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Abstract 

 

According to World Health Organization, a recent analysis showed that 1.71 billion 

people globally have musculoskeletal conditions. The societal impact in terms of direct 

healthcare costs and indirect (i.e., productivity loss) costs is enormous. Hence, it is vital 

to understand the pathophysiology of musculoskeletal diseases using artificial 

intelligence analytics tools with ultimate objective to develop techniques for their 

interpretation, diagnosis, prediction and rehabilitation. The aim of this thesis is to 

extend the current understanding of the contribution of the risk factors in the 

development of Knee Osteoarthritis and to uncover the rationale behind the 

biomechanical parameters from the anterior cruciate ligament post-surgery 

rehabilitation in order to avoid the outset of KOA. To achieve these goals, first of all 

we conducted a review about the machine learning techniques in knee osteoarthritis. 

Subsequently, we employed data from the osteoarthritis initiative (OAI) database 

(available on https://nda.nih.gov/oai/) and collected numerous biomechanical data 

from individuals who suffered from anterior cruciate ligament injury or not. This work 

led to five studies which are presented as different chapters of the current thesis. The 

review guided us to understand the literature gap and to develop machine learning 

techniques related to the prognosis and diagnosis of knee osteoarthritis as well as the 

interpretation of these models. In the second work, we used data from OAI and we 

worked on the prediction of KOA through the identification of risk factors that are 

relevant with KL progression. One of the main objectives of this work was to explore 

three different options with respect to the time period within which data should be 

considered in order to reliably predict KOA progression. The findings of this work 

were the input for the third work. So, the next step in the prediction task was to apply 

an evolutionary genetic algorithm (GA)-based wrapper technique, which leads to 

selected features that consistently work well at any possible data sample and, thus, 

have increased generalization capacity with respect to KOA progression. The impact 

of the selected risk factors on the prediction output was further investigated using 

SHapley Additive exPlanations (SHAP). The fourth work focused on the diagnosis 

task and interpretation of the model output. The objective of the present study was to 

provide a robust feature selection methodology based on fuzzy logic that could: (i) 

handle the multidimensional nature of the available datasets (OAI) and (ii) alleviate 

the defectiveness of existing feature selection techniques towards the identification of 

important risk factors which contribute to KOA diagnosis and interpretation. The fifth 

work has the aim to investigate the modification of the biomechanical parameters after 

an ACL injury, which is a risk factor for the onset of KOA. For this aim, a state-of-the-

art explainability analysis based on SHAP and conventional statistical analysis 

attempted to uncover the rationale behind the decision-making mechanism of the best 

trained model and provide a holistic approach of quantifying the contribution of the 
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input gait biomechanical parameters in the tasks of ACL injury diagnosis. The 

proposed AI methodologies may contribute to the development of new, efficient risk 

stratification strategies and identification of risk phenotypes of each KOA patient to 

enable appropriate interventions. Furthermore, features, that would have been 

neglected by the traditional statistical analysis, were identified as contributing 

parameters having significant impact on the ML model’s output for prediction of KOA 

progression, KOA diagnosis, ACL injury diagnosis during gait. 
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Περίληψη  

 

Σύμφωνα με τον Παγκόσμιο Οργανισμό Υγείας, μια πρόσφατη μελέτη έδειξε ότι 

1,71 δισεκατομμύρια άνθρωποι παγκοσμίως πάσχουν από μυοσκελετικές 

παθήσεις. Ο κοινωνικός αντίκτυπος όσον αφορά το άμεσο κόστος υγειονομικής 

περίθαλψης αλλά και το έμμεσο (δηλ. απώλεια παραγωγικότητας) είναι 

τεράστιος. Ως εκ τούτου, είναι ζωτικής σημασίας η κατανόηση της 

παθοφυσιολογίας των μυοσκελετικών παθήσεων, έτσι ώστε με τη χρήση 

αναλυτικών εργαλείων τεχνητής νοημοσύνης να αναπτυχθούν τεχνικές για την 

ερμηνεία, τη διάγνωση, την πρόβλεψη και την αποκατάστασή τους. Σκοπός της 

παρούσας διδακτορικής διατριβής είναι να διευρύνει την τρέχουσα κατανόηση της 

συμβολής των παραγόντων κινδύνου στην ανάπτυξη της οστεοαρθρίτιδας 

γόνατος και να αποκαλύψει την επίδραση των εμβιομηχανικών παραμέτρων στη 

μετεγχειρητική αποκατάσταση του πρόσθιου χιαστού συνδέσμου, προκειμένου 

να αποφευχθεί η εμφάνιση οστεοαρθρίτιδας γόνατος. Για την επίτευξη των 

παραπάνω στόχων, αρχικά πραγματοποιήσαμε μια βιβλιογραφική ανασκόπηση 

σχετικά με τις τεχνικές μηχανικής μάθησης στην οστεοαρθρίτιδα γόνατος. Στη 

συνέχεια, χρησιμοποιήσαμε δεδομένα από τη βάση δεδομένων της πρωτοβουλίας 

για την οστεοαρθρίτιδα (OAI) (διαθέσιμα στη διεύθυνση https://nda.nih.gov/oai/) 

και συλλέξαμε επίσης πληθώρα εμβιομηχανικών δεδομένων από άτομα που 

υπέφεραν ή όχι από τραυματισμό πρόσθιου χιαστού συνδέσμου. Η προεργασία 

αυτή οδήγησε σε πέντε μελέτες, οι οποίες παρουσιάζονται ως διαφορετικά 

κεφάλαια της τρέχουσας διατριβής. Η βιβλιογραφική ανασκόπηση μας οδήγησε 

στο να κατανοήσουμε το κενό στη βιβλιογραφία και να αναπτύξουμε μια σειρά 

τεχνικών μηχανικής μάθησης που σχετίζονται με την πρόγνωση και τη διάγνωση 

της οστεοαρθρίτιδας γόνατος καθώς και την ερμηνεία των μοντέλων αυτών. Στη 

συνέχεια, στην δεύτερη μελέτη χρησιμοποιήσαμε δεδομένα από την βάση ΟΑΙ και 

δουλέψαμε πάνω στην πρόβλεψη της οστεοαρθρίτιδας γόνατος, μέσω του 

εντοπισμού παραγόντων κινδύνου που σχετίζονται με την εξέλιξη του βαθμού 

KL. Στη συνέχεια, ο κύριος στόχος αυτής της εργασίας ήταν να διερευνηθούν τρεις 

διαφορετικές επιλογές όσον αφορά τη χρονική περίοδο εντός της οποίας θα πρέπει 

να ληφθούν υπόψη τα δεδομένα προκειμένου να προβλεφθεί αξιόπιστα η εξέλιξη 

της οστεοαρθρίτιδας γόνατος. Τα ευρήματα αυτής της εργασίας αποτέλεσαν τη 

πηγή δεδομένων για τη τρίτη μελέτη. Έτσι, το επόμενο βήμα για την πρόβλεψη 

της οστεοαρθρίτιδας γόνατος ήταν η εφαρμογή μιας εξελικτικής τεχνικής 

περιτύλιξης με βάση τον γενετικό αλγόριθμο, η οποία οδηγεί σε επιλεγμένα 

χαρακτηριστικά που λειτουργούν αξιόπιστα και αποδοτικά σε οποιοδήποτε 

πιθανό δείγμα δεδομένων και, συνεπώς, έχουν αυξημένη ικανότητα γενίκευσης 

σε σχέση με την πρόβλεψη της οστεοαρθρίτιδας γόνατος. Ο αντίκτυπος των 

επιλεγμένων παραγόντων κινδύνου στην διαμόρφωση της εξόδου του μοντέλου 
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πρόβλεψης, διερευνήθηκε περαιτέρω χρησιμοποιώντας το εργαλείο ερμηνείας 

SHAP. Η τέταρτη μελέτη επικεντρώθηκε στην διάγνωση της οστεοαρθρίτιδας 

γόνατος. Ο στόχος της παρούσας μελέτης ήταν να παράσχει μια ισχυρή 

μεθοδολογία επιλογής χαρακτηριστικών (FS) που θα μπορούσε: (i) να χειριστεί 

την πολυδιάστατη φύση των διαθέσιμων συνόλων δεδομένων (OAI) και (ii) να 

αντιμετωπίσει τα μειονεκτήματα των υφιστάμενων τεχνικών επιλογής 

χαρακτηριστικών για τον εντοπισμό σημαντικών παραγόντων κινδύνου που 

συμβάλλουν στη διάγνωση της  οστεοαρθρίτιδας γόνατος αλλά και την ερμηνεία 

της. Η πέμπτη μελέτη έχει ως στόχο να διερευνήσει την προσαρμογή των 

εμβιομηχανικών παραμέτρων μετά από τραυματισμό του πρόσθιου χιαστού 

συνδέσμου, ο οποίος αποτελεί παράγοντα κινδύνου για την εμφάνιση 

οστεοαρθρίτιδας γόνατος. Για το σκοπό αυτό, μια καινοτόμος ανάλυση 

επεξηγήσεων βασισμένη στο εργαλείο SHAP και τη συμβατική στατιστική 

ανάλυση προσπάθησε να αποκαλύψει το σκεπτικό πίσω από τον μηχανισμό 

λήψης αποφάσεων του καλύτερα εκπαιδευμένου μοντέλου διάγνωσης και να 

παράσχει μια ολιστική προσέγγιση ποσοτικοποίησης της συμβολής των 

εμβιομηχανικών παραμέτρων βάδισης στις διεργασίες της διάγνωσης πρόσθιου 

χιαστού συνδέσμου και της μετεγχειρητικής αποκατάστασης αυτού. Οι 

προτεινόμενες μεθοδολογίες τεχνητής νοημοσύνης μπορούν να συμβάλουν στην 

ανάπτυξη νέων, αποτελεσματικών στρατηγικών διαστρωμάτωσης του κινδύνου 

και στον εντοπισμό παραγόντων κινδύνου εξατομικευμένα σε κάθε πάσχοντα 

από οστεοαρθρίτιδα γόνατος, ώστε να αναπτυχθούν εξατομικευμένες 

παρεμβάσεις. Επιπλέον, παράμετροι που δε θα είχαν αναδειχθεί από την 

παραδοσιακή στατιστική ανάλυση, προσδιορίστηκαν ως παράμετροι που έχουν 

σημαντικό αντίκτυπο στην έξοδο του μοντέλου μηχανικής μάθησης, τόσο για την 

πρόβλεψη της εξέλιξης της οστεοαρθρίτιδας γόνατος, όσο και για τη διάγνωση της 

οστεοαρθρίτιδας γόνατος, τη διάγνωση της ρήξης πρόσθιου χιαστού και τη 

μετεγχειρητική αποκατάσταση αυτού. 
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General Introduction 

 

Applications of machine learning algorithms in quality of life 

 

Musculoskeletal disorders (MSDs) comprise more than 150 conditions that affect the 

human body’s movement or musculoskeletal system (i.e., tendons, muscles, nerves, 

ligaments, blood vessels, discs, etc.). The symptoms of musculoskeletal conditions 

could include stiff joints, swelling and recurrent pain and they can affect major areas 

of our body (e.g., knees, hips and shoulders as shown in Figure 1). The main factors 

that cause musculoskeletal conditions are occupation, age, injuries, obesity, activity 

level, family history and lifestyle. Musculoskeletal conditions exist in numerous 

occupations and they are one of the most important occupational problems. Hence 

MSDs affect the quality of life, the personnel's health and job satisfaction. According 

to the existing literature, more than 30% of workers in Europe suffer from MSDs 

(almost 40 million).  Osteoarthritis (OA), rheumatoid arthritis, tendinitis, fibromyalgia, 

carpal tunnel syndrome and bone fractures are the most common MSDs diseases.  

 

 

Figure 1. Musculoskeletal Disorders. 

 

The common characteristic of all the above diseases is the multifactorial causality. 

According to World Health Organization 343 million people globally suffer from OA 

[1]. Hence, the present PhD thesis focuses on the Knee Osteoarthritis (KOA), which is 

a degenerative joint disease of the knee that results from the progressive loss of 

cartilage and has a higher prevalence rate compared with other types of OA [2]. 

Obesity, age and previous injuries (e.g. ACL injury) due to sports or 

occupational/daily activities are factors that show a high correlation with KOA [3]. The 

quantification of KOA is performed with the Kellgren–Lawrence (KL) severity grading 

scale [4], which is the most commonly grading system (current gold standard) and 

consists of five severity grades, from 0 to 4 (Figure 2). At the onset of this disease, the 

main consequences are low quality of life due to pain, poor psychological state and 

social isolation. Due to KOA’s multifactorial nature and the poor understanding of its 

Institutional Repository - Library & Information Centre - University of Thessaly
30/12/2021 10:23:36 EET - 137.108.70.14



22 

 

pathophysiology, there is a need for reliable tools that will reduce diagnostic and 

prediction errors made by clinicians. The existence of public databases (e.g. 

Osteoarthritis Initiative (OAI)) has facilitated the advent of advanced analytics in KOA 

research however the heterogeneity of the available data along with the observed high 

feature dimensionality make the prediction of KOA progression and the diagnosis 

tasks difficult [5, 6].  

 

 

Figure 2. Kellgren-Lawrence (KL) scale [7].  

 

As mentioned above, the existence of anterior cruciate ligament (ACL) injury is a risk 

factor which is high correlated with KOA. ACL tear is one of the most common knee 

injuries (Figure 3) and it results in knee instability and increased risk of early onset 

osteoarthritis. According to recent surveys, post-traumatic KOA has been observed in 

over 50% of individuals [8].  Specifically, 10 up to 20 years after anterior cruciate 

ligament reconstruction (ACLR) is the most common period for the occurrence of 

KOA. It is established that abnormal knee kinematics and kinetics after ACLR 

contribute to the degenerative processes, due to changes in cartilage loading. So, 

identifying significant gait changes is important for understanding normal and ACL 

function. 

Consequently, the main challenges according to the existing literature are listed as 

follows: 

• The existence of big data, requires advanced AI analytics tools, 

• Big data show heterogeneity and high dimensionality, therefore robust feature 

selection techniques are required to cope with them, 

• There is a need for prediction and diagnostic models that offer generalization 

to various data subsets and  
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• Despite the existence of prediction and diagnostic models, machine learning 

models function as black boxes, therefore there is a need to develop techniques 

for their interpretation. 

 

 

Figure 3. Anterior cruciate ligament (ACL) injury. 

 

Meeting the aforementioned research challenges of KOA, the present PhD thesis 

incorporates five studies aiming i) to improve the current understanding of risk factors 

which have the main role in KOA progression and diagnosis tasks and to improve the 

current understanding of gait biomechanical parameters for ACL injury diagnosis, ii) 

to interpret their contribution on the model’s output thus enhancing our 

understanding of the rationale behind the decision-making mechanism of the best 

model in each task and iii) to develop reliable and non-invasive tools for the prediction 

of KOA progression, KOA diagnosis as well as post-surgical rehabilitation tools.  

As an introduction, in Chapter 1, a review is presented to introduce the reader to key 

directions of Machine Learning techniques on the diagnosis, predictions and post-

treatment of KOA. As observed, KOA is a big data problem in terms of data 

complexity, heterogeneity and size. Hence, a gap was identified concerning the 

Machine Learning as the solution to cope with the aforementioned challenges and thus 

lead to new automated pre- or post-treatment solutions that utilize data from the 

greatest possible variety of sources. In Chapter 2, a robust feature selection (FS) 

approach that could identify important risk factors which contribute to the prediction 

of KOA with KL progression from a big pool of risk factors available in the 

osteoarthritis initiative (OAI) database was provided. Furthermore, three different 

options with respect to the time period within which data should be considered in 

order to reliably predict KOA progression were explored and then machine learning-

based models that can predict long-term KL progression were developed. In Chapter 

3, an evolutionary genetic algorithm (GA)-based wrapper technique for the 

identification of risk factors for KOA progression was provided increasing the 

generalization capacity with respect to KOA progression. The proposed feature 
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selection (FS) methodology overcomes two crucial challenges: (i) the observed high 

dimensionality and heterogeneity of the available data that are obtained from the OAI 

database and (ii) the severe class imbalance problem posed by the fact that the KOA 

progressors class is significantly smaller than the non-progressors’ class. According to 

the literature there is a need for reliable tools that will reduce diagnostic errors made 

by clinicians. The existence of public databases (i.e., OAI) has facilitated the advent of 

advanced analytics in KOA research however the heterogeneity of the available data 

along with the observed high feature dimensionality make this diagnosis task difficult. 

Hence in Chapter 4, a robust FS methodology based on fuzzy logic was provided. The 

proposed methodology has the aim: (i) to handle the multidimensional nature of the 

available datasets and (ii) to alleviate the defectiveness of existing feature selection 

techniques towards the identification of important risk factors which contribute to 

KOA diagnosis.  In Chapter 5, an explainable ML-empowered methodology was 

provided to identify important biomechanical parameters associated with ACL injury 

diagnosis. In addition, a state-of-the-art explainability analysis based on SHAP and 

conventional statistical analysis attempted to uncover the rationale behind the 

decision-making mechanism of the best trained model and provide a holistic approach 

of quantifying the contribution of the input biomechanical parameters in the tasks of 

ACL injury diagnosis in order to avoid the outset of KOA in the future. 
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Chapter 1 

 

Machine learning in knee osteoarthritis: A review 

 

Published as: 

Kokkotis, C., Moustakidis, S., Papageorgiou, E., Giakas, G., & Tsaopoulos, D. E. (2020). 

Machine learning in knee osteoarthritis: A review. Osteoarthritis and Cartilage Open, 

2(3), 100069. 

 

Abstract  

 

The purpose of present review survey is to introduce the reader to key directions of 

Machine Learning techniques on the diagnosis and predictions of knee osteoarthritis. 

This survey was based on research articles published between 2006 and 2019. The 

articles were divided into four categories, namely (i) predictions/regression, (ii) 

classification, (iii) optimum post-treatment planning techniques and (iv) 

segmentation. The grouping was based on the application domain of each study. The 

survey findings are reported outlining the main characteristics of the proposed 

learning algorithms, the application domains, the data sources investigated and the 

quality of the results. Knee osteoarthritis is a big data problem in terms of data 

complexity, heterogeneity and size as it has been commonly considered in the 

literature. Machine Learning has attracted significant interest from the scientific 

community to cope with the aforementioned challenges and thus lead to new 

automated pre or post treatment solutions that utilize data from the greatest possible 

variety of sources.    

 

Keywords: knee osteoarthritis; feature engineering; machine learning; prediction; 

classification; segmentation 
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Introduction  

 

Knee Osteoarthritis (KOA) is a degenerative disease of the knee joint and the most 

common form of arthritis causing pain, mobility limitation, affecting independence 

and quality of life in millions of people [2]. There is no known cure for ΚΟΑ, but there 

are several medical, biological and environmental risk factors, both modifiable and 

non-modifiable, that are known to be involved in the development and progression of 

the disease [9]. The aforementioned data characterizing ΚOA are high-dimensional, 

heterogeneous and the limited number of simple logistic regression models are not 

capable of handling large numbers of risk factors and most importantly, any 

interactions between environmental and other medical and biological factors. 

Furthermore, they cannot identify the tendency of a healthy subject to show signs of 

the disease and its progression based on patient outcomes. Despite that, the power and 

importance of correct study design should not be underestimated. In the well-

designed study even "simple" analysis can give trustful results. These significant 

shortfalls in OA risk prediction models require a completely different modelling and 

computational approach to the problem. Advanced machine learning techniques such 

as fuzzy-logic theory, discrimination metrics (e.g., mutual information gain indexes 

and Fisher discrimination ratios) and advanced classification models combined with 

novel and efficient feature selection methods suitable for very large data sets could 

significantly contribute to the problem of high dimensionality compared to the 

existing statistical techniques applied to the OA risk prediction problem.  

Machine Learning (ML) is the study of how computer algorithms (i.e., machines) can 

“learn” complex relationships or patterns from empirical data and hence, produce 

(mathematical) models linking an even large number of covariates to some target 

variable of interest [10]. As mentioned before, the ability to analyze complex cases with 

a huge volume of data and the maximum possible results it renders ML a valuable tool 

against KOA. It is worth noting that ML has been applied in areas such as robotics 

[11], medicine [12], biochemistry [13], bioinformatics [14], meteorology [15], 

agriculture [16] and the economic sciences [17]. The importance of applying ML 

techniques to KOA has been documented by Jamshidi et al. [5] and Kluzek and Mattei 

[18] in 2019.  

In this context this review has been carried out to allow each researcher to refer to the 

appropriate ML method in relation to ΚΟΑ. To achieve this aim, the structure of the 

review is as follows. Section Machine Learning in a nutshell presents the terminology 

and definitions, the types, tasks and models, which are used in the studies on which 

this review was based. Section Review of studies presents the steps of the methodology 

that were followed for the collection and classification of the studies concerning ML 

techniques in KOA. In addition, it presents a summary of the studied literature, 
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highlighting the main characteristics of proposed ML approached divided into four 

categories. The review ends with Section Discussion and Conclusions, which mentions 

the future expectations and advantages that exist through the usage of machine 

learning in knee osteoarthritis. 

 

Machine learning in a nutshell 

 

In ML, a sample (e.g., a patient) is represented by a number of features which come in 

various forms and formats including patient’s characteristics, risk factors, 

shape/texture characteristics in medical images or clinical history data. To facilitate the 

learning process, there features are typically concatenated forming a multidimensional 

feature vector. ML systems (Figure 1.1) operate in two phases: the learning phase 

(training) and testing one. Indicatively, the role of the pre-processing unit can be 

broadly categorised into the following: (i) data cleaning aiming to remove noise, 

missing and inconsistent examples (ii) data integration in cases where multiple data 

sources are available and (iii) data transformation including discretisation and 

normalisation. The feature extraction / selection unit (also referred as feature 

engineering unit) attempts to generate and/or identify the most informative feature 

subset in which the learning model will be subsequently applied during the training 

phase [19]. The feedback loop allows adjustments of the pre-processing and feature 

extraction / selection units that will further improve the performance of the learning 

model. During the testing phase, the trained model is shown previously unseen 

samples (represented as images or feature vectors) that need to be classified. The 

model makes an appropriate decision (classification or regression) based on the 

features that are present in each sample. Deep learning [20], that is a subfield of 

machine learning concerned with algorithms inspired by the structure and function of 

the brain, sets an alternative architecture by shifting the burden of feature engineering 

(the process of transforming raw data into features) to the underlying learning system. 

From this perspective, feature extraction or selection are omitted leading to a fully 

trainable system that begins from raw or pre-processed input (e.g., image pixels or 

time-series) and ends with the final output of recognized objects or predicted values. 
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Figure 1.1. A typical machine learning system 

 

Learning can be classified as supervised, unsupervised or reinforcement learning. In 

supervised learning, each data sample is represented by a pair consisting of an input 

(typically a multi-dimensional feature vector) and a desired output value (e.g., a label 

having real-world meaning such as Kellgren Lawrence grades in case of KOA). The 

training phase involves the task of learning a function that maps every input to its 

associated output. The generated inferred function is used to map unknown inputs 

during the testing phase. Unsupervised learning [21] is a class of ML techniques that 

operate with unlabeled data with the goal of discovering structures or patterns in the 

dataset. Novel paradigms for unsupervised learning (the so-called self-supervised 

learning) have been also proposed exploiting different labelings that are freely 

available besides or within visual data to learn general-purpose features [22].  In 

reinforcement learning, a model learns through trial-and-error interactions with its 

environment using reward and penalty assignments. 

 

In the terminology of ML, classification is considered as an instance of supervised 

learning. In short, it is the task of identifying to which of a set of categories (sub-

populations) a new example belongs, on the basis of a training set of data (experience) 

containing examples whose label is known.  Regression constitutes another supervised 

learning task, which aims to provide a prediction of an output variable according to 

the input variables which are known. The most known regression algorithms are the 

linear regression [23], as well as, stepwise regression [24]. Also, more complex 

regression algorithms have been developed, such as ordinary least squares regression 

[25], multivariate adaptive regression splines [26], multiple linear regression, and 

locally estimated scatterplot smoothing [27]. Table 1.1 cites the most well-known state-

of-the-art ML models of the literature.  Dimensionality reduction (DR) is a task that 

belongs in both families of supervised and unsupervised learning types, with the aim 

of providing a more compact lower-dimensional representation of a dataset 

preserving as much information as possible from the original data. It is usually 

performed prior to applying a classification or regression model in order to avoid the 

effects of the curse of dimensionality. Some of the most common DR algorithms are 
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the following: (i) principal component analysis (PCA) [28], (ii) partial least squares 

(PLS) regression [29] and (iii) linear discriminant analysis (LDA) [30].  Finally, 

clustering [31] is an application of unsupervised learning typically used to find natural 

groupings of data (clusters). Well established clustering techniques are the K-means 

technique [32] hierarchical clustering [33], and the expectation-maximization 

technique [34]. 

 

Table 1.1. Presentation of indicative ML models along their characteristics. 

Category Models Description Advantages Disadvantages 

Bayesian  Naive Bayes, Gaussian 

Naive Bayes, 

Multinomial Naive 

Bayes, Bayesian Belief 

Network [35-37] 

Probabilistic graphical 

models in which the 

analysis is undertaken 

within the context of 

Bayesian inference 

They model 

uncertainty; easy to 

handle missing and 

hidden data 

Increased 

computational cost in 

high-dimensional 

spaces; they require 

subjective definition of 

prior probabilities  

Linear Linear regression  

              [23, 24] 

The best fit line 

through all data points 

Easy to understand 

and implement; 

models can be easily 

interpreted  

Too simple to capture 

complex associations 

between variables: 

prone to overfitting  

Logistic regression [23] The adaptation of 

linear regression in 

classification problems 

Tree-based 

[38-41] 

Decision trees (DT) 

 [42-44][37] 

A decision support 

tool that uses a tree-

like graph or model of 

decisions and their 

possible consequences, 

including chance event 

outcomes, resource 

costs, and utility 

Not powerful enough 

in problems of high 

complexity  

Random forest (RF) 

[41] 

Ensemble model that 

produces multiple 

decision trees, using a 

randomly selected 

subset of training 

samples and variables. 

Fast to train and 

powerful  

Not so interpretable; 

slower than other 

techniques  

Gradient boosting [45]  Uses weak decision 

trees as base models. 

Predictive results are 

obtained through 

increasingly refined 

approximations. 

Fast and high 

performing  

Interpretability issues; 

sensitive to small 

changes    

Neural networks Neural networks  

[46-55] 

Information processing 

paradigm that is 

inspired by the way 

biological nervous 

systems, such as the 

brain, process 

information. 

Can handle complex 

problems  

Not interpretable; Slow 

Deep Neural networks 

(DNN) [20] such as 

CNN [56], deep belief 

network [57], and auto-

encoders [58]. 

Can handle extremely 

complex problems  

Require a lot of power; 

not interpretable; Slow 

Instance based models K-Nearest Neighbor 

[59], Locally Weighted 

Learning [60], 

Learning Vector 

Quantization 

Memory-based 

techniques that learn 

by comparing new 

examples with 

instances in the 

training database 

Simple and fast to 

implement 

Complexity grows 

with data (up to O(n) 

where n is the number 

of the training 

examples), prone to 

overfitting 
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algorithm [61], Self-

Organising Maps [62]  

Support vector 

machines (SVMs) 

SVM [63, 64] 

Least Squares SVM 

[65] 

Finds a solution (linear 

or non-linear) that 

maximizes the margin 

between classes 

SoA performance; 

generalized solutions; 

robust to high 

dimensionality  

Tuning 

hyperparameters is 

crucial; time 

consuming and 

difficult to interpret 

 

Recently, deep learning has attracted wide-spread attention because of its enormous 

representing power, automated feature learning capability and best-in-class 

performance in solving complex problems [66]. Deep NNs make use of deeper 

architectures, extensible hidden units and nonlinear activation functions to model 

complex data, whereas one of their most attractive aspects is that they automate 

feature engineering thus alleviating the need for domain expertise and hardcore 

feature extraction. Currently, DL models have dramatically improved the state-of-the-

art in many different sectors and industries including healthcare [67]. DL models can 

be either supervised, partially supervised, or even unsupervised. Convolutional 

neural networks (CNN) are among the most famous DL networks where feature maps 

are extracted by performing convolutions in the image domain. A comprehensive 

introduction on CNNs is given in [56]. Other typical DL architectures that belong to 

the family of probabilistic undirected graphical models are deep Boltzmann machines, 

and deep belief networks [57]. Auto-encoders [58] are unsupervised DNNs whose 

main idea is to encode high dimensional data into a low-dimensional latent vector and 

try to reconstruct the input data as flawlessly as possible by only using its coding. 

Recurrent neural networks (RNN) are another important family of DL models that 

define unique topological connections between their neurons in order to encode 

temporal information in sequential data [68]. 

    

Methods 

 

Literature Search Approach 

 

This survey was based on research articles published between 2006 and 2020 using the 

search engines Scopus, PubMed and Google Scholar. During our search, we identified 

articles that used ML for the study of KOA by various techniques. Especially, for this 

search, the terms machine learning, deep learning and knee osteoarthritis were used. 

A prerequisite for the inclusion of an article in our research was the occurrence of one 

of the three terms mentioned as keywords, either in the title or in the abstract of each 

article. 
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Exclusion Criteria 

 

In the first instance, all articles retrieved and collected were examined for the title and 

the abstract by one of the authors. In order to reach our original goal, we excluded the 

following categories: non-English articles, postgraduate dissertations, doctoral 

dissertations, studies not involving people with knee osteoarthritis and studies using 

traditional technical statistics. All the selected articles have been presented either in 

journal papers or conferences. Finally, the rest of the authors reviewed again the titles 

and abstracts to ensure that they met the membership criteria. 

 

Assessed Outcomes  
 

The studies, which are recorded in this article, were divided into four categories, 

namely (i) Predictions/Regression (13 studies), (ii) Classification (43 studies), (iii) 

Optimum post-treatment planning techniques (4 studies) and (iv) Segmentation (15 

studies). The grouping was based on the technical characteristics of the ML methods 

and the application domain of each study.  

Then, after separating the articles, the following information was extracted from each 

article: Author, Year of publication, Data (MRI, X-Ray, Kinetic and Kinematic data, 

Clinical data and Demographics), Feature Engineering approach, Learning Algorithm 

techniques, Validation and Results (evaluation of performance). 

 

Results 

 

Predictions/Regression  
 

Despite the fact that OA field has been relatively slow adopting advanced analytical 

models compared to other fields, nowadays many studies focus on developing ML 

prediction models for KOA based on medical imaging (Magnetic Resonance Imaging 

(MRI), X-ray), clinical information, self-reported and biomechanical data.  

Data sources:  Imaging technologies (either MRI or X-ray) were incorporated into the 

majority of advanced analytical models to predict knee articular cartilage morphology 

with accuracies varying from 76.1% up to 92% [69-73]. Recently, the combination of 

multimodal data (medical images with clinical or biomechanical data) has formed the 

basis for more powerful and efficient models. To enhance the quality of the available 

raw data or overcome the curse of dimensionality, a number of sophisticated 

algorithms were reported in the literature including: (i) LASSO [74], Topological Data 
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Analysis [75], Recursive feature elimination (RFE) [76], PCA [77] for dimensionality 

reduction or (ii) CNN [78] to extract new more informative deep features for images. 

The major finding of these studies was that the accuracy of image-based prediction of 

ΚOA progression can be improved if it is complemented with data sources such as 

clinical data, self-reported and biomechanical data.  

Learning techniques: Due to their efficiency and predictive performance, ensemble 

algorithms (RF or Gradient Boosting) were selected in five out of the twelve (12) 

studies in this category. However, a significant number of studies employed simpler 

models (e.g., linear regression models [69, 79] or logistic regression [75]) to implement 

the regression or prediction task. Non-linear SVMs were also investigated in four (4) 

papers [71, 73, 76, 80] and this choice could be attributed to the fact that they are 

relatively efficient in low and medium size feature spaces and that they generalize 

well. More complex learning (and subsequently more difficult to handle) approaches 

were finally tested in some studies [71, 73, 74] using NN-based architectures such as 

Artificial neural networks (ANNs) and CNNs.  

Validation: In the majority of those studies, validation has been performed with n-fold 

cross validation. Hold-out (typically 70%/30% for training/testing) and Leave-one-out 

cross-validation (LOOCV) have also been observed as a validation approach in some 

of the studies. It is worth noting that Tiulpin et al. [78] used an independent test set 

(acquired in another center) for validation.  Αn overview with all the studies including 

prediction models of KOA are shown in Table 1.2: 

 

Table 1.2. Studies with Predictions/Regression techniques. 

Author Year Data Feature 

engineering 

Learning 

Algorithm 

Validation Results 

Abedin, J. 

[74] 

2019 Questionnaire data  

/ X-ray 

LASSO Elastic Net (EN), 

Random Forests 

(RF) and a 

convolution 

neural network 

(CNN) 

70% training/30% 

testing 

Root Mean Square 

Error (RMSE) for the 

CNN, EN, and RF 

models was 0.77, 0.97 

and 0.94 respectively 

Ashinsky, B. 

G. 

[72] 

2017 MRI - Weighted 

neighbor 

distance using 

compound 

hierarchy of 

algorithms 

representing 

morphology 

WN(D-CHRM) 

LOOCV 75% acc 
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Donoghue, C. 

[69] 

2011 MRI Laplacian 

Eigenmap 

Embedding 

Multiple linear 

regression 

270 knees as 

external validation 

group  

Up to R2= 0.75 

Du, Y. 

[73]  

2018 MRI PCA ANN, SVM, 

Random forest, 

Naïve Bayes 

10-fold cross 

validation (10F-CV) 

ANN with AUC= 

0.761 for KL grade 

Random forest with 

area under the curve 

(AUC) = 0.785 for 

JSM 

Du, Y. 

[71] 

2017 MRI PCA ANN, SVM, 

Random forest, 

Naïve Bayes 

10F-CV receiver operating 

characteristic (ROC) 

AUC of 0.761 (ANN)  

Halilaj, E. 

[79] 

2018 X-rays and pain 

scores 

- LASSO 

regression 

10F-CV for model 

selection and 10% 

for model 

evaluation  

AUC of 0.86 for 

Radiographic 

progression 

Lazzarini, N. 

[81] 

2017 Clinical variables, 

food and pain 

questionnaires, 

biochemical 

markers (BM) and 

imaging-based 

information 

Ranked 

Guided 

Iterative 

Feature 

Elimination, 

PCA 

Random Forest 10F-CV AUC of 0.823 by 

using only 5 

variables 

Marques, J. 

[70] 

2013 MRI Texture 

Analysis for 

extraction 

and Partial 

least squares 

(PLS) 

regression 

for selection 

Fisher linear 

discriminant 

analysis 

10F-CV for model 

selection. 10% for 

evaluation 

ROC AUC of 0.92 

Nelson, A.E. 

[77] 

2019 Demographic, 

MRI and 

biochemical 

variables 

Distance 

weighted 

discriminatio

n (DWD), 

PCA 

K- means, t-SNE Validation on 597 

participants- 

z = 10.1 (z-scores) 

Pedoia, V. 

[75] 

2018 MRI and 

biomechanics 

multidimensional 

data 

Topological 

Data 

Analysis 

Logistic 

Regression 

-  AUC 83.8% 

Tiulpin, Α. 

[78]  

2019 X-ray, Clinical data CNN Logistic 

Regression (LR) 

and Gradient 

Boosting 

Machine (GBM) 

OAI dataset for 

training and MOST 

dataset for testing, 

5F-CV 

AUC of 0.79 

Widera, P. 

[76] 

2019 Clinical and X-ray 

image assessment 

metrics 

Recursive 

feature 

elimination 

Logistic 

regression, 

KNN, SVC 

(linear kernel), 

Standard 10-fold 

stratified cross-

validation protocol  

F1 score 0.573 - 0.689 
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SVC (RBF 

kernel) and RF 

Yoo, T. K. 

[80] 

2013 Kinematic data - SVM Leave-one-out 

cross-validation 

(LOOCV) 

97.4 % acc 

 

Classification   

 

This section presents the outcomes of our survey on the application of classification 

models on the field of KOA research. It is worthwhile to note the plurality of different 

datasets along with the heterogeneity of data types used by each study. The identified 

data sources are: biomechanical data (kinematic-kinetic data and EMG signals), 

osteoarthritic outcome score, demographic characteristics, some gene polymorphisms, 

radiographs, X-ray and MRI. For this reason, we are grouping the studies into two 

categories, the first for biomechanical data-scores and the second for images. 

 

Biomechanical data and discrete variables 

 

Data sources: Biomechanical data were the most widely used source of information in 

the reported studies including kinematic-kinetic data and electromyography signals. 

Furthermore, clinical data consisting of self-reported, osteoarthritic outcome scores, 

demographic characteristics and some gene polymorphisms were used as additional 

sources complementing the biomechanical features. 

Feature engineering: Feature extraction and dimensionality reduction have been 

applied to improve the predictive capabilities of the learning models as well as to 

increase their computational efficiency. Α variety of algorithms and techniques were 

reported in the literature including: (i) Simulated annealing (SA) [82], Genetic 

algorithms (GAs) [82], Discrete wavelet transform (DWT) [83, 84], Wavelet Packet [85], 

SVM-based Fuzzy criteria [85] and Mahalanobis Distance algorithm [86] for feature 

selection and/or extraction (ii) Probabilistic PCA (PPCA) [87] and PCA [88-91] for 

dimensionality reduction and (iii) feature subsets exploration or use of time-domain 

statistical features [92, 93] to lead in more powerful learning models. PCA has been 

observed to be the most popular feature engineering technique due to its simplicity 

and easiness to handle. 

Learning techniques: A variety of machine learning models were used for 

implementing the detection and/or classification tasks. KNNs and SVMs were the 

most frequently selected algorithms being tested in (7) out of nineteen studies in this 

subcategory. Furthermore, RF [94], DT [86], Dempster Shafer Theory [82, 89], Bayes 
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classifier [87] and Discriminant analysis [88] were also investigated. Finally, the use of 

deep learning techniques (e.g., ANNs [89, 95], PNNs [96], MLPs [86, 93, 97] or CNNs 

[90, 93]) was limited due to the nature of the available training datasets (heterogeneous 

features and small sample sizes). 

An overview of the aforementioned studies is shown in Table 1.3:   

 

Table 1.3. Classification studies employing biomechanical data and/or distinct variables. 

Author Year Data Feature 

engineerin

g 

Learning 

Algorithm 

Validation Results 

Aksehirli, Ö 

[96] 

2013 Demograph

ic 

characterist

ics and 

some gene 

polymorphi

sms 

- SVM,  

PNN 

152 OA knees 

for training 

and 102 

healthy for 

testing 

76,77% 

acc & 

90,55% 

acc 

Beynon, M. J. 

[82] 

2006 Biomechani

cal Data 

Simulated 

annealing 

(SA) and 

genetic 

algorithms 

(GAs) 

 

Dempster–

Shafer theory 

of evidence 

(DST) & Linear 

discriminant 

analysis (LDA) 

LOOCV 96.7% &  

93.3% acc 

de Dieu 

Uwisengeyi

mana, J. [93] 

2017 Biomechani

cal Data 

Time-

domain 

statistical 

features 

Multilayer 

perceptron, 

Quadratic 

support vector 

machine, 

complex tree & 

deep learning 

network with 

k-NN 

22 subjects (11 

healthy and 11 

OA)  

99.5%,  

99.4%  

 98.3% & 

91.3% acc 

Deluzio, K.J. 

[88] 

2007 Biomechani

cal Data 

PCA Discriminant 

analysis 

CV Misclassif

ication 

rate 8% 

Jones, L. 

[89] 

2008 Biomechani

cal Data 

PCA The 

Dempster–

Shafer (DS)-

based classifier 

& ANN 

LOOCV 97.62% &  

77.82% 

acc 

Kotti, M. 

[87] 

2014 Biomechani

cal data 

PPCA Bayes classifier 47F-CV 82.62 % 

acc 

Kotti, M. 

[94] 

2017 Biomechani

cal data 

- Random forest  50% training/ 

50% testing, 

5F-CV 

72.61% 

acc  
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Lim J. 

[90] 

2019 Demograph

ic and 

personal 

characterist

ics, 

lifestyle- 

and health 

status-

related 

variables 

PCA DNN 66% training/ 

34% testing  
AUC of 

76.8% 

Long, M. J. 

[98] 

2017 Outcome 

scores and 

biomechani

cal gait 

parameters 

- KNN 70% 

training/30% 

test. 30% of 

training was 

left out for 

validation 

AUC of 

1.00 

McBride, J. 

[99] 

2011  

Biomechani

cal data 

- Neural 

networks 

50% 

training/50% 

testing 

75.3% acc 

Mezghani, N. 

[83] 

2008 Biomechani

cal data 

Discrete 

wavelet 

transform 

(DWT) 

Nearest 

neighbor 

classification 

(NNC) 

LOOCV 38 of 42 

cases acc 

Mezghani, N. 

[84] 

2008 Biomechani

cal data 

Discrete 

wavelet 

transform 

(DWT) & 

Polynomial 

expansion 

Nearest 

neighbor 

classifier 

(NNC) 

LOOCV 91% acc 

 

67% acc 

       

Mezghani N. 

[100] 

2017 Biomechani

cal Data 

- Regression tree 10F-CV for 

model 

selection. 10% 

for model 

evaluation 

ROC 

AUC of 

0.85 

Moustakidis, 

S.  

[85] 

2010 Biomechani

cal data 

Wavelet 

Packet, FS 

via 

SVMFuzCo

C 

KNN1 

SVM (AAA) 

SVM (1AA) 

FCT 

C4.5 

FDT-SVM 

 10F-CV 86.09 % 

acc 

89.71 % 

acc 

90.18 % 

acc 

88.35 % 

acc 

91.12 % 

acc 

93.44 % 

acc 
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Moustakidis, 

S. 

[92] 

2019 Clinical 

Data 

Feature 

subsets 

exploration 

DNN 

 

Adaboost 

Fuzzy KNN 

Fuzzy NPC 

CFKNN 

10F-CV 86.95% 

acc (for 

age 70+) 

78.60% 

acc 

77.39% 

acc 

72.40% 

acc 

73.60% 

acc 

Phinyomark, 

A. 

[91] 

2016 Biomechani

cal Data 

PCA SVM 10F-CV 98-100 % 

acc 

Şen Köktaş, 

N. 

[97] 

2006 Biomechani

cal data 

- MLPs CV 1.5 of the 

subjects 

has been 

misclassif

ied 

Şen Köktaş, 

N. 

[86] 

2010 Biomechani

cal data 

(Also 

included 

age, body 

mass index 

and pain 

level) 

Mahalanobi

s Distance 

algorithm 

Decision tree - 

MLP multi-

classifier 

10F-CV 80% acc 

Yoo, T. K. 

[95] 

2016 Predictors 

of the 

scoring 

system in 

the Fifth 

Korea 

National 

Health and 

Nutrition 

Examinatio

n Surveys 

(KNHANE

S V-1) data 

Logistic 

regression 

ANN 66.7% training 

/33.3% 

validation, 

KNHANES V-1 

(internal 

validation 

group) and OAI 

(external 

validation 

group) 

ROC 

AUC of 

0.66-0.88 

 

 

Medical Images 

 

Medical images form a crucial source of information in the KOA research. The types 

of medical imaging that have been analysed in this survey were either MRI or X-ray. 
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According to our knowledge only six studies have been presented in the literature, 

until now, that reported the development of MRI data analysis methodologies for the 

diagnosis of KOA. Only one of the aforementioned studies adopted a deep learning 

approach applying directly learning algorithms (CNN and specifically MRNet) on the 

available images without the inclusion of any feature selection technique [101]. The 

rest of the reported studies employed a number of feature engineering techniques 

prior to the application of the learning models. Discrete wavelet transform, Gray level 

Co-occurrence Matrix (GLCM) and PCA are among the algorithms that were used to 

either extract new features or reduce the feature space dimensionality. As regards the 

learning part, NNs [102, 103], SVM [104, 105] and LDA [106] were the most commonly 

employed models for early detection and diagnosis of KOA.  

 

Localization of joints was a crucial task in the reported X-ray applications. Numerous 

approaches of varying complexity were applied such as filtering (Gabor, Sobel) [107-

109], statistical shape/texture analysis [110, 111], fully automated software tools 

(Bonefinder [112, 113]) or more sophisticated deep learning networks including YOLO 

and FCN [114, 115]. In some cases, manual cropping was also performed [116-120]. 

PCA and GLCM were again selected in many of the reported papers to generate small 

and informative feature subsets, whereas several recent studies adopted CNN-based 

methodologies as an alternative for the feature extraction task. Deep learning networks 

(e.g., VGG-19, VGG-16, DenseNet, ResNet-34 and LSTM) were also involved in several 

studies acting as the main learning algorithm.  State-of-the-Art ML models such as 

SVMs were finally selected in a few Xray-based studies to drive the decision-making 

process. In most of the cases, validation was performed via k-fold CV and hold-out 

whereas some studies adopted more robust validation strategies (cross-center 

validation). The main characteristics of the reported image-based classification studies 

are shown in Table 1.4. 

 

Table 1.4. Medical image-based classification studies of KOA. 

Author Year Data Localizatio

n of joints 

Feature 

engineering 

Learning 

Algorithm 

Validation Results 

Bien, N. 

[101] 

2018 MRI - - CNN 

(MRNet) 

Validation 

A: 82,9% 

training, 

8.5% tuning 

and 8,6 

validation 

Validation 

B: 60%-

20%-20% 

into 

training, 

tuning, and 

validation 

AUC of 

0.937 

Institutional Repository - Library & Information Centre - University of Thessaly
30/12/2021 10:23:36 EET - 137.108.70.14



39 

 

sets using 

an external 

dataset 

        

En, Chuah Zhi 

[102] 

2013 MRI - Discrete 

Wavelet 

Transform 

(DWT) 

ANN-based 57,1% (200 

images) 

training/ 

42,9% 

testing (150 

images)  

94.67% acc 

Kubkaddi, 

Sanjeevakuma

r 

[104] 

2017 MRI - GLCM SVM with 

RBF kernel, 

SVM with 

linear kernel 

& 

 SVM with 

polynomial 

kernel  

70% 

training/ 

30% testing   

 

95.45% acc, 

95.45% acc 

& 

87.8% acc 

Kumarv, A. 

[105] 

2017 MRI - GLCM  SVM  15 images / 

hold out 

validation  

86.66% acc 

Marques, J. 

[106] 

2012 MRI - PLS with 

forward 

feature 

selection 

(PLS-FFS) 

 

Fisher LDA, 

  PLS 

regression,  

sparse PLS 

and 

 sparse LDA  

10F CV ROC AUC 

of 0.86 

(Diagnosis) 

& 0.63 

(Prognosis), 

ROC AUC 

of 0.88 & 

0.67, 

 

ROC AUC 

of 0.89 & 

0.69, 

ROC AUC 

of 0.93 & 

0.70, 

ROC AUC 

of 0.89 & 

0.59 

Pedoia, V. 

[103] 

2019 MRI (T2 

relaxation 

time 

maps), 

Demogra

phics and 

KOOS 

- PCA Densely 

Connected 

Convolution

al Neural 

Network 

(DenseNet)  

RF 

65-20-15% 

split of 

training, 

validation, 

and 

holdout 

testing set 

AUC = 

83.44%, 

Sensitivity 

= 76.99%, 

Specificity= 

77.94%  

 

AUC = 

77.77%, 

Sensitivity 

= 67.01%, 

Specificity = 

71.79% 
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Anifah, L. 

[107] 

2013 X-ray Gabor filter  GLCM Self 

Organising 

Maps (SOM) 

16,2% 

training/ 

83,8% 

testing 

Accuracy 

rate of 

93.8% for 

KL-Grade 

0, 70% for 

KL-Grade 

1, 

4% for KL-

Grade 2, 

10% for KL-

Grade 3 

and 88.9% 

for KL-

Grade 4 

Anifah, L. 

[109] 

2018 X-ray Gabor 

kernel 

- SOM 8,8% 

training/ 

91,2% 

testing 

40.52% acc 

for KL-

Grade 2 & 

36.21% for 

KL-Grade 0 

        

Antony, J. 

[121] 

2017 X-ray FCN FCN CNN 70% 

training/ 

30% 

validation, 

Multi-

center 

validation  

Multi-class 

classificatio

n accuracy 

60.3%  

Antony, J. 

[108] 

2016 X-ray Sobel 

horizontal 

image 

gradients, 

linear SVM 

Pre-trained 

CNN 

(BVLC 

reference 

CaffeNet 

and VGG-

M-128 

networks) 

Linear SVM  70% 

training 

(with 5F 

CV)/ 30% 

testing   

 Fitting a 

linear 

SVM 

produced 

95.2% 5F 

CV and 

94.2% test 

accuracy 

for knee 

joint 

detection; 

57.6% 

accuracy in 

the muti-

class KOA 

severity 

task 

(Grades 0-

4) 

Bayramoglou, 

N. [112] 

2019 X-ray  BoneFinder Local Binary 

Patterns 

(LBP), 

Fractal 

Dimension 

(FD), 

Haralick 

features, 

Shannon 

Logistic 

regression 

 5F CV on 

OAI for 

training 

and 

validation 

in MOST 

data  

AUC of 

0.84 
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entropy, and 

Histogram 

of Oriented 

Gradients 

(HOG) 

Chen, P.  

[114] 

2019 X-ray Customize

d one-stage 

YOLOv2 

network 

- CNN 

models 

(VGG-19) 

training, 

validation, 

and testing 

sets with a 

ratio of 7: 1 

:2. 

69.7% acc 

        

Gorriz, M. 

[122] 

2019 X-ray Trainable 

attention 

modules 

 CNN (VGG-

16) 

70% 

training/30

% testing 

and 10% of 

the training 

data was 

kept for 

validation 

64.3% acc 

Gornale, 

Shivanand S. 

[116] 

2017 X-ray Images are 

cropped to 

512x409 

pixels and 

finally 

rescaled 

Histogram 

of orientated 

gradients 

(HOG) 

Multiclass 

SVM 

Classificati

on results 

validated 

by two 

experts that 

were in 

close 

agreement 

Classificati

on rate of 

97.96% for 

Grade-0, 

92.85% for 

Grade-1, 

86.20% for 

Grade-2, 

100% for 

Grade-3 & 

Grade-4 

Liu, B. 

[123] 

2020 X-ray Region 

proposal 

network 

(RPN) 

- FLA (Faster 

R-CNN as 

original and 

our adjusted 

model as 

FLA) 

5F CV 82.5% acc 

Minciullo, L. 

[110] 

2017 X-ray PCA based 

combinatio

n of 

statistical 

shape and 

texture 

models 

 

PCA- 

3 stage 

Constrained 

Local Model 

Indecisive 

Forest (IF) 

Optimised 

Indecisive 

Forest (OIF) 

5F CV 87.61 % acc 

88.15 % acc 

Minciullo, L. 

[111] 

2017 X-ray Shape 

Model 

Statistical 

Shape 

Model 

(PCA) 

 Random 

Forest 

5F CV ROC AUC 

of 0.842 

(binary) & 

0.479 (5-

class 

problem) 

Navale, D. I. 

[117] 

2016 X-ray Dividing 

Image into 

Blocks 

Texture 

analysis 

algorithm 

SVM 71,4% 

training, 

4,8% 

validation 

For affected 

subjects’ 

accuracy is 

80% 
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and 23,8% 

testing  

Sharma, S. 

[118] 

2016 X-ray Cropping 

of images 

Histogram 

method, 

GLCM and 

Canny Edge 

Detection 

Technique 

SVM 75% 

training/ 

25% testing. 

95% acc 

Tiulpin, A. 

[115] 

2018 X-ray FCN, as 

proposed 

in Antony 

2017  

- CNN 

ResNet-34 

67% 

training, 

11% 

validation 

and 22% 

testing, 

multi-

center 

validation  

66.71% acc 

(multi-class 

Grades 0-4) 

Tiulpin, A. 

[113]  

2019 X-ray Random 

forest 

regression 

voting 

approach 

implement

ed in a 

BoneFinder 

tool 

- An 

ensemble of 

deep 

residual 

networks 

with 50 

layers, 

squeeze-

excitation 

and 

ResNeXt 

blocks 

5-fold 

subject-

wise 

stratified 

CV 

AUC of 

0.98 

von Tycowicz, 

C. [124] 

2019 X-ray - Shape 

Space, 

Graph 

Convolution

al Filters 

A multi-

layer, feed-

forward 

graph 

convolution

al network 

The data 

was split 

into 

training, 

validation, 

and test 

sets with a 

ratio of 2/3, 

1/6, and 1/6, 

respectively  

64.64% acc 

Wahyuningru

m, R. T. [119] 

2016 X-ray Images 

were 

cropped 

around the 

knee 

properly 

 

Contrast 

Limited 

Adaptive 

Histogram 

Equalization 

(CLAHE)-

2DPCA/ 

Structural 2-

Dimensional 

Principal 

Component 

Analysis 

(S2DPCA) 

SVM 

(Gaussian 

kernel) 

3F CV Up to 

94.33% 

class 

accuracy 

for Grade 0  

Wahyuningru

m, R. T. [120] 

2019 X-ray Manually 

cropping 

on the knee 

CNN (VGG-

16) 

Long Short 

Term 

3F CV 75.28% acc 
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joint with 

dimensions 

of 400 x 100 

pixels 

Memory 

(LSTM) 

 

 

Optimum post-treatment planning techniques  

 

As concluded in this survey, there is a lack of studies on the development of ML based 

decision support systems (DSS) for the post-treatment stage of KOA. According to our 

knowledge, the first attempt in that direction was made in 2009 in [125] where the 

authors presented an approach for detecting recovery from knee replacement surgery 

using gait spatio-temporal parameters. Their main aim was to investigate if the 

classifier could detect changes at 2 and 12 months following knee replacement surgery. 

The proposed method achieved to: (i) detect improvements in gait function and (ii) 

recognize gait parameters that are altered due to KOA. In [126], the authors tackled 

the task of selecting the appropriate gait re-training strategy as a ML problem and 

presented interpretable learning models. Using the trained models, a specialist was 

able to know which technique would work best for a specific patient. Online 

segmentation for KOA rehabilitation monitoring was also investigtaed in [127]. The 

novelty of this system was the real-time feedback to patients and physiotherapists. 

Finally, an SVM-based human motion identification for rehabilitation exercise 

assessment of KOA was proposed in [128] using biomechanical data with reliable 

results (up to 100% in recognizing the types of rehabilitation exercises and over 97.7% 

in motion identification). In the majority of the reported studies, the SVM technique 

was applied (in three out of four reports) on biomechanical data leading to even perfect 

identification rates (up to 100%). The validation was performed with 10-fold cross 

validation or with the leave one out (LOO) cross-validation approach.  The studies 

with the ML-empowered post-treatment planning techniques of KOA are shown in 

Table 1.5. 

 

Table 1.5. Studies with ML-driven post-treatment planning techniques of KOA. 

Author Year Data Feature 

engineering 

Learning 

Algorithm 

Validation Results 

Chen, H. P. 

[127] 

2016 Biomechanical 

data  

Tilt angle 

calculation and 

initial posture 

classification 

algorithm 

Multi-layer 

SVM 

10-fold cross validation 90.6% on layer-1 SVM & 

92.7%  

on layer-2 SVM 
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Huang, P. C. 

[128] 

2017 Biomechanical 

data 

Sequential 

forward feature 

selection (SFS) 

Multi-class SVM 10-fold cross validation Accuracy for rehabilitation 

exercises recognition is 100% 

and for motion identification 

is 97.7%. 

Levinger, P. 

[125] 

2009 Biomechanical 

data 

SVM SVM LOOCV Accuracy of 100% for the 

training set and 88.89% for 

the test set 

Wittevrongel, 

B. [126] 

2015 Biomechanical 

data 

k-equal frequency 

binning 

Decision tree & 

Rule sets 

LOOCV Best accuracy 92.9% &  

76.5 % respectively  

 

 

Segmentation  
 

Image segmentation is the process of changing the representation of an image into 

meaningful segments. MR image segmentation for KOA is typically performed by 

clinicians following a manual, laborious, time-consuming process that is prone to 

subjective diagnosis error. Therefore, many studies have focused on interactive, semi 

or fully automated cartilage segmentation to assist the medical research in KOA. At 

this point, it should be mentioned that even in the case of   ML and especially in 

supervised learning approaches, a researcher/doctor still needs to label the images, 

hence the developed trained model is prone to the subjectivity.  

 

Landmark localization and shape modelling: To increase the performance of medical 

image segmentation techniques, landmark localization and shape modelling have 

been utilized as preliminary tools before the application of ML or DL. As recorded, 

landmark localization took place by using either hourglass-like encoder-decoder 

models or with manual cropping and selection of seed points. Furthermore, a number 

of shape modelling tools were employed to extract informative shape-relevant 

characteristics from the available images including: Statistical Shape Models (SSMs), 

Combined Intensity, Shape Priors, Histogram of Oriented Gradients (HoG) and edge 

detectors.   

 

Segmentation: Segmentation was accomplished employing either interactive or (semi- 

and/or fully) automated approaches. Flexible seeds labelling applied on MRI data 

[129] was the dominant approach on the integrative segmentation category.  To enable 

automation on the segmentation tasks, advanced DL-based techniques were adopted 

(e.g., CNN [130-132], unsupervised domain adaptation DL [133] and DNN [134] or 

even state-of-the-art ML techniques such as SVM [135], KNN [136, 137] and RF [138, 

139]). Finally, more traditional segmentation approached were also proposed 

including: two-pass block discovery mechanism [140], Iterative Local Branch-and-

mincut [141], Gaussian fit model [142] and multi-atlas segmentation (MAS) [143].  
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Validation: OAI and MOST were the most-used databases to validate the performance 

of the aforementioned segmentation approaches. Validation was performed using k-

Fold CV, LOOV or even manual assessment from experts.   

 

An overview of all the identified KOA segmentation studies of our survey is given in 

Table 1.6: 

 

Table 1.6. Segmentation techniques applied on the KOA research. 

Author Year Data Feature engineering Learning Algorithm Validation Results  

Ababneh, S. Y. 

[140] 

2010 MRI Disjoint (non-

overlapping) block-wise 

scanning, two-pass 

block discovery 

A graph-cut based 

segmentation algorithm 

30 images from the 

OAI database 

96 % acc 

Ambellan, F. 

[130] 

2019 MRI - Combination of Statistical 

Shape models (SSMs) and 

2D / 3D CNN 

Datasets: (i) SKI10, 

(ii) OAI Imorphics 

and (iii) OAI ZIB  

(i) 74.0 ±7.7 Total score 

(ii) For femoral cartilage 

the DSC is 89.4%; for 

baseline and 89.1% 

(iii) The DSC is 98.6% for 

femoral bone, 98.5% for  
 tibial bone, 89.9% for 

femoral cartilage, and 

85.6% for tibial cartilage   

Gan, H. S. 

[129] 

2017 MRI k-means clustering 

algorithm, Fuzzy c-mean 

Flexible seeds labelling 

method 

Manual validation 

by two experts on 10 

images 

Dice’s 

reproducibility of 0.80 for 

observer 1 and 0.82 for  

observer 2 

Gornale, 

Shivanand S. 

[136]  

2019 X-

Ray 

ROI extraction using 

Sobel, Prewitt edge 

detection,  

Computation of basic 

statistical features 

Otsu’s Segmentation, 

Texture based 

Segmentation and 

KNN 

532 digital Knee X-

ray images 

The accuracy rate of 

91.16% for Sobel method, 

96.80% for Otsu’s 

method, 94.92% for 

texture method and 

97.55% for Prewitt 

method is obtained 

Kashyap, S. 

[138] 

2016 MRI Extraction of 3D Haar-

like features from 

volume of interest (VOI) 

LOGISMOS, just-enough 

interaction (JEI) as post-

processing and  

 Random Forest Classifier 

The data from OAI 

were divided into 

two training sets 

with 15 and 13 

which were used to 

train the NAF and 

the second RF 

classifier. 53 data-

sets were used for 

testing 

Border positioning errors 

(mm) 

Femur signed 0.03±0.19 

Femur unsigned 

0.55±0.11 

Tibia signed 0.10±0.17 

Tibia unsigned 0.61±0.14, 

For RF classifier: 

Femur signed -0.06±0.18 

Femur unsigned 

0.56±0.11 

Tibia signed 0.16±0.24 

Tibia unsigned 0.65±0.17  

Kashyap, S. 

[139] 

2018 MRI Neighborhood 

Approximation Forests 

k-means clustering 

Hierarchical Random 

Forest Classifier 

and LOGISMOS 

108 MRIs from 

baseline, and 

12-month follow-up 

scans of 54 patients 

Cartilage surface 

positioning errors (in 

mm) of 4D 

Femur signed 0.01±0.18 
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Femur unsigned 

0.53±0.11 at Baseline 

Marstal, K. 

[137] 

2011 MRI Histogram equalization, 

extraction of similarity 

features from 

neighboring patches and 

PCA 

K-means MRI scans from 50 

subjects (25 for 

training)  

Average sensitivity, 

specificity and dice 

similarity coefficient of 

0.853 ± 0.093, 0.999 ± 

0.001, 0.800 ± 0.106 and 

0.831 ± 0.095, 0.999 ± 

0.001, 0.777 ± 0.054 on 

tibial and femoral 

cartilages respectively 

Panfilov, E. 

[133]  

2019 MRI - Deep learning U-net with 

two modern regularization 

techniques, 

namely, supervised mixup 

and UDA 

 

5-fold cross-

validation. Dataset 

A: 88 MRI images, 

Dataset B: 108 MRI 

images and Dataset 

C: 44 MRI images 

 

Mean of volumetric 

DSCs is 0.907 (U-net + 

mixup, Dataset A) for 

femoral cartilage 

 and  

 DSCs is 0.821 (U-net + 

UDA2, Dataset C). 

 

Park, S. H. 

[141] 

2009 MRI Combined Intensity and 

Shape Priors 

Iterative Local Branch-and-

mincut 

LOOV on 8 3D MRI 

images 

Average similarity index 

over 0.80 for normal 

participants and 0.75, 

0.67, and 0.64 for 

participants with 

established knee OA 

Swanson, M. S. 

[142] 

2010 MRI Manual selection of seed 

points, histogram and 

fitted Gaussian curves of 

the region 

 Threshold operation 

followed by conditional 

dilation and post-

processing 

Validation on 10 

normal knees 

images and 14 knees 

with OA 

 

Mean similarity 

Index 0.64-0.80 

Tack, A.  

[131] 

2018 MRI 2D U-net followed by 

statistical shape models 

of menisci  

CNN (3D U-Net) Validation on 5 

different datasets of 

MRI images from 

OAI with 2F CV 

DSCs was 83.8% for 

medial menisci 

(MM) and 88.9% for 

lateral menisci (LM) at 

baseline, and 83.1% and 

88.3% at 12-month 

follow-up. 

Tack, A. 

[132] 

2019 MRI - 3D CNN (3D U-Nets) MRI data of 1378 

subjects 

from the OAI (2F 

CV) 

Accuracy of 88.02 ± 4.62 

for medial tibial cartilage 

(MTC) and 91.27 ± 2.33 

for lateral tibial cartilage 
(LTC) at baseline and 

87.43 ± 4.02 

and 90.78 ± 2.42 at 12-

months follow-up 

Tamez-Pena, J. 

G. [143] 

2012 MRI Manual creation of 

atlases by experts using 

CiPAS 

Multi-atlas segmentation 

using CiPAS platform 

LOO on 48 MRI 

images 

DSC 0.88 and 0.84 for the 

femoral and tibial 

cartilage 

Tiulpin, A. 

[135] 

 

2017 X-

ray 

Anatomically-based joint 

area proposal 

and Histogram of 

Oriented Gradients 

SVM The images from 

MOST were used to 

create training (991), 

validation (110) and 

test sets (473), 

Jyvaskyla (93), 

OKOA (77) 

Μean intersection over 

the union equals to: 0.84 

(MOST), 0.79 (Jyvaskyla) 

and 0.78 (OKOA). 
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Tiulpin, A. 

[134] 

 

2019 X-

ray 

ROI localisation using 

low-costs annotations  

Hourglass-like encoder-

decoder 

models for landmark 

localization 

5-fold patient-wise 

cross-validation 

split stratified by a 

KL grade (748 knee 

joints in total) 

Presicion 92.11 ± 0.34 at 

2.5mm 

 

 

Discussion and Conclusions  

 

Our literature survey outlined the current usage of machine learning methods in KOA 

diagnosis and prediction challenge. Figures 1.2 shows an increasing trend of ML-

related studies and papers in the field of KOA indicating the need for (i) enhancing 

our understanding about the onset and progression of the disease and (ii) new data-

driven tools that could enable early diagnosis and prediction of KOA. ML could play 

a key role towards these directions extracting valuable knowledge from various types 

of clinical data (biomechanical parameters, images, kinematics) and finding new 

solutions that utilize data from the greatest possible variety of sources.    

 

 

(a) 
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(b) 

Figure 1.2. a) A temporal evolution chart depicting the number of papers per category 

published each year since the year 2006 and included in the survey, b) Bubble chart showing 

a distribution of the papers considered in this survey arranged according to the data sources 

utilized in each survey category. 

 

Data has to be seen as an asset being one of the most important and instructive assets 

of the healthcare industry. In KOA research, several data sources have been considered 

as inputs forming powerful multi-dimensional training and testing data sets. Medical 

Imaging is one of the dominant data sources of the sector with MRI and X-ray images 

being typically employed in the majority of the papers of our survey (25 and 25 papers 

out of 75 used MRI and X-ray, respectively). Biomechanical parameters were also 

investigated in 21 studies demonstrating a big potential to be useful input data in KOA 

diagnosis, prognosis and the post-treatment planning. Finally, other complementary 

data sources have been also considered in KOA research in several papers including 

pain, outcome scores, demographics, generic attributes and genes (Figure 1.2).  

Feature engineering algorithms were applied on the available clinical data to either 

reduce the input feature dimensionality or extract new informative parameters from 

the raw data. PCA was employed in a number of papers to compress 3D kinematic 

time-series, ground reaction forces and MRI/X-ray images into more compact 

representations. Time domain and time-frequency domain features (e.g., DWT or 

Wavelet packet) were also extracted from GRF or EMG signals. GLCM was proved to 

be a quite popular technique for extracting textural features in studies where MRI or 
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X-ray images are considered as inputs.  A number of feature selection techniques has 

been also employed to select the most informative features from the pool of the 

available or extracted parameters. Partial least squares, simulated annealing, random 

selection and sequential forward FS were among the techniques that were used to 

reduce the feature dimensionality of the initial space so as to increase the 

computational efficiency as well as generalisation capability of the subsequent 

classification or regressing models. Pre-trained CNN models were finally employed to 

extract valuable information for clinical images. 

As far as the type of the ML models that were reported in our survey, SVMs were 

proved to be the most frequently used model in all the survey categories. Four (4) 

SVM-based studies were identified in the knee OA prediction survey, whereas another 

ten (10) papers made use of SVM for classification purposes including biomechanical 

discrete parameters or images (mostly MRI and X-ray). Moreover, SVM was also 

employed in three (3) out of the four (4) papers in the post-treatment survey. The 

choice of SVM could be attributed to the fact that they generalize well in practice and 

that are computationally effective in high dimensional spaces. Neural networks were 

the second most frequent technique with three (3) studies reported for knee OA 

prediction and eighteen (18) applications of NN-based models in the OA classification 

survey. Convolutional neural networks were finally considered in studies where 

clinical images were used as inputs. CNN-based approaches were either employed for 

feature extraction and/or for quantifying the severity of knee OA.  

Nowadays biomedical research and clinical practices on KOA are struggling to cope 

with the growing complexity of interactions with the gained knowledge being 

fragmented and associated either with molecular/cellular processes or with tissue and 

organ phenotype changes related to clinical symptoms. Therefore, KOA is a big data 

problem in terms of the big data complexity and not the data size as it has been 

commonly considered in the literature. To tackle this huge complexity challenge, a 

multidisciplinary research approach should be proposed in the future across many 

disciplines: biomedical modelling via mechanistic analyses at various scales to capture 

locally the available knowledge into predictive simulations; medical imaging and 

sensing technologies to produce quantitative data about the patient’s anatomy and 

physiology: data processing to extract from such data information that in some cases 

is not immediately available; big data analytics and computational intelligence tools 

that will generate personalised ‘hyper-models’ under the operational conditions 

imposed by clinical usage. Machine learning can explore massive design spaces to 

identify correlations and multiscale modelling can predict system dynamics to identify 

causality. This has the potential to lead to the development of individually tailored 

treatments to maximize the efficacy of treatment. Research work at the intersection of 

machine learning and KOA offers great promise for improving clinical decision-
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making, and accelerating relevant intervention programs. To enable appropriate 

adoption of advanced learning algorithms and stay tuned with the new developments 

in ML/DL that are embracing research to other medical fields, open data, tools, and 

discussions must be forceful encouraged within the KOA research community.  
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Chapter 2 

 

Identification of Risk Factors and Machine Learning-Based Prediction 

Models for Knee Osteoarthritis Patients 

 

Published as:  

Kokkotis, C., Moustakidis, S., Giakas, G., & Tsaopoulos, D. (2020). Identification of 

Risk Factors and Machine Learning-Based Prediction Models for Knee Osteoarthritis 

Patients. Applied Sciences, 10(19), 6797. 

Abstract 

 

Knee Osteoarthritis (KOA) is a multifactorial disease that causes low quality of life, 

poor psychology and resignation from life. Furthermore, KOA is a big data problem 

in terms of data complexity, heterogeneity and size as it has been commonly 

considered in the literature with most of the reported studies being limited in the 

amount of information, they can adequately process. The aim of this work is: (i) To 

provide a robust feature selection (FS) approach that could identify important risk 

factors which contribute to the prediction of KOA and (ii) to develop machine learning 

(ML) prediction models for KOA. The current study considers multidisciplinary data 

from the osteoarthritis initiative (OAI) database, the available features of which come 

from heterogeneous sources such as questionnaire data, physical activity indexes, self-

reported data about joint symptoms, disability and function as well as general health 

and physical exams’ data. The novelty of the proposed FS methodology lies on the 

combination of different well-known approaches including filter, wrapper and 

embedded techniques, whereas feature ranking is decided on the basis of a majority 

vote scheme to avoid bias. The validation of the selected factors was performed in data 

subgroups employing seven well-known classifiers in five different approaches. A 

74.07% classification accuracy was achieved by SVM on the group of the first fifty-five 

selected risk factors. The effectiveness of the proposed approach was evaluated in a 

comparative analysis with respect to classification errors and confusion matrices to 

confirm its clinical relevance. The results are the basis for the development of reliable 

tools for the prediction of KOA progression. 

 

Keywords: knee osteoarthritis; prediction; feature selection; machine learning; 

clinical data; KL-grade 
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Introduction 

 

Knee Osteoarthritis (KOA) is the most common type compared with other types of 

osteoarthritis (OA). KOA results from a complex interplay of constitutional and 

mechanical factors, including mechanical forces, local inflammation, joint integrity, 

biochemical processes and genetic predisposition. The specific disease causes 

significant problems when it occurs. In recent years, it has been also realized that KOA 

is closely associated with obesity and age [3]. Moreover, KOA is diagnosed in the 

young and athletes following older injuries [144]. The particularity of this disease is 

that the knee osteoarthritic process is gradual with a variation in symptoms intensity, 

frequency and pattern [2]. Due to the multifactorial nature of ΚΟΑ, disease 

pathophysiology is still poorly understood and prognosis prediction tools are under 

current investigation. 

Prognosis and treatment of KOA is a challenge for the scientific community. Increasing 

data collection has led to an increasing number of studies employing big data and AI 

analytics applied in the KOA research. As a result of this, several techniques have been 

reported in the literature in which ML models were used to predict KOA [6]. In 2017, 

Lazzarini et al. developed five (5) ML models that can be used to predict the incidence 

of knee OA in overweight and obese women. By integrating a wide variety of 

biomedical data in their models, they showed that using a small subset of the available 

information is possible to accurately predict the incidence of KOA by using Random 

Forest (RF) [81]. In another study, Halilaj et al. aimed to characterize different clusters 

of KOA progression and build models to predict these clusters early [79]. LASSO 

regression models were used to predict joint space narrowing and pain progression 

which are the most widely used surrogates of structural and symptomatic disease 

status. Furthermore, Pedoia et al. [75] used MRI and multidimensional biomechanics 

data attempting to meet the existing gap in multidimensional data analysis for 

precision medicine in KOA. They achieved large-scale integration of compositional 

imaging and skeletal biomechanics by using logistic regression as the ML model.  

In 2019, Abedin et al. built two different prediction models, which achieved 

comparable accuracy with the aforementioned studies. In this study elastic net and RF 

were used along with a convolution neural network. The aim of this work was to 

explore whether the prediction accuracy of a statistical model based on the patient’s 

questionnaire data is comparable to the prediction accuracy based on X-ray image-

based modeling to predict KOA severity [74]. In another study, in 2019 Nelson et al. 

applied innovative ML approaches (e.g., K- means, t-SNE), specialized for a high 

dimension, low sample size setting, to phenotyping in KOA in order to better define 

progression phenotypes that may be more homogeneous and responsive to potential 

disease modifying interventions [77]. Moreover, in 2019 Tiulpin et al. proposed a novel 
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method based on ML that directly utilizes raw radiographic data, physical 

examination, patient’s medical history, anthropometric data and, optionally, a 

radiologist’s statement (Kellgren and Lawrence (KL)-grade) to predict structural KOA 

progression by using logistic regression and gradient boosting machine. They 

demonstrated that a knee X-ray image alone is already a very powerful source of data 

to predict whether a particular knee will have OA progression or not [78]. Futhermore, 

in the same year, Widera et al. used several ML models (e.g., logistic regression, K-

nearest neighbor, SVC (linear kernel), SVC (RBF kernel) and RF) in combination with 

clinical data and X-ray image assessment metrics to develop predictive models for 

patient selection that outperform the conventional inclusion criteria used in clinical 

trials [76]. However, few studies have tried to apply ML models for the prediction of 

KOA. There is still a lack of knowledge on the contribution of self-reported clinical 

data on the KOA prognosis and their impact on the training of the associated ML 

predictive models [69, 70, 72, 80, 92, 145]. 

According to our knowledge, identification of risk factors for developing and 

especially predicting KOA has been limited by an absence of non-invasive methods to 

inform clinical decision making and enable early detection of people who are most 

likely to progress to severe KOA. Hence the main purpose of this study is twofold: (i) 

The prediction of KOA through the identification of risk factors that are relevant with 

KL progression from a big pool of risk factors available in the osteoarthritis initiative 

(OAI) database and (ii) the development of machine learning-based models that can 

predict long-term KL progression. To accomplish the aforementioned targets, a robust 

ML pipeline that involves a hybrid feature selection technique and well-known ML 

models was implemented. Moreover, this work also explores three different options 

with respect to the time period within which data should be considered in order to 

reliably predict KOA progression. Finally, a discussion on the nature of the selected 

features is also provided. 

 

Data Description 

 

Data were obtained from the osteoarthritis initiative (OAI) database (available upon 

request at https://nda.nih.gov/oai/). Specifically, the current study only includes 

clinical data from: (i) The baseline; (ii) the first follow up visit at month 12 and (iii) the 

next follow up visit at month 24 from all individuals being at high risk to develop KOA 

or without KOA. Eight feature categories were considered as possible risk factors for 

the prediction of KL as shown in Table 2.1. Furthermore, our study was based on 

Kellgren and Lawrence (KL) grade as the main indicator for assessing the clinical 

status of the participants. Specifically, the variables ‘V99ERXIOA’ and ‘V99ELXIOA’ 
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were used to assign participants into subgroups (classes) of participants whose KOA 

status progresses or not (during labelling process).  

 

Table 2.1. Main categories of the feature subsets considered in this work. 

 Timeline of Visit 

Category Description Baseline 
12 

Months 

24 

Months 

Subject 

characteristics 

Anthropometric parameters including 

height, weight, BMI, abdominal 

circumference, etc. 

● ● ● 

Behavioural 
Participants’ social behaviour and 

quality level of daily routine 
● ● ● 

Medical history 

Questionnaire data regarding a 

Participant’s arthritis-related and 

general health histories and 

medications 

● - - 

Medical 

imaging 

outcome 

Medical imaging outcomes (e.g., 

osteophytes and joint space 

narrowing) 

● - - 

Nutrition 
Block Food 

Frequency questionnaire 
● - - 

Physical activity 
Questionnaire results regarding leisure 

activities, etc. 
● ● ● 

Physical exam 

Physical measurements of participants, 

including isometric strength, knee and 

hand exams, walking tests and other 

performance measures 

● ● ● 

Symptoms 

Arthritis symptoms and general 

arthritis or health-related function and 

disability 

● ● ● 

 

In this work, we consider KL grades prediction as a two-class classification problem. 

Specifically, the participants of the study were divided into two groups: (1) Non-

progressors: Healthy participants (KL grade 0 or 1) that remained healthy throughout 

the whole duration of the OAI study (eight years) and (2) KOA progressors: Healthy 

participants who developed OA (KL > 1) during the curse of the OAI study. So, the 

main objective of the study is to build ML models that could discriminate the two 

aforementioned groups and therefore be able to decide whether a new testing sample 

(healthy participant) will develop OA (assigned in the progressors’ class) or not 

(assigned to the non-progressors’ class). Secondary objectives of the study are to: (i) 
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Identify which of the available risk factors contribute more to the classification output 

and as result can be considered as contributing factors in the prediction of OA and (ii) 

explore three different options (a single visit, two visits within a year and two visits 

within two years) with respect to the time period within which data should be 

considered in order to reliably predict KOA progression. To achieve these targets, we 

have worked on five different approaches in which different data subsets were 

considered comprising features from the baseline combined (or not) with features 

from visits 1 (at month 12) and 2 (month 24). The motivation behind this is to 

investigate whether data from the baseline are sufficient to predict the progression of 

KOA or additional data from subsequent visits should be also included in the training 

to increase the predictive accuracy of the proposed techniques. Detailed information 

as far as the aforementioned data subsets is given in the following. Data resampling 

was applied at each of the five datasets to cope with the problem of class size 

imbalance and generate dataset in which classes are represented by an equal number 

of samples. 

 

• Dataset A (FS1): Progressors vs non-progressors using data from the baseline visit 

Input: This dataset only contains data from the baseline (724 features). After data 

resampling, the participants were divided into two equal categories (Figure 2.1), as 

follows:  

- Class A1 (KOA progressors): This class comprises 341 participants who had KL 

0 or 1 at baseline, but they had also some incident of KL ≥ 2 at visit 1 (12 months) 

or later until the end of the OAI study in at least one of the two knees or in both. 

- Class A2 (non-progressors): This class involves 341 participants with KL 0 or 1 

at baseline, with follow-up x-rays but no incident of KL ≥ 2 for both of their 

knees until the end of the OAI study. 

Output: Classification outputs 0 and 1 corresponding to assignments to classes A1 and 

A2, respectively.  
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Figure 2.1. Flow chart of study design for dataset A. 

 

• Dataset B (FS2): Progressors vs non-progressors using progression data within the 

first 12 months 

Input: Dataset B contains data that declares the features’ progression within the first 

12 months. Specifically, the Equation (1) denotes the way that this progression was 

calculated. 

𝑑𝑥𝑖,𝑗
𝑘 =  𝑥𝑖,𝑗

𝑘 −  𝑥𝑖,𝑗
0    , ∀𝑗 ∈ ℱ 1. (1) 

where 𝑥𝑖,𝑗
𝑘  and 𝑥𝑖,𝑗

0  are the j components (features) of sample 𝑥𝑖 measured at the visit k 

and the baseline (visit 0), respectively; 𝑑𝑥𝑖,𝑗
𝑘  is the calculated progression of 𝑥𝑖,𝑗 within 

the time period between the k-th visit and the baseline and ℱ denotes the subset of 

features that co-exist in both visits (233 features for dataset B). As an example, let us 

consider the participant 𝑥100 with a body mass index (P01BMI) of 20 at the baseline 

visit (𝑥100,49
0  = 20, where j = 49 is the index of feature P01BMI). Let us also assume that 

the participant’s BMI at visit 1 has increased to 25 (𝑥100,49
1  = 25). Thus, the BMI 
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progression of the specific participant is calculated as 𝑑𝑥100,49
1  = 25 − 20 = 5. This 

calculation has been performed for all the 233 features of dataset B.  

After data resampling, the following two classes of participants were created (Figure 

2.2), as follows: 

- Class B1 (KOA progressors): This class comprises progression data 𝑑𝑥𝑖,𝑗
1  of 268 

participants who were healthy (KL 0 or 1) within the first 12 months (both at the 

baseline and the visit 1), but they had an incident of KL ≥ 2 at the second visit (24 

months) or later (until the end of the OAI study).  

- Class B2 (non-progressors): This class involves progression data 𝑑𝑥𝑖,𝑗
1  from 268 

participants with KL 0 or 1 at the baseline, who had follow-up x-rays with no other 

incident of KL ≥ 2 in any of their knees until the end of the OAI study.  

Output: Classification outputs 0 and 1 corresponding to assignments to classes B1 and 

B2, respectively. 
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Figure 2.2. Flow chart of study design for dataset B. 

 

• Dataset C (FS3): Progressors vs non-progressors using progression data within the 

first 24 months 

Input: Dataset C contains progression data 𝑑𝑥𝑖,𝑗
2  within the first 24 months (until visit 

2). The dataset contains 275 features that co-exist in visit 2 and the baseline, whereas 

the same methodology was used to calculate the features as given in equation (1) using 

k = 2. The participants were divided into two equal categories (Figure 2.3), as follows: 

- Class C1 (KOA progressors): This class comprises of 239 participants who had KL 

0 or 1 during the first 24 months, whereas a KOA incident (KL ≥ 2) observed at visit 

3 (36 months) or later during the OAI course in at least one of the two knees or in 

both.  

- Class C2 (non-progressors): This class involves 239 participants with KL grade 0 or 

1 at baseline, with follow-up X-rays and no further incidents (KL ≥ 2) for both of 

their knees. 

Output: Classification outputs 0 and 1 corresponding to assignments to classes C1 and 

C2, respectively. 
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Figure 2.3. Flow chart of study design for dataset C. 

 

• Dataset D (FS4): Progressors vs non-progressors using data from the baseline 

visit along with progression data within the first 12 months 

Input: Dataset D contains 957 features from both datasets A and B. Specifically, it 

consists of 957 features from the baseline (𝑥𝑖,𝑗
0  , 𝑗 = 1, … ,724) along with progression 

data (𝑑𝑥𝑖,𝑗
1  , 𝑗 = 1, … , 233) within the first 12 months. The list with the selected features 

from dataset D is given in the appendix A. After the application of data sampling, the 

participants were divided into two equal categories (Figure 2.4), as follows: 

- Class D1 (KOA progression): This class comprises 270 participants (KL 0 or 1) who 

were heathy during the first 12 months (with no incident at the baseline and the 

first visit) and then they had an incident (KL ≥ 2) recorded at their second visit (24 

months) or later until the end of the OAI study.  
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- Class D2 (non-KOA): This class involves 270 healthy participants with KL0 or 1 at 

baseline with no further incidents in both of their knees until the end of the OAI 

data collection.  

Output: Classification outputs 0 and 1 corresponding to assignments to classes D1 and 

D2, respectively. 

 

 

Figure 2.4. Flow chart of study design for dataset D. 

 

• Dataset E (FS5): Progressors vs non-progressors using data from the baseline visit 

along with progression data within the first 24 months 

Input: Dataset E contains 999 features combining datasets A and C. This set of features 

consists of baseline data 𝑥𝑖,𝑗
0  , 𝑗 = 1, … ,724) as well as progression data (𝑑𝑥𝑖,𝑗

2 , 𝑗 =

1, … ,275) within the first 24 months. Similarly, participants were divided into two 

equal categories (Figure 2.5), as follows: 
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- Class E1 (KOA progression): This class comprises 248 participants who were 

healthy (KL 0 or 1) in the first 24 months, but they had a KOA incident (KL ≥ 2) at 

the third visit (36 months) or later until the end of the OAI study in at least one of 

the two knees or in both.  

- Class E2 (non-KOA): This class involves 248 healthy participants (KL0 or 1) with 

no further progression of KOA in both of their knees until the end of the OAI study.  

Output: Classification outputs 0 and 1 corresponding to assignments to classes E1 and 

E2, respectively. 

 

 

Figure 2.5. Flow chart of study design for dataset E. 

 

Methodology 
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The proposed in this study ML methodology for KOA prediction includes four 

processing steps: (1) data pre-processing of the collected clinical data, (2) feature 

selection using the proposed approach, (3) learning process via the use of well-known 

ML models and (4) evaluation of the classification results. More details about the 

proposed methodology are presented in the following sections. 

 

Pre-Processing 

 

Data cleaning was initially performed by excluding the columns with more than 20% 

missing values compared to the total numbers of subjects. Subsequently, data 

imputation was performed to handle missing values. Specifically, mode imputation 

was implemented to replace missing values of the categorical or numerical variables 

by the mode (most frequent value) of the non-missing variables [146]. Standardization 

of a dataset is a common requirement for many ML estimators. In our work, data was 

normalised to [0, 1] to build a common basis for the feature selection algorithms that 

follow [147]. Data resampling was employed to cope with the class imbalance 

problem. Specifically, the majority class was reduced in order to have the same 

number of samples as in the minority class. 

 

Feature Selection (FS) 
 

A robust feature selection methodology was employed that combined the outcomes of 

six FS techniques: two filter algorithms (Pearson correlation [148] and Chi-2 [149]), one 

wrapper (with logistic regression [150]) and three embedded ones (logistic regression 

L2 [151], random forest [152] and LightGBM [153]). Feature ranking was decided on 

the basis of a majority vote scheme. Specifically, we performed all six FS techniques 

separately, each one resulting into a selected FS. A feature receives a vote every time 

it has been selected by one of the FS algorithms. We finally ranked all features with 

respect to the votes received. 

The proposed feature selection proceeds along the following steps as shown in Figure 

2.6. 
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Figure 2.6. Pseudocode for the implementation of the proposed feature selection (FS). 

 

Learning Process 

 

Various ML models were evaluated for their suitability in the task of KOA prediction. 

A brief description of these models is given below.  

We tested logistic regression [154] which is likely the most commonly used algorithm 

for solving classification problems. Logistic regression models the probabilities for 

classification problems with two possible outcomes. It’s an extension of the linear 

regression model for classification problems. The interpretation of the weights in 

logistic regression differs from the interpretation of the weights in linear regression, 

since the outcome in logistic regression is a probability between 0 and 1. We also 

evaluated decision trees (DTs) [155] which are a non-parametric supervised learning 

method used for classification and regression. They are simple to understand and to 

interpret. DTs require little data preparation and perform well even if their 

assumptions are somewhat violated by the true model from which the data were 

generated.  

K-Nearest Neighbor (KNN) [156] as well as non-linear support vector machines (SVM) 

algorithms [116], which can deal with the overfitting problems that appear in high-

dimensional spaces. In the classification setting, the KNN algorithm essentially boils 
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down to forming a majority vote between the K most similar instances to a given 

“unseen” observation. Similarity is defined according to a distance metric between 

two data points. A popular one is the Euclidean distance method. Furthermore, SVMs 

are a set of supervised learning methods used for classification, regression and 

outlier’s detection. They are effective in high dimensional spaces and still effective in 

cases where the number of dimensions is greater than the number of samples. 

The ensemble technique Random Forest (RF) [94] was also evaluated using DT models 

as weak learners. RF classifier creates a set of decision trees from randomly selected 

subsets of training set. It then aggregates the votes from different decision trees to 

decide the final class of the test object. XGboost [157] and naive Bayes [71] algorithms 

were also considered. XGboost model is a sum of CART (tree) learners which try to 

minimize the log loss objective and the scores at leaves. These scores are actually the 

weights that have a meaning as a sum across all the trees of the model. Furthermore, 

they are always adjusted in order to minimize the loss. Moreover, naive Bayes 

methods are a set of supervised learning algorithms based on applying Bayes’ theorem 

with the “naive” assumption of conditional independence between every pair of 

features given the value of the class variable. Naive Bayes learners and classifiers can 

be extremely fast. The decoupling of the class conditional feature distributions means 

that each distribution can be independently estimated as a one-dimensional 

distribution. 

Hyperparameter selection was implemented to optimize the performance of our 

models and to avoid overfitting and bias errors. Each model was optimized with 

respect to a number of preselected hyperparameters (Table 2.2). Specifically (i) 

‘gamma’: [0,0.4,0.5,0.6], ‘maximal depth’: [1,2,3,4,5,6,7,8], ‘minimum child and weight’: 

[1,3,4,5,6,8] were optimized for XGboost, (ii) ‘criterion’: [‘gini’, ’entropy’], ‘minimum 

samples leaf’: [1,2,3], ‘minimum samples split’: [3,4,5,6,7] and ‘number of estimators’: 

[10,15,20,25,30] for random forest, (iii) ‘maximal features’: [‘auto’, ‘sqrt’, ‘log2’], 

‘minimum samples leafs’: [1,2,3,4,5,6,7,8,9,10,11] and ‘minimum number of decision 

splits’: [2,3,4,5,6,7,8,9,10,11,12,13,14,15] for decision trees, (iv) ‘C’: 

[0.001,0.01,0.1,1,2,3,4,5,6,7,8,9,10] and ‘kernel’: [‘linear’,’sigmoid’,’rbf’,’poly’] for 

SVMs, (v) ‘k-parameter’: [5,7,9,12,14,15,16,17] for KNN and (vi) ‘penalty’: [‘l1’, ‘l2’] and 

‘C’: [100, 10, 1.0, 0.1, 0.01] for logistic regression. 

 

Table 2.2. Hyperparameters description. 

ML Models Hyperparameters Description 

XGboost Gamma 
Minimum loss reduction required to make a further 

partition on a leaf node of the tree. 
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Maximal depth 

Maximum depth of a tree. Increasing this value will 

make the model more complex and more likely to 

overfit. 

Minimum child 

and Weight 

Minimum sum of instance weight (hessian) needed in 

a child. If the tree partition step results in a leaf node 

with the sum of instance weight less than 

min_child_weight, then the building process will give 

up further partitioning. 

Random 

Forest 

Criterion The function to measure the quality of a split.  

Minimum samples 

leaf 

The minimum number of samples required to be at a 

leaf node. 

Number of 

estimators 
The number of trees in the forest. 

Decision 

Trees 

Maximal features 
The number of features to consider when looking for 

the best split. 

Minimum samples 

split 

The minimum number of samples required to split an 

internal node 

Minimum number 

of leafs 

The minimum number of samples required to be at a 

leaf node. 

SVMs 
C 

Regularization parameter. The strength of the 

regularization is inversely proportional to C. 

Kernel Specifies the kernel type to be used in the algorithm. 

KNN k-parameter 
Number of neighbors to use by default for k 

neighbors queries. 

Logistic 

Regression 

Penalty Used to specify the norm used in the penalization. 

C 
Inverse of regularization strength; must be a positive 

float. 

 

Validation 
 

A hold out 70–30% random data split was applied to generate the training and testing 

subsets, respectively. Learning of the ML was performed on the stratified version of 

the training sets and the final performance was estimated on the testing sets. We also 

evaluated the classifiers performance in terms of the confusion matrix as an additional 

evaluation criterion. 

Confusion matrix is a way to evaluate the performance of a classifier. Specifically, a 

confusion matrix is a summary of prediction results on a classification problem (Table 

2.3). To be created the confusion matrix, the number of correct (true) and incorrect 

(false) predictions are summarized with count values and broken down by each class. 
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Table 2.3. Confusion matrix. 

  Actual Classes 

  Positive Negative 

Predicted classes 
Positive True Positive False Positive 

Negative False Negative True Negative 

 

Results 

 

In this section, we present the most important risk factors as they have been selected 

by the proposed hybrid FS methodology. Moreover, the overall performance of the 

models is presented in relation to the number of selected features and then reference 

is made to the models with the highest accuracies. Results are initially given per 

dataset and an overall assessment is provided at the end. The efficacy of the proposed 

FS methodology is also compared with the performance of the six individual FS 

criteria. 

 

Prediction Performance 

 

The proposed ML methodology was applied on each of the five datasets. Specifically, 

the proposed FS was executed on the pre-processed versions of the datasets ranking 

the available features with respect to their relevance with the progression of OA. Then 

the proposed ML models were trained on feature subsets of increasing dimensionality 

(with a step of 5). These feature subsets were generated by sorting the features 

according to the selected ranking. This means that the proposed ML models were 

trained to classify KOA progressors and non-progressors based on the first (5, 10, 15, 

etc.) most informative features and the testing classification accuracies were finally 

calculated until the full feature set has been tested. The classification results on the five 

datasets are given below.  

 

• Dataset A 

Figure 2.7 depicts the testing performance (%) of the competing ML models with 

respect to the number of selected features for dataset A. In particular, DTs failed in this 

task, recording low testing performances (in the range of 42.44–65.85%). In contrast, 

the other models had an upward trend in the first 20–60 features, followed by a steady 

testing performance in most of the cases. Specifically, the logistic regression model 
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showed an upward trend with respect to selected features in the first 30–50 features, 

with a maximum of 71.71% at 50 features (which was the overall best performer). The 

inclusion of additional features led to a small reduction in the accuracies achieved. 

 

 

Figure 2.7. Learning curves with testing accuracy scores on dataset A for different machine 

learning (ML) models trained on feature subsets of increasing dimensionality. 

 

Table 2.4 summarizes the results of logistic regression, XGboost, SVM, random forest, 

KNN, naive Bayes and DT on the two-class problem. A moderate number of features 

(in the range of 30–55) was finally selected by the majority of the ML models (in five 

out of the seven), whereas the overall maximum was achieved by LR on a group of 

fifty selected (50) risk factors. KNN and DTs selected more features (145 and 85, 

respectively) leading to low accuracies. The second highest accuracy was received for 

SVM and Naive Bayes (70.73% in both), whereas lower accuracies were obtained by 

NB, RF and XGboost. 

 

Table 2.4. Best testing accuracies achieved for ML model along with the confusion matrix, the 

optimum number of features and the hyperparameters of the ML models employed. A1 and 

A2 denote classes 1 and 2 of dataset A, respectively. 

Models 
Accuracy 

(%) 

Confusion 

Matrix 
Features Parameters 

71.71  A1 A2 50 Penalty: l1, C: 1.0 
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Logistic 

Regression 

A1 73 28 

A2 30 74 

Naive Bayes 70.73 

 A1 A2 

55 GaussianNB A1 72 29 

A2 31 73 

SVM 70.73 

 A1 A2 

45 C = 2, kernel = sigmoid A1 75 26 

A2 34 70 

KNN 66.83 

 A1 A2 

145 
leaf_size: 1, n_neighbors: 12, 

weights: distance 
A1 78 23 

A2 45 59 

Decision Tree 65.85 

 A1 A2 

85 

max_features: log2, 

min_samples_leaf: 4, 

min_samples_split: 11 

A1 68 33 

A2 37 67 

Random 

Forest 
68.78 

 A1 A2 

30 

criterion: gini, min_samples_leaf: 3, 

min_samples_split: 7, n_estimators: 

15 

A1 71 30 

A2 34 70 

XGboost 67.8 

 A1 A2 

45 
gamma: 0, max_depth: 1, 

min_child_weight: 4 
A1 69 32 

A2 34 70 

 

• Dataset B 

Figure 2.8 demonstrates the testing performance (%) of the competing ML models with 

respect to the number of selected features for dataset B. The following remarks could 

be extracted from Figure 2.8: (i) Considerably lower accuracies were achieved by all 

the competing ML models compared to the ones received in dataset A; (ii) LR and NB 

gave the maximum testing performance of approximately 64% at 25 features (which 

was the overall best performer in dataset B). The addition of more features did not 

increase the testing performance of the model but led to a reduction in the accuracies 

achieved. (iii) Low testing performances were accomplished by the rest of the ML 

models (in the range of 42.24–62.11%). The accuracies and confusion matrixes reported 
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in Table 2.5 verify the aforementioned results. In all the competing models, the best 

accuracies were recorded using a relatively small number of selected risk factors (less 

or equal to 40). 

 

Figure 2.8. Learning curves with testing accuracy scores on dataset B for different ML models 

trained on feature subsets of increasing dimensionality. 
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Table 2.5. Best testing accuracies achieved for each ML model along with the confusion matrix, 

the optimum number of features and the hyperparameters of the ML models employed. B1 and 

B2 denote classes 1 and 2 of dataset B, respectively. 

Models 
Accuracy 

(%) 

Confusion 

Matrix 
Features Parameters 

Logistic 

Regression 
63.98 

 B1 B2 

25 Penalty: l1, C: 1.0 B1 48 22 

B2 36 55 

Naive Bayes 63.98 

 B1 B2 

35 GaussianNB B1 50 20 

B2 38 53 

SVM 61.49 

 B1 B2 

35 C: 6, kernel: linear B1 46 24 

B2 38 53 

KNN 57.76 

 B1 B2 

15 
leaf_size: 1, n_neighbors: 16, weights: 

uniform 
B1 63 7 

B2 61 30 

Decision Tree 58.39 

 B1 B2 

15 
max_features: auto, min_samples_leaf: 

1, min_samples_split: 6 
B1 41 29 

B2 38 53 

Random 

Forest 
62.11 

 B1 B2 

15 
criterion: gini, min_samples_leaf: 2, 

min_samples_split: 7, n_estimators: 30 
B1 48 22 

B2 39 52 

XGboost 60.25 

 B1 B2 

40 
gamma: 0.4, max_depth: 7, 

min_child_weight: 5 
B1 44 26 

B2 38 53 

 

• Dataset C 

Less informative features with small generalization capacity are contained in dataset 

C, as reported in Figure 2.9 and Table 2.6. Unlike the previous two datasets, the best 
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testing performance for dataset C was received at 225 features using DTs (66.67%). In 

general, unstable and low testing performances were observed for the majority of the 

employed ML models. The second highest accuracy was received for SVM (65.28%), 

whereas lower accuracies were obtained by the rest of the models. A significant 

number of features (more than 100) was also required in five out of the seven FS 

approaches highlighting the inability of dataset C features to provide useful 

information for the progression of KOA. 

 

Figure 2.9. Learning curves with testing accuracy scores on dataset C for different ML models 

trained on feature subsets of increasing dimensionality. 

 

Table 2.6. Best testing accuracies achieved for each ML model along with the confusion matrix, 

the optimum number of features and the hyperparameters of the ML models employed. C1 

and C2 denote classes 1 and 2 of dataset C, respectively. 

Models 
Accuracy 

(%) 

Confusion 

Matrix 
Features Parameters 

Logistic 

Regression 
61.11 

 C1 C2 

35 Penalty: l1, C: 1.0 C1 49 15 

C2 41 39 

Naive Bayes 59.03 

 C1 C2 

160 GaussianNB C1 23 41 

C2 18 62 
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SVM 65.28 

 C1 C2 

65 C: 5, kernel: rbf C1 48 16 

C2 34 46 

KNN 61.11 

 C1 C2 

120 
leaf_size: 1, n_neighbors: 5, 

weights: uniform 
C1 55 9 

C2 47 33 

Decision 

Tree 
66.67 

 C1 C2 

225 

max_features: auto, 

min_samples_leaf: 2, 

min_samples_split: 8 

C1 44 20 

C2 28 52 

Random 

Forest 
59.72 

 C1 C2 

140 

criterion: gini, min_samples_leaf’: 

1, min_samples_split: 5, 

n_estimators: 25 

C1 37 27 

C2 31 49 

XGboost 62.5 

 C1 C2 

150 

n_estimators = 100, max_depth = 

8, learning_rate = 0.1, subsample = 

0.5 

C1 44 20 

C2 34 46 
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• Dataset D 

The combination of datasets A and B proved to be beneficial in the task of predicting 

KOA progression. Specifically, the following conclusions are drawn from the results 

reported in Figure 2.10 and Table 2.7: (i) The best performance (74.07%) was achieved 

by the SVM on the group of the fifty-five selected risk factors with linear kernel penalty 

and C = 0.1 (Dataset D). This performance was the overall best one achieved in all five 

datasets. (ii) The second highest accuracy was received for the logistic regression 

(72.84%), whereas lower accuracies were obtained by the rest of the models. (iii) SVM 

and LR followed a similar progression in the reported accuracies with respect to the 

number of selected features with an upward trend in the first 20–55 features, followed 

by a slight performance decrease as the number of features increases. (iv) KNN gave 

moderate results with a maximum testing performance of 71.6% at 75 selected features. 

(v) Low testing accuracies were obtained by RF, XGboost and DT in the range of 42.59–

66.67%. 

 

• Dataset E 

In dataset E, the SVM-based approach exhibited an upward trend with respect to 

selected features in the first 20–70 features, with a maximum of 71.81% at 70 features 

(which was the best in the category). The inclusion of additional features led to a small 

reduction in the accuracies achieved (Figure 2.11). Similarly to SVM, LR gave the 

second highest accuracy (71.14%) for less features (55). XGboost also gave a 

comparable performance (70.47%) in a subset of 45 selected features. Lower testing 

accuracies were received by the rest of ML models (Table 2.8). 
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Figure 2.10. Learning curves with testing accuracy scores on dataset D for different ML 

models trained on feature subsets of increasing dimensionality. 

 

Table 2.7. Best testing accuracies achieved for each ML model along with the confusion matrix, 

the optimum number of features and the hyperparameters of the ML models employed. D1 

and D2 denote classes 1 and 2 of dataset D, respectively. 

Models 
Accuracy 

(%) 

Confusion 

Matrix 
Features Parameters 

Logistic 

Regression 
72.84 

 D1 D2 

55 Penalty: l1, C: 1.0 D1 54 27 

D2 17 64 

Naive Bayes 68.52 

 D1 D2 

20 GaussianNB D1 44 37 

D2 14 67 

SVM 74.07 

 D1 D2 

55 C: 0.1, kernel: linear D1 56 25 

D2 17 64 

KNN 71.6 
 D1 D2 

75 
algorithm: auto, leaf_size: 1, 

n_neighbors: 17, weights: uniform D1 55 26 
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D2 20 61 

Decision Tree 61.73 

 D1 D2 

30 
max_features: auto, min_samples_leaf: 

3, min_samples_split: 10 
D1 56 25 

C2 37 44 

Random 

Forest 
66.67 

 D1 D2 

20 
criterion: gini, min_samples_leaf: 3, 

min_samples_split: 3, n_estimators: 25 
D1 47 34 

D2 20 61 

XGboost 64.81 

 D1 D2 

15 
gamma: 0.6, max_depth: 1, 

min_child_weight: 8 
D1 51 30 

D2 27 54 

 

Figure 2.11. Learning curves with testing accuracy scores on dataset E for different ML 

models trained on feature subsets of increasing dimensionality. 

 

Table 2.8. Best testing accuracies achieved for each ML model along with the confusion matrix, 

the optimum number of features and the hyperparameters of the ML models employed. E1 and 

E2 denote classes 1 and 2 of dataset E, respectively. 

Models 
Accuracy 

(%) 

Confusion 

Matrix 
Features Parameters 
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Logistic 

Regression 
71.14 

 E1 E2 

55 Penalty: l1, C: 1.0 E1 50 17 

E2 26 56 

Naive 

Bayes 
68.46 

 E1 E2 

230 GaussianNB E1 48 19 

E2 28 54 

SVM 71.81 

 E1 E2 

70 C: 1, kernel: sigmoid E1 50 17 

E2 25 57 

KNN 63.76 

 E1 E2 

20 
algorithm: auto, leaf_size: 1, 

n_neighbors: 16, weights: uniform 
E1 48 19 

E2 35 47 

Decision 

Tree 
66.44 

 E1 E2 

95 

max_features: auto, 

min_samples_leaf: 2, 

min_samples_split: 12 

E1 45 22 

E2 28 54 

Random 

Forest 
67.11 

 E1 E2 

55 

criterion: gini, min_samples_leaf: 1, 

min_samples_split: 3, n_estimators: 

30 

E1 42 25 

E2 24 58 

Xgboost 70.47 

 E1 E2 

45 
gamma: 0.6, max_depth: 2, 

min_child_weight: 1 
E1 43 24 

E2 20 62 

 

Table 2.9 cites the best accuracies achieved in each of the five datasets. The combined 

effect of baseline features (dataset A) and progression data 𝑑𝑥𝑖,𝑗
1  (dataset B) had a 

positive effect on the prediction capacity of the proposed methodology, as clearly 

shown in Table 2.7 where the testing accuracy in dataset D is increased by 2.36% 

compared to the result obtained in dataset A. A minor difference (0.1%) is observed 

on the accuracies reported for datasets A and E, demonstrating that 𝑑𝑥𝑖,𝑗
2  progression 

data have a negligible effect on the predictive capacity of the proposed methodology 

Institutional Repository - Library & Information Centre - University of Thessaly
30/12/2021 10:23:36 EET - 137.108.70.14



77 

 

and therefore could be omitted. The accuracies received in datasets B and C reveal that 

the baseline features are crucial for predicting KOA progression. 

 

Table 2.9. Summary of all reported results. 

Dataset 

Data Used in the Training 

Best Testing 

Performance (%) 

Achieved 

Best Model 

Num. of 

Selected 

Features 
Baseline 

M12 

Progress 

Wrt 

Beseline 

M24 

Progress 

Wrt 

Baseline 

A •   71.71 
Logistic 

Regression 
50 

B  •  63.98 
Logistic 

Regression 
25 

C   • 66.67 
Decision 

Tree 
225 

D • •  74.07 SVM 55 

E •  • 71.81 SVM 70 

 

 

Selected Features 

 

Figure 2.12 shows the first 70 features selected by the proposed FS approach for 

datasets A to E. Features are visualised with different colors and marks depending on 

the feature category they belong. The following conclusions could be drawn from the 

analysis of Figure 2.12: (i) Symptoms and medical imaging outcomes seem to be the 

most informative feature categories in dataset D in which the overall best performance 

was achieved. Specifically, eleven medical history outcomes and ten symptoms were 

selected in the first 55 features that gave the optimum prediction accuracy; (ii) 

nutrition and medical history characteristics were also proved to be contributing risk 

factors since approximately 20 out of the first selected 55 features were from these two 

feature categories (in dataset D). The full list of selected features for dataset D is 

provided in the appendix A; (iii) similar results with respect to the selected features 

were extracted from the analyses in datasets A and E (in Figure 2.12a, e) that gave 

comparative prediction results (close to 72%); (iv) a different order in the selected 

features was observed in datasets B and C (as depicted in Figure 2.12b, c). The low 

accuracies recorded in these datasets (less than 67%) verify that the contained in these 

datasets features are less informative; (v) overall, it was concluded that a combination 

of heterogeneous features coming from almost all feature categories is needed to 
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predict KL progression highlighting the necessity of adopting a multi-parametric 

approach that could handle the complexity of the available data. 

 

Comparative Analysis 
 

To evaluate the effectiveness of the proposed FS methodology, a comparison was 

performed in this section between the hybrid FS mechanism and the six well known 

FS techniques (the ones that are contained within the selection mechanism of the 

proposed methodology). The comparison was performed on dataset D that gave the 

overall best prediction performance. SVM was finally used to evaluate the prediction 

capacity of all the FS techniques considered here. 

 

Figure 2.12. Features selected in datasets A to E in (a–e), respectively. Axis y (selection 

criterion) denotes how many times a feature has been selected (6 declares that a specific 

feature has been selected by all six FS techniques and so on). Features have been ranked 

based on the selection criterion Vj and are visualised with different colors each one 

representing a specific feature category. 

 

We performed and validated all six FS techniques separately, each one resulting into 

a different feature subset. SVM was finally trained on the resulted feature spaces of 

increasing dimensionality and the optimum feature subset was identified per case. As 

indicated in Table 2.10, the majority of the competing FS techniques provided lower 

testing performances compared to the proposed FS methodology. The wrapper 
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technique based on LR was the only one that achieved an equal testing performance 

(%) with the proposed FS methodology. Specifically, the wrapper FS achieved its 

maximum accuracy at 70 features, while the proposed FS methodology achieved the 

same accuracy score using a smaller feature subset (55 features). 

 

Table 2.10. Testing performance (%) of the competing FS techniques with respect to the number 

of selected features for dataset D. 

 FS Criteria 

 
Filter 

Algorithms 

Wrapper 

Algorithms 
Embedded 

Proposed 

FS 

Criterion 

Features 
Chi-

2 
Pearson 

Logistic 

Regression 

Logistic 

Regression 

(L2) 

Random 

Forest 
LightGBM  

5 58.02 62.35 62.96 54.32 45.68 56.17 63.58 

10 63.58 63.58 59.88 51.23 48.77 50.00 57.41 

15 61.11 58.02 51.85 50.62 50.62 53.70 61.11 

20 53.09 61.11 57.41 48.77 50.62 50.00 66.05 

25 60.49 65.43 60.49 51.85 56.79 53.70 66.05 

30 64.81 70.37 70.37 60.49 58.02 51.23 64.2 

35 66.67 65.43 62.96 56.79 58.02 53.70 66.05 

40 59.26 66.67 65.43 60.49 60.49 54.32 67.28 

45 64.81 67.90 69.75 54.32 58.02 46.30 67.9 

50 63.58 67.28 68.52 55.56 60.49 48.77 67.9 

55 64.81 69.75 64.81 53.09 59.88 53.09 74.07 

60 69.75 67.28 65.43 55.56 59.88 55.56 72.22 

65 61.73 64.81 70.99 60.49 58.64 54.94 69.75 

70 68.52 66.67 74.07 56.17 56.17 54.32 71.6 

75 68.52 64.81 72.22 54.32 51.85 59.26 69.14 

80 66.05 66.67 69.14 58.02 58.02 59.88 69.14 

85 66.05 66.67 72.84 53.70 59.26 57.41 72.22 

90 67.90 56.79 73.46 58.64 62.96 53.09 66.67 

95 66.67 56.79 69.14 59.88 61.11 55.56 70.37 

100 62.96 59.88 72.22 61.73 56.79 55.56 70.99 

 

Discussion 

 

This work focuses on the development of a ML-empowered methodology for KL 

grades prediction in healthy participants. The prediction task has been coped as a two-

class classification problem where the participants of the study were divided into two 
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groups (KOA progressors and non-progressors). Various ML models were employed 

to perform the binary classification task (KOA progressors versus non-progressors) 

where accuracies up to 74.07% (Dataset D) were achieved. Within the secondary 

objectives of the study were to identify informative risk factors from a big pool of 

available features that contribute more to the classification output (KOA prediction). 

Moreover, we explored different options with respect to the time period within which 

data should be considered in order to reliably predict KOA progression.  

Three different options were investigated as far as the time period within which data 

should be considered in order to reliably predict KOA progression. To accomplish this, 

we worked with 5 different datasets. We first examined whether baseline data (dataset 

A) could solely contribute in predicting KOA progression. Going one step further, the 

features ‘progression within the first 12 months or 24 months was also considered as 

an alternative source of information (datasets B and C). The aforementioned analysis 

revealed that: (i) a 71.71% prediction performance can be achieved using features from 

the baseline, (ii) features’ progression cannot solely provide reliable KOA predictions 

and (iii) a combination of features is required to maximize the prediction capability of 

the proposed methodology. Specifically, the overall best accuracy (74.07%) was 

obtained by combining datasets A and B that contain features from the baseline visit 

along with their progression over the next 12 months. Considering a longer period of 

time (24 months) in the calculation of features’ progression resulted to lower 

prediction accuracies (71.81%).  

The proposed FS methodology outperformed six well-known FS techniques achieving 

the best tradeoff between prediction accuracy and dimensionality reduction. From the 

pool of approximately 700 features of the OAI dataset, fifty-five were finally selected 

in this work to predict KOA. As far as the nature of the selected features, it was 

concluded that symptoms, medical imaging outcomes, nutrition and medical history 

are the most important risk factors contributing considerably to the KOA prediction. 

However, it was also extracted that a combination of heterogeneous features coming 

from almost all feature categories is needed to effectively predict KL progression.  

Seven ML algorithms were evaluated for their suitability in implementing the 

prediction task. Table 2.7 with the summary of all reporting result indicates that LR 

and SVM were proved to be the best performing models. The good performance of 

SVM could be attributed to the fact that SVM models are particularly well suited for 

classifying small or medium-sized complex datasets (both in terms of data size and 

dimensionality). LR was the second-best performer providing the highest prediction 

accuracy in datasets A and B and the second highest in datasets D and E. The fact that 

a generalized linear model such as LR accomplishes high performances indicates that 

the power of the proposed methodology lies on the effective and robust mechanism of 

selecting important risk factors and not so much on the complexity of the finally 
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employed classifier. Identifying important features from the pool of heterogeneous 

health-related parameters (including anthropometrics, medical history, exams, 

medical outcomes, etc.) that are available nowadays is a key to increase our 

understanding of the KOA progression and therefore to provide robust prediction 

tools.  

A few studies have recently addressed the problem of predicting KOA progression 

from different perspectives and employing different data sources. A weighted 

neighbor distance classifier was presented by Ashinsky et al. to classify isolated T2 

maps for the progression to symptomatic OA with 75% accuracy [72]. Progression to 

clinical OA was defined by the development of symptoms as quantified by the 

WOMAC questionnaire 3 years after baseline evaluation. MRI images and PCA were 

employed by Du et al. to predict the progression of KOA using four ML techniques 

[73]. For KL grade prediction, the best performance was achieved by ANN with AUC 

= 0.761 and F-measure = 0.714. An MRI-based ML methodology has been also 

proposed by Marques et al. to prognose tibial cartilage loss via quantification of tibia 

trabecular bone where a odds ratio of 3.9 (95% confidence interval: 2.4–6.5) was 

achieved [70]. X-ray combined with pain scores have been utilized by Halilaj et al. to 

predict the progression of joint space narrowing (AUC = 0.86 using data from two 

visits spanning a year) and pain (AUC = 0.95 using data from a single visit) [79]. 

Similarly, another two studies (Tiulpin et al. [78] and Widera et al. [76]) made use of 

Xray images along with clinical data to predict KOA progression using either CNN or 

ML approaches achieving less accurate results. The current study is the only one 

employing exclusively clinical non-imaging data and also contributes to the 

identification of important risk factors from a big pool of available features. The 

proposed methodology achieved comparable results with studies predicting KL 

grades progression demonstrating its uniqueness in facilitating prognosis of KOA 

progression with a less complicated ML methodology (without the need of big 

imaging data and image-based deep learning networks).  

Among the limitations of the current study is the relatively large number of features 

(55) that were finally selected as possible predictors of KOA. The selected features 

come from almost all feature categories highlighting the necessity of adopting a 

rigorous data collection process in order to formulate the input feature vector that is 

needed for the ML training. Moreover, the ML models employed are opaque (black 

boxes) and therefore they are insufficient to provide explanations on the decisions 

(inability to explain how a certain output has been drawn). To overcome the 

aforementioned challenges, it is important for AI developers to build transparency 

into their algorithms and/or enhance the explainability of existing ML or DL networks. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
30/12/2021 10:23:36 EET - 137.108.70.14



82 

 

Conclusions 

 

This work focuses on the development of a ML-based methodology capable of (i) 

predicting KOA progression (and specifically KL grades progression) and (ii) 

identifying important risk factors which contribute to the prediction of KOA. The 

proposed FS methodology combines well-known approaches including filter, wrapper 

and embedded techniques whereas feature ranking is decided on the basis of a 

majority vote scheme to avoid bias. Finally, a variety of ML models were built on the 

selected features to implement the KOA prediction task (treated as a two-class 

classification problem where a participant is classified to either the class of KOA 

progressors or to the non-progressors’ class). Apart from the selection of important 

risk factors, this study also explores three different options with respect to the time 

period within which data should be considered in order to reliably predict KOA 

progression. The nature of the selected features was also discussed to increase our 

understanding of their effect on the KOA progression. After an extensive 

experimentation, a 74.07% classification accuracy was achieved by SVM on a group of 

fifty-five selected risk factors (in dataset D). Understanding the contribution of risk 

factors is a valuable tool for creating more powerful, reliable and non-invasive 

prognostic tools in the hands of physicians. For our future work, we are planning to 

also consider image-based biomarkers and areas with valuable information derived 

from biomechanical data that are expected to further improve the predictive capacity 

of the proposed methodology. ML explainability analysis will also be considered to 

capture the effect of the selected features on the models’ outcome. 
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Chapter 3 

 

Identifying Robust Risk Factors for Knee Osteoarthritis Progression: An 

Evolutionary Machine Learning Approach 

 

Published as: 

Kokkotis, C, Moustakidis, S, Baltzopoulos, V, Giakas, G, & Tsaopoulos, D (2021) 

Identifying Robust Risk Factors for Knee Osteoarthritis Progression: An Evolutionary 

Machine Learning Approach. Healthcare 9(3) 260. 

 

Abstract 

Knee osteoarthritis (KOA) is a multifactorial disease which is responsible for more than 80% of 

the osteoarthritis disease’s total burden. KOA is heterogeneous in terms of rates of progression 

with several different phenotypes and a large number of risk factors, which often interact with 

each other. A number of modifiable and non-modifiable systemic and mechanical parameters 

along with comorbidities as well as pain-related factors contribute to the development of KOA. 

Although models exist to predict the onset of the disease or discriminate between asymptotic 

and OA patients, there are just a few studies in the recent literature that focused on the 

identification of risk factors associated with KOA progression. This study contributes to the 

identification of risk factors for KOA progression via a robust feature selection (FS) 

methodology that overcomes two crucial challenges: (i) the observed high dimensionality and 

heterogeneity of the available data that are obtained from the Osteoarthritis Initiative (OAI) 

database and (ii) a severe class imbalance problem posed by the fact that the KOA progressors 

class is significantly smaller than the non-progressors’ class. The proposed feature selection 

methodology relies on a combination of evolutionary algorithms and machine learning (ML) 

models, leading to the selection of a relatively small feature subset of 35 risk factors that 

generalizes well on the whole dataset (mean accuracy of 71.25%). We investigated the 

effectiveness of the proposed approach in a comparative analysis with well-known FS 

techniques with respect to metrics related to both prediction accuracy and generalization 

capability. The impact of the selected risk factors on the prediction output was further 

investigated using SHapley Additive exPlanations (SHAP). The proposed FS methodology 

may contribute to the development of new, efficient risk stratification strategies and 

identification of risk phenotypes of each KOA patient to enable appropriate interventions. 

 

Keywords: knee osteoarthritis prediction; feature selection; genetic algorithm; machine 

learning; explainability 
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Introduction 

 

Knee osteoarthritis (KOA) has a higher prevalence rate compared with other types of 

osteoarthritis (OA). KOA is a consequence of mechanical and biological factors. 

Specifically, this complex interplay includes joint integrity, genetic predisposition, 

biochemical processes, mechanical forces and local inflammation. At the onset of this 

disease, the main consequences are low quality of life due to pain, social isolation and 

poor psychological state. According to the literature, age, obesity and previous injuries 

due to sports or occupational/daily activities show a high correlation with KOA [3, 

144, 158, 159]. Particular reference should be made to the specificity of this disease. 

Specifically, the knee osteoarthritic process is gradual, with a variation in symptom 

frequency, patterns and intensity [2, 160]. Despite the constant effort of the scientific 

community, research on KOA prediction is still necessary to investigate and explore 

the multifactorial nature of the disease. 

 

One of the main challenges is the development and refinement of prognostic KOA 

models that will be applicable to the entire population. In this effort, an increase has 

been observed in the number of studies using artificial intelligence techniques due to 

the existence of big data [92, 145, 161-164]. As a result of this, several techniques have 

been reported in the literature in which feature selection (FS) techniques and machine 

learning (ML) models were used to predict KOA [5, 6]. There are several studies where 

heterogenous datasets were considered including symptoms and nutrition 

questionnaires, medical imaging outcomes, subject characteristics and behavioral and 

physical exams. Lazzarini et al. used a guided iterative feature-elimination algorithm 

and principal component analysis (PCA) and they demonstrated that it is possible to 

accurately predict the incidence of KOA in overweight and obese women using a small 

subset of the available information [81]. Specifically, they achieved their aim by using 

only five variables and Random Forest (RF) with an area under the curve (AUC) of 

0.823. In another study, Du et al. used PCA and four well-known ML models to predict 

the change of Kellgren and Lawrence, joint space narrowing on the medial 

compartment and joint space narrowing on the lateral compartment grades by using 

magnetic resonance imaging (MRI) [73]. They demonstrated that there are more 

informative locations on the medial compartment than on the lateral compartment. 

They achieved an AUC of 0.695–0.785. Furthermore, Halilaj et al. built a model to 

predict long-term KOA progression taking into account self-reported knee pain, 

radiographic assessments of joint space narrowing from the Osteoarthritis Initiative 

(OAI) database and least absolute shrinkage and selection operator (LASSO) 

regression models [79]. In this task, an AUC of 0.86 for radiographic progression was 

achieved on a 10-fold cross-validation scheme. In another study, Pedoia et al. used 

topological data analysis as a feature engineering technique in combination with MRI 
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and biomechanics multidimensional data [75]. In the attempt to meet the existing gap 

in multidimensional data analysis for early prediction of cartilage lesion progression 

in KOA, they used logistic regression as the ML model, achieving an AUC of 0.838. 

Moreover, in the task of predicting KOA severity, Abedin et al. made use of elastic net 

regression and were able to (i) identify the variables that have high predictive power 

and (ii) quantify the contribution of each variable with an overall root mean square 

error (RMSE) of 0.97 [74]. 

 

In 2019, Nelson et al. [77] applied an innovative ML approach in order to identify key 

variables associated with a progression phenotype of KOA. Specifically, they 

combined distance-weighted discrimination algorithm, direction-projection-

permutation testing and clustering methods to identify phenotypes that are potentially 

more responsive to interventions. Another study by Widera et al. was based on 

recursive feature elimination that selects the best risk factors for the prediction of KOA 

progression from incomplete imbalanced longitudinal data [76]. They used five ML 

models achieving F1 scores from 0.573 up to 0.689. Furthermore, Tiulpin et al. applied 

a multi-modal ML-based KOA progression prediction model which utilizes baseline 

characteristics, clinical data, radiographic assessments and the probabilities of KOA 

progression that are calculated from a deep convolutional neural network [78]. To 

handle the heterogeneity of the available data, they applied a gradient boosting 

machine classifier with an AUC of 0.79–0.82. Moreover, Kokkotis et al. presented a 

robust FS approach that could identify important risk factors in a KOA prediction task 

[163]. The novelty of this approach lies in the combination of well-known filter, 

wrapper and embedded techniques, whereas feature ranking is decided on the basis 

of a majority vote scheme to avoid bias. A 74.07% classification accuracy was achieved 

by support vector machines. In addition, Jamshidi et al. worked on the identification 

of important structural KOA progressors [165]. They used six FS models and the best 

classification accuracy was achieved by multi-layer perceptron (MLP, AUC = 0.88 and 

0.95 for medial joint space narrowing at 48 months and Kellgren–Lawrence (KL) grade 

at 48 months, respectively). In another study, Wang et al. employed a long short-term 

memory model to predict KOA progression [166]. They used observed time series (5-

year clinical data from OAI) and they predicted the KL grade with 90% accuracy. 

Despite all the aforementioned valuable contributions, few of the above studies have 

attempted to apply robust FS methodologies for the development of ML models for 

the prediction of KOA progression [6].  

 

Therefore, there is still a significant knowledge gap on the contribution of clinical data 

on KOA progression prediction and their impact on the training of the associated ML 

predictive models. 
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Due to the multidimensional and imbalanced nature of the datasets that are publicly 

available for KOA, robust identification of the best features for the prediction of KOA 

is a challenging task. According to our knowledge, only few studies [167-169] have 

attempted to address the complicated interaction of the aforementioned challenges 

(high dimensionality and data imbalance) in biomedical datasets (but none in the area 

of KOA). Main examples of FS methods that were applied in various fields to 

overcome the imbalance problem are (a) resampling techniques [170-173], (b) 

ensemble learning techniques [167, 174, 175], (c) cost-sensitive learning [176, 177], (d) 

one-class learning [178, 179] and (e) active learning [180, 181]. Hence, to cope with the 

aforementioned FS challenges (high dimensionality and data imbalance), we propose 

an FS technique that incorporates a number of characteristics towards the 

identification of robust risk factors that generalize well over the whole dataset. The 

proposed FS methodology, termed GenWrapper in this work, is an evolutionary 

genetic algorithm (GA)-based wrapper technique that differentiates from the classical 

GA-based FS techniques in terms of the following: (i) GenWrapper applies random 

under-sampling at each individual solution, forcing the GA to converge to solutions 

(feature subsets) that generalize well regardless of the applied data sampling; (ii) It 

ranks features with respect to the number of times that they have been selected in all 

the individual solutions for the final population. The combined effect of the 

aforementioned GenWrapper characteristics leads to selected features that 

consistently work well at any possible data sample and, thus, have increased 

generalization capacity with respect to KOA progression. An extensive comparative 

analysis has been performed to prove the superiority of GenWrapper over well-known 

FS algorithms with respect to both prediction accuracy and generalization. 

 

Methods 
 

Dataset Description 

 

Data were obtained from the Osteoarthritis Initiative (OAI) database (available upon 

request at https://nda.nih.gov/oai/, accessed on 18 June 2020), which include clinical 

evaluation data, a biospecimen repository and radiological (magnetic resonance and 

X-ray) images from 4796 women and men aged 45–79 years. The features considered 

in this work for the prediction of KL are shown in Table 3.1. The current study included 

clinical data from the baseline and the first follow-up visit at month 12 from all 

individuals being at high risk to develop KOA or without KOA. Specifically, the 

dataset contains 957 features from eight different feature categories, as shown in Table 

3.1. In addition, our study was based on the Kellgren and Lawrence (KL) grade as the 

main indicator for assessing the OA clinical status of the participants. Specifically, the 
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variables “V99ERXIOA” and “V99ELXIOA” were used to assign participants into 

subgroups (classes) of participants whose KOA status progressed or not. 

 

Table 3.1. Main categories of the feature subsets considered in this study. A brief description is 

given along with the number of features considered per category and for each of the two visits. 

Category Description 
Number of Features 

from Baseline 

Number of Features 

from Visit 1 

Subject 

characteristics 

Includes anthropometric parameters (Body mass index 

(BMI), height, etc.) 
36 9 

Symptoms 

Questionnaire data regarding arthritis symptoms and 

general arthritis or health-related function and 

disability 

120 80 

Behavioral 
Includes variables of participants’ quality level of daily 

routine and social behavior 
61 43 

Medical history 

Questionnaire results regarding a participant’s 

arthritis-related and general health histories and 

medications 

123 
51 

(only medications) 

Medical 

imaging 

outcome 

Medical imaging outcomes (e.g., joint space narrowing 

and osteophytes) 
21 - 

Nutrition 
Block Food 

Frequency questionnaire 
224 - 

Physical 

activity 
Questionnaire data regarding leisure activities, etc. 24 24 

Physical exam 
Participants’ measurements, including knee and hand 

exams, walking tests and other performance measures 
115 26 

Number of features (subtotal):  724 233 

Total number of features: 957 

 

Problem Definition 

 

In this study, we consider KL grade prediction as a two-class classification problem. 

Specifically, the participants of the study were divided into two groups: (a) Non-

progressors —healthy participants with KL0 or 1 at baseline with no further incidents 

in both of their knees until the end of the OAI data collection; (b) KOA progressors —

participants who were healthy during the first 12 months (with no incident at baseline 

and the first visit) and then they had an incident (KL ≥ 2) recorded at their second visit 

(24 months) or later, until the end of the OAI study (Figure 3.1).  
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Figure 3.1. Stratification of the patients in our study and formulation of the training dataset. 

Inclusion/exclusion criteria are presented along with the definition of the two data classes 

(knee osteoarthritis (KOA) progressors and non-progressors). 

 

Data Pre-Processing 

 

Initially, data cleaning was performed by excluding the columns with more than 20% 

missing values compared to the total number of subjects. Afterwards, data imputation 

was performed to handle missing values. As an imputation strategy, mode imputation 

was implemented to replace missing values of the numerical or categorical variables 

by the most frequent value of the non-missing variables [147]. Standardization of a 

dataset is a common requirement for many ML estimators [182]. In our study, data 

were normalized by removing the mean and scaling to unit variance to build a 

common basis for the machine learning algorithms that followed. After application of 

the exclusion criteria, classes 1 (KOA progressors) and 2 (non-progressors) comprised 

270 and 884 samples, respectively. 

 

Feature Selection 

 

Class imbalance is among the major challenges encountered in health-related 

predictive models, skewing the performance of ML algorithms and biasing predictions 

in favor of the majority class. To alleviate this problem, a novel evolutionary feature 
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selection is proposed in this work that overcomes the class imbalance problem and 

increases the generalization capacity of the finally employed ML algorithm. 

 

The proposed FS is a genetic algorithm-based approach inspired by the procedures of 

natural evolution (Figure 3.2). It operates on a population of individuals (solutions), 

and at each generation, a new population is created by selecting individuals according 

to their level of fitness in the problem domain (KOA progression in our case). The 

individuals are then recombined using operators borrowed from natural genetics 

(selection, reproduction and mutation). This iterative process leads to the evolution of 

populations of individuals that are better suited to the problem domain. Here, each 

individual in the population represents an ML model trained on a specific feature 

subset to discriminate the aforementioned classes (KOA progressors versus non-

progressors). Genes are binary values and represent the inclusion or not of particular 

features in the model. The number of genes is the total number of input variables in 

the dataset. Concatenating all genes, a so-called individual or chromosome is 

formulated that represents a possible solution (feature subset) in our FS problem. 

 

 

 

Figure 3.2. The proposed GenWrapper feature selection (FS) methodology that includes 

all the involved processing steps: (i) generation of the initial population; (ii) fitness 

measurement approach; (iii) stopping criterion; (iv) evolution mechanisms and (v) final 

feature ranking after the termination of the genetic algorithm (GA). 

 

The Optimization Toolbox of MATLAB 2020b was used for the implementation of 

GenWrapper. The proposed FS algorithm proceeds along the following steps: 
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• Step1. Initialization 

A group of k chromosomes are randomly generated, forming the initial 

population of individuals. 

• Step2. Fitness assignment 

A fitness value is assigned to each chromosome in the population. Specifically, the 

process of measuring fitness in GenWrapper can be summarized as follows. The 

following 3-step process (Figure 3.3) is repeated for each of the chromosomes of 

the population: 

Step 2.1. From the training dataset, we keep only the features that have a value of 

1 in the current chromosome. This creates a truncated training set. 

Step 2.2. Random undersampling on the majority class is performed on the 

truncated training set. This action leads to a balanced variant of the truncated 

training set. 

Step 2.3. A classifier is trained on the newly produced balanced dataset. Linear 

support vector machines (SVMs) have been chosen as the main classification 

criterion due to their generalization capability. 

Step 2.4. A k-fold cross-validation scheme is employed to validate the classifier 

performance that is finally assigned as a fitness value to the specific individual. 

• Step3. Termination condition 

The algorithm stops if the average relative change in the best fitness function value 

over Κ generations is less than or equal to a pre-determined threshold. 

• Step4. Generation of a new population 

In case the termination criterion is not satisfied, a new population of individuals is 

generated by applying the following three GA operators: 

Selection operator: The best individuals are selected according to their fitness 

value. 

Crossover operator: This operator recombines the selected individuals to generate 

a new population. 

Mutation operator: Mutated versions of the new individuals are created by 

randomly changing genes in the chromosomes (e.g., by flipping a 0 to 1 and vice 

versa). 

• Step 6. The algorithm returns to step 2. 

• Step 7: Final feature ranking determination 

Upon termination of the GA algorithm, the features are ranked with respect to the 

number of times that they have been selected in all the individuals (chromosomes) 

of the final population. 

Step 7.1. A feature gets a vote when it has a value of 1 in a chromosome of the final 

generation. 
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Step 7.2. Step 7.1 is repeated for all the chromosomes of the final generation and 

the features’ votes are summed up. 

Step 7.3. Features are ranked in descending order with respect to the total number 

of votes received. 

 

Figure 3.3. Definition of genes, chromosomes and population. 

GenWrapper evaluates the fitness of each chromosome (feature subset) by firstly 

applying random undersampling at the associated dataset (in step 2.2) and then by 

training an SVM classifier on it (Figure 3.4). The k-fold cross-validation (CV) 

performance of the SVM is considered as the fitness of the specific individual. The best 

individuals (feature subsets that maximize the fitness value) are then selected and 

combined to generate the new population. This procedure forces the GA to converge 

to solutions (feature subsets) that generalize well regardless of the specific sampling 

that has been applied. If a specific resampling process had been applied universally 

on the dataset before the application of the GA-based FS, then this would lead to 

overfitting, since the GA algorithm would try to select the best features that fit to the 

specific data sample. The proposed technique integrates a random sampling 

mechanism when evaluating each individual, leading to features that generalize well 

on the whole population. Moreover, the choice of k-fold cross-validation as a 

validation scheme guarantees that the selected features have high predictive capacity 

over the whole dataset considered. Another characteristic of the proposed 

evolutionary FS is the way that features are selected/ranked in the final population. 

Instead of selecting features from the best individual in the final population, the 

proposed selection criterion relies on the general performance of features over the 

whole final population. The best solution (the one with the highest fitness value in the 

final population) corresponds only to the maximum possible accuracy that can be 

achieved by a selected feature subset on a specific subset of the whole sample. 

However, this does not necessarily mean that the best solution generalizes well in the 

whole sample. Therefore, to achieve the best possible generalization, the proposed FS 

ranks features with respect to the number of times that they have been selected in all 

the individuals of the final population. The parameters of the proposed GA-based FS 

have been properly selected and are cited in Table 3.2 below. 
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Figure 3.4. Proposed mechanism for estimating the fitness of each chromosome 

within a generation. 

 

Table 3.2. Hyperparameters of the optimized GenWrapper algorithm. A brief description 

of each hyperparameter is provided along with the finally selected value. 

Parameter Description Selected Value 

Population size Number of individual solutions in the population 50 

Number of generations Maximum number of generations before the algorithm halts 100 

Mutation rate Probability rate of being mutated 0.1 

Crossover Fraction 
The fraction of the population at the next generation, not including elite 

children, that the crossover function creates. 
0.8 

Elite Count 
Positive integer specifying how many individuals in the current 

generation are guaranteed to survive into the next generation 
5 

StallGenLimit The algorithm stops if the weighted average change in the fitness function 

value over StallGenLimit generations is less than Function tolerance 

50 

Tolerance  1 × 10-31e-03 

 

Learning 

 

Given that the main objective of study is the identification of robust risk factors, two 

well-known linear ML models (linear regression (LR) and linear SVM) were utilized 

to evaluate the predictive capability of the selected features. The reason for employing 

linear models is because (i) they are computationally efficient, so they can be executed 

multiple times within a repetitive process such as the GA-based algorithm that is 

proposed in this work, and (ii) they generalize well and, therefore, can be used to 

assess the generalization performance of the selected features. A brief description of 

these models is given below. 

 

LR is the most commonly used algorithm for solving classification problems [154]. It 

is an extension of the linear regression model for classification problems and it models 
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the probabilities for classification problems with two possible outcomes. SVMs are 

supervised learning models for classification, regression and outlier detection but are 

more commonly used in classification problems [116]. SVMs are effective in high-

dimensional spaces and are still effective in cases where the number of dimensions is 

greater than the number of samples. 

 

Validation 

 

To evaluate the predictive capacity of the selected feature subset, a repeated cross 

validation process was adopted using the aforementioned classifiers. Specifically, the 

validation approach proceeds with the following steps 

 

• Step 1. Random undersampling is applied on the majority class, and the retained 

samples along with those from the minority class form a balanced binary dataset. 

• Step 2. A classifier is built on the balanced binary dataset and its accuracy is 

calculated using 10-fold cross-validation (10FCV). 

• Step 3. Steps 1 and 2 are repeated 10 times, each one using a different randomly 

generated balanced dataset. 

• Step 4. The final performance is calculated by averaging the obtained 10FCV 

classification accuracies. The resulting final performance will be referred to here as 

mean 10FCV. 

 

By adopting this repeated validation approach, we guarantee that the selected features 

are not only suitable for a specific data sample but that they generalize well over the 

whole dataset. The calculated mean 10FCV performance aggregates the accuracies 

from 100 training runs (10 repetitions of 10FCV) on different randomly created data 

samples, forming a reliable measure for estimating the predictive capacity of the 

selected features. 

 

Explainability 

 

To further assess the impact of the selected features on the classification outcome, 

SHapley Additive exPlanations (SHAP) were considered. SHAP is a game theoretic 

approach that explains the output of any machine learning model and achieves the 

connection of the optimal credit allocation with local explanations using the classic 

Shapley values from game theory that come with desirable properties [183]. In this 

study, Kernel SHAP is used, which is a specially weighted local linear regression to 
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estimate SHAP values for any model (e.g., SVM in a two-class classification problem). 

The optimization of loss function L in Kernel SHAP is described below (in Equation 

(1)), where g is the explanation linear model that is trained on training data Z, 𝑓(: ) is 

the original prediction function to be explained and 𝑧′ is a vector of 1s and 0s called 

coalition. Here, 1s indicate the presence of the corresponding feature, while 0 indicates 

its absence. ℎ𝑥(𝑧′) maps a feature coalition to a feature set on which the model can be 

evaluated, whereas 𝜋𝑥(𝑧′) is the SHAP kernel. 

 

(𝑓, 𝑔, 𝜋𝑥) = ∑ [𝑓(ℎ𝑥(𝑧′)) − 𝑔(𝑧′)]
2

𝜋𝑥(𝑧′)

𝑧′∈𝛧

 (1) 

 

Results 
 

In this section, we demonstrate the efficiency of the proposed feature selection 

algorithm in comparison with other well-known FS techniques. The most significant 

risk factors, as selected by the proposed FS methodology, are also presented, whereas 

their impact on the classification result is discussed employing SHAP. 

 

Selection Criterion 

 

Figure 3.5 shows the evolution of the proposed fitness value with respect to the 

number of generations. As it was discussed, the mean fitness value is calculated by 

averaging the fitness values of all the 50 individual solutions in each generation. Each 

individual fitness value represents the performance of the employed ML model (SVM 

in our case) on a new, randomly generated balanced dataset (after downsampling the 

majority class) using k-fold cross-validation. Thus, the mean fitness value aggregates 

the performance of 50 employed ML models that were trained on slightly different 

versions of the initially available dataset. As it is observed in Figure 3.5, the mean 

fitness value decreases with the number of generations, meaning that the FS converges 

to a pool of selected feature subsets that have increased classification capacity, 

regardless of any specific data sampling. 
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Figure 3.5. Fitness with respect to number of generations for GenWrapper. The 

black and blue dashed lines show the best and the mean fitness achieved at each 

generation, respectively. 

 

The dashed black line in Figure 3.5 represents the minimum fitness values received at 

each generation of the algorithm. However, as it was noted that the best fitness value 

(0.26818 in our case) corresponds to a selected feature subset that has been decided 

based on its performance on a part of the available sample. The proposed scheme, 

instead of selecting the “best” feature subset of the final generation, proceeds by 

ranking the available features with respect to the times they have been selected in the 

50 different individual solutions of the final generation. Figure 3.6 illustrates an 

example of such a ranking where seven features have been selected in all 50 individual 

solutions, another nine have been selected in 49 individual solutions and so on. The 

highly ranked features are the ones that are consistently selected by all individual 

solutions that are generated on different data samples. 
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Figure 3.6. Feature ranking produced by the proposed FS (the dashed line indicates the 

number of features that were finally selected). 

 

To prove the superiority of the proposed feature selection criterion over the “best” 

individual solution, we performed the following experimentation. Two competing 

feature subsets were initially extracted: (a) the proposed one that has been selected 

after selecting the top 35 highly ranked features and (b) the feature subset extracted 

from the “best” individual solution of the final GA generation (comprising 42 

features). The generalization capacity of both features subsets was assessed by 

employing the repetitive validation approach proposed in this work and the results 

are shown in Table 3.3. The proposed feature ranking led to higher accuracy (in terms 

of mean performance, minimum and maximum accuracies), employing less features 

(35) compared to the ones selected in the “best” individual solution (42). 

 

Table 3.3. Comparative analysis with respect to the final selection of features: proposed feature 

ranking versus the feature subset of the best individual solution in the final generation. 

FS Criterion 

10FCV Accuracy Performed 10 Times 

Average Min Max Std 
No. of 

Features 

Feature subset extracted from 

the “best” individual solution of 

the final generation 

70.10% 67.59% 72.04% 1.13% 42 

Proposed feature ranking  71.25% 69.22% 73.33% 1.57% 35 
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Features Selected 

 

Table 3.4 cites the 35 features selected by the chosen GenWrapper FS approach. A short 

description of the features and the categories in which they belong are presented. 

Seven out of the 35 selected risk factors come from the symptom’s category, 

representing parameters related to pain, swelling, stiffness and knee difficulty, 

demonstrating the relevance of symptoms in the occurrence and progression of KOA. 

Moreover, eight features represent diet and nutrition-related parameters that also 

constitute an important risk factor category. Nine of the features are related to physical 

activity or exams, whereas another five behavioral risk factors were selected as 

relevant to KOA progression. Medical history or status estimated through subjective 

(three self-reported risk factors) or more objective metrics (medical imaging outcomes 

such as the existence of osteophytes) were also selected by the proposed FS approach. 

Finally, two parameters describing subject characteristics were among the selected risk 

factors (specifically the patient’s body mass index (BMI) and height). 

 

Table 3.4. Characteristics of the 35 most informative risk factors as selected by the 

proposed GenWrapper. 

Selected Features Feature Category Description 

P01BMI, P01HEIGHT Subject characteristics 
Anthropometric parameters including 

height and BMI 

KSXRKN1, V00WOMSTFR, KPLKN1, 

V00WPLKN2, DIRKN16, V00KOOSYML, 

V00INCOME 

Symptoms 
Symptoms related to pain, swelling, 

stiffness and knee difficulty 

V00EDCV, V00KQOL4, V00KQOL2, 

V00CESD9, CEMPLOY 
Behavioral 

Participants’ quality level of daily routine 

and social behavior and social status 

V00RXCHOND, V00RA, V00CHNFQCV Medical history 

Questionnaire data regarding a 

participant’s general health histories and 

medications 

P01SVLKOST 
Medical imaging 

outcome 

Medical imaging outcomes (e.g., 

osteophytes) 

V00SUPCA, V00FFQ59, V00FFQSZ13, 

V00FFQ33, V00SUPB2, V00FFQ12, 

V00SUPFOL, V00FFQ19 

Nutrition 

Block Food Frequency questionnaire for 

daily average, how much each time or for 

past 12 months 
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PASE2, PASE6, V00PA130CV Physical activity 
Questionnaire results regarding activities 

during typical week or past 7 days 

RKALNMT, V00lfmaxf, V00rfTHPL, 

V00lfTHPL, STEPST1, V00rkdefcv 
Physical exam 

Physical measurements of participants, 

including tests and other performance 

measures 

 

Comparative Analysis 

 

The performance of the proposed FS methodology was compared with eight well-

known FS techniques in the recent literature. The selected techniques along with their 

main characteristics are briefly presented below. 

 

A classical wrapper FS was employed in which the feature selection process is based 

on a specific machine learning algorithm that we are trying to fit on a given dataset. It 

follows a time-consuming search approach by evaluating all the possible combinations 

of features against the evaluation criterion. The evaluation criterion is simply a 

performance measure which depends on the type of problem. Infinite latent feature 

selection (ILFS) is a probabilistic latent feature selection approach that performs the 

ranking step by considering all the possible subsets of features, bypassing the 

combinatorial problem [184]. Unsupervised graph-based filter (Inf-FS) is another FS 

algorithm proposed, again, by Roffo et al. (2015) [185]. In Inf-FS, each feature is a node 

in a graph, a path is a selection of features and the higher the centrality score, the most 

important the feature. It assigns a score of importance to each feature by taking into 

account all the possible feature subsets as paths on a graph. Correlation-based feature 

selection (CFS) sorts features according to pairwise correlations [186], whereas LASSO, 

proposed by Hagos et al. (2017), applies a regularization process that penalizes the 

coefficients of the regression variables while setting the less relevant ones to zero with 

respect to the constraint on the sum [187]. In LASSO, FS is a consequence of this 

process, when all the variables that still have non-zero coefficients are selected to be 

part of the model. Minimum redundancy maximum relevance (Mrmr) [188] is another 

well-known FS algorithm that systematically performs variable selection, achieving a 

reasonable trade-off between relevance and redundancy. A hybrid FS methodology 

was also employed that combines the outcomes of six FS techniques: two filter 

algorithms (Chi-square and Pearson correlation), three embedded ones (LightGBM, 

logistic regression and random forest) and one wrapper (with logistic regression) 

[163]. In this approach, all six FS techniques are applied separately, with each one 

resulting in a selected FS, and the final feature ranking is decided on the basis of a 

majority vote scheme. PCA is a well-known feature reduction method that reduces the 
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dimensionality of data by geometrically projecting them onto lower dimensions called 

principal components (PCs), with the goal of finding the best summary of the data 

using a limited number of PCs. The MATLAB-based feature selection library FSLib 

2018 (https://www.mathworks.com/matlabcentral/fileexchange/56937-feature-

selection-library, accessed on 30 January 2021) was used for the implementation of the 

competing FS algorithms on a research workstation with Intel Core i7-7500 processor, 

2.70 GHz CPU (16 GB RAM). 

 

Figure 3.7 depicts the results of the comparison between the proposed GenWrapper 

FS and a classical wrapper FS technique. Specifically, the obtained mean 10FCV 

accuracies are shown with respect to the number of features as they have been ranked 

by the two compared approaches using two classifiers (LR and SVM). The following 

remarks can be extracted from Figure 3.7: 

 

• GenWrapper significantly outperforms the classical wrapper FS, especially for a 

small number of selected features (up to 20). This superiority is proven for both 

SVM and LR; 

• GenWrapper employing SVM gives the best overall performance (71.25% at 35 

selected features). 

 

Figure 3.7. Accuracy (mean 10-fold cross-validation (10FCV)) with respect to selected features 

(curves): GenWrapper versus a classical wrapper using two classifiers (support vector 

machine (SVM) and logistic regression (LR)). 

 

Figure 3.8 shows the progression of the mean 10FCV accuracy with respect to the 

number of selected features for the proposed FS and the other seven competing FS 

techniques (CFS, ILFS, Inf-FS, Lasso, Mrmr, PCA and hybrid). In this comparative 
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analysis, a linear SVM classifier were employed by all techniques since it proved to be 

the most efficient ML model. GenWrapper is the best-performing technique, achieving 

high accuracies (3.4% higher than the second best). Hybrid FS and Mrmr were the 

second and third best performers, achieving accuracies of 67.85% and 67.29%, 

respectively. Mrmr was very successful at the first 10 selected features but then it 

reached a threshold within the range of 67–68%, whereas the inclusion of further 

features had a minor or even negative effect on the classification performance. The rest 

of the FS techniques had moderate performances (61.97–65.11%). Table 3.5 also shows 

the best accuracies achieved by each technique and the number of features for which 

the best accuracy was achieved. GenWrapper achieved its best accuracy at a relatively 

small number of features (35), whereas the rest had inferior performances and, in most 

of the cases, at a higher number of features. The classical wrapper FS was the only one 

that selected slightly less features (31). A statistical comparison was finally conducted, 

verifying that the accuracies obtained by the proposed GenWrapper were significantly 

different (higher) to the ones of all the competing FS algorithms (p < 0.001). 

 

 

Figure 3.8. Accuracy (mean 10FCV) with respect to selected features: 

GenWrapper versus the remaining competing FS techniques. SVM was used for 

the classification task for all eight FS techniques. 

 

Table 3.5. Best performance (mean 10FCV) achieved by all competing FS techniques 

employing SVM along with the number of selected features in which this accuracy was 

accomplished. 

Approach  
Best Accuracy  

(Mean 10FCV) 
Number of Features 

Statistical  

Comparison * 

Execution Time 

(sec) ** 
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GenWrapper 71.25 35 - 311.6 

Wrapper 69.79 31 p < 0.001 10.2 

CFS 61.97 69 p < 0.001 0.1 

ILFS 63.63 82 p < 0.001 0.5 

Inf-FS 63.32 35 p < 0.001 0.1 

Lasso 64.41 94 p < 0.001 21.2 

Mrmr 67.29 36 p < 0.001 2.3 

Hybrid 67.85 41 p < 0.001 15.5 

PCA 65.11 29 p < 0.001 <0.1 

* Statistical comparison with the proposed GenWrapper. ** All the algorithms were 

executed on an Intel Core i7-7500 processor, 2.70 GHz CPU (16 GB RAM) using MATLAB 

2020b. 

 

The last part of the conducted comparative analysis focuses on a different performance 

metric—that is, the consistency of the obtained accuracies during the proposed 

repetitive validation process. As explained in the previous sections, the predictive 

capacity of the selected features is validated multiple times (10). In each of the ten 

repetitions, 10FCV is employed on a different, randomly selected balanced data 

sample. A feature subset could be considered as robust when it consistently leads to 

high accuracies over the ten repetitions. Figure 3.9 is a bar graph that visualizes (i) the 

mean 10FCV accuracies, (ii) the standard deviation of the 10FCV accuracies, (iii) the 

range ([min,max]) of the 10FCV accuracies and (iv) any outliers that deviate from the 

distribution of the 10FCV accuracies. GenWrapper was the most accurate approach 

(71.25%) and, at the same time, it proved to be the most consistent FS technique, with 

the great majority of obtained 10FCV accuracies being higher than 70%. The classical 

wrapper FS was also consistent over the ten repetitions but it was considerably less 

effective than the proposed GenWrapper. It should be noted that the hybrid FS 

approach achieved accuracies up to 72.5%; however, it does not generalize well given 

that it leads to a quite enlarged min–max range as well as an increased standard 

deviation, with the minimum accuracy being less than 60%. Mrmr has led to both 

moderate mean accuracy and moderate consistency (ranging between 66% and 70%) 

over the repetitions of the employed validation process. The rest of the competing FS 

approaches led to much lower 10FCV accuracies that ranged between 58% and 68%. 
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Figure 3.9. Bar graph comparison for the best models (SVMs trained on the 

optimum number of selected features per case). Red lines correspond to the 

mean 10FCV, blue boxes visualize the standard deviation of the obtained 

accuracies, dashed black lines show the min–max range and the red crosses 

depict outliers (if any). 

 

Explainability Results 

 

Figure 3.10a illustrates the features’ impact on the output of the final model (SVM) on 

the OAI dataset. It sorts features by the sum of SHAP value magnitudes over all 

samples and uses SHAP values to show the contribution of each feature (positive or 

negative) on the model’s output. The color represents the feature value (blue—low; 

red—high). This reveals, for example, that a high P01BMI (body mass index of the 

participants) increases the predicted status of the participants. Similarly to BMI, the 

features P01SVLKOST, V00SUPCA, V00CHNFQCV, V00WOMSTFR, V00FFQSZ13, 

V00KQOL4, V00rkdefcv, KPLKN1 and V00PA130CV have a positive effect on the 

prediction outcome (their increase drives the output to increase), whereas the rest have 

the opposite effect. Figure 3.10b demonstrates the mean absolute value of the SHAP 

values which represents the SHAP global feature importance. It should be noted that 

the features P01SVLKOST, BMI, V00SUPCA and V00EDCV were the most important 

variables that significantly affected the prediction output (Appendix B). 
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(a)  (b) 

Figure 3.10. This figure depicts: (a) the SHAP summary plot and; (b) the SHAP 

feature importance for the SVM trained on the features selected by the proposed 

GenWrapper. 

 

Discussion 

 

Predicting KOA onset and its further progression is among the best strategies to 

reduce the burden of the disease. Risk factors for incident OA may differ from those 

for OA progression given that the incidence and progression of radiographic knee OA 

may involve different processes [189, 190]. Several risk factors have been reported to 

be associated with the incidence of knee OA [3, 191, 192]. However, our understanding 

about predictive risk factors associated with KOA progression is limited due to the 

fact that the number of studies, in which risk factors and incidence of knee OA have 

been investigated longitudinally, is relatively small. This study contributes to the 

identification of robust risk factors for knee OA progression as a first, but very 

important, step toward achieving the goal of developing preventive strategies and 

intervention programs and finally reducing the incidence and associated morbidity of 

knee OA. 

 

Identifying important features from an imbalanced data set is an inherently 

challenging task, especially in the current KOA prediction problem with limited 

samples and a massive number of features. Feature selection algorithms employing 
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data resampling have been typically utilized to reduce the feature dimensionality and 

at the same time to overcome the class imbalance challenge. Oversampling algorithms 

randomly replicate examples from the minority class which in some scenarios can 

facilitate the FS process but is also prone to overfitting [193]. In data under-sampling, 

examples from the majority class are randomly discarded in order to rectify the 

disparities between classes. However, informative samples might be discarded from 

the final training set, reducing the generalization capabilities of the finally selected risk 

factors. New approaches are needed to address the intersection of the high 

dimensionality and imbalanced class problems due to their complicated interactions. 

 

To cope with all the aforementioned challenges, the proposed FS technique 

incorporates a number of features aiming towards the identification of robust risk 

factors (with increased generalization capacity) extracted from a highly imbalanced 

dataset. GenWrapper relies on a stochastic method for function optimization based on 

the mechanics of natural genetics and biological evolution. This stochastic search is 

employed to identify a globally optimal feature subset, compared to a costly search 

that makes local decisions. The proposed FS performs better than traditional feature 

selection techniques, can manage datasets with many features and does not need any 

specific knowledge about the problem under study. Compared to traditional GA-

based FS algorithms, GenWrapper applies random undersampling at each individual 

solution, forcing the GA to converge to solutions (feature subsets) that generalize well 

regardless of the applied data sampling. K-fold cross-validation is utilized to measure 

the fitness of each individual solution, guaranteeing that the selected features have 

high predictive capacity over the whole dataset considered. Finally, instead of 

selecting the “best” individual of the final population, the proposed FS ranks features 

with respect to the number of times that they have been selected in all the individual 

solutions of the final population. This leads to selected features that consistently work 

well at any possible data sample and, thus, have increased generalization capacity 

with respect to KOA progression. 

 

Linear classifiers were employed on this study, and this choice can be attributed to the 

fact that evidence of linear separability between the two classes (progressors versus 

non-progressors) was identified in previous studies of the authors on the same 

problem. Specifically, as it was reported in [163], LR and linear SVMs outperformed 

all the competing non-linear models (including Random Forest, XGboost, KNN and 

decision trees) on the same problem of predicting KOA. This finding highlight that the 

power of the proposed technique lies on the selection of robust and informative risk 

factors, whereas the complexity of the finally employed classification models plays a 

less crucial role. 
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The performance of the proposed FS methodology was compared with eight well-

known FS techniques in the recent literature. GenWrapper employing SVM led to the 

overall best performance (71.25% at 35 selected features), significantly outperforming 

all the competing algorithms. Specifically, it proved to be more accurate than the 

classical wrapper FS (which was the second-best approach), and this superiority was 

more evident for a small number of selected features (up to 20). GenWrapper was also 

much more effective (at least 3.4% more accurate) than the other seven competing FS 

techniques (CFS, ILFS, Inf-FS, LASSO, Mrmr, PCA and hybrid). Finally, apart from 

being the most accurate approach, GenWrapper was prove to also be the most 

consistent FS technique, with the great majority of the obtained 10FCV accuracies 

being higher than 70%, whereas all the other competing FS algorithms led to inferior 

and less consistent accuracies. 

 

During our study, we utilized multimodal data and we managed to identify the 

variables that mainly contributed to the predictive ability of our models. Important 

predictive risk factors selected by our models included assessments of pain and 

function, qualitative assessments of X-rays, assessments of behavioral characteristics, 

medical history and nutrition from the Center for Epidemiologic Studies Depression 

Scale (CES-D) and Block Brief 2000 questionnaires. The strongest indicator variables 

are reporting on knee baseline radiographic OA status (P01SVLKOST), on 

anthropometric characteristics (P01BMI) and on nutritional (V00SUPCA) and 

behavioral habits (V00KQOL4). Previous studies [74, 79] have also reported similar 

key predicted variables for KOA progression. Our findings suggest that early 

functional, behavioral and nutritional interventions should be encouraged and 

implemented for the prevention or slowing-down of KOA progression. 

 

Genetic algorithms might be costly in computational terms since the evaluation of each 

individual requires the training of a model. Due to its stochastic nature, the proposed 

FS takes a longer time to converge, and this could be considered as a limitation. 

However, the identification of risk factors for KOA progression is, in principle, an 

offline approach, and therefore, its current execution time (~5 min) is not prohibitive. 

In the current study, time execution is not considered as crucial as the predictive 

capability of the finally selected features that can be used to enhance our 

understanding of whether a patient is at increased risk of progressive KOA. 

GenWrapper improves the current state of the art by identifying risk factors that are 

more accurate compared to the ones selected by eight well-known FS algorithms (by 

at least 3.4%) and, most importantly, more robust in terms of their performance on the 

entire population of subjects (as it has been validated with an extensive validation 

mechanism that involved 100 training runs on different data samples). This stated 

improvement could (i) allow preventive actions to be planned and implemented and 
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(ii) enable more personalized treatment pathways and interventions for treatment, 

targeting specific risk factors. From a different perspective, being able to identify non-

progressors could also prevent over-investigations and over-treatment. 

 

Future work includes the identification of subpopulations of patients that have a 

greater risk of developing knee OA as well as a higher chance to progress faster. 

Moreover, quantification of KOA progression is another field that has not been 

adequately investigated by the scientific community. The combination of more 

advanced AI tools (e.g., Siamese neural networks) with the FS algorithm proposed in 

this study could form a reliable basis for quantifying KOA progression. 

 

Conclusions 

 

This study focuses on the identification of important and robust risk factors which 

contribute to KOA progression. The proposed FS methodology relies on an 

evolutionary machine learning methodology that leads to the selection of a relatively 

small feature subset (35 risk factors) which generalizes well on the whole dataset 

(mean accuracy of 71.25%). We investigated the effectiveness of the proposed 

approach in a comparative analysis with well-known FS techniques with respect to 

metrics related to both prediction accuracy and generalization capability. The nature 

of the selected features along with their impact on the prediction outcome (via SHAP) 

were also discussed to increase our understanding of their effect on KOA progression. 

Identifying and understanding the contribution of risk factors on KOA progression 

may enable the implementation of better prevention strategies prioritizing non-

surgical treatments, essentially preventing an epidemic of KOA. 
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Chapter 4 

 

Explainable Machine Learning for Knee Osteoarthritis Diagnosis Based on a 

Novel Fuzzy Feature Selection Methodology 

 

Unpublished data: 

This work has been submitted for publication. 

 

Abstract 

 

Knee Osteoarthritis (ΚΟΑ) is a degenerative joint disease of the knee that results from 

the progressive loss of cartilage. Due to KOA’s multifactorial nature and the poor 

understanding of its pathophysiology, there is a need for reliable tools that will reduce 

diagnostic errors made by clinicians. The existence of public databases has facilitated 

the advent of advanced analytics in KOA research however the heterogeneity of the 

available data along with the observed high feature dimensionality make this 

diagnosis task difficult. The objective of the present study is to provide a robust 

Feature Selection (FS) methodology that could: (i) handle the multidimensional nature 

of the available datasets and (ii) alleviate the defectiveness of existing feature selection 

techniques towards the identification of important risk factors which contribute to 

KOA diagnosis.  For this aim, we used multidisciplinary data obtained from the 

Osteoarthritis Initiative database for individuals without or with KOA. The proposed 

fuzzy ensemble feature selection methodology aggregates the results of several FS 

algorithms (filter, wrapper and embedded ones) based on fuzzy logic. The 

effectiveness of the proposed methodology was evaluated using an extensive 

experimental setup that involved multiple competing FS algorithms and several well-

known ML models.  A 73.55 % classification accuracy was achieved by the best 

performing model (Random Forest classifier) on a group of twenty-one selected risk 

factors. Explainability analysis was finally performed to quantify the impact of the 

selected features on the model’s output thus enhancing our understanding of the 

rationale behind the decision-making mechanism of the best model.  

 

Keywords: KOA diagnosis; machine learning; clinical data; explainability; feature 

selection   
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Introduction 

 

Knee Osteoarthritis (KOA) is one of the most common types of osteoarthritis and 

musculoskeletal disorder. Being the 11th highest cause of disability globally, KOA is a 

multifactorial disease that results from mechanical and constitutional factors [194]. 

Obesity, age, gender, knee injuries and lifestyle are likely risk factors of KOA as they 

have been highlighted in the relevant recent literature [195]. In addition, swelling, pain 

and stiffness have been characterized as typical symptoms of the disease with 

irreversible cartilage damage being KOA’s main consequence [3, 144, 159]. KOA is 

closely associated with a huge economic burden for the healthcare system and an 

unbearable health burden of the patients and their families. Significant consequences 

of KOA are the social isolation and low quality of life of the individual [160, 196]. 

Furthermore, the quantification of KOA is performed with the Kellgren–Lawrence 

(KL) severity grading scale, which is the most commonly grading system (current gold 

standard) and consists of five severity grades, from 0 to 4 [4]. 

Despite the fact that the scientific community has put a lot of effort into KOA research, 

a major challenge remains with respect to early diagnosis, long-term diagnosis and 

treatment of ΚΟΑ. The parallel increase in computing power along with the collection 

of big datasets combined with the need to address the above challenges has led many 

research teams to use artificial intelligence (AI) techniques in the field of KOA [6]. In 

light of the above, several AI enabled studies have been proposed in the recent 

literature with the objective to diagnose or predict KOA. Yoo et al. used data from the 

Fifth Korea National Health and Nutrition Examination Surveys (KNHANES V-1) and 

the Osteoarthritis Initiative (OAI) to build an artificial neural network (ANN)-based a 

scoring system for the identification of KOA severity [95]. The proposed ANN model 

achieved an area under the curve (AUC) of 76% for the symptomatic KOA in an 

external validation with OAI data. In another study, Lim et al. proposed a method for 

early diagnosis of KOA based on clinical data from Korean National Health and 

Nutrition Examination Survey (KNHANES) [90]. They achieved a 76.8% AUC by 

using a deep neural network with scaled principal component analysis. In 2019, 

Christodoulou et al. investigated the deep learning capabilities in KOA diagnosis 

[197]. They used clinical data from OAI database and they achieved an 86.95% 

accuracy working on an aged subgroup (70 +).  

In another study, Moustakidis et al. worked on self-reported clinical data (OAI) and 

proposed a deep learning methodology for the recognition of participants being at 

high risk of developing KOA in at least one knee and participants with symptomatic 

KOA [92]. They achieved accuracies up to 86.95%. Furthermore, Kwon et al. proposed 

an automatic classification of KOA severity that made use of gait analysis data and 

radiographic imaging (from Seoul National University Hospital) [198]. They 
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employed Inception-ResNet-v2 for feature extraction from X-rays and a support vector 

machine for KOA diagnosis achieving accuracies of 93%, 82%, 83%, 88% and 97% for 

the KL grades 0-4, respectively. In addition, Moustakidis et al. proposed a KOA 

classification approach with a focus on both accuracy and fairness [162]. They worked 

on different subgroups of participants from self-reported clinical data (OAI) and the 

dense neural networks methodology improved the accuracy up to 79.6% with fairness 

measured by balanced equalized odds (~ 92%) and demographic parity (98.5%) in the 

KOA case study. 

Given that medical data and features can be subjective or difficult to interpret, medical 

decision making has a great potential to benefit from the use of fuzzy logic (FL). FL 

has been used to diagnose or facilitate decision making systems tackling many 

diseases, including OA. Hardi et al. proposed an expert system based on the fuzzy 

Tsukamoto method for OA diagnosis [199]. They treated symptoms of OA as fuzzy 

values that were further converted into firm value by using a weighted average 

demonstrating a 90% accuracy in the task of diagnosis of osteoarthritis disease. In 

general, various feature selection methods have integrated fuzzy logic in their internal 

mechanisms in order to handle the observed fuzziness and therefore improve the way 

that features are treated and combined. For instance, with emphasis to medical 

applications, the mutual information method combined with FL was used: (i) to select 

miRNAs in cancer [200]; (ii) to classify tumors [201]; and to select features for 

multilabel learning [202]. Similar studies include fuzzy entropy by using thresholds 

[203] for feature selection in various medical datasets and fuzzy rough sets [204, 205] 

for dimensionality reduction of feature space to prevent samples from 

misclassification.  

It is well known that each one of the existing FS algorithms comes with its own 

advantages and disadvantages introducing a certain level of bias. To handle the 

multidimensional nature of the OAI dataset and to avoid bias and alleviate the 

defectiveness of single feature selection results, a fuzzy ensemble FS methodology is 

proposed in this work that aggregates the results of several FS algorithms (filter, 

wrapper and embedded). Fuzzy logic is employed to combine multiple feature 

importance scores thus leading to a more robust selection of informative features. The 

proposed method contributes to the significant reduction of the initial OAI feature 

dimensionality and to a decrease in the computational complexity of the classification 

models employed. To prove the effectiveness of the proposed methodology, an 

extensive experimental setup was designed involving multiple competing FS 

algorithms and several well-known ML models. As a post-hoc explainability, SHAP 

model was finally employed to identify the contribution of the selected features and 

the rationale behind the decision-making mechanism of best performing model.  
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Materials and Methods 
 

Dataset Description 

 

For the purpose of this study, data were obtained from the osteoarthritis initiative 

(OAI) database (available on https://nda.nih.gov/oai/). OAI is a prospective 

observational, multi-center and longitudinal study of KOA. OAI has enrolled 4796 

women and men, aged 45-79 years. The present study used clinical evaluation data 

(643 features in total) from the baseline visit from all participants with or without 

KOA. The features of clinical dataset were divided into seven categories as shown in 

Table 4.1. Furthermore, in the present study, Kellgren and Lawrence (KL) grades were 

used as the outcome for the classification task. 

 

Table 4.1. Main categories of the clinical evaluation data considered in this study. 

Category Description 

Medical history Medications and health histories based on 

questionnaire results (not included medical 

imaging outcomes) 

Symptoms Arthritis symptoms or health-related 

disability and function based on 

questionnaire data 

Subject characteristics Includes variables which describe 

anthropometric parameters and personal 

information  

Nutrition Questionnaire based on Block Food 

Frequency  

Physical exam Includes performance measures and knee 

and hand exams 

Physical activity Questionnaire results regarding living and 

leisure activities 

 

Behavioral 

Consists of variables which quantify the 

social behavior and the quality level of daily 

routine 
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Methodology  

 

The proposed AI methodology for KOA diagnosis consists of five processing steps: i) 

data pre-processing, ii) application of FS techniques, iii) learning process, iv) 

evaluation of the classification results and v) explainability analysis, as illustrated in 

Figure 4.1. An extensive explanation of the steps of the proposed methodology is given 

in the following subsections.  

 

 

Figure 4.1. The proposed AI methodology for KOA diagnosis. 

 

Problem Definition 

 

In this study, we defined the KL-grade prediction task as a binary class classification 

problem. Specifically, the subjects of the study (3872 subjects in total) were divided 

into two equal groups:  

i) KOA - participants who have KL >=2 at baseline. Participants in the group 

who had KL grades equal (early diagnosis) or higher than 2 in at least one 

of the two knees or in both at baseline;  

ii) ii) non-KOA - participants who had KL0 or KL1 grade at baseline.  

Especially, this group of participants do not have ΚΟA in any of their 

knees. 

 

Data Pre-processing 

 

Mode imputation was employed to handle categorical and continuous missing values [206]. In 

our study, data were normalised to [0, 1] to build a common basis for the FS algorithms and 

learning techniques that follow [207]. Furthermore, to cope with the imbalance data problem a 

stratified strategy for data resampling was applied. In particular, the number of the subjects in 

the majority class was reduced in order to become equal to the number of samples on the 

minority class [208]. 
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Proposed FS methodology  

 

The proposed Fuzzy logic enhanced Feature Selection method (FLFS) combines the 

outputs of six well-known feature selection methods from three feature selection 

categories (Filter, Wrapper and Embedded).  Specifically, from the filter category, the 

mutual information [209] and the f-ANOVA [210] techniques were applied. From the 

wrapper category, we employed a recursive feature elimination (RFE) based on 

logistic regression [211] and an RFE based on support vector machine [212] techniques, 

respectively. Furthermore, from the embedded category, a LightGBM [213] and a 

random forest technique [214] were applied. To calculate the importance of a feature 

for each category, the scores of the associated FS techniques were used as input to the 

Fuzzy Inference System (FIS) 1 that was implemented with Mamdani inference 

methodology [215]. The output of the FIS 1 was the defuzzification value that 

represents the feature importance score for the specific feature selection category. 

Then, the defuzzification score of each category was used as input to the FIS 2 where 

the output defuzzification value represents the overall feature importance. Figure 4.2 

illustrates the FSFL flowchart with the defined fuzzy rules for each FIS and the selected 

feature selection methods for this study. Figure 4.3 shows the fuzzy sets used in the 

presented methodology for the input variables for FIS 1 and FIS 2, while Figure 4.4 

shows the fuzzy sets of output variable for FIS 1 and 2. 

 

 

Figure 4.2. Feature Selection method based on Fuzzy Logic flowchart. 
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Figure 4.3. Fuzzy set of input variables for FIS 1 and 2. 

 

Figure 4.4. Fuzzy set of output variable for FIS 1 and 2. 

 

Learning  

 

In order to handle the demanding task of KOA classification, we investigated various 

ML models for their suitability and behavior in this problem. Specifically, random 

forest (RF) [216], multilayer perceptron (MLP) [217], logistic regression (LR) [161], 

support-vector machines (SVMs) [104], and k-nearest neighbors (KNN) [218] 

classifiers were tested. Furthermore, to avoid overfitting, and to optimize the 

performance of our models hyperparameter selection was applied individually per 

model.  

 

Validation 

 

For the experimental evaluation, a repeated stratified 5-fold cross validation was used 

[219]. The performance of the classifiers was also evaluated in terms of the recall, f1-

score and precision as additional evaluation criteria [220]. A brief description of these 

metrics is given below. Initially, the accuracy is the ratio of correctly predicted 

observations to the total observations and can be characterized as the most intuitive 

performance measure. Recall (or Sensitivity) is the ratio of correctly predicted positive 

observations to all observations in the actual class. Moreover, the ratio of correctly 

predicted positive observations to the total predicted positive observations is called 

precision or positive predictive value. F1-score is the weighted average of Precision 

and Recall.  
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Explainability 

 

In the present work, we also examine how the risk factors have contributed to the final 

decision of KOA diagnosis. In order to achieve this, we used SHapley Additive 

exPlanations (SHAP), which is an approach to explain individual predictions based on 

Shapley Values of game theory and local explanations [183, 221]. In particular, we 

employed SHAP to rank features in terms of their impact on the final ML (Random 

Forest) outputs and to build a mini explainer model, which contributes to 

understanding the behavioral and the contribution of the risk factors in KOA 

diagnosis. 

  

Results and Discussion 

 

A. Results  

 

In this section, we demonstrate the overall diagnosis performance of the models in 

relation to the first 100 selected features, and the highest metrics of the best models are 

also presented. Then, reference is made in the most important risk factors as they have 

been selected by the proposed Fuzzy FS methodology. Moreover, a comparative 

analysis is presented to prove the superiority of the proposed FS methodology 

compared to a number of well-known FS techniques. For the interpretation of the best 

model, an explainability analysis is employed to enhance our understanding of the 

reasoning behind its decision-making mechanism.  

 

Diagnosis Performance 

 

This subsection presents the results of a comparative analysis over a number of well-

known ML models on the diagnosis classification task by using the first 100 selected 

risk factors. Figure 4.5 shows the testing accuracy performance (%) of the competing 

ML models with respect to the number of selected features. Specifically, KNN failed 

in diagnosis task, recording low testing accuracy performances. The rest of the ML 

models had an upward trend in the range of the first 15 risk factors. Overall, the best 

overall performance was achieved by RF with a maximum of 73.55% at 21 features. 
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Figure 4.5. Curves with testing accuracy scores with respect to the number of selected 

features for different ML models. 

 

Furthermore, the classification performance of the best performing ML models was 

further evaluated with respect to various validation metrics including class precision, 

recall, and f1-score. Table 4.2 demonstrates the best performance metrics of RF, MLP, 

LR, SVMs, and KNN models on the diagnosis task. In particular, RF achieved the best 

overall performance (73.55% accuracy) on the group of the twenty-one (21) risk factors. 

SVMs achieved the second-highest accuracy (73.36%). The rest of the ML models 

achieved lower accuracies. 

 

Table 4.2. Summary of best metrics per model and number of selected features.  

Models Accuracy Precision Recall F1-Score Num. of Features 

RF 73.55 73.82 73.64 73.59 21 

MLP 73.20 73.48 73.20 73.13 17 

LR 73.27 73.38 73.27 73.24 17 

SVMs 73.36 73.68 73.36 73.27 18 

KNN 71.55 71.74 71.55 71.49 12 

 

 

Features Selected 
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Figure 6 reveals more information about the origin of the 21 risk factors as selected by 

the chosen Fuzzy FS approach (Appendix C). As observed in Figure 4.6, six features 

describing subject characteristics were among the selected risk factors e.g., the age of 

the participants, the body mass index (BMI), and the diastolic blood pressure. 

Moreover, five out of the 21 selected risk factors come from the symptom’s category, 

representing clinical parameters related to stiffness, knee difficulty, swelling, and pain, 

demonstrating the indication of the existence of KOA. Four of the risk factors are 

related to physical exams, whereas another two medical history and two physical 

activity parameters were selected as relevant to KOA occurrence. A behavioural risk 

factor and a nutrition risk factor were also selected by the proposed Fuzzy FS 

approach.  

 

 

Figure 4.6. The 21 most informative selected risk factors per category. 

 

Comparative Analysis 

 

The performance of the proposed FSFL methodology was compared with each one of 

the six FS techniques that were also implemented independently. Finally, another 

recently published FS technique was also selected as comparative in which the final 

feature ranking, is decided on the basis of a majority vote scheme [163, 222].  

Table 4.3 shows the maximum achieved accuracy in the first selected 100 features of 

OAI dataset and the number of features where the maximum accuracy was reached 

for each feature selection method used in the experimental evaluation with the best 

performed model (RF). The last row in Table 4.3 shows the dimensionality reduction 

achieved with the proposed FS method compared to other competitive methods. 

Specifically, the metric DR was defined to quantify the difference (%) in 

dimensionality reduction compared to FSFL: 
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𝐷𝑅 = 1 −  
𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐹𝑆𝐹𝐿)

𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑)
 (1) 

 

The proposed FSFL method achieved the best trade-off between performance and 

dimensionality reduction being capable of reducing significantly the feature set 

dimensionality while achieving slightly higher or comparable prediction performance 

with the rest of the competing algorithms. Specifically, the proposed FSFL technique 

reaches the highest accuracy (73.55%) at 21 selected features while the second-best 

accuracy (73.51%) was achieved by LBGM Emb at 87 features. This shows that the 

proposed FSFL technique results to a 76% smaller set of selected features compared to 

the second-best performing technique. On the other hand, the second-best performer 

with respect to dimensionality reduction was RF Emb with 73.36% accuracy achieved 

on a considerably larger feature subset with more than double features (43) compared 

to FSFL (21). 

 

Table 4.3. Comparative analysis of FS methods. 

 

FSF

L 

Vote 

FS 

RF 

Emb 

FS 

LGBM 

Emb FS 

SVM 

RFE FS  

LR RFE 

FS 

Filter 

MI FS 

Filter  

f-

ANOVA  

FS 

Maximum  

Accuracy (%) 

73.5

5 72.99 73.36 73.51 70.53 73.50 72.75 73.44 

Number  

of Selected 

Features 21 76 43 87 96 60 91 53 

DR (%) - 

+72

% +51% +76% +78% +65% +77% +60% 

 

 

Explainability Results 

 

Figure 4.7a depicts how the features’ impact shapes the output of the final model (RF) 

on the testing dataset. The features are sorted by the sum of SHAP value magnitudes 

over all testing subjects. Furthermore, the SHAP values are used to demonstrate the 

contribution of each risk factor (negative or positive) on the model’s output. 

Specifically, blue color represents low feature values, whereas red color represents 

high values, respectively. In particular, a high value of PO2ELGRISK (knee symptoms, 

risk factors, or both status) increases the probability of the subjects to be assigned to 
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class KOA. Similarly to PO2ELGRISK, the higher the values of risk factors V00AGE, 

P02KSRG, P01BM1, V00RKFHDEG, P01WEIGHT, V00LKFHDEG, V00WTMACKG, 

V00BRDIAS, V00KPLKN1, and P02PA1, the more probable for subjects to belong to 

class KOA. The rest of the selected risk factors in Figure 4.7a have the opposite effect 

pushing the prediction output of the model to the class of healthy subjects. Figure 4.7b 

presents the SHAP global feature importance. The risk factors are sorted by the mean 

[|SHAP value|], which is the average impact on model output magnitude.  

 

 

a)       b)  

Figure 4.7. a) Features’ impact on Random Forest (21F) model output for the testing set of 

OAI dataset. b) Features’ average impact magnitude for testing instances. 

 

Figure 4.8 interprets locally the behavior of the model for the prediction output in a 

subject that suffers by KOA. P02ELGRISK (with a value of 2) and P01BMI (with a value 

of 29.8) push the predictions towards the class of KOA patients. Therefore, a high value 

of the aforementioned risk factors results to the increase of the output probability of 

the subject to be classified as KOA patient.  On the contrary, increase of the risk factors 

P02KSURG, V00RKFHDEG, V00KOOSQOL, and V00KOOSKPR lowers the 

probability of a subject to be classified as KOA. Since, our prediction score = 0.51 > base 

value = 0.49, this subject has been positively classified, i.e., class KOA status.  

 

 

Figure 4.8. Risk factors contributions to ML model output for a KOA status subject 
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B. Discussion 

 

Handling the multidimensional nature of the OAI dataset, a novel fuzzy ensemble FS 

methodology was designed, implemented and tested in this study. Its main novelty 

lies on the combination of several well-known FS algorithms based on a properly 

designed fuzzy inference mechanism that effectively aggregates their outputs. The 

superiority of the proposed FS technique was demonstrated through a thorough 

comparative investigation that included several state-of-the-art algorithms coming 

from different FS families (filter, wrapper, embedded and hybrid).  

The proposed fuzzy FS methodology outperformed the aforementioned FS techniques 

achieving the best trade-off between dimensionality reduction and prediction 

accuracy. Working on a high-dimensional dataset of 643 features, twenty-one risk 

factors were selected for the objective of KOA diagnosis. Observing the nature of the 

selected risk factors, it was found that subject characteristics, symptoms, and physical 

exams are the most important risk factors contributing considerably to the KOA 

diagnosis. Overall, it was concluded that a combination of heterogeneous risk factors 

coming from different feature categories is needed for the effective diagnosis of KOA.  

To sanity check the AI models beyond mere performance and further quantify the 

relevance of the selected risk factors, a post hoc explainability analysis was also 

conducted using SHAP. As observed by SHAP, P02ELGRISK, P02KSURG, V00AGE, 

P01BMI and V00KOOSQOL are five risk factors that have a major impact to the 

prediction output, which are in line with the existing literature. Specifically, 

P02ELGRISK, that represents knee symptoms, is an important risk factor in the 

diagnosis of KOA, as it has been identified by Lespasio et al. [2]. The history of knee 

surgery (P02KSURG) has been recognised as an important risk factor of KOA by Katz 

et al. [223], whereas the age of the subjects was also characterized as crucial in the 

occurrence of KOA and therefore was considered in the development of a predictive 

model for KOA diagnosis [92]. The knee injury and osteoarthritis outcome (KOOS) is 

a well-known knee-specific instrument that has been widely employed to evaluate 

quality of life in patients with knee injuries and identify patients who are at risk of 

developing OA [224]. Moreover, high BMI is suggested to be a high-risk factor in the 

development of KOA. High BMI values lead to the increment of knee joint mechanical 

loading [189].  

Although the proposed FSFL technique selects a subset of risk factors with a significant 

dimensionality reduction compared to popular FS techniques, the application of a 

post-hoc explainability is still important in order to identify the contribution of the 

selected features to prediction output of the model. The use of explainability analysis 

algorithms for the interpretation of the ML models increases the understanding of the 
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principle of operation of each ML model and reveal the interactions that shape the 

diagnosis outcome.  

The proposed methodology can be considered as computationally intensive; however, 

FS is considered here as an offline process and therefore the execution time does not 

play a crucial role. Future work will focus on the identification of easily measurable 

biomarkers and biomechanical parameters derived from musculoskeletal models, in 

combination with the already selected risk factors for the early diagnosis of KOA in 

the general population. Hence, to achieve this goal more advanced AI analytics tools 

in combination with the FSFL algorithm will be employed.  

 

Conclusions 

 

To enforce the development of more reliable, powerful, and non-invasive diagnostic 

tools, this study focuses on the identification and interpretation of the risk factors that 

contribute on the diagnosis of KOA.  The proposed methodology is based on a novel 

fuzzy logic-based feature selection followed by learning algorithms and subsequently 

a post-hoc explainability analysis. The proposed technique aggregates the results of 

several FS algorithms (filter, wrapper and embedded ones), whereas fuzzy logic was 

employed to combine multiple feature importance scores thus leading to a more robust 

selection of informative features.  The results showed that the presented methodology 

was capable to select a subset of risk factors that increase the performance accuracy of 

various ML models, compared to popular FS techniques. This was achieved with a 

significant decrease on the feature dimensionality (up to 78%). SHAP was finally 

applied to enhance our understanding of the rationale behind the decision-making 

mechanism of the selected ML model and the impact of the used risk factors on the 

prediction output.  
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Chapter 5 

 

Leveraging explainable machine learning to identify gait biomechanical 

parameters associated with Anterior Cruciate Ligament injury 

Unpublished data: 

This work has been submitted for publication. 

Abstract 

 

Anterior cruciate ligament (ACL) tear is one of the most common knee injuries and it 

results in knee instability and increased risk of early onset osteoarthritis. ACL deficient 

and reconstructed knees display altered biomechanics during gait. Identifying 

significant gait changes is important for understanding normal and ACL function and 

is typically performed by statistical approaches. Unlike the existing techniques, this 

study focuses on the development of an explainable machine learning (ML) 

empowered methodology to: (i) identify important gait kinematic and kinetic 

parameters associated with ACL injury, (ii) quantify their contribution in the diagnosis 

of ACL injury and (iii) investigate the differences in sagittal plane kinematics and 

kinetics of the gait cycle between ACL deficient, ACL reconstructed and healthy 

individuals. For this aim, an extensive experimental setup was designed in which 

three-dimensional ground reaction forces and sagittal plane kinematic as well as 

kinetic parameters were collected from 151 subjects. The effectiveness of the proposed 

methodology was evaluated using a comparative analysis with seven well-known 

classifiers. A 94.95% classification accuracy was achieved by the best performing 

model (support vector machine) on a group of 21 selected biomechanical parameters. 

A state-of-the-art explainability analysis based on SHAP and conventional statistical 

analysis attempted to uncover the rationale behind the decision-making mechanism 

of the best trained model and provide a holistic approach of quantifying the 

contribution of the input biomechanical parameters in the diagnosis of ACL injury. 

Features, that would have been neglected by the traditional statistical analysis, were 

identified as contributing parameters having significant impact on the ML model’s 

output for ACL injury during gait.  

 

Keywords: ACL injury; walking biomechanics; machine learning; interpretation 
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Introduction  

 

Anterior cruciate ligament (ACL) tear is a frequent knee injury occurring in young 

active individuals during sport activities like basketball, football, ski and volleyball 

[225, 226]. The primary function of the ACL is to confine excessive posterior translation 

and external rotation of the femur relatively to the tibia against forces that act on the 

joint during gait and other activities [227-230]. As a result, an ACL deficient knee 

presents significant reflect on joint stability and biomechanics [231-233]. Studies 

utilising three-dimensional (3D) motion analysis have shown altered joint motion in 

ACL deficient knees during daily activities, such as walking, ascending and 

descending stairs or jumping [8, 234, 235]. This deviation causes a shift on the contact 

area and magnitude of shear forces at the knee joint which can lead to the initiation of 

osteoarthritis [236-239]. 

ACL reconstruction (ACLR) aims to lessen these changes in knee biomechanics. 

Annually 130.000 ACL reconstruction surgeries are performed in United States [240]. 

Although ACLR provides an improvement in knee stability and kinematics it is still 

questionable if the results are equal to pre-injury standards [241, 242]. As it was 

observed in several studies, increase or decrease in peak external knee-adduction 

moment, peak internal-rotation angle, increased medial contact force and decreased 

knee flexion angles were related to knee-joint cartilage loading and degeneration [236, 

243-245]. Reductions in peak knee-flexion angle and external knee-flexion moment 

during the loading phase of gait have been reported at 6 to 60 months after ACLR [246-

248].  

Machine learning (ML) is an artificial intelligence (AI) analytic tool that constructs 

algorithms to identify patterns and characteristics contained within datasets. The goal 

is to train and validate prediction algorithms to achieve a desired result [249]. 

Musculoskeletal-specific models have already been developed to identify and classify 

fractures and predict functional outcomes after primary total knee arthroplasty (TKA) 

[250]. In 2017, Olczak et al. used deep learning techniques based on medical imaging 

to examine the feasibility of using AI to identify fractures in skeletal radiographs [251]. 

In another study, Kunze et al. based on partially modifiable risk factors developed ML 

algorithms to predict dissatisfaction after TKA [252]. Recent studies with individual-

level datasets of gait analyses from kinetic skeletal tracking and advanced MR imaging 

(MRI) techniques focused on the determination of early progression of knee 

osteoarthritis (KOA) [253]. Moustakidis et al. proposed a novel fuzzy decision tree-

based support vector machine (SVM) classifier by using 3-D ground reaction force 

(GRF) measurements to investigate KOA severity and to distinguish between 

asymptotic and osteoarthritis knee gait patterns [254]. Furthermore, Pedoia et al. 

performed ML multidimensional data analysis by using MR imaging and 
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biomechanical data [75]. They demonstrated that the analysis potentially indicates that 

cartilage composition may be an imaging biomarker for early KOA. 

Machine learning approaches have been also used in studies to identify ACL injury 

based on MRI and biomechanical data or ACLR gait patterns with the aid of motion 

sensors.  In 2017, Mazlan et al. proposed an ACL injury diagnosis system by using 

ACL injury MRI (normal, partial and crucial ACL) and SVM algorithm [255]. In 

another study, Chang et al. used MRI and deep learning techniques for the detection 

of complete ACL tear and achieved 96% test set accuracy [256]. Furthermore, Christian 

et al. used gait kinematics and ML techniques (SVM) to develop a pattern recognition 

system for diagnosis and evaluation of therapeutic treatment effect [257]. In another 

study, Zeng et al. proposed an approach for detection of the presence of ACL injury 

using kinematic features and neural networks [258]. Moreover, Todesco et al. 

proposed an ML approach for the identification of ACL gait patterns based on motion 

sensors data for on the field activities in rugby players [259].  

Despite the relatively large number of ML studies on the field of ACL, the reported 

trained ML models are treated as black boxes. The lack of transparency and 

explainability of the models result to poor understanding of their inner workings and 

the rationale behind their decision-making mechanism. This work focuses on the 

development of an explainable ML-empowered methodology to identify important 

biomechanical parameters associated with ACL injury. The main contributions of this 

study are: (i) to examine how much each of the features contributed to the final ML 

decisions, (ii) to estimate the feature importance in the classification process and (iii) 

to investigate differences in sagittal plane kinematics and kinetics of the gait cycle 

between different patient groups based on a novel approach that combines explainable 

ML and statistical analytics. To achieve these goals, an extensive experimental setup 

was designed including biomechanical data collection, a thorough comparative 

analysis with seven well-known classifiers and a state-of-the-art explainability 

analysis.  

 

Materials and Methods 

 

Participants 

 

A total of 151 subjects aged 18–50 years volunteered to participate in this study. Three 

different groups were defined: (a) ACL-deficient prior to surgery (ACLD), (b) ACL-

reconstructed (ACLR) and (c) control (CON) group. All subjects were moderately 

active, participating in regular activity at least two times per week. The ACLD subjects 
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had suffered a unilateral ACL injury confirmed by an orthopedic surgeon and via 

magnetic resonance imaging. The ACLD group was examined an average of 30 days 

after injury, but before surgery. The ACLR subjects were included in the ACLR group 

if they had a unilateral ACL reconstruction and participated in the present study at 

least 6 months post-surgery. Individuals with different graft types (i.e., hamstring 

tendon and patellar tendon grafts) were included in the ACLR group. Both ACLD and 

ACLR subjects had a healthy contralateral knee, reported no other history of serious 

lower limb injury, and had resumed their physical activity at the time of the 

measurement. 53 subjects were recruited from the local community to serve as the 

CON group. The CON subjects were matched for age, gender, and physical activity 

status and had no history of ACL injury and neurologic disorder or other lower 

extremity injuries within 12 months prior to participating in the study. Prior to 

participation, all subjects signed a consent form, and all procedures were approved by 

the University of Thessaly ethics committee (approval code: 1660). The subjects’ 

characteristics are presented in detail in Table 5.1.  

 

Table 5.1. Subjects’ characteristics.   

Characteristics ACLD ACLR CON 

Gender 31 males and 13 females 40 males and 14 females 34 males and 19 

females 

Height 175.3±0.86 cm 177.6±0.80 cm 174.1±0.98 cm 

Weight 77.38±14.91 kg 76.37±14.35 kg 72.23±15.81 kg 

 

 

Testing procedure and data collection 

 

Upon entering the gait laboratory, the subjects received instructions regarding the 

testing procedure and were familiarized with the walking task. ACLD and ACLR 

subjects completed the subjective Knee injury and Osteoarthritis Outcome Score 

(KOOS) evaluation form, which is considered a reliable measure of 5 outcomes, 

including activities of daily living, sport and recreation, pain, and knee-related quality 

of life [224]. Anthropometric measurements were recorded, and 20 spherical 

retroreflective markers were positioned bilaterally on anatomic landmarks and 

specific locations of the pelvis and lower limbs according to the marker set described 

in the literature [260, 261]. Subsequently, the subjects walked barefoot along the 10 m 

laboratory walkway within ±5% of their individual self-selected walking speed (SWS). 

SWS was measured during familiarization using infrared timing gates located in the 

middle of the walkway and was maintained throughout data collection via a 
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metronome. Trials were performed until at least 5 complete gait cycles were recorded 

with each foot (left and right side) landing on the force platform. A trial was 

considered valid if the foot of the side being tested made a clean contact with the force 

platform located in the middle of the walkway and the walking speed was within ±5% 

of the individual SWS. Kinematic data were collected using 10 optoelectronic cameras 

(Vicon T-series, Oxford, UK) at 100 Hz and kinetic data were collected at 1000 Hz via 

a force platform (Bertec 4060-10, OH) embedded in the floor synchronized with the 

kinematic data.  

 

Data Analysis 

 

The symmetrical center of rotation estimation (SCoRE) [262] and the symmetrical axes 

of rotation approach (SARA) [263] were applied to optimize the calculation of the hip 

joint center and knee joint flexion axis, respectively. The initial contact and toe-off 

events of stance phase were determined from the vertical GRF (20N threshold) and the 

subsequent ipsilateral initial contact was determined from motion data using the 

Vicon Nexus software.  Kinematic and GRF data were lowpass filtered with a 4th order 

Butterworth filter at 10 and 40 Hz, respectively. Inverse dynamics were used 

combining inertia properties of the segments as well as kinematic and GRF data to 

calculate net joint moments and powers of the lower limbs during the gait cycle. GRFs 

were expressed as a percentage of body weight, while net joint moments were 

expressed as internal moments and were normalized to body mass. Selected gait 

variables were extracted for each trial of each subject. A total of 155 trials were 

analysed for ACLD group, 204 trials for ACLR group and 298 trials for CON group, 

respectively. The three-dimensional GRFs, sagittal plane kinematic and kinetic 

variables of interest are presented in Figure 5.1 and Table 5.2. Data were analyzed from 

the ACLD/ACLR subjects’ involved limb and for the control subjects, this was 

randomly assigned.  
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(a)     (b)     (c)  

Figure 5.1. Three dimensional GRFs (a), sagittal plane kinematic (b) and kinetic (c) variables 

of interest during walking. 

 

Table 5.2. Evaluated parameters of the gait cycle for vertical and horizontal GRFs and sagittal 

plane kinematics and kinetics. 

Variables Description 

GRF1 Local minimum vertical GRF during support (% BW) 

GRF2 First vertical GRF peak (% BW) 

GRF3 Second vertical GRF peak (% BW) 

GRF4 Anterior (propulsive) GRF peak (% BW)   

GRF5 Posterior (braking) GRF peak (% BW)   

GRF6 First lateral GRF peak (% BW)  

GRF7 Second lateral GRF peak (% BW) 

H1 Hip flexion angle at initial contact (°) 

H2 Maximum hip flexion angle during stance phase (°) 
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H3 Maximum hip extension angle during stance phase (°) 

H4 Maximum hip flexion angle during swing phase (°) 

H5 Maximum hip extension moment during stance phase (Nm/kg) 

H6 Maximum hip flexion moment during stance phase (Nm/kg) 

H7 Maximum hip extension moment during swing phase (Nm/kg) 

K1 Maximum knee flexion angle during stance phase (°)  

K2 Minimum knee flexion angle during stance phase (°) 

K3 Maximum knee flexion angle at foot off (°) 

K4 Maximum knee flexion angle during swing phase (°) 

K5 Knee flexion angle at first maximum knee extension moment during stance phase 

(°) 

K6 Knee flexion angle at first vertical ground rection force peak (°) 

K7 First maximum knee extension moment during stance phase (Nm/kg) 

A1 Ankle angle at initial contact (°)  

A2 Maximum dorsi-flexion angle during stance phase (°) 

A3 Maximum plantar-flexion angle over the entire gait cycle (°)  

A4 Maximum dorsiflexion moment during stance phase (Nm/kg) 

A5 Maximum plantarflexion moment during stance phase (Nm/kg) 

 

 

Machine Learning workflow  

 

In order to identify knee kinematics associated with ACL injury, we designed, 

implemented and tested a multi-stage ML pipeline as shown in Figure 5.2. Its 

processing steps are presented as follows.  

 

 

Figure 5.2. The proposed AI workflow for ACL diagnosis and interpretation.  

 

Data were normalised to [0, 1] to build a common basis for the feature selection (FS) 

and the ML estimators. To rank our biomechanical parameters a well-established FS 

technique was applied. Relief algorithm [264] is a supervised learning algorithm and 

it is such effective in problems where strong dependencies between features are 

observed. Various well-known ML classifiers were evaluated for their suitability. 

Hyperparameter selection was implemented to avoid bias error, overfitting and 

optimize the performance of our ML models. Specifically, we used XGboost algorithm 
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[157] and Random Forest (RF) [265], which are ensemble learning algorithms and they 

are used due to their fast execution speed and increased model performance. Decision 

trees (DTs) were also evaluated providing a more interpretable decision-making 

mechanism [266]. Furthermore, we tested Naïve Bayes algorithm [267], which is based 

on applying Bayes’ theorem and this method can be extremely fast. Being effective in 

high-dimensional spaces, SVM algorithms were also Included in our experimental 

analysis [268]. Moreover, Logistic Regression (LR) [269] and the K-Nearest Neighbor 

(KNN) algorithm [270] were tested. LR was employed to set the baseline performance 

obtained by a linear model and KNN was selected due to its ability to deal with the 

overfitting problems that appear in high-dimensional spaces.   

For the evaluation of the proposed classifiers, a stochastic 70–30% random data split 

was applied to generate the training and testing subsets, respectively [163]. 

Specifically, the learning was performed on the stratified version of the training sets 

and the final performance was estimated on the accuracy testing sets. Furthermore, 

the performance of the classifiers was also evaluated in terms of the recall (or 

sensitivity), f1-score and precision as additional evaluation criteria [220].  

In this work, we also: (i) investigated how much each of the features contributed to the 

final decision and (ii) estimated the feature importance. In order to achieve this, we 

used SHapley Additive exPlanations (SHAP) which are based on Shapley Values of 

game theory [183, 271]. SHAP offers the ability to interpret ML models, which are often 

treated as black boxes. In this study, we employed SHAP to rank features in terms of 

their impact on the final ML outputs and to build a mini explainer model. This 

enhances our understanding of the internal decision-making rationale of the trained 

AI models especially with respect to the mechanism with which selected 

biomechanical parameters are combined to produce decisions on ACL diagnosis and 

postoperatively.  

 

Statistical Analysis  

 

One-way analysis of variance (ANOVA) was used to investigate differences in sagittal 

plane kinematics and kinetics of gait cycle for the CON, ACLD and ACLR groups 

[272]. Furthermore, independent sample t-tests were employed to compare the first 

eight significant biomechanical parameters between the CON and the ACLD groups, 

which were indicated by the explainability analysis. On the same parameters, 

independent sample t-tests were also employed to evaluate the postoperative progress 

[273]. The significance level in our statistical comparisons was set at p < 0.05. 
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Results  
 

Comparative Analysis 

 

The proposed ML pipeline was initially applied on the three-class problem in which 

the patient groups CON, ACLD and ACLR are considered as separate classes. The 

proposed FS technique was executed on the pre-processed version of the 3-class 

dataset ranking the available features with respect to their relevance. The ML models 

were trained on feature subsets of increasing dimensionality (with a step of 1) and the 

testing classification accuracies were finally calculated until the full feature set has 

been tested. The classification results are given below. 

Figure 5.3 demonstrates the accuracy testing performance (%) of the competing ML 

models with respect to the number of selected features on the 3-class problem. The 

majority of the ML models had an upward trend in the whole feature dimensionality 

range, followed by steady testing performance in most of the cases. Specifically, the 

SVM model showed an upward trend with respect to the first selected features, with 

a maximum of 94.95% (which was the overall best performance achieved). The second-

best accuracy (90.40%) was achieved by the KNN model, which presented a steadily 

increasing performance. LR, DTs, RF and XGboost models also showed an upward 

trend with moderate accuracies ranging from 68.18% up to 74.5%. In contrast with the 

other models, Naïve Bayes failed in this task, recording low accuracy testing 

performances (in the range of 44.44–59.09%). 
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Figure 5.3. Learning curves with testing accuracy scores for different ML models trained on 

feature subsets of increasing dimensionality in the 3-class problem (refering to both ACL 

deficient and reconstructed patients). 

 

Table 5.3 summarizes the results of XGboost, Random Forest, Decision Trees, Naive 

Bayes, SVM, KNN and Logistic regression on the three-class problem. The selected 

biomechanical parameters were in the range of 19-23 by the majority of the ML models 

(in six out of the seven), whereas the overall maximum was achieved by SVM on a 

group of twenty-one selected (21) biomechanical parameters. Naive Bayes selected less 

features (14) leading to low accuracy (57.58%). Furthermore, the second-highest 

accuracy was achieved by KNN (90.40%), whereas lower accuracies were obtained by 

RF, DTs and XGboost (less than 74.75%). Apart from being the most accurate overall, 

the SVM model recorded the best performance in the all metrics, namely precision 

(92.16%-96.72%), recall (92.19%-97.62%) and f1-score (93.07%-96.47%). 

 

Table 5.3. Best testing accuracies (%) achieved for ML models in 3-class problem along with 

precision, recall, f1-score and the optimum number of features. 

Models Accuracy Classes  Precision Recall F1-

Score 

Num. of 

Features 

 

XGBoost 

 

74.75 

CON  70.80 95.24 81.22  

19 ACLD 81.48 44.00 57.14 

ACLR 79.31 71.88 75.41 

 

Random 

Forest 

 

86.36 

CON 80.00 95.24 86.96  

23 ACLD 90.00 72.00 80.00 

ACLR 94.83 85.94 90.16 

 

Decision 

Trees 

 

73.74 

CON 76.67 82.14 79.31  

21 ACLD 72.09 62.00 66.67 

ACLR 70.77 71.88 71.32 

 

Naive Bayes 

 

57.58 

CON 65.69 79.76 72.04  

14 ACLD 40.91 54.00 46.55 

ACLR 66.67 31.25 42.55 

 

SVM 

 

94.95 

CON 95.35 97.62 96.47  

21 ACLD 92.16 94.00 93.07 

ACLR 96.72 92.19 94.40 

 

KNN 

 

90.40 

CON 85.26 96.43 90.50  

19 ACLD 95.12 78.00 85.71 

ACLR 95.16 92.19 93.65 

 

Logistic 

Regression 

 

68.18 

CON 70.64 91.67 79.79  

20 ACLD 57.50 46.00 51.11 

ACLR 71.43 54.69 61.95 
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Explainability Results 

 

In this section, we interpret the contribution of the biomechanical parameters in 

shaping the AI model’s output. To cope with this, we used explainability analysis on 

the best performing ML model (SVM). Initially, we performed a global investigation 

on the 3-class problem to quantify the overall features’ contribution to the problem. 

Then, we performed explainability analysis on each one of the three trained binary 

(one-versus-one) SVM models that constitute the 3-class problem. Specifically, we 

applied SHAP analysis into the following three problems: i) control group versus 

ACLD group (local problem 1), ii) control group versus ACLR group (local problem 

2), and iii) ACLD group versus ACLR group (local problem 3).  

 

Global exploration  

 

Figure 5.4 visualises the impact of the feature across all classes and the features were 

sorted by the sum of their SHAP values magnitudes across all instances. In this 

approach K2, H4, A3, GRF4, GRF7, K1, A4 and GRF6 were the parameters that affected 

the model output with mean SHAP values higher than 0.3.  

 

Figure 5.4. Average feature impact magnitude for all instances in the 3-class problem.  

 

Local exploration 

 

Figure 5.5 depicts the mean absolute value of the SHAP values which represents the 

SHAP global feature importance for local problem 1 (CON versus the ACLD). It 

should be noted that the features H4, K7, GRF3, H1, H2 were the most important 

Institutional Repository - Library & Information Centre - University of Thessaly
30/12/2021 10:23:36 EET - 137.108.70.14



135 

 

variables that significantly affected the prediction output. It is also observed that the 

contribution of H4 is 0.3 while the second-best parameter (K7) and all the remaining 

ones are below 0.18. From the above, H4 significantly contributes to the separation 

between the CON group and the ACLD group.  

 

 

Figure 5.5. Features’ impact on SVM model output for local problem 1. This figure shows the 

average impact magnitude for all instances in the task of differentiating the control group vs 

pre-surgery group. 

Figure 5.6 depicts the mean absolute value of the SHAP values for local problem 2 that 

focuses on the discrimination of the CON and ACLR groups. Features K2, GRF7, H4, 

GRF4 and K1 were the most important variables that significantly affected the 

prediction output for the certain groups. Specifically, K2 records a much higher mean 

absolute value (higher than 0.35) compared to the rest of the features (that exhibit 

values less than 0.23).  
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Figure 5.6. Average feature impact magnitude for all instances in the local problem 2 (control 

versus ACLR) 

 

The most important variables that significantly affected the prediction output in the 

local problem 3 (ACLD group versus ACLR group) were K2, H3, K7, A5 and A2, as 

shown in Figure 5.7. Similarly to local problem 2, parameter K2 is again the most 

important separation factor between individuals from the ACLD group and the ACLR 

group.  

 

Figure 5.7. Average feature impact magnitude for all instances for local problem 3 (pre-

surgery group versus post-surgery group). 

 

Statistical Analysis  

 

Statistical comparisons were also performed to identify whether there exist statistically 

significant differences between the classes considered for the most important features 

as they have been highlighted by the explainability analysis. Table 5.4 demonstrates 

the results of the one-way ANOVA tests, which performed to quantify these 

differences at the global level (with all three classes considered). As observed, there 

were statistically significant differences between the group means for all the 

comparisons. 

 

Table 5.4. Statistical comparison at the global level. 

 CON ACLD ACLR 

Features  Statistical Comparison Mean (std) Mean (std) Mean (std) 
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K2 p < 0.05 8.59 ± 3.81 8.35 ± 4.89 9.72 ± 4.70 

H4 p < 0.05 37.93 ± 4.93 36.26 ± 6.42 37.03 ± 5.53 

A3 p < 0.05 13.81 ± 6.52 15.91 ± 7.43 16.88 ± 7.25 

GRF4 p < 0.05 19.61 ± 4.30 16.94 ± 5.17 16.76 ± 4.84 

GRF7 p < 0.05 5.19 ± 1.65 5.81 ± 2.03 6.18 ± 2.92 

K1 p < 0.05 21.62 ± 5.88 19.73 ± 6.56 19.88 ± 6.27 

A4 p < 0.05 0.18 ± 0.08 0.19 ± 0.08 0.20 ± 0.09 

GRF6 p < 0.05  5.69 ± 1.43 6.01 ± 2.21 6.36 ± 2.97 

 

 

Then we performed statistical comparisons at the local level putting emphasis on the 

following tasks: (i) ACL diagnosis and (ii) rehabilitation after surgery. Initially, we run 

independent t-test analysis between the CON and the ACLD groups for the first eight 

significant biomechanical parameters, which were indicated by the explainability 

analysis of the specific binary problem (local problem 1). Subsequentially, we 

employed independent t-test analysis between the control and the ACL-reconstructed 

groups on the same parameters to identify which of them were modified and/or 

restored to their normal state (control level) as a measure of evaluating the 

postoperative progress.  

Table 5.5 summarizes the results of the statistical analysis at the local level. The 

following remarks can be drawn from Table 5: (i) Significant differences were observed 

between CON and ACLD for half of the features considered, specifically the first three 

(H4, K7 and GRF3) along with GRF4; (ii) Four of the parameters (H1, H2, GRF6 and 

GRF5) that were considered important by the explainability analysis had no significant 

changes between CON and ACLD groups.  

 

Table 5.5. Statistical analysis at the local level for ACL diagnosis and rehabilitation.  

Features* CON vs ACLD CON vs ACLR 

H4 p < 0.05 p > 0.05 

K7 p < 0.05 p < 0.05 

GRF3 p < 0.05 p > 0.05 

H1 p > 0.05 p > 0.05 

H2 p > 0.05 p > 0.05 

GRF6 p > 0.05 p < 0.05 

GRF4 p < 0.05 p < 0.05 

GRF5 p > 0.05 p > 0.05 

* Selected as important by the explainability analysis of the local problem 1 (CON versus 

ACLD) 
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Discussion of Results  

 

This work focuses on the development of a novel approach, which combines an 

explainable ML-empowered methodology and statistical analysis, for identifying 

important parameters associated with ACL injury. The problem has been coped as a 

three-class classification task where the participants of the study were divided into 

three groups (CON, ACLD and ACLR group). In addition to the classification part, the 

main contributions of this study are: (i) to investigate how much each of the features 

contributed to the final ML decisions, (ii) to estimate the feature importance in the 

classification process and (iii) to investigate differences in three dimensional GRFs, 

sagittal plane kinematics and kinetics of the gait cycle for the CON, ACLD and ACLR 

groups. 

Being effective in problems with strong dependencies between features, the ReliefF 

algorithm was applied to serve as a FS technique and thus reduce the dimensionality 

of the initial feature space. Seven ML models were employed to perform the 3-class 

classification task on the reduced feature space where accuracies up to 94.95% were 

achieved. Specifically, the SVM model had the best performance and it showed an 

upward trend with respect to the first selected features, with a maximum of 94.95% at 

21 features (which was the overall best performance achieved). Furthermore, the SVM 

model achieved rates from 92.16% up to 97.62% in each class for the metrics precision, 

recall and f1-score.  

Having selected the most accurate ML model, this study attempted to uncover the 

rationale behind the decision-making mechanism of the trained model and therefore 

provide an alternative and a more holistic approach of quantifying the contribution of 

the input biomechanical parameters in the classification process. Specifically, 

explainability analysis was applied on the best performing ML model (SVM) and a 

global investigation was initially performed on the 3-class problem to quantify the 

overall features’ contribution to the problem. As observed K2, H4, A3, GRF4, GRF7, 

K1, A4 and GRF6 were the most important biomechanical parameters that affected the 

model output. In order to estimate the feature importance separately, we also 

performed explainability analysis on each one of the three trained binary (one-versus-

one) SVM models that constitute the 3-class problem. Specifically, we applied SHAP 

analysis into the following three problems: i) CON group versus ACLD group (local 

problem 1), ii) CON group versus ACLR group (local problem 2), and iii) ACLD group 

versus ACLR (local problem 3). As observed, in the local problem 1 the main 

biomechanical parameters were H4, K7 and GRF3. Furthermore, K2, GRF7 and H4 

have the main contribution in local problem 2. In addition, from the third local 

problem K2, H3 and K7 have occurred as the most important biomechanical 

parameters. Previous studies have observed altered gait biomechanics in the ACL 
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deficient and ACL reconstructed patients compared to healthy individuals [8, 234]. 

These findings may indicate that the employed rehabilitation protocols fail to restore 

normal walking biomechanics, resulting in aberrant movement patterns. Several of the 

most important biomechanical parameters of ACL injury diagnosis highlighted by the 

global as well as the local explainability analysis used in our study coincide with the 

biomechanical outcomes reported in the literature to be related to altered gait patterns 

following ACLR. For example, maximum knee extension during stance phase (K7) 

significantly affected the prediction output in both of the aforementioned local 

problems examined in our study. K7 has been extensively investigated following 

ACLR and it has been consistently identified as a biomechanical parameter that is 

deceased following surgery and it is associated with poorer knee function in ACLR 

patients compared to healthy individuals [8, 274]. Additionally, minimum knee flexion 

angle during stance phase (K2) which had the most important contribution in local 

problem 2 and a significant one in local problem 3 has been reported to differentiate 

gait patterns between ACLR and healthy individuals up to 48 weeks post-surgery 

[274].  

Besides explainability analysis, conventional statistical analysis was further performed 

to determine whether there exist significant differences between the three groups of 

our study for the aforementioned selected biomechanical parameters. As it was 

observed, in most of the cases the outcomes of the explainability and statistical 

analyses coincide. However, no significant differences were identified for many of 

those important parameters as shown in the case of local problem 1 (ACL diagnosis) 

in which H1, H2, GRF6 and GRF5 were identified as important by SHAP whereas their 

distributions had no significant differences between CON and ACLD. This finding 

implies that the proposed explainable ML methodology goes beyond the way that 

traditional statistics work. Features, that would have been neglected by the traditional 

statistical analysis, are highlighted as contributing parameters that have a significant 

impact on the ML model’s output when they are combined with other statistically 

important ones. Moreover, as a measure of evaluating the postoperative progress, we 

performed statistical analysis for the local problem 1 and local problem 3 on the same 

parameters to identify which of them were modified and/or restored to their normal 

state (control level) after the surgery. Two of the three most important parameters (H4 

and GRF3) were restored to their initial state after the surgery having no significant 

differences in the comparison between CON and ACLR groups. This means that these 

two biomechanical parameters (H4 and GRF3) were initially modified after the ACL 

injury and they were subsequently restored to their initial state after the surgery.  

The clinical significance of our novel approach discussed in this work, which is based 

on a combination of an explainable ML-empowered methodology and statistical 

analysis to identify biomechanical parameters during walking associated with ACL 
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injury, should be considered with caution. This can be attributed to the fact that even 

though gait biomechanics are altered following ACLR, few biomechanical parameters 

demonstrate consistent results across studies and various tasks [234]. Factors such as, 

differences in the ACLR techniques (e.g. graft type), individual coping strategies 

among participants during walking, variations in employed rehabilitation protocols 

and gender differences may affect gait biomechanics alterations following ACLR as 

well as their clinical interpretation [8, 234, 275].  

Explainability via SHAP or other similar tools is a crucial enabler allowing humans to 

better comprehend the decisions generated by black box models. However, SHAP is 

limited to simple explanations mainly quantifying the impact of individual features to 

the models' output [276]. Thus, the inner workings of the trained models and the way 

that the features are combined to reach the final decision remain hidden.  Future work 

includes the combined use of graphical modelling with well-known explainability 

tools with the goal of identifying the relationships between features and the possible 

direct and indirect effect of features to the models’ output. Such graphically-given 

explanations would enhance our understanding of the real rationale behind the 

decision-making mechanism of ML-empowered models acting on the tasks of ACL 

diagnosis and rehabilitation.   

 

Conclusions 

 

An explainable ML-empowered methodology was designed, implemented and tested 

in this study to identify important biomechanical parameters associated with ACL 

injury. The proposed extensive experimental setup included gait biomechanical data, 

a thorough comparative analysis with seven well-known classifiers and a state-of-the-

art explainability analysis. According to the findings of the comparative analysis, a 

94.95% classification accuracy was achieved by SVM on a group of twenty-one 

biomechanical parameters. The nature of the selected parameters along with their 

impact on the prediction outcome (via SHAP) were discussed to uncover the rationale 

behind the decision-making mechanism of the trained model and therefore provide an 

alternative and a more holistic approach of quantifying the contribution of the input 

parameters in the diagnosis of ACL injury. Statistical analysis was further performed 

to determine whether there exist significant differences between ACL deficient, ACL 

reconstructed and healthy individuals for the aforementioned parameters. 

Understanding the contribution of gait biomechanics is a valuable tool for creating 

more powerful and non-invasive prognostic tools in the hands of physicians, that will 

point out abnormal gait patterns in patients after ACLR to modify the rehabilitation 

protocol and avoid the development of osteoarthritis.  
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General Conclusions 

 

Our review outlined the current usage of machine learning methods in KOA diagnosis 

and prediction challenges. An increasing trend of ML-related studies and papers in 

the field of KOA indicate the need for (i) enhancing our understanding about the onset 

and progression of the disease and (ii) new data-driven tools that could enable early 

diagnosis and prediction of KOA. ML could play a key role towards these directions 

extracting valuable knowledge from various types of clinical data (biomechanical 

parameters, images, kinematics) and finding new solutions that utilize data from the 

greatest possible variety of sources. As far as the type of the ML models that were 

reported in our survey, SVMs were proved to be the most frequently used model in 

all the survey categories (21 Studies). The choice of SVM could be attributed to the fact 

that they generalize well in practice and that are computationally effective in high 

dimensional spaces. Neural networks were the second most frequent technique with 

three (3) studies reported for knee OA prediction and eighteen (18) applications of 

NN-based models in the OA classification survey. Machine learning can explore 

massive design spaces to identify correlations and multiscale modelling can predict 

system dynamics to identify causality. This has the potential to lead to the 

development of individually tailored treatments to maximize the efficacy of treatment. 

The second chapter focused on the development of a ML-empowered methodology 

for KL grades prediction in healthy participants. The prediction task has been coped 

as a two-class classification problem where the participants of the study were divided 

into two groups (KOA progressors and non-progressors). Various ML models were 

employed to perform the binary classification task (KOA progressors versus non-

progressors) where accuracies up to 74.07% were achieved. Moreover, we explored 

different options with respect to the time period within which data should be 

considered in order to reliably predict KOA progression. Specifically, the overall best 

accuracy (74.07%) was obtained by combining datasets A and B that contain features 

from the baseline visit along with their progression over the next 12 months (Dataset 

D). Within the secondary objectives of this work were to identify informative risk 

factors from a big pool of available features that contribute more to the classification 

output (KOA prediction). As far as the nature of the selected features (55 risk factors), 

it was concluded that symptoms, medical imaging outcomes, nutrition and medical 

history are the most important risk factors contributing considerably to the KOA 

prediction. However, it was also extracted that a combination of heterogeneous 

features coming from almost all feature categories is needed to effectively predict KL 

progression. 

In the third chapter we worked on a challenging task, to identify important risk factors 

which contribute to KOA progression from an imbalanced data set (OAI). Especially 
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in the current KOA prediction problem we used limited samples and a massive 

number of features. To cope with this aforementioned problem, we used data from the 

baseline visit along with progression data within the first 12 months (Dataset D, from 

Chapter 2) and we proposed an evolutionary machine learning methodology (GA-

based wrapper technique) that led to the selection of a relatively small feature subset 

(35 risk factors) which generalizes well on the whole dataset (mean accuracy of 

71.25%). Furthermore, the nature of the selected features along with their impact on 

the prediction outcome (via SHAP) were also discussed to increase our understanding 

of their effect on KOA progression. So, our findings suggest that early functional, 

behavioral and nutritional interventions should be encouraged and implemented for 

the prevention or slowing-down of KOA progression. Specifically, important 

predictive risk factors selected by our models are the following: assessments of pain 

and function, qualitative assessments of X-rays, assessments of behavioral 

characteristics, medical history and nutrition from the Center for Epidemiologic 

Studies Depression Scale (CES-D) and Block Brief 2000 questionnaires. The strongest 

indicator variables are the following: knee baseline radiographic OA status 

(P01SVLKOST), anthropometric characteristics (P01BMI) and nutritional (V00SUPCA) 

and behavioral habits (V00KQOL4). Previous studies [74, 79] have also reported 

similar key predicted variables for KOA progression.  

The fourth chapter concerns the diagnosis task. The heterogeneity of the available bid 

data (OAI database) along with the observed high feature dimensionality make this 

diagnosis task difficult. To cope and to enforce the development of more reliable and 

non-invasive diagnostic tools, we worked on the identification and interpretation of 

the risk factors that contribute on the diagnosis of KOA.  So, we proposed a 

methodology, which is based on a novel fuzzy logic-based feature selection followed 

by learning algorithms and subsequently a post-hoc explainability analysis. With 

respect to the nature of the selected risk factors, it was concluded that subject 

characteristics, symptoms, and physical exams are the most important risk factors 

contributing considerably to the KOA diagnosis. In order to sanity check the AI 

models beyond mere performance and further quantify the relevance of the selected 

risk factors, a post hoc explainability analysis was also conducted using SHAP. As 

observed by SHAP, P02ELGRISK, P02KSURG, V00AGE, P01BMI and V00KOOSQOL 

are five risk factors that have a major impact to the prediction output, which are in line 

with the existing literature.  

The abnormal knee kinematics and kinetics after ACLR contribute to degenerative 

processes and they are characterized as risk factors for the progression of KOA. In 

Chapter 5 we developed a novel approach, which combines an explainable ML-

empowered methodology and statistical analysis, for identifying important 

parameters associated with ACL diagnosis and postoperatively. A 94.95% 
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classification accuracy was achieved by the best performing model (support vector 

machine) on a group of 21 selected biomechanical parameters. A state-of-the-art 

explainability analysis based on SHAP and conventional statistical analysis attempted 

to uncover the rationale behind the decision-making mechanism of the best trained 

model and provide a holistic approach of quantifying the contribution of the input 

biomechanical parameters in the certain tasks. Several of the most important 

biomechanical parameters of ACL diagnosis and postoperatively highlighted by the 

global as well as the local explainability analysis used in our study coincide with the 

biomechanical outcomes reported in the literature to be related to altered gait patterns 

following ACLR. Despite the fact that parameters as H1, H2, GRF6 and GRF5 were 

identified as important by SHAP had no significant statistical differences. This finding 

implies that the proposed explainable ML methodology goes beyond the way that 

traditional statistics work. So, features that would have been neglected by the 

traditional statistical analysis, were identified as contributing parameters having 

significant impact on the ML model’s output for ACL diagnosis and 

postoperativelyduring gait. 

As a result, research work at the intersection of machine learning and KOA offers great 

promise for improving clinical decision-making and accelerating relevant intervention 

programs. For our future work, we are planning to also consider image-based 

biomarkers and areas with valuable information derived from biomechanical data that 

are expected to further improve the predictive capacity of the proposed methodology 

for the KL grades prediction. Furthermore, we are planning to work on the 

identification of subpopulations of patients that have a greater risk of developing knee 

OA as well as a higher chance to progress faster. The combination of more advanced 

AI tools (e.g., Siamese neural networks) with the proposed GA-based wrapper 

technique algorithm could form a reliable basis for quantifying KOA progression. In 

addition, for the diagnosis task future work will focus on the identification of easily 

measurable biomarkers and biomechanical parameters derived from musculoskeletal 

models, in combination with the already selected risk factors for the early diagnosis of 

KOA in the general population. Hence, to achieve this goal more advanced AI 

analytics tools in combination with the FSFL algorithm will be employed.  At last, but 

not least in the task of ACL diagnosis and post-surgical rehabilitation, future work 

includes the combined use of graphical modelling with well-known explainability 

tools with the goal of identifying the relationships between features and the possible 

direct and indirect effect of features to the models’ output. Such graphically-given 

explanations would enhance our understanding of the real rationale behind the 

decision-making mechanism of ML-empowered models acting on the tasks of ACL 

diagnosis and rehabilitation. The significant biomechanical parameters that will 

emerge will be an entry into the development of robust predictive models for the 

outset of the KOA. 
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Appendixes 

Appendix A 

 

Table A. Selected features that led to the overall best Knee Osteoarthritis (KOA) 

prediction performance in our study. 

Feature Description  Category 

P02WTGA 
Above weight cut-off for age/gender group (calc, used for 

study eligibility) 

Subject 

characteristics  

V00WPRKN2 Right knee pain: stairs, last 7 days Symptoms 

V00RXANALG Rx Analgesic use indicator (calc) Medical history  

V00PCTSMAL 
Block Brief 2000: error flag, percent of foods marked as 

small portion (calc) 
Nutrition 

V00GLUC 
Used glucosamine for joint pain or arthritis, past 6 

months 
Medical history  

V00GLCFQCV Glucosamine frequency of use, past 6 months (calc) Medical history  

V00CHON 
Used chondroitin sulfate for joint pain or arthritis, past 6 

months 
Medical history  

V00CHNFQCV Chondroitin sulfate frequency of use, past 6 months (calc) Medical history  

V00BAPCARB 

Block Brief 2000: daily % of calories from carbohydrate, 

alcoholic beverages excluded from denominator (kcal) 

(calc) 

Nutrition 

P02KPNRCV 

Right knee pain, aching or stiffness: more than half the 

days of a month, past 12 months (calc, used for study 

eligibility) 

Symptoms 

P01XRKOA Baseline radiographic knee OA status by person (calc) 
Medical imaging 

outcome  

P01SVLKOST 
Left knee baseline x-ray: evidence of knee osteophytes 

(calc) 

Medical imaging 

outcome  

P01OAGRDL Left knee baseline x-ray: composite OA grade (calc) 
Medical imaging 

outcome  

P01GOUTCV Doctor said you had gout (calc) Medical history  

V00WTMAXK

G 
Maximum adult weight, self-reported (kg) (calc) 

Subject 

characteristics  

V00WSRKN1 Right knee stiffness: in morning, last 7 days Symptoms 

V00WOMSTFR Right knee: WOMAC Stiffness Score (calc) Symptoms 

V00SF1 In general, how is health Behavioural 

V00RKMTTPN 
Right knee exam: medial tibiofemoral pain/tenderness 

present on exam 
Physical exam  

V00RFXCOMP 
Isometric strength: right knee flexion, able to complete (3) 

measurements 
Physical exam  
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V00PCTFAT 
Block Brief 2000: daily percent of calories from fat (kcal) 

(calc) 
Nutrition 

V00PCTCARB 
Block Brief 2000: daily percent of calories from 

carbohydrate (kcal) (calc) 
Nutrition 

V00PASE Physical Activity Scale for the Elderly (PASE) score (calc) Physical activity  

V00LUNG 

Charlson Comorbidity: have emphysema, chronic 

bronchitis or chronic 

obstructive lung disease (also called COPD) 

Medical history  

V00KSXLKN1 Left knee symptoms: swelling, last 7 days Symptoms 

V00FFQSZ16 
Block Brief 2000: rice/dishes made with rice, how much 

each time 
Nutrition 

V00FFQSZ14 
Block Brief 2000: white potatoes not fried, how much each 

time 
Nutrition 

V00FFQSZ13 
Block Brief 2000: french fries/fried potatoes/hash browns, 

how much each time 
Nutrition 

V00FFQ69 

Block Brief 2000: regular soft drinks/bottled drinks like 

Snapple (not diet drinks), drink how often, past 12 

months 

Nutrition 

V00FFQ59 
Block Brief 2000: ice cream/frozen yogurt/ice cream bars, 

eat how often, past 12 months 
Nutrition 

V00FFQ37 
Block Brief 2000: fried chicken, at home or in a restaurant, 

eat how often, past 12 months 
Nutrition 

V00DTCAFFN 
Block Brief 2000: daily nutrients from food, caffeine (mg) 

(calc) 
Nutrition 

V00DILKN11 Left knee difficulty: socks off, last 7 days Symptoms 

V00CESD13 CES-D: how often talked less than usual, past week Behavioural 

V00ABCIRC Abdominal circumference (cm) (calc) 
Subject 

characteristics  

TIMET1 20-m walk: trial 1 time to complete (sec.hundredths/sec) Physical exam  

STEPST1 20-m walk: trial 1 number of steps Physical exam  

PASE6 Leisure activities: muscle strength/endurance, past 7 days Physical activity  

P02KPNLCV 

Left knee pain, aching or stiffness: more than half the 

days of a month, past 12 months (calc, used for study 

eligibility) 

Symptoms 

P01WEIGHT Average current scale weight (kg) (calc) 
Subject 

characteristics  

P01SVRKOST 
Right knee baseline x-ray: evidence of knee osteophytes 

(calc) 

Medical imaging 

outcome  

P01SVRKJSL 
Right knee baseline x-ray: evidence of knee lateral joint 

space narrowing (calc) 

Medical imaging 

outcome  

P01RXRKOA2 Right knee baseline x-ray: osteophytes and JSN (calc) 
Medical imaging 

outcome  
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P01RXRKOA 

Right knee baseline radiographic OA (definite 

osteophytes, calc, used in OAI definition of symptomatic 

knee OA) 

Medical imaging 

outcome  

P01RSXKOA Right knee baseline symptomatic OA status (calc) 
Medical imaging 

outcome  

P01OAGRDR Right knee baseline x-ray: composite OA grade (calc) 
Medical imaging 

outcome  

P01LXRKOA2 Left knee baseline x-ray: osteophytes and JSN (calc) 
Medical imaging 

outcome  

P01LXRKOA 
Left knee baseline radiographic OA (definite osteophytes, 

calc, used in OAI definition of symptomatic knee OA) 

Medical imaging 

outcome  

P01BMI Body mass index (calc) 
Subject 

characteristics  

P01ARTDRCV Seeing doctor/other professional for knee arthritis (calc) Medical history  

KSXRKN2 
Right knee symptoms: feel grinding, hear clicking or any 

other type of noise when knee moves, last 7 days 
Symptoms 

KPRKN1 Right knee pain: twisting/pivoting on knee, last 7 days Symptoms 

DIRKN7 Right knee difficulty: in car/out of car, last 7 days Symptoms 

rkdefcv Right knee exam: alignment varus or valgus (calc) Physical exam  

lkdefcv Left knee exam: alignment varus or valgus (calc) Physical exam  
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Appendix B 

Table B. Selected features that led to the best overall KOA prediction performance in 

our study. The features have been ranked according to their impact on the 

classification result as calculated by SHapley Additive exPlanations (SHAP). 

Selected 

Features 
Description Feature Category 

P01SVLKOST 
Left knee baseline X-ray: evidence of knee 

osteophytes 
Medical imaging outcome 

P01BMI Body mass index Subject characteristics 

V00SUPCA 
Block Brief 2000: average daily nutrients from 

vitamin supplements, calcium (mg) 
Nutrition 

V00EDCV Highest grade or year of school completed Behavioral 

V00FFQ59 
Block Brief 2000: ice cream/frozen yogurt/ice 

cream bars, eat how often, past 12 months 
Nutrition 

V00KQOL2 
Quality of life: modified lifestyle to avoid 

potentially damaging activities to knee(s) 
Behavioral 

V00CHNFQCV 
Chondroitin sulfate frequency of use, past 6 

months 
Medical history 

V00WOMSTFR Right knee: WOMAC Stiffness Score Symptoms 

V00FFQSZ13 
Block Brief 2000: french fries/fried 

potatoes/hash browns, how much each time 
Nutrition 

V00KQOL4 
Quality of life: in general, how much difficulty 

have with knee(s) 
Behavioral 

P01HEIGHT Average height (mm) Subject characteristics 

V00lfTHPL Left Flexion MAX Force High Production Limit Physical exam 

V00rkdefcv Right knee exam: alignment varus or valgus Physical exam 

V00FFQ19 
Block Brief 2000: green beans/green peas, eat 

how often, past 12 months 
Nutrition 

V00FFQ33 

Block Brief 2000: beef steaks/roasts/pot roast 

(including in frozen dinners/sandwiches), eat 

how often, past 12 months 

Nutrition 

KPLKN1 
Left knee pain: twisting/pivoting on knee, last 7 

days 
Symptoms 

PASE2 Leisure activities: walking, past 7 days Physical activity 

V00INCOME Yearly income Behavioral 

V00PA130CV 
How often climb up total of 10 or more flights 

of stairs during typical week, past 30 days 
Physical activity 

V00CESD9 
How often thought my life had been a failure, 

past week 
Behavioral 

PASE6 
Leisure activities: muscle strength/endurance, 

past 7 days 
Physical activity 

DIRKN16 Right knee difficulty: heavy chores, last 7 days Symptoms 
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V00SUPB2 
Block Brief 2000: average daily nutrients from 

vitamin supplements, B2 (mg) 
Nutrition 

STEPST1 20-meter walk: trial 1 number of steps Physical exam 

V00FFQ12 

Block Brief 2000: any other fruit (e.g., 

grapes/melon/strawberries/peaches), eat how 

often, past 12 months 

Nutrition 

KSXRKN1 Right knee symptoms: swelling, last 7 days Symptoms 

V00lfmaxf Left Flexion MAX Force Physical exam 

V00rfTHPL 
Right Flexion MAX Force High Production 

Limit 
Physical exam 

RKALNMT 
Right knee exam: alignment, degrees (valgus 

negative) 
Physical exam 

CEMPLOY Current employment Behavioral 

V00KOOSYML Left knee: KOOS Symptoms Score Symptoms 

V00WPLKN2 Left knee pain: stairs, last 7 days Symptoms 

V00RA 
Charlson Comorbidity: have rheumatoid 

arthritis 
Medical history 

V00SUPFOL 
Block Brief 2000: average daily nutrients from 

vitamin supplements, folate (mcg) 
Nutrition 

V00RXCHOND Rx Chondroitin sulfate use indicator Medical history 
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Appendix C 

 

Table C. The 21 most informative selected risk factors as described in OAI database.  

Selected Features Description 

P02ELGRISK Knee symptoms, risk factors, or both, status at IEI/SV 

P01BMI  Body mass index  

V00AGE Age 

P01WEIGHT Average current scale weight (kg)  

V00LKFHDEG Left knee exam: flexion contracture/hyperextension, 

degrees (contracture positive) 

V00KOOSKPR Right knee: KOOS Pain Score 

P01MOMHRCV Mother had hip replacement surgery 

P02PA1 Climb up total of 10 or more flights of stairs on most 

days 

P01KSX Frequent knee pain status by person 

V00RKFHDEG Right knee exam: flexion contracture/hyperextension, 

degrees (contracture positive) 

V00WTMAXKG Maximum adult weight, self-reported (kg) 

P02KSURG Either knee, history of knee surgery 

V00lfTHRL Left Flexion MAX Force High Relaxation Limit 

V00BAPFAT Block Brief 2000: daily % of calories from fat, 

alcoholic beverages excluded from denominator 

(kcal) 

V00RPAVG Radial pulse: average beats per minute 

V00PASE Physical Activity Scale for the Elderly (PASE) score 

V00KOOSQOL KOOS Quality of Life Score 

V00LFXCOMP Isometric strength: left knee flexion, able 

to complete (3) measurements 

V00BPDIAS Blood pressure: diastolic (mm Hg) 

V00PA430CV How often lift or move objects weighing 25 pounds 

or more by hand during a typical week, past 30 days 
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V00KPLKN1 Left knee pain: twisting/pivoting on knee, last 7 days 
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Annex B: Candidate’s responsibilities throughout the study  

 

During the PhD programme the candidate had the following duties: 

 

➢ Completion of the courses required for the accomplishment of 10 to 25 ECTS 

➢ Skills Development   

➢ Submission of the required documents to receive ethical approval for the 

study 

➢ Literature review 

➢ Data collection and biomechanical analysis  

➢ Data analysis as well as the implementation of artificial intelligence tools and 

statistical analysis 

➢ Preparation of scientific manuscripts and submission in peer-review for 

publication 

➢ Presentation of scientific results in journal clubs, workshops and conferences 

➢ Writing the doctoral thesis and  

➢ Public defense of the thesis  
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Annex C: Skills acquired during the PhD programme 

 

The candidate has gained considerable experience and advanced knowledge in the 

field of machine learning and biomechanics. The skills acquired are the following:  

 

➢ Design and implementation of clinical trials 

➢ Programming with Python and MATLAB languages 

➢ Development of robust feature selection techniques and implementation of 

Machine Learning models for prediction and diagnosis tasks 

➢ Use of advanced tools for interpretation and explainability of Machine 

Learning models 

➢ Data collection and biomechanical analysis using 3D motion capture system 

(Vicon, UK) 

➢ Participation as supporting personnel in National and European funded 

research projects 

➢ Academic writing including scientific papers, research proposals and grands 
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• Kokkotis, C., Moustakidis, S., Giakas, G., & Tsaopoulos, D. (2020). 
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