroom. We also acknowledge that there are ways to improve the tools that support 
the project. First, we found that candidates and teacher teams who found their coaching 
conversations to be effective spent the most time employing invitational moves focused on 
mathematics topics. Indeed, West and Staub (2003) suggest that the goal of a coach, as they gain 
more experience, is to employ more invitational moves in coaching conversations. Likewise, 
they suggest the most successful coaching conversations occur when the focus is maintained on 
students' mathematical thinking and their work. Second, candidates would benefit from a video 
repository so that they could have examples of coaches at various experience levels as they 
employ best practices in their work (e.g., working with reluctant teachers, novice teachers, 
coaching tasks, and coaching small instruction). 

 
Table 1 
Video Analysis Template 

Coaching Moves Topic 
 Mathematics Content 

Pedagogy 
Pedagogy Other 

Direct Guidance 
 

   

Invitation-Guidance 
(Mixed) 

   

Invitation    

Note. Numbers recorded in table should represent the percent of time coaches and teachers spent discussing 
conference topics and coaching moves used by the coach in guiding the discussions. Total of all time should be 100 
percent. Once this protocol is formalized and evaluated, we hope it will be useful in providing constructive feedback 
for participants.  

 
Future Research 

 
One of our next steps is to refine and pilot a video analysis protocol developed to analyze 

pre- and post-conference videos. This video analysis template was created using information 
about coaching conversations found in the two MCFC texts (West & Staub, 2003; West & 
Cameron, 2013). These texts suggest there are two important aspects of a coaching conference, 
what we call “coaching moves” and “conference focus topics.” We arranged the coaching moves 
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vertically in Table 1. The three categories of topics were placed horizontally in Table 1: (1) 
mathematics, (2) pedagogy, and (3) other. The Video Analysis Protocol template (Table 1) is the 
result. 

An ancillary benefit of the study we have planned is that we will be creating a collection 
of MCFC project pre- and post-conference videos. These videos could be the genesis of an 
online video repository that would feature videos and reflections of pre- and post-conference 
coaching videos. We have initiated a partnership with the Virginia Council of Mathematics 
Specialists (VACMS) to host the planned video repository on their website. Videos will be 
available to mathematics specialists and mathematics teacher leaders in Virginia as a 
professional development tool. 
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ABSTRACT 
In this paper, we discuss how one 
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her teachers. We include personal accounts 
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a teacher. 
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online professional development, transfer of 
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One challenge that mathematics specialists face is finding time to provide professional 
development during teachers’ overscheduled work weeks. In response to this challenge, online 
and hybrid models of professional development can be accessible and flexible alternatives to in-
person professional development. We argue that mathematics specialist candidates who 
participate in online mathematics specialist courses are uniquely positioned to transfer their 
online experiences to the task of leading online professional development. Candidates can learn 
from instructors who are explicit about their pedagogical choices for online learning and who 
encourage mathematics specialists to incorporate best practices into their own online 
professional development for teachers. 

This paper explores this transfer of practices from an online candidate to an online 
professional development provider through three perspectives: mathematics specialist instructor, 
mathematics specialist candidate, and elementary teacher. Erica R. Miller is an instructor at 
Virginia Commonwealth University (VCU) who has co-taught courses for a fully online 
mathematics specialist program. In this paper, she discusses the best practices she used in the 
online format and how they were made explicit to candidates. Tracy Proffitt completed the 
online VCU mathematics specialist preparation program and now works as a Lead Instructional 
Coach in an elementary school, focusing on mathematics instruction. She describes her 
experience as an online candidate, challenges she faces when providing professional 
development, and online options that she uses to meet those challenges. Elicia Fleshman is a 
teacher in the school where Tracy coaches. Elicia reflects on her experience as a learner in online 
professional development experiences facilitated by Tracy. This paper concludes with 
implications for instructors planning online courses, practicing mathematics specialists, and the 
next steps for further application of professional development using online tools. 

When the terms synchronous and asynchronous are used below to describe modes of 
instructional delivery, they refer to the definitions provided in the preface of this special issue 
(Baker et al., 2021). In addition, a hybrid model refers to a combination of in-person and online 
instruction (Bates et al., 2016). These authors also describe five situations in which online 
learning is an effective mode of delivery, including two examples that align with the motivation 
to use online professional development in Tracy and Elicia’s school: “teachers’ immediate needs 
prohibit more powerful professional learning experiences” and “particular expertise is not 
available in a school or district but is available online” (p. 72). When the goal of professional 
learning is to prepare teachers to facilitate rich tasks for their students, teachers should 
participate in tasks as a central part of their learning and sensemaking, in both content and 
pedagogy (Hughes et al., 2015). Tasks are completed collaboratively, and collaboration among 
teachers has a positive impact on teachers’ effectiveness (National Council of Teachers of 
Mathematics, 2014).      

Individual Perspectives 

Instructor: Erica R. Miller 
 
Before teaching in the online, synchronous mathematics specialist program at VCU, I had 

only taught and taken face-to-face classes. However, I have always enjoyed using technology, so 
I was excited by the invitation to join the instructional team for the online cohort. For both 
courses that I taught, Jamey Lovin was one of my co-instructors. She had many years of 
experience teaching and coaching mathematics in the K–12 setting, while I had limited 
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experience teaching undergraduate mathematics courses during graduate school. Jamey’s K–12 
experience, in addition to her experience teaching other courses in the online cohort, was an 
invaluable resource. Together we were able to craft our online course to focus on deepening the 
mathematical knowledge of the candidates in the cohort while also modeling student-centered, 
constructivist pedagogy through an online platform. 

In designing the courses for the preparation program, our main goal was to model best 
practices that we wanted our online cohort to adopt and model for the teachers in their own 
schools. We focused on building relationships with the candidates in our cohort by offering 
virtual office hours and integrating “getting to know you” activities, like sharing recent personal 
and professional events. We also asked our candidates to work together virtually in small groups 
outside of class, which provided them with less-formal spaces to form relationships outside of 
our normal synchronous class meetings. Building upon the Developing Mathematical Ideas 
[DMI] (see Schifter et al., 2016) case-based curriculum, we integrated collaborative explorations 
of authentic, high-quality mathematical tasks (Smith & Stein, 1998). In order to engage 
candidates in asynchronous and synchronous mathematical activities online, we utilized digital 
mathematics platforms (e.g., Desmos Classroom Activities), cloud-based collaborative 
applications (e.g., GSuite), and our learning management system (Blackboard) to guide 
candidates through the activities and provide them with a space to share their work. 

By asking our candidates to share their work on mathematical tasks, we were able to 
select and sequence different solution strategies and approaches in order to help them draw 
connections to the important mathematical concepts during our synchronous class meetings 
(Smith & Stein, 2018). For many of the mathematics activities, we provided links to online 
manipulatives that simulated the physical manipulatives that teachers often use in their own 
classrooms. Candidates were also responsible for posting responses to discussion questions 
(based on the DMI case studies) on our class discussion board, which provided us with another 
opportunity to integrate and build upon candidate ideas. During our synchronous meetings, we 
again used the familiar tools of digital mathematics activities (e.g., Desmos Classroom 
Activities) and cloud-based collaborative applications (e.g., Google Slides and Google Sheets) in 
order to monitor small groups as they worked together in breakout rooms. As an instructional 
team, we then selected and sequenced different groups to share their work during our whole class 
debriefs. 

As candidates progressed through the program, we gave them more and more 
opportunities to take on leadership roles in different courses. In our final content course, we 
wanted to provide them with an opportunity to plan and lead part of our class. They had 
completed a group presentation project in one of their leadership courses, so we used a similar 
model in the content course. This project provided the candidates with the unique opportunity to 
lead a professional development session in an online format. Project groups signed up to develop 
and lead a 45-minute session on one of the chapters from Connecting Arithmetic to Algebra 
(Russell et al., 2011). To support their planning, we provided them with supplemental materials 
for the book as well as a facilitation plan template. We also met with individual project groups 
and provided them with feedback on their facilitation plan. 

Each project group was encouraged to consider what high-quality mathematical tasks 
they wanted to include, what focus questions they would use for small and whole group 
discussion, why these questions were important, how these questions addressed their goals, what 
additional questions they might want to ask, and how they would adapt the session to meet the 
needs of the audience. They also were tasked with providing a clear outline of the presentation, 
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all prerequisite work that participants needed to complete before attending the session, 
concurrent work they would complete during the session, materials and online resources that the 
participants would need, and a detailed breakdown of the schedule and presenter responsibilities. 
At the end of the course, candidates in the cohort shared the following reflections about what 
they learned from the group presentation project: 

• The presentation gave me the opportunity to practice planning and implementing a 
professional learning opportunity for other teachers. I was able to collaborate with two 
others in creating a presentation that focused [on] making the connections with 
representations and the laws of arithmetic for students in the middle grades (Candidate 1, 
personal communication). 

• I've learned how to really facilitate good mathematical discussions in the classroom, and I 
would be able to help other teachers incorporate these ideas in their own classrooms 
(Candidate 2, personal communication). 

• I feel far more comfortable with professional developments and teaching functions 
(Candidate 3, personal communication). 

 
Candidate: Tracy Proffitt 

 
My experience as a candidate in the VCU mathematics specialist preparation program 

exposed me to multiple best practices for online instruction. Instructors consistently used rich 
mathematical tasks and case study reflections as a focus in both in-class and out-of-class work. 
Candidates practiced video conferencing during impromptu meetings between classes to discuss 
work and also in small groups during synchronous class sessions. Instructors modeled tools and 
structures for engaging students online, such as collaborative bulletin boards (e.g., Padlet) and 
interactive graphing platforms (e.g., Desmos). All candidates were given opportunities to lead 
online instruction within our cohort and were encouraged to implement best practices modeled 
by instructors. The learning around these online experiences was amplified by relationships built 
through frequent and required collaboration with other candidates. 

Upon completion of these courses, I began my first year as a mathematics specialist eager 
to share mathematics content and pedagogical knowledge with teachers. Like other members of 
the cohort, it was a challenge for me to find time during school hours to meet with teachers due 
to limited common planning time and a lack of substitutes to cover classes for teachers. After-
school hours were often not an option due to after-school programs, second jobs, or family 
responsibilities. Finally, providing access to experts in mathematics education through attending 
conferences, bringing in speakers, or purchasing books for a group of teachers can be 
prohibitively expensive.  

After reflecting, I realized that I could leverage online instruction as a tool for meeting 
some of the challenges I was facing, rather than waiting for face-to-face professional 
development to become convenient. I tried a variety of formats for delivering mathematics 
professional development for teachers in my first year as a mathematics specialist. These formats 
and their advantages are described in Table 1. 
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Table 1 
Professional Development Formats and Advantages 

Format Example Advantages of the Format 
Synchronous video course Presented a “Pajama PD” 

workshop on the basics of 
number talks offered through 
video conference at a late 
evening hour. 

Synchronous formats work 
well for professional 
development in which 
participant interaction is 
essential. 

Asynchronous online video 
module  

Recorded a video about 
rounding on a number line, 
prepared accompanying 
questions, and shared the 
module with teachers to 
complete at a time convenient 
for them. 

Asynchronous modules can 
be created ahead of time and 
accessed by the teacher when 
they need to know the new 
content or skill. 

Hybrid course Facilitated an online course, 
Empowered Problem Solving 
(Kaplinksy, 2020), for six 
teachers. Some of the course 
work was completed together 
and some at home on their 
own time.  

An advantage of the hybrid 
model is that it provides the 
opportunity for teachers to 
learn from each other while 
completing rich mathematical 
tasks, followed by reflection 
and further teaching from an 
expert online. 

Video recording of an in-
person training or lesson  

Recorded trainings, book 
study meetings, or modeled 
lessons so that teachers who 
were unable to attend could 
watch them at a later time.  

This is helpful for 
professional development that 
needs to be repeated each 
year for new teachers. 
 

One-on-one coaching via 
video conferencing  

Met with teachers virtually to 
discuss upcoming 
mathematics content or 
lessons observed. 

This format works when 
traditional face-to-face 
coaching is needed but not 
feasible due to scheduling 
conflicts. 

Podcast Recommended specific 
episodes of a mathematics 
education podcast to teachers 
who wanted to learn more 
about a certain topic.  

This format works well for 
teachers who have specific 
questions because their needs 
can be matched to episodes 
that they can listen to while 
driving, exercising, etc.  

 
The online mathematics specialist courses I completed as a candidate impacted my 

facilitation of online professional development in several ways. First, participating in these 
courses and being required to lead classes through video conferencing helped to reduce my fear 
of using various online formats. Throughout my program, I was exposed to multiple tools and 
formats for collaborative, engaging, online instruction, and this familiarity as a candidate 
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transferred into a willingness to try the same when planning and leading professional 
development. Second, as I planned various professional learning experiences, I tried to model my 
instruction after best practices I observed in my mathematics specialist courses. For example, I 
avoided the “sit and get” structure by incorporating frequent discussion opportunities and 
formative checks for understanding. When applicable, professional development included high-
quality mathematical tasks, especially in the hybrid Empowered Problem Solving course 
discussed below by Elicia. Finally, I constantly considered the importance of building and 
sustaining positive, supportive relationships throughout professional development offerings. 
Much like I had learned to do as a candidate, I encouraged participants to ask questions, 
maintained a curious, facilitator disposition while leading activities, and focused on teacher 
growth in all situations. I also provided teachers with time to have one-on-one follow up 
meetings with me for reflection and individual goal setting.  

 
Teacher: Elicia Fleshman 
 

I have been an elementary educator for 20 years, and I am of the belief that as an 
educator it is incumbent upon me to remain a continuous learner. As a continuous learner, I have 
always had an interest in effective mathematics pedagogy and the potential impacts it has on 
student achievement. An opportunity arose to work with my school’s mathematics specialist and 
other colleagues through a National Science Foundation Noyce-funded workshop. I welcomed 
the challenge to enrich my learning of teaching mathematics and to collaborate with other 
educators. 

The Empowered Problem Solving Workshop (EPS) is typically offered as an 
asynchronous course. The EPS Workshop’s mission was to bring to light the ineffective teaching 
strategies educators have been instituting for years, such as a heavy reliance on algorithmic 
instruction and rote memorization techniques. These antiquated techniques bypassed essential, 
rigorous, critical thinking instruction that promotes learner agency and engagement.  
My colleagues and I met weekly to engage with the online course modules. During our meetings, 
we openly processed new learning goals through collaboration. We considered this format to be 
that of a hybrid model because we began the week’s learning objectives together, processed new 
information, worked through high-quality mathematical tasks, discussed strategies, and then 
continued individual learning outside of contract hours to ensure we were adhering to program 
fidelity. Though the course was designed for individual teachers to complete asynchronously, our 
group’s redevelopment of the course to a more hybrid approach met the diverse needs of each 
participant. 

One of the key elements that made this experience successful was that Tracy, our 
mathematics specialist, was skilled at developing meaningful, trustworthy relationships. Also, 
she created an environment of shared responsibility, creativity, and varied skill sets in which 
each member of the team was able to share openly and honestly. Another key element that she 
brought to the table was her level of expertise. She had a firm grasp of the mathematics and 
technology fields, and that in and of itself was invaluable. Having a knowledgeable, capable, and 
approachable facilitator to guide us through the hybrid course helped to provide an element of 
ease in which each team member could apply the new knowledge to their own classroom.  
Moving forward with my experiences regarding the aforementioned learning opportunities and 
the new norm of teaching and learning during the COVID-19 pandemic, I feel more prepared and 
confident within the realm of remote learning. Working with and learning from Tracy has 
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enabled me to pick up new and exciting ideas about online teaching and learning. The 
technological platforms themselves and how she modeled their use has led me to believe that 
these strategies are universal. They can be just as effective in online learning environments as in 
face-to-face environments. I feel more confident in taking risks with my instructional pedagogy 
than before we embarked on this journey.  

Conclusion 

Mathematics specialist candidates who complete online course work are exposed to a 
variety of best practices and tools for online learning. When instructors are explicit about the 
choices they make for online instruction, conversations may arise between instructors and 
candidates about the pedagogical and technological choices. This may lead to candidates 
transferring online experience into practice in effective professional development experiences for 
the teachers they serve. The anecdotal account described above prompted one mathematics 
specialist to explore synchronous, asynchronous, and hybrid options to meet the professional 
development needs of the teachers in her school building. Instructors and mathematics specialists 
are encouraged to consider ways in which online learning can be paired with collaborative tasks 
in order to increase learning and engagement (Bates et al., 2016).  

The idea for this article originated before the COVID-19 pandemic forced closures of 
schools across the United States in March of 2020. As school systems faced the challenge of 
preparing teachers for online instruction, the conversation surrounding online professional 
development became even more widespread and necessary. Mathematics specialists who already 
have experience with the online learning format can pave the way in preparing teachers for 
concept-based, student-focused online and hybrid learning. In addition to group professional 
development, one-on-one virtual coaching (Matsumura et al., 2016) can also be explored and 
expanded. Another area that can be explored is the further transfer of best practices from online 
professional development into online mathematics teaching. Mathematics specialists who make 
their online professional development choices explicit to teachers may better prepare teachers as 
they navigate various online teaching platforms.  
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ABSTRACT 
In this paper, the authors reflect on the first 
completely online mathematics specialist 
preparation and mentoring program. 
Candidates across Virginia successfully 
completed this program and are now serving 
as teacher leaders, interventionists, 
department leaders, instructional coaches, 
mentors, and program specialists. They are 
impacting mathematics instruction across 
the state at all levels. As two mathematics 
specialists serving as mentors and two 
candidates, we share our thoughts and ideas 
as we continue to learn from our mentorship 
process. The goal is to provide continuous 
professional development as candidates 
share problems, successes, research, and 
best practices to improve mathematics 
teaching and learning. In our situation, 
virtual mentoring is a vital support to long-
term development, growth, and success of 
mathematics teacher leaders. Keeping in 
touch with fellow leaders has benefitted us 
personally and professionally. We will 
discuss the benefits and constraints of online 
mentoring and how it can be a model for 
other virtual mentorship programs. 
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In August 2019, twenty mathematics specialist candidates completed Virginia 
Commonwealth University’s (VCU’s) first fully online mathematics specialist preparation 
program. The program was developed and offered as part of a National Science Foundation grant 
project entitled Virginia Mathematics Specialist Initiative to Prepare K–8 Mathematics Teacher 
Leaders for High-Needs School Districts. As outlined in the grant proposal, this project was  

designed to increase the number and retention of highly qualified, diverse mathematics 
teacher leaders in Virginia’s high-needs, K–8 schools and provide an online professional 
development and certification program to prepare teachers for these roles. These leaders 
… support teachers in their schools and, in turn, help increase student achievement in 
mathematics. (National Science Foundation, 2017, p. 1)  

This paper describes a mentoring program the candidates participated in following the 
completion of the mathematics specialist preparation program and shares the facilitators’ and 
candidates’ feedback about the successes and challenges of the mentoring program.  

The candidates serve in a variety of roles including teacher, interventionist, department 
leader, coach/mentor, program specialist, or a combination of these roles. As shown in Figure 1, 
the school divisions in which the candidates work are diverse. The divisions represented are 
large and small. They are urban, rural, or suburban. They represent diverse populations of 
teachers and students across the Commonwealth of Virginia. The question for the mentorship 
program developers was, “How do we support and give professional development to new 
candidates in order to impact mathematics teaching and student learning across five geographical 
regions and 42,775 square miles?” The answer to this question was to create a virtual platform 
for monthly mentoring sessions. Figure 1 below shows the locations of each candidate within the 
state. The color of the pin represents the definition of candidates’ territorial locations as 
described below. 

According to William Haver, Ph.D., early developer and advocate for mathematics 
specialist training,  

…grant-supported cohorts tended to have mathematics coaches in the same school 
system. We did a lot of work with division leaders in preparing them to provide ongoing 
support and mentoring to their people once they were on the job as mathematics 
specialists. (personal communication, June 2020) 
This was not an option for the online cohort. Aimee Ellington, Ph.D. devised a mentoring 

program to support the needs of candidates in their first years of work as mathematics specialists. 
The idea was to have a supportive peer group for coaches to rely on for problem-solving, success 
sharing, and collaboration (W. Haver, personal communication, June 2020). 

Ellington, together with a group of mathematics professionals including instructors and 
previous candidates from Virginia Commonwealth University and George Mason University, 
brainstormed and planned for this different approach to mentorship. The mentors who facilitate 
the monthly virtual sessions are both National Board Certified, K–8 Mathematics Specialists. 
One works in a rural, middle school setting and one in an urban, district-level setting. Both have 
been instructors for previous cohorts in the mathematics specialist preparation program. 

The goal of the mentoring program is to provide continuing professional development in 
a synchronous setting in the areas of mathematics and pedagogy to increase student achievement. 
Members share problems, successes, current research, and best practices to improve mathematics 
teaching and learning. During the first year, the focus was on building relationships with teachers 
and administrators to advocate for high-quality instruction. The discussions and activities that 
took place during the mentoring sessions were developed in part to reinforce and enhance the  
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Figure 1 
Geographical Locations of Math Specialist Candidates in Cohort 

 
 

Locale Definition Locale Definition 
   City Town  
Large Territory inside an urbanized area 

and inside a principal city with 
population of 250,000 or more 

Fringe Territory inside an urban cluster 
that is less than or equal to 10 miles 
from an urbanized area 

Midsize Territory inside an urbanized area 
and inside a principal city with 
population less than 250,000 and 
greater than or equal to 100,000 

Distant Territory inside an urban cluster 
that is more than 10 miles and less 
than or equal to 35 miles from an 
urbanized area 

Small Territory inside an urbanized area 
and inside a principal city with 
population less than 100,000 

Remote Territory inside an urban cluster 
that is more than 35 miles from an 
urbanized area 

Suburb  Rural  
Large Territory outside a principal city 

and inside an urbanized area with 
population of 250,000 or more 

Fringe Census-defined rural territory that 
is less than or equal to 5 miles from 
an urbanized area, as well as rural 
territory that is less than or equal to 
2.5 miles from an urban cluster 

Midsize Territory outside a principal city 
and inside an urbanized area with 
population less than 250,000 and 
greater than or equal to 100,000 

Distant Census-defined rural territory that 
is more than 5 miles but less than or 
equal to 25 miles from an urbanized 
area, as well as rural territory that is 
more than 2.5 miles but less than or 
equal to 10 miles from an urban 
cluster 

Small Territory outside a principal city 
and inside an urbanized area with 
population less than 100,000 

Remote Census-defined rural territory that 
is more than 25 miles from an 
urbanized area and is also more 
than 10 miles from an urban cluster 

Note. Location designations and sizes by color on pins (Wikimedia Commons, n.d.). Letter on pins corresponds to 
size of locale. Legend (National Center of Education Statistics, n.d.).  
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connections that had formed among candidates while they completed their coursework. This 
communication was also designed to alleviate the feeling of isolation that candidates might 
experience when serving in the unique role of a mathematics coach in a school situation. 
Throughout the mentoring program, the mentors took a continual needs assessment to make the 
adjustments necessary to provide just-in-time professional development to benefit the evolving 
needs of the candidates. 
 

Literature Review 
 
Virtual mentoring is vital for the successful development, implementation, and long-term 

impact of candidate mathematics specialists in K–12 education. Paulus and Scherff (2008) state 
that “isolation and a lack of support” are two major challenges facing beginning educators that 
hinder success and lead candidates to abandon the profession (p. 113). Virtual mentors contribute 
greatly to overcoming these challenges by supporting mathematics specialists in navigating 
professional relationships with administration, peers, teachers, and students. Sherman and 
Camilli (2014) found this to be especially powerful when the mentor is an expert in mathematics 
or science (p. 114). 

Isolation is overcome by actively participating in a mathematics learning community. 
This community connects educators who are geographically spread across diverse settings 
through a virtual, real-time network of mathematics specialists and mentors. Members 
communicate using a variety of platforms such as Facebook, text message, email, Twitter, 
Messenger, Zoom, and Google Suite applications. Li et al. (2010) found that “technological 
advances…provide a useful tool to facilitate mentoring” (p. 730). And Reese (2016) states, “the 
rapid boom in technology-based professional development and the myriad options for 
mentorship opportunities for educational mentoring and professional development experiences—
via the Internet and various virtual technologies—are increasing exponentially” (p. 49). 

The COVID-19 pandemic of 2020 has highlighted and reinforced the importance of 
virtual mentoring and learning opportunities. During this type of crisis, colleges, universities, and 
K–12 schools must limit or eliminate face-to-face instruction to protect students and staff. 
However, educators in this situation must continue to provide educational opportunities and 
support for all students (Hodges et al., 2020). Virtual mentoring provides the critical support K–
12 candidate mathematics specialists need. 

 
Methodology 

  
Since completing the VCU online mathematics specialist preparation program in August 

2019, candidates were provided continued support via a monthly online meeting with mentors. 
Experienced mathematics specialists served as mentors, and the candidates were their mentees. 
After the first year of the two-year mentorship program, participants completed a survey to 
provide feedback on the effectiveness of the program and to inform the plans for future sessions. 
The participants were asked to elaborate on the benefits and constraints of online mentoring and 
offer suggestions for improvement. Candidates were asked to share a specific instance in which 
they personally benefited from or were supported in their role as a mathematics leader. 
Additional questions were asked about communication methods, frequency, and using mentors 
as a resource between sessions. Follow-up interviews were conducted to clarify responses and 
gather anecdotal details. 
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Data Collection 
 
Candidates rated the mentoring program on scale of one to five, with 1 being below 

expectations, 3 meeting expectations, and 5 exceeding expectations. Figure 2 presents a circle 
graph of the survey data on how candidates rated the benefits of the mentorship program. Based 
on a rating of 3 or higher, 84% of participants felt the mentoring program was helpful to them 
with respect to the different types of professional relationships in which they engage. Of those 
candidates, 26% said the program far exceeded expectations.  

 
Figure 2  
Candidates Ratings of the Benefits of Mentorship Program 

 
 
There are many platforms that were utilized for continued communication between 

mentors and participants. According to data from interviews, approximately 95% of respondents 
stated that Facebook was their preferred method of communication. Most participants belong to a 
private Facebook group for this purpose. The graph in Figure 3 shows that candidates utilized a 
variety of communications methods. The preferred methods for connecting were email and text 
messaging. The data point that stood out to the authors was that 100% of respondents were 
communicating with each other outside of the monthly mentoring session. 

 
Figure 3 
Methods of Communication Between Candidates 

 
Note. All candidates are communicating between sessions in some form. 
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Figure 4 represents the reasons candidates were communicating and reaching out for 
support. Sharing resources ranked highest, with ideas for teaching content being the second most 
frequent reason. Candidates solicited feedback from their peers on ideas they presented and also 
felt comfortable venting frustrations with each other. 

 
Figure 4 
Reasons for Communication Between Candidates 

 
Note. Candidates are communicating for many reasons. 

 
Two questions were asked during candid interviews to gather information about 

communication among candidates and their peers: (1) How has the online mentoring program 
been specifically helpful for you? and (2) Can you share a specific time or situation where you 
reached out to your peers? In the following paragraphs, we will discuss the responses to these 
questions. 

A sixth-grade mathematics teacher in a rural district explained that when her school 
announced in March they were transitioning to remote learning due to the COVID-19 pandemic, 
she reached out to the cohort through the private Facebook group for online resources and 
promptly received ideas from another sixth-grade teacher. A mathematics interventionist for two 
schools in an urban Virginia district on the opposite side of the state shared his district’s website 
in response to her request for resources. He also directed her to a great website with quality 
activities. She was immediately grateful for the support. Based on this interaction, she knew the 
resources had been vetted by her peers. We wonder if this collegiality and support would have 
transpired prior to the online preparation program and monthly mentoring meetings. There was a 
significant geographic distance between these candidates. Candidates may have had the 
opportunity to meet at a state or national conference, but the ongoing building of relationships 
and efficacy would not have been as likely to occur. Another candidate explained how the small-
group breakout times during online monthly sessions allowed participants to share ideas and 
strategies and provide feedback to each other, which she found very helpful: “Iron sharpens iron. 
We’re all good at math. There’s always something to be learned [from peers]” (personal 
communication, June 2020). 

Two other candidates were interviewed and asked the aforementioned questions. One 
candidate was from an urban district in the eastern part of Virginia and the other candidate was 
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hundreds of miles away in the southwestern part of the state. They described the great 
partnership that formed between them. 
 We found it interesting that candidates spoke of the comfort level they experienced using 
the online platform. A candidate shared, “It is easier for me to reach out online. I tend to be 
reluctant when it comes to face-to-face interactions. I’ve often felt self-conscious about my 
‘twang.’ I’m much more comfortable talking to people online” (personal communication, 2020). 
This has implications for any teacher or student working through an online platform. One may 
become more engaged and open to sharing when in an online setting. Another candidate 
confirmed the overall sense of this powerful professional learning community that the authors 
had similarly deduced from interviewing candidates. “We have such a great network and wealth 
of knowledge. There’s always something to take away from others’ ideas” (personal 
communication, 2020). Each person has a part to play in this collaborative mentorship. The 
mentors learn from the mentees and mentees learn from each other. We agree that “well designed 
and managed mentoring programs can have a dramatic impact on workplace culture and people 
engagement. A strategic mentoring program transcends hierarchy, creating relationships and 
interactions to build individual and hence organisational value” (Art of Mentoring, 2019). In 
other words, mentoring programs can have a ripple effect on mathematics education.  
 

Benefits and Constraints 
 
This synchronous meeting format has benefits and constraints. According to our 

interviews, eighteen out of eighteen candidates stated they felt supported with the synchronous 
meeting format, and the meetings satisfied their expectations to date. Though the mentors and 
candidates are geographically distanced, this does not appear to be an obstacle because 100% of 
candidates stated mentors are always accessible in the online format. One of the positive 
comments shared several times by mentees was their appreciation for opportunities to share ideas 
and resources and to hear what is happening in other districts. One said, “Sharing successes and 
struggles with others in the same teacher leader positions confirms and validates what we are 
doing.” The meetings provide opportunities “to stay connected with cohort colleagues” and 
“encourage collaboration with people across Virginia.” A coach from a small city stated, “It 
opens doors to receive expert advice anytime and anywhere.” Being able to give and receive 
feedback, to share, and to grow together are significant benefits to meeting in an online format.  

Even so, there are some constraints with an online synchronous meeting format that can 
provide some challenges. As one candidate put it, “Technology is wonderful when it works.” 
Trying to connect to a web-based platform from across the state can be difficult. There are 
technological challenges and certain candidates have to connect by phone and listen, not having 
access to the visuals being presented due to rural internet issues. To overcome this obstacle, 
meetings are recorded and are accessible to candidates at a later time. Data from our interviews 
revealed another issue: candidates are not all serving in the same positions at their schools. Some 
are mathematics coaches who work with teachers, others are mathematics leaders in their 
buildings who work with remediation, and others are classroom teachers. This provides a 
challenge with certain topic discussions, where individuals are coming from different 
perspectives and the information may not be relevant to their position. To address this, mentors 
set up breakout rooms based on teaching positions. In whole group discussions candidates shared 
topics discussed in breakout rooms. Anything shared can be adapted to different grade levels and 
situations. Mentors must be cognizant of the various roles of each member. Time can also be a 
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challenge for these scheduled meetings. An elementary coach from a large city stated, “One of 
the constraints is time. Some of the best discussions we have are when we are in breakout rooms, 
but there isn't enough time to discuss in detail what each individual would like to share” 
(personal communication, June 2020).  

The cohort stays in contact through many other online formats and often continues 
discussions after the mentoring session. The online synchronous meetings provide many positive 
opportunities and some challenges for this mentoring program. 

 
Next Steps 

 
The focus for year two of the mentoring program will be to have mentees take on 

leadership roles in the planning and delivery of the mentoring session activities. Because of our 
current COVID-19 social distance reality, virtual teaching and sharing will be a subject for 
exploration. Candidates will be asked to share monthly on a variety of topics including 
mathematics pedagogy and content, blended learning, building relationships, observations, 
collecting evidence of learning, and the impact of virtual teaching and coaching on student 
learning. The topics will be based on current needs, new research, and best practices. This will 
allow candidates to learn from each other and grow professionally.  

 
Things to Consider 

 
This model of coaching and mentoring can be adapted for other virtual mentorship 

programs. It can be scaled up or down to district or individual school levels and could pivot to 
different subject areas. Professional development on a virtual platform allows people across 
geographical distances to meet without traveling, saves time, and offers real-time mutual 
support. 

When preparing mentoring sessions, facilitators may want to over plan, but remain 
flexible with the agenda. One never knows how long or short a discussion will be. Some topics 
demand more time from the group. Occasionally, a candidate will have a problem that needs the 
immediate attention of the mentors and candidates.  

Use the collective knowledge of the members. Everyone has experience to share that will 
benefit the group. Become very familiar with the virtual platform being used. Technology issues 
will arise; attendees will need to be patient in order to overcome glitches.  

Facilitators should be prepared to pivot completely. The ever present nature of the 
COVID-19 pandemic caused our sessions to move away from the topic of exploring coaching 
cycles to focus on virtual teaching and transitioning students to learn at home. It is important to 
remain consistent with mentor meetings. The group can continue to support each other through 
challenges.  

Conclusion 
 
In conclusion, this online mentoring program has been beneficial to the candidates. It is 

evolving and growing to build leadership capacity. While there are some constraints, they can be 
overcome. The basic purpose of this mentoring program should remain to support educators in 
content and pedagogy in order to increase students’ understanding and enjoyment of 
mathematics. Each candidate in this mathematics community is like a drop of water in a pond 
sending ripples across Virginia, impacting mathematics teaching and learning. 



Kernan et al. | Virtual Mentorship: The Ripple Effect | 115 

 

 
Acknowledgment 

 
This paper was developed in part through the project The Virginia Mathematics Specialist 
Initiative: An Online Program to Prepare K–8 Mathematics Teacher Leaders for High-Needs 
School Districts with support from the National Science Foundation, Noyce Track 3 Award 
1660774. The opinions expressed here are those solely of the authors and do not reflect the 
opinions of the funding agency. 

 
Author Note 

 
Correspondence concerning this article should be addressed to Joan Kernan, Office of Teaching 
and Learning, Petersburg City Public Schools, 205 East South Boulevard, Petersburg, Virginia 
23805. Email: jokernan@petersburg.k12.va.us. 

 
References 

 
Art of Mentoring. (2019, December 19). Virtual mentoring. https://artofmentoring.net/virtual-

mentoring/ 
Hodges, C., Moore, S., Lockee, B., Trust, T., & Bond, A. (2020, March 27). The difference 

between emergency remote teaching and online learning. EDUCAUSE Review. 
https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-
teaching-and-online-learning 

Li, Q., Moorman, L., & Dyjur, P. (2010). Inquiry-based learning and e-mentoring via 
videoconference: A study of mathematics and science learning of Canadian rural students. 
Educational Technology Research and Development, 58(6), 729 – 753. 
https://www.jstor.org/stable/40929475 

National Center for Education Statistics. (n.d.). NCES's urban-centric locale categories, released 
in 2006. https://nces.ed.gov/pubs2007/ruraled/exhibit_a.asp 

National Science Foundation. (2017). The Virginia mathematics specialist initiative: An online 
program to prepare K–8 mathematics teacher leaders for high-needs school districts. 
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1660774 

Paulus, T & Scherff, L. (2008). "Can anyone offer any words of encouragement?" Online 
dialogue as a support mechanism for preservice teachers. Journal of Technology and 
Teacher Education, 16(1), 113 – 136. 

Reese, J. (2016). Virtual mentoring of preservice teachers. Journal of Music Teacher Education, 
25(3) 39 – 52. https://doi.org/10.1177/1057083715577793 

Wikimedia Commons (n.d.). Map of Virginia Counties and Independent Cities 
https://commons.wikimedia.org/wiki/File:Map_of_Virginia_Counties_and_Independent_
Cities.svg 

https://artofmentoring.net/virtual-mentoring/
https://artofmentoring.net/virtual-mentoring/
https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning
https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning
https://www.jstor.org/stable/40929475
https://nces.ed.gov/pubs2007/ruraled/exhibit_a.asp
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1660774
https://doi.org/10.1177/1057083715577793
https://commons.wikimedia.org/wiki/File:Map_of_Virginia_Counties_and_Independent_Cities.svg
https://commons.wikimedia.org/wiki/File:Map_of_Virginia_Counties_and_Independent_Cities.svg


116 | Journal of Mathematics and Science: Collaborative Explorations 17  
 

PROVIDING JOB-
EMBEDDED 

PROFESSIONAL 
LEARNING FOR 
MATHEMATICS 

SPECIALISTS 
 
 
Ian T. Shenk 
Hanover County Public Schools 
ishenk@hcps.us 
 
Vickie L. Inge 
University of Virginia (retired) 
vickieinge@gmail.com 
 
Candace J. Standley 
Culpeper County Public Schools 
standley@culpeperschools.org 
 
Allison C. DePiro 
allisondepiro@gmail.com 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
https://doi.org/10.25891/pbdq-8k63 

ABSTRACT 
We know that if professional learning 
opportunities are to be meaningful and 
create long-lasting and systemic change, 
they must be ongoing and job-embedded. 
One of the most beneficial aspects of having 
mathematics specialists in schools is that 
they can provide job-embedded professional 
learning directly to teachers. Perhaps due to 
the strong impact mathematics specialists 
have on teaching and learning, we may 
overlook the need to provide professional 
learning to support the growth of 
mathematics specialists themselves. Just as 
we provide coaching to teachers to affect 
their professional growth, we must identify 
similar opportunities to affect the growth of 
mathematics specialists. This paper will 
identify the purposes of these opportunities 
to include supporting growth in content 
knowledge, pedagogical expertise, coaching 
skills, and professionalism and leadership. 
We recognize that sustained efforts must be 
undertaken to see significant growth in these 
areas. Through interviews with individuals 
from Virginia school divisions and 
professional organizations, we identify 
models that can be replicated to provide the 
recommended professional learning for 
mathematics specialists. 
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Mathematics specialist preparation programs prepare teacher leaders to serve in this role 
in a similar manner to how teacher preparation programs prepare individuals to serve as 
classroom teachers. However, once teachers begin their work, they are, or should be, provided 
ongoing professional learning to support their continued growth (Campbell & Malkus, 2013). 
Too often, we find that mathematics specialists do not have the same type of ongoing support. 
One reason for this oversight may be that schools and school divisions traditionally designate 
days in the school calendar when professional development workshops are offered. Mathematics 
specialists are often called on to lead these workshops for teachers, thus preventing them from 
receiving assistance toward their own professional growth during this time. Yet, just as teachers 
need continued professional learning for their growth, school divisions must provide 
opportunities for mathematics specialists to continue their growth. 

Guskey (2002) found the most beneficial form of professional learning for teachers is 
ongoing and job-embedded. Building on this finding, we posit that professional learning for 
specialists should strive to provide similar experiences. Professional learning experiences for 
mathematics specialists should target at least one of four broad areas: content knowledge, 
pedagogical expertise, coaching skills, and professionalism and leadership (Association of 
Mathematics Teacher Educators [AMTE], 2013; Campbell & Ellington, 2013). The modes and 
methods used to present this information may differ depending on the size of the school division 
and the number of mathematics specialists serving that division.  

In this paper, we provide further information on the areas of professional learning needed 
for mathematics specialists and outline multiple delivery methods. Informed by interviews and 
surveys of school division mathematics specialists and their supervisors, this paper describes 
professional learning experiences that have been offered by school divisions and professional 
organizations across Virginia. The authors of this paper advocate for increased professional 
learning opportunities for all mathematics specialists and offer recommendations for how these 
opportunities can be provided in areas where there is not a large group of mathematics 
specialists.  

 
 Professional Learning for Mathematics Specialists 

  
As noted earlier in this paper, the AMTE (2013) and Campbell and Ellington (2013) 

identified four broad areas of continued learning that will strengthen mathematics specialists’ 
knowledge and skills to carry out their responsibilities. The four areas of learning and examples 
of how some school divisions in Virginia offer opportunities for professional growth are 
discussed below.  

 
Professional Learning to Support Content Knowledge 

 
Mathematics specialists must have a deep understanding of the mathematics content 

when working with teachers in their school building. An informative conclusion based on a study 
about teaching and learning in grades PK–8 and published in Adding It Up: Helping Children 
Learn Mathematics (Kilpatrick et al., 2001) is that teachers need to deeply understand the 
mathematics they teach, how students learn mathematical ideas, and how to implement 
instruction that supports student learning. It reasonably follows that mathematics specialists who 
are supporting teachers in schools must also have this same deep understanding that teachers 
need, but for multiple grade levels. 
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We acknowledge that it is unlikely that a mathematics specialist would have direct 
experience teaching every mathematics course offered in a school. Because of this, it would be 
tempting to provide targeted support in understanding the curriculum for each mathematics 
course. While this approach has its uses, we believe professional learning should focus on what 
Ball et al. (2008) define as specialized content knowledge and horizon knowledge. Specialized 
content knowledge is the knowledge that supports structuring and representing mathematics 
concepts, identifying the mathematics that underpins an instructional task, and anticipating 
different ways students might think about concepts, including their misconceptions. Horizon 
knowledge is an understanding of the vertical progression across grade levels which is necessary 
for teaching a topic at a particular time. This knowledge also requires making connections to 
what content is to come.  

To provide professional learning in specialized content knowledge and horizon 
knowledge, school divisions have often used rich mathematical tasks. One suburban school 
division frequently uses these tasks as opening activities during bi-weekly mathematics specialist 
meetings. This school division employs multiple building-level mathematics specialists who 
support teachers at one or two schools. The specialists represent elementary, middle, and high 
schools. The division reports that working on a task is especially beneficial with this diverse 
group of specialists due to the wide range of mathematics background that the specialists use to 
approach the task. The specialists begin by individually completing the task and anticipating 
student strategies and misconceptions. The specialists then engage in discussions about 
connections among the solution methods and the different mathematical ideas that have come out 
of the task. The specialists end with a discussion about how they could coach a classroom 
teacher to effectively implement the task in the classroom. 

One Virginia superintendent’s region (Virginia Department of Education, n.d.) uses 
region level meetings for multiple school divisions to provide professional learning for 
mathematics content to their specialists. The region also holds regular meetings where 
mathematics specialists work together to curate resources. While the meetings may have the 
appearance of working meetings, specialists all participate in deep discussions around the 
learning targets, essential questions, and the essential understandings of state and national 
standards.  

 
Professional Learning to Support Pedagogical Expertise 

 
Mathematics specialists must have knowledge of a variety of instructional strategies to 

support mathematics understanding. As the educational landscape moves toward increases in the 
use of digital curricula and virtual learning, mathematics specialists must have knowledge of the 
advantages and limitations these types of tools have to offer. The specialist must be able to guide 
teachers to use tools and strategies that enhance students’ understanding of essential mathematics 
concepts. 

Professional learning to support pedagogical expertise includes work with instructional 
strategies, planning lessons, and understanding student motivation. School divisions often 
approach professional learning in this domain through book studies. The books chosen for 
mathematics specialists’ book studies might preview instructional methods and models to be 
rolled out to teachers throughout the division. For example, we have seen school divisions use 
this approach before implementing a new instructional model with teachers.  
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Another area for providing professional learning in pedagogical expertise can occur 
within professional organizations. From the authors’ experiences, organizations such as the 
Virginia Council of Mathematics Specialists (VACMS) and the Virginia Council of Teachers of 
Mathematics (VCTM) have an easier time bringing in nationally recognized speakers to provide 
training to a statewide audience as part of a conference or meeting. As with any conference, it is 
imperative that mathematics specialists participate in follow-up events or conversations to ensure 
that the experience is ongoing rather than a one-and-done experience. 

An urban school division in Virginia uses lesson study (Wang-Iverson & Yoshida, 2005) 
to support both content knowledge and pedagogical expertise. The division uses monthly 
meetings of mathematics specialists and mathematics resource teachers to carry out this process. 
The teams use student-level data to determine the concept and grade level to be studied. After 
identification of the underlying content, the teams plan a lesson, conduct the lesson, and then 
reflect on the effectiveness of the lesson. 

 
Professional Learning to Support Coaching Skills 

 
For mathematics specialists to effectively enact change in instruction, they must have the 

ability to work with teachers as adult learners. When working with an adult learner, it is 
especially important to devote time to building relationships and developing trust. These skills 
are part of a broader spectrum of coaching skills that must be supported through sustained 
professional learning. 

As coaching skills may be universal to all instructional coaches and not specific to 
mathematics, some school divisions provide professional learning to support coaching skills to 
all individuals who serve as instructional coaches. Professional learning for these cross-content 
groups has been provided through conferences, book studies, and in-house opportunities. 

A large suburban division provides professional learning to support coaching skills 
through peer observation. Groups of mathematics specialists conduct instructional rounds where 
they jointly observe several teachers in a school. Afterwards, the specialists debrief and reflect 
on the experience, focusing on follow-up coaching opportunities that may be necessary. As a 
variation on peer observation, coaches may also observe each other interacting with a teacher 
during a coaching cycle. Follow-up discussions focus on the coaching moves utilized and 
recommendations for ongoing coaching. 

 
Professional Learning to Support Professionalism and Leadership 

 
A mathematics specialist often functions in between two implicitly defined roles in a 

school––a classroom teacher and an administrator. Mathematics specialists must move in and out 
of both of those roles while doing their work. This transition between two seemingly different 
worlds is difficult and requires professionalism and leadership skills. Ongoing professional 
learning is necessary in this area, particularly as the mathematics specialist works with changing 
teaching staffs and administration. 

Professional learning in this area can occur during mentoring opportunities between a 
new mathematics specialist and an experienced specialist. In a suburban division, first year 
specialists are assigned a veteran specialist as a mentor. During structured mentorship meetings, 
the new specialist shares specific cases and concerns, while the experienced specialist utilizes 
coaching language to help the new specialist navigate the concerns. Of note to mathematics 
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specialists who may be the only specialist in their division or region, successful mentorship 
meetings have occurred virtually. In some cases, instructors of mathematics specialist programs 
have served as mentors of program participants after they begin working as a mathematics 
specialist. 

 
Modes and Methods of Providing Professional Learning 

 
Once a decision has been made about the specific content or focus area(s) for 

professional learning, we turn to the question of how the specialist will access these experiences. 
In some cases, specialists will benefit from participating along with teachers. Darling-Hammond 
et al. (2017) suggest that “teacher learning experiences should: (a) be intensive, ongoing, and 
connected to practice; (b) focus on student learning and address the teaching of specific 
curriculum content; (c) align with school improvement priorities and goals; and (d) build strong 
working relationships among teachers” (pp. 9 – 11). But, in addition, mathematics specialists 
need opportunities to reflect on their coaching practice and to engage in a professional learning 
community with their peers. The specialists need professional learning to address their specific 
role and responsibilities. 

School divisions across Virginia have used various modes and methods to provide the 
professional learning described above. We recognize the type of professional learning 
experiences available to a mathematics specialist may be dictated by the size of the division and 
the number of mathematics specialists employed by the division. Divisions that have a larger 
number of mathematics specialists have the flexibility to provide ongoing professional learning 
experiences through regular meetings. However, Virginia also has school divisions with only one 
mathematics specialist. In this case, large-scale professional learning is not possible, and it may 
be up to the individual to assume responsibility for his or her own professional growth. We 
provide a summary of various approaches throughout Virginia that have been shared with the 
authors.  

 
Group-Based Professional Learning through Regular Meetings 

 
School divisions with multiple mathematics specialists can pull these specialists together 

on a regular basis. If these meetings are to occur, and we concur with McGatha and Rigelman 
(2017, p. 15) who strongly recommend they do, they must be purposefully planned to justify 
pulling mathematics specialists away from their other roles. Specifically, division-level leaders 
must use these meetings as an opportunity to provide ongoing professional learning in the areas 
we outlined in the first section. 

These ongoing meetings provide an excellent opportunity for professional learning that 
serves each of the four purposes described above. Meeting time can be devoted to book studies, 
work with an outside consultant, peer observation and discussion, building content knowledge, 
and mentoring conversations. One division reports that professional learning can be obtained 
while creating and implementing division-level resources. This division had a year-long project 
where mathematics specialists developed cognitively demanding tasks and associated scoring 
rubrics. These tasks were then piloted in the specialists’ schools. Throughout the process, 
teachers grew in their understanding of tasks and authentic assessment. At the same time, the 
project yielded student work that became the source of mathematical conversations among the 
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specialists. As a result, mathematics specialists were able to grow in their practice by sharing 
ideas about how to work with teachers to determine their next steps in the classroom.  

 
Virtual Opportunities 

 
Some mathematics specialists may be in a position where they are the only specialist for 

their division. In this case, we advocate for a network of mathematics specialists in similar 
positions. Technology has improved to the point where this network can be virtual, connecting 
mathematics specialists from across Virginia. These virtual opportunities are particularly helpful 
when addressing professional learning to support professionalism and leadership skills. Care 
must be taken to ensure that these virtual check-ins are structured and purposeful. Virginia 
specialists who participated in the same university preparation program as a cohort have reported 
that they often meet virtually with each other after the cohort’s official work has ended. It is 
helpful if the rationale for this way of networking is brought up during their course work. Some 
specialists who have attended the state professional conferences have shared that they continue 
to meet and consult virtually with specialists from other divisions. One specialist appreciates that 
she can meet with and gain ideas from specialists in schools and school divisions that are like 
hers as well as with those that are different from hers. 

 
Professional Organizations 

 
Professional organizations provide another avenue for mathematics specialists to network 

with each other. Virginia’s mathematics specialist community has several state-wide professional 
organizations to turn to for guidance. These include the VACMS, VCTM, and the Virginia 
Council for Mathematics Supervision. Each of these organizations provides an annual meeting 
with opportunities for specialists to learn from established specialists and presenters and network 
with each other. In addition, these and similar national organizations (e.g., National Council of 
Teachers of Mathematics and NCSM) provide research and literature dedicated to mathematics 
coaching. These professional organizations also provide an opportunity for mentorship as new 
and experienced specialists look out for each other. Some division central office mathematics 
leaders attend along with the specialists and then use shared experiences during the conference to 
support follow-up in the school division. Specialists have also brought their administrators to 
conferences and used this time together to build a partnership and identify strategies that will 
move the school’s mathematics program forward.  

 
Individual Professional Learning 

 
Mathematics specialists, whether they are one of many in a school division or work in 

more isolated circumstances, must also take the initiative to reflect on areas where they want to 
grow themselves and seek out opportunities to strengthen those areas. This may include reading 
journals, participating in conferences, accessing reputable web-based sources for professional 
learning, participating in grant-supported opportunities with local institutes of higher education, 
or reaching out to others in similar situations. Mathematics specialists, whether they are part of a 
larger group of specialists or not, are encouraged to seek out new research about what makes a 
mathematics specialist effective in their roles.  
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Conclusion 
 
Throughout this paper, we have defined four different purposes for professional learning 

for mathematics specialists and explored different models for offering that professional learning. 
In no way do we insinuate that a professional learning experience should focus on only one of 
the four purposes. Instead, we recognize that the most effective professional learning may 
address all four. For example, the application of lesson study addresses content knowledge and 
pedagogical expertise through researching the mathematics standard and planning the lesson. 
Professional learning in coaching skills and professionalism and leadership is provided during 
the conducting of the lesson and debriefing on its effectiveness.  

Similarly, we do not intend to state that one delivery model of professional learning is 
more effective than any other. We do stress that whichever model is used, there must be 
opportunities for ongoing professional learning that extends beyond traditional professional 
development workshops. Additionally, the opportunities should be job-embedded so that the 
specialist can have real-time feedback and learning on the support they are offering for teachers. 

School divisions know that professional learning is crucial for teacher growth and thus 
require teachers to participate in a minimum number of professional improvement activities per 
year. School divisions need to recognize that professional learning is equally important for the 
growth of mathematics specialists and should have a similar requirement for completing 
professional improvement activities. It is the role of the school or school division to determine 
the quantity of professional learning activities required. It is also the role of the school or school 
division to provide or support activities that are designed for mathematics specialists to 
experience growth in one or more of the areas we have outlined. This action will produce 
mathematics specialists who are continually improving in how they support teaching and 
learning, resulting in teachers who are better equipped to provide instruction that allows for 
students to have deep and rich mathematics understanding. 
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ABSTRACT 
How does the mathematics specialist 
provide a profound and lasting impact on 
instruction? We believe that a productive 
partnership between the principal and 
specialist, which we will call the principal-
specialist relationship, is at the crux of the 
matter. When the principal-specialist 
relationship is built upon a foundation of a 
shared vision, clear roles, communication, 
and trust, both the teachers and students in 
the school benefit. We will explore the 
impact of the principal-specialist 
relationship on teacher success during the 
era of distance learning as necessitated by 
the COVID-19 pandemic. In order to 
explore how these ideas come alive in the 
field, we gathered survey responses and 
conducted personal interviews with 
mathematics specialists in a variety of roles. 
This article examines ways in which the 
principal-specialist relationship supports 
successful mathematics instruction 
beginning with a review of contemporary 
literature. In the form of short vignettes 
throughout the paper, we illustrate the roles 
of the mathematics specialist and how those 
roles were adapted for online learning 
environments. Our findings revealed that a 
unifying vision for mathematics instruction 
is essential for attaining maximum impact 
on student achievement. 
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Alone we can do so little; together we can do so much.  
–– Helen Keller, as cited in Lash, p. 489 

 
While Helen Keller is certainly not referring to school social dynamics, she adequately 

describes the impact of a mathematics specialist purposefully developing and maintaining a 
trusting partnership with the principal.  

Productive partnerships are vital for mathematics specialists to be successful in their roles 
and to optimize their impact in schools. Moreover, the principal-specialist relationship may help 
to establish the specialist as a positive influence on instruction or result in a disruption in the 
specialist’s development of trust and rapport with other educators in the building. A shared 
vision, clarity in communication and roles, mutual support, and established trust between the 
specialist and the principal yields an effective partnership. When all of these standards are 
achieved, the principal can expect the specialist to serve as a lynchpin, connecting administrative 
goals and initiatives to instructional decisions and pedagogical action.     

 The National Council of Supervisors of Mathematics [NCSM] (2019) points out that 
“relationships are the vehicle from which coaching is delivered” (figure 2.3g, p. 1). It is through 
this lens that we will examine the relationship between the mathematics specialist and building 
principal. Research and anecdotal evidence will illuminate the benefits of building positive and 
productive relationships with principals. We will also highlight how time spent getting to know 
each other can help in navigating unforeseeable obstacles such as those that resulted from the 
COVID-19 pandemic.  

In this paper we will share results from research studies, illustrative stories, and 
interviews with teachers, principals, and mathematics specialists that highlight the importance of 
productive relationships. Qualitative data was collected data through an online survey sent to 
more than 30 mathematics specialists, coaches, and administrators. The combination of research 
and firsthand accounts allows us to describe the current context and emphasize the impact of the 
principal-specialist relationship on learning in schools.  

 
Literature Review 

 
Whether acting as an intermediary or instructional support, it is vital that the mathematics 

specialist establishes relationships and builds strong partnerships with administrators and 
teachers (Bengo, 2016). Davis et al. (n.d.) suggest that partnerships between the mathematics 
specialist and the principal can be developed by meeting regularly to share teacher success 
stories and relevant research while also discussing the goals for the mathematics program, 
mathematics content, and achievement data. Beyond communicating with the principal, quality 
partnerships between the mathematics specialist and teachers will depend on inclusive 
collaboration, personalized planning, and differentiated coaching (Campbell & Ellington, 2013; 
Inge et al., 2013). Regardless of the methods utilized to build the partnerships, these relationships 
are a lifeline for a successful mathematics specialist.  

Trust is the glue that holds partnerships together. Sticking to the data and facts 
strengthens the trust in the mathematics specialist with everyone involved. The principal’s 
confidence and trust is bolstered when the mathematics specialist offers relevant data from 
instruction, assessments, policies, research, and initiatives aimed at moving the school’s 
mathematics program forward (Campbell & Ellington, 2013). Teachers embrace that same level 
of confidence and trust when the mathematics specialist utilizes data to maintain a focus on 
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mathematics instruction and exercises discretion to avoid the pitfalls like gossip and breached 
confidentiality (Inge et al., 2013). This demonstration of knowledge and professionalism 
enhances collaborative work efforts and sustains credibility and trust within the partnerships. 

Traditionally, mathematics specialists have provided face-to-face assistance, support, 
collaboration, and coaching (Rock et al., 2011). Statewide governances resulting from the 
COVID-19 pandemic called for an immediate conversion from traditional learning, instruction, 
and coaching to remote learning with virtual instruction and coaching for all mathematics 
specialists, teachers, and administrators (Natanson, 2020). Mathematics specialists were forced 
to change instructional support vehicles and proceed through uncharted territory while 
maintaining their partnerships with administrators and teachers. In places where shared 
understandings had already been developed regarding visions and roles within the program, 
mathematics specialists were more likely to navigate this change as well as other changes 
without a problem (Inge et al., 2013). Additionally, due to the anticipation of returning to school 
buildings for fall 2021, these established partnerships can be significant keys to sustaining 
professional development, support, and collaboration, whether in a face-to-face or virtual 
environment (National Council of Teachers of Mathematics [NCTM] & NCSM, 2020). 

 
Establishing Yourself as a Specialist 

   
Affecting sustainable positive change in a school can be achieved through productive 

relationships. While collegial relationships benefit classroom teachers in many ways, they are 
absolutely critical for the success of a mathematics specialist. Part of the mathematics specialist’s 
role in the first few years in a school or district involves laying the groundwork for how 
relationships between the specialist, educators and administrators will be established and 
maintained in a way that leads to a dynamic education environment. 

While there exists no specific formula for how to establish oneself as a leader in a school 
building, there are recommendations that have proven over time to be effective. Each school’s 
environment and culture is different, so approaching the principal to outline the expectations of 
the specialist’s role is an important first step. As indicated by a retired mathematics supervisor 
and mathematics specialist program coordinator, one of the biggest challenges arose “when the 
principal and the specialist held very different beliefs about what it means to know mathematics 
and the power of student-centered learning” (I. Vance, personal communication, June 1, 2020). If 
this happens to be the case, it is important to keep the focus on students’ success to determine 
effective strategies for instruction and assessment. Once a shared vision is clearly defined, the 
specialist can then work alongside teachers to develop goals that are concurrent with the 
principal's vision. Without establishing a plan, the specialist could fall into reacting to issues that 
arise rather than acting as a proactive agent of change in the school building (I. Vance, personal 
communication, June 1, 2020).  

As experience and research show us, being an effective specialist is reliant on taking the 
time to better understand the teachers and others in the school community that the specialist is 
servicing. Heather Nunnally, currently a teaching assistant professor at Virginia Commonwealth 
University, shared that during her first years as a mathematics specialist in a school, “being 
willing to help in any way that I could was one way I was able to maintain the relationships with 
teachers” (H. Nunnally, personal communication, June, 2, 2020). When teachers and 
administration see the specialist’s resolve to achieve student success, it will serve to strengthen 
the developing partnerships.  



Potter et al. | Sustainable Productive Partnerships | 127 

 

 After taking time to understand the established relationships within the school, the 
specialist should become a link between the principal and teachers. The principal’s goals, while 
providing a wide-angle perspective of the school’s vision, may be challenging to translate into 
practical application in classrooms. The mathematics specialist can digest the broader goals and 
break them down into actionable steps for classroom teachers. Conversely, while teachers may 
have difficulty voicing their day-to-day struggles with the administration due to the evaluative 
nature of their relationship, the mathematics specialist can synthesize the needs and concerns of 
the classroom teachers and approach the principal as a mediator after carefully considered 
everyone’s ideas and reasonable requests.  

The following is an excerpt from an interview with Ms. Keo, a district-wide instructional 
coach from a rural district in her second year, who shares her perspective on establishing oneself 
as an essential link between administration and instruction. 

 
Ms. Keo Depicts Dynamics of Collaborative Relationships  
 

Teachers see me as an ally for their students and themselves. Administrators see me as 
supporting their efforts to provide a rich instructional environment with a focus on 
teacher and student issues and needs. Bridging the gap that can exist between 
administrators and teachers provides for a better instructional environment and builds 
trust for my own role, as well as between others (A. Keo, personal communication, June 
16, 2020). 

 
The Impact of Vision on Progress 

 
A principal with a clear, achievable vision for the school’s growth in mathematics 

unlocks the possibilities for what a specialist can accomplish in a school. In the following 
vignette, Ms. Keo describes her work with an administrator with whom she had positive rapport, 
who had recently become the school’s new principal. She discovered that vision can be an 
anchoring feature in the principal-specialist relationship. 

 
Ms. Keo Emphasizes the Importance of a Shared Vision 
 

This principal really had a strong vision for strong instruction…taking these traditional 
teachers and really pushing them to move more into current and progressive teaching,… 
small groups, really trying to do more inquiry, really trying to do more performance 
tasks, really trying to move away from [the traditional method of] stand and deliver and 
practice. She has such a great way of challenging her teachers in a positive way, and so 
her attitude has helped [mathematics specialists] take the lead and facilitate some of this 
change in some of her departments… Her leadership and her vision and, I think, her 
[prior] experience in elementary school has really helped lead the charge. And she has 
created such a positive buzz about us and how we can be a resource and support for 
teachers that [her efforts have] just kind of kicked off [an effort to generate] the amount 
of support that we can have. She knows her teachers are good and she wants them to feel 
supported as she challenges and pushes them further. I think that strong vision…I think it 
makes or breaks a school (A. Keo, personal communication, June 16, 2020).  



128 | Journal of Mathematics and Science: Collaborative Explorations 17 
 

 

When a principal’s vision is clearly communicated, whether as expectations or aspirations, the 
mathematics specialist can take action knowing that administrative support is present and strong. 
Ms. Leath, a veteran mathematics specialist from a large suburban district, illustrates the 
importance of clearly communicated expectations in the following interview response.  
 
Ms. Leath Illuminates the Impact of Clear Expectations on Progress 

 
I’ve had an experience where the principal, at one point, you know, I didn’t think she 
cared for me…Her teachers weren’t listening to her so she wasn’t too sure how much 
they would actually listen to me. And then when I told her, “give me a chance, you know, 
I’ll back you, I’ll support you, what do you want to see when it comes to math?” And she 
was like, “I wanna see this, I wanna see this, I wanna see that,” and I’m like, “let’s do it!” 
And she’s like, “you don’t know these teachers.” And I’m like, “what do you want to 
see?” And she’s like, “I wanna see those things,” and I’m like “let’s do it.”…Being a 
mathematics specialist is not for the faint of heart. You have to know how to be able to 
smile, but you’re also not a “yes” person all the time. People have to understand that 
you’re there to accomplish something. You’re not there to become people's friends and 
people's buddies, so I’m not going to say yes to everything. …I tell them this is what your 
principal wants, and I’m here to make sure it gets done. Because why? This is what’s best 
for our children… I tell you within a year, they changed, and the principal just rode the 
wave. But all I needed was the backing of administration. And the fact that she wanted 
something so desperately to [take place] in her school. We were a perfect duo. …It was 
those four words: What do you want? You tell me what you want and I will let you know 
if I can’t do it. And if I can’t do it, I know a slew of people who can help me get it 
done… And honestly what I shared with you is no different. If you don’t have clear 
expectations as a teacher in your classroom for your students, what is going to happen? 
But you go across the hall, and you look at somebody who has clear expectations and 
makes it known, it’s a different story. It’s not that these children are “better” or whatever. 
It’s just that the expectations are clear. They are specific and they speak to whatever the 
goal and the objectives are. That’s it! (J. Leath, personal communication, July 9, 2020).       
 
The previous vignettes exemplify the standards needed for effective partnerships. The 

following will highlight the importance of purposefully maintaining this newly developed and 
productive partnership. 

 
Maintaining Trust and Relationships with Teachers and Principals 

 
When working as a mathematics specialist, there is a challenging duality between 

maintaining the trust that has been developed, while also serving as a bridge between the 
different needs and different agendas of the principal and teachers. While infrequent, there are 
times when, after coaching a teacher and not seeing improvement, the specialist may have to 
consult with the principal about the next steps regarding inappropriate teaching practices. 
However, the specialist must be careful not to view their teachers with a deficit mindset.  

At the end of it, we all have our strengths and we all have our weaknesses. As a specialist 
I have to understand that nobody has it all. And the only time when you have to break 
that “trust” is if there is danger. And when I say danger I mean…I don’t want to call 
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teaching 2009 [National Council of Teachers of Mathematics] Standards when you are 
supposed to be teaching 2016 [NCTM] Standards dangerous, but if I’m telling you not to 
do that and giving you something to do instead, and you’re still doing your own thing, 
you do need to be called out on the carpet. (J. Leath, personal communication, July 9, 
2020).  

Ms. Keo provides another perspective on the importance of balancing trust while maintaining 
high standards. 

Teachers and administrators are looking at different pieces to the puzzle. We’re all 
working on the same puzzle, we’re just coming at it from different angles and so 
somebody’s got to hold up the box to say, “Look! This is what it looks like in the end! 
You’re all working on the same thing!” (A. Keo, personal communication, 2020) 
 

Maintaining The Principal-Specialist Vision at a Distance 
 
 How can the mathematics specialist continue to partner with the principal in order to help 
realize their vision for the school at a distance? As COVID-19 spread through the United States 
in 2020, Virginia school districts sought to keep children safe from this potentially deadly 
disease. Schools were deemed unsafe, and for the first time in history, teachers were responsible 
for encouraging students’ academic development in a virtual learning environment. As a result, 
mathematics specialists became even more essential to crafting successful lessons. However, 
working remotely meant that the trust that had been previously developed between the principal 
and specialist was tested. Remembering the principal’s key values and the metrics for success 
enabled the specialist to make decisions about instruction, assessment, pedagogy, and technology 
without needing to knock on the principal’s door for input.  

In the vignette that follows, Mr. Potter, a school-based mathematics specialist with six 
years of experience in a rural school district, highlights the importance of having clarity of 
vision, trust, and mutual support with his principal to realize the potential for positive effects on 
students during a global pandemic. 

 
Mr. Potter Maintains Relationships During COVID-19 
 

My elementary school, like many, abruptly closed in March of 2020 for what we were 
told would be two weeks and, at present, remains locked. Because the principal and I have a 
shared understanding of each other’s priorities, our entire school was better able to navigate the 
unexpected closure (Inge et al., 2013). I know that my principal loves his teachers and their well-
being is of utmost importance to him. He believes that, when teachers feel loved and supported, 
students will feel likewise. To ensure the love and support continued, each week our staff was 
invited to come together virtually through Google Meet just to talk. We had a weekly highlight 
in which, for example, the music teacher led a sing-along or the P.E. teacher facilitated a warm 
up activity. These activities were designed to bring us closer while our physical distance 
remained. Each week we listened and shared stories about our newly adopted pets, our children 
and grandchildren, and how we were all spending our time. There were tears and laughter. Some 
stood outside the school for the Wi-Fi connection, and others drove to other places to achieve a 
better Wi-Fi signal. We all needed to connect to our faculty-community. And yes, our principal 
attended regularly with his grandson in his lap.  
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During these weekly staff connection meetings, many teachers asked specific questions 
about delivering mathematics instruction at a distance. One teacher connected me to her 
grandson after the weekly meeting was over so that he could receive tutoring on long division. 
Another teacher asked if I would be a guest teacher for her gifted mathematics class. We co-
planned and co-taught multiple classes through Google Meet as a result of that request. But the 
instructional decisions that were made during that time with long lasting impact are yet to be 
seen. Every teacher from preschool to the gifted sixth grade class in my district was asked to 
develop a comprehensive learning plan in the event that students are not able to return to class in 
the fall of 2020. At every level, I was asked for resources and advice on how best to help our 
students learn. Lead teachers across the district invited me to be a part of the development 
meetings. Each of these instructional opportunities stemmed from our weekly social connections 
at a distance. It was because of our mutually strong principal-specialist relationship that I knew 
my principal would want his staff to meet together in any way they could and he knew that I 
would coordinate and facilitate positive conversations. Because of our shared trust, vision, and 
mutual support, we both could be confident in each other’s actions without needing approval 
from one another.  

As Ms. Keo explained, “A principal's role is very important in building and maintaining a 
thriving network of instructional support within a school” (A. Keo, personal communication, 
June 16, 2020). This network is strengthened as the mathematics specialist meets the needs of the 
administrators.  

The common denominator for success while engaging in virtual learning has been 
communication. This collaborative element has been the key to unlocking the true potential for 
both educators and students in a face-to-face or virtual learning environment. While for some, 
the relationships that were already established before the COVID-19 pandemic necessitated 
closing schools were the only ones that grew during our forced distance-learning experiences, 
Mr. Potter was able to facilitate a virtual space that fostered new relationships leading to more 
coaching opportunities.  

 
Conclusion 

 
 A shared vision, clarity in communication and roles, mutual support, and building trust 

between the specialist and the principal yields an effective partnership. This principal-specialist 
partnership paves the path for supporting instruction and, ultimately, student success. The 
mathematics specialist holds a unique position as an instructional leader who also serves in a 
supporting role. It is this paradox that can yield tremendous outcomes when carried out with 
purpose in a team environment.  

This analysis was conducted in the spring of 2020 during the start of the COVID-19 
pandemic. Teachers were faced with the hurdle of delivering quality instruction during abrupt, 
seemingly short-term school closures across the country. Our findings were impacted by those 
circumstances. This leaves an opening for future research regarding ways in which the 
mathematics specialist can build and sustain quality relationships with school personnel during 
long-term or perhaps permanent distance-learning arrangements. 

For the mathematics specialist, the time and effort invested in building a positive and 
productive relationship with the principal will be worthwhile. We urge all new and existing 
mathematics specialists to reevaluate their relationship with the principal to ensure that you 
realize its full potential. Find common ground, even if it requires some searching. Clarify values 
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and the expectations for each person’s role. Ask what the principal needs and deliver creative 
solutions that lead to the realization of a shared vision, even in the midst of a global pandemic.  
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ABSTRACT 
Learning how to prove is known to be 
difficult for undergraduate students. 
Understanding students’ growth in the 
multiple arenas that make up proving is 
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student who showed growth in his reasoning 
but whose proofs were still incorrect, yet he 
showed high levels of positive affect 
including confidence throughout. 
Investigating this single-subject case serves 
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development and performance. The question 
of whether we can say this student is a better 
prover than before––fundamentally, how to 
weigh reasoning versus affect versus 
performance––motivates the need for robust 
frameworks to characterize a student’s 
progress in proving. 
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Learning how to prove is well known to be difficult for undergraduate students (Moore, 
1994), as there are multiple components that comprise the activity we call “proving” (Mejia-
Ramos & Inglis, 2009). One such component is reasoning about logical statements in order to 
justify and write arguments, which is a shift from computation and exercises in students’ 
mathematical experience (Smith et al., 2017). There is also a strong problem-solving component 
to proving (Stylianides et al., 2017; Savić, 2012), where the solution path is not apparent from 
the start and not all mathematical work and reasoning is included in the final written product.  

Additionally, student affect (beliefs, attitudes, emotions, etc.) is also a component of 
learning how to prove successfully, as maintaining feelings of enjoyment (and a sense of self-
efficacy) with mathematics during this process can be difficult (Smith et al., 2017). This is yet 
another transition for students, as they often come to transition to proof courses viewing 
themselves as “good at mathematics.” However, as United States students have little prior 
experience with proving outside of high school geometry (Anderson, 1994), they often feel 
frustrated with this new mathematical work, as well as showing other forms of negative affect 
(Smith et al., 2017).  

While much is known about students’ errors (e.g., Selden & Selden, 1987), less is known 
about students’ growth––how the learning process of proving unfolds over time. Understanding 
students’ growth is crucial for helping undergraduate students through this difficult transition 
point in their upper-level mathematical career. Through more research on the various stages 
students step through while learning how to prove, instructors can better design transition-to-
proof courses to support undergraduates along these expected pathways, as they grapple with 
these difficult mathematical ideas. There is also a need for frameworks to assess students’ 
proving skills and processes (Savić, 2012; Selden & Selden, 2007): “We need a richer 
framework for keeping track of students’ progress than the everyday one” (Selden & Selden, 
2007, p. 1).  

I present a short-term, longitudinal case of a student, Leonhard, whose reasoning, 
performance, and affect while learning how to prove are out of alignment in an unexpected way: 
the growth he shows in proving is not captured by his performance, yet he shows high positive 
affect throughout. I analyze his decision-making (reasoning), the correctness of his proofs 
(performance), and his emotions (affect) to illustrate how a student can have sophisticated 
decision-making and an overall high confidence yet not produce correct proofs. In doing so, the 
aim is not to fault Leonhard but to consider that written work, especially for proving, does not 
necessarily capture students’ growth in crucial thinking processes––and that a robust framework 
to assess all the facets of students’ proving skills and processes is needed.  

 
Background & Conceptual Framework 

 
There are multiple perspectives from which to approach research in proof (Stylianides, 

Stylianides, & Weber, 2017). One common perspective is to consider proving as a form of 
problem solving (e.g., Savić, 2012). However, the relationship between proving and problem 
solving is not purely that of one being a subset of the other.  

Selden and Selden (2007) discussed two major sources of difficulty for students when 
writing proofs. The formal-rhetorical aspect of proving involves the logical structure of the 
proof, e.g., determining the first and last lines of a proof. Meanwhile, the problem-centered 
aspect of proving involves the decisions and key insights made to solve the embedded problem at 
the core of a proof (Raman, 2003), oftentimes with no set procedure. Both aspects are necessary 
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for students to interpret mathematical statements and prove them, although students may favor 
one approach to proving over the other.  

The formal-rhetorical versus problem-centered dichotomy parallels the notion of 
syntactic versus semantic proof production (Weber & Alcock, 2004). Under syntactic proof 
production, a person generates a proof by attending to the logical structure of a statement, 
oftentimes through manipulating symbols. In contrast, semantic proof production is where a 
person attends to the meaning of the mathematical objects and concepts in the statement to 
formulate the steps of a proof. While the specifics of a mathematical statement may lend 
themselves to one approach over another, it is important that students can work both 
syntactically and semantically in learning how to prove a variety of statements.     

In terms of statements, students learn to determine the meaning of not only formal but 
also informal mathematical statements in the transition-to-proof. Formal statements use 
quantifiers, an if-then structure, logical operators such as and, or, and not, etc. Students must also 
learn how to unpack the meaning of informal statements (Selden, 2010; Selden & Selden, 1995), 
which are not written in their purely logical structure and may use words where mathematical 
meaning is inferred. For example, “All multiples of 6 are divisible by 3” is an informal statement 
in that to formally prove this, a person must infer the logical meaning of “all” and “are.” There 
can be degrees of informality, in that one statement can be more informally worded than another. 
Students will see informal statements in their mathematical future: “Such statements are 
commonplace in everyday mathematical conversations, lectures, and books. They are not 
generally considered ambiguous or ill-formed, apparently because widely understood, but rarely 
articulated, conventions permit their precise interpretation by mathematicians and, less reliably, 
by students” (Selden & Selden, 1995, p. 127). 

Students working with informal statements to identify their meaning and the analogue 
formal statement to then use in a proof is a crucial part of learning how to prove. Given a formal 
statement, there are a myriad of differently phrased equivalent informal statements. Selden 
(2010) reported students’ struggles with informal statements: “When asked to unpack the logical 
structure of informally worded statements, but not to prove them, U.S. undergraduate 
mathematics students, many in their third or fourth year, did so correctly just 8.5% of the time” 
(p. 7). Yet, informal statements may help students build an intuitive understanding of the 
meaning of concepts and how they relate to each other (Selden & Selden, 1995).  

 
Conceptual Framework: Reasoning, Performance, and Affect 

 
I adopt the perspective of proving as a form of problem solving and draw from its 

literature base. Research on problem solving is vast and was a common theme of mathematics 
education research in the 1980s and early 1990s (Schoenfeld, 1992; Silver, 1985). Since Polya’s 
(1945) work on problem solving, a number of theoretical frameworks for investigating problem 
solving have been created that build off that lineage (e.g., Carlson & Bloom, 2005; Garofalo & 
Lester, 1985). Schoenfeld (1992) identified five components of problem solving: a knowledge 
base, problem solving strategies and heuristics, monitoring and control, practices, and beliefs and 
affect.  

Based on Schoenfeld’s problem solving work, I take a three-pronged approach to 
analyzing student growth in proving by looking at aspects of reasoning, performance, and affect. 
Within reasoning, I focus on students’ decision-making for how they choose which proof 
technique to pursue when constructing a proof. Proof techniques include direct proof, cases, 
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proof by contradiction, and proof by contrapositive. Students’ rationales for their approaches do 
not of course encompass all of what it means to reason when attempting to prove a statement, but 
the act of decision-making is a clearly defined moment of reasoning. The choice to study this 
aspect of reasoning comes from more extensive findings about student proof development from 
Satyam (2018). Performance refers to whether the mathematical proof the student produced was 
correct or if there were invalid mathematical steps.  

Lastly, within affect, I focus on emotions. Affect is generally thought of as the domain 
involving feeling (Middleton et al., 2017), including beliefs, attitudes, emotions, motivation, 
engagement, confidence, etc. Beliefs, attitudes, and emotions as a trio have commanded 
attention, but among these three, emotions remain a relatively understudied subfield (McLeod, 
1992). Emotions may be described as "rapidly-changing states of feeling experienced 
consciously or occurring preconsciously or unconsciously” (DeBellis & Goldin, 2006, p. 135). 
Emotions can be seen as responses to events; they tend to be short in duration but can reach high 
intensity. This leads to methodological difficulties in collecting data on and studying them. 
However, understanding emotions is crucial for understanding other affective structures with 
strong ties to learning: repeated emotional responses of a kind (positive or negative) may 
influence deeper-seated affect, like attitudes and beliefs (Grootenboer & Marshman, 2016; 
McLeod, 1992). Emotion may therefore be a vehicle through which to enact affective change.  

I examine aspects of one student’s reasoning, performance, and affect over the course of 
a transition-to-proof class. The purpose of this case is to illustrate how growth in reasoning does 
not necessarily lead to correct work, even in a proof course, and is moreover not captured by 
written work, and to examine implications of this situation when coupled with high confidence.   

 
Methods 

 
This work is part of a larger study focusing on the cognitive and emotional aspects 

involved in the transition-to-proof (Satyam, 2018). The full set of participants were N = 11 
undergraduate students taking a transition-to-proof course at a large, public Midwestern 
university. The transition-to-proof course was designed to ease the change from computation-
based courses to upper-level mathematics courses that involve writing proofs. The content taught 
in the course included logic, quantifiers, proof techniques (direct proof, proof by cases, proof by 
contrapositive, proof by contradiction, mathematical induction), and it provided a sampling of 
topics from analysis, linear algebra, and number theory. The population was students majoring or 
minoring in mathematics.  

A series of four, semi-structured, task-based interviews was conducted with each of the 
participants across one semester. Interviews were spaced two to three weeks apart. Students had 
seen all proof methods by the time of the first interview. Within each interview, participants 
were given two proof construction tasks, where they were given a statement and asked to write a 
proof for it.  

 
Design of Proof Construction Tasks 

 
All proof construction tasks were on basic number theory: properties of integers and real 

numbers, even and odd integers, divisibility, etc. Tasks were designed so that the content area 
would be the same and to minimize any special domain knowledge as much as possible; care 
should be taken, however, in making content-free claims about proving (Dawkins & 
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Karunakaran, 2016). One proof construction task in each interview used a definition to test 
students’ skills at making sense of definitions; however, students had often been exposed to these 
definitions earlier through homework.   

 Tasks were also worded to incorporate some degree of informality, given the importance 
of informal statements in proving (Selden, 2010; Selden & Selden, 1995). An example of this 
can be seen in Task 3: Suppose x, y, and z are positive integers. If x, y, and z are a Pythagorean 
triple, then one number is even or all three numbers are even. The conclusion, one number is 
even or three numbers are even, is an informal statement, as it formally means exactly one of x, 
y, and z is an even integer (and exactly two of x, y, and z are odd integers) or x, y, z are all even 
integers. A more informal conclusion to the statement could be one is even or all three are even. 

 
Data Collection 

 
Participants were given fifteen minutes to construct a proof. Each proof construction task 

was administered as a think-aloud (Ericsson & Simon, 1980). Students were asked to verbalize 
their thinking, but the researcher did not ask questions while they were working in order to not 
interrupt their problem-solving process (Schoenfeld, 1985). Instead, a debrief was conducted 
with the participant immediately after each task, during which they were asked questions about 
their thought process, places where they perceived they were stuck, and other points of interest. 
Participants were not told whether their work was correct or not unless they asked after the 
interview was over. 

Participants were also asked after the task to talk about the emotions they experienced 
while constructing the proof, through an emotion graph task (adapted from McLeod et al., 1990 
and Smith et al., 2017). Students drew by hand a graph of their emotions over the course of the 
task, where the x-axis represented time and the y-axis represented the intensity of emotion felt 
(see Figure 1). Students also textually annotated their graphs to describe what was happening at a 
certain point, the reason(s) for a shift in emotion, or specific emotions. 

Data collected and analyzed here include the audio- and video-recorded think-aloud and 
debrief portions of the interviews, student written work, and their emotion graphs. From the 
audio-recordings, the interviews were then transcribed. Students’ verbal responses were analyzed 
for their reasoning, and emotion graphs were analyzed qualitatively for dips and rises. A coding 
rubric was developed for assessing performance (correct, partially correct, or incorrect) on the 
proof construction tasks but is not used here due to the single case structure of this study.  
 
Case Study 
 
 In this work, I examine a single participant, Leonhard, as a case study. In keeping with 
case study methodology, this work does not generalize nor is it representative of the data set. 
Leonhard serves as a unique case (Yin, 2009) of a phenomenon and is why I discuss a singular 
case (rather than compare and contrast multiple cases). Across the set of participants, some 
participants showed strong reasoning, performance, and affect from the start, some struggled 
with these throughout, and some showed gradual growth across these three metrics. I have 
chosen Leonhard’s case in particular due to his atypicality from the expected development: he 
grows in reasoning but not in performance, yet shows high affect throughout. His case serves as 
an example where reasoning and performance are in misalignment, showing how assessing a 
student’s growth in proving can be difficult.   
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Figure 1 
Blank Emotion Graph as an Instrument  
 

  
Leonhard was a white male freshman majoring in mathematics. He wanted to be either a 

high school teacher or a mathematician in aerospace engineering. Leonhard had many thoughts 
about mathematics, which he effusively shared. He chose his own pseudonym, Leonhard, after 
Leonhard Euler, which shows the extent to which he enjoyed and identified with mathematics.  
 

Results 
 

 I trace through a task from each of Leonhard’s four interviews to illustrate his affect and 
the growth in his decision-making as reasoning in response to each task. As there were two tasks 
to choose from for each interview, I selected the tasks in the following way. The first three tasks 
concern proof by contradiction, so we may see how Leonhard’s reasoning particular to that 
technique changed. The last task concerns proof by contrapositive, to show that his decision-
making extended to other proof techniques as well. Leonhard had seen all proof techniques in 
class by the first interview. 
 
Interview 1: Little Rationale for Choice of Proof Technique   
 

In the beginning, Leonhard’s baseline practice was to choose proof techniques based on 
what he knew and was familiar with. The first task of the first interview was to prove the 
statement: Suppose x and y are integers. If x2 – y2 is odd, then x and y do not have the same 
parity. The definition of two numbers having the same parity––both being even or odd––was 
given in the task. Leonhard was stuck on how to start the proof. Having seen all standard proof 
techniques in class at this point (direct proof, cases, etc.), he decided to use proof by 



Satyam | Misalignment in the Transition-to-Proof | 139  

 

contradiction, despite not being sure how to negate the conclusion. He carefully wrote down the 
parts of the statement to find its negation (see Figure 2). His rationale for his choice of proof 
technique was, “A lot of time in class whenever we’re proving an implication, we use 
contradiction, I guess, so that’s why it’s my first thought.” He used contradiction because he 
noticed the instructor often used it in class, and he was used to it. 

 
Figure 2  
Student Work in Interview 1  

Note. The start of Leonhard’s work on this task is shown (not his complete work), 
as he tried to find the negation of the statement and mistakenly used the same 
variable for both x and y. 

 
Leonhard set up the proof well, but ultimately, it was not a fully correct proof: while x 

and y are both even (or both odd) in his approach, he made an error in using the same variable 
for both x and y, which implies they are the same number. He changed the variables in his proof 
later down (not shown) but then went back and changed y = 2k to 2(k + 1) so “he’d have 
something left over” to reach a contradiction that an even integer would equal an odd integer. 
For these reasons, his errors led to his proof being incorrect. 
 Leonhard’s emotion graph for this first task revealed big shifts in emotions throughout 
this attempt (see Figure 3). His emotions grew to a peak early on, remaining positive for a period 
of a time (“I know what I’m doing”). He then realized something in his work was wrong as 
indicated by the dip below the x-axis, but then the graph ended slightly positive (“probably 
right”). 

In summary, Leonhard used proof by contradiction because it was what was done in 
class, even when he found it difficult to take the negation. His proof contained errors, so it was 
not correct. His emotions dropped negatively when he was stuck, but he felt positively about his 
work in the end. 
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Figure 3 
Emotion Graph in Interview 1 

 
Interview 2: Choosing a Proof Technique Based on Fluency 
 

In the first task of the second interview, the statement to prove was: If x and y are 
consecutive numbers, then xy is even. As students had already been exposed to the definition of 
consecutive integers in class, a more informal definition for “consecutive number” using 
everyday language was intentionally given. Moreover, the definition of consecutive integers x 
and y as y = x + 1 leads to xy = x(x + 1) = x2 + x, which does not contain enough information 
without further work to be shown as an even integer. The task was intentionally chosen for this 
disconnect between the definition of consecutive integer and the solution path. As seen in Figure 
4, Leonhard wanted to use direct proof but became stuck, as he was unsure if direct proof would 
work.  

Leonhard immediately knew to not use the direct definition of consecutive integers but 
instead set x = 2k and y = 2k + 1, albeit leaving off that k must be an integer as well. When 
asked why he used 2k and 2k + 1, he explained that his thought process was that an odd integer 
comes after an even integer and an even integer comes after an odd integer. Leonhard also took 
liberties in assuming that x was the even integer; for a fully correct proof for students at this 
level, he should have done another case where x was an odd integer and y the subsequent even 
integer or potentially use a “without loss of generality” argument.  

He was then stuck again over what technique to use: direct proof versus proof by 
contradiction. He chose to use proof by contradiction, saying, “I decided to do contradiction 
because I know how to do it.” Leonhard decided what method to use based on what he felt he 
could do at that point in time, i.e., his sense of fluency with proof techniques. Interestingly, the 
direct proof is embedded in here; his finding that xy is even is the conclusion to the direct proof. 
Given that direct proof was the more efficient proof, Leonhard’s work suggests he felt more 
comfortable with proof by contradiction. 

Leonhard’s proof was overall correct, albeit missing details we want to see in students at 
this level, and his affect matches this. His emotion graph (see Figure 5) shows that this was a 
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positive experience overall, with little variation in emotion. He was slightly confused at the 
beginning in deciding between direct proof or proof by contradiction, but he felt that he knew 
what he was doing after that. His annotation of “Yeah! (I got this)” reveals his sense of pride as 
he completed his proof. 

 
Figure 4 
Student Work in Interview 2 

 
Figure 5  
Emotion Graph in Interview 2 

 



142 | Journal of Mathematics and Science: Collaborative Explorations 17 
 

 

In summary, Leonhard used a technique that he felt he knew how to do well (proof by 
contradiction), even though it was not the simplest one and the direct proof was embedded in his 
work. His work was generally correct, and his affect was positive with no dips, except for slight 
confusion at the start, which abated when he decided on a technique and went with it.  

 
Interview 3: Proof by Contradiction as a Default Choice  
 

As time progressed, there was clear growth in Leonhard’s reasoning related to the proof 
techniques he pursued in a problem. This task from the third interview provides an example of 
where Leonhard cycled through a few options for proof techniques, as seen in his written work 
(see Figure 6). The statement to prove was: Suppose x, y, and z are positive integers. If x, y, and z 
are a Pythagorean triple, then one number is even or all three numbers are even.1  He used proof 
 
Figure 6 
Student Work in Interview 3 

 
                                                
1 See Design of Proof Construction Tasks in the Methods section above for an explanation for the phrasing of this 
task.  
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by contradiction but then became stuck when writing the negation, because his negation of the 
conclusion did not make sense to him: “One number is odd and all three numbers are odd” did 
not seem possible, and he stopped writing the negation midway through his work. He had 
negated the “or” when it was in fact not a logical operator; the task was intentionally structured 
to check if students thought about the meaning or took the negation mechanically. The correct 
formal negation was “none or exactly two of x, y, and z are even integers.” He switched to proof 
by contrapositive but realized he had the same issue with how to negate the conclusion as before. 
He then switched to direct proof. While he again used the same variable k in setting x,y, and z 
equal to even or odd integers, he realized his mistake near the end but did not change his answer 
as it would not change his overall result. 

His rationale for using proof by contradiction in the beginning was: “I’m biased towards 
contradiction so I usually like to do that…my mind goes straight there. I like it the most 
because…at some point you usually run into something that just comes out sounding weird.”  
Leonhard admitted that proof by contradiction was his go-to technique; it was his favorite and so 
he tended to use it. He liked proof by contradiction for its unique nature in producing something 
nonsensical. He later remarked on his proof by contrapositive attempt, “I don’t know what 
possessed me to write this [contrapositive],” because he ran into the same issue, needing to 
negate the conclusion. Leonhard knew he liked certain techniques over others and had some 
rationale grounded in the techniques themselves, namely that a proof by contradiction results in a 
nonsensical claim and that proof by contrapositive has no advantage over proof by contradiction 
here. His rationale was still relatively general, however, in that proof by contradiction was a 
technique he liked and his fondness for it drove his usage of it.  

His use of direct proof as his third attempt suggests he came to it through a process of 
elimination. He posited that his underlying idea may have been to check which proof techniques 
did not work well here and see what was left over: “I guess this was a good way of crossing out 
the things that you can’t do so you can find the things that you can do.”  

Unfortunately, Leonard’s proof was not correct. He started with one of the cases in the 
conclusion, reached a point where an odd integer was equal to an odd integer, and thought this 
meant he had shown the statement. Leonhard had used backwards reasoning on one case and 
shown there was logical consistency, but this was not a proof.  

Leonhard’s emotion graph shows this was a positive experience for him (see Figure 7).  
While there was a dip in emotion when he was confused (“eh, what”), his emotions grew steadily 
more positive as he continued on. His experience was so positive that he labeled a period of time 
as “The Zone,” annotating his self-talk on the graph, “I’m doing it! I’m doing it! Almost there.” 
His annotations also show his confidence, with humor (“Dope, I’m smart.”) The “oops” near the 
end referred to his realization that he had used the same variable k in all three of x, y, and z, but 
he felt it did not fundamentally affect the correctness of his work. His emotion graph suggests 
that Leonhard was confident about his work and that he thought it was correct. 
 
Interview 4: A Rationale Based on the Statement  
 

By the fourth interview, Leonhard’s rationales for his choice of proof technique displayed 
more precision. In the second task of the last interview, the statement was: If x, y are positive 
real numbers and x ≠ y, then 𝑥𝑥

𝑦𝑦
+ 𝑦𝑦

𝑥𝑥
 > 2. He was stuck over how to start; he then identified the 

assumption and conclusion, tested a couple examples for x and y, and then tried proof by 
contrapositive (see Figure 8). 
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Figure 7 
Emotion Graph in Interview 3 

 
Figure 8 
Student Work in Interview 4 
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His rationale for proof by contrapositive was, “You can’t really do much with x not equal 
to y. But you can do a whole lot with x is equal to y.” He also explained why proof by 
contradiction would not be helpful: “The contradiction wouldn’t give me anything to work with.” 
He wanted to start with x = y because he saw how an equality was more useful than having 
objects not equal to each other when proving. Neither direct proof nor proof by contradiction 
would provide an equality here. We see that Leonhard decided which proof technique to use 
based on specifics of the statement to be proven. His rationale also specifically explained why 
another proof technique (proof by contradiction) would be less useful here. In summary, he had a 
rationale for why his chosen proof technique was a helpful approach and why other techniques 
would be less helpful.  

Although his rationale for why to use contrapositive was coherent and his affect 
overwhelmingly positive, his proof was incorrect. He used backwards reasoning to work off the 
conclusion (of his contrapositive) and then reached a true statement (2 ≤ 2); he had still not 
realized that this was not the same as showing the original statement is true. 

Leonhard’s emotion graph in Figure 9, however, depicts a student who feels comfortable 
and confident with proving. His graph was entirely positive; he started the graph at the positive 
tick-mark, and the graph rose even more. Although he was not sure how to start, it did not appear 
to impact his emotions based on the graph drawn afterwards. His annotations, “easy money” and 
“too easy,” suggests not only that he wrote this proof with ease, but that he enjoyed it. 

 
Figure 9 
Emotion Graph in Interview 4 

 
 
Looking Across Leonhard’s Reasoning, Performance & Affect 
 

Over the course of these four interviews, the rationales Leonhard gave for why he chose 
the proof techniques that he did became more nuanced. He moved from choosing certain 
techniques because it was done in class (no rationale), to what he was comfortable with, to 
deciding based on the particulars of the statement itself. By the end of the series of interviews, 
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Leonhard also articulated why other proof techniques would not be helpful (so as to not go down 
that path). Leonhard showed clear growth in his reasoning for how he decided which proof 
technique to pursue.  

However, if we look at his performance, Leonhard’s work was oftentimes incorrect. 
Across the four tasks shown here, he only proved one statement correctly (Interview 2); he was 
partially correct in Interview 1, and his work for both Interview 3 and Interview 4 was incorrect. 
In fact, across the entire set of eight tasks (two per interview), the one task from Interview 2 was 
the only statement he proved entirely correctly. Moreover, his work on the last two interviews 
(all four tasks) was all incorrect due to substantial errors or missing crucial pieces of the proof. 
Leonhard would repeatedly work from the conclusion until he found a statement that was 
logically consistent, e.g., an even integer is equal to an even integer, and took that to mean he 
had proved the statement. Given that the interviews were weeks apart and Leonhard continued to 
use this logic, this is evidence his misconception had not been dislodged. 

Interestingly, Leonhard’s perception was that his work was correct. Looking across the 
set of emotion graphs, Leonhard’s affect was overwhelmingly positive. They paint a portrait of a 
person who is confident with and feels at ease proving. He recovered from dips in emotion, felt 
good about writing proofs (“I’m doing this”), referenced being “in the zone,” and believed in his 
abilities. Leonhard genuinely enjoyed doing this work; he displayed the positive affect we hope 
to see in students regarding proving. That his work was oftentimes incorrect and he did not 
realize it is troublesome. 

Discussion 
 

 Through this case of Leonhard, we explored one transition-to-proof student’s reasoning, 
performance, and affect over a series of four tasks and interviews. Over time, Leonhard’s 
rationales in deciding which proof techniques to pursue became more sophisticated while his 
performance declined, yet his affect was quite positive. He went from using one proof technique 
(proof by contradiction) for everything, at first because it was done in class to later because he 
felt the most comfortable with it, to analyzing the structure of the statement itself for what 
technique would make sense. He also articulated why other techniques would not work well. 
Leonhard showed relatively favorable affect through many of the tasks, in that he had a positive 
orientation to his work: he felt at ease, enjoyed proving, and displayed confidence about his 
proofs and his competencies. However, Leonhard’s work was often incorrect, with major logical 
flaws regarding backwards reasoning and about what it meant to prove a statement. While he had 
a positive orientation towards his work, he did not notice major logical flaws in his work.  

Leonhard is an example of a student who has strong positive affect towards proving and 
their reasoning––specifically their rationale for their decisions, is strong––but these do not 
necessarily lead to correct work. There is a difference between reasoning and execution: can we 
say Leonhard knows how to prove or that he is better at proving than when he started? How do 
we weight reasoning versus performance versus affect here? 

This work––the misalignment of reasoning, performance, and affect––highlights multiple 
implications for the transition-to-proof. First, thinking that reaching a true statement (often of the 
form 1 = 1 or 2k = 2j) is equivalent to proving a statement is true is a stubborn and pervasive 
error. In noticing that two sides match, students have verified that the mathematical situation is 
valid, that there are no inconsistencies––but writing a formal proof to in fact prove the statement 
is different. Further research is needed on this particular error, on how to help students notice 
when they make this error in their work, see why it is incorrect, and how to fix their proof. One 
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recommendation is for transition-to-proof classes to more regularly task students to read and 
critique sample proofs with errors such as this one and discuss them. Misconceptions like these 
may in fact be developmental stepping-stones in learning how to prove, and rather than attempt 
to dislodge and replace such errors, we can help students refine and reorganize their knowledge 
(Smith et al., 1994). Continued work with students could include differentiating between the 
mathematical process of proving and the final written product (Karunakaran, 2018) and could 
reinforce the importance of keeping track of the conclusion one wishes to show.  

Second, what do we do with students who are in fact overly confident about their work, 
not realizing they are making errors? On one hand, overconfidence with one’s work can lead to 
not noticing errors, as happened here. More caution would have helped to catch errors. On the 
other hand, students who are overconfident tend to at least put down a written solution; because 
their thinking is now visible, their errors can be addressed. Meanwhile, students who are 
underconfident may doubt their thinking and not write down much or any of their thoughts. It is 
difficult for instructors to know that this is the case and determine how to help without talking to 
the students. This also brings up questions about the role of confidence in mathematics, whether 
overconfidence is beneficial for learning how to prove in that the positive affect helps students 
move forward through what may otherwise feel paralyzing. This has implications for students 
who come from backgrounds that have been historically marginalized in mathematics in the 
United States (African Americans, Native Americans, underrepresented Asians, Latinos, women, 
etc.), on whom mathematical confidence has not culturally been bestowed by society. Lundeberg 
et al. (1994) found that undergraduate men were more overconfident over incorrect answers than 
women. One recommendation is for instructors to address what makes for a healthy sense of 
confidence in proving––and provide strategies for all students in dealing with under- and over-
confidence, but with special attention to gender and racial dynamics.  

Third, the misalignment in reasoning, performance, and affect indicates the continued 
need for a framework for assessing students’ proving (Savić, 2012; Selden & Selden, 2007) that 
encompasses these multiple components. While not typically thought of as part of the work of 
proving, affect can be a supplementary or even central component, much like how beliefs and 
affect are components of Schoenfeld’s (1992) problem solving framework. Skills assessed 
should include common ones such as applying definitions and taking negations but also skills 
seen in this case, such as interpreting informal statements, negating informal statements, and 
differentiating valid statements from one’s conclusion. Processes assessed should include how 
students choose a proof technique; a framework for students’ development in this domain is 
provided in Satyam (2020). Such a framework would support the characterization of and 
assessment of students’ proving as a process over short and potentially longitudinal timescales.  

Lastly, this case serves as a reminder that progress in learning how to prove does not 
always manifest itself in performance as measured by objective correctness. Through interviews, 
Leonhard’s more nuanced decision-making and positive affect shone through. Assessing a 
student solely through their written work does not capture the thinking and reasoning behind 
their choices that may have been valid, which, when taken alone, is valuable growth in proving.  
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ABSTRACT 
For more than 40 years, researchers have 
been studying the persistent 
underrepresentation of women in science. 
Today, the gender gap has narrowed in 
some, but not all, disciplines of science. To 
better understand the impetus of this 
continuing problem, the attitudes of middle 
school students toward science were 
examined using a causal-comparative design 
based on biological sex across four attitude 
constructs: attitudes toward school science, 
desire to become a scientist, value of science 
to society, and perceptions of scientists. A 
sample of 450 sixth-, seventh-, and eighth-
grade science students located in suburban, 
central New Jersey responded to Likert-type 
items on the My Attitudes Toward Science 
(MATS) survey during their regularly 
scheduled science class periods. Data 
analysis was performed through a 
multivariate analysis of variance. The 
findings indicated no statistically significant 
differences in middle school students’ 
attitudes toward school science, desire to 
become a scientist, value of science to 
society, and perceptions of scientists based 
on biological sex of the students. 
Implications for the findings are discussed. 
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It is widely recognized that women historically have been underrepresented in science 
(National Science Foundation [NSF], 2019). Today, the problem persists within some disciplines 
of science, though female representation in other science careers, such as those in the health 
professions, veterinary medicine, and biology, has become more equitable (Jones et al., 2000; 
Wang & Degol, 2017). The unbalanced distribution of women in science, and blatant 
underrepresentation in some fields, is a two-fold problem: it has the potential to greatly impact 
the diversity, creativity, and productivity of the larger society (National Academies of Sciences, 
Engineering, and Medicine [NASEM], 2019; NSF, 2019), and it places women at a disadvantage 
by diminishing their earning potential in comparison to men (Beyer, 2014; Oh & Lewis, 2011; 
Xu, 2015).  

To better understand and combat the problem of female inequities in science, educational 
researchers have been studying how male and female students participate in science for over 40 
years (Buck et al., 2014; Bybee & McCrae, 2011; Naizer et al., 2014; Osborne et al., 2003). 
These studies have considered the problem through different lenses, such as disparities in science 
achievement based on biological sex or students’ attitude toward or appreciation of science 
overall. Even with extensive study in this area, differences in engagement in science based on 
biological sex––referred to in the literature as the gender gap––continue to pervade the realm of 
science. Current research calls for continued investigation (Reilly et al., 2019; Wieselmann et al., 
2020). 

The research presented here investigated differences in science attitude constructs in 
middle school students based on biological sex. The aim of the research was to complement prior 
research that mainly focused on overall science attitudes or achievement differences based on 
sex or gender (e.g., Gokhale et al., 2015; Guzey et al., 2016; Quinn & Cooc, 2015) by examining 
the multidimensional nature of students’ science attitudes. The study also used the My Attitudes 
Toward Science (MATS) instrument (Hillman et al., 2016), which has shown promise in 
examining the nuances of science attitudes.  

 
Attitude Toward Science 

 
Hillman et al. (2016) report that a child’s attitude toward science can be broken into four 

main domains or constructs: attitude toward school science, desire to become a scientist, value of 
science to society, and perceptions of scientists. It is not enough then to measure only how 
positively or negatively a student views science as a whole. Instead, researchers need to 
determine on which specific attitude constructs male and female students differ to ultimately 
determine why fewer women historically participate in science across different fields. 

Hillman et al. (2016) describe the attitudes toward school science construct as a student’s 
feelings toward the behavior of participating in school science classes. A student’s attitude can 
affect the way he or she engages with science coursework (Teodorescu et al., 2014). Male 
students traditionally have “a consistently more positive attitude [toward] school science than 
girls” (Chen & Howard, 2010, p. 138). Studies suggest that, overall, male students tend to 
appreciate the use of technology in school, show interest in learning by discovery, and are 
willing to take risks (Chen & Howard, 2010; Eagly & Wood, 2013; Incantalupo et al., 2014). In 
contrast, female students are often less confident in school science, which may cause them to 
dislike the subject in school, particularly in the middle grades (Smith et al., 2014).  

A student’s desire to become a scientist is broadly defined as his or her interest in 
pursuing any career in a scientific, medical, or technological field (Hillman et al., 2016). Ajzen 
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and Fishbein (1977) explain that behavior is directed by attitude. Attitudes toward science can 
therefore influence students’ choices to engage in science-related courses, potentially translating 
into improved academic achievement (Barnes et al., 2005; Leibham et al., 2013). It is then 
surmised that if one possesses a positive attitude toward science, then the resulting behavior 
would likely be engagement in or increased achievement in science (Singh et al., 2002). Male 
students in middle school have been found to express a desire for careers relating to technology, 
engineering, or mathematics at a significantly higher rate than middle school girls (Desy et al., 
2011; Jenkins & Nelson, 2005; Stoet & Geary, 2018). Of the female students who do indicate a 
desire to become a scientist, the most popular career choices are veterinary medicine and 
healthcare professions (Desy et al., 2011; Jones et al., 2000)—so called “helping professions.” 
Further, reports indicate that females are less likely to persist in science as a career broadly 
across disciplines (NSF, 2019). Thus, numerous efforts within the United States continue to 
focus on broadening participation of women in science, especially in “non-helping” fields (NSF, 
2019). 

Value of science, as defined by Hillman et al. (2016), is a student’s awareness of how 
discoveries and technological advances aid society through STEM. Students become more 
interested in science when they see the practical significance of science as a contributor toward 
society (George, 2006). Differences in the perceived value of science to society based on 
biological sex are contradictory within the literature. Some studies have shown that female 
students recognize the value of science more readily than male students, though this perceived 
value does not necessarily correlate to an increased pursuit of STEM careers (Blanchard Kyte & 
Riegle-Crumb, 2017; Else-Quest et al., 2013), while Blanchard Kyte and Riegle-Crumb (2017) 
report that male students’ choices for careers in science appear to be unaffected by their 
perception of science’s societal value.  
 The stereotypical belief that scientists are male and that science is a masculine domain is 
referred to in the literature as the gender-science stereotype (Cai et al., 2016; Miller et al., 2015). 
It is a well-known phenomenon and has been shown to have a negative impact on female 
students interested in science (Hong & Lin, 2011; Quinn & Cooc, 2015; Reilly et al., 2019). Men 
working in STEM professions more readily endorse this stereotype, as their own actions serve as 
reinforcement of their perception that science is predominantly a male domain (Smyth & Nosek, 
2015). Similarly, women who work outside of STEM professions continue to uphold this 
stereotype, whereas women working in STEM endorse the stereotype far less (Smyth & Nosek, 
2015). The endorsement of the gender-science stereotype has led to fewer women participating 
in some fields of science such as computer sciences, engineering, and physics (NSF, 2019). The 
NSF (2017) has shown that female students are less likely than male students to pursue advanced 
science courses in high school and college, precluding women from entering science professions 
in an equitable manner when compared to men.  

While the gender gap in science has been researched extensively, the gap still persists and 
many questions remain about the cause, continued perpetuation, and methods for closing the gap. 
If the goal of researchers is to identify disparities in science based on biological sex with the 
intention of drawing more women into all disciplines of the science-related workforce, it is 
important to understand how student attitudes differ based on sex at the critical middle school 
level. Attitudes, in fact, have been cited as one of the most important factors in determining 
females’ participation in science (Else-Quest et al., 2013; Reilly et al., 2019; Smeding, 2012), yet 
they remain under-researched. As the pursuit of science-related careers is directly related to 
attitude, it becomes increasingly imperative to examine student attitudes across specific 
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constructs rather than as a whole. These nuances may provide greater insight into student choices 
related to science than examining students’ attitudes as a single domain, allowing educators and 
researchers to better provide interventions to keep female students interested in STEM.  

 
Theories Related to Gender Stereotypes in Science 

 
There are several theories that may provide insight into the observed STEM gender gap 

in terms of male and female students’ interest in, attitudes towards, participation in, and 
persistence in science. Eagly’s social role theory (1987), for instance, postulates that gender 
stereotypes may impact children’s attitudes toward science. Social role theory suggests that 
children learn what social roles are acceptable and expected of them based on their observations 
of adults in their society (Eagly & Karau, 2002; Miller et al., 2015). Historically, men and 
women have performed different jobs within and outside of the household. These traditional 
gender roles are often observed by children and then perpetuated through subsequent generations 
(Eagly & Karau, 2002). Importantly, despite some shift in societal attitudes, these traditional 
gender roles persist today (Rennison & Bonomi, 2020). Research examining science identity 
aligns closely with social role theory in that individuals who do not have opportunities to see 
others that look like them participating in their selected field of study may not believe that they 
belong in the profession (Carlone & Johnson, 2007; Hill et al., 2010; Rockinson-Szapkiw et al., 
2021). When this happens, the female students endorse and perpetuate stereotypes, allowing 
these beliefs to continue through to yet another generation. Though the perception increases in 
magnitude with age for both male and female students, Liu et al. (2010) found that it is stronger 
for female students than it is for male students in middle school.  

Social role theory serves as a foundation to explain the historical disparities observed in 
STEM fields based on biological sex. As female representation in some science disciplines has 
improved, however, it is also important to consider how gender theories have evolved over time 
in response to social change and how changes to these theories may help to explain the inequities 
still observed in the other science disciplines. Gender identity theory, for example, reconsiders 
gender differences and isolates the term gender from biological sex (Vantieghem et al., 2014). 
Egan and Perry (2001) posit that individuals engage in gender as a multidimensional process 
rather than as a singular identity attribute, identifying these dimensions to include gender 
typicality, gender contentedness, pressure for gender conformity, and gender superiority. 
Individuals may express gender in typical or atypical ways for their biological sex or feel 
pressure to conform to expected gender roles (Egan & Perry, 2001; Lagaert et al., 2017; 
Vantieghem et al., 2014). Gender identity theory then realigns behaviors and attributes to the 
domains of masculinity and femininity rather than to each biological sex (Vantieghem et al., 
2014). The dimensions of gender identity have been shown to serve as powerful mechanisms 
reinforcing the gender gap in non-STEM disciplines (Lagaert et al., 2017) and STEM disciplines 
alike (Sibley & Crane-Seeber, 2020). Given that gender governs interactions and self-perceptions 
in academic, occupational, recreational, and interpersonal aspects of an individual’s life (Egan & 
Perry, 2001), it is likely that gender identity serves as a similar mechanism, reinforcing gender 
gaps in other disciplines, including STEM. 
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Negative Effect of Stereotypes in Science 
 

The disproportionate abundance of men compared to women in STEM professions has 
led to a long-standing stereotype that science is mainly for men (Farland-Smith, 2009; Quinn & 
Cooc, 2015). Studies have shown that, when young students are asked to provide a depiction of 
what they believe a scientist looks like, scientists are typically believed to be White men 
(Farland-Smith, 2009; Farland-Smith et al., 2014; Miller et al., 2018). Recent analysis has 
indicated the frequency by which young female students draw depictions of scientists as male 
has decreased as compared to past decades (Miller et al., 2018). However, scientists are still 
overwhelmingly perceived as male by both young girls and young boys. Further, despite efforts 
to engage young girls in STEM, female elementary student participants still overwhelmingly 
believe that STEM is better suited for males (Wieselmann et al., 2020) and, importantly, view 
“mathematics as a gatekeeper for STEM participation” (p. 304).  

In some cases, parents, teachers, and other role models may intentionally or 
unintentionally model gender stereotypes while encouraging male students to engage in science-
related activities and encouraging female students to engage in more feminine activities 
(Farland-Smith, 2009; Venkataraman et al., 2019). The perceptions of such role models have 
been shown to influence students’ views of whether or not they belong in science fields (Gokhale 
et al., 2015; McGuire et al., 2020; Ochsenfeld, 2016). Further, given the disparity in 
representation of females in science fields (NSF, 2019), female students may have fewer known 
female role models to alter the perspective that science is a masculine endeavor (McGuire et al., 
2020; Stearns et al., 2016). Thus, there are fewer like others to view (Venkataraman et al., 2019; 
Wendt et al., 2019), which may influence students’ identities and their ability to see themselves 
as belonging in science (Archer et al., 2013).  
 Some fields of science, such as computer science, experience larger gender gaps than 
other science fields (Venkataraman et al., 2019) and may elicit additional stereotypes. Computer 
scientists, for example, are often stereotyped as “nerds, geeks, or hackers” who lack 
interpersonal skills (Beyer, 2014, p. 155). This stereotype is carried over to other scientific 
professions as many people perceive scientists to be individuals who work alone in laboratories 
filled with test tubes and scientific equipment (Farland-Smith et al., 2014). Women and girls may 
avoid these fields because they believe them to be isolating (Beyer, 2014; Venkataraman et al., 
2019). Though the stereotype of science being only for men is untrue, the perception and feelings 
of not belonging may prevent women from choosing to pursue science as a career or remaining 
in a science career (Archer et al., 2013). Previous research reports that women also choose to 
leave science fields and careers due to external pressures, such as family responsibilities, a 
“chilly climate,” and incongruence between personal values and job expectations (see Brue, 
2019; Dawson et al., 2015; Fouad et al., 2016; Jensen & Deemer, 2019; Rockinson-Szapkiw et 
al., 2021). 
 Women who are impacted by gender stereotypes in science often find themselves at a 
disadvantage (McGuire et al., 2020). By not pursuing STEM careers, their earning potential is 
lowered in comparison to men (Beyer, 2014; Oh & Lewis, 2011; Xu, 2015). The potential loss of 
talent and the need for increasing the diversity of the STEM workforce are undeniable (NASEM, 
2019).  
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Methods 
 

This study used a causal-comparative research design with the students’ self-reported 
biological sex as the independent variable and the students’ attitudes toward school science, 
desire to become scientists, value of science to society, and perceptions of scientists as the 
dependent variables.  

RQ: To what extent do attitudes toward school science, desire to become a scientist, 
value of science to society, and perceptions of scientists of male and female middle 
school students differ as measured by the MATS instrument? 

 
Sample 
 

A convenience sample of middle school students was selected from a suburban school 
district in central New Jersey in the United States during the 2017–2018 school year. Eighteen 
classes each from two middle schools were included in the sample for a total of 36 classes. 
Participants for this study were selected from general education science classes in the sixth, 
seventh, and eighth grades in each of the participating schools. The sample did not include 
advanced placement, honors, or resource level classes, but instead focused solely on general 
education track students. The resulting sample consisted of 198 male students and 252 female 
students for a total sample size of 450 participants. The ethnic breakdown of participant groups is 
shown in Table 1. All classes recruited used a spiral curriculum model, which shares 
instructional time among the major science disciplines––Earth, life, and physical––throughout 
the year at each grade level. 

 
Table 1 
Demographic Data of Middle School Students 

Category Gender 
Grade Level Male Female 

6 22.7% 28.6% 
7 42.9% 44.1% 
8 34.3% 27.4% 

Average Age 12.4 years 12.2 years 
Self-Reported Ethnicity   

Caucasian 44.9% 45.6% 
Asian 12.6% 20.2% 
African American 8.7% 4.4% 
Latino/Hispanic 8.3% 7.5% 
Biracial 6.7% 11.1% 
Other race(s) 9.5% 10.3% 

Note: N = 450 
 
Instrumentation 

 
The MATS instrument, designed by Hillman et al. (2016), was developed to measure the 

multidimensional nature of a child’s attitude towards science. This instrument measures a 
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student’s science attitude across the four specific attitude constructs: attitudes toward school 
science, desire to become a scientist, value of science to society, and perceptions of scientists.  

Prior to the current study, the instrument was subjected to several rigorous field tests to 
demonstrate its reliability and validity. Expert review was conducted by teachers, researchers, 
and graduate students (Hillman et al., 2016). Cronbach’s alpha coefficients showed internal 
consistency for each of the subscales across elementary, middle, and high school grade levels. 
The Cronbach’s alpha coefficients for the attitude toward school science, desire to become a 
scientist, and value of science to society subscales were 0.866, 0.700, and 0.794 respectively for 
all grade levels (Hillman et al., 2016). The same subscales revealed coefficients of 0.841, 0.658, 
and 0.780 at the middle school (grades six–eight) level. In a previous study, the perception of 
scientists subscale showed a lower coefficient (0.539 total and 0.495 at the middle school level), 
indicating students’ perceptions were not homogenous (Hillman et al., 2016). Cronbach’s alpha 
for the current study is reported in the Results section below. 
 The MATS instrument consists of 40 items representing the four subscales of students’ 
attitudes using 5-point, Likert-type responses. The attitude toward school science subscale 
contains 14 items, allowing each student’s score to total between 14 points, indicating the most 
negative attitude toward school science, and 70 points, indicating the most positive attitude 
toward school science. The desire to become a scientist subscale only contains two items so that 
each student’s score could fall between 2 and 10 points. The value of science to society subscale 
has 12 items allowing potential scores to fall between 12 and 60 points. These three subscales are 
comprised of an equal number of positively phrased and negatively phrased statements. For the 
perceptions of scientists subscale, a higher score represents a more stereotypical ideation of 
scientists, where 60 is the highest possible score and 12 is the lowest possible score (Hillman et 
al., 2016). No composite score was calculated, as the instrument is designed and used to interpret 
multiple components of a student’s attitude rather than an overall positive or negative attitude. 
The subscales of the instrument allow its findings to be interpreted to the extent that researchers 
can identify the specific attitude constructs on which students differ based on biological sex. 
 
Procedures 

 
After receiving ethics approval and obtaining consent and assent forms, students electing 

to participate in the study were asked to complete the MATS instrument during their normal 
science class periods. After obtaining the completed instruments, the researchers combined data 
from all classes, entered them into an Excel spreadsheet, and analyzed the data with the use of 
IBM SPSS software. Because the first three subscales included positively and negatively worded 
statements, reverse coding was necessary for the negative statements before data analysis could 
take place.  

A one-way MANOVA at the 95% confidence level was conducted to determine if there 
was a difference in attitudes towards school science, desire to become a scientist, value of 
science to society, and perceptions of scientists of male and female middle school students. Prior 
to conducting the MANOVA, data screening was performed. Several outliers were identified and 
removed from the study. A Kolmogorov-Smirnov test and generation of histograms indicated 
that the assumption of normality was violated, a problem inherent in the use of Likert-type 
surveys. Thus, QQ plots were created and subsequently showed normal distribution patterns. 
Additionally, “even when the data are not multivariate normal, the multivariate normal may 
serve as useful approximation” (Rencher, 1995, p. 94). The central limit theorem permits 
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normality violation with large enough sample sizes, as those seen in the present study, to the 
extent that analysis could be continued (Rencher, 1995). Therefore, with a sample size of 450 
students, the assumption of normality was deemed tenable. The Box’s M test was used to test the 
equality of covariance matrices. The assumption of covariance matrices was met (p = 0.467).  

 
Results 

 
The results indicated that male students’ attitudes toward school science (M = 56.07, SD 

= 9.70) were not statistically significantly different from female students’ attitudes toward school 
science (M = 54.04, SD = 10.84). Male students’ desire to become scientists (M = 5.49, SD = 
2.28) was also found to be no different, statistically, than that of female students (M = 5.17, SD = 
2.34). Similarly, no statistically significant differences were found in male students’ (M = 48.15, 
SD = 7.28) and female students’ (M = 48.52, SD = 6.65) perceived values of science to society. 
When examining the descriptive statistics, male (M = 27.56, SD = 5.16) and female (M = 27.47, 
SD = 4.86) students’ perceptions of scientists were nearly the same. 
 A Wilks’ Lambda statistic was used to measure the proportion of variance in the 
functions of student attitudes that is not associated with group membership (Warner, 2013). The 
result of the MANOVA was not statistically significant at an alpha level of 0.05, where F(4, 445) 
= 1.96, p = 0.10, partial ƞ2 = 0.02, which suggests there were no statistically significant 
differences in male and female middle school students’ attitudes toward school science, desire to 
become a scientist, value of science to society, and perceptions of scientists. The effect size, as 
measured by partial eta squared, was small (Warner, 2013).  

In order to ensure internal consistency and report on the instrument used in the study, 
Cronbach’s alpha coefficients were calculated for each subscale: attitude toward school science 
(α = 0.893), desire to become a scientist (α = 0.774), value of science to society (α = 0.781), and 
perception of scientists (α = 0.534). The attitude toward school science, desire to become a 
scientist, and value of science to society subscales demonstrated high reliability (Rovai et al., 
2013). The perception of scientists subscale, however, demonstrated only moderate reliability 
(Rovai et al., 2013), aligning with previous findings of the instrument developers (Hillman et al., 
2016). 

Discussion 
 
This study aimed to examine the differences, if any, that exist among middle school 

students’ attitudes toward science from a multidimensional perspective based on students’ 
biological sex. The results of this study indicated that male and female students’ attitudes toward 
science are not statistically different at the middle school level among the sample population. A 
comparison across each attitude construct measured by the MATS instrument based on 
descriptive statistics revealed similar scores for male and female students. When considering the 
subscales, the attitudes toward school science of male and female middle school students was 
positive. The students’ desire to become scientists was almost neutral for both males and 
females. Students of both biological sexes also shared positive views of the value of science to 
society and indicated a low ideation of scientist stereotypes. This finding aligns with previous 
research, albeit limited, that indicates a shift in attitudes toward science around middle school, 
with girls demonstrating more equitable attitudes than boys (Desy et al., 2011; McGuire et al., 
2020). However, causation for this shift in attitudes still remains undetermined (McGuire et al., 
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2020) and is an important component of understanding how efforts to broaden female 
participation across all science disciplines may be made effective. 

Though attitudes toward school science, value of science to society, and perceptions of 
scientists remained positive for students of both biological sexes, male (M = 5.49, SD = 2.28) 
and female (M = 5.17, SD = 2.34) students only indicated a neutral desire for careers in science. 
In this case, the students indicate that they enjoy science in school, believe it has value in society, 
and no longer endorse science stereotypes, yet neither male nor female students showed a great 
desire to become scientists themselves. It appears that the belief that science is a male domain 
could be waning, but the draw of new students into STEM professions is not keeping pace with 
current and projected economic needs (Huderson & Huderson, 2019). While recent NSF (2019) 
reports indicate that women hold the majority of degrees in psychology, biology, and social 
sciences, they continue to be underrepresented in computer science, engineering, mathematics, 
and physical sciences. Thus, efforts should be focused on determining how attitudes may impact 
women’s choices to pursue specific science fields over others.  

Because there are persistent gender gaps within STEM fields, it would be logical to 
expect statistically different results in the science attitudes male and female students express. No 
significant differences, however, were shown in the data from this study. Social role theory, and 
even gender schema, may not be enough to explain the differences observed in men and women 
in the STEM workforce. Gender identity may be a greater factor in the results observed in this 
study. Prior research has shown that more women are drawn to biological, psychological, and 
health professions than to physical science, technology, or engineering (Jones et al., 2000; Wang 
& Degol, 2017). These professions are dubbed “helping professions” because the work 
associated with these professions often translates to caring for or helping others. Differences in 
attitudes may not be perceived as based on biological sex alone. Instead, it will be important for 
future studies to examine any differences that may exist based on students’ gender identities.  

It should also be noted that the MATS instrument is relatively new and has not yet been 
used extensively. Thus, more extensive use of the instrument may lead to its further refinement 
based on current and subsequent findings. For example, the desire to become a scientist subscale 
only has two items stating “I would like a job as a scientist” and “I don’t want a job as a scientist, 
because I have no interest in it.”  As previously discussed, many of the differences based on 
biological sex currently found in STEM professions are related to the specific fields of science. 
Additionally, some careers requiring STEM skills, such as nursing, may not be considered 
STEM professions by students (Stoet & Geary, 2018). Because this subscale does not enumerate 
the various professions students may choose within the sciences, students in the present study 
considering careers that they would not label with the term “scientist” may not have answered 
these survey items to reflect their true career plans. The neutral findings on this particular 
subscale may be due to a lack of agreement on what it means to have a career as a scientist. 
Students surveyed did not show strong preferences for or against scientific careers, and no 
statistically significant difference was found based on biological sex. If the instrument had listed 
specific careers within science such as veterinarian, computer scientist, astronomer, or botanist 
rather than simply using the term “scientist,” students may have been better able to envision 
themselves within the larger STEM professional community. This type of change to the 
instrument could allow for a better overall comparison of students’ desire to enter STEM 
professions based on biological sex as well as demonstrating how biological sex affects students’ 
choice of career fields within STEM.  
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Similarly, the perception of scientists subscale demonstrated only moderate reliability in 
a previous study (Hillman et al., 2016), as well as in the current study. This finding indicates that 
additional refinement of the perception of scientists subscale may be needed. The low 
Cronbach’s alpha coefficient calculated for this subscale in both studies may indicate a shift in 
students’ views of the stereotypical traits that scientists possess; however, it is also likely that the 
subscale lacks internal consistency as it attempts to measure many stereotypical perceptions 
within a single subscale. Some of the statements, for example, apply to the masculine domain of 
science while other statements are made regarding scientists’ presumed lack of social skills or 
the stereotype that all scientists work in laboratories (Hillman et al., 2016). Students may endorse 
some, but not all, of these stereotypes, leading to the low internal consistency score. Separating 
the specific stereotypes out into their own subscales, or onto a separate instrument completely, 
could improve the reliability and validity of this instrument.  

 
Limitations and Recommendations for Future Research 

 
The sample used in this study was drawn from middle schools residing within the same 

suburban school district, which could limit the generalizability of the results. The study could be 
replicated in other geographical locations to ascertain the climate of students’ attitudes at a 
national or international scale. Additionally, the numbers of male and female students used in the 
study were not equivalent, nor were the numbers of students in each of the three grade levels. 
Using a sample that is more equivalent in representation of biological sex, as well as a larger 
sample, could yield different results. 

The MATS instrument itself also represents a limitation. It is a relatively new instrument, 
and it yielded a low Cronbach’s alpha for the perceptions of scientists subscale during its field 
testing. A similarly low Cronbach’s alpha was calculated for the perceptions of scientists 
subscale during the present study (α = 0.53). Thus, the development of a more robust 
measurement of perceptions of scientists could be beneficial in future studies. Future 
measurement should also account for the multitude of careers that relate to science.  
 Studying students’ attitudes at one point in time may not provide the same depth of 
knowledge as studying how students’ attitudes change over time. Therefore, a longitudinal study 
allowing researchers to compare students’ attitudes toward school science, desire to become a 
scientist, value of science to society, and perceptions of scientists could yield different results 
measuring how these attitude constructs change over time. Increasing the diversity of the STEM 
workforce should not end with attracting more women to the different fields of science. Future 
studies should also be performed measuring students’ attitudes across the four constructs based 
on race and ethnicity to further inform curricular reform that may diversify science professions. 
 Further, the authors recognize that sex and gender are complex characteristics. While the 
current study has limited the examination of attitude constructs to comparisons among biological 
sex, future study should examine variations of sex and gender, including gender identities, to 
further add to the research literature. Research that focuses on those with diverse gender 
identities remains sparse (Sibley & Crane-Seeber, 2020). 
 

Conclusion 
  

While this study demonstrated that no statistically significant differences among middle 
school students’ attitudes toward science existed among the sample population studied, the 
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findings contribute to the body of knowledge by supporting and upholding previous studies 
(Desy et al., 2011; McGuire et al., 2020). The findings indicate that a shift in attitudes may have 
occurred in recent years, resulting in more equitable attitudes toward science among male and 
female students. However, future research should consider what factors impact students’ 
attitudes toward science, whether attitudes remain consistent as students matriculate into high 
school and beyond, and whether findings are generalizable among populations who have diverse 
gender identities. The findings, regardless, indicate an encouraging trend within the field of 
education in supporting the construction of attitudes that embrace science, breaking from 
traditional gender roles, identities, and expectations. 
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