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Abstract 

This thesis is focused on the development of Bayesian techniques for uncertainty 

quantification and propagation (UQP) in engineering simulations based on physics-based 

models of dynamic structures and measurements collected during system operation. It 

introduces a hierarchical Bayesian modeling (HBM) framework to account for the 

uncertainty due to the variabilities that arise from model error, experimental data, 

manufacturing process, assembling process as well as nonlinear mechanisms activated under 

different loading conditions. First, it extends the HBM framework developing it further for 

model inference based on modal properties. Then, it generalizes the framework to nonlinear 

dynamical systems for calibration and quantification of uncertainties of parameters of 

nonlinear models. Finally, it advances the framework to account for multi-level physics-

based modeling of systems and multi-level models of uncertainties using multi-level test data. 

Asymptotic approximations are introduced, developed and incorporated into the HBM 

framework in order to gain more insights on the interpretation of diverse sources of 

uncertainties. Introducing such approximations can substantially reduce the computational 

burden of the HBM framework compared to the high computational effort required in a full 

sampling procedure. Simulated and experimental studies are conducted to verify the 

effectiveness of the proposed methodologies. It is shown that the proposed HBM framework 

provides a better account for the parameter uncertainties, distinguishing between irreducible 

and reducible uncertainties, while the conventional Bayesian modeling (CBM) framework 

often underestimates the uncertainties for the parameters and aggregates such uncertainties 

into model error. Moreover, this thesis revisits the underestimation of uncertainties issues 

within a classical Bayesian point of view developing further data features-based models and 

presenting novel formulations for the constructions of the likelihood function. It is illustrated 

that the proposed methods offer consistent parameter uncertainties which is independent of 
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the sampling rate used for the accurate representation of the same time history responses. 

Furthermore, for the issues where the PDFs or statistics of the measurements are available, 

this thesis also presents a methodology under a hierarchical modeling setting for the model 

parameters to account for the uncertainty due to variability. As an alternative to HBM method, 

the presented approach is successfully applied to structural dynamical example and fatigue S-

N curve analysis for the parameter estimation and predictions given the available statistics of 

the measured quantities. The proposed methodologies in this thesis have the great potential to 

be applied to other disciplines of engineering and science. 
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1 

Chapter 1. Introduction 

1.1 Research Background and Motivation 

1.1.1 Structural modeling and model updating 

The concept of mathematical or numerical modeling is essentially the fundamental of aspects 

of science and engineering [1]. Computational models are thus extensively employed to 

simulate the behavior of physical structures and perform engineering analyses. Finite element 

(FE) modeling and simulation is the most flexible and widely used numerical analysis 

technique in the field of structural dynamics [2–4]. Conceptually, physical dynamical 

structures can be described by mathematical models constituting a set of equations based on 

mechanics principles and empirical observations. Undoubtedly, FE modeling and simulation 

provides a powerful numerical tool to characterize and perceive the dynamical behavior as 

well as to predict the output response under future loading [5–7] without physically testing 

the system. This process can significantly reduce the experimental time and costs in the 

research and the process of product developments. However, it requires the detailed 

knowledge of a structure, including mechanical characteristics, physical boundary/initial 

conditions, nonlinearity, material properties, etc. Therefore, it poses difficulties due to a lack 

of knowledge of physical information or other restrictions [8]. Assumptions and idealizations 

are then required and implicitly applied for the representation of physical behavior. Such 

assumptions may detract from the quality and accuracy of the computational models [9]. As a 

result, achieving highly accurate of FE models for complex dynamical structures is an 

imperative yet challenging task. 

To this end, FE model updating has been received considerable attentions in recent 

decades [10–13]. Essentially, FE model updating is an inverse process aiming at diminishing 

the discrepancies between the numerical model predictions and the experiential tests [14]. In 

other words, given a parameterize model, FE model updating seeks to determine a collection 

of most plausible/probable values of model parameters to replicate, as close as possible, the 

experimental test data. The experimental data used in the process of model updating are 
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classified into time-domain and frequency-domain tests. Response time histories data 

including accelerations, displacements or strains can be directly utilized to quantify the misfit 

between numerical models and experimental systems, while the frequency-domain data 

consisting of modal frequencies, mode shapes as well as damping ratios needs to be identified 

initially based on a procedure of operational modal analysis [15]. Such an inverse updating 

process belongs to the category of system identification [16] or structural health monitoring 

[17], producing more reliable analytical models capable of providing more accurate response 

predictions under future loadings.  

 

1.1.2 Uncertainty quantification and propagation 

Uncertainty inevitably exist in practically all areas of science and engineering. It can be 

broadly categorized into two classes: epistemic uncertainty and aleatory uncertainty [18,19]. 

The epistemic uncertainty is due to the lack of knowledge or poor quality of information, and 

thus can be reducible by given additional information, while the aleatory uncertainty is 

caused by the inherent randomness or unpredictability of a physic system and it is thus 

irreducible by collecting more information.  

In the process of FE model updating, uncertainties can arise from several sources [9]. For 

example, parametric uncertainty (epistemic), also referred as identification uncertainty, is 

attributed to the incomplete knowledge of model parameters or insufficient experimental data. 

Model structure uncertainty (epistemic), also referred as model form uncertainty or model 

error, is due to the assumptions or approximations in the computational model that are used to 

connect the input variables and output responses. Uncertainty in the experimental data 

(epistemic), related to the experimental error, is owing to the uncertainty in the function 

relationship between the output response and measurement noise. Parameter variability 

(aleatory), also referred as natural variability, can be arisen from model error, environmental 

conditions, material properties, and component manufacturing process. Such uncertainties 

play an important role and need to be quantified during the process of updating models.  

On the other hand, quantifying the uncertainty of output response is beneficial especially 

for estimating robust predictions of system performance, reliability and safety [20,21]. This 

leads to the development of uncertainty propagation techniques. They aim at propagating the 

uncertainties through the updated model under future loadings to the output quantities of 

interest (QoI), providing reasonable confidence interval or probability density function of 

output responses. Consequently, quantifying and propagating the uncertainties is 

indispensable for improving the accuracy of computational FE models. 
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1.1.3 Bayesian inference in structural dynamics 

A bunch of research efforts have been contributed to deterministic model updating 

approaches [11,13]. However, structure unidentifiability and the presence of uncertainty 

impel the development of probabilistic means. Due to a rigorous probabilistic framework, 

Bayesian inference can rationally quantify parameter and modeling uncertainties as well as 

perform system identification by integrating experimental data and physics-based models. 

Bayesian statistical framework in structural dynamics was initially developed by Beck and 

Katafygiotis [22]. The framework requires the initial knowledge of uncertainties in the model 

parameters including it into the prior probability density function (PDF), and updates the 

uncertainties by estimating the posterior PDF in light of the experimental data. According to 

this framework, the probability of a model is interpreted as a measure of how plausible the 

model is within a set of models, conditional on the available information [23]. This 

interpretation is consistent with the Bayesian point of view and thus it provides a possibility 

to extend the axioms of probability theory to the fields. This pushes forward a great deal of 

discoveries and breakthroughs following up previous pioneering developments. Katafygiotis 

and Beck defined then global system identifiability, local system identifiability and system 

unidentifiability based on data in [24]. Vanik et al. applied the Bayesian framework to 

structural health monitoring based on observations of structural behavior [25]. Papadimitriou 

et al. implemented Bayesian inference to structural reliability analysis [26]. Beck and Au 

introduced Markov chain Monte Carlo (MCMC) sampling methods into the framework to 

handle model identification issues [27].  Yuen et al. presented a Bayesian damage detection 

approach and successfully applied to IASC-ASCE benchmark problem [28]. Ching and Beck 

proposed a new Bayesian model updating method utilizing the Expectation-Maximization 

algorithm to determine the most probable values (MPV) of the model parameters [29], and 

further applied it to the IASC-ASCE benchmark problem [30]. Lam et al. developed a new 

Bayesian artificial neutral network approach for structural health monitoring [31]. Muto and 

Beck developed a Bayesian updating method for hysteretic structural models using stochastic 

simulation [32]. Taflanidis and Beck presented an efficient framework for further robust 

design using stochastic simulation [20]. More investigations from the Bayesian School can be 

found for selecting the most appropriate models among alternative competing ones [33–37], 

detecting the possible structural damages [38–41], calibrating and updating the parameters 

along with their uncertainties [42–48] as well as propagating uncertainties to predict 

important QoI in operation and safety of structural systems [21,49–51]. 
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Significant progress has been achieved in the past two decades based on the mainstream 

Bayesian approach. However, some challenges still remain unresolved. For example, the 

deficiency of the Bayesian framework proposed in [22] is the underestimation of 

uncertainties due to the inherent reduction of the parameter uncertainty as the number of data 

points increases. This reduction in uncertainty caused, for example, when higher sampling 

rate is used in measured time histories, is not justified when the information contained in the 

inherent dynamics is already captured by lower sampling rates. More importantly, this 

framework focus on epistemic uncertainty, ignoring the uncertainty due to variability in 

experimental data, environmental conditions, material properties and manufacturing process. 

Such uncertainty is basically performed by test-to-test variability in reality, which results in 

different identified values of the model parameters from dataset to dataset. To properly 

account for such variability in the modeling of a structure one needs to embed uncertainties 

within the model by introducing a hierarchy in the model parameters. 

This advanced the development of hierarchical Bayesian modeling (HBM) framework in 

recent years. This framework develops the next generation of Bayesian methodologies and 

opens up new horizons in data-driven uncertainty quantification offering reasonable and 

realistic uncertainties. It was first developed by mathematicians to estimate the unknown 

parameters at higher levels [52]. Subsequently, it has been applied to several scientific 

disciplines, such as molecular dynamics [53–55], mechanical models [56,57], fatigue 

predictions [58,59] as well as structural dynamics [60]. Particularly in the field of structural 

dynamics, it was first applied by Ballesteros et al. [60] to infer the parameters of a structural 

model introduced to represent a population of identically manufactured structural elements, 

using modal properties as experimental data. In civil engineering, the HBM was first 

introduced by Behmanesh et al. for structural identification using a simulated case where the 

effects of modal data incompleteness and model error were investigated in the framework 

[61]. It is clearly demonstrated in this work that the uncertainty of the model parameters is 

underestimated and incorporated it into the prediction error function when using the classical 

Bayesian strategy, while the HBM framework can properly consider the parameters 

uncertainties and the uncertainty from model error. The HBM framework is then applied to a 

real footbridge to account for environmental variability, model error as well as parameter 

estimation uncertainties [62]. Later on, Song et al. presented the framework to a numerical 

10-story building model, demonstrating the effect of significant model error [63]. The 

framework was also implemented to a two-story reinforced concrete building by accounting 

for the variation in the amplitude of excitation [64]. A review of the applications of this 
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framework can be found in literature [65]. Additionally, Patsialis et al. applied the HBM 

framework for reduced order structural models in earthquake engineering [66] and Akhlaghi 

et al. developed the framework for site characterization and site response using surface wave 

measurements and H/V spectral data [67]. The above-mentioned efforts have made 

significant progress on the development of HBM framework. However, the computational 

burden is substantially higher than the conventional Bayesian framework, since a relatively 

large number of model runs is required. For improving the computational cost of this 

framework, Sedehi et al. recently proposed new asymptotic approximations into the 

framework for time-domain model updating [68,69] and operational modal analysis [70]. 

Such improvements analytically show the HBM framework can characterize the ensemble 

variability of structural parameters observed over multiple datasets together with the 

identification uncertainty obtained based on the discrepancy between the measured and 

model outputs within a dataset. It is shown that the HBM framework embeds a substantial 

amount of uncertainty within the structural parameters rather than the prediction error 

parameters. Therefore, the response QoI can be predicted considering only the posterior 

uncertainty of structural parameters. This feature is activated through an explicit 

marginalization of the prediction error variance from the joint posterior distribution. It is 

helpful for the response predictions when there is no information about the prediction error 

variance.  

Even though the source of the uncertainty underestimation is well-understood within the 

HBM framework, the developments and applications of this powerful tool in structural 

dynamics are still in early stage. Therefore, there is still plenty of space to be explored for 

improvements. For example, the asymptotic approximations developed in [68,69] are mainly 

based on time histories responses where a large number of data points are available, the 

developments relied on modal properties are still lacking. Also, the prediction error term is 

treated as a nuisance variable which poses difficulties for propagating the overall 

uncertainties to the observed QoI. Additionally, the framework has been successfully applied 

to linear model updating. However, most physical structures are inherently characterized by 

nonlinear behaviours with higher uncertainties due to material and geometric nonlinearities, 

and the implementation of HBM on updating nonlinear models needs to be explored. More 

importantly, a non-hierarchical model structure for the underlying system was employed in 

the HBM framework, however, physical structure often consists of complex models and 

nonlinearities at all hierarchy levels such as components, sub-systems as well as system 

levels. Developing a HBM technique for such complex systems and deciding on how to 
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allocate test recourses to get the most out of the resulting data to validate the predictive 

accuracy of the models are unresolved and challenging issues. Moreover, given only the 

PDFs or statistical characteristics for measurements, the uncertainty due to variability in the 

model parameters needs to be considered, yet this issue has not been solved within the HBM 

framework. Furthermore, although the HBM framework has been introduced into the fatigue 

prediction problem, this area is still open for new contributions to reasonably quantify the 

uncertain parameters and accurately predict the uncertainty bounds of S-N curves.  

 

1.2 Research Objectives 

The overall goal of the research work presented in this thesis is to develop a comprehensive 

Bayesian probabilistic framework for uncertainty quantification and propagation (UQP) in 

engineering simulations on the basis of complex physics-based models of dynamical systems, 

and measurements collected during system operation. The framework should account for 

uncertainties arising from model and measurement errors, as well as uncertainties arising 

from experimental, operational, environmental and manufacturing variabilities. Individual 

objectives addressed in this thesis to accomplish the overall goal of the research are as 

follows.  

• Develop a framework integrating hierarchical modeling techniques and physics-based 

models with information provided from multiple datasets 

• Provide a more realistic description of parameter uncertainties as well as properly 

accounting for measurements uncertainties under different environment and 

operational  conditions during operation of a structure, as well as manufacturing 

variabilities 

• Address the theoretical and computational issues in systems involving various types 

of modeling complexities such as nonlinearities from hysteresis, damping, stiffness, 

etc 

• Extend the framework of a full-scale structure and further develop a new UQP 

framework for multi-level modeling of a structure considering different levels of 

models and data hierarchies 

• Gain more insightful expressions for understanding the sources of uncertainties within 

a multi-level modeling approach 
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• Resolve the uncertainty underestimation issue due to redundant information in the 

response data consisting usually of long time history measurements 

• Integrate into the framework the case where only statistical information is available 

for the measurements 

• Demonstrate and validate the framework using data from structural dynamics and 

fatigue predictions.  

 

1.3 Contributions and Organization of the Thesis 

This dissertation contributes to the development of the next generation of Bayesian modeling 

framework for tackling the challenging UQP issues in structural dynamic simulations. This 

framework provides a comprehensive computation tool for reasonably quantifying the 

uncertainties, accurately predicting the output quantities, as well as efficiently updating the 

safety and system reliability. Efforts made on the framework have led to four papers 

submitted for review and possible publications [71–74], one paper to be submitted to 

international scientific journals [75], and a number of peer-reviewed conference papers [76–

79]. Five journal papers in total, devoted to the objectives, are listed as the individual 

chapters in this thesis, and summarized in Table 1-1. The specific topics and the 

corresponding contributions of these chapters are described as follows. A summary of 

contributions made in this dissertation and the research directions in the future are also given 

in the last Chapter. 

Table 1-1 Thesis chapters 

Chapter Title 

2 
Hierarchical Bayesian Modeling Framework for Model Updating and Robust 

Predictions in Structural Dynamics using Modal Features 

3 
Nonlinear Model Updating through a Hierarchical Bayesian Modeling 

Framework 

4 
Hierarchical Bayesian Learning Framework for Multi-Level Modeling using 

Multi-level Data 

5 
Data Features-based Bayesian Learning for Time-domain Model Updating and 

Robust Predictions in Structural Dynamics 

6 
Statistics-based Bayesian Modeling Framework for Uncertainty Quantification 

and Propagation 
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Chapter 2. Hierarchical Bayesian Modeling Framework for Model Updating and 

Robust Predictions in Structural Dynamics using Modal Features 

(https://doi.org/10.5281/zenodo.5078051, Submitted for review and possible publication to 

Mechanical Systems and Signal Processing (MSSP)) 

This chapter focus on the development of Bayesian learning tools for model calibration and 

response predictions in linear dynamical systems using multiple datasets consisting of modal 

properties identified from measured response time histories. Uncertainties are embedded into 

the structural model parameters by introducing a hierarchical modeling level for which the 

model parameters are assigned a parameterized prior distribution with the hyperparameters to 

be inferred from the multiple datasets. The unmodelled dynamics are quantified by 

introducing a zero-mean Gaussian prediction error term to account for the difference between 

the measured and model predicted modal properties. The proposed HBM framework can 

properly account for the variation in the parameter estimates due to experimental, operational, 

environmental and manufacturing variabilities. Two asymptotic approximations, valid for 

large number of measured data within each dataset and differing in the derivations of Taylor 

expansion in terms of the prediction error variance, are integrated into the proposed 

framework to reduce the high computational cost associated with full sampling approaches 

for quantifying and propagating uncertainties. It provides reasonable uncertainty bounds that 

are irreducible as the number of modal data and the number of datasets increases. In contrast, 

conventional Bayesian inference techniques result in unrealistically small parameter 

estimation or identification uncertainties as the number of data increased, failing to provide a 

reasonable account of uncertainty bounds. Uncertainties of model parameters and prediction 

error, inferred from modal properties data, are considered for predictions of modal 

frequencies, mode shapes as well as time histories response. Reliability analysis is also 

performed within the framework considering both the parameter uncertainties and input 

uncertainties.  

Main contributions of this chapter are as follows. 

 Develop a hierarchical Bayesian modeling framework for UQP based on modal 

features 

 Handle uncertainty due to variability over multiple datasets 

 Reduce the high computational effort involved in conventional sampling approaches 

required in the framework by introducing accurate asymptotic approximations 
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 Exploit the asymptotic results so as to provide insightful information on uncertainty 

management 

 Offer robust data-informed predictions.  

 

Chapter 3. Nonlinear Model Updating through a Hierarchical Bayesian Modeling 

Framework (https://doi.org/10.5281/zenodo.5520607, Submitted for review and possible 

publication to Computer Methods in Applied Mechanics and Engineering (CMAME)) 

This chapter extends the HBM framework outlined in Chapter 3, developing it further for 

updating physics-based models with nonlinearities using measured response time histories 

measurements. Following the framework in Chapter 2, an extension involves embedding 

uncertainties not only to structural model parameters but also to prediction error model 

parameters, introducing respectively a parameterized Gaussian probabilistic distribution and 

an inverse Gamma distribution to models the structural and prediction error parameters, with 

the hyperparameters inferred by the available datasets. Based on asymptotic approximations 

developed, analytical and insightful expressions of the posterior distribution of hyper 

parameters are derived, given sufficient data points within a dataset. Examples conducted on 

structural dynamics benchmark models with nonlinearities based on a nonlinear Bouc-Wen 

model demonstrate that one dominant source of the parameter uncertainty is due to the 

variability that arise from model error.  The uncertainty in the response predictions are 

explored by propagating the parameter uncertainties and the uncertainties from model error 

through the nonlinear model.  

Main contributions of this chapter are as follows. 

 Develop a HBM framework for nonlinear model updating 

 Tackle the uncertainty due to variability that arise from model error 

 Investigate the effect of sensor locations/numbers on parameter uncertainty 

 Simplify the HBM process of nonlinear model updating using asymptotic 

approximations  

 Validate the HBM framework using hysteresis type nonlinearities.  

 

Chapter 4. Hierarchical Bayesian Learning Framework for Multi-Level Modeling using 

Multi-level Data (https://doi.org/10.5281/zenodo.5702385, Submitted for review and 

possible publication to MSSP) 
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This chapter contain the core methodological contribution of the Thesis. It exploits the 

developments in Chapters 2 and 3 to address the challenging issues of validating a hierarchy 

of models arising when assembling a system from subsystems and components and the tests 

are carried out at different levels of model hierarchy. It advances the HBM framework 

proposed in Chapter 2 and generalizes it further for a multi-level modeling approach followed 

for a structural system. Parameterized physics-based models are introduce at different levels 

of hierarchy, uncertainties are embedded into the model parameters by introducing 

parameterized prior distributions of model parameters, and the hyperparameters in these 

distributions are informed from the datasets available from the multiple tests performed at 

different levels of model hierarchy (component, subsystem ad system levels). Novel 

computing techniques based on asymptotic approximations are developed for parameter 

inference and uncertainty propagation in the multi-level modeling approach.  

Main contributions of this chapter are as follows. 

 Develop a comprehensive hierarchical Bayesian learning framework for model 

calibration and robust predictions in a multi-level modeling approach 

 Capture the parameter variability that arises from environmental/operational 

conditions manufacturing process, as well as assembling process 

 Integrate the data hierarchies to account for parameter variability arisen from test-to-

test 

 Reduce the computation burden of the framework by introducing accurate asymptotic 

approximations 

 Accurately propagate the uncertainties through the modeling hierarchy levels for 

making robust predictions at the  system level 

 Exploit the asymptotic approximations to develop analytical and insightful 

expressions for the uncertainty in the hyperparameters, model parameters and output 

QoI  

 Demonstrate the accuracy and computational efficiency of the whole framework with 

an application on simplified hierarchical model structure encountered in structural 

dynamics.  

 

Chapter 5. Data Features-based Bayesian Learning for Time-domain Model Updating 

and Robust Predictions in Structural Dynamics 
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This chapter points out an issue of parameter uncertainty underestimation inferred that arises 

from the application of conventional Bayesian inference framework when single dataset of 

response time histories is used to infer the model parameters. It promotes solutions to this 

problem by proposing new likelihood formulations within the classical Bayesian framework. 

For this, three probabilistic prediction models are introduced based on the features between 

measurements and model predicted outputs. Formulations are derived which reveal the 

relation between the proposed likelihood-informed Bayesian framework and established 

likelihood-free approximate Bayesian computation (ABC) framework. Spatially and 

temporally correlation is also considered for the proposed prediction model within the 

framework. Dynamical example is used to demonstrate the effectiveness of the proposed 

framework.  

Main contributions of this chapter are as follows.  

 Propose data-features likelihood-based Bayesian methodology which can reasonably 

account for the parameter uncertainty making it independent of the sampling rate of 

the measured time histories response for large enough sampling rates 

 Reveal the relation between the proposed likelihood-informed Bayesian framework 

and likelihood-free ABC framework 

 Provide reasonable uncertainty bounds of QoI, consistent with the ones obtained from 

ABC formulation 

 Ensure the correlation case of prediction error where the uncertainty is also 

independent of different sampling rates of the time histories response.   

 

Chapter 6. Statistics-based Bayesian Modeling Framework for Uncertainty 

Quantification and Propagation (https://doi.org/10.5281/zenodo.5545922, Submitted for 

review and possible publication to MSSP) 

Motived by the idea of HBM framework proposed in Chapters 2 and 3, this chapter develops 

further a statistics-based Bayesian inference strategy to account for the parameter variability 

due to model error, measurement noise as well as environmental, operational and 

manufacturing variabilities. The proposed method formulates the likelihood function based 

on the Kullback Leibler divergence (KL-div) used to quantify the discrepancy between the 

PDFs of the model predictions and measurements. Introducing such formulation is beneficial 

especially for the case where the full measurements are not available and only the statistics or 

PDFs are provided. For output QoI that depend linearly on the inferred model parameters, the 
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posterior distribution of the hyperparameters is analytically derived with respect to the first 

two moments of the measured model predicted PDFs. For nonlinear dependence of the output 

QoI on the inferred model parameters, the analytical expressions developed for the linear case 

offer a convenient framework to approximate the posterior PDF of the hyperparameters. 

Numerical methods to estimate the resulting multidimensional integrals for the lowest two 

moments of the model predicted PDF are explored. Examples from structural dynamics and 

fatigue S-N curves are employed to verify the effectiveness of the proposed approach.  

Main contributions of this chapter are as follows.  

 Propose an alternative HBM framework to quantify the parameter variability that is 

especially convenient to be used when only the statistics or PDFs of the 

measurements are available  

 Use KL-divergence to quantify discrepancy between model prediction and 

measurement PDFs 

 Develop analytical posterior distribution of model parameters based on lower two 

moments of PDFs 

 Provide an alternative way to identify the hyper parameters in HBM proposed  

 Demonstrate framework for structural dynamics and S-N fatigue curve applications 
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using Modal Features, Mechanical Systems and Signal Processing. Submitted. (2021). 
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ABSTRACT 

The hierarchical Bayesian modeling (HBM) framework has recently been developed to tackle 

the uncertainty quantification and propagation in structural dynamics inverse problems. This 

new framework characterizes the ensemble variability of structural parameters observed over 

multiple datasets together with the identification uncertainty obtained based on the 

discrepancy between the measured and model outputs. The present paper expands on this 

framework, developing it further for model inference based on modal features. It generalizes 

the HBM framework by considering an additional hyper distribution to characterize the 

uncertainty of prediction error variances across different datasets. Moreover, computationally 

efficient approximations are developed to simplify the computation of the posterior 

distribution of hyper-parameters. Conditions are presented under which the approximations 

are expected to be accurate. The asymptotic approximations provide insightful information on 

the relation of the estimates of the hyper-parameters and their uncertainties with the 

variability of the estimations and identification uncertainties. Introducing the HBM 

formulation is beneficial, particularly for the propagation of uncertainty based on both 

structural and prediction error parameters providing reasonable uncertainty bounds. The 

posterior uncertainty of the structural and prediction error parameters is propagated to 
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estimate data-informed output quantities of interests, including failure probabilities, which 

offers robustness to the variability over datasets. The proposed approximations are tested and 

verified using simulated and experimental examples. The effects of the uncertainty due to 

dataset variability and the prediction error uncertainty are illustrated in these examples.  

2.1 Introduction 

Updating models and predicting responses using data-driven approaches has been 

substantially investigated in structural dynamics using deterministic [1] and probabilistic 

approaches [2-5]. Due to a rigorous probabilistic framework, Bayesian tools can rationally 

integrate data and physics-based models in order to select the most appropriate models 

among alternative competing ones [6-8], estimate the parameters of these models and their 

uncertainties [5,9,10], as well as propagating uncertainties to predict important quantities of 

interest (QoI) in operation and safety of structural systems [11-14]. Undoubtedly, the 

Bayesian framework offers an indispensable and powerful mathematical tool for quantifying 

and propagating uncertainties in simulations. However, challenges still remain. For example, 

owing to the redundant information carried in the data, the conventional Bayesian approach 

often underestimates the uncertainty, resulting in an inherent reduction of the parameter 

uncertainty as the number of data increases [2]. Furthermore, standard Bayesian procedures 

do not properly take into account the uncertainty in the parameters attributed to the variability 

in experimental data, environmental conditions, material properties, manufacturing process, 

assembling process, and nonlinear mechanisms activated under different loading conditions 

[15-19]. 

In light of above, a comprehensive hierarchical Bayesian modeling (HBM) framework has 

been further developed in various scientific disciplines [20-24] to properly quantify the 

uncertainties within the model parameters. Specifically in the field of structural dynamics, the 

HBM approach was used to quantify uncertainties due to environmental variabilities [25], as 

well as amplitude of excitation variabilities [26]. Sampling-based techniques, for instance 

Markov chain Monte Carlo (MCMC) and Gibbs sampler [27], are employed within the HBM 

framework to update models, calibrate uncertainties, and propagate the uncertainties to 

response QoI in structural dynamics using multiple modal datasets [20,25,28]. A review of 

the applications of this framework can be found in [29].  

Recently, for improving the computational cost of this framework, new asymptotic 

approximations have been proposed for time-domain model updating [30,31]and operational 
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modal analysis [32]. It is shown that the HBM framework embeds a substantial amount of 

uncertainty within the structural parameters rather than the prediction error parameters. Thus, 

the response QoI can be predicted considering only the posterior uncertainty of structural 

parameters [30]. This feature is activated through an explicit marginalization of the prediction 

error variance from the joint posterior distribution. It is helpful for the response predictions 

when there is no information about the prediction error variance. However, predicting 

unobserved quantities would require subjective assumptions about the prediction error 

variance. 

Motivated by the above considerations, this paper proposes a new HBM formulation for 

model updating and robust predictions based on modal test data. It treats the prediction error 

variance as a hyper-parameter updated based on the data. It also proposes two novel 

asymptotic approximations to reduce the computational cost. When this framework is used 

for uncertainty propagation, parameter and prediction error uncertainties are both 

incorporated automatically. An analytical formulation is developed to provide insights as to 

the interpretation of uncertainties in the HBM framework. Finally, the applications of this 

framework are illustrated using both numerical and experimental examples. 

This study is structured as follows. Section 2.2 describes the proposed HBM formulation 

for model updating and prediction, including the asymptotic approximations. Section 2.3 

presents the computational algorithm of the proposed approach. In Sections 2.4, a simulated 

example with four different cases and one experimental example are employed to verify the 

effectiveness of the proposed formulations. Section 2.5 reports the conclusions of this study.  

2.2 Proposed HBM Framework 

2.2.1 Probabilistic quantification and propagation model 

Let { , 1,2, , }i DD i N D  be the measured datasets from the structure comprising ND 

independent experimental datasets. Each individual experimental data 

0

, ,
ˆ ˆ={ , , 1,2, , }

N

i r i r iD R r m    consists of the square of the modal frequencies ,
ˆ

r i  in rad/s, 

2

, ,
ˆ ˆ
r i r i  , and the mode shapes ,

ˆ
r i  at 0,iN  measured degrees of freedoms (DOF) for mode r, 

where m is the number of the observed modes. For each experimental dataset, the modal 

properties have been obtained by modal estimation techniques [33-35] using available input-

output or output-only vibration measurements. Consider a parameterized class of structural 

model M  that is used to predict the square of the r-th modal frequency 
2( )= ( )r i r i θ θ  and 
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the r-th mode shapes ( )r iθ  for a particular value of the model parameter set 
N

i R θθ  in the 

i-th dataset, where Nθ  is the total number of the parameter vector iθ . The discrepancy 

between the i-th predicted modal properties and the i-th measured dataset is quantified based 

on the prediction error equations, given as follows [28]: 

,

,

,

ˆ ( ) ,

ˆ ( )
( )  ,   

ˆ ( )

r i r i r

r i r i

r i r

r ir i

e 



 

 

θ

θ
θ ε

θ

 



  (2.1) 

where re  and rε  are respectively the prediction errors for the square of the modal frequency 

and the mode shape components of the r-th mode, and , ,
ˆ ˆ( ) ( ( )) / ( ( ) )T

r i r i r i r i r i θ θ θ     is 

a normalization constant that accounts for the different scaling between the measured and the 

predicted mode shape for given parameter set iθ . The prediction errors are then modeled by 

zero-mean Gaussian variables 2 2~ ( | 0, )r r re N e    and ~ ( | , )r rNε ε 0 Σ , where 
r  is a factor 

that scales the standard deviation 
r   of the error for the r-th square of the modal frequency 

to be proportional to an expected value 
r  of the square of the modal frequency. The modal 

error factors 
r  can be chosen to correspond to the values ( )r r ref  θ  predicted by a 

reference or nominal model of the structure corresponding to parameter values refθ . 

Alternatively, they can be chosen to be ,

1

1 ˆ
DN

r r i

iDN
 



  , the average value of the identified 

modal frequencies over all datasets. The covariance matrix Σ  is defined as 2Σ I , and the 

parameter 
2  is to be estimated using multiple datasets.  

A HBM framework is used to infer the values of the model parameters [20,30]. According 

to the HBM framework, the uncertainties due to model error and environmental, 

manufacturing and experimental variabilities are embedded into the model parameters θ . 

Realization of θ  varies across the datasets, where iθ  corresponds to the i-th dataset. As a 

common way, herein we assign the Gaussian prior probability density function (PDF): 

   | ,i ip N
θ θ

θ θ μ Σ   (2.2) 

for iθ  with hyper mean θμ  and hyper covariance matrix θΣ  to be estimated using the 

multiple datasets. Fig. 2-1 shows the graphical representation of the proposed HBM 

framework. As seen, the unknown hyper-parameters can be incorporated as a set of 
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probabilistic parameters 2{ , , }θ θμ Σ , and they can be handled together through the 

framework. The formulation for the proposed approach is given in the next section. 

 

 

Fig. 2-1 Graphical representation of the proposed HBM framework for probabilistic 

quantification and propagation 

 

2.2.2 Likelihood function for each dataset 

Based on the prediction error Eq. (2.1), one can construct the likelihood function for the i-th 

dataset, given as [20,28]: 

 0

2 0

2+1

( 1)1
( | , ) exp ( )

2
i i im N

m N
p D J



 
  

 
θ θ  (2.3) 

where  

 1 2

0

1
( ) ( )+ ( )

1
i i iJ J J

N



θ θ θ   (2.4) 

is the measure of fit between model predictions and measured modal properties,  

2

,

1 2
1

ˆ( ( ))1
( )=

( )

m
r i r i

i

r r

J
m

 






θ
θ   (2.5) 

is the measure of fit between model predicted and measured modal frequencies, and  

2

,

2 ,

1 ,

ˆ ( )1
( )= ( )

ˆ ( )

m
r ir i

i r i i

r r ir i

J
m





θ

θ θ
θ




 (2.6) 

is the measure of fit between model predicted and measured mode shapes. 
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2.2.2.1 Asymptotic approximation 1 (A-1) for likelihood function 

Introducing the function L 2( , )i θ  defined as the negative of the logarithm of the likelihood 

function 

 
   

 0 02 2 2

2

1 1
, ln ( | , )= ln

2 2
i i i i

m N m N
L p D J  



 
  θ θ θ   (2.7) 

and using Taylor expansion, the likelihood function can be approximated by a normal 

distribution (valid for larger number of data): 

2 2

2 2 2

2 2

( | , )= exp( ( , ))

ˆ1 ˆ ˆˆ ˆexp ( , ) ( , ) ( , )
2 ˆ

i i i

i iT T

i i i i i

i

p D L 

  
 



    
                  

θ θ

θ θ
θ θ H θ

  (2.8) 

with the mean equal to the most probable values (MPV) of the parameters ˆ
iθ  and 2ˆ

i  

obtained by minimizing the objective function 2( , )iL θ , and covariance matrix 

2 1 2ˆ ˆˆ ˆ ˆ( , ) ( , )i i i i i Σ θ H θ , where 2ˆ ˆ( , )i iH θ  is the Hessian matrix of the function 2( , )iL θ  

with respect to the parameters 2{ , }i θ , evaluated at the MPV 2ˆ ˆ{ , }i iθ . Using Eq. (2.8), the 

optimal values ˆ
iθ  and 2ˆ

i  are given by: 

ˆ Arg min( ( ))
i

i iJ
θ

θ θ  (2.9)  

2 ˆˆ ( )i iJ  θ   (2.10) 

Basically, the MPV can be directly computed using an optimization tool, while the hessian 

matrix can be computed numerically or analytically [36,37]. The Hessian matrix of 2( , )iL θ  

evaluated at ˆ
iθ  and 2ˆ

i  is readily obtained in the form 

2

2 0

4

1 ˆ( )
ˆ( 1)ˆ ˆ( , )

12

ˆ

J i

i

i i

i

m N 




 
 


 
 
 
 

H θ 0

Η θ

0

  (2.11) 

where 
2

ˆ

( )ˆ( )=

i i

i
J i T

i i

J





 
θ θ

θ
H θ

θ θ
is the Hessian matrix of the averaged measure of fit ( )iJ θ . One 

can directly obtain the MPV ˆ
iθ  by minimizing the function ( )iJ θ  with respect to the model 

parameters iθ , independently of the value of the parameter 2 . Once the MPV of the model 

parameter set ˆ
iθ  is available, the optimal prediction error parameter 2ˆ

i  can then be 
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calculated through Eq. (2.10) as the measure of fit function (2.4), evaluated at the MPV ˆ
iθ  of 

the model parameters. The Hessian matrix 2ˆ ˆ( , )i iH θ  is a block diagonal matrix which results 

in uncorrelated iθ  and 2 . It can be estimated from the hessian matrix ˆ( )J iH θ  of the 

measure-of-fit ( )iJ θ  evaluated at ˆ
iθ . The block diagonal hessian matrix in Eq. (2.8) allows 

simplifying the likelihood 2( | , )i ip D θ  in the form: 

2

2 2 2ˆ ˆ ˆˆ( | , ) ( | , ) ( | , )
i i

i i i i ip D N N


   θθ θ θ Σ   (2.12) 

where  

     
2

1 1

0 0

ˆ22 ˆ ˆ ˆˆ = =
( 1) ( 1)i

i
i J i J iJ

m N m N

 

 
θΣ θ H θ H θ   (2.13) 

and  

2

4

0

ˆ2ˆ =
( 1)i

i

m N





  (2.14) 

Therefore, the likelihood function can be approximated as the multiplication of two Gaussian 

distributions. Moreover, from the definition of ( )iJ θ  in Eq. (2.4), it can be observed that as 

the number of data or modes increases, the value of ˆ( )iJ θ  tends to a finite value, which 

represents the average error between model predicted and measured (identified) modal 

properties. Similarly, the entries of the Hessian matrix ˆ( )iH θ  stabilize to finite values as the 

number of data increases. As a result, the expressions in Eq. (2.13) and Eq. (2.14) suggest 

that uncertainties in the estimates of iθ  and 2  are inversely proportional to the square root 

of the number of data 0( 1)m N  , guarantying that the identification uncertainties are 

decreased as the number of data within a dataset increases. Also, based on Eq. (2.13), the 

identification uncertainty depends on the magnitude of the prediction error 2ˆ
i . It is notable 

that small values of prediction error variance are desirable as it implies good fitting accuracy.  

 

2.2.2.2 Asymptotic approximation 2 (A-2) for likelihood function 

An alternative approximation is to expand the function 2( , )iL θ  with respect to the 

structural model parameters iθ  only, about the MPV ˆ
iθ  which is also given by Eq. (2.9) and 

is independent of 2 , and following a similar procedure, the likelihood can be also simplified 

in the form:  
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 0 1

2 2 2 202
2

( 1) ˆ ˆˆ ˆ( | , ) ( ) exp( ( )) ( ) ( | , ( ))
2 i i

m N

i i i i i

m N
p D J N   




 

  θ θθ θ Σ θ θ Σ   (2.15) 

where  

2
2 1

0

2 ˆˆ ( ) ( )
( 1)i J i

m N


 


θΣ H θ  (2.16) 

is the inverse of the Hessian matrix evaluated at the MPV ˆ
iθ . Details for A-2 can be found in 

Appendix A. The difference between the two approximations is that in the second one there is 

no approximation introduced with respect to the prediction error parameters 2 , resulting in 

a covariance matrix 2ˆ ( )
i
θΣ  of the normal distribution that depends on the value of 2 .   

 

2.2.3 Joint distribution for a set of hyper-parameters 
2{ , , }θ θμ Σ  

2.2.3.1 Joint posterior distribution of all parameters 

According to the Bayes’ rule, one can find the joint posterior distribution of all parameters: 

     2 2 2

1 1 1
( , , , | )  ( | , , , ) ( , , , )D D DN N N

i i ii i i
p p p  

  
θ θ θ θ θ θθ μ Σ D D θ μ Σ θ μ Σ   (2.17) 

where 2

1( |{ } , , , )DN

i ip  θ θD θ μ Σ  denotes the likelihood function for all datasets and 

2

1({ } , , , )DN

i ip  θ θθ μ Σ  denotes the prior distribution of all parameters. The datasets are 

statistically independent, and the probability of observing the i-th dataset iD  depends only on 

iθ  and 
2 , i.e. 2 2

1( |{ } , , , )= ( | , )DN

i i i i ip D p D  θ θθ μ Σ θ . Therefore, the likelihood function can 

be simplified as the product of the individual likelihood functions 2( | , )i ip D θ , given as 

follows: 

  2 2

1
1

( | , , , ) ( | , )
D

D

N
N

i i ii
i

p p D 




θ θD θ μ Σ θ   (2.18) 

Substituting the approximation 1 given by the expression in Eq. (2.12) into Eq. (2.18), the 

likelihood function can be then written as: 

     2

2 2 2

1
1

ˆ ˆ ˆˆ( | , , , ) | , | ,
D

D

i i

N
N

i i i ii
i

p N N


  




 θ θ θD θ μ Σ θ θ Σ   (2.19) 

The joint prior distribution of all the parameters 2

1({ } , , , )DN

i ip  θ θθ μ Σ  is given as:  

       2 2 2

1 1
( , , , ) = ( , , ) , ,D DN N

i ii i
p p p p  

 θ θ θ θ θ θ θ θθ μ Σ θ μ Σ μ Σ μ Σ   (2.20) 
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Due to the independence of iθ  and 2 , and the independence of 2  and ,θ θμ Σ , the joint 

prior distribution is expressed as:  

       2 2

1
1

( , , , ) = , | ,
D

D

N
N

i ii
i

p p p p 




θ θ θ θ θ θθ μ Σ μ Σ θ μ Σ   (2.21) 

where ( | , )ip
θ θ

θ μ Σ  follows the Gaussian distribution assumed in Eq. (2.2). ( , )p θ θμ Σ  and 

2( )p   denote the prior distributions for the hyper-parameters and prediction errors, 

respectively. Substituting Eqs. (2.19) and (2.21) into Eq. (2.17), the joint posterior 

distribution takes the final form:  

2

2

1

2 2 2

1 1

({ } , , , | )

ˆ ˆˆˆ( , ) ( )  [ ( | , )] ( | , ) ( | , )

D

D D

ii

N

i i

N N

i i i i

i i

p

p p N N N




  



 

  

θ θ

θ θ θ θ θ

θ μ Σ D

μ Σ θ θ Σ θ μ Σ
 (2.22) 

2.2.3.2 Marginalization over the model parameter iθ  

The joint distribution of a set of parameters 2{ , , }θ θμ Σ  can be calculated by integrating the 

posterior distribution in Eq. (2.22) over the model parameter space 1{ } DN

i iθ , resulting in: 

   

     2

2 2

1 1

2 2 2

1 1

( , , | ) = ( , , , | )

ˆ ˆˆˆ( , )   | , ( | , ) | ,

D D

i

D D

ii

i

N N

i ii i

N N

i i i i i

i i

p p d

p p N N N d


 

  

 

 

  
  



 

θ θ θ θ

θ

θ θ θ θ θ

θ

μ Σ D θ μ Σ D θ

μ Σ θ μ Σ θ θ Σ θ

  (2.23) 

The integrals of the product of two normal distributions involved in Eq. (2.23) can be 

simplified as follows [32,38]: 

ˆ ˆˆ ˆ( | , ) ( | , ) ( | , )
i i

i

i i i i iN N d N  θ θ θ θ θ θ

θ

θ μ Σ θ θ Σ θ μ θ Σ Σ  (2.24) 

while the third factor in Eq. (2.23), involving the product of ND normal distribution of scalar 

variable 
2 , is also given by a normal distribution 2 2

2 2ˆ ˆ( | , )N
 

    with mean and variance 

[39]  

2

2

2 -2 1 2 -1 2 1 1

2 2 -2 1 2 1

0 0

ˆ ˆˆ ˆ ˆ=[( ) ] [( ) ] [ ( )] [ ( )]

2 2 ˆˆ ˆ[( ) ] [ ( )]
( 1) ( 1)

i ave i ave i ave i ave

i ave i ave

D D

J J

J
m N N m N N





  

 

   

  



 
 

θ θ

θ
 (2.25) 

where the symbol  
1

1 DN

i iave i
D

a a
N 

   denotes the arithmetic mean of the values 

ia , 1, , Di N . Since ˆ( )iJ θ  stabilizes for a large number of data existing within a dataset, 

the mean value 2ˆ


  is independent of the number of datasets DN , while the variance 2

2ˆ


  is 
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inversely proportional to 0( 1) Dm N N , that is, it is inversely proportional to the number of 

data points within a dataset and the number of dataset. The mean of the prediction error 

parameter 2  generally depends on an average of the individual prediction errors ˆ( )iJ θ  for 

each dataset, arising from model and measurement errors. The uncertainty 2

2ˆ


  given in Eq. 

(2.25) reduces as the number of data within a given dataset and the number of datasets ND 

increases. Thus, the joint distribution of a set of parameters 2{ , , }θ θμ Σ  is expressed 

analytically as:  

   2 2

2 2 2 2

1

ˆ ˆˆ ˆ( , , | ) ( , ) | ,  ( | , )
D

i

N

i

i

p p p N N
 

    


 θ θ θ θ θ θ θμ Σ D μ Σ μ θ Σ Σ   (2.26) 

Similarly, using the approximation A-2 of the likelihood function, the posterior 

distribution of a set of parameters 2{ , , }θ θμ Σ  is given by (see derivation in Appendix A) 

     2 2 2 2

1

ˆ ˆ( , , | ) ( , )  T  | , ( )
D

i

N

i

i

p p p N   


 θ θ θ θ θ θ θμ Σ D μ Σ μ θ Σ Σ    (2.27) 

where 2T( )  is defined as: 

   0[ 1 ]

02 2 2
2

1
T( ) ( ) exp( )

2

Dm N N N

D

D

m N N
J



 


 
 

    (2.28) 

and 
1

1ˆ ˆ=[ ( )] ( )
DN

D i ave i

iD

J J J
N 

 θ θ  is the average of the measures of fit over all datasets. 

Therefore, based on Eq. (2.27), one can also get the joint posterior distribution of parameters 

2{ , , }θ θμ Σ . It should be noted that the structure of Eq. (2.27) is exactly the same as the 

structure of Eq. (2.26) with the only difference that the covariance 2ˆ ( )
i
θΣ  in Eq. (2.27) is 

replaced by ˆ
iθ

Σ  and the expression 2T( )  in Eq. (2.27) is replaced by the normal distribution 

2 2

2 2ˆ ˆ( | , )N
 

   . In the numerical example, the accuracy of both approximations will be 

investigated. 

According to Eq. (2.26) or (2.27), samples of prediction error parameter and the hyper-

parameters can be generated using any Markov Chain Monte Carlo (MCMC) algorithm [40] 

such as the Transitional MCMC (TMCMC) algorithm [41,42] or the Nested algorithm [43]. It 

should be noted that the sampling approaches no longer involve model runs once the optimal 

values are obtained. These samples obtained here will be then used to estimate uncertainties 

in the model parameter θ  in section 2.2.5 and to propagate the uncertainty for predicting the 

QoI in section 2.2.6.  
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2.2.4 Calculation of the MPV of the hyper-parameters and predictions error variance 

The MPV of the hyper-parameters θμ  and θΣ  and the prediction error parameter 
2  are 

obtained by minimizing the negative logarithm of the joint distribution 2( , , | )p θ θμ Σ D , 

given by:  

2 2( , , ) ln ( , , | )pL p  
θ θ θ θ
μ Σ μ Σ D  (2.29) 

For uniform prior distributions ( , )p θ θμ Σ  and 2( )p   assigned for the hyper-parameters, Eq. 

(2.29) simplifies to 

2

2

2

2 2 -1

2
1 1

( , , )

1 1 1 ˆ ˆˆ ˆˆ( ) ln( ) ( ) ( ) ( )+
ˆ2 2 2

D D

i i

p

N N
T

i i

i i

L

c






 
  

        

θ θ

θ θ θ θ θ θ

μ Σ

Σ Σ μ θ Σ Σ μ θ
 (2.30) 

where c  is constant. The first derivatives of the objective function 2( , , )pL 
θ θ
μ Σ  with 

respect to the respective parameters θμ , θΣ  and 
2  can be derived, based on Eqs. (A.5), (A.7) 

and (A.8) in Appendix A, in the form [32]: 

   
-1

1

ˆˆ=
D

i

N
p

i

i

L




 


 θ θ θ

θ

Σ Σ μ θ
μ

  (2.31) 

        
-1 -1 -1

1 1

1 1 ˆ ˆˆ ˆ ˆ=
2 2

D D

i i i

N N T
p

i i

i i

L

 


     


 θ θ θ θ θ θ θ θ

θ

Σ Σ Σ Σ μ θ μ θ Σ Σ
Σ

  (2.32) 

 2

2

2

2 2

1
ˆ=

ˆ

pL





 
 





  (2.33) 

The MPV of the hyper-parameters ( θμ  and θΣ ) are computed by setting the first derivatives 

in Eqs. (2.31) and (2.32) equal to zero and solving the resulting equations. This results in [32]: 

1

ˆ=
DN

i i

i

θμ θw   (2.34) 

1

-1

1 1

ˆ ˆ ˆ( )( ) = ( )
D D

i

N N
T T

i i i i

i i



 

 
   

 
 θ θ θ θμ θ μ θ Σ Σw w   (2.35) 

where iw  is the weighting matrix, given by: 

1

-1 -1

1

ˆ ˆ= ( ) ( )
D

i i

N

i

i





 
  

 
 θ θ θ θΣ Σ Σ Σw   (2.36) 
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Thus the optimizations can be carried out according to Eqs. (2.34) and (2.35). The MPV of 

the hyper-parameter θ
μ  is a weighted sum of the MPVs of the model parameters for each 

dataset ( ˆ
iθ ).  

To gain more insight into these expressions, the identification uncertainty ˆ
iθ

Σ  over all 

datasets are assumed to be equal to a covariance matrix Σ  taken as 

1

1 ˆ
D

i

N

iDN 

  θΣ Σ  (2.37) 

the average of the identification uncertainty of each dataset. This assumption is used to 

simplify the expressions and one can derive the MPV estimations in the form [32]:  

1

1 ˆ=
DN

i

iDN 

θμ θ   (2.38) 

= v θΣ Σ Σ   (2.39) 

2

2 ˆ=


    (2.40) 

where 

1

1 ˆ ˆ( )( )
DN

T

v i i

iDN 

   θ θΣ μ θ μ θ   (2.41) 

is the uncertainty due to the variability of the MPV from each dataset around their mean 

value, while Σ  is the identification uncertainty assumed the same for each dataset. 

Eq. (2.39) provides valuable insight into the posterior uncertainty of the structural 

parameters. In particular, the following points can be outlined: 

 The posterior uncertainty of the structural parameters is obtained as the difference between 

the variability in the parameter estimates and the identification uncertainty.  

 The variability of the structural parameters can be due to environmental changes, 

material/geometric nonlinearities, manufacturing variability, etc. This variability might 

increase or decrease depending on the testing conditions. 

 The identification uncertainty arises from the parameter estimation process when a 

specific dataset is used. It is expected to decrease as additional data points are 

incorporated. 

 When the number of data points in each dataset increases substantially, the hyper 

covariance can be generally approximated as the variability since the identification 

uncertainty Σ  becomes almost negligible.  
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 Eq. (2.39) holds true only if the covariance matrix = v θΣ Σ Σ  is a positive definite matrix. 

A negative definite matrix v Σ Σ  might be encountered when the variability is smaller 

than the identification uncertainty. In this case, the optimal value lies at the boundary of 

the domain of definition of the hyper-parameters 2{ , , }θ θμ Σ .  

 For a sufficiently large number of data within each dataset, the identification uncertainty is 

expected to be extremely small, and the positive definiteness of the covariance matrix 

= v θΣ Σ Σ  is guaranteed.  

For the second approximation, by following the same procedure from Eq. (2.29) to Eq. 

(2.40), the MPV of the hyper-parameters and prediction error parameter can be computed as:  

 

 

1

2

02

0

1 ˆ=

= ( )

1
=

1

DN

i

iD

v

D

N

m N
J

m N N











 

θ

θ

θ

μ θ

Σ Σ Σ   (2.42) 

where 

2 2

1

1 ˆ( ) ( )
D

i

N

iDN
 



  θΣ Σ  (2.43) 

and Nθ  is the number of the model parameters. More details for the derivations can be found 

in Appendix A.  

 

2.2.5 Posterior predictive distribution of structural parameters 

Based on the total probability theorem, the posterior predictive distribution of the model 

parameters can be calculated as: 

2

2 2( | ) = ( | , ) ( , , | ) new newp p p d d d



 


  
θ θ

θ θ θ θ θ θ

μ

θ D θ μ Σ μ Σ D μ Σ   (2.44) 

where newθ  is a new sample from the hyper distribution ( | , )newN
θ θ

θ μ Σ , which does not 

depend on 
2 . Thus, one can replace 2( | , , )newp  θ θθ μ Σ  by ( | , )newN

θ θ
θ μ Σ . Using samples 

     2
( , , )

i i i
θ θμ Σ  from the PDF given in Eq. (2.26) or (2.27), a sample estimate of the multi-

dimensional integral is obtained as: 

   

1

1
( | ) ( | , )

N
i i

new new

i

p N
N 

  θ θ
θ D θ μ Σ   (2.45) 

where N  is the number of samples.  
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2.2.6 Propagation of uncertainties in output QoI  

The model parameter and prediction error uncertainties are next propagated to predict the 

uncertainties in the modal properties and time histories. Once the structural model ( )newM θ  is 

updated based on the multiple datasets, the uncertainties can be propagated to predict the 

output QoI. Herein, in addition to the uncertainty of structural parameters, the uncertainty of 

prediction error parameter 2  is considered for predicting an output QoI. The samples of 

prediction error parameter and structural parameters    2
{ , }

q q

new θ  are obtained according to 

Eqs. (2.26) and (2.45), respectively using the Nested sampling technique [43].  

 

2.2.6.1 Propagation for estimating modal properties 

Samples of the modal properties (the square of modal frequencies ,r q  and mode shapes ,r q ) 

can be then computed as: 

   

 

 

 

2( ) ( ) ( ) 2

2( ) ( ) ( )

( )  ,            ~ ( | 0, )

( )
 ,          ~ ( | , )

( )

q qq q q

r r new r r r r

q
qq q qr new

r r r rq

r new

e e N e

N

   



 

 

θ

θ
0 I

θ


   



  (2.46) 

where the symbol  q

newθ  denotes the q-th sample of model parameter newθ  generated from its 

distribution ( | )newp θ D .  
( )

q

r new θ  and  
( )

q

r newθ  are respectively the r-th predicted square of 

the modal frequency and mode shape referring to the sample  q

newθ . The prediction error 

parameters 
( )q

re  and 
( )q

r  corresponding to the r-th modal properties follow zero-mean 

Gaussian distribution with variance  22 q

r   and covariance  2 q
I . Using the samples in Eq. 

(2.46), the estimates of mean, standard deviation and %  to 1 %  quantiles can be 

obtained for the modal properties. 

 

2.2.6.2 Propagation for estimating response time histories 

Once the samples of modal properties are obtained, one can predict response time histories 

(e.g. displacement, velocity, acceleration, inter-story drift and stresses) by using modal 

superposition method [28]: 

 ( ) ( ) ( )

1

( ) ( ) ( )
m

qq q q

new r r

r

g t C t


 θ    (2.47) 
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where ( )q

r  is the r-th predicted mode shapes computed by Eq. (2.46), ( )g t  denotes either the 

displacement, inter-story drift or stress histories. The velocity or acceleration time histories 

can also be readily calculated by replacing the modal coordinates ( ) ( )q

r t  in Eq. (2.47) with 

( ) ( )q

r t  or ( ) ( )q

r t .  
( )

q

newC θ  is a mapping matrix for calculating other quantities, e.g. inter-

story drift time histories. The samples  
( )

q

r t  of the modal responses satisfy the following 

modal equation: 

( ) ( ) ( ) ( ) 2( ) ( ) ( )

( ) ( )

1
( ) 2 ( ) ( ) ( )

( )

q q q q q q T q

r r r r r r rT q q

r m r

t t t L t
M

        F
 

  (2.48) 

where  q

r  is the sample of natural frequency in rad/s given by ( ) ( )=q q

r r  , and  q

r  is the 

sample of damping ratio, generated by assigning a PDF for r . ( )tF  is the input force vector, 

and L  is a matrix that associates the independent forces to the DOF of the model. Using the 

samples ( ) ( )qg t , 1, ,q N , the mean, standard deviation and quantiles, quantifying the 

response uncertainties can be estimated. 

   

2.2.6.3 Propagation for estimating failure probability 

The uncertainties in the model parameters and prediction error can also be used to obtain 

data-driven and robust-to-parameters estimates of the probability of failure of the structure 

subjected to deterministic or stochastic excitations. The probability of failure is defined in 

this work as the probability of exceeding a threshold level associated with the system 

performance. For example, failure may be associated with the inter-story drift exceeding a 

threshold level. Let ( , , ) 0g φ θ e  be the failure domain identified by the limit state function 

( , , )g φ θ e , where 1 1[ , , , , , ]T T T

m me ee    includes the normally distributed prediction error 

terms, and φ  is the set of parameters associated with other uncertainties (e.g. input related 

uncertainties) that were not identified by the HBM framework. It is assumed that φ  is 

uncorrelated to { , }θ e  and a PDF ( )p φ  is assigned to quantify uncertainties in φ . The 

probability of failure Pr( | )F D  given the data is defined by [44,45] 

2 2 2

( , , ) 0

Pr( | ) Pr( ( , , ) 0 | )

               ( ) ( | ) ( | , ) ( , , | )
g

F g

p p p p d d d d d d  


 

  θ θ θ θ θ θ

φ θ e

D φ θ e D

φ e θ μ Σ μ Σ D φ θ e μ Σ
    (2.49) 
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Assuming a narrow distribution for the hyper-parameters so that the probability distribution 

can be approximated by a very narrow distribution in the hyper-parameter space, the failure 

probability integral can be approximated in the form 

 

2

2

( , , ) 0

Pr( | ) Pr( ( , , ) 0 | , , , )

( ) ( | ) ( | , )
g

F g

p p p d d d






 

 

θ θ

θ θ

φ θ e

D φ θ e D μ Σ

φ e θ μ Σ φ θ e
                                                                  (2.50) 

The integration in Eq. (2.50) can be performed using subset simulation (SubSim) algorithm 

[46,47]. One can exploit the fact that the probability distributions are Normal and use 

available software [48] to carry out sample estimates of the probability integrals. 

2.3 Computational Algorithm 

The procedure for applying the proposed HBM framework for parameter estimation and 

robust predictions is summarized in Algorithm 1. Two steps are presented for the parameter 

estimation. The first step requires model runs to approximate the likelihood function for each 

dataset, and thus it is computationally the most expensive step. In the second step, no model 

runs are required. Only the MPV and the uncertainties of the model and prediction error 

parameters generated from the first step are needed to obtain the samples from the joint 

distribution 2( , , | )p θ θμ Σ D . Note that an alternative full sampling (FS) approach can be 

employed to acquire the samples of the hyper-parameters. The sampling procedure provides 

an accurate solution for a large number of samples. It can be accomplished by drawing the 

samples of model and prediction error parameters from the likelihood function for each 

dataset in the first step, and thus it is computationally much more expensive than the 

asymptotic approximations. The available samples from the first step are subsequently 

utilized for computing the posterior distributions of the hyper-parameters in the second step. 

More details for the sampling approach can be found in [23,49]. Comparisons of the sampling 

approach with asymptotic techniques are presented in the next section. 

The second stage in the Algorithm propagates both parameter and prediction error 

uncertainties to compute any QoI. For this purpose, the uncertainty of modal parameters can 

be propagated for predicting (un-)observed modal or response quantities, considering both 

parameter and prediction error uncertainties. This is in contrast to the parameter inference 

done directly based on response time histories, where the model prediction error is evaluated 

only for the measured QoI (e.g. acceleration) and cannot be transferred to other QoI, such as 

drift, or stresses that are important when safety and operational issues are considered.  
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Algorithm 1: 

Proposed HBM framework for parameter estimation and robust predictions 

1. Parameter estimation 

Step 1:Model runs are required 

1a) Find the MPV of iθ ’s and the hessian matrix of 
2( , )iL θ  for each dataset iD , 1, Di N  

1.1)  Minimize ( )iJ θ  to compute the MPV ˆ
iθ  using Eq. (2.9) 

1.1.1) Only for A-1: Compute ˆ( )iJ θ  and obtain 2ˆ


  and 2

2ˆ


  using Eq. (2.25) 

1.2)  Evaluate the Hessian matrix ˆ( )J iH θ  and obtain ˆ
iθ

Σ  using Eq. (2.13) for A-1 or 

2ˆ ( )
i
θΣ  using Eq. (2.16) for A-2 

Step 2: No model runs are required 

1b) Sample from the joint distribution 2( , , | )p θ θμ Σ D  of the set of parameters 
2{ , , }θ θμ Σ  

using Eq. (2.26) for A-1 or Eq. (2.27) for A-2 

 

2. Robust predictions 

2a) Draw samples 
 q

newθ , 1, , qq N , from  
( | D)

q

newp θ  in Eq. (2.45), and samples ( )q

re  and 

( )q

r from 
 22( | 0, )
q

r rN e    and 
 2

( | , )
q

rN 0 I , respectively, where qN  is the number of 

samples from the last stage of nested sampling 

2b) Compute samples of modal properties and time histories responses using Eqs. (2.46), (2.47) 

and (2.48) 

2c) Use the samples to estimate the statistical properties, such as the mean, standard deviation 

and quantiles  

2d) Calculate the mean values of θμ , 
θΣ  and 

2  from step 1b and calculate the failure 

probability using Eq. (2.50) 

 

2.4 Illustrative Examples 

2.4.1 Simulated case study: 3 degrees-of-freedom (3-DOF) system   

A 3-DOF shear model of a building system is employed as a simulated example to investigate 

the performance of the proposed HBM framework. The structure is shown in Fig. 2-2(a), 

where the system is fixed at the base. The nominal masses (m0,i) are 1kg, and the stiffness (k0,i) 

of each story is 1800N/m. Given these properties, the natural frequencies of the three modes 

of the system are 3.0Hz, 8.42Hz and 12.17Hz. The damping ratio of each mode is assumed to 

be 0.02. The system is excited at the base with an earthquake excitation ( gy ) shown in Fig. 

2-2(b).  
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(a) (b) 

Fig. 2-2 (a) 3-DOF shear model of a building and (b) base earthquake excitation  

 

The purpose of the identification is to estimate the stiffness of each story. The model is 

parameterized using three model parameters 1 2 3[   ]T  θ  associated with the stiffness of 

each story, defined as 0,/i i ik k   and representing the ratio of the stiffness to the nominal 

stiffness value. A Gaussian prior distribution is introduced for the three parameters with 

hyper mean 
1 2 3

[   ]T

    
θ
μ  and hyper covariance θΣ  assumed to be a diagonal matrix 

with diagonal element 2

i
 .  

Measurement data for the modal properties of each dataset is simulated from the system 

for fixed values of θμ , θΣ , and 
2 . Specifically, to simulate a dataset Di, a sample iθ  is 

drawn from the Gaussian prior distribution ( | , )iN
θ θ

θ μ Σ  and the modal properties ,r i  and 

,r i  are computed. These modal properties are perturbed according to Eq. (2.1) by adding an 

independent Gaussian error term to the modal frequencies and mode shape components for 

all modes to derive the measured modal frequencies ,
ˆ

r i  and mode shapes ,
ˆ

r i . The intensity 

of the error is controlled by the value of the standard deviation  . The procedure is repeated 

for generating all datasets 1, , Di N . In total, 100DN   datasets of modal frequencies and 

mode shapes are simulated.  

Four cases are explored for creating the datasets, summarized in Table 2-1. The first one 

simulates no variability over datasets; the second case considers a large variability in iθ ’s 

while having small measurement noise; the third case simulates the opposite of the case 2; the 

last case considers large variability and measurement noise. In all four cases, the hyper mean 
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vectors are selected to be 
i


θ
μ 1 . The proposed HBM framework is then applied for 

parameter estimation and model predictions. The Nested sampling algorithm [43] is 

employed in this work to generate samples from the joint PDF given by Eq. (2.26) or (2.27). 

In the sampling algorithm, the number of the initial samples is chosen as 500, and the 

tolerance is set to 0.01.  

 

Table 2-1 Information for 4 simulated cases 

Case 
Variability 

i
  (%) 

Noise 

  (%) 
Remarks 

1 0.00 2.00 No variability, i.e. Di =D1 for i =1,…,ND 

2 2.00 0.05 Large variability, small measurement noise 

3 0.05 2.00 Small variability, large measurement noise 

4 2.00 2.00 Large variability, large measurement noise 

 

Table 2-2 summarizes the MPV and mean estimates of the hyper-parameters and the 

prediction error variance for the four simulation cases. Algorithm 1 is used for the model 

updating and predictions. The full sampling (FS) approach is also applied to investigate the 

accuracy of asymptotic approximations. Moreover, the results from the classical Bayesian 

modeling (CBM) framework [2] that treats the multiple datasets as a single dataset are 

presented in these Tables. Compared to the FS results, the A-2 gives sufficiently accurate 

estimations in all four cases. The A-1 provides accurate results for the cases 1 and 2 but it 

fails to provide sufficiently accurate results for the cases 3 and 4. These results suggest the A-

1 is not as accurate as the A-2. This is due to the fact that for each dataset the normal 

distribution is not an adequate approximation of the individual likelihood functions when the 

prediction error variance is included. In contrast, the normal distribution is an adequate 

approximation of the likelihood function for each dataset, seen as a function of the structural 

parameters for a given value of the prediction error variance. The approximation seems to be 

accurate even in this example, wherein we have a small number of data points (three modal 

frequencies and nine mode shape components).  

Results in Table 2-2 for =100DN  reveal that the HBM framework recovers the actual 

values of the hyper mean, hyper variance and prediction error variance in almost all cases. 

However, this is not the case for the hyper standard deviations in case 3. Although they are 

estimated to be small (0.5%), indicating small uncertainty in the structural parameters, their 

actual values are up to one order of magnitude larger than the identified ones (0.05%). This is 
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due to fact that a small part of the prediction error uncertainty is assigned as the uncertainty 

in the structural parameters.  

Based on the results of the CBM presented in cases 2-4, it can be seen that the parameter 

uncertainty is severely underestimated. The mean estimate of the prediction error variance is 

one order of magnitude higher than the one used to simulate the measurements. In these cases, 

the misfit between the model predictions and the measurements for each dataset is accounted 

for by the prediction error term. In case 1, where no variability is present, the HBM 

framework and the CBM frameworks both yield very close results.  

 

Table 2-2 Estimates of mean and standard deviation of the model parameters and prediction 

error parameters 

Parameters 
1

ˆ
  

1
ˆ
  

2
ˆ
  

2
ˆ
  

3
ˆ
  

3
ˆ
  ̂  ˆ

  

Case 1 

A-1 0.9911 0.0031 1.0076 0.0030 1.0470 0.0024 0.0198 0.00037 

A-2 0.9919 0.0026 1.0076 0.0027 1.0472 0.0022 0.0199 0.00038 

FS 0.9906 0.0028 1.0068 0.0024 1.0472 0.0023 0.0200 0.00040 

CBM 0.9928 0.0030 1.0069 0.0030 1.0469 0.0022 0.0199 0.00039 

Case 2 

A-1 1.0020 0.0192 0.9955 0.0213 1.0015 0.0188 0.00032 0.74×10-5 

A-2 1.0021 0.0190 0.9954 0.0213 1.0013 0.0189 0.00049 1.1×10-5 

FS 1.0019 0.0191 0.9956 0.0216 1.0013 0.0191 0.00065 1.6×10-5 

CBM 1.0015 0.0013 0.9954 0.0014 1.0012 0.0008 0.0087 0.00016 

Case 3 

A-1 0.9978 0.0122 1.0014 0.0134 1.0056 0.0107 0.0132 0.00032 

A-2 0.9973 0.0070 1.0013 0.0056 1.0060 0.0047 0.0195 0.00041 

FS 0.9956 0.0073 1.0044 0.0079 1.0045 0.0060 0.0195 0.00042 

CBM 0.9988 0.0032 1.0011 0.0032 1.0059 0.0019 0.0196 0.00042 

Case 4 

A-1 1.0024 0.0280 1.0008 0.0254 0.9947 0.0255 0.0134 0.00031 

A-2 1.0007 0.0224 1.0004 0.0233 0.9955 0.0171 0.0198 0.00046 

FS 1.0023 0.0217 1.0013 0.0234 0.9963 0.0177 0.0201 0.00047 

CBM 1.0023 0.0031 1.0011 0.0031 0.9947 0.0022 0.0221 0.00051 

 

Fig. 2-3 shows the posterior distribution of the hyper-parameters and prediction error 

variance for the simulated case 2. The posterior uncertainty is very small for the hyper mean 

values and relatively small for the hyper standard deviations. 

Based on the estimated ˆ
iθ ’s and ˆ

iθ
Σ ’s, the MPV and the identification uncertainty is 

plotted in Fig. 2-4 for each dataset (error bars). The MPV of the hyper standard deviation is 
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also displayed as a function of the number of datasets, ranging from DN =1 to 100. The 

results are demonstrated only for 2 , but similar trends are observed for 1  and 3 , not 

shown in Fig. 2-4. 

In case 1, due to the fact that the data in each dataset is chosen to be identical, the MPV ˆ
iθ  

and identification uncertainty ˆ
iθ

Σ  are identical for all datasets. As a result, using Eq. (2.38), 

the hyper mean ˆ
θμ  is independent of the number of the datasets, and v Σ 0  (see Eq. (2.41)), 

making the covariance matrix θΣ  in Eq. (2.39) non-positive definite. Thus, the analysis in 

Section 2.2.4 is not applicable. The uncertainty of 
2

  is a decreasing function of the number 

of datasets, tending to zero for a large number of datasets due to the fact that all datasets are 

identical and no variability is expected. In this case, the HBM framework provides the same 

result as the CBM. 

In cases 2 and 4 (Fig. 2-4), it is seen that the variability of the parameters is significant and 

approaches a constant non-zero value for a large number of datasets. The identification 

uncertainties are small in case 2 but they are considerably larger in case 4. For a small 

number of datasets, the parameter uncertainty bounds (UB) vary across the datasets with a 

tendency to decrease as a function of the number of datasets. After including approximately 

10 datasets, the uncertainty bound stabilizes and tends to a constant value.  

In case 3 (Fig. 2-4), it can be seen that for a sufficiently large number of datasets the 

identification uncertainty for a single dataset is significantly larger than the parameter 

uncertainty due to the variability in the datasets. Thus, only a small portion of the uncertainty 

is embedded in the structural parameters while the largest portion is attributed to the 

prediction errors. As the number of datasets increases, the uncertainty in the structural 

parameters decreases, tending to a constant non-zero value representing the variability in the 

parameter estimates across datasets.  

Based on these results, it can be concluded that the proposed method is capable of 

providing realistic UB as the number of datasets increases. In contrast, the conventional 

Bayesian method underestimates the parameter uncertainty and for a large number of datasets 

they give unrealistically small uncertainties. Moreover, the proposed method can identify the 

uncertainty in the structural parameters due to environmental, operational and manufacturing 

variability, whereas the conventional Bayesian method fails to account for such uncertainties 

and embeds it in the prediction error term. 
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Fig. 2-3 Posterior distribution of hyper parameters and prediction error parameter for case 2. 

The diagonal sub-figures depict the marginal distributions for each parameter, and sub-

figures below the diagonal show the pairwise contour plots. 

 

 

Fig. 2-4 Identification uncertainty and parameter uncertainty as a function of the number of 

datasets ND, with ND ranging from 1 to 100 in linear scale for all cases 1-4 (top-to-bottom)  

 

Based on the hyper-parameter samples, one can get the samples of structural parameters 

using Eq. (2.45). The prediction error uncertainty and the uncertainty of the structural 
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parameters are propagated to predict response QoI. Representative results are presented for 

the simulated cases 2 and 3 assuming that =100DN . The predicted modal frequencies are 

shown in Fig. 2-5, and the predicted mode shape of the first mode is shown in Fig. 2-6. For 

ease of comparison, the modal frequencies are normalized by the nominal values of the 

modal frequencies. The results provide 95% UB in the modal properties. Two uncertainty 

propagation cases are explored. In the first one only structural parameter uncertainty is 

considered, while in the second one the uncertainty in the model prediction error in Eq. (2.46) 

is also considered. The results are also compared with the 95% UB estimated from the 

measured modal properties for all datasets, as well as with the measured modal properties 

corresponding to a new dataset, not included in the inference. 

In the simulated case 2, it can be seen that the results with and without the prediction error 

terms are almost identical (compare Fig. 2-5(a) and (b)), attributed to the small prediction 

error uncertainty assumed in this case. The predicted UB, is significant, with the UB 

containing the values of the experimental modal properties for all datasets (compare with 

95% UB for measurements). Note that the model predicted 95% UB of the measurements are 

close to model predicted ones for the modal frequencies. This is due to the fact that the 

variability in the multiple datasets can be adequately captured by varying the structural 

parameters, with the prediction error to be insignificant. This finding is consistent with the 

very small prediction error assumed when simulating the modal properties. Referring to Fig. 

2-5(a-b), similar results are obtained for the mode shape components although the uncertainty 

at the component level seems to be smaller than the uncertainty observed for modal 

frequencies.  

In the simulated case 3, Fig. 2-5(c) and Fig. 2-6 (c) indicate that the 95% UB fails to 

contain the 95% UB of the measured modal properties. Thus, propagating only the small 

uncertainties in the model parameters is inadequate and could result in underestimation of 

uncertainties of the modal properties. As shown in Fig. 2-5(d) and Fig. 2-6(d), when the 

uncertainties from prediction error terms are included, the 95% UB are close to 95% UB for 

the measurements.  
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(a) (b) (c) (d)  

Fig. 2-5 Prediction of the ratio of modal frequencies over the nominal values obtained 

by propagating the uncertainty of (a) the structural parameters for case 2 (b) all 

parameters for Case 2 (c) the structural parameters for case 3 (d) all parameters for 

Case 3 

 

(a) (b) (c) (d)  

Fig. 2-6 Prediction of the mode shapes by propagating the uncertainty of (a) the structural 

parameters for case 2 (b) all parameters for case 2 (c) the structural parameters for case 3 (d) 

all parameters for case 3 

 

The uncertainties are also propagated to predict response time histories. Model predictions 

of the acceleration and inter-story drift time histories are shown in Fig. 2-7 (case 2) and Fig. 

2-8 (case 3). For simulated case 2, it can be seen that the UB are wide and contain the 

response predictions from the nominal model, as well as the measured acceleration 

corresponding to a new dataset generated from the measurement simulation procedure. It is 

also noted that the mean acceleration and the mean inter-story drifts are quite close to the 
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corresponding nominal responses since the hyper mean values of the structural parameters are 

well estimated. Neglecting the prediction error uncertainty in this case, the parameter 

uncertainty can be propagated to obtain reasonable predictions of modal properties and 

response time histories. Regarding the predicted 95% UB of the response time histories for 

the simulated case 3, the UB predicted for the case of no prediction error uncertainty are thin, 

as shown in Fig. 2-8(a), failing to contain the simulated response. On the contrary, as seen in 

Fig. 2-8(b), the larger 95% UB of the response time histories are obtained when the 

prediction error uncertainties are included in the propagation. These 95% UB contain the 

simulated response.  

 

 

   (a) 

 

  (b) 

Fig. 2-7 Prediction of the response time histories of the third story for case 2 considering (a) 

only structural parameters uncertainty (b) total uncertainty 
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  (a) 

 

  (b) 

Fig. 2-8 Prediction of the response time histories of the third story for case 3 considering (a) 

only structural parameters uncertainty (b) total uncertainty 

 

Next, the HBM and the CBM framework are compared for the simulated case 2. The 

uncertainties in the modal frequencies are displayed in Fig. 2-9 for the HBM and CBM. The 

posterior distributions obtained by these methods differ qualitatively. Uncertainties calculated 

by the HBM are correlated since they arise from the parameter uncertainties. In contrast, the 

uncertainties obtained by the CBM are uncorrelated due to the statistical independence of the 

prediction error terms. 

In the context of earthquake engineering, the maximum inter-story drift is an important 

performance index. In this example, the parameter and prediction error uncertainties are 

propagated to compute the posterior predictive distribution of the drift based on Eq. (2.50). 

To this end, the Subset Simulation [48] is used to integrate over the multi-dimensional 

parameter space. Fig. 2-10(a) shows the posterior distributions obtained for the HBM and 
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CBM frameworks. Although the mean values of the maximum drift computed by both 

methods are approximately the same, the uncertainty estimated by the HBM is significantly 

greater than the uncertainty obtained by the CBM framework. 

Additionally, the probability that the maximum drift exceeds a predefined threshold is 

calculated. For this purpose, the limit state function is defined as 

0( , , ) max{ ( , , )}i
i

g d d φ θ e φ θ e , where ( , , )id φ θ e  is the i-th story drift and 0d  is the 

exceedance threshold. Fig. 2-10(b) shows the failure probability for both the HBM and CBM 

methods. The predictions given by the two methods differ substantially by one-to-three 

orders of magnitude, depending on the value of the exceedance levels. These large 

differences can be justified by the different predictions of the PDF for the maximum floor 

drift shown in Fig. 2-10(a). 

 

    

(a) (b) 

Fig. 2-9 Posterior predictive distributions of the modal frequencies normalized over the 

nominal values for the simulated Case 2 by using (a) HBM (b) CBM  

 

  

(a)                 (b) 

Fig. 2-10 (a) Posterior predictive distribution of the maximum drift in the simulated case 2 (b) 

the exceedance probability of the maximum drift 
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2.4.2 Experimental case study: 3-story prototype structure 

An experimental 3-story prototype structure tested on a shaking table is employed to validate 

the proposed method, as shown in Fig. 2-11(a). The structure is excited with =19DN  

Gaussian white noise base excitations with the same intensity so that the excitation 

(operational) characteristics be identical. However, the white noise excitations differ in the 

time history details. Three accelerometers are placed on each floor to record the acceleration 

responses. The measurements are 120s long sampled at 0.005s intervals. Operational modal 

analysis methods are used [33,50] here to obtain the 19 datasets of modal properties. The 

structure is modeled as a 3-DOF shear building depicted in Fig. 2-11(b). The nominal values 

of the mass in each floor equals to m1=5.63kg, m2=6.03kg, m3=4.66kg, respectively. The 

nominal values of the three springs are k1=20.88kN/m, k2=22.37kN/m, k3=24.21kN/m. These 

nominal values are taken from the design plans and used to construct a simplified shear 

model of the structure. All the details of the structure properties, experimental setup, as well 

as the model assumptions can be found in [30]. 

 

 

 

(a) (b) 

Fig. 2-11 (a) 3-Story prototype structure tested on a shaking table (b) 3-DOF linear 

numerical structural model 
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Fig. 2-12 Posterior distribution of hyper-parameters and prediction error parameter 

 

The structural model is exactly the same as the one used for the simulated case, and so the 

same parameterization is employed. It should be noted that all 19 experiments are conducted 

under very similar environmental and operational conditions. So one would not expect 

variabilities in the structural model parameters due to changes in the environmental and 

operational conditions. The variabilities are mostly due to model error.  

The mean estimates of the hyper-parameters and the prediction error variance are 

presented in Table 2-3 using approximations A-1 and A-2. The results are also compared 

with the corresponding mean estimates obtained using the full sampling technique. 

Additionally, the results are compared with those obtained using the CBM method. Based on 

this table, it can be seen that the A-2 estimates the hyper mean and covariance accurately 

while the A-1 fails to provide adequate accuracy for the covariance hyper-parameters. As 

expected, the CBM framework underestimates the uncertainties in the model parameters and 

the model and measurement errors are mostly captured by the prediction error term.  

 

Table 2-3 Estimates of mean and standard deviation of the model parameters and prediction 

error parameters 

Parameters 
1

ˆ
  

1
ˆ
  

2
ˆ
  

2
ˆ
  

3
ˆ
  

3
ˆ
  ̂  ˆ

  

A-1 0.7735 0.0068 1.1548 0.0084 1.0301 0.0063 0.0215 0.0010 

A-2 0.7757 0.0040 1.1523 0.0041 1.0317 0.0041 0.0223 0.0012 

FS 0.7769 0.0043 1.1524 0.0044 1.0309 0.0042 0.0224 0.0012 

CBM 0.7755 0.0032 1.1526 0.0033 1.0317 0.0034 0.0226 0.0012 
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The joint posterior distribution of the hyper-parameters and the prediction error variance 

2{ , , }θ θμ Σ  is shown in Fig. 2-12 using the approximation A-2. It is observed that the MPV 

of the hyper mean are considerably different from the nominal values, indicating that the 

simplified structural model contains large modeling errors. Specifically, the first two stiffness 

parameters are close to 0.7757 and 1.1523, respectively. For the hyper standard deviations, 

the mean of the samples is small, which shows that the uncertainty in the model arising from 

the variability in the datasets is small. The identification uncertainty for each dataset is large 

due to large modeling errors. A significant amount of uncertainty, originated from the 

mismatch between the predicted and measured data, is captured through the prediction error 

term. This can be realized from the high values of the prediction error parameter ( 0.022  ). 

The results are similar to the ones obtained for the simulated case 3.  

Fig. 2-13(a) shows the identification of the stiffness parameters as more datasets are 

included. The error bars indicate the MPV and the identification uncertainty obtained for each 

data set; the red line shows the estimated mean, and the colored area shows 99% UB. As 

shown, the UB initially decreases as the number of datasets increases, and this finding is 

consistent with the small variability of the MPV across datasets. However, as shown in Fig. 

2-13(b), the UB tends to stabilize for larger values of the number of data sets.  

 

  

(a)                    (b) 

 Fig. 2-13 (a) Uncertainty quantification of the stiffness parameters obtained using the 

approximation A-2 (b) magnified views of the UB on a logarithmic scale 

 

Next, the uncertainties are propagated to estimate uncertainties in modal properties and 

response histories. The propagation with and without prediction error are presented separately. 
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Fig. 2-14 and Fig. 2-15 show the predicted modal properties. When the prediction error 

uncertainty is ignored, the 95% UB of the first and second modal frequencies fail to contain 

the UB obtained based on the variability across 19 datasets. On the contrary, when the 

prediction error uncertainty is considered, the UB well covers the variability of modal 

frequencies over datasets. Regarding the mode shapes, almost all components are not 

contained in the UB of predictions unless the prediction error uncertainty is incorporated.  

 

 

        (a)                   (b)   

Fig. 2-14 Predictions of modal frequencies normalized over the nominal values considering 

(a) only structural parameters uncertainty, (b) both the structural parameters and prediction 

error uncertainties 

 

 

(a)                                                                  (b) 

Fig. 2-15 Predicted mode shapes considering (a) only structural parameters uncertainty, (b) 

both structural and model error parameter uncertainties 
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Fig. 2-16 shows the predictions of acceleration response history when the structure is 

subjected to new base excitation. For this, the mean values of damping ratios corresponding 

to the three mode shapes are obtained as 2.39%, 0.87%, and 0.65%. The cases with and 

without prediction error uncertainty are shown separately in Fig. 2-16(a) and (b). The 

Zoomed views are included for a better comparison. Ignoring the prediction error terms, the 

95% UB of the predicted acceleration is thin, failing to contain the actual response from one 

of the 19 datasets. However, the inclusion of the prediction error uncertainty results in a 

much larger UB, which almost contains the entire measured response. This result provides 

evidence as to the validity and effectiveness of the proposed approach. 

 

 a

 b  

Fig. 2-16 Predicted acceleration response history of the third story considering (a) only 

structural parameters uncertainty, (b) both structural and prediction error uncertainties 
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2.5 Conclusion 

A new HBM framework is developed for updating structural models based on modal test data. 

A remarkable feature of the proposed method lies in the capability to account for both the 

uncertainty of the structural and prediction error parameters, considering modeling errors, 

environmental effects, operational variabilities, and measurement noise. Two asymptotic 

approximations are proposed to simplify the likelihood function, differing in the formulation 

of Taylor series expansion with respect to the prediction error variance. These 

approximations are next used for investigating the asymptotic behavior of the HBM 

framework analytically, providing explicit formulations for the MPV of the hyper-parameters. 

Subsequently, the uncertainties are propagated for predicting modal frequencies, mode shape 

vectors, structural parameters, response histories, and engineering demand parameters. 

Ultimately, a reliability analysis perspective is integrated within the proposed framework to 

provide a robust estimation of the failure probability, considering both parameter and input 

uncertainties. 

Two illustrative examples are employed to validate the proposed framework. The 

asymptotic approximations are examined by comparing the results with the actual values 

obtained from the full simulation approach. The HBM framework is also compared with the 

CBM framework to investigate the treatment of uncertainties. From the results of these 

examples, the following conclusions are drawn: 

 The asymptotic approximation expanded based on the full likelihood function (A-2) is 

superior to the approximation built upon the individual likelihood function (A-1). The A-

2 also demonstrates good accuracy and stability when compared with the sampling 

strategy. Thus, the A-2 is prescribed as an efficient and accurate methodology.  

 The proposed framework reliably accounts for the variability of parameters across datasets, 

providing reasonable parameter and response uncertainties, whereas the CBM 

framework underestimates the uncertainties. 

 The prediction of engineering demand parameters (e.g., inter-story drift) and their 

exceedance probabilities based on the HBM framework is more accurate and robust 

when compared with the CBM framework. This achievement is crucial to avoid 

misleading damage alarms. 

 

Appendix A. Asymptotic approximation A-2 
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An alternative approximation for the likelihood function 2( | , )i ip D θ  is derived by viewing 

2( , )iL θ  in Eq. (2.7) as a function of iθ  only and expanding the function with respect to the 

structural model parameters iθ  about the MPV ˆ
iθ , resulting in the likelihood function  
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  (A.1) 

where ˆ
iθ , obtained by minimizing the objective function 2( , )iL θ  with respect to iθ , is 

given by Eq. (2.9), independently of the value of 2 , and 2 1 2

ˆ
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θ θ
Σ H  is the inverse of 

the Hessian matrix 2
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H  of 2( , )iL θ  evaluated at the MPV ˆ
iθ , given by  
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 (A.2) 

Following the same procedure regarding the calculation of distribution 2( , , | ) p  θ θμ Σ D  in 

the main text and replacing the likelihood function by Eq. (A.1), one can readily obtain the 

joint posterior distribution 2( , , | ) p  θ θμ Σ D in the form (2.27) where 2T( )  is defined in 

(2.28).  

The MPV of parameters 2{ , , }θ θμ Σ  can be derived by minimizing the negative logarithm 

of the joint distribution 2( , , | )p θ θμ Σ D , defined as 2ln ( , , )pL p  
θ θ
μ Σ . Assuming that 

the prior distributions ( , )p θ θμ Σ  and 2( )p   are assigned uniform distributions, pL  can be 

expressed as: 
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  (A.3) 

where 1 2,p pL L  and 3pL  are defined as: 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



54 

2 2

1 1

1

2 2

2 2

1

2 2 1

3 3

1

1 ˆ( ) ln ( )
2

1 ˆ( , ) ln( ( ) )
2

1 ˆ ˆˆ( , , ) ( ) ( ( )) ( )
2

D

i

D

i

D

i

N

p p

i

N

p p

i

N
T

p p i i

i

L L

L L

L L

 

 

 









  

  

    







θ

θ θ θ

θ θ θ θ θ θ

Σ

Σ Σ Σ

μ Σ μ θ Σ Σ μ θ

  (A.4) 

Using the fact that 
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the first derivative of the objective function pL  with respect to the parameters θμ  can be 

computed as: 
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Using the following identities for two square matrices X  and Y ,  
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the first derivative of the objective function pL  with respect to the parameters θΣ  can be 

computed as  
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The first derivative of the objective function pL  with respect to the parameters 
2  can be 

computed as: 
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Using the following identities for two square matrices (t)X  and Y  and a vector a   
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the derivatives of 1pL , 2pL  and 3pL  with respect to 2  can be computed as:  
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where Nθ  is the number of the model parameters θ . Therefore, the MPVs ,
θ
μ θΣ  and 

2  of 

parameters ,
θ
μ ,θΣ and 

2  satisfy the following equations:  
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Similarly, when the identification uncertainty  2ˆ
i
θΣ  over all datasets are assumed to be 

equal to a covariance matrix Σ  taken to be  2
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where the variability uncertainty and the identification uncertainty are defined as: 
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Substituting Eq. (A.17) to 
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Subsequently, the last formula in Eq. (A.15) can be rewritten as: 
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Then the MPV of parameter 2  can be solved as: 
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which gives 2 = DJ  for  0 1m N   sufficiently larger than Nθ .  
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Bayesian Modeling Framework 

Original Paper:  

X. Jia, O. Sedehi, C. Papadimitriou, L.S. Katafygiotis, B. Moaveni, Nonlinear Model 

Updating through a Hierarchical Bayesian Modeling Framework, Computer Methods in 

Applied Mechanics and Engineering. Submitted. (2021). 

https://doi.org/10.5281/zenodo.5520607. 

ABSTRACT 

A new time-domain probabilistic technique based on hierarchical Bayesian modeling (HBM) 

framework is proposed for calibration and uncertainty quantification of hysteretic type 

nonlinearities of dynamical systems. Specifically, probabilistic hyper models are introduced 

respectively for material hysteretic model parameters as well as prediction error variance 

parameters, aiming to consider both the uncertainty of the model parameters as well as the 

prediction error uncertainty due to unmodelled dynamics. A new asymptotic approximation is 

developed to simplify the process of nonlinear model updating and substantially reduce the 

computational burden of the HBM framework. Two numerical examples are conducted to 

verify the accuracy and performance of the proposed method considering Bouc-Wen (BW) 

hysteretic type nonlinearities. Model error is manifested as uncertainty due to variability in 

the measured data from multiple datasets. Results from a five-story numerical structure 

indicate that the model error is the main source of error that can affect the uncertainty in the 

model parameters due to the variability in the experimental data. It is also demonstrated that 

the parameter uncertainty due to the variability arising from model error depends on the 

sensor locations. It is shown that the proposed approach is robust for not only quantifying 

uncertainties of structural parameters and prediction error parameters, but also predicting the 

system quantities of interests (QoI) with reasonable accuracy and providing reliable 
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uncertainty bounds, as opposed to the conventional Bayesian approach which often severely 

underestimates the uncertainty bounds.   

3.1 Introduction 

Finite element (FE) models are extensively employed for representing structural systems and 

predicting their responses to dynamic loads [1–4]. Discrepancies between the predicted 

responses from FE models and the measured responses from the physical structures are often 

inevitable. To achieve a more authentic model, model updating has received considerable 

attentions in recent decades using deterministic (e.g. [5–8]) and probabilistic approaches (e.g. 

[9–12]). Updating linear models has been widely applied and is shown to achieve a great 

progress in the field of structural dynamics [6,9,13]. However, most physical structures are 

inherently characterized by nonlinear behaviours with higher uncertainties when subjected to 

large loads due to material and/or geometric nonlinearities. Linear systems often neglect such 

nonlinearities and therefore cause a considerably large modeling error between the real 

structures and the updated models. Characterizations of such nonlinearities may provide more 

information for accurate and efficient representations of real structures. To this end, updating 

nonlinear models is essential for accurate response and reliability predictions [14–16] and 

assessment of structures subjected to large loads such as earthquakes [17–19].  

The core idea of model updating techniques is to find the most probable values of the 

structural model parameters by minimizing the difference between the FE-predicted and the 

measured responses [20]. The non-probabilistic approaches, or refereed as deterministic 

methods, can be applied to address such problems. Several studies have already demonstrated 

a good performance of the deterministic strategies [21,22]. However, a common shortcoming 

exists in those methods as well. Although the most plausible values of the model parameters 

can be estimated, the effect of the parameter uncertainties is often neglected. Such 

uncertainties can be arisen from the model error, the measurement noise or the changing 

environmental and ambient conditions. Quantifying the uncertainties is necessary for 

understanding the statistical characteristics of model parameters as well as propagating those 

uncertainties to predict the system quantities of interests (QoI). A remedy for the 

deterministic approaches is to apply the probabilistic means in model updating process. Due 

to their rigorous probabilistic framework, Bayesian inference methods have been widely used 

for quantifying and propagating the uncertainties in model updating [23–27]. Several 

contributions based on Bayesian strategies have already been proposed for nonlinear model 
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updating. Muto and Beck developed a Bayesian updating method for estimating the hysteretic 

material model parameters using stochastic simulation [28]. Ebrahimian et al. presented a 

framework for damage identification of dynamical structures with material nonlinearities 

using batch Bayesian estimations [29]. Song et al. proposed a Bayesian model updating 

methodology for dynamical systems with geometric nonlinearities based on the nonlinear 

normal modes extracted from broadband vibration data [30]. Ceravolo et al. employed a 

Bayesian uncertainty quantification framework for the identification of hysteretic parameters 

with consideration of the model discrepancy in seismic structural health monitoring [31]. 

More investigations for nonlinear model updating based on the Bayesian techniques can be 

found in the literature [32–39].  

Bayesian inference provides a powerful probabilistic tool for updating nonlinear models 

and handling the uncertainties of nonlinear model parameters. However, the conventional 

Bayesian inference framework cannot properly account for an underlying variability in model 

parameters and uncertainties arising from multiple data sets under different excitations, 

operational, environmental and experimental conditions. The variability in the model 

parameters can originate from the presence of model and experimental error [40]. The 

uncertainty of the model parameters due to these variabilities is irreducible, in contrast to the 

identification uncertainty which is usually inversely proportional to the amount of data 

considered in a data set. To properly account for this irreducible variability, uncertainties can 

be embedded in the model parameters by assigning a parameterized hyper prior distribution. 

The hyper parameters in this distribution are assumed to be unknown quantities and to be 

estimated from the available multiple data sets.  

A hierarchical Bayesian modeling (HBM) framework has recently been introduced in 

various engineering fields [41–47]. In the field of structural dynamics, it was initially 

proposed by Behmanesh et al. for structural identification based upon a mainly full 

simulation HBM approach [42]. For improving the efficiency of the HBM framework, Sedehi 

et al. and Jia et al. respectively developed asymptotic approximation-included HBM 

approaches for model updating based on time-domain [48,49] and frequency-domain linear 

models [50]. Patsialis et al. applied the HBM framework for reduced order structural models 

in earthquake engineering [51]. Such improvements have been successfully applied in 

updating linear models.  

In this paper, a new time-domain hierarchical Bayesian modeling framework is developed 

for the identification of nonlinear models, aiming to quantifying the uncertainties of the 

nonlinear model parameters and the prediction error parameters, and further propagating the 
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overall uncertainties to the system output QoI. The contributions of this work are in the 

following aspects. A methodology is proposed for nonlinear model updating using response 

time history data which can characterize the nonlinear behaviors in the real structures. More 

importantly, the proposed methodology can capture the uncertainties due to model error by 

embedding uncertainties in the model and prediction error parameters. This is achieved by 

assigning a parameterized distribution in these parameters with hyper parameters to be 

estimated from the multiple datasets. Moreover, the presented methodology adopts a novel 

asymptotic approximation approach which can significantly improve the computational 

efficiency of the HBM framework.  

The paper is organized as follows. Section 3.2 presents the detailed mathematical 

formulation of the proposed HBM framework and the approximations used. Section 3.3 

applies the HBM framework to identify parameters of a nonlinear system with nonlinearities 

modelled by the Bouc-Wen hysteresis law. Section 3.4 provides two numerical examples to 

demonstrate the effectiveness of the proposed approach to account for uncertainties due to 

model error. Section 3.5 reports the conclusions of this study.  

3.2 Hierarchical Bayesian Nonlinear Model Updating 

3.2.1 Proposed hierarchical models 

Suppose that DN  data sets of measured vibration time histories { , 1, , }i DD i N D  

subjected to DN known input loadings are available from a nonlinear structure. Let 

0ˆ{ ( ) , 1,2, , }
N

i i iD j R j N  Y  be the -thi  experimental data set consisting of a sequence 

of response data measured at 0N  degrees of freedom (DOF), where the notation j  

corresponds to a time instant j it j t   and iN  is the number of the sampled data using the 

sampling rate it . Let also { ( ), 1,2, , }i i ij j N X X  be the -thi  input loading which 

corresponds to the -thi  data set iD . Consider a parameterized class of nonlinear model 

( )M θ  that is used to characterize the nonlinear behavior (e.g. material nonlinearities) of 

dynamical systems, where 
N

R θθ  is the set of material/structural model parameters to be 

estimated using the measured response time histories, and Nθ  is the total number of the 

unknown parameters in the set θ . Let also ( )={ ( ; ) , 1,2, , }sN

i i ij R j N g θ g θ  be the 

response time histories under the same input loading iX  and the same sampling rate it  
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predicted from the model ( )M θ , where sN  denotes the number of DOFs. Subsequently, the 

discrepancy iε  between the -thi  experimental data set and the -thi  predicted response time 

histories can be defined based on the prediction error equation: 

ˆ ( ) ( ; )i i ij L j ε Y g θ   (3.1) 

where L  is a selection matrix, usually containing elements of zeroes and ones, that associates 

the DOF of the model with the measured DOF.  

In the analysis that follows, the prediction error is modelled by a random vector with 

Gaussian probability distribution with zero mean and covariance matrix Σ . A probabilistic 

model ( )p Σ  is used herein to describe the uncertainty of the prediction error term. 

Realization of the prediction error parameters is free to vary across the different data sets, 

with the realization iΣ  that corresponds to the data set iD  considered to be an independent 

sample of the distribution ( )p Σ . For the -thi  data set iD , iΣ is assumed as a diagonal matrix 

with l -th diagonal element 2

,( )i i la , where 
2

,

1

1
( ; )

N

i l i,l

j

a j
N 

 g θ  denotes the intensity of the 

model predictions in the -thl  DOF corresponding to the -thi  data set. Thus, the probabilistic 

model ( )p Σ  can be equally represented as the probabilistic model 
2( )p  , and it is modelled 

by the inverse gamma (IG) distribution given by:   

   
 

 
 

1

1 1
22 2 2 2

1 2 2

1

=IG | , expp


 

    
 

   
  
  

  (3.2) 

where the parameters 1  and 2  are the shape hyper-parameter and scale hyper-parameter, 

respectively.  

Similarly, the uncertainty of model parameters θ  is probabilistically modeled using a 

Gaussian distribution [42,48]: 

( | , ) ( | , )p N
θ θ θ θ

θ μ Σ θ μ Σ   (3.3) 

with unknown mean 
N

R θμ  and covariance matrix 
N N

R  
θΣ . The parameter set 

{ , }θ θμ Σ  is considered to be an uncertain hyper parameter set to be estimated using the 

available multiple data sets. Realization of θ  from the Gaussian distribution  | ,N
θ θ

θ μ Σ  

can vary across the different data set, where the realization iθ  is considered to be an 

independent sample of the distribution ( | , )N
θ θ

θ μ Σ  that corresponds to the data set iD .  
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This constitutes a hierarchy model that has two classes of parameters. The first class of 

model parameters comprises the ( 1)DN N   experiment-specific parameters iθ  and 2

i , 

1, , Di N , while the second class model parameters comprises at most 2 ( 1)N N N      

hyper-parameters involved in θμ , θΣ , 1  and 2 . The number of parameters in the first set 

increases linearly with the number of datasets making the parameter estimation problem 

challenging when the number of data sets increases. The full set   of all parameters to be 

identified is  2

1 1 1 2{ } ,{ } , , , ,D DN N

i i i i    θ θθ μ Σ . 

The graphical representation of the proposed hierarchical Bayesian nonlinear modeling 

framework, showing the hierarchical structure, is depicted in Fig. 3-1. The arrows show the 

conditional dependence of parameters. For example, the parameters iθ  are conditional on θμ  

and θΣ , the prediction error parameters 2

i  are conditional on 1  and 2 , while the model 

predictions ,i lg  are conditioned on iθ . First the unknown hyper-parameters consisting of the 

set of variables 1 2{ , , , } θ θμ Σ  are identified, where the first two variables describe the 

uncertainty of the model parameters θ  while the other two parameters capture the uncertainty 

corresponding to the prediction error parameter 2 . The structural parameter uncertainty 

along with the prediction error uncertainty can then be propagated to the predictions of 

quantities of interest (QoI). The theoretical details are formulated in the following section.  

 

 

Fig. 3-1 Graphical representation of the proposed hierarchical Bayesian modeling framework 

for nonlinear model updating 
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3.2.2 Formulation for the proposed HBM framework  

3.2.2.1 Posterior distribution of full set of parameters 

The full parameters include the model parameters 1{ } DN

i iθ , the prediction error parameters 

2

1{ } DN

i i   and the hyper-parameters  1 2, , , 
θ θ
μ Σ . In the case of considering DN  independent 

data sets, the joint prior distribution of the full parameters is expressed as: 

   

     

2

1 1 1 2

2

1 2 1 2

1

{ } ,{ } , , , ,

= , , , | , | ,

D D

D

N N

i i i i

N

i i

i

p p

p p p

  

    

 





θ θ

θ θ θ θ

θ μ Σ

μ Σ θ μ Σ

 

                                                     (3.4) 

where 1 2( , , , )p  θ θμ Σ  denotes the prior distribution of hyper-parameters, and ( | , )ip
θ θ

θ μ Σ  

and 2

1 2( | , )ip     are introduced in Eqs. (3.3) and (3.2), respectively. In developing Eq. (3.4), 

the hierarchy structure in Fig. 3-1 is assumed. Specifically, the experiment-specific parameter 

set iθ  and 2

i  are independent, the distribution of iθ  is independent of the values of the 

prediction error hyper parameters 1  and 2 , while the distribution for 2

i  is independent of 

the structural model hyper parameters θμ  and θΣ . According to Bayes’ theorem, the 

posterior distribution of full parameters is proportional to the prior distribution and the 

likelihood function:  

     |  |p p pD D     (3.5) 

Due to the independence of individual data set, and the fact that the -thi  data set iD  depends 

only on the -thi  model parameter iθ  and its prediction error parameter 2

i , the likelihood 

function can be simplified as: 

     2 2

1 1 1 2

1

| |{ } ,{ } , , , , = | ,
D

D D

N
N N

i i i i i i i

i

p p p D    



 θ θD D θ μ Σ θ   (3.6) 

Herein 2( | , )i i ip D θ  is the likelihood function for a specific data set i , which can be readily 

obtained based on the prediction error equation in Eq. (3.1):  

   
0

2 2 02
2

| , exp ( )
2

iN N

i
i i i i i

i

N N
p D J 



  
  

 
θ θ   (3.7) 

where ( )iJ θ  is stated as: 

    
0 2

2
1 10 ,

1 1 ˆ( )= ;
iN N

i i i i

l ji i l

J j j
N N a 

 θ Y g θ   (3.8) 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



68 

Note that ( )iJ θ  tends to a finite value representing the average discrepancy between the 

measurements and the model predictions. Subsequently, using the expressions in Eqs. (3.2) 

and (3.3), and substituting the simplified likelihood function from Eq. (3.6) into Eq. (3.5) 

yields: 

   

     

2

1 1 1 2

2 2

1 2 1 2

1

| { } ,{ } , , , , |

                 , , , ( | , ) | , | ,

D D

D

N N

i i i i

N

i i i i i

i

p p

p p D N IG

  

     

 





 

θ θ

θ θ θ θ

D θ μ Σ D

μ Σ θ θ μ Σ



  (3.9) 

3.2.2.2 Marginal posterior distribution of hyper-parameters 

For obtaining the posterior distribution of hyper parameters, the computational procedure 

proposed by the previous study [48] will be followed in this section, namely the joint 

distribution in Eq. (3.9) firstly will be marginalized over 2

i ’s and then over iθ ’s. 

Marginalizing the joint distribution of full parameters over 2

i ’s, one can obtain:  

 

   
2

1 1 2

2 2 2

1 2 1 2

1

{ } , , , , |

, , , ( | , ) ( | , ) | ,

D

D

i

N

i i

N

i i i i i i

i

p

p N p D IG d



 

      





 
  

  
 

θ θ

θ θ θ θ

θ μ Σ D

μ Σ θ μ Σ θ
  (3.10) 

The integral in Eq. (3.10) is evaluated analytically in Appendix A, resulting in:  

 
 

 
 

1 1

2

( )

22 2 2 0
1 2 1 2

1

( | , ) | ,  ( ) ( )+
2

i

f

i
i i i i i i

N N
p D IG d f J

 




      





 
     

 θ θ   (3.11) 

where ( )   is the Gamma function and 1 0 1( )=( +2 ) / 2if N N  . Hence, Eq. (3.10) can be 

rewritten as: 

   
 

 
 

  

1

2

1 1 2 1 2 1

1

1 2

1

{ } , , , , | , , , ( )

( | , ) exp , ,

D

D

D

N

N

i i

N

i i

i

p p f

N L




    


 





 
   

  

  

θ θ θ θ

θ θ

θ μ Σ D μ

θ μ Σ θ

  (3.12) 

where  1 2, ,iL  θ  is defined in the form:  

  0
1 2 1 2, , = ( ) ln ( )+

2

i
i i

N N
L f J   

 
 
 

θ θ   (3.13) 

To simplify the analysis and derive analytical expressions for the posterior PDF of the hyper 

parameters, a key asymptotic approximation, valid for large number of data, is next 

introduced. The function   1 2exp , ,iL   θ  can be approximated by using Taylor 

expansion when a large number of data points are available [41]: 
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         1 2 1 2 1 2

1ˆ ˆ ˆ ˆexp , , exp , , , ,
2

T

i i i i L i i iL L     
 

      
 

θ θ θ θ H θ θ θ   (3.14) 

Herein ˆ
iθ  is the most probable values (MPV) computed by minimizing the objective function 

 1 2, ,iL  θ , while  1 2
ˆ , ,iL  θ  and  1 2

ˆ , ,L i  H θ  are respectively the function value and 

the hessian matrix of the function  1 2, ,iL  θ  with respect to the parameters iθ  evaluated at 

the MPV ˆ
iθ . The calculation of the MPV ˆ

iθ  and the hessian matrix  1 2
ˆ , ,L i  H θ  are 

derived in Appendix B and are shown to be given by 

  ˆ arg min
i

i iJ
θ

θ θ   (3.15) 

 
 

 0 1
1 2

0 2

( )ˆ ˆ, ,
ˆ +2

i
L i i

i i

N N f

N N J


 


H θ H θ

θ
  (3.16) 

where    
ˆ

ˆ =
i i

T

i iJ



θ θ

H θ θ  is the hessian matrix of the measure of fit function ( )iJ θ  

evaluated at ˆ
iθ . It is noted that the MPV value can be readily solved by minimizing the 

function  iJ θ  which is independent of the unknown hyper parameters 1  and 2 . Moreover, 

an explicit expression is found for the hessian matrix  1 2
ˆ , ,L i  H θ  in terms of the hessian of 

the function  iJ θ  and the hyper-parameters 1  and 2 . Based on the calculations of Eq. 

(3.15) and Eq. (3.16), Eq. (3.14) can be rewritten as:    

         
1( )

0
1 2 2 1 2 1 2

ˆ ˆ ˆ ˆexp , , + , , | , , ,
2

f

i
i i L i i i L i

N N
L J N



      



 
   

 
θ θ Σ θ θ θ Σ θ   (3.17) 

where the covariance matrix 

 
 

 
 

 
2

0 2 1 10
1 2

0 1 0
1

0

2ˆ +ˆ +21 2ˆ ˆ ˆ, , =
2( )

1+

i
i i

i
L i i i

i i

i

J
N N J N N

N N f N N

N N


 

 

 

θ
θ

Σ θ H θ H θ   (3.18) 

is the inverse of the hessian matrix  1 2
ˆ , ,L i  H θ . One can view expressions (3.15) and (3.18) 

as quantifying the most probable value and the identification uncertainty corresponding to 

Bayesian parameter inference of iθ  using the dataset iD  under uniform prior distribution for 

iθ .  
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It is noted that for large number of data points 0 iN N , Eq. (3.18) can be approximately 

written as: 

       1

1 2

0

2ˆ ˆ ˆ ˆ, ,L i L i i i

i

J
N N

   Σ θ Σ θ θ H θ   (3.19) 

demonstrating that the covariance matrix    1 2
ˆ ˆ, ,L i L i  Σ θ Σ θ  is independent of the hyper 

parameters 1  and 2 . More importantly, Eq. (3.19) shows the uncertainty in the estimates of 

iθ  is inversely proportional to the square root of the number of data points, reflecting the fact 

that the identification uncertainty decreases as the number of data points in a dataset increases. 

Substituting the expression from Eq. (3.17) into Eq. (3.12) yields: 

     

  

1 1 2 1 2 1 2

1 2

1

ˆ{ } , , , , | , , , , ,

ˆ ˆ( | , ) | , , ,

D

D

N

i i

N

i i i L i

i

p p T

N N

     

 







 
  

θ θ θ θ

θ θ

θ μ Σ D μ Σ θ

θ μ Σ θ θ Σ θ
  (3.20) 

Herein the function  1 2
ˆ, ,T  θ  is defined as: 

 
 

 
     

1 1( )

2 0
1 2 1 2 1 2

11

ˆ ˆ ˆ, , = ( ) + , ,
2

D

D

N
fN

i
i L i

i

N N
T f J

 


     






   
       

θ θ Σ θ   (3.21) 

Subsequently, by marginalizing the distribution in Eq. (3.20) over iθ ’s space for 1, , Di N , 

and noting that  

     1 2 1 2
ˆ ˆ ˆ ˆ( | , ) | , , , | , , ,

i

i i i L i i i L iN N d N     θ θ θ θ

θ

θ μ Σ θ θ Σ θ θ μ θ Σ Σ θ   (3.22) 

one readily obtains the posterior distribution of the hyper parameters as follows:  

        1 2 1 2 1 2 1 2

1

ˆ ˆ ˆ, , , | , , , , , | , , ,
DN

i L i

i

p p T N       


   θ θ θ θ θ θμ D μ θ μ θ Σ Σ θ   (3.23) 

As seen from Eq. (3.23), the hyper parameters corresponding to both model parameters and 

prediction error hyper parameters can be computed together through the proposed framework. 

Any Markov Chain Monte Carlo (MCMC) algorithm such as the transitional MCMC 

(TMCMC) [52,53] or the nested sampling algorithm [54] can be used to draw the samples 

from the posterior distribution of the hyper parameters. Note that sampling from the posterior 

distribution  1 2, , , |p  
θ θ
μ D  is not a time consuming operation since it does no longer 

require computationally expensive model runs. The model runs are required only to estimate 

and store the values of ˆ
iθ  and  ˆ

iH θ  before the sampling approach is initiated. 
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3.2.2.3 Posterior distribution of hyper parameters for large number of data 

For large number of data ( 0 iN N  is large) within each data set, the values of 1 0( )= / 2if N N  

and    1 0( ) / 2if N N    are independent of the parameter 1 . Using Eq. (3.19) and 

assuming that prior to data the hyper parameter sets { , }
θ θ
μ  and 1 2{ , }   are independent, i.e. 

     1 2 1 2, , , , ,p p p     
θ θ θ θ
μ μ , the posterior distribution in Eq. (3.23) takes the 

simplified form 

     1 2 1 2, , , | , |   , |p p p     
θ θ θ θ
μ D D μ D   (3.24) 

where 

      
1

ˆ ˆ, | | ,   ,
DN

i L i

i

p N p


   θ θ θ θ θ θμ D μ θ Σ Σ θ μ   (3.25) 

and  

   
 

 
   

1 0 /2

2 0
1 2 1 2 2 1 2

11

ˆ ˆ, | , , + ,
2

D
iD

N
N NN

i
i

i

N N
p T J p




      






   
         

D θ θ   (3.26) 

According to Eq. (3.24) the hyper parameter sets { , }
θ θ
μ  and 1 2{ , }   remain independent 

given the data sets. This independence is useful to analytically derive the most probable 

values and the uncertainties of the hyper parameters { , }
θ θ
μ  and 1 2{ , }   by separately 

considering the distribution  , |p 
θ θ
μ D  and  1 2, |p   D .  

It has been shown in [55] that the form in Eq. (3.25) of the posterior distribution of the 

hyper parameters { , }
θ θ
μ  yields the most probable values of the hyper parameters to be 

1

1 ˆˆ =
DN

i

iDN 

θμ θ   (3.27) 

and using the assumption that all ˆ( )L iΣ θ  are approximately equal, the hyper-parameter 

covariance matrix to be  

0

1

1 ˆ ˆˆ ˆ ˆ= ( )( )
DN

T

i i

iDN 

  θ θ θΣ μ θ μ θ Σ   (3.28) 

where 0

1

1 ˆ( )
DN

L i

iDN 

 Σ Σ θ  is taken as the average of the identification uncertainty of each 

dataset. The uncertainty in the hyper parameters, approximated by the inverse of the hessian 

of  ln , |p 
θ θ
μ D  evaluated at the most probable values ˆˆ{ , }θ θμ , can be derived to be 
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   11ˆ ˆˆ ˆ, ,h

DN

  θ θ θ θΣ μ H μ   (3.29) 

where  ,h 
θ θ

H μ  is a 2x2 block matrix with the individual blocks given by [55] 

 

 

 

1

1

1 1

1

1 1

1

1

1 ˆ, ( )

1 ˆ ˆ ˆ, ( ) ( ) ( )

1 ˆ ˆ, ( ) ( )
2

1 ˆ ˆ( ) (

D

D

D

N

L i

iD

N

L i L i i

iD

N

L i L i

iD

L i L

D

N

N

N

N





 



 





  
 

          
       

        
     

    
 







μμ θ θ θ

μΣ θ θ θ θ θ

ΣΣ θ θ θ θ

θ θ

H μ Σ Σ Σ θ

H μ Σ Σ Σ θ Σ Σ θ μ θ

H μ Σ Σ Σ θ Σ Σ θ

Σ Σ θ Σ Σ
1 1

1

ˆ ˆ ˆ) ( )( ) ( )
DN

T

i i i L i

i

 



       
       

 θ θ θθ μ θ μ θ Σ Σ θ

  (3.30) 

where   denotes the Kronecker tensor product of two matrices. Note that the matrices in the 

left-hand-side of Eq. (3.30) tend to finite values as the number of datasets DN  increases.   

Using Eq. (3.26), the most probable values 
1̂  and 

2̂  can be obtained by minimizing the 

 1 2ln , |p   D  with respect to the parameters 1  and 2 , while an asymptotic estimate of 

the uncertainty in the estimates of 
1̂  and 

2̂  can readily be derived by calculating the inverse 

of the hessian of  1 2ln , |p   D , evaluated at the most probable values 
1̂  and 

2̂ , in the 

form:  

   1

1 2 1 2

1ˆ ˆ ˆ ˆ, ,
DN

    Σ H  (3.31) 

where the elements of the 2x2 hessian matrix are  

 

 

 

 

2

1
,11 1 2 1 12

1

,12 1 2

2

1 1
,22 1 2 22 2

12 0 2

2

0

ln ( )
, = ( )= (1, )

1
,

2 1 1
,

2ˆ
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ii D

i i

i

d

d

N N N
J

N N








     



 


 
 

 







 

  
 

 
 



H

H

H

θ

  (3.32) 

where ( )   is the Digamma function and 1( , )k   is the k-th derivative of the digamma 

function at 1 , which is readily evaluated by a Matlab-based function ‘psi’. It is noted that Eq. 

(3.32) does not explicitly depend on the estimates ˆ
iθ  for large number of data per dataset 

(large 0 iN N ).  
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The aforementioned formulations (3.29) and (3.31) for the covariance matrices of the 

estimates of all hyper parameters to be inversely proportional to the number DN  of the 

datasets suggest that the uncertainties in the hyper parameter estimates reduces as the number 

of datasets increases. Also, the forms (3.29) and (3.31) for the covariance matrices suggest 

that the posterior uncertainty in the hyper parameters tends to be approximated by a Gaussian 

distribution as the number DN  increases.  

 

3.2.2.4 Probability distribution function (PDF) of model and prediction error parameters 

The PDF of model parameters θ  given the data D  can be simplified to  

1 2

1 2 1 2( | ) = ( | , ) ( , , , | ) p p p d d d d
 

      
θ θ

θ θ θ θ θ θ

μ Σ

θ D θ μ Σ μ Σ D μ Σ   (3.33) 

where we used the fact that 1 2( | , , , ) ( | , )p p  
θ θ θ θ

θ μ Σ θ μ Σ , i.e. the conditional distribution 

of the model parameter θ  given the values of the hyper parameters θμ  and θΣ  is 

independent of hyper-parameters 1 2,  . Sampling estimates can be employed to compute the 

integral in the form: 

   

1

1
( | ) ( | , )

M
k k

k

p N
M 

  θ θ
θ D θ μ Σ   (3.34) 

by drawing the samples        
1 2, , ,

k k k k
 θ θμ Σ  from the distribution 1 2( , , , | )p  

θ θ
μ Σ D , where 

M  is the number of samples.  

Similarly, the PDF of prediction error parameter 2  can be computed by following the 

same procedure: 

   

1 2

2 2

1 2 1 2 1 2

2

1 2

1

( | ) = ( | , ) ( , , , | ) 

1
( | , )

M
k k

k

p p p d d d d

IG
M

 

       

  




   



θ θ

θ θ θ θ

μ Σ

D μ Σ D μ Σ

  (3.35) 

Thus, the samples of structural parameters and prediction error parameter can be obtained 

according to Eqs. (3.34) and (3.35), respectively using any MCMC algorithm.  

 

3.2.2.5 Predictions of output QoI 

After the structural model is calibrated, the uncertainty of the structural parameters and the 

uncertainty from the prediction error parameter can be used to predict the uncertainty in 

output QoI using Monte Carlo simulations. Specifically, let 
 q
θ  denote the q-th sample of 
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model parameter θ  generated from its distribution  |p Dθ  in Eq. (3.34),  2 q
  is the q-th 

sample of prediction error variance parameter which can be generated from its distribution 

 2 |p D  in Eq. (3.35), and ( )q

lε  is the prediction error term sampled from a Gaussian 

distribution with zero mean and covariance matrix 
 2 2

,( )
q

pre laΣ I , where 
,pre la  is the 

intensity of the predicted response time histories in the -thl  DOF. The uncertainty in a 

response time history ( )pre jY  can be obtained by analyzing the samples generated according 

to the following expression:   

     ( )

, ( ) ;
q q q

pre l l lj j Y g θ ε   (3.36) 

where l  defines the Bayesian Hierarchical Learning Framework for Multi-Level Modeling 

using Multi-level Data in Structural Dynamics-th DOF of the system and j  is the data point. 

Eq. (3.35) is applied to both the observed and unobserved QoI. Observations of a specific 

type of response time histories (e.g. accelerations) at a limited number of DOF provides 

estimates of the prediction error parameter 2  which can then be used in (3.36) to make 

predictions of response time histories (e.g. accelerations) at unobserved DOF of the model. 

For the unobserved QoI of different type (e.g. velocities, strain, displacements) an estimate of 

the variance 2  involved in the definition of the zero mean Gaussian error term lε  is not 

available from the observations and has to be subjectively postulated. Here, the responses to 

unobserved QoI of different type than that used for parameter estimation are computed based 

on only the structural parameters uncertainty. This is reasonable as the estimates of the 

prediction error are not available for such unobserved QoI.  

 

3.2.3 Computational procedure of the proposed algorithm 

The procedure for the parameter identification along with the predictions of QoI is 

summarized in Algorithm 1. The computational process of the proposed HBM framework 

includes two steps for the identification of the hyper parameters. In the first step the MPV 

and the hessian matrix are obtained according to each data set. In this step it requires the 

model runs and thus it is the most computationally expensive step. While in the second step, 

it does not need the model runs, and only the MPV and the Hessian matrix evaluated from the 

step are used for sampling the posterior distribution of the hyper parameters.  

It is reminded that an alternative full sampling (FS)-based HBM approach [43,51] can be 

also utilized to obtain the samples of the hyper parameters. This is achieved by drawing the 
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samples of the model and prediction error parameters from the likelihood function for each 

data set in the first step, and then use all the available samples to compute the posterior 

distribution of the hyper parameters in the second step. Therefore, the computational cost of 

the FS approach is more expensive than the proposed asymptotic approximation approach. 

The comparison of the computational effort between the FS and the proposed methods is 

conducted in the second application of Section 3.4, where both methods are used for 

estimating the posterior distributions of the hyper parameters. 

  

Algorithm 1: 

Proposed HBM framework for parameter identification and response prediction 

1. Identify hyper parameters 

First Step: Find MPV and hessian of function  1 2, ,iL  θ  for each data set  

1.1)  Minimize  iJ θ  to compute MPV ˆ
iθ  using Eq. (3.15) 

1.2)  Evaluate Hessian matrix  ˆ
iH θ  at MPV ˆ

iθ  

Second Step: Compute posterior distribution  1 2, , , |p  
θ θ
μ D  using Eq. (3.23) 

2. Identify model parameters and prediction error parameter 

2.1) Compute PDF ( | )p θ D  of model parameters using Eq. (3.34) 

2.2) Compute PDF 2( | )p  D  of prediction error parameter using Eq. (3.35) 

3. Predictions of QoI 

3.1) Draw samples 
 

( 1, )
q

qq Nθ  from ( | )p θ D , and  2 q
  from 2( | )p  D  

3.2) Draw samples from 
 2 2

,( , )
q

pre lN a0 I  for l  

3.3) Calculate the predictions using Eq. (3.36) 

3.4) Estimate the statistical properties using Monte Carlo simulations 

 

3.3 Application to Nonlinear Systems using Bouc-Wen hysteresis  

The Bouc-Wen (BW) model is widely used in dynamical structures to represent the hysteretic 

behavior of nonlinear systems [22,31]. It was initially proposed by Bouc [56], subsequently 

modified by Wen [57] and thereafter extended by other researchers in the literature [58–60]. 

Details of the formulation in civil infrastructure can be found in references [59,61]. Herein, 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



76 

for demonstration purposes, it will be applied to a multistory building represented by a shear 

model with BW hysteretic-type inter-story nonlinearities.  

Specifically, the differential equation of motion is written in the form: 

          ,Rt t t t t  Mu Cu F u z P   (3.37) 

where M  and C  are the mass and the viscous damping matrices,  tu  is the relative 

displacement response,     ,R t tF u z  is the nonlinear restoring force vector at time t, and 

 tP  is the input force vector. According to the shear building model, the i -th component of 

the vector     ,R t tF u z  is given by [28,59]:  

1i i i

R r rF F F     (3.38) 

01, ,i N , with 1=0i

rF   for 0i N . According to the BW model the quantity i

rF  in Eq. 

(3.38) is the nonlinear inter-story restoring force given as [59]: 

     = + 1i

r i i i i i iF k u t k z t    (3.39) 

where  i i ik u t  corresponds to the elastic component whereas    1 i i ik z t  represents to 

the hysteretic component, ik  denotes the stiffness, i  defines the share of linear part while 

1 i  define the share of nonlinear hysteretic part, and  iz t  is the virtual hysteretic 

displacement which comprises the hysteretic component of the system. Without including the 

pinching effect and degradation functions (stiffness or strength degradation), the formulation 

of the implemented hysteretic displacement  iz t  can be simplified as: 

             
1 in n

i i i i i i i i i iz t Au t u t z t z t u t z t 


     (3.40) 

where the parameter iA  determines the tangent stiffness, and the parameters ,i i   and in  

affect the shape and smoothness of the hysteretic model, respectively.  

For solving the differential equation of the BW model, the state vector in state space form 

is given as:  

 

 

 

 

 

 

 

1

2

3

t t

t t t

t t

   
   

    
   
   

y u

y y u

y z

  (3.41) 

The derivative of the state vector  ty  is readily obtained as: 
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 

 
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           
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

 
   
   

     
   
        

n

yy

y y M P M Cy F y y

y Ay β y y y γy y

  (3.42) 

The ordinary differential equations in (3.42) can then be solved numerically using the fourth-

fifth order Runge-Kutta method [62]. The implemented BW model at each structural element 

can be fully parameterized by 6 parameters, namely the linear stiffness parameter  
1

n

i i
k


k  

and the nonlinear parameters      
1 1 1

= , = , =
n n n

i i ii i i
a A β

  
α A β    

1 1
, = , =

n n

i ii i
γ n

 
γ n . Selected 

parameters can be incorporated into the model parameters set θ  and subsequently identified 

based on the proposed HBM framework.  

In order to find the most probable values ˆ
iθ  needed in the HBM formulation in Eq. (3.23), 

one needs to solve an optimization problem of minimizing ( )iJ θ  in Eq. (3.8) with respect to 

the model parameters iθ . Gradient based optimization techniques are used which require the 

gradient of ( )iJ θ . These gradients require the knowledge of the derivatives  ty  of the 

response vector  ty  in (3.42) with respect to a model parameter   in the set iθ . Using the 

form in Eq.(3.42), analytical expressions can readily be developed for these derivatives. 

Specifically, the expressions for the derivatives  ty  constitute a set of differential 

equations that is also solved using the fourth-fifth order Runge-Kutta method. The 

formulation for the analytical derivatives is not included in this work, however, similar study 

can be found in [63].  

3.4 Illustrative Examples 

3.4.1 Case study 1: calibration of a SDOF nonlinear system using a linear model 

This case study aims to demonstrate that uncertainties from processing multiple data sets 

arise due to model error and to investigate the effectiveness of the HBM framework for 

quantifying uncertainties in the presence of model error. To introduce model error the 

physical system is assumed to be nonlinear and the model of the system to be linear. 

Specifically, a single degree of freedom (SDOF) nonlinear structure modeled by Bouc-Wen 

hysteretic type nonlinearity is employed as the physical system, as shown in Fig. 3-2(a). The 

mass m  and the viscous damping ratio   are assigned the nominal values of 1 kg and 2%, 

respectively. The initial stiffness k  which corresponds to the linear component is set to the 
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nominal value of 40 N/m. The values of the parameters associated with the nonlinear 

component are set to =0.5, =2, 2, 1n      and 1A  . The excitations are Gaussian 

sequences with mean zero and standard deviation of 5. Recorded measured data consisting of 

acceleration time histories that are simulated from the nonlinear model. Specifically, 100 data 

sets consisting of acceleration time histories are simulated from the nominal nonlinear model 

using different realizations of the white noise excitation. For each data set, the sampling rate 

is taken as 0.01s corresponding to a sampling frequency 100Hz for a total of 10 seconds. The 

linear model, shown in Fig. 3-2(b), used to represent the nonlinear system is parameterized 

with 2 model parameters 1 2=( , )T   associated with the stiffness and damping ratio. The 

parameters 1  and 2   multiply the nominal stiffness and damping ratio, respectively.  

 

 

Fig. 3-2 (a) SDOF system with BW hysteresis (b) SDOF linear model of the system in (a)  

 

The proposed HBM framework is next applied to identify the hyper parameters of the 

model and to predict the responses of the linear model. The MPVs of model parameters i  

for each data set is computed according to Eq. (3.15), and the hessian matrix evaluated at i  

is then calculated. The posterior distribution of the hyper-parameters  1 2, , , 
θ θ
μ  can then 

be estimated using Eq. (3.23). Nested sampling algorithm [54] is employed here to draw the 

samples from the posterior distribution. The number of the initial samples and the tolerance 

value in the sampler are set to 500 and 0.01, respectively. The results of the posterior 

distribution of the hyper-parameters corresponding to =100DN  is shown in Fig. 3-3, where 

the diagonal figures show the marginal PDF of each hyper parameter, and the lower diagonal 

sub-figures show the contour plots for each pair of the hyper parameters. The mean of the 

hyper parameters are also reported in Table 3-1. It can be seen from Fig. 3-3 that a clear peak 

appears for all the hyper parameters. The first two hyper parameters (hyper mean) have mean 

values of 0.9455 and 2.2607, respectively. These values deviate from their nominal values of 
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(1,1)Tθμ  especially for the second hyper parameter due to the existence of substantial 

model error. Regarding the uncertainty of the model parameters, the variability of damping 

ratio with a coefficient of variation (cov) of 13.7% is much larger than the variability of the 

stiffness parameter with a cov of 1.47%. This is reasonable since the model response is more 

sensitive to the stiffness parameter than the damping ratio parameter. Furthermore, the 

marginal distribution of the hyper parameters in Fig. 3-3 provide the uncertainty in the 

estimates of the hyper parameters  ,
θ θ
μ  with cov, computed from the samples, equal to 

(0.0015,0.0138) for θμ  and (0.0722,0.0708) for the diagonal elements of θ . Such 

uncertainties are large for the elements of the hyper covariance θ  and are expected to affect 

propagation of uncertainties into output QoI. As mentioned in the theoretical formulation, the 

uncertainty in such estimates is inversely proportional to the square root of the number of 

datasets and thus is expected to be higher for smaller number of datasets used. The last two 

parameters 1  and 2  aim to capture the uncertainty of the prediction error parameter. It is 

obvious that the two parameters exhibit a strong correlation as shown in Fig. 3-3 by the 

subplot corresponding to the projection of samples and contour to the two parameter space 

 1 2,  . With those parameters one can calculate the probability of the prediction error based 

on Eq. (3.35) and the mean of the prediction error is also reported in Table 3-1.  

 

 

Fig. 3-3 Posterior distribution of the hyper-parameters 
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Table 3-1 Estimates of mean and standard deviation of the model parameters and prediction 

error parameters 

 

 
Model parameters 

 Prediction error 

parameters 

1
ˆ
  

1
ˆ
  1

1

ˆ

ˆ








 

2
ˆ
  

2
ˆ
  2

2

ˆ

ˆ








 

1̂  
2̂  ̂  

HBM 0.9455 0.0139 1.47% 2.2607 0.3105 13.7% 1.2863 0.0007 0.0260 

CBM 0.9390 0.0001 0.01% 2.4410 0.0019 0.078% - - 0.0690 

 

For the purpose of the comparisons between the proposed HBM approach and the 

conventional Bayesian method (CBM), 100 data sets used in HBM are incorporated in a 

single data set for investigating the performance of the CBM. Table 3-1 includes results of 

the mean estimates and the identification uncertainty of the model parameters obtained from 

the CBM. As seen, the CBM provides estimates of the mean of the model parameters that are 

quite close to the proposed HBM approach. However, a substantial difference is revealed 

regarding the extent of variability of the model parameters as quantified by the standard 

deviations in the two approaches. Specifically, the proposed HBM framework offers larger 

uncertainty estimates as opposed to the CBM which yields extremely small evaluations of the 

model parameter standard deviations. This feature of the proposed HBM approach is 

beneficial for predictions of realistic uncertainty bounds of the unobserved quantities of 

interest. Moreover, the proposed approach can predict the hyper parameters of the prediction 

error, elucidating explicitly a probability distribution of the prediction error parameter. It 

should be noted that the mean of the prediction error computed by CBM is larger than that by 

HBM. This is because the prediction error in CBM include both the expected variability to 

the model parameters due to multiple datasets and uncertainty for each data set due to the 

model error. In contrast, the proposed HBM split the two uncertainties, embedding part of the 

uncertainty in the model parameters, and therefore present a more reasonable framework for 

model predictions and structure assessments.  

The identification uncertainty of model parameter in each data set can be estimated 

according to Eq.(3.18), where the parameters 1  and 2  are assumed to be their mean 

evaluations from Table 1. Fig. 3-4 shows the plots of the identification uncertainty obtained 

based on individual data set and the ensemble uncertainty observed over multiple data sets for 

the model and prediction error parameters as a function of the number of data sets DN  
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ranging from 1 to 100. Apparently, the identification uncertainty for each dataset is fairly 

small which is attributed to the fact that a large amount of data points is used here in 

measurements. Such uncertainties can be negligible for further predictions. However, the 

ensemble uncertainty arising from the variability due to model error, is large and irreducible, 

tending to a constant value after approximately 10 datasets. More importantly, this 

uncertainty covers almost all the mean values of the individual model parameters, 

representing that the model parameter values have significant variabilities due to the presence 

of model error.  

 

 

Fig. 3-4 Estimates of identification uncertainty and ensemble uncertainty 

 

The above mentioned uncertainties are propagated to predict output quantities of interest. 

The predictions are performed for observed and unobserved QoI in order to highlight the 

importance of the different uncertainties. For comparison purpose, the CBM is also employed 

to predict the QoI. Fig. 3-5 shows the predictions of acceleration (observed QoI) where the 

uncertainties from both the model parameters and the prediction error parameter are 

considered. Despite the conceptual differences in HBM and CBM in quantifying and 

handling uncertainties, it is seen that by accounting for the overall uncertainties both methods 

can provide reliable uncertainty bounds (UB) and the actual response (as shown in the red 
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line of Fig. 3-5(a)) which generates from a new input excitation falls inside of the UB. 

However, a significant difference between the HBM and CBM is shown in Fig. 3-6 for the 

predictions of displacement (unobserved QoI). Due to the fact that the prediction error is 

available only for the observed QoI, only the uncertainty of the model parameters is 

propagated to the predictions of the unobserved QoI. It is evident that owing to an 

underestimation of the identification uncertainty of model parameters, the CBM provides a 

thin UB if only the uncertainties of model parameters are considered, and the actual response 

falls outside of the thin UB. In contrast, the proposed HBM approach provides reasonable UB 

by accounting for only the uncertainties of the model parameters as most parts of the actual 

displacement falls within the produced UB, as depicted in Fig. 3-6.  

  

 

Fig. 3-5 Predictions of acceleration using CBM (top) and HBM (bottom) 
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Fig. 3-6 Predictions of displacement using CBM (top) and HBM (bottom) 

 

3.4.2 Case study 2: calibration of a 5 DOF nonlinear system with BW hysteretic model 

Fig. 3-7(a) shows a 5-DOF shear building model of a structure with mass =1m  kg, stiffness 

0 =500k N/m, and hysteretic nonlinearities for the inter-story stiffness of each floor. The 

nominal values of the parameters of the nonlinear BW hysteretic model for each story are 

assumed to be 0 =0.1 , 0 =1 , 0 1  , 2A   and 1n  , respectively. The physical system is 

assumed to be the model shown in Fig. 3-7(a) with the values of the model parameters 

corresponding to mass m , stiffness k  and the nonlinear parameters ,  and   in all five 

floors of the structure independently perturbed by 5% from their nominal values. The 

perturbed value of each parameter is different for each floor of the building. The other two 

parameters A  and n  are set to be their nominal values. The system is excited at the base with 

=25DN  different earthquake excitations taken from the engineering strong motion (ESM) 

database [64]. One of the earthquake excitations is shown in Fig. 3-2(b). 25 data sets of 

acceleration time histories are generated and used as measurements for identifying the model 

of the system. Most of the analysis and results that follow are based on time history 

measurement obtained from a single acceleration sensor located at the first story.  

The model of the system is parameterized using the four unknown parameters 

 1 2 3 4= , , ,   θ  representing normalized , ,k    and  , denoted with red in Fig. 3-7(a). The 

parameters  1 2 3 4= , , ,   θ  are assumed to be the same for all stories and are normalized by 
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the nominal values of the corresponding model properties such as 1 0k k , 2 0   , 

3 0    and 4 0   . Therefore, the identification will involve estimating the stiffness 

parameter 1  and evaluating the material nonlinear parameters 2 3 4( , , )   . The other 

quantities are assumed to be deterministic with their values set to their nominal values. 

 

 

 

(a)  (b) 

Fig. 3-7 (a) 5-DOF shear model of a building system (b) Base earthquake excitation 

 

 
 

(a) (b) 

Fig. 3-8 (a) Comparisons between the measured acceleration response and prediction and (b) 

the actual hysteresis loop and prediction from optima model of the first floor.  

 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



85 

The proposed hierarchical Bayesian nonlinear model updating approach is applied to 

identify the stiffness and the parameters of the hysteretic nonlinearity. The MPV of the model 

parameters are estimated from each data set according to the first step of the proposed 

algorithm. To identify whether the updated model can match the real structure, the measured 

accelerations subjected to the base excitation in Fig. 3-7(b) and the corresponding hysteresis 

loops of the first floor are plotted along with the responses from its optimal calibrated model, 

as shown in Fig. 3-8. As seen, there is a mismatch between the measurements and the 

predictions due to the presence of model error. Such discrepancy will be captured by the 

prediction error term. 

Subsequently, the posterior distributions of the hyper-parameters corresponding to 25 data 

sets are computed based on Eq. (3.23), and the results by using a single acceleration sensor 

located at the first story are shown in Fig. 3-9. The deviation of the estimated hyper mean 

values θμ  from unity indicates their departure from the nominal values of the real structure. It 

is indicated that the hyper means of the model parameters (linear and nonlinear) are not fairly 

close to the nominal values of the real structure due to model error, since the updated model 

cannot match the simulated measurements from the real structure perfectly. It is also noted 

that the values of hyper standard deviations are considerable for all the model parameters, 

corresponding to coefficient of variations ˆ ˆ/
i i    ranging from 1.21% to 13.65%, as shown 

in Table 3-2. These values indicate a relatively large variability in the model parameters from 

data set to data set. For the hyper parameters of prediction error, again a strong relationship 

between 1  and 2  is observed since the posterior distribution of prediction error depends on 

both of them.  
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Fig. 3-9 Posterior distributions of hyper parameters computed based on Eq. (3.23)  

 

Table 3-2 Estimates of means of hyper parameters 

1
ˆ
  0.9838 

2
ˆ
  1.0004 

3
ˆ
  1.0268 

4
ˆ
  1.2661 

1̂  7.2965 

1
ˆ
  0.0121 

2
ˆ
  0.0286 

3
ˆ
  0.0675 

4
ˆ
  0.1728 

2̂  0.0750 

1

1

ˆ

ˆ








 1.23% 

2

2

ˆ

ˆ








 2.86% 

3

3

ˆ

ˆ








 6.57% 

4

4

ˆ

ˆ








 13.65% - - 

 

The posterior distributions of the hyper parameters are also computed according to the 

analytical solutions derived in Eqs. (3.27)-(3.32), as shown in Fig. 3-10. Results from the 

analytical solutions are in good agreement with the ones from Eq. (3.23). It is also noted that 

a slightly difference for the uncertainty bounds of the hyper parameters can be found between 

Fig. 3-9 and Fig. 3-10. This is due to the fact that the posterior distribution of the hyper 

parameters computed by the analytical solutions are under the conditions where the posterior 

distributions are approximated as a Gaussian distribution. The uncertainties of the hyper 

parameters are neglected in the analytical solution while the uncertainties of sampling based 

on Eq. (3.23) are considered for the hyper parameters. However, based on the theoretical 

results developed in this work, such differences are expected to be reduced for large number 

of data sets.  
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Fig. 3-10 Posterior distributions of hyper parameters computed based on the analytical 

solutions 

 

Fig. 3-11 Estimates of identification uncertainty in each dataset and uncertainty due to 

variability overall datasets 
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Moreover, the identification uncertainty for each data set calculated by the optimization 

procedure is compared to the uncertainty due to variability computed by the whole HBM 

framework. Results for the marginal PDF of the model parameters for each dataset and the 

marginal PDF of the model parameters estimated from HBM are presented in Fig. 3-11. It is 

shown that the identification uncertainty of the model and prediction error parameters in each 

data set (with blue) is much smaller than the ensemble uncertainty over all data sets (with 

red), and therefore the identification uncertainty can be negligible with sufficient number of 

data points. It is also seen that the mean of the parameters in each data set varies over 

different data sets due to the presence of model error. However, most of the mean values fall 

within the ensemble uncertainty bounds derived from the proposed HBM framework. 

For the purpose of comparing the proposed method with the full sampling (FS) method 

[43,51] as well as the conventional Bayesian method (CBM), results of the mean values of 

the hyper parameters alongside the prediction error parameters are depicted in Fig. 3-12. It is 

clear that the proposed approach can capture the ensemble uncertainty of the model 

parameters and provide clear estimates of the model error while the conventional Bayesian 

approach fails to reach the same values. Although the CBM offers a relatively good accuracy 

in terms of the means of the model parameters, it severely underestimates the uncertainty of 

the model parameters, incorporating such uncertainties into the prediction error term together 

with the identification uncertainty and the model error uncertainty. As a result, CBM 

overestimates the value of the prediction error parameter. The proposed method can 

accurately estimate almost the same values as the FS approach but at a significantly reduced 

computational effort. The computational effort for the proposed and the FS method, carried 

out in a computer with a 32-core processor, are reported in Table 3-3. It is clear that the 

computational effort of the proposed method is around 10 times faster than that with the FS 

approach in the first step, and around 5 times faster in the second step. Therefore, the 

proposed method can not only guarantee the computational accuracy but also improve the 

computational efficiency to a great extent.  
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Fig. 3-12 Mean estimates of the hyper parameters and prediction error parameters by using 

the proposed method, FS and CBM 

 

Table 3-3 Computational effort of the proposed method and FS method 

 Step 1 Step 2 Total 

Proposed 52s 23s 75s 

FS 652s 115s 766s 

 

The estimated uncertainty of the model parameters and the uncertainty from prediction 

error parameters are next used to predict output QoI. Results are presented for two cases. In 

the first case, relevant to observed QoI such as accelerations in this example, the uncertainty 

in both the structural model and prediction error parameters is propagated. In the second case, 

relevant to unobserved quantities of interest such as displacement, only the uncertainty in the 

structural model parameters is propagated to the responses since the prediction error term and 

its uncertainty is not known. Fig. 3-13 depicts the predicted accelerations along with the 

measured accelerations of the first floor using CBM and HBM. As expected, both methods 

can offer a good accuracy and most of the actual response is contained within the uncertainty 

bounds. However, it should be noted that the sources of uncertainties from both CBM and 

HBM are conceptually different, with significant part of the uncertainty in the HBM method 
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to be embedded in the structural model parameter, while most of the uncertainty in the CBM 

to be quantified in the model prediction term. Fig. 3-14 shows uncertainty propagation results 

of considering only the structural model parameter uncertainty for the predictions. The 

displacements of the first floor are predicted as the unobserved quantities using CBM and 

HBM. Fig. 3-15 shows the results for the unobserved displacement of the nonlinear part iz  of 

the response using CBM and the proposed HBM. It is observed that the proposed method 

delivers a reasonably accurate uncertainty bound which contains most of the measurements 

while the conventional Bayesian method provides an extremely thin uncertainty bound where 

the measurement falls outside.  

 

 

Fig. 3-13 Predictions of accelerations of the first floor using CBM (top) and HBM (bottom) 

 

Fig. 3-14 Predictions of displacement of the first floor CBM (top) and HBM (bottom) 
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Fig. 3-15 Predictions of nonlinear displacements of the first floor CBM (top) and HBM 

(bottom) 

 

Finally, the effect of sensor locations and number of sensors on the estimation of the 

parameters and uncertainties is investigated. Results for the most probable values of the hyper 

parameters are reported in Table 3-4 for one acceleration sensor placed either at first or fifth 

floor, 2 acceleration sensors placed at first and fifth floors, as well as 5 acceleration sensors 

placed at all the floors. It can be seen that different sensor configurations affect the estimates 

of the hyper parameters. These differences in the estimates from different sensor 

configurations are expected to affect uncertainties in structural and prediction error model 

parameters. Results for the posterior PDF of the model and prediction error parameters, 

computed according to Eqs. (3.34) and (3.35), are shown in Fig. 3-16 for the different sensor 

configurations considered in Table 3-4. These results suggests that the mean estimate of the 

parameters as well as the spread of uncertainty in the parameters depend on the number and 

location of sensors. Measurements from different sensor locations may cause different 

prediction errors and thus affect the parameter uncertainty due to the presence of model error. 

Placing a single sensor at the first floor reduces the prediction error. Increasing the number of 

sensors and thus the number of measurements, although is expected to reduce the 

identification accuracy by reducing the uncertainties in the estimates of the model parameters 

for each data set, it does not significantly affect the spread of uncertainty due to the 

variability from multiple datasets.  
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  Table 3-4 Statistical information of model parameters and prediction error parameter 

corresponding to Fig. 3-16 

Sensor(s) 
1

  
1

  
2

  
2

  
3

  
3

  
4

  
4

    

1st floor 0.9838 0.0121 1.0004 0.0284 1.0261 0.0653 1.2605 0.1728 0.1040 

5th floor 1.0159 0.0173 0.9201 0.0376 0.8594 0.0991 1.8660 0.2486 0.1615 

1st and 5th 

floors 
1.0078 0.0139 0.9728 0.0320 0.9253 0.0720 1.8204 0.2399 0.1582 

All the floors 1.0085 0.0102 0.9880 0.0197 0.9822 0.0926 1.8730 0.2278 0.1686 

 

 

Fig. 3-16 Probabilistic distributions of the model and prediction error parameters 

3.5 Conclusion 

A nonlinear model updating strategy based on HBM framework is proposed and evaluated 

when applied to two numerical models of nonlinear systems characterized by Bouc-Wen 

hysteresis type nonlinearities. According to the HBM framework, uncertainties due to the 

variability arising from multiple datasets are embedded in the model parameters by assigning 

a Gaussian distribution to the model parameters with hyper parameters defined as the mean 

and the covariance matrix of the Gaussian distribution. The unmodelled dynamics are 

included in Gaussian prediction error by assigning a hyper distribution to the prediction error 

parameter. Asymptotic approximations are introduced to obtain insightful analytical 

expression for the posterior distribution of the hyper parameters. The accuracy of the 

asymptotic approximations is guaranteed due to the large number of data involved in the time 

history measurements for each dataset. Sampling from this posterior distribution of the hyper 
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parameters is computationally very efficient since there are no expensive model runs 

involved at this stage. The resulting analytical expressions provide valuable insight into the 

mean and covariance of the hyper parameters and their dependence of the most probable 

values and identification uncertainty of the model parameters estimated for each dataset, as 

well as the variability in the model parameter estimates arising from multiple datasets. In 

particular, the analytical expressions were used to show that the structural model hyper 

parameters are independent from the model prediction error hyper parameters for large 

number of data within each data set. 

Two numerical examples are used to demonstrate the effectiveness and applicability of the 

proposed HBM framework. It is clearly demonstrated that the irreducible uncertainty arising 

from the variability of the multiple datasets is due to model error, while the identification 

uncertainty for each dataset can be reduced as the number of data in each dataset increases. 

The HBM framework is capable of accounting for the irreducible uncertainty, while 

conventional Bayesian inference fails to account for such uncertainty, resulting to 

underestimation of uncertainty bounds for the structural model and prediction error 

parameters. In particular, embedding the uncertainties due to variability from multiple 

datasets to the structural model parameters has the effect of obtaining reasonable uncertainty 

bounds for unobserved response QoI as opposed to significantly underestimated uncertainty 

bounds obtained from the classical Bayesian inference framework. Moreover, although the 

number and location of sensors seems to slightly affect the values of the hyper parameters 

and thus affect the model parameter estimates and uncertainties, increasing the number of 

sensors does not substantially affect the irreducible uncertainty arising from the variability 

due to multiple datasets. Finally, the asymptotic approximation is shown to provide one order 

of magnitude reduction of the computational effort compared to existing full sampling 

approach for the considered case study. 

 

Appendix A. Calculation for the integral in Eq. (3.10) 

Substituting the likelihood function 2(D | , )i i ip θ  from Eq. (3.7) and the inverse gamma 

distribution form Eq. (3.6) to the integral in Eq. (3.10) yields: 
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The integral in Eq. (A.1) can be obtained analytically as: 
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where     is the Gamma function and 1( )f   is defined as: 

0 1
1

+2
( )=

2

iN N
f


   (A.3) 

Substituting (A.2) into (A.1) one derives Eq. (3.11).  

 

Appendix B. Calculation for the MPV and hessian matrix in Eq. (3.15) and Eq. (3.16) 

The first order derivative of function  1 2, ,iL  θ  in Eq. (3.13) with respect to parameters iθ  

can be computed as: 

 
 
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i

i i

i i
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 
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  (B.1) 

Setting the derivatives equal to zero one can obtain the MPV of parameters iθ  as:  

  ˆ arg min
i

i iJ
θ

θ θ   (B.2) 

The hessian of the function  1 2, ,iL  θ  can be also calculated as follows: 
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0 2 0
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0 2
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N N J N N J J
L N N f

N N J


  



  
  

θ θ

θ θ

H θ θ θ θ
θ

θ
  (B.3) 

where    =
i i

T

i iJ θ θH θ θ  is the hessian of the function  iJ θ . Substituting ˆ
iθ  calculated 

from Eq. (B.2) into Eq. (B.3) and noting that  ˆ
i iJ θ θ 0  one can get the hessian matrix 

evaluated at the MPV ˆ
iθ  of the parameters in the form given in Eq. (3.16).  
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Chapter 4. Hierarchical Bayesian Learning Framework for 

Multi-Level Modeling using Multi-level Data 

Original Paper:  

X. Jia, C. Papadimitriou, Hierarchical  Equation Chapter 4 Section 1Bayesian Learning 

Framework for Multi-Level Modeling using Multi-level Data, Mechanical Systems and 

Signal Processing. Submitted. (2021). https://doi.org/10.5281/zenodo.5702385 

ABSTRACT 

A hierarchical Bayesian learning framework is proposed to account for multi-level modeling 

in structural dynamics. In multi-level modeling the system is considered as a hierarchy of 

lower-level models, starting at the lowest material level, progressing to the component level, 

then the subsystem level, before ending up to the system level. Bayesian modeling and 

uncertainty quantification techniques based on measurements that rely on data collected only 

at the system level cover a quite limited number of component/subsystem operating 

conditions that are far from representing the full spectrum of system operating conditions. In 

addition, the large number of models and parameters involved from the lower to higher 

modeling levels of the system, constitutes this approach inappropriate for simultaneously and 

reliably quantifying the uncertainties at the different modeling levels. In this work, 

comprehensive hierarchical Bayesian learning tools are proposed to account for uncertainties 

through the multi-level modeling process. The uncertainty is embedded within the structural 

model parameters by introducing a probability model for these parameters that depend on 

hyperparameters. An important issue that has to be accounted for is that parameters of models 

at lower levels are shared at the subsystem and system levels. This necessitates a parameter 

inference process that takes into account data from different modeling levels. Accurate and 

insightful asymptotic approximations are developed, substantially reducing the computational 

effort required in the parameter uncertainty quantification procedure. The uncertainties 

inferred based on datasets available from the different levels of model hierarchy are 
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propagated through the different levels of the system to predict uncertainties and confidence 

levels of output quantities of interest. A simple dynamical system consisting of components 

and subsystems is employed to demonstrate the effectiveness of the proposed method. 

4.1 Introduction 

Computational finite element (FE) models are extensively employed to represent physical 

structures and perform analyses in structural dynamics [1,2]. FE model updating has been an 

essential step to assess and improve the accuracy of the computational models [3,4]. In the 

process of modeling a structure, uncertainties arise from variabilities in experimental tests, 

environmental and operational conditions [5], manufacturing variabilities [6], material 

properties variabilities, as well as model error [5,7]. However, physical structures consist of 

multiple components, similar or dissimilar, that are assembled to subsystems that comprise 

the overall system [8]. Such structures often exhibit complexities resulting in the uncertainty 

due to variability arising from the assembling process, manufacturing process as well as 

nonlinearities manifested at various modeling levels during operation under harsh 

environments [9,10].  

Several contributions have already been made for capturing such uncertainties and 

improving the accuracy of the computational models in multi-level structures. Statistical 

model calibration technique for a hierarchy system was proposed to improve the predictive 

capability of the computational models from the lowest level to the highest level [11]. Model 

parameters at a lower level was calibrated using a conventional Bayesian modeling approach 

from test data at the same level. Data from higher levels of model hierarchy had no effect on 

learning parameters involved at lower modeling level. An alternative Bayesian learning 

procedure was also used in [12], where data at the lowest level were used to construct prior 

probability distribution of the model parameters and then data from the next level of model 

hierarchy were used to update the model parameters. A hierarchical model updating strategy 

using uncorrelated modes was also developed for complex assembled structure to ensure a 

high accuracy of the updated FE model [13]. Uncertainties inferred at different levels were 

propagated to uncertainties to quantify the confidence in predictions at different levels [11] 

and at the system level [14]. Design of validation experiments for multi-level models was 

also proposed in [8]. The aforementioned developments in hierarchical modeling based on 

Bayesian calibration methods do not use experimental data from different levels of model 

hierarchy to simultaneously inform the parameters of models at all levels of hierarchy and 
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infer the variability of the parameter estimates even at the lowest level of model hierarchy. 

This is proposed to be addressed in this work using a hierarchical Bayesian modeling 

framework.    

The hierarchical Bayesian modeling (HBM) framework was recently proposed in various 

engineering fields to capture the uncertain variability [15–18]. Full sampling-based HBM 

framework is commonly used to calibrate the model parameters, quantify the uncertainties 

and predict their uncertainties to the system quantities of interest (QoI) using data obtained 

from the system level [19–23]. The up-to-date full-sampling HBM approach is also applied to 

a two-level masonry structural [24] as well as a red blood cell multi-level model to inform the 

parameters of models at all levels of model hierarchy [25]. Undoubtedly, the above-

mentioned approaches show a good performance on quantifying the uncertainties or 

improving the models for a multi-level structure. However, there is still room for 

improvement about the process of calibrating the models in a multi-level structure. For 

example, model error is neglected in a multi-level structure leading to the missing 

information of the discrepancy between the responses of physical structures and the outputs 

of computational models [11]. Additionally, the sampling procedure utilized during the 

process of updating the models makes the HBM approach inefficient and often provides no 

insight into the estimated uncertainties. For improving the efficiency and obtaining valuable 

insights of HBM, approaches based  on asymptotic approximations have been developed to 

handle the uncertainty quantification and propagation in structural dynamics problems [26–

29]. The existing HBM framework is conducted using information collected from the system 

level. However, the framework has great potential to be implemented to a multi-level 

modeling of the system using multi-level data for the purpose of model validation, 

uncertainty quantification and propagation.  

To this end, this paper extends the recently proposed HBM framework [29] to a hierarchy 

structure, aiming to take into account the diverse sources of the uncertainty through the 

hierarchy of models of the systems and propagate it through the computation models for 

improving the confidence in the response predictions. It is noted that, given the hierarchy of 

models for a structure, the information from a lower level of the structure is also inferred 

from the data at the higher levels. This guides us to build reliable models at all system levels 

that account in the modeling and parameter estimation process for the uncertain variability 

arising from component manufacturing and assembling process. This is achieved by 

assigning a probabilistic distribution for the model parameters, where the hyper parameters 

are inferred from datasets available at lower and higher levels of modeling. The estimation 
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process of the hyper parameters is conducted based on the available datasets, and the 

response QoI are predicted according to the uncertainties obtained from the parameter 

estimation process. Asymptotic approximations are introduced to the framework, providing 

insightful expressions and efficiently improving the computational cost of the proposed 

framework.  

This work is structured as follows. Section 4.2 describes the proposed hierarchical 

Bayesian modeling framework for multi-level models, including the formulations for 

quantifying the uncertainties and propagating the uncertainties through the computational 

models manifested in the system hierarchy. Section 4.3 demonstrates the effectiveness and 

accuracy of the proposed method using a carefully designed numerical case study. Section 

4.4 reports the conclusions of this study. 

4.2 Hierarchical Bayesian Modeling Framework for Multi-level Models 

The HBM framework developed in [29] is used as a tool to integrate the multiple 

experimental datasets and the hierarchy of models within a dynamical structure. The major 

difference between this work and the work in [29] is that, instead of using the available 

information from a full-scale system or a single component, the proposed strategy aims to 

take into account the diverse sources of the uncertainty through the multi-level structure to 

estimate model parameters and their uncertainties as well as propagate uncertainties through 

the computational models for the response predictions. The details for the multi-level models 

along with their uncertainties are introduced below.  

 

4.2.1 Multi-level models and data 

For the purpose of demonstrating the methodology and without loss of generality, consider a 

system hierarchy where the higher level includes two lower levels. Specifically, it is assumed 

that the system is assembled from two subsystems (subsystem SS1 and subsystem SS2) with 

the subsystem SS1 assembled from three components C1, C2 and C3, as shown in Fig. 4-1(a). 

Experimental data are available at the subsystem SS1 level and the component C1 and C2 

levels. There are no measurements available at the system level, the subsystem SS2 level and 

component C3 level. Parameterized models are introduced to represent the components C1, 

C2 and C3, with parameters to be identified using the available experimental data from 

components C1, C2 and subsystem SS1. Specifically, parameterized physics-based models 

1M , 2M  and 3M  are considered for each structural component C1, C2 and C3 with the 
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structural model parameters denoted by  1
θ ,  2

θ  and  3
θ , respectively. No experimental data 

sets are available for the subsystem SS2 so that the models associated with this subsystem 

and its possible components that is composed of are not updated using data. The 

parameterized model for subsystem SS1 level and the corresponding component levels are 

depicted in Fig. 4-1(b). Details for the available testing procedures, experimental data and the 

process for estimating the parameters of the parameterized models are given in the next 

subsections.  

 

 

(a) 

 

 

(b) 

Fig. 4-1 Graphical representation of (a) decomposition of a physical structure into 

components, subsystems and system and (b) parameterized models and datasets available 
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4.2.1.1 Test data at component level 

Multiple datasets are considered to be available for each one of the two components C1 and 

C2. For component C1, the available datasets are denoted by (1)

iD , where the superscript (1) 

represents the first component, and the subscript i  corresponds to the -thi  data set, 

11,2, ,i N , while 1N  is the number of data sets available for component C1. The datasets 

are obtained by testing the component C1 as an isolated component before it is assembled 

into the subsystem and eventually to the system. The model of the test configuration of the 

isolated component C1 includes the parameter set  1
θ . Two types of testing can be performed. 

In the first type, denoted as testing Type A, it is considered that a single structural component 

is available and multiple tests are carried out for this component. Due to model error, 

measurement error and variability in the experimental testing, the parameter estimates are 

expected to vary from dataset to dataset  [29,30]. The measured data collected in this way are 

used to quantify the uncertainty in the parameter set  1
θ  due to variability in the datasets. In 

the second type of testing, denoted by testing Type B, the component is considered to be a 

member of a population of components manufactured/assembled to be identical. However, 

differences from component to component in the population exist due to 

manufacturing/assembled variabilities. Each dataset (1)

iD  is referred to a test carried out at 

member i  of the population of available structural components C1. Tests over a subset of 1N  

components in the population are used to infer the values and the uncertainties of the model 

parameter set 
 1
θ  due to the variabilities in all components in the population (tested and non-

tested). The component C1 in this case is considered to be one of the members in the 

population. To account for the uncertainty due to variability in the datasets for a single 

component (testing Type A) or due to the manufacturing/assembled variability of selected 

component from the population (testing Type B), uncertainties are embedded in the model 

parameters by assigning a parameterized probability distribution  1

1( | )p θ ψ   with the 

hyperparameter set 1ψ  to be inferred from the available multiple datasets.  

A similar testing approach is followed for component C2 to infer the corresponding 

hyperparameters 2ψ  of the uncertainty, quantified by the prior PDF 
 2

2( | )p θ ψ , assigned to 

the model parameter set 
 2
θ , where the available datasets are denoted by (2)

jD , 21,2,j N . 

Similarly to components C1 and C2, component C3 can be a single structural component, 

or it can be a member of a population of identically manufactured/assembled components. 
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Uncertainties are embedded in the model parameters  3
θ  by assigning a prior probability 

distribution  3

3( | )p θ ψ  for the parameter set  3
θ . No datasets are available at the level of the 

component C3 to identify the parameter set  3
θ  and the hyperparameter set 3ψ . The 

parameter set  3
θ  and the hyperparameter set 3ψ  of the model of this component will be 

inferred using the multiple experimental datasets available at the subsystem SS1 level as 

described in the next subsection.  

 

4.2.1.2 Test data at sub-system level  

It is assumed that datasets (3)

kD , 31,2,k N , are available for subsystem SS1, while no 

datasets are available for subsystem SS2. The datasets are obtained by testing the subsystem 

SS1 as an isolated subsystem before it is assembled with subsystem SS2 to form the system. 

The model of the test configuration of the isolated subsystem SS1 includes the parameter set 

 1
θ ,  2

θ  and  3
θ . These datasets at the subsystem SS1 level provide information for 

inferring the parameters  1
θ ,  2

θ  and  3
θ  of the models of all three components associated 

with this subsystem. Noting that the parameter set  1
θ  of component C1 is shared at the 

component C1 and the subsystem SS1 levels, the data from the component C1 and subsystem 

SS1 levels are used to infer the values and its uncertainties of this parameter set. Similar is 

the case for the model parameter set  2
θ  shared at component level C2 and subsystem SS1 

level with measured data available from both levels. For the parameter set  3
θ  of the model 

3M  introduced at the component level C3, there are no measurements available at the 

component level. The measurements at the subsystem level are used to infer the parameter set 

 3
θ , jointly with the model parameter sets  1

θ  and  2
θ  of the other two components. Finally, 

there are no measurements available to infer the parameters of models introduced to represent 

the subsystem SS2 and its possible components that is comprised of. In this case the models 

at subsystem SS2 level can be considered known or prior information can be used to 

subjectively assign uncertainties in the parameters of the models involved.  

Similar to the component level, two types of testing can be performed at the subsystem 

level. In the Type A testing, a single subsystem SS1 is manufactured from the components 

C1, C2 and using a single component C3. Multiple tests are carried out for this specific 

subsystem, providing the datasets (3)

kD , 31,2,k N . Due to model and measurement errors 
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and variabilities in the experimental testing and/or environmental/operational conditions, the 

parameter estimates are expected to vary from dataset to dataset [29,30]. In the Type B 

testing, the subsystem SS1 is considered as a member of a population of subsystems 

manufactured to be identical by an assembling process that involves the assemblance of 

components C1, C2 and C3, where C3 is a member of a population of identically 

manufactured components. Due to manufacturing/assembled variabilities there are variations 

in the properties of the components C3 used from the population of components, resulting in 

variations of the subsystems SS1 that are assembled from the three components C1, C2 and 

C3.  Each dataset (3)

kD  is referred to a single test carried out at member k  of the population 

of available subsystems SS1. Tests over a subset of 3N  subsystems in the population are used 

to infer the values and the uncertainties of the model parameter sets  1
θ ,  2

θ  and  3
θ . The 

uncertainties in the parameter set  3
θ  are due to the variabilities in all members in the 

population of components C3 (tested and non-tested). The subsystem SS1 in this case is 

considered to be one of the members in the population of subsystems. To account for the 

uncertainty due to variability in the datasets for a single subsystem SS1 (testing Type A) or 

due to the manufacturing/assembled variability of selected subsystem SS1 from the 

population (testing Type B), uncertainties are embedded in the parameters of the model 

involved by assigning a parameterized prior probability distribution  

           1 2 3 1 2 3

1 2 3 1 2 3( | ) ( , , | , , ) ( | ) ( | ) ( | )p p p p p θψ θ θ θ ψ ψ ψ θ ψ θ ψ θ ψ   (4.1) 

with the hyperparameter set 1 2 3=[ , , ]ψ ψ ψ ψ , where independence is assumed for the model 

parameters of the three different components. The hyperparameters ψ  are then inferred from 

the available multiple datasets at the subsystem SS1 level and the two component C1 and C2 

levels.  

  

4.2.1.3 System level  

For the system level, it is assumed that there are no experimental data available. The 

uncertainties of the model parameters      1 2 3
[ , , ]θ θ θ θ  estimated based on the experimental 

data 31 2(1) (2) (3)

1 1 1{{ } ,{ } ,{ } }
NN N

i i j j k kD D D  D , are considered to predict the output quantities of 

interest (QoI) at the system level.  

Note that each individual dataset can consist of either response time histories for linear 

and nonlinear models of components and/or subsystems, or modal properties identified from 
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the response time histories for linear models of components or subsystems. For the ease of 

the further use, both types of datasets are denoted by the notation y . As an example, the i-th 

dataset in the component C1 is represented as (1) (1)=i iD y . Similar notations (2)

jy  and (3)

ky  are 

used for the datasets of component C2 and subsystem SS1, respectively. 

 

4.2.2 Bayesian learning of model parameters and hyperparameters 

The objective in this work is to fuse all available information in the multi-level modeling 

approach in order to quantify different sources of uncertainties and to propagate such 

uncertainties to predict output QoI.  

 

4.2.2.1 Prior hypothesis for model parameters  

To take into account in the modeling and parameter estimation process the uncertainties of 

model parameters due to experimental, environmental, operational and manufacturing 

variabilities, these uncertainties are embedded within the model by introducing a hierarchy in 

the model parameters. This is accomplished by postulating the probabilistic model in Eq. (4.1) 

for the parameters that depend on hyperparameters. Herein, a Gaussian prior PDF model is 

assigned for the model parameters, given as: 

1 1 2 2 3 3

(1) (2) (3)( | ) ( | , ) ( | , ) ( | , ) ( | , )p N N N N 
ψ ψ ψ ψ ψ ψ ψ ψ

θψ θ μ Σ θ μ Σ θ μ Σ θ μ Σ  (4.2) 

where 1 2 3=[ , , ]ψ ψ ψ ψ  denotes the hyperparameters of the model parameters, with 

[ , ]
i ii  ψ ψψ μ Σ , 1,2,3i  , involving the hyper mean and hyper covariance matrix of the 

normal distribution assigned to the prior distribution of the parameter set  i
θ . Realization of 

θ  varies across the datasets, where iθ  corresponds to the i-th dataset. Specifically, the hyper 

parameter 1ψ  corresponds to the model parameter  1
θ , denoted with green in Fig. 4-1(b). 

The parameter  1
θ  and hyperparameter 1ψ  are shared at the component C1 and subsystem 

SS1 levels so they are inferred from the datasets (1)

iD , 11,2, ,i N  and (3)

kD , 31,2, ,k N  

available at the component C1 and the subsystem SS1 levels.  Similar definition is described 

by hyperparameter 2ψ , denoted with blue in Fig. 4-1(b). The parameter 
 2
θ  and 

hyperparameter 2ψ  are shared at the component C2 and subsystem SS1 levels so they are 

inferred from the datasets (2)

jD , 21,2, ,j N  and (3)

kD , 31,2, ,k N  available at the 

component C2 and the subsystem SS1 levels.  The hyper parameter 3ψ , denoted with orange 
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in Fig. 4-1(b), is assigned for model parameter  3
θ . They are inferred only from the datasets 

(3)

kD , 31,2, ,k N  available at the subsystem SS1 level. Note that each element 

 ( 1,2,3)i i ψ  consists of the hyper mean 
iψ

μ  and the hyper covariance matrix 
iψ

Σ  to be 

identified using the multiple data sets collected from either the component levels or 

subsystem level or both of them. Formulations for estimating the parameters and predicting 

the responses are presented below. 

 

4.2.2.2  Parameter estimation 

Assume that the model outputs from either the components or subsystem levels are linked to 

their computational models corresponding to a particular value of the model parameters. The 

discrepancy between the model outputs and the measured data can be modeled based on the 

prediction error equation, given as follows:  

(1) (1) (1)

1 1

(2) (2) (2)

2 2

(3) (3)

3 3

Component C1:   ( ) , 1,2, ,

Component C2:   ( ) , 1,2, ,

Sub-system SS1:    ( ) , 1,2, ,

i i i

j j j

k k k

i N

j N

k N

  

  

  

y g θ ε

y g θ ε

y g θ ε

 (4.3) 

where 1( )g , 2 ( )g  and  3( )g  are the responses from components C1, C2 and subsystem SS1. 

Note that the model parameters kθ  contain the overall parameters (1) (2) (3)[ , , ]k k kθ θ θ  which is 

used for the predicted output through the subsystem level. Notations (1)

iε , (2)

jε  and (3)

kε  are 

respectively the prediction errors for the components C1, C2 and subsystem SS1, and they are 

modeled as a zero-mean Gaussian variables with different covariance matrices 1Σ , 2Σ  and 

3Σ . It is assumed herein that 2

1 1Σ I , 2

2 2Σ I  and 2

3 3Σ I , where 2

1 , 2

2  and 2

3  are 

defined as the prediction error variance to be estimated using the multiple datasets.  

Realization of  1

iθ , 11,2, ,i N , from the Gaussian distribution (1)( | , )
i i

N
ψ ψ

θ μ Σ  can 

vary across the different data set (1)

iD , 11,2, ,i N , available for component C1, where the 

realization  1

iθ  is considered to be an independent sample of the distribution 

(1)( | , )
i i

N
ψ ψ

θ μ Σ  that corresponds to the data set 
(1)

iD . Similar is the case for realization of 

 2

jθ , 21,2, ,j N  and kθ , 31,2, ,k N  from the distributions 
2 2

(2)( | , )N
ψ ψ

θ μ Σ  and 

3 3
( | , )N

ψ ψ
θ μ Σ  for component C1 and subsystem SS1, respectively, that can vary across the 

different data sets (2)

jD , 21,2, ,j N  and (3)

kD , 31,2, ,k N .  
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This constitutes a hierarchy of model parameters that has two classes of parameters. The 

first class of model parameters comprises the experiment-specific model and prediction error 

parameters  31 2(1) (2)

1 1 1{ } ,{ } ,{ }
NN N

i i j j k k   θ θ θ  and  2 2 2 2

1 2 3, ,  σ , while the second class 

model parameters comprises the hyper-parameters involved in 1 2 3=[ , , ]ψ ψ ψ ψ . The number 

of parameters in the first set increases linearly with the number of datasets making the 

parameter estimation problem challenging when the number of data sets increases.  

To integrate the available data sets D  and the model information, Bayesian inference is 

performed to identify the datasets-specific model parameters  , the hyper parameters ψ , as 

well as the prediction error parameters 
2

σ . Based on Bayes’ theorem, the posterior 

distribution of the overall parameters given the available datasets, 2( , , | )p ψ σ D , is 

proportional to the product of the likelihood function 2( | , , )p D ψ σ  and the joint prior 

distribution 2( , , )p ψ σ , given by: 

2 2 2( , , | )  ( | , , ) ( , , )p p pψ σ D D ψ σ ψ σ    (4.4) 

Due to the independence of the prediction error variance 
2

σ  and the parameters { , }ψ , the 

prior distribution 2( , , )p ψ σ  can be written as:  

2 2( , , ) ( ) ( ) ( )p p p pψ σ ψ ψ σ   (4.5) 

The first factor ( )p ψ  in the right-hand-side (RHS) of Eq. (4.5) depends on the prior 

assumption in Eq. (4.2).  It is reminded that the realization of the model parameter θ  is free 

to vary from data set to data set, with the realization iθ  corresponding to the data set iD  

considered to be an independent sample of its prior distribution ( )p θ ψ . Therefore, due to 

the fact that the model parameters from dataset to dataset in the components or subsystem 

levels are independent, the joint prior distribution takes the form: 

       

       

31 2

31 2

1 1 2 2

1 22 2

1 2

1 =1 1

1 22

1 =1 1

( , , ) ( ) ( )

( ) ( ) , , ,

NN N

i j k

i j k

NN N

i j k

i j k

p p p p p p

p p N N N

 

 





  

  ψ ψ ψ ψ ψ ψ

ψ σ ψ σ θ ψ θ ψ θ ψ

ψ σ θ μ Σ θ μ Σ θ μ Σ



 (4.6) 

where the hyper mean ψ
μ  and the hyper covariance matrix ψΣ  in the last factor of Eq. (4.6) 

contain respectively the elements 
1 2 3

[ , , ]ψ ψ ψμ μ μ  and the elements 
1 2 3

[ , , ]ψ ψ ψΣ Σ Σ .  

From the structure of the prediction error equations in Eq. (4.3), the likelihood function 

2( | , , )p D ψ σ  depends on the values of the parameter set   and it is independent of the 
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hyper parameters ψ . Thus 2( | , , )p D ψ σ  is determined by the overall data sets D , the 

model parameters   as well as the prediction error variance 
2

σ . Also, owing to the 

independence of different datasets and the independence of model and prediction error 

parameters over different datasets, the likelihood function 2( | , , )p D ψ σ  can be expressed as 

the product of the individual likelihood function for each dataset as follows 

   
31 2

1 22 (1) 2 (2) 2 (3) 2

1 2 3

1 1 1

( | , , ) ( | , ) ( | , ) ( | , )
NN N

i i j j k k

i j k

p p D p D p D  
  

  D ψ σ θ θ θ  (4.7) 

where the three factors in the RHS of Eq. (4.7) correspond to the likelihood function for 

component C1, C2 and subsystem SS1. The likelihood function corresponding to each dataset 

in the components or subsystem can be analytically constructed based on the prediction error 

equation (4.3),  given as:  

 

 

1
1(1) 2 (1) (1) 1 (1) (1)

2
1 1 1 1 1

1
2(2) 2 (2) (2) 1 (2) (2)

2
2 2 2 2 2

(3) 2

3

1
Component C1:  ( | , ) exp{ [ ( )] [ ( )]}

2

1
Component C2:  ( | , ) exp{ [ ( )] [ ( )]}

2

Sub-system SS1: ( | , )

T

i i i i i i

T

j j j j j j

k k

p D g g

p D g g

p D







 

 

   

   



θ Σ y θ Σ y θ

θ Σ y θ Σ y θ

θ Σ
1

(3) 1 (3)
2

3 3 3 3

1
exp{ [ ( )] [ ( )]}

2

T

k k k kg g
   y θ Σ y θ

 (4.8) 

Substituting (4.8) and (4.6) into (4.4) one derives the posterior distribution of all parameters 

which can be populated with samples using available sampling algorithms such as Gibbs 

sampling [15] or transitional Markov Chain Monte Carlo (TMCMC) [23,31,32]. However, 

the large number of parameters that may be involved in structural model parameter set   

results in computationally very expensive sampling procedures.  

 

4.2.2.3 Posterior distribution of hyperparameters using Asymptotic Approximations 

Two asymptotic approximations for the likelihood functions, developed in [29] and 

asymptotically valid for large number of data within a dataset, are employed herein to 

simplify the analysis and derive analytical expressions for the marginal posterior distribution 

of the hyperparameters ψ . These approximations leverage the use of Taylor expansion, and 

approximate each likelihood function involved in Eq. (4.7) to a simplified form of a Gaussian 

distribution by expanding the negative logarithm of the likelihood function for each dataset 

with respect to either the model and prediction error variance parameters (approximation 1, 

A-1 for short) or only the model parameters (approximation 2, A-2 for short) about their 

maximum likelihood estimate (MLE). Details are presented in [29].  By utilizing 
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approximation A-1, Eq. (4.7) can be rewritten as the product of several Gaussian distributions 

as follows:  

1

2
1,

2

2
2,

3

2
3,

2 (1) (1) (1) 2 2

1 1,

1

(2) (2) (2) 2 2

2 2,

1

2 2

3 3,

1

ˆ ˆ ˆˆ( | , , ) ( | , ) ( | , )

ˆ ˆ ˆˆ( | , ) ( | , )

ˆ ˆ ˆˆ( | , ) ( | , )

i i

j j

k k

N

i i i

i

N

j j j

j

N

k k k

k

p N N

N N

N N







 

 

 







 











θ

θ

θ

D ψ σ θ θ Σ

θ θ Σ

θ θ Σ



 (4.9) 

where the MLEs (1)ˆ
iθ , 

(2)ˆ
jθ , ˆ

kθ , 2

1,
ˆ

i , 2

2,
ˆ

j , and 2

3,
ˆ

k  are computed by minimizing the negative 

logarithm of the likelihood functions 
 1(1) 2

1,ln ( | , )i i ip D  θ , 
 2(2) 2

2,ln ( | , )j j jp D  θ  and 

(3) 2

3,ln ( | , )k k kp D  θ  with respect to the model parameters (1)

iθ , (2)

jθ , kθ  and the prediction 

error variance parameters 2

1 , 2

2  and 2

3 , and the covariance matrices (1)ˆ
iθ

Σ , (2)ˆ
jθ

Σ , ˆ
kθ

Σ  , 2
1,

ˆ
i

 , 

2
2,

ˆ
j

 , and 2
3,

ˆ
k

 , quantifying the parameter identification or estimation uncertainties, are the 

inverse of the hessian matrices of the negative logarithm of the likelihood functions evaluated 

at their corresponding MLEs. The parameter uncertainties (1)ˆ
iθ

Σ , (2)ˆ
jθ

Σ  and ˆ
kθ

Σ  are identified 

based on each dataset, and they are referred to as the identification uncertainty.  

Likewise, by utilizing approximation A-2 in [29], Eq. (4.7) takes the form:  

1

2

3

2 2 (1) (1) (1) 2

1 1

1

2 (2) (2) (2) 2

2 2

1

2 2

3 3

1

ˆ ˆ( | , , ) ( ) ( | , ( ))

ˆ ˆ( ) ( | , ( ))

ˆ ˆ( ) ( | , ( ))

i

j

k

N

i i

i

N

j j

j

N

k k

k

p T N

T N

T N

 

 

 







 





θ

θ

θ

D ψ σ θ θ Σ

θ θ Σ

θ θ Σ



  (4.10) 

For data consisted of modal properties at dN  degrees of freedoms (DOF) with mN  observed 

modes, the function 2( )rT   is defined in [29], where 1, 2,3r  . For time histories data 

measured at dN  degrees of freedoms (DOF) with tN  data points at each DOF, the function 

2( )rT  ,  is defined as: 

(r)

2 2 2
2

( )=( ) exp( )
2

t d rN N N N

t d r
r r r

r

N N N
T J 



 
 




θ

  (4.11) 
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where (r)N
θ

 is the number of model parameters corresponding to the r-th model. For example,  

(1)N
θ

 denotes the number of model parameters corresponding to component C1. The notation 

rJ  is the average of the measure of fit over all datasets in the r-th model, defined as 

,

1

1
=

rN

r r w

wr

J J
N 

 , where ,r wJ  is the measure of fit between the measurements (r)

wy  and the 

model predictions (r)

wg  for the w-th dataset in the r-th model, given as: 

( ) ( )

, , ,

1
= [ ( )] [ ( )]r T r

r w w r r w w r r w

t d

J
N N

 y g θ y g θ   (4.12) 

It is noted that, for the model of component levels, the model parameters r,wθ  equals to ( )r

wθ , 

while for the subsystem SS1 level, it corresponds to the overall parameters (1) (2) (3)=[ , , ]w w w wθ θ θ θ  

due to the fact the model of subsystem level consists of not only the model parameters (3)

wθ , 

but also the parameters (1)

wθ  and (2)

wθ . The covariance matrix ( ) 2ˆ ( )
w

r

rθ
Σ  in Eq. (4.10) for modal 

properties data is defined in [29], while for time histories data, it is defined as:  

2
( ) 2 1 ( )2 ˆˆ ( )= ( )

w

r rr
r J w

t dN N


 

θ
Σ H θ   (4.13) 

where ( )ˆ( )r

J wH θ  is the hessian matrix of measure of fit rJ  evaluated at the corresponding 

MLE ( )ˆ r

wθ . 

Once the joint prior distribution and the likelihood function are obtained, the posterior 

distribution can be readily computed. For approximation A-1, substituting the expressions of 

the joint prior distribution in Eq. (4.6) and the likelihood function in Eq. (4.9) into Eq. (4.4) 

yields: 

 

 

1

2
1 1 1,

2

2
2 2 2,

12 2 (1) (1) (1) 2 2

1 1,

1

2 (2) (2) (2) 2 2

2 2,

1

ˆ ˆ ˆˆ( , , | ) ( ) ( ) ( , ) ( | , ) ( | , )

ˆ ˆ ˆˆ                   ( , ) ( | , ) ( | , )

                   ( , ) (

i i

j j

N

i i i i

i

N

j j j j

j

k k

p p p N N N

N N N

N N





 

 





 







ψ ψ θ

ψ ψ θ

ψ ψ

ψ σ D ψ σ θ μ Σ θ θ Σ

θ μ Σ θ θ Σ

θ μ Σ θ



3

2
3,

2 2

3 3,

1

ˆ ˆ ˆˆ| , ) ( | , )
k k

N

k k

k

N


 


 θ
θ Σ

 (4.14) 

Note that the model parameter θ  in Eq. (4.14) consists of the model parameters for each 

dataset, and in effect it can be calibrated alongside the hyper parameter ψ  and prediction 

error variance parameter 
2

σ  using any Markov Chain Monte Carlo (MCMC) algorithm. 

However, the large number of parameters involved in Eq. (4.14) poses difficulties for the 
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calculation process of sampling methods. Also, for the purpose of getting analytical 

expressions of the posterior distributions of hyper parameters, a marginalization procedure is 

preferred. To this end, the marginal distribution of the hyper and prediction error variance 

parameters is first calculated. It is achieved by integrating the posterior distribution in Eq. 

(4.14) over the model parameter space  , resulting in 

 

 

 

 

 

 

1

2
1 1 1,

1

2

2
2 2 2,

2

1 12 2 (1) (1) (1) 2 2

1 1,

1

2 2(2) (2) (2) 2 2

2 2,

1

ˆ ˆ ˆˆ( , | ) ( ) ( ) ( , ) ( | , )d ( | , )
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i
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j

N

i i i i i

i

N

j j j j j

j

p p p N N N

N N N





 

 





 



 

 

ψ ψ θ

θ

ψ ψ θ

θ

ψ σ D ψ σ θ μ Σ θ θ Σ θ

θ μ Σ θ θ Σ θ

3

2
3,

2 2

3 3,

1

ˆ ˆ ˆˆ( , ) ( | , )d ( | , )
k k

k

N

k k k k k

k

N N N


 


 ψ ψ θ

θ

θ μ Σ θ θ Σ θ

(4.15) 

A large number of multidimensional integrals over the model parameters for each dataset is 

involved. Using the fact that the integrals of the product of two Gaussian distributions in Eq. 

(4.15) result in a Gaussian distribution [33], the marginal distribution 2( , | )p ψ σ D  can be 

readily derived in the analytical form:  

 
1

2
1 1 1,

2

2
2 2 2,

3

2
3,

12 2 (1) 2 2

1 1,

1

(2) (2) 2 2

2 2,

1

2 2

3 3,

1

ˆ ˆ ˆˆ( , | ) ( ) ( ) ( , + ) ( | , )

ˆ ˆ ˆˆ                   ( , + ) ( | , )

ˆ ˆ ˆˆ                   ( , + ) ( | , )

i i

j j

k k

N

i i

i

N

j j

j

N

k k

k

p p p N N

N N

N N







 

 

 







 









ψ ψθ

ψ ψθ

ψ ψθ

ψ σ D ψ σ μ θ Σ Σ

μ θ Σ Σ

μ θ Σ Σ

 (4.16) 

It is indicated that, expect from the presence of the identification uncertainty, the 

uncertainties due to variability and the model structure uncertainty are also included in Eq. 

(4.16), denoted as 
1ψ

Σ  and 2

1  for component C1, 
2ψ

Σ  and 2

2  for component C2, as well as 

ψΣ  and 2

3  for the subsystem SS1.  

Similarly, following a similar procedure and substituting the expressions of the joint prior 

distribution in Eq. (4.6) and the likelihood function in Eq. (4.10) into Eq. (4.4), one can 

finally derive  the marginal distribution 2( , | )p ψ σ D  based on the second approximation A-2 

as follows  
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 
1

1 1

2

2 2

3

12 2 2 (1) 2

1 1

1

2 (2) (2) 2

2 2

1

2 2

3 3

1

ˆ ˆ( , | ) ( ) ( ) ( ) ( , ( )+ )

ˆ ˆ                    ( ) ( , ( )+ )

ˆ ˆ                     ( ) ( , ( )+ )

i

j

k

N

i

i

N

j

j

N

k

k

p p p T N

T N

T N

 

 

 







 





ψ ψθ

ψ ψθ

ψ ψθ

ψ σ D ψ σ μ θ Σ Σ

μ θ Σ Σ

μ θ Σ Σ

  (4.17) 

According to Eq.  (4.16) or (4.17), the samples of the hyper and prediction error variance 

parameters can be generated though any Markov Chain Monte Carlo (MCMC) algorithm 

such as the transitional MCMC (TMCMC) [31,32] or the nested sampling algorithm [34]. It 

should be pointed out that the number of parameters involved in the marginal posterior 

distributions (4.16) or (4.17) is substantially less than the number of parameters involved in 

the original posterior distribution (4.6), which makes the sampling approach for the 

distributions (4.16) or (4.17) computationally very efficient.  

 

4.2.2.4 Most probable values (MPV) of hyperparameters 

The MPVs of the hyper parameters and prediction error variance parameters can be estimated 

by minimizing the negative logarithm of the joint distribution 2( , | )p ψ σ D  in Eqs. (4.16) and 

(4.17). The analytical solutions are derived by selecting the identification uncertainty to be 

the same for each dataset and equal to the average of the identification uncertainty over all 

datasets. Details are given in Appendix A. For approximation A-1, the results are given as: 

         
3 3 31 2

1 2 3

1 1 2 2 3

1 1 1 1 11 3 2 3 3

1 1 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ= ( + ); = ( + ); =
+ +

N N NN N

i k j k k

i k j k kN N N N N    

    ψ ψ ψμ θ θ μ θ θ μ θ   (4.18) 

1 2 3

(1) (1) (2) (2) (3) (3)ˆ ˆ ˆ; ;  v v v     ψ ψ ψΣ Σ Σ Σ Σ Σ Σ Σ Σ   (4.19) 

3 31 1 2 2

2 2 2

1 2 32 4 2 4 2 4
1 1 1 1 1 11, 1, 2, 2, 3, 3,

1 1 1 1 1 1
ˆ ˆ ˆ= / ; = / ; = /

ˆ ˆ ˆ ˆ ˆ ˆ

N NN N N N

i i j j k ki i j j k k

  
          

        (4.20) 

where 
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       
31

1 1 1 1

31

1 1 1 1(1)

1 11 3

(1) (1) (1)

1 11 3

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ= ( )( ) + ( )( ) ;      
+

1 ˆ ˆ+
i k

NN
T T

v i i k k

i k

NN

i k

N N

N N

 

 

 
    

 

 
  

  

 

 

ψ ψ ψ ψ

θ θ

Σ μ θ μ θ μ θ μ θ

Σ Σ Σ

  (4.21)              

       
32

2 2 2 2

32

2 2 2 2(2)

1 12 3

(2) (2) (2)

1 12 3

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ= ( )( ) + ( )( ) ;  
+

1 ˆ ˆ+
j k

NN
T T

v j j k k

j k

NN

j k

N N

N N

 

 

 
    

 

 
  

  

 

 

ψ ψ ψ ψ

θ θ

Σ μ θ μ θ μ θ μ θ

Σ Σ Σ

  (4.22) 

   
3 3

3 3

3 3(3) (3) (3)

1 13 3

1 1ˆ ˆ ˆˆ ˆ= ( )( ) ;     
k

N N
T

v k k

k kN N 

   ψ ψ θΣ μ θ μ θ Σ Σ   (4.23) 

For approximation A-2, the MPVs of all the parameters are given as follows: 

         
3 3 31 2

1 2 3

1 1 2 2 3

1 1 1 1 11 3 2 3 3

1 1 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ= ( + ); = ( + ); =
+ +

N N NN N

i k j k k

i k j k kN N N N N    

    ψ ψ ψμ θ θ μ θ θ μ θ   (4.24) 

1 2 3
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1 2 3
ˆ ˆ ˆˆ ˆ ˆ( ); ( ); ( )v v v       ψ ψ ψΣ Σ Σ Σ Σ Σ Σ Σ Σ   (4.25) 
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  (4.26) 

where  
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2 2 3

1 12 3
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  

 

 

 



 
  

  

 
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 

 
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θ θ

θ θ

θ

Σ Σ Σ
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  (4.27) 

and ,

1

1
=

rN

r r w

wr

J J
N 

 , 1, 2,3r  , is the average of measure of fit given in Eq. (4.12) for time 

history measurements. 

The analytical but approximate expressions derived for the MPV of the hyperparameters 

provide valuable insight into the values expected for the hyper means and hyper covariance 

matrices. For example, the parameter set  1
θ  is shared at the component C1 and the 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



117 

subsystem SS1 levels. Thus datasets from component C1 and subsystem SS1 provide 

information for estimating the hyper parameter set  
1 11 [ , ] ψ ψψ μ Σ . Specifically, the first of 

Eq.(4.18) or (4.24) indicates that the hyper mean 
1

ˆ
ψ

μ  of the parameter set  1
θ  corresponding 

to the component C1 is the average value of the most probable estimates  1ˆ
iθ , 11, ,i N  and 

 1ˆ
kθ , 31, ,k N , computed for the datasets available at the component C1 and the subsystem 

SS1. The most probable value 
1

ˆ
ψΣ  of the hyper covariance is built from the difference 

between two terms as indicated in the first equation of Eq. (4.19) or Eq. (4.25). The first term 

(1)

vΣ  given in the first of Eq. (4.21) is the covariance due to the variability of the most 

probable estimates  1ˆ
iθ , 11, ,i N  and  1ˆ

kθ , 31, ,k N  of the parameters set computed 

using the datasets from component C1 and subsystem SS1, while the second term (1)
Σ  in the 

second of Eq. (4.21) or Eq. (4.27) is the average of the identification uncertainty 
(1)ˆ

iθ
Σ , 

11, ,i N , and 
(1)ˆ

kθ
Σ , 31, ,k N , computed for each dataset available at the component C1 

and subsystem SS1. Similar is the interpretation for the MPV of hyper mean 
2

ˆ
ψ

μ  and hyper 

covariance 
2

ˆ
ψΣ  of the second component C2, computed only from the datasets available for 

component C2 and subsystem SS1. For the MPV of the hyper parameters 
3

ˆ
ψ

μ  and 

3

ˆ
ψΣ similar expressions are obtained which involve only the datasets at subsystem SS1 level.  

It is reminded that the identification uncertainty reduces as the number of data in a data set 

increases [29]. This is evident also in (4.13), where the parameter identification uncertainty 

for each data set is inversely proportional to the number t dN N  of data points in each dataset. 

Therefore, given a sufficient number of data points, the identification uncertainties become 

negligible and thus the MPVs of the hyper covariance equal to the uncertainty due to 

variability arising from the multiple datasets. This is consistent with a frequentist point of 

view where the hyper covariance is defined as a variation of the parameters computed from 

one dataset to another dataset.  

  

4.2.2.5 Posterior distribution of model parameters 

Once the samples of the hyper parameters and the prediction error variance parameters are 

available, the posterior predictive distribution of new model parameters can be calculated 

through the following procedure:  
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2

2 2( | ) = ( | ) ( , | )d dnew newp p p 
ψ σ

θ D θ ψ ψ σ D ψ σ  (4.28) 

where newθ  defines the new model parameters whose samples will be used to predict the 

output QoI. The multi-dimensional integral in Eq. (4.28) can be estimated based on the 

samples obtained from Eq. (4.16)  or Eq. (4.17), given as:  

 

1 1 2 2 3 3

( ) ( )

1 1

(1) ( ) ( ) (2) ( ) ( ) (3) ( ) ( )

1

1 1
( | ) ( | )= ( | , )

1
= ( | , ) ( | , ) ( | , )

N N
l l l

new new new

l l

N
l l l l l l

new new new

l

p p N
N N

N N N
N

 



  



ψ ψ

ψ ψ ψ ψ ψ ψ

θ D θ ψ θ μ Σ

θ μ Σ θ μ Σ θ μ Σ

 (4.29) 

where each sample  
 l

ψ  consists of the samples of the hyper means 
1

( )l

ψ
μ , 

2

( )l

ψ
μ  and 

3

( )l

ψ
μ , and 

also the samples of the hyper covariance matrices 
1

( )l

ψ
Σ , 

2

( )l

ψ
Σ  and 

3

( )l

ψ
Σ . N samples in total are 

used to estimate the probability density function ( | )newp θ D . Note also that the uncertainty in 

the model parameter set θ  can be described by sampling the distribution in Eq. (4.29).  

 

4.2.2.6 Response predictions 

Fig. 4-2 shows the framework for propagating the uncertainties to the response predictions. It 

is noted that both the uncertainties from the model parameters and the prediction error 

parameters are considered for the observed output QoI, while for the unobserved output QoI 

only the uncertainty from the model parameters can be considered because of the absence of 

information for the prediction error term. The probability distribution of the unobserved QoI 

Unob
y  can be estimated by evaluating the conditional distribution for a new output of the 

model given the observations, as follows:  

 

1

1
( | ) = ( | ) ( | )d  (y | )

u

new

N
iUnob Unob Unob

new new new new

iu

p p p p
N 

 
θ

y D y θ θ D θ θ  (4.30) 

where  i
newθ  is the i-th sample obtained from the probability distribution ( | )newp θ D  in Eq. 

(4.29), uN  is the number of samples. Similarly, for the observed QoI, by considering the 

overall uncertainties, the probability distribution ( | )obp y D  of the observed QoI ob
y  can be 

readily estimated in the form: 

   2,

1

1
( | ) ( | , )

oN
i iob ob

new

io

p p
N 

 y D y θ σ  (4.31) 
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where the number of the samples oN  can be either the same or different with the number of 

samples uN . 

 

 

Fig. 4-2 Uncertainty propagation for response predictions 

 

Some points for the prediction in a multi-level modeling approach using multi-level 

datasets are outlined as follows: 

 For the predictions at component levels C1 and C2, only the uncertainty of the model 

parameters  1
θ  or  2

θ  is considered for the unobserved QoI in component C1 or 

component C2. However, due to the fact that both parameters are shared in the 

subsystem level SSl, they are also inferred from the datasets available in the sub-

system level.  

 For the predictions at subsystem level, all three sets of model parameters are involved 

for predicting the observed and unobserved QoI, with the parameters informed from 

the datasets available at the components C1, C2 and subsystem SS1 levels. 

 For the system level, since there is no dataset available, the prediction error variance 

parameter may not be calibrated, and all the QoI in this level will only take into 

account the uncertainty from the model parameters.  The uncertainties in the 

parameters are informed from the dataset available at component C1, C2 and 

subsystem SS1 levels. 

 

4.2.2.7 Algorithms 

Algorithm 1 shows the steps for estimating the hyper and prediction error parameters using 

the proposed hierarchical Bayesian modeling framework, and Algorithm 2 summarizes the 
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process of propagating uncertainties for predicting response QoI. In Algorithm 1, it is 

reminded that a full sampling (FS) procedure [23,31,32] could be used as an alternative to 

obtain the samples of the hyper and prediction error parameters. This can be accomplished by 

drawing the samples of structural model and prediction error parameters from the likelihood 

function for each dataset available at components C1, C2 and subsystem SS1, and the 

available samples are subsequently utilized for computing the posterior distributions of the 

hyper parameters and prediction error parameters. 

Algorithm 1: Estimations of hyper and prediction error parameters 

   Step 1: Components and sub-system model runs are required 

For A-1:   

(1.1) Minimize the negative logarithm of the likelihood functions 
 1(1) 2

1( | , )i ip D θ , 
 2(2) 2

2( | , )j jp D θ  and (3) 2

3( | , )k kp D θ  given in Eq. (4.8) 

with respect to model and prediction error parameters to compute the MLEs  
(1)ˆ
iθ , 

(2)ˆ
jθ , ˆ

kθ , 2

1,
ˆ

i , 2

2,
ˆ

j  and 2

3,
ˆ

k  for  11,2, ,i N , 21,2, ,j N , 

31,2, ,k N  

(1.2) Evaluate the hessian matrix of the negative logarithm of the likelihood 

functions given in Eq. (4.8) and calculate the covariance matrices (1)ˆ
iθ

Σ , (2)ˆ
jθ

Σ  

and ˆ
kθ

Σ  as the inverse of the hessian matrices evaluated at the obtained 

MLEs for  11,2, ,i N , 21,2, ,j N , 31,2, ,k N  

For A-2:   

(1.1) Minimize the negative logarithm of the likelihood functions given in Eq. 

(4.8) to with respect to model parameters to compute the MLEs  (1)ˆ
iθ , 

(2)ˆ
jθ , 

ˆ
kθ , where 11,2, ,i N , 21,2, ,j N , 31,2, ,k N  

(1.2) Evaluate the hessian matrix ( )ˆ( )r

J wH θ  of the measure of fit ,

1

1
=

rN

r r w

wr

J J
N 

  

at the MLEs  (1)ˆ
iθ , 

(2)ˆ
jθ , ˆ

kθ , with ,r wJ  given in (4.12), and obtain ( ) 2ˆ ( )
w

r

rθ
Σ  

from (4.13) for 1, 2,3r     

   Step 2: No model runs are required 

For A-1:    

(1.3) Represent the posterior distribution of hyper and prediction error 

parameters 2( , | )p ψ σ D  defined in Eq. (4.16) using samples 
 l

ψ  and  2 l
σ ，  

generated from a sampling approach like TMCMC or nested sampling 

For A-2:   

(1.3) Represent the posterior distribution of hyper and prediction error 

parameters 
2( , | )p ψ σ D  defined in Eq. (4.17)  using samples 

 l
ψ  and  2 l

σ ，  

generated from a sampling approach like TMCMC or nested sampling  
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Algorithm 2: Uncertainty propagation for response predictions 

(2.1) Draw samples  q

newθ , 1, ,l N , from  
( | D)

q

newp θ  in Eq. (4.29) 

     For unobserved QoI:   

(2.2) Draw samples from the posterior distribution of  unobserved QoI using 

(4.30), and use the samples to estimate the statistical properties, such as the 

mean, standard deviation and quantiles   

     For observed QoI:   

(2.3) Draw smaples from the posterior distribution of  unobserved QoI using 

(4.31), and use the samples to estimate the statistical properties, such as the 

mean, standard deviation and quantiles   

 

4.3 Numerical Example 

This section illustrates the proposed method using a numerical case study. A six degree of 

freedom (DOF) spring-mass chain model of a mechanical system is presented in Section 

4.3.1, where the model with its decompositions in subsystems and components and the 

available observations are described in detail. The parameter estimation process is conducted 

based on the available datasets in the different levels of model hierarchy, and the response 

QoI are predicted according to the uncertainties obtained from the parameter estimation 

process. Results are discussed in detail in Section 4.3.2.  

 

4.3.1 Problem description 

As shown in Fig. 4-3, the six DOFs model is represented as the system in this study. The 

system is decomposed into one subsystem and three components. Component C1, denoted 

with green, consists of the first two links of the model, component C2, denoted with blue, 

contains the third and the fourth links, and component C3, denoted by orange, contains the 

fifth link. The sub-system SS1 in Fig. 4-3 consists of the components C1, C2 and C3. The 

system S is assembled from the subsystem SS1 and a second subsystem that consist of the 

sixth link with known mechanical properties. Parameterized computational models for the 

system, subsystem and components are introduced to make simulation-based predictions of 

structural responses. The information for the computational model and the parameterization is 

given in Table 4-1. As shown, the model is fully parameterized using three stiffness-related 

model parameters 
(1) (2) (3)=[ , , ]T  θ . Specifically, the first parameter 

(1)  is linked to the 

stiffness of the first two springs of the component C1. The parameter 
(1)  is shared between 
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component C1 and subsystem SS1. The second parameter 
(2)  is linked to the stiffness of the 

third and the fourth spring, shared between component C2 and subsystem SS1. The last 

parameter 
(3)  corresponds only to the stiffness of the fifth spring, shared between the 

component C3 and subsystem SS1. Each parameter is multiplied by the corresponding 

nominal stiffness values reported in Table 4-1, representing the model stiffness which is used 

for the process of updating the models. 

 

 

Fig. 4-3 (a) Six-DOF model of a mechanical system, (b) test configuration of subsystem SS1, 

(c,d) test configurations of the components C1 and C2, (e) component C3 

 

Table 4-1 Information for computational models 

Link 

i 

Mass 

im (Kg) 

Stiffness 

ik (N/m) 

Damping 

ratio i  

Existed 

Level 

Parameters 

for stiffness 

1 1 1800 0.02 C1/SS1/S (1)  

2 1 1800 0.02 C1/SS1/S (1)  

3 1 1500 0.02 C2/SS1/S (2)  

4 1 1500 0.02 C2/SS1/S (2)  

5 1 1800 0.02 SS1/S (3)  

6 1 1800 0.02 S - 
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Multiple datasets are recorded for the components C1 and C2 and the subsystem SS1. The 

configurations of the components C1 and C2 and the subsystem SS1 under which the 

experiments are performed are shown in Fig. 4-3(b-d). Different types of tests are carried out 

for components C1, C2 and subsystem SS1, reporting different sources of the uncertainty due 

to variability. In lieu of experimental data, datasets are simulated as follows.  

For component C1 a type A testing is performed based on the testing configuration in Fig. 

4-3c.  Responses are simulated under the condition where model error is present. For this, the 

first mass is perturbed by 5% from the nominal mass value reported in Table 4-1 and the 

resulting perturbed model of component C1 is used to produce the responses that will be used 

as datasets. 1=10N  datasets of acceleration time histories are simulated subjected to 10 

independent base excitations. The excitation herein is assumed as a Gaussian sequence with 

mean zero and standard deviation equal to one. Sensors for recording the data are assumed to 

locate at both the first and second link, and therefore 2 sets of acceleration time histories exist 

in a dataset. The sampling rate for each set is taken as 0.01s corresponding to a sampling 

frequency 100Hz for total of 5.2 seconds. The test-to-test variability in component C1 is 

attributed to the presence of model error. Different loading conditions subjected to the same 

model result in different responses, and will further lead to different identification values of 

the model parameters from dataset to dataset. 

For component C2 a Type A testing is also performed. Data sets consisted of modal 

properties are generated under the assumption of zero model error. 2 =20N  datasets in total 

are simulated based on a Gaussian distribution for 
(2)  with mean 1 and standard deviation 

0.05. Specifically, to generate a dataset jD , 21, ,j N , a realization (2)

j  is drawn from the 

distribution (2) 2( 1,0.05 )N   and the modal properties can then be produced through the 

computational model of component C2. Due to the fact that the realizations of 
(2)  from 

dataset to dataset are statistically independent, different datasets of the modal properties are 

thus statistically independent. For component C2, the test-to-test variability can be due to the 

alterations of environmental conditions and material properties. For example, temperature or 

humidity changes make the material properties different, and it can further affect the modal 

features. Such changes are represented as the variations of the model parameters, following a 

Gaussian distribution with a significant variance. 

For subsystem SS1 level a type B testing is performed. The subsystem is assembled from 

the fixed component C1, the fixed component C2, and a component C3 that is a member of a 
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population of identically manufactured components (links). The subsystems generated 

through this process form a population of identically assembled subsystems, although 

variability exists due to manufacturing errors caused by the manufacturing variabilities 

arising from the component C3. Since the subsystem SS1 contains the component C1, it is 

apparent that the model error also exists in any one of the assembled subsystems. 3 =20N  

subsystems are assembled through this process and then a single test is performed for 

representative members in the population of subsystems SS1. Acceleration datasets are 

collected from the test carried out for each subsystem. Datasets kD , 31, ,k N , 3=20N  , are 

generated based on samples of the model parameters (2) (3)[ , ]T   generated from a Gaussian 

distribution with mean [1 1]T  and a diagonal covariance matrix with the same diagonal 

elements 0.052. For each acceleration dataset, 3 sensors are placed at the first, third and fifth 

links, and thus 3 sets of the time histories data are included in a dataset. Each set consists of 

=520tN  data points in the increment of 0.01s, the same with the one in component C1. 

The process to assemble the system is to connect the subsystem SS1 (with the component 

C3 chosen from the population of identically manufactured components C2) with a fixed link 

(the 6th link in Figure 3) representing the second subsystem to form the final system S. The 

uncertainty at the system level arises due to the variability from the manufacturing process of 

components C3 used to assemble the subsystem SS1, due to the variability from the different 

environmental conditions under which the component C2 was tested, and due to the model 

error present in component C1. For system level,  no dataset is available.  

Results and discussions for identifying and propagating uncertainties are presented in the 

next subsection. Although the components, subsystems and systems are simple spring mass 

chain models, the model is representative of more involved models of industrial components 

that are assembled to form the subsystems and eventually the systems. The differences are in 

the complexity of the models for the components, the number of parameters per component 

and the higher computational cost that would be required to perform computations. A simple 

model was purposely chosen to represent the features for the proposed method and provide 

valuable insight into uncertainty quantification and propagation process.  

 

4.3.2 Results and discussions 

4.3.2.1 Parameter estimation  

The foregoing asymptotic approximation A-1 for the likelihood function in Eq. (4.9) is 

utilized to compute the MLE and the identification uncertainty in each dataset. It is noted that 
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the first two parameters 
(1)  and 

(2)  are included in both the components and subsystem 

levels. The MLEs of these two parameters (1)̂  and (2)̂  along with their identification 

uncertainties (1)ˆ


  and ( 2 )ˆ


  can be calculated according to each dataset from either the 

components or subsystem levels. Results are shown in Fig. 4-4. The blue dots and error bars 

indicate the MLEs and the identification uncertainties from the components level, while the 

red ones display the results from the subsystem SS1 level. It is seen that the MLEs of the first 

two parameters for a specific dataset computed from the components level differ from those 

from the subsystem SS1 level. Also, the MLEs of the model parameters from either the 

components or subsystem levels significantly fluctuate across the datasets. For the first 

parameter 
(1) , the identified values from the different datasets vary considerably due to the 

presence of model error. Similar variations are observed for the second and third parameter 

(2)  and 
(3)  which are due to the changes of environmental conditions and manufacturing 

process. It is also seen that the identification uncertainties keep rather constant and extremely 

small values for each parameter. It is reminded that for the first and third parameters, such 

small uncertainties are produced by the sufficient number of data points available for each 

dataset due to the fact that experimental data consist of response time histories. For the 

second parameter, the small uncertainties are attributed to the assumptions of zero model 

error in component C2. It should be observed that such small identification uncertainties 

cannot capture the variations of the MLEs, failing to represent the uncertainty of model 

parameters due to variability.  

For describing the uncertainty due to variability, the distributions of the hyper parameters 

can be computed based on the approximation A-1 in Eq. (4.15)  and the approximation A-2 in 

Eq. (4.17). For exploring the effect of the datasets at different levels of hierarchy on the 

posterior distribution of the hyper parameters,  results are presented for three cases where the 

datasets are considered from components only, subsystem only and both of them. Results 

based on the approximation A-1 are shown in Fig. 4-5. Observing the hyper mean values, it is 

noted that the hyper mean values inferred using datasets from C1 only and the subsystem SS1 

only are shifted from the nominal values, while the hyper mean value inferred using datasets 

from C2 is fairly close to the nominal values. This is due to the effect of the model error 

present in C1 and SS1, so that no model parameter values provide predictions that exactly 

match the measurements. However for the case of component C2, the perfect model assumed 

can yield the exact nominal values when given a sufficient large number of datasets.  
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Fig. 4-4 The MLEs and the identification uncertainties of model parameters computed based 

on the individual dataset from components and sub-system 

 

Components 

only: 

 

Subsystem 

only: 

Components 

and 

subsystem: 

Fig. 4-5 Posterior distributions of the hyper parameters considering the datasets from 

components only (top), sub-system only (middle) and both the components and sub-system 

(bottom) 
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It is also seen that the MPV of the hyper mean 
1  from both components and subsystem 

is around 1.047 which corresponds approximately to an average value of the MPV 1.041 and 

1.049 computed respectively from only the component C1 and only the subsystem SS1. For 

the hyper standard deviations (square root of the diagonal entry in hyper covariance), it is 

seen that a relatively larger value is computed (around 1.5%) for the first hyper parameter 

1  in C1 while a smaller one (0.5%) is obtained in SS1, and the hyper standard deviations 

from both the components and subsystem SS1 is around 1% by considering the overall 

information. Similar remarks can be concluded for other hyper parameters, which indicates 

that the overall hyper parameter values consider the information from both the components 

and subsystem levels. This scenario is consistent with the analytical expression for the hyper 

means in Eq. (4.18) and the hyper covariance in Eq. (4.19). Finally, it is also noted that the 

identification uncertainties shown in Fig. 4-4 are small compared to the parameter variability 

shown by the hyper standard deviations in Fig. 4-5.  

The posterior distribution of model error for C1, C2 and SS1 can be computed together 

with the posterior distribution of the hyper parameters according to the approximation A-1 in 

Eq. (4.15). Results for the posterior distribution of model error are depicted in Fig. 4-6. As 

seen, due to the fact that the model error is present in the first mass, both the component C1 

and subsystem SS1 exhibit a large model error. It is also seen that the model error in C1 is 

larger than that of SS1. This can be attributed to the fact that at the subsystem level the 

number of parameters involved are more than the number of the parameters involved at the 

component level, making the three-parameter model more flexible to provide a better fit to 

the datasets than the one-parameter model involved at the component level, thus reducing the 

model error that is quantified by the prediction error parameters. The model error for C2 is 

fairly close to zero implying excellent matches between the updated model and the 

measurements. This is due to the absence of the model error assigned in component C2. 
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Fig. 4-6 Posterior distributions of model error for C1, C2 and SS1 

 

For the purpose of comparing the accuracy of the proposed approximation A-1 and A-2, 

the results of the hyper parameters alongside the model error from A-1 and A-2 as well as 

results for these hyperparameters obtained from the analytical solutions derived in Subsection 

4.2.2.4 are compared to the full simulation (FS) approach [25] based on TMCMC algorithm 

[31,32] and reported in Table 4-2. The FS procedure provides an accurate solution for a large 

number of samples. It is seen that both the results from A-1 and A-2 are in good agreements 

with the FS method. This is due to the fact that the asymptotic approximation holds true when 

the identification uncertainty is small compared to the parameter variability. The likelihood 

of the model parameters can be asymptotically approximated as a Gaussian distribution when 

given a large number of data points in a dataset (for C1 and SS1) or given a perfect 

computational model (for C2). The lightly difference between A-2 and the FS shown in Table 

4-2 may arise from the number of insufficient samples used for FS. Most importantly, both 

the results from A-1 and A-2 exhibit acceptable accuracy. The A-2 exhibits higher accuracy 

than A-1 due to the fact that the asymptotic approximation for the prediction error parameters 

considered in A-1 is less accurate. Compared to the analytical results with A-1 and A-2, it is 

found that the analytical results are also slightly different from the results obtained by the A-1 

and A-2 approximations. This is due to the assumptions of  the identification uncertainty that 
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was used to simplify derivations and obtain the analytical expressions. For gaining more 

insightful expressions, the analytical solutions was derived by selecting the identification 

uncertainty to be the same for each dataset and equal to  the average of the identification 

uncertainty over all datasets. However, the identification uncertainty may not be exactly the 

same in each dataset. These assumptions have an effect on the accuracy of the analytical 

expressions. The analytical solutions do provide a better understanding of the estimates of the 

hyper parameters and the model error parameters. However, from the results in Table 4-2 

they also provide very good estimates of the hyperparameter and model error parameter 

values.  

The computational gain of using the approximations A-1 and A-2 compared with FS is 

also investigated and reported in Table 4-3.  Herein the sample procedure employs the 

parallel version of the TMCMC algorithm [32] so that the parallel tools can be used during 

the computation. For guaranteeing the accuracy of FS, the number of the samples is chosen to 

be 10000. All the calculations are made in a 32-core computer. It is clear that the 

computational effort of A-1 and A-2 are much faster than FS, although the parallel tools are 

used for the FS method. Specifically, the running time for A-1 and A-2 are relatively close 

and less than 1.5 minutes. However, it takes around 38.3 minutes to get the same results by 

using FS. As a consequence, the proposed approximations A-1 and A-2 not only guarantee 

good results, but more importantly they can significantly improve the computational 

efficiency, providing faster computational tools for quantifying the uncertainties in a multi-

level modeling approach.  

Table 4-2 Estimates of the means of hyper parameters and model error 

Parameters 
1

ˆ
  

2
ˆ
  

3
ˆ
  

1
ˆ
  

2
ˆ
  

3
ˆ
  

1̂  2̂  3̂  

A-1 1.0476 0.9846 0.9930 0.0101 0.0471 0.0490 0.1610 1.9×10-7 0.0923 

A-2 1.0475 0.9828 0.9933 0.0100 0.0460 0.0477 0.1714 2.3×10-7 0.0997 

Analytical A-1 1.0476 0.9851 0.9922 0.0099 0.0468 0.0491 0.1621 1.9×10-7 0.0917 

Analytical A-2 1.0476 0.9851 0.9922 0.0098 0.0446 0.0453 0.1737 2×10-7 0.0998 

FS 1.0476 0.9861 0.9922 0.0104 0.0460 0.0482 0.1703 2.3×10-7 0.0986 

 

Table 4-3 Computational effort of A-1, A-2 and FS methods 

 Computational cost (s) 

A-1 80 

A-2 89 

FS 2301 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



130 

 

Given the hyperparameter uncertainties in Fig. 4-5, the posterior distribution of each 

model parameter is obtained under the same cases with Fig. 4-5 where the datasets are 

considered from components only, subsystem only and both of them. Results are shown in 

Fig. 4-7. It is seen that the means of the parameter 
(1)  and 

(2)  computed by considering the 

overall information is a kind of average of the values obtained using datasets from 

components only and subsystem only. It is also seen that the uncertainty of parameter 
(1)  

using datasets available at component C1 only is larger than that using both the datasets 

available at component C1 and subsystem SS1, while the opposite case occurs for the 

uncertainty of the parameter 
(2) . This is attributed to the effect that datasets from the 

subsystem level has on the estimates of these parameters. As shown in Fig. 4-5, a small 

standard deviation is computed for parameter 
(1)  using the subsystem level datasets, while a 

larger one is obtained for parameter 
(2)  using datasets from the subsystem level. For the 

third parameter 
(3) , since there is no dataset available for component C3, the results are 

expected to be exactly the same using the datasets available at subsystem only and at both 

components and subsystem.  

 

 

Fig. 4-7 Posterior distribution of model parameters considering the datasets from components 

only, sub-systemonly and both the components and sub-system 

 

The marginal and joint posterior distributions of the model parameters, computed 

according to Eq. (4.29), are shown in Fig. 4-8. Such posterior distributions are calculated 

based on all the datasets from all levels of hierarchy, and thus the model parameters involve 

all the information from the components and subsystem levels. It is apparent that large 

uncertainties are obtained for the model parameters which are irreducible as the number of 

datasets at all levels of hierarchy increases. In contrast, the identification uncertainties 
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obtained from each dataset in Fig. 4-4 yield unreasonable thin uncertainty bounds for the 

model parameters. Most importantly, the irreducible uncertainties can be propagated to the 

un-observed QoI, which may provide a realistic uncertainty bound for the response 

predictions. Results and discussions for predicting the responses through the system level are 

conducted in the next subsection. 

 

 
Fig. 4-8 Posterior distributions of model parameters 

 

4.3.2.2 Response predictions through the computational model at system level 

The parameter uncertainties are next propagated through the hierarchy of computational 

models for computing the response predictions at the system level. The acceleration input 

with 5.2s and 100Hz sampling frequency shown in Fig. 4-9 is applied to the base of the 

system model in Fig. 4-3.  For exploring the effect of datasets from the different levels of 

hierarchy on the uncertainty in the response predictions, results for the response predictions 

considering datasets from components/sub-system only are compared with the ones 

considering the datasets from both the components and sub-system. Fig. 4-10 shows the 

predicted results of displacement of the second and fourth DOFs by propagating the 

uncertainties through the system model. The light red shaded area shows the 95% uncertainty 

bounds (UB) of displacements considering the uncertainty of model parameter 
(1)  inferred 

from the datasets of C1 only, and the uncertainties of 
(2)  and 

(3)  inferred from the overall 
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datasets of components and subsystem, while the light blue shaded area displays the 95% UB 

of displacements considering the uncertainties of model parameters θ  inferred from all 

datasets available from the components and subsystem. The cyan and blue solid lines show 

the mean predictions corresponding to the light red shaded area and light blue shaded area, 

respectively, and the red line shows the actual measurements generated from the exact system 

model subjected to the base input in Fig. 4-9. It is observed that a slightly difference can be 

found for the mean predictions between the case where the model parameter 
(1)  is inferred 

from the dataset at component C1 level only and the case where the model parameter 
(1)  is 

inferred from the datasets available from both component C1 and subsystem SS1 levels. This 

is due to the fact that the hyper mean estimated from component C1 level is slightly different 

with the one identified from both component C1 and subsystem SS1 levels, as seen in the 

first column of Fig. 4-5. Regarding the uncertainty bounds of the displacements, it is 

observed that the 95% UB of displacement of the 2nd DOF calculated for the case where 
(1)  

is inferred from component C1 level datasets is somewhat larger than that computed for the 

case where 
(1)  is inferred from both component C1 and subsystem SS1 level datasets. This 

is reasonable as the hyper standard deviation of the first model parameter computed from 

component C1 only is larger than the one estimated from both component C1 and subsystem 

SS1 (see Fig. 4-5). This scenario reveals that the uncertainty in response predictions depends 

on the datasets used at the different levels of modeling hierarchy to infer the parameters of 

the models involved. Herein, the uncertainties of the model parameter 
(1) , estimated based 

on a comprehensive effect considering both the information from component C1 and 

subsystem SS1, provides different uncertainty bounds than the ones provided by the 

uncertainty in the model parameter 
(1)  inferred by neglecting the data at the subsystem level. 

The same finding is revealed for the displacement of the fourth DOF.  

 

 
Fig. 4-9 Base input 
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Fig. 4-10 Predictions of displacement of (a) the second and (b) the fourth DOFs by 

considering the uncertainty of parameter 
(1)  inferred from C1 only and also inferred from all 

information 

 

Results for the predictions of displacement of the 2nd and 4th DOFs are also conducted by 

considering the uncertainty of parameter 
(2)  inferred from component C2 level datasets only, 

as shown in Fig. 4-11. It is found that the mean predictions of displacements considering the 

uncertainty of parameter 
(2)  inferred from component C2 datasets only are different from 

the ones inferred from the datasets available from all levels. Again, this is attributed to the 

difference of the identified values of the model parameters between component C2 level 

datasets only and both component C2 and subsystem SS1 level datasets (see Fig. 4-5). For the 

UB of displacements, different scenario is found compared to the cases in Fig. 4-10. It is 

obvious that the 95% UB of displacements considering only the uncertainties of model 

parameters from component C2 are much smaller than the uncertainty bounds computed 

based on the uncertainties from the overall information, revealing that the information of the 

model parameters is also taken from the subsystem SS1. This finding is crucial for a multi-

level modeling approach, especially when the uncertainties of the model parameters 

identified from the components level is insignificant. Besides, due to the large variability 
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obtained from component C2 and subsystem SS1 levels, the actual displacement generated 

based on a new dataset through system model falls within the 95% UB of predicted 

displacement.  

Cases are also investigated for the UB of the modal properties. Fig. 4-12 and Fig. 4-13 

show the predictions of modal frequencies and mode shapes under the same conditions with 

Fig. 4-11. For the ease of comparison, the modal frequencies are normalized by the nominal 

values of the modal frequencies. It is seen that the uncertainty bounds of the predictions, 

obtained considering only the model parameter uncertainties inferred from component C2 

datasets, contain the real measurement. This is due to the fact that the parameter variability in 

component C2 is significant compared with the zero model error assumed in component C2. 

When the uncertainties of model parameters estimated from both component C2 and 

subsystem SS1 are considered, larger uncertainty bounds of modal frequencies are observed 

in Fig. 4-12(b), indicating that datasets from different levels may significant affect prediction 

uncertainties. The results also show the measured modal properties corresponding to a new 

dataset. It is clear that the new measurement is inside of the 95% UB of the predictions. For 

the predictions of mode shapes, similar results are obtained although the uncertainty seems to 

be smaller, especially for the lowest four modes, than the uncertainty observed for modal 

frequencies. This could be due to the insensitivity of the lowest four modeshapes to the model 

parameters.  
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Fig. 4-11 Predictions of displacement of (a) the second and (b) the fourth DOFs by 

considering the uncertainty of parameter 
(2)  inferred from C2 only and inferred from all 

information 

 

 

(a) (b) 

Fig. 4-12 Prediction of the ratio of modal frequencies to their nominal values obtained by 

propagating the uncertainty of the model parameter 
(2)  (a) inferred from C2 level datasets 

only (b) inferred from all available datasets  
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(a) 

 

(b) 

Fig. 4-13 Prediction of the mode shapes by propagating the uncertainty of the model 

parameter 
(2)  (a) inferred from C2 level datasets only, and (b) inferred from all available 

datasets 

 

Fig. 4-14 depicts the predicted acceleration of the fifth DOF by propagating different types 

of uncertainties through the system model. The light red shaded area shows the 95% UB of 

predictions considering the parameter uncertainties inferred from subsystem SS1 level 

datasets only, while the blue one shows the 95% UB considering the parameter uncertainties 

inferred from all available datasets. The model error is also considered for the predicted 5th 

DOF acceleration, as shown in the green shaded area in Fig. 4-14(b).  It is reminded that in 

Fig. 4-5, the hyper standard deviation 
1  from subsystem SS1 datasets only is smaller than 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



137 

that from both subsystem SS1 and component C1 datasets, while the opposite case is 

observed for hyper standard deviation 
2 . Interestingly, the 95% UB of acceleration 

considering the uncertainties of model parameters from subsystem SS1 only is wider than 

that from both subsystem SS1 and components. This can be due to the fact that the hyper 

standard deviation 
2  is larger than the hyper standard deviation 

1 , and the former one 

contributes more on the uncertainty bounds of the predictions. When the model error is 

considered for the prediction affect the UB from 0 to 1.5 sec while the UB for higher that 1.5 

sec remain unaffected, indicating that in this case that a large part of the uncertainty is 

captured by the model parameters.  

The parameter uncertainties computed from the overall information are also used to 

predict the UB of displacement and acceleration of the 6th DOF which is at the system level 

and not at the levels of the tested components or subsystem. Actual measurements are also 

generated from the perturbed model. Results shown in Fig. 4-15 depict the 95% UB of the 

predictions along with the mean predictions and measurements. It is expected that the 

measurements are far away from the mean predictions due to the presence of model error 

assumed in the first mass. However, wide uncertainty bounds are obtained for both the 

displacement and acceleration. The measurements over almost the whole duration fall within 

the 95% UB of the predictions, which demonstrates the validity and effectiveness of the 

proposed approach. 
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Fig. 4-14 Predictions of acceleration of the fifth DOF by propagating the uncertainties of (a) 

model parameters inferred from SS only and inferred from all information and (b) model 

parameters and prediction error 

 

Fig. 4-15 Displacement and acceleration of the sixth DOF by propagating the parameter 

uncertainties through the system model 
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4.4 Concluding Remarks 

A systematic hierarchical Bayesian learning framework is developed to account for model 

hierarchy in structural dynamics utilizing multiple datasets obtained from different levels of 

the hierarchy. The framework can incorporate the uncertainty in the model parameters 

manifested in the different levels of model hierarchy by assigning hyper distributions for 

model parameters and inferring the hyperparameters using datasets collected from testing at 

the different levels of model hierarchy. The proposed approach captures the uncertainty in the 

model parameters due to variabilities in experimental data, environmental conditions, 

material properties, manufacturing process, assembling process as well as different 

mechanisms activated under different loading conditions. Asymptotic approximations 

developed in [29] are integrated within the framework, considerably simplifying the 

computational process of estimating the uncertainties in the hyper parameters and model 

prediction error parameters. The accuracy of the approximations is guaranteed for sufficiently 

large number of data within a dataset. Analytical expressions are derived for the most 

probable values of the hyper parameters and model error parameters, providing useful insight 

on the effect of datasets from the different levels of model hierarchy on the estimates of the 

model hyper parameters. Ultimately, the uncertainties are propagated for predicting 

confidence levels for output QoI by considering the overall information provided from the 

datasets available at the different levels of model hierarchy.  

The effectiveness of the proposed framework is demonstrated by applying it to a simple 

system that includes two lower levels of hierarchy, with datasets available at the component 

level for two out of the three components considered and also at the subsystem level. 

Selective results are presented to demonstrate various issues related to the dependence of the 

uncertainties in the parameters and the predictions obtained by propagating the uncertainties 

through the model hierarchy on the availability of datasets at different levels of model 

hierarchy, the effect of the level of model error and level of manufacturing variability. The 

accuracy of the asymptotic approximations and the analytical expressions for estimating the 

MPV of the hyperparameters were also investigated by comparing results with the ones 

obtained from the full sampling approach. Good accuracy is observed which makes the 

asymptotic approximations suitable to address the computational burden that is involved in 

uncertainty estimation and propagation problems. Specifically, for the example application 

presented, the computational effort of the proposed approach is significantly less, by one to 

two order of magnitude, than the computation effort required from full sampling approaches. 
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Predictions of the (un)observed QoI are conducted by considering different cases of 

uncertainty modeling in the model hierarchy.  

The proposed method properly accounts for the uncertainties by considering the 

information contained in all datasets available from the different levels of hierarchy, 

providing a realistic tool for calibrating the parameters manifested at different levels of model 

hierarchy, and propagating the data-informed uncertainties through the model hierarchy to 

compute output QoI at the system level, thus improving confidence in response predictions. 

In this work, the formulation is presented using a specific structure of model hierarchy for the 

system assembled from two subsystems and one of the subsystems is assembled by three 

components. Datasets are available at component level for the two out of the three 

components and also at the subsystem level for one subsystem. General structures of model 

and data hierarchies were not treated. Moreover, the 6-DOF spring-mass chain model used to 

demonstrate the framework was selected due to its simplicity, with the procedure be 

representative of more complex models. The application of the framework in more complex 

computational models is only expected to substantially increase the computational effort due 

to the presence of more parameters per component level and the time-consuming operations 

for performing model simulations at various levels of model hierarchy. It is the subject of 

future work to generalize the proposed approach to account for complex computational 

models and data dependencies. 

 

Appendix A. Calculations of the MPVs of hyper parameters and prediction error 

variance parameters for approximations A-1 and A-2 

The MPVs of hyper parameters and prediction error variance parameters can be obtained by 

minimizing the negative logarithm of the joint distributions 2( , | )p ψ σ D  in Eqs. (4.16) for 

approximation A-1 and (4.17) for approximation A-2, given by (within a constant):  
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For approximation A-1, the first derivatives of the objective function A-1L  with respect to the 

parameters 
1ψ

μ  and 
1ψ

Σ  depend on the terms of 
1ψ

μ , ψ
μ  and 

1ψ
Σ , ψΣ , respectively, given by: 
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It has been shown in [28,29] that the first terms in Eqs. (A.3) and (A.4) simplify to  

1
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while the second term in Eq. (A.3) can be readily solved by using the chain rules [35], 

resulting in the form: 
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where the size of the identity matrix I  and zero matrix 0 depend on the size of vector ψ
μ  and 

the size of entries matrix in ψ
μ , and (1)ˆ

kθ  and 
(1)ˆ

kθ
Σ  are the entries of vector ˆ

kθ  and matrix ˆ
kθ

Σ . 

The second term of Eq. (A.4) can be also solved using the chain rules, given as:  
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Therefore, Eqs. (A.3) and (A.4) can be derived in the form  

31

1 1 1 1

1

(1) -1 (1) (1) -1 (1)A-1

1 1

ˆ ˆˆ ˆ= ( ) ( )+ ( ) ( )
i k

NN

i k

i k

L

 


   


 ψ θ ψ ψ θ ψ

ψ

Σ Σ μ θ Σ Σ μ θ
μ

  (A.9) 

1 1

1 1 1 1 1

1

3 3

1 1 1 1 1

(1) -1 (1) -1 (1) (1) (1) -1A-1

1 1

(1) -1 (1) -1 (1) (1) (1) -1

1 1

1 1 ˆ ˆˆ ˆ ˆ= ( ) ( ) ( )( ) ( )
2 2

1 1 ˆ ˆˆ ˆ ˆ+ ( ) ( ) ( )( ) ( )
2 2

i i i

k k k

N N
T

i i

i i

N N
T

k k

k k

L

 

 


     



     

 

 

ψ θ ψ θ ψ ψ ψ θ

ψ

ψ θ ψ θ ψ ψ ψ θ

Σ Σ Σ Σ μ θ μ θ Σ Σ
Σ

Σ Σ Σ Σ μ θ μ θ Σ Σ

  (A.10) 

For getting more insightful expressions, the identification uncertainties 
(1)ˆ

iθ
Σ  and 

(1)ˆ
kθ

Σ  are 

assumed to be equal to average uncertainty for all datasets from component C1 and 

subsystem SS1, given by: 
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Letting 

1

A-1L

 ψμ
 and 

1

A-1L

 ψΣ
 be equal to zero, one can get the MPVs of 

1ψ
μ  and 

1ψ
Σ  in the form 

given by the first of Eq. (4.18) and first of Eq. (4.19). 

Following the same procedure for the calculations of the MPVs of 
1ψ

μ  and 
1ψ

Σ , one can 

also get the MPVs of other hyper parameters to be given by the Eqs. (4.18) and (4.19). 

For the first derivatives of the objective function A-1L  with respect to the prediction error 

parameters, the product of multiple normal distribution of scalar variable 2

r , 1, 2,3r  , can 
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be calculated firstly. As an example, the product 
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normal distribution  with mean given by [36]: 
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Similar results can be found for other two prediction error parameters, given as: 
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The formulas (4.24) to (4.27) for the MPVs of all parameters for the approximation A-2 

are obtained in a similar manner by utilizing the chain rule and existing  solutions of the 

MPVs of hyper and prediction error parameters for a full-scale system [29].  
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Chapter 5. Data Features-based Bayesian Learning for Time-

domain Model Updating and Robust Predictions in Structural 

Dynamics  

ABSTRACT 

Bayesian inference has been demonstrated as a rigorous tool for updating models and 

predicting responses in structural dynamics. Most often, the likelihood function within the 

Bayesian framework is formulated based on a point-to-point probabilistic description of the 

discrepancy between the measurements and model predictions. This description results in an 

underestimation of uncertainties due to the inherent reduction of the parameter uncertainty as 

the number of data points increases. In this paper, the problem of estimating the uncertainty 

of parameters is re-visited using time-domain responses. Specifically, spatially and 

temporally uncorrelated/correlated prediction models are developed to re-formulate the 

likelihood function based on data features between the measurements and model predictions. 

Relation functions between the proposed probabilistic models and the likelihood-free 

approximate Bayesian computation (ABC) strategy are investigated, analytically 

demonstrating that the proposed data features models can offer reasonable and consistent 

uncertainties for the model parameters. A shear building model is employed to validate the 

effectiveness of the proposed approach. Results indicate that the proposed models provide 

reasonable parameter uncertainties as well as realistic uncertainty bounds of output quantities 

of interest (QoI) which is independent of the sampling rate used for a long time span response, 

in contrast to the classical Bayesian formulation which often severely underestimates the 

parameter uncertainties and provides thin and unrealistic uncertainty bounds of response 

predictions.     
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5.1 Introduction 

Bayesian model updating has gained more interest because of its effectiveness in structural 

dynamical inverse problems [1–8]. In Bayesian model updating, the prior probability density 

function (PDF) of model parameters is updated to the posterior PDF by accounting for the 

information obtained from the measurements. Using probability models for the prediction 

errors, often formulated as the discrepancy between model predictions and the measurements, 

the likelihood function is developed [9]. Asymptotic approach [10] and sampling techniques 

[11] have been developed to solve the parameter inference problem. In particular, sampling 

methods include versions of Markov Chain Monte Carlo (MCMC), e.g. adaptive MCMC [12], 

sequential Monte Carlo Sampler [13] as well as Transitional MCMC [14,15]. For likelihood-

free parameter inference, the approximate Bayesian computation (ABC) has been developed 

[16–18]. Among the algorithms proposed to solve the ABC, the subset simulation [17,19] is 

shown to be computational effective alternative.  

Bayesian model updating in structural dynamics using response time histories 

measurements such as accelerations, displacements or strains is often formulated by 

introducing point-to-point probabilistic descriptions of the discrepancy between the 

measurements and model predictions [1,20,21]. Spatially and temporally uncorrelated 

prediction error models used to quantify these discrepancies, result in very peaked posterior 

probability distributions for the model parameters due to the large number of data points 

available from high sampling rates. Spatially and temporally correlated prediction error 

models are more reasonable for quantifying uncertainties [22,23]. However, the uncertainty 

depends on the correlation structure assumed which is often unknown and needs to be 

selected from a family of user-introduced correlation structures that might not be 

representative for the application. In general, the uncertainty quantified by the posterior 

probability distribution depends highly on the prediction error models and the correlation 

structure introduced between time instances as well as between measurements at different 

locations. 

This paper revisits the problem of Bayesian learning given response time history 

measurements. It is expected that for sufficiently small sampling rate, the information 

contained in the response time histories is independent of the sampling rate used to represent 

the time histories. Conventional techniques fail to quantify such independence and also give 

unrealistically small uncertainties due to the large number of data points used to represent the 

time histories. To properly quantify such uncertainties, new formulations for likelihood-
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informed Bayesian inference based on probability models introduced for the features between 

the measured data and model predictions are developed. Specifically, a probability model is 

assigned to the square of the discrepancy of the response time history between the 

measurement and the model prediction. Different probability models are investigated, such as 

truncated normal model and exponential distribution model. It is demonstrated that 

reasonable uncertainties are obtained for the model parameters that are independent of the 

sampling rate used to represent the response time histories. A relation between likelihood-

informed and likelihood-free Bayesian computations is also established, demonstrating that 

both formulations yield reasonable and consistent uncertainties for the model parameters. A 

correlation prediction error model is also established, which can ensure the robustness of the 

correlation structural system.  

The rest of this paper is organized as follows. Section 5.2 reviews the conventional 

Bayesian parameter estimation techniques. In Section 5.3, new likelihood-informed 

formulations for Bayesian model updating are proposed and compared with ABC formulation, 

a correlated prediction error model is also developed in this section. The effectiveness of the 

proposed method is demonstrated using a shear building model in Section 5.4. Section 5.5 

reports the conclusions of this study.  

5.2 Classical Formulation for Bayesian Model Updating 

Consider a parameterized class of structure models  ;Mg θ , where M  is the model, θ  is 

the set of model parameters which can be estimated using measurements D . 

Let  0

0
ˆ ( ) , 1,2, , ; 1,2, ,

N

jD y k t R j N k N      be the measured response time histories 

data from the structure, where 0N  is the number of observed degrees of freedom (DOF) of 

the models, N  is the number of the sampled data using a sampling rate t , j and k denote the 

j-th DOF and time index at time k t , respectively. 

In Bayesian parameter estimation, the probability of unknown parameter sets θ  in the 

model class M  can be first estimated from the prior probability density functions (PDF), and 

then updated based on the following Bayesian formula when measurements D  are available: 

( | , ) ( | , ) ( | )p D M cp D M p Mθ θ θ  (5.1) 

where ( | , )p D Mθ  is the posterior PDF of the model parameters given the measurements D  

and the model class M , ( | )p Mθ  is the prior PDF, c is the constant that ensures the posterior 

PDF integrates to one and ( | , )p D Mθ  is the likelihood function of observing the data from 
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the model class. The prior PDF ( | )p Mθ  is a reflection of the probability of model 

parameters θ  before any measurements are available. Theoretically, it could be any types of 

distributions, while in practice it can be chosen in light of engineering experience. The 

likelihood function plays a key role in the process of parameter estimations. To construct the 

likelihood function, one needs to consider the relationship between the model predictions and 

measured data. Conventional methods for constructing the likelihood using direct response 

time history measurements are based on the prediction error equations formulated at time 

instant t k t  , given as follows:  

   ˆ ; , ( ; )y k L k M k g θ θ  (5.2) 

where 0 dN N
L R


  is the selective matrix consisting of zeroes and ones that maps the dN  

model DOFs to the measured DOFs. A zero-mean Gaussian model is often assumed for the 

prediction errors ( ; )k θ , 1,2, ,k N , with covariance matrix 0 0N N
R


Σ [1,20,24]. Given 

such assumption, the likelihood function takes the form: 

 02( | , ) exp ; ,
2

N N N
p D M J D

  
  

 
θ Σ θ Σ  (5.3) 

where 

         1

10

1
ˆ ˆ; , = ; , ; ,

N
T

k

J D y k L k M y k L k M
NN





       θ Σ g θ Σ g θ   (5.4) 

defines the average measure of fit between the model predictions and measurements. 

Specially, the prediction error model can consider both the uncorrelated and correlated cases. 

When the case of the uncorrelated prediction error model is assumed, the covariance matrix 

Σ  takes the diagonal form 
2=Σ I , where   is the standard deviation of the prediction error 

to be determined by the Bayesian calibration, I  is the unit matrix. If a prediction error 

correlation model is considered, the correlation is taken into account by selecting a non-

diagonal matrix. More details can be found in literatures [22,23]. Once the prior PDF and 

likelihood function are determined, the posterior PDF can be computed based on any types of 

Markov chain Monte Carlo (MCMC) algorithm, such as sequential MCMC [13], Transitional 

MCMC [14,15] and nested sampling [25], etc. Discussions on the sampling approaches are 

not involved in this paper. However, a tutorial on the sampling methods for solving the 

Bayesian parameter estimation problem can be found in literature [26].   

It is notable that although the classical Bayesian formulation is widely used to update the 

models and estimate the model parameters, the outcome of classical formulation has been 

criticized for underestimating the uncertainties of model parameters. In particular for a long 
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time history response, information contained in the response is independent of the sampling 

rate used to represent the time histories. Conventional formulation using a Gaussian 

prediction error model may not consider such independence, leading to an underestimation 

with the sampling rate increasing. A recent likelihood-informed formulation developed for 

the case where the modal frequencies and mode shape components are available as the 

measured data [27]. This paper pushes forward the development of novel formulations for the 

likelihood function within the Bayesian framework using time histories measurements. 

Probabilistic prediction models based on data features between the model predictions and 

measurements are introduced into the formulation in order to provide reasonable uncertainty 

for the parameters that are independent of the sampling rate used for the time histories 

response. Details for the proposed prediction models are given below. 

5.3 Data Features Models for Bayesian Model Updating and Robust 

Predictions 

5.3.1 Uncorrelated data features models 

5.3.1.1 Two likelihood formulations for uncorrelated case 

In the proposed Bayesian model updating, new formulations for the likelihood functions are 

presented by introducing probabilistic models for the features between the measured data and 

the model predictions. For uncorrelated case, data feature je  for the -thj  DOF of the 

structure is assumed as the average of the square of the discrepancy between the 

measurements  ˆ
jy k  and the model predictions  ; |jg k Mθ , 1,2, ,k N , satisfying the 

following equation: 

   
2

1

1
ˆ ; ,

N

j j j

k

e y k g k M
N 

    θ  (5.5) 

It is noted that the notation je  keeps positive value and thus the zero-mean Normal 

distribution is not well-suited for the realizations of data features. For this, truncated normal 

(TN) and exponential (EXP) distributions are introduced to further build the likelihood 

function within the Bayesian framework. 

Given the TN distribution for data feature je , the PDF of each variable je  can be written 

as [28]: 

2

2

2
( ) exp( )

2

j

j

e
p e


   (5.6) 
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where   is the standard deviation of the TN model to be estimated using the Bayesian 

inference. Given the assumption that data features between the DOFs are independent, the 

likelihood function can then be derived as: 

 

0

0

1

20

2

( | , ) ( | , )

exp ; ;
2

N

j

j

N

TN

p M p e M

N
J M 









 
  

 

e θ θ

θ

 (5.7) 

where  

     
0 2

1 10

1
ˆ; = ; ,

N N

TN j j

j k

J M y k g k M
NN  

  θ θ   (5.8) 

defines the average measure of fit between the measurements and model predictions, 

stabilizing to a constant value as the number of data increases. It is noticed that the negative 

logarithmic of the likelihood function  2,TNL θ  is more convenient to integrate into the 

sampling algorithm, defined as: 

   2 20
0 2

, = ln ( | , ) ln + ; ,
2

TN TN

N
L p M N J M  


 θ e θ θ  (5.9) 

Given the EXP distribution for data feature je , the PDF of each variable je  is given by: 

exp( ) 0
( )

0 0

j j

j

j

e e
p e

e

  
 



 (5.10) 

where the parameter   is reparameterized by 
2

1
=

2



, which can make the exponent term 

equal to that of the truncated normal distribution. Similarly, the negative logarithmic 

likelihood function  2,EXPL θ  is calculated as: 

   2 0
0 2

, = ln ( | , ) 2 ln + ;
2

EXP EXP

N
L p M N J M 


 θ e θ θ  (5.11) 

where    ; = ;EXP TNJ M J Mθ θ .  

When the prior PDF and the proposed likelihood function are available, the posterior PDF 

of the model parameters θ  can be solved according to Eq. (5.1). TMCMC algorithm is 

applied to estimate the parameters alongside their uncertainties as well as selecting the 

models which will be discussed in Section 5.3.3.  
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5.3.1.2 Asymptotic approximations of the posterior PDF using TN and EXP models 

Based on the Bayesian central limit theorem, when a large number of measured data is 

available, the posterior PDF can be asymptotically approximated by the Gaussian distribution 

centered at the most probable value (MPV) of the model parameters θ̂  and characterized by 

the covariance matrix  ˆΣ θ  which is the inverse of hessian matrix  H θ  evaluated at the 

MPV θ̂  [10,20]: 

  ˆ ˆ( | , ) | ,p M Nθ e θ θ Σ θ  (5.12) 

where the MPV θ̂  can be obtained by minimizing the negative logarithmic posterior PDF. 

Equivalently, when the prior PDF is assigned as a uniform distribution, the MPV can be 

computed by minimizing the negative logarithmic likelihood function. For the proposed TN 

and EXP models, the MPVs of the model parameters θ̂  can be calculated through the 

following optimization problem: 

     ˆ=arg min ; =arg min ;TN EXPJ M J M
θ θ

θ θ θ  (5.13) 

The covariance matrix  ˆΣ θ  can be also readily computed by solving the second derivatives 

of the negative logarithmic likelihood function with respect to the model parameters, which 

leads to:  

   
2

1

0

2ˆ ˆ= J
N

 
Σ θ H θ   (5.14) 

where  ˆ
JH θ  defines the second derivatives of  ;TNJ Mθ  with respect to θ  for TN model 

and the second derivatives of  ;EXPJ Mθ  with respect to θ  for EXP model, also stabilizing 

to a constant value as the number of data increases.  

Additionally, the most probable value (MPV) of the prediction error variance parameter 

2̂  can be also obtained by minimizing the function 2( , )TNL θ  with respect to 
2  for TN 

model, given as: 

     
0 2

2

1 10

1ˆ ˆˆ ˆ= ; = ; ,
N N

TN j j

j k

J M y k g k M
NN


 

 
 θ θ   (5.15) 

and 2( , )EXPL θ  with respect to 
2  for EXP model, given as: 

     
0 2

2

1 10

1 1ˆ ˆˆ ˆ= ; = ; ,
2 2

N N

EXP j j

j k

J M y k g k M
NN


 

 
 θ θ   (5.16) 
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It is expected that the MPV of the variance parameter computed from TN model is larger than 

that from EXP model when given larger number of data points 0NN . Also, such values will 

affect the uncertainty of model parameters as indicated from Eq. (5.14), showing that larger 

uncertainties can be obtained from TN model than that from EXP model. It is also noted that 

within a time history response, the uncertainty of the model parameters is independent of the 

number of data points N . In other words, the parameter uncertainties is independent of the 

sampling rate used for the response. Such features are important especially for the case where 

a long time span history response is available and a higher sampling rate will not get more 

information for the representation of the response, and thus the parameter uncertainties will 

not be changed as the sampling rate increases/decreases. Indeed, the parameter uncertainties 

decrease as the number of measured DOFs (sensor numbers) increases. However, increasing 

the number of sensors may not provide more information and thus keeping the same number 

of sensors is adequate and effective in some cases.   

 

5.3.1.3 Relation between the proposed TN, EXP models and ABC  

This sub-section provides the relation between the proposed models and the approximate 

Bayesian computation (ABC) strategy. In ABC algorithm, a summary statistics S  and a 

tolerance level   are introduced [18,29]: 

    ,S X S D   (5.17) 

where X D  denotes a simulated dataset from ( | , )p M θ , and   is a measure of the 

closeness between the model predictions and the measured data. Relation between the 

proposed models and ABC approach is investigated under the condition where the measure 

  is chosen to be the least square measure of the distance between the measurements and the 

model prediction from a parameterized class of structures models. Specifically for the model 

with predictions  ;Mg θ , it is given as: 

   
0 2

1 10

1
ˆ= ; ,

N N

j j

j k

y k g k M
N N


 

   θ  (5.18) 

Equivalently, the measure   can be written as: 

   = ; =2 ;TN EXPJ M J M θ θ   (5.19) 

It is shown that the measure   fluctuates as the samples of model parameters changes, and 

thus the choice of the tolerance level   would affect the quality and efficiency of the ABC 

algorithm. An excessive choice may result in an inaccurate estimate of the model parameters 
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or redundant iterations of the algorithm. Therefore, a suitable choice of the tolerance level   

is preferred in ABC algorithm.  

It is noted that from Eqs. (5.15) and (5.16), when the best estimates of  ;TNJ Mθ  and 

 ;EXPJ Mθ  are achieved, the model parameters are chosen as their MPVs and meanwhile the 

best discrepancy between the model predictions and measurements yield to the MPV of the 

prediction error variance 
2̂ . Such features provide benefits for the choice of the tolerance 

level  , given as:  

 

 

2

2

ˆ ˆ; = For TN model
=

ˆ ˆ; =2 For EXP model

TN

EXP

J M

J M












θ

θ
  (5.20) 

It turns out that a tolerance level   can be selected as the best estimate of prediction error 

variance 
2̂  computed from TN model or chosen as twice the value of 

2̂  obtained from 

EXP model. The proposed relation provides an effective way about how to choose a suitable 

tolerance value for ABC method. It also points out that, once a tolerance level   is assigned 

based on such relations, TN and EXP models will offer similar uncertainties for the model 

parameters with ABC algorithm. It is also reminded that obtaining an accurate 
2̂  is under 

the condition where 0N  is sufficient. Limited number of sensors may slightly result in 

different results of 
2̂  and thus will affect the results of parameters uncertainties provided by 

ABC algorithm.  

 

5.3.2 Correlated data features model 

This section proposes a data features model for correlated case. Consider the presence of 

correlation between the adjacent data features je  and +1je , the multi-dimensional truncated 

normal (MTN) distribution with zero-mean is assumed for data features 

 
01 2, , ,j Ne e e ee . The likelihood function ( | , )p Me θ  can be then expressed as: 

1

1

0 0

1
exp

2
( | , )

1
exp

2

T

T

p M

d



 



 
 
 
 
 
 

 

e C e

e θ

e C e e

 (5.21) 

where the covariance matrix C  of total data features is given in the form: 

  0| , 1,2, ,ij i j i jC R x x i j N    C  (5.22) 
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where i jx x  is the spatial distance between the DOFs i and j. The function R is introduced 

as: 

  exp( )R



     (5.23) 

where   is the measure of spatial correlation length. Given an extensive spatial distance, the 

value of ijC  equals to zero, while when it is close, ij i jC   . 

For simplifying the likelihood of Eq. (5.21), the multi-dimensional integration is solved as 

follows. Let = Tf e Ae , where 
1= A C , and introduce the function =e Uq . Thus, a matrix U  

can be found that satisfies the form: 

= Tf q Ωq  (5.24) 

where Ω  is a diagonal matrix with the element 0( 1,2, , )j j N  . Subsequently, the 

integration in Eq. (5.21)can be transformed as:  

0 00

2 2

1 1 10 0 0

1 1
exp = exp

2 2

N NN

j j j j j

j j j j

q d q dq


 


  

  

   
     

  
    Uq U U  (5.25) 

Therefore, Eq. (5.21) can be expressed as: 

0

1

1

1
( | , ) exp

2

N
T

j j

p M








 
  

 
e θ U e C e  (5.26) 

After obtaining the likelihood and the prior PDF, the posterior PDF can be updated using 

TMCMC algorithm. 

 

5.3.3 Model class selection 

To further investigate the preference between the proposed models, model selection is 

discussed in this section. Bayesian inference technique allows to assess the plausibility of 

several model classes using the measured data. Let iM  define the -thi  model class, 

1,2, , Mi N , where MN  represents the number of model classes. The posterior PDF of 

model class iM  is expressed using the Bayes’ theorem in the form [30,31]: 

 
   

   
1

=
M

i i

i N

i i

i

p D M p M
p M D

p D M p M



  (5.27) 

where  ip M  is the prior PDF of model class iM ,  ip D M  is the likelihood function of 

the model class iM  and also the evidence for the model class iM  provided by the 
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measurements D corresponding to the constant c in Eq. (5.1). When a uniform prior is 

assigned for the model class iM , the posterior PDF is proportional to the evidence  ip D M  

for the model class iM  which can be estimated from the TMCMC algorithm. Therefore once 

the model parameters are identified based on the proposed models, the model classes can be 

ranked according to their evidence values.  

 

5.3.4 Response predictions of output QoI 

The calibrated model based on the proposed data features is then used to predict the output 

QoI. Let unobQ  and obQ  be the unobserved and observed QoI, respectively. For the 

unobserved QoI unobQ , the uncertainties from the model parameters can be propagated 

through the calibrated model, while for the observed QoI obQ , both the uncertainties from 

model parameters and prediction error can be considered. The PDF of the quantity unobQ  

given the data features can be computed based on the well-known total probability theory: 

 

unob unob

unob

1

( | ) = ( | ) ( | )d  

1
( | )

sN
i

is

p p p

p
N 







θ

Q e Q θ θ e θ

Q θ

  (5.28) 

where  i
θ  is the -thi  sample drawn from the posterior distribution ( | )p θ e , sN  is the 

number of the samples. Similarly for observed QoI, the PDF of the quantity obQ  given the 

data features can be estimated in the form: 

   2,

ob ob

1

1
( | ) ( | , )

sN
i i

is

p p
N 

 Q e Q θ σ   (5.29) 

where 
 2, i

σ  can be obtained along with the samples of model parameters  i
θ  through 

TMCMC algorithm. After the PDFs of unobQ  and obQ  are available, the mean, standard 

deviation and quantiles, quantifying the response uncertainties can be estimated.  

5.4 Illustrative Example 

5.4.1 Description of a 10-story building model and measurements 

A 10-story shear model of a building system is utilized to demonstrate the effectiveness of 

the proposed approach. The structure is shown in Fig. 5-1(a), where the system is fixed at the 

base. Fig. 5-1(b) depicts the parameterized model using 2 model parameters. Details for the 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



159 

building model are given as follows. The equation of motion with base excitation  g ty  of 

the structure takes the form: 

         + gt t t t  Mv Cv K θ v M1y   (5.30) 

where  = 1,1, ,1
T

1  is a 10 1  vector. The system is created based on the following 

assumptions: 

a) The mass matrix M  is a diagonal matrix having the same element equaling to 1kg. 

b) The stiffness in each floor is assumed to be the same equaling to 1800N/m. The model is 

parameterized using two parameters  1 2= ,
T

 θ  associated with the stiffness, 

representing the ratio of the stiffness to its nominal values. Specifically, the parameter 1  

is linked to the stiffness of the first three floors, while the second one corresponds to the 

stiffness from the fourth to sixth floors, as shown in Fig. 5-1(b). Given the nominal 

model  = 1,1
T

θ , the stiffness matrix K  is given as: 

1 2 2

2 2 3 3

3

9 10 10

10 10

0 0

0 0

0 0

0 0

0 0 0

k k k

k k k k

k

k k k

k k

  
 
  
 
  
 

  
  

K  (5.31) 

c) Rayleigh damping is assumed for the damping matrix, written as  

  C M K  (5.32) 

where the coefficient   and   are taken to be 0.2265 and 6.7515
4e

, respectively, 

corresponding to given damping ratios 1 5 0.02    for the first and fifth modes of the 

system.  

d) Given the above system properties, the natural frequencies of the first three modes are 

estimated to be 1.0Hz, 3.0Hz and 4.9Hz.  
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   (a)      (b)       (c) 

Fig. 5-1 (a) 10-story physical model (b) parameterized model (c) base excitation 

 

For solving the equation of motion in Eq. (5.30), the transformation    t tv Φξ  is used 

for the expression with respect to the modal coordinates  tξ : 

       * T

gt t t t   ξ C ξ Ωξ Φ M1y  (5.33) 

where Φ  is the mode shapes, 
*C  and Ω  are two diagonal matrices with elements 2 i  and 

2

i , respectively, where i  defines the i-th modal frequency. The state-space form is next 

constructed: 

     = c ct t tx A x B p  (5.34) 

where x  is state vector, x  is first derivative of the state, cA  is system state matrix and cB  is 

the input to state matrix given as: 

 
 

 
 

*

0
, , , (t)c c g

t
t t

t

     
        

       

ξ 0 I
x A B p y

ΦM1Ω Cξ
 (5.35) 

The observation equation can also be written in the form: 

( ) ( ) ( )c ct t t d G x J p  (5.36) 

where cG  and cJ  are the observation that define the output quantities of the system. As an 

example, matrices cG  and cJ  for acceleration measurements are defined as: 

* , ( )T

c a a c a
          G S ΦΩ S ΦC J S 1 ΦΦ M1  (5.37) 
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where aS  is a selection matrix. For obtaining other output quantities, one can modify the 

matrices cG  and cJ .  

An earthquake excitation ( )gy t  shown in Fig. 5-1(c) is applied to the physical structure to 

simulate the measurements, where the excitation corresponds to a sampling rate 100Hz for 

total 5.2 seconds. In order to add some modeling error between the physical and nominal 

structures, the nominal stiffness values of all the stories are polluted with 5% Gaussian white 

noise. Five accelerometers, denotes as blue cubic in Fig. 5-1(a), are placed at the first, third, 

fifth, seventh and ninth floors to collect the acceleration measurements, and therefore five 

sets of data consisting of 520 data points in each dataset are recorded.  

 

5.4.2 Model updating and response predictions using proposed data features models   

5.4.2.1 Parameter estimation 

The acceleration measurements are used to estimate the associated stiffness parameters. For 

comparison purpose, the conventional Bayesian formulation using a Normal (NORM) 

distribution model is also applied to update the model parameters. TMCMC algorithm is 

employed to generate samples from the posterior distribution of the model and prediction 

error parameters. Specifically, the number of samples in the algorithm is chosen as 10000 and 

the tolerance value is selected as 0.5 for all the approaches. Details for the choice of such 

values are referred to [15]. The prior distributions of all the parameters are assumed to be 

uniform with bounds in the domain [0.5, 1.5] for model parameters 1  and 2  and [0.001, 0.5] 

for prediction error parameters  .  

Fig. 5-2 shows the posterior distributions along with the contour plots of the model and 

prediction error parameters using NORM, TN and EXP models. Table 5-1 also reports the 

mean, 5%, and 95% quantiles of samples from the posterior distributions using these models. 

It is seen that the mean of the model parameters computed by the proposed models are in 

good agreements with the ones calculated from the conventional formulation. This is 

expected from Eq. (5.13) where the most probable values of model parameters are found in a 

sense of optimization of the average measure of fit between the measurements and model 

predictions. However, a significant difference of the parameter uncertainties is observed 

between the proposed models and conventional formulation. It is obvious that narrow 

uncertainties of the model parameters are offered by the conventional formulation NORM, 

while wider uncertainties are obtained using the proposed models TN and EXP. This is due to 

the fact that the parameter uncertainties in NORM model depend on the number of data 
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points as opposite to the proposed models in which the uncertainties are independent of the 

number of data points within a dataset. For the results of prediction error parameters, it is 

found that the mean values from TN and EXP models show a difference from the one of 

NORM model. This is due to the limited number of sensors used in this case. However, the 

uncertainties computed from proposed models do contain the values calculated from NORM 

model.  

 

  
     (a)    (b) 

 
    (c) 

Fig. 5-2 Posterior distributions of the model and prediction error parameters using (a) NORM 

(b) TN (c) EXP models 
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Table 5-1 Mean and 5%, 95% quantiles of model and prediction error parameters using 

NORM, TN and EXP models 

 NORM TN EXP 

 
1  2    

1  2    
1  2    

Mean 0.9629 1.1339 0.0361 0.9652 1.1321 0.0493 0.9638 1.1331 0.0291 

5% Quantile 0.9615 1.1318 0.0355 0.9218 1.0588 0.0306 0.9391 1.0924 0.0220 

95% Quantile  0.9642 1.1361 0.0366 1.0123 1.2049 0.0797 0.9891 1.1750 0.0389 

 

To further investigate the differences between the TN, EXP and NORM models, different 

sampling rates are used to represent the same measured acceleration data. For this, sampling 

rates are chose from 20Hz to 1000Hz, representing the same information of the 

measurements. Such measurements are used to estimate the parameters using those models. 

Fig. 5-3 shows the parameter estimations results alongside their 90% confidence interval (CI). 

It can be found that the mean values of model parameters are independent of the sampling 

rates and all of the models provide good agreements on the estimates of the means of model 

parameters. However, the uncertainty bounds are substantially different for the NORM model 

and the proposed methods. Specifically, the conventional Bayesian method gives very small 

uncertainties that decrease as the number of sampling points increase. It is contrary to 

intuition since there is not extra information contained in the time history with higher 

sampling rate. Although the results obtained from the sampling rate 20Hz can have a 

relatively larger uncertainty, it is still a small value which is unrealistic in the engineering 

problems. For the results from TN and EXP models, it becomes evident that the different 

sampling rates chosen do not affect the information contained in the data. The proposed 

method based on the data features provides much higher uncertainties that are independent on 

the number of data points used. This is consistent with intuition since the information 

contained in the acceleration time history is almost independent of the sampling rate used in 

the measurements. It is noted that the parameter uncertainties using TN model are larger than 

the uncertainties computed from EXP model. This is expected from Eq. (5.14) since the 

parameter uncertainties depend also on the prediction error term. As indicated from Eqs. 

(5.15) and (5.16), the values of prediction error obtained from EXP are smaller than those 

from TN model. Results in Fig. 5-2(b) and Fig. 5-2(c) also report the same conclusion. A 

discussion of the model selection of EXP and TN models will be given later. It is also noticed 

that the uncertainty of prediction error is neglected herein since propagating uncertainties 

considers more on the prediction error itself rather than its uncertainty. In effect, uncertainty 
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of prediction error will also be decreased as the sampling rate increases using NORM model, 

while it will keep the constant by using TN and EXP models. 

 

 

Fig. 5-3 Parameter estimation using different sampling rates of the measurements 

 

Next, parameter estimation results along with their uncertainties are compared for the 

proposed TN model and ABC method. For ABC method, the measure is chosen to be the 

least square of the distance between the measurements and the model prediction, and the 

tolerance value   is calculated through Eq. (5.20) based on the mean values of prediction 

error using TN model. Again the sampling rates are selected from 20 Hz to 1000Hz of the 

same measurements to conduct the parameter estimation results, as shown in Fig. 5-4. It is 

expected that the means of the model parameters computed from ABC are almost the same 

with the ones from TN model. Also, the parameter uncertainties predicted by the proposed 

likelihood-informed method is similar to the uncertainty estimated by the ABC method. Both 

methods (TN and ABC) provide uncertainty bounds that are independent on the sampling rate. 

It is seen that the parameter uncertainties from ABC are larger than that from TN. This could 

be due to the selection of the best estimate ̂ . Attributed to the limited number of sensors, 

the best estimate ̂  differs with its mean values. This is also reported from Fig. 5-2(b). The 

discrepancy of the parameter uncertainties between ABC and TN models is expected to be 

decreased given the situation where the best estimate of prediction error is closer to its mean 
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value. For comparison purpose, the PDFs of model parameters using TN, EXP, ABC and 

NORM models are plotted, where the results correspond to the use of sampling rate 100Hz of 

the measurements. It is clear that peaked distribution of model parameters are provided by 

NORM, while the proposed TN and EXP models offer a larger uncertainty bounds similar to 

the results from ABC algorithm.  

 

 

Fig. 5-4 Parameter estimation using TN and ABC models 

 

 

Fig. 5-5 PDFs of model parameters corresponding to the sampling rate 100Hz of 

measurements 

 

The aforementioned results are based on the case of the absence of correlation. However, 

spatial correlation of the prediction error between one DOF to another DOF plays an 

important role for updating models. The proposed correlated data features model MTN is 

then applied to estimating the model and prediction error parameters. The spatial distance 

between the adjacent DOFs j  and 1j   is equal to one meter, and the correlation length   is 
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defined as =1 . The standard deviation 1j j    in the covariance matrix is assumed to be 

the same  . The data features correlation model can be then constructed based on Eq. (5.21). 

For comparison purpose, the conventional Bayesian formulation assuming Normal 

distribution for the correlated prediction error is also studied, named as CONORM herein. 

The correlation properties (spatial distance and correlation length) in CONORM are assumed 

to be the same with those in MTN model.  

TMCMC algorithm is also applied to sample the posterior distributions of the model and 

prediction error parameters. Sampling rates are taken from 20 Hz to 1000Hz of the same time 

history as well. Results of the parameter estimation are shown in Fig. 5-6. Similar to the case 

without correlation, the parameter uncertainties decrease as the sampling rates increase when 

using CONORM model, while when the proposed MTN is used, the parameter uncertainties 

keep stable with the sampling rates increasing, demonstrating that the proposed model 

provides result that is independent of the sampling rate. Also, the proposed MTN model can 

ensure larger uncertainty bounds for the model parameters, while the conventional one 

provides extremely small parameter uncertainties even lower sampling rate is used for the 

measurements. Interestingly, when the correlation is considered for the prediction error, the 

mean values obtained from MTN show a slightly difference with the ones from CONORM 

model, however, the mean values keep constant with the large number of data points 

contained in the time history. 

For comparison between the correlated and uncorrelated cases, the posterior distributions 

of the model and prediction error parameters corresponding to the sampling rate 100Hz of the 

measurements are plotted in Fig. 5-7. Table 5-2 also reports the mean and 5%, 95% quantiles 

of all the parameters using the CONORM and MTN models. It is apparent that the model 

error reduces when the correlation is considered, especially for the proposed TN model. This 

also offers an explanation regarding the difference of the mean values between CONORM 

and MTN in Fig. 5-6. The model parameters calculated from MTN provides a better match 

between the model predictions and measurements than those provided by CONORM. Also, 

by considering the correlation of the prediction error in TN model, the uncertainties of the 

parameters are slightly smaller than those from the uncorrelated case. Rather, the parameter 

uncertainties produced by MTN are much wider than the ones yielded by CONORM.  
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Fig. 5-6 Parameter estimation using CONORM and MTN 

 

  

     (a)      (b) 

Fig. 5-7 Posterior distributions of model and prediction error parameters using (a) CONORM 

and (b) MTN models 
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Table 5-2 Mean and 5%, 95% quantiles of model and prediction error parameters using 

CONORM and MTN models 

 CONORM MTN 

 
1  2    

1  2    

Mean 0.9647 1.1350 0.0312 0.9628 1.1380 0.0016 

5% Quantile 0.9631 1.1326 0.0307 0.9349 1.0929 0.0009 

95% Quantile  0.9662 1.1373 0.0317 0.9921 1.1816 0.0025 

 

5.4.2.2 Model selection  

As discussed earlier, three data features models are proposed in this paper. Two data features 

models TN and EXP are presented for uncorrelated case, while the last one, MTN model, is 

developed for considering the correlation case of prediction error. In order to select a better 

model class, a model selection procedure is performed based on the theory in Section 5.3.3. 

TMCMC allows the procedure to obtain the log evidence directly and further to compare the 

model classes. Due to the fact that the random samples are chosen from TMCMC, it will lead 

to a slightly difference of every runs. Therefore, 10 times running of TMCMC is applied to 

all the methods for obtaining the log evidence values. For exploring if the sampling rates will 

have an influence on each model, aforementioned sampling rates are used for the 

measurements. Results of the log evidence values with different sampling rates are reported 

Table 5-3. It is evident that the correlation model MTN provides a better one than the 

uncorrelated model TN, indicating the importance of the correlation of prediction error. 

However, comparisons between MTN and EXP reveal that although MTN takes into account 

the correlation case, the proposed EXP model shows a better performance given the data in 

the structural model. Last but not least, it is obvious that the log evidence is independent on 

the sampling rate. In this case, the sampling rate will not affect the most probable models.  

 

Table 5-3 Logarithm evidence values with different sampling rates 

Sampling 

rate 
20Hz 50Hz 100Hz 200Hz 500Hz 1000Hz 

TN 15.579 15.736 15.494 15.692 15.609 15.902 

MTN 42.418 41.462 42.025 41.485 40.450 43.140 

EXP 51.293 51.509 51.408 51.257 51.200 51.580 
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5.4.2.3 Response predictions 

The uncertainties computed from the model updating results are then considered for response 

predictions. Due to the fact the proposed EXP model provides the best one, samples of the 

parameters estimated from EXP model are then used for predicting the observed QoI and 

unobserved QoI. Specifically, samples of the posterior distribution in Fig. 5-2(c) are used to 

make predictions. For comparison purpose, samples in Fig. 5-2(a) obtained from NORM are 

also used to predict the QoI. Acceleration of the first story is considered as the observed QoI 

while displacement of the second story is selected as the unobserved QoI. Results for the 

observed acceleration are conducted considering the samples from both the model and 

prediction error parameters, as shown in Fig. 5-8. The 95% uncertainty bounds of predicted 

acceleration along with the mean predictions are depicted. The measured acceleration of the 

first story is also shown in the figure. It is observed that there is a discrepancy between the 

measurements and the mean prediction due to the presence of model error. It can be also seen 

that both NORM and EXP models can get larger uncertainty bounds for the observed QoI, 

where most parts of the measured acceleration falls within the predicted 95% uncertainty 

bounds. This is expected since the uncertainties of model parameters and prediction error are 

taken into account for the observed QoI. However, it should be reminded that the 

uncertainties from both NORM and EXP are formally different, with both the uncertainty 

from model parameters and prediction error in EXP model, while most of the uncertainty in 

NORM to be quantified in the prediction error term. Fig. 5-9 depicts the results for the 

predictions of displacement at the second floor. For this case, only the uncertainties of the 

model parameters are propagated since there is no information for the displacement of the 

measurements. However, a new displacement is also simulated from the physical structure 

which is only for comparison purpose. It is obvious that the NORM model obtains an 

extremely thin and unrealistic uncertainty bound for the predicted displacement, and indeed 

the measurements fall outside of the 95% uncertainty bounds. However, the result of 

uncertainty bound obtained from the proposed EXP model is relatively larger, and most of 

the response contains of the 95% uncertainty bounds. A slightly discrepancy could be 

improved by using a sufficient confidence interval of the predictions.  
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Fig. 5-8 Predictions of acceleration of the first story based on the results from NORM model 

(top) and from EXP model (bottom) 
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Fig. 5-9 Predictions of displacement of the second story based on the results from NORM 

model (top) and from EXP model (bottom) 

5.5 Conclusion 

In this paper, new formulations based on the data features models of prediction error has 

been proposed for likelihood-informed Bayesian inference. Three models are developed to 

take into account the uncorrelated and correlated cases of the prediction error model. 

Asymptotic approximations are presented to get some insights on the proposed models. 

Model selection procedure is also performed for selecting a better model over the proposed 

data features models. A 10-story building system is used to demonstrate the effectiveness 

of the proposed formulations. Comparisons between the conventional formulations and the 

proposed models are performed through the whole study. Main conclusions are drawn as 

follows.   

 The proposed data-features likelihood-based Bayesian methodology correctly accounts 

for the uncertainty in the model parameters, making such uncertainty independent of 

sampling rate of the measured response time histories. In contrast, the uncertainty in the 

model parameters obtained from conventional Bayesian inference formulation depends 

on the sampling rate of the response time histories, despite the fact that the information 

contained in the response time history data is independent of the sampling rate.  

 The proposed likelihood-informed Bayesian formulation provides results that are 

consistent with the ones obtained from likelihood-free ABC formulations.  

 The proposed method can consider the correlation case, and it can ensure that the 

uncertainty is independent on the different sampling rates, which thus can provide an 

effective tool for the practical applications. 

 The proposed method applied herein to linear structural systems but could be extended 

to non-linear structural systems given response time history measurements. 
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Chapter 6. Statistics-based Bayesian Modeling Framework for 

Uncertainty Quantification and Propagation 

Original Paper:  

M. Ping, X. Jia, C. Papadimitriou, X. Han, C. Jiang, Statistics-based Bayesian modeling 

framework for uncertainty quantification and propagation, Mechanical Systems and Signal 

Processing. Submitted. (2021). https://doi.org/10.5281/zenodo.5545922. 

ABSTRACT 

A new Bayesian modeling framework is proposed to account for the uncertainty in the model 

parameters arising from model and measurements errors, as well as experimental, operational, 

environmental and manufacturing variabilities. Uncertainty is embedded in the model 

parameters using a single level hierarchy where the uncertainties are quantified by Normal 

distributions with the mean and the covariance treated as hyperparameters. Unlike existing 

hierarchical Bayesian modelling frameworks, the likelihood function for each observed 

quantity is built based on the Kullback–Leibler divergence used to quantify the discrepancy 

between the probability density functions (PDFs) of the model predictions and measurements. 

The likelihood function is constructed assuming that this discrepancy for each measured 

quantity follows a truncated normal distribution. For Gaussian PDFs of measurements and 

response predictions, the posterior PDF of the model parameters depends on the lower two 

moments of the respective PDFs. This representation of the posterior is also used for non-

Gaussian PDFs of measurements and model predictions to approximate the uncertainty in the 

model parameters. The proposed framework can tackle the situation where only PDFs or 

statistical characteristics are available for measurements. The propagation of uncertainties is 

accomplished through sampling. Two applications demonstrate the use and effectiveness of 

the proposed framework. In the first one, structural model parameter inference is considered 

using simulated statistics for the modal frequencies and mode shapes. In the second one, 
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uncertainties in the parameters of the probabilistic S-N curves used in fatigue are quantified 

based on experimental data.  

6.1  Introduction 

The general Bayesian statistical framework proposed by Beck and Katafygiotis [1] provides a 

rigorous mathematical means to address the model updating problem under uncertainty. 

Based on this framework, there have been a lot of works for various applications, such as 

parameter estimation [2–7], model selection [8,9], damage identification [10–12], and robust 

uncertainty propagation [13,14], among which the parameter estimation application serving 

as the foundation of other applications has kept the overwhelming attention. The Bayesian 

parameter inference is accomplished by embedding a parameterized probabilistic model to 

describe the discrepancy between model predictions and measurements. Then the formulation 

for the posterior distribution of the structural and prediction error model parameters is 

provided as a product of the likelihood function and the prior distribution of the model 

parameters. To estimate the posterior distribution of the model parameters, the likelihood 

function is usually built based on a relation function between model predictions and 

measurements by defining a probabilistic structure of the prediction error.  

For industrial applications, the parameter estimation results from different measurements 

show distinct variations. The variation usually arises from load uncertainty, model error, 

measurement noise, and changing environmental/operational conditions [15–17]. Variations 

in the parameters of a model introduced to simulate a population of identically manufactured 

structures are also obtained due to manufacturing variabilities [18,19]. Therefore, it is 

important to describe these variations. The hierarchical Bayesian modeling framework (HBM) 

[20–26] has been proposed to quantify the uncertainty in the model parameters and prediction 

errors due to the aforementioned variabilities. The core of HBM is using a parameterized 

prior distribution of model parameters by introducing an extra layer involving hyper 

parameters to describe the variation of model parameters. 

In this paper, a new probabilistic model is proposed on the basis of Bayesian framework, 

and the main difference is the principle to build the likelihood function, which is based on the 

relationship of statistics between model predictions and measurements for each model output. 

Compared with HBM, it does not require collecting datasets, and measurements can be the 

PDFs or statistics of measured quantities, so its application is more universal. It can also 

handle cases for which only the statistics like mean and variance are available from the 
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measurements. In such cases it is unreasonable to build datasets in terms of samples 

generated from them and then apply existing conventional or hierarchical Bayesian modeling 

frameworks.  

This paper is organized as follow. In Section 6.2, the new proposed Bayesian modeling 

framework is described in detail, including construction of the proposed probabilistic model, 

uncertainty quantification of parameters, and uncertainty propagation to quantities of interest 

(QoI). The application to structural dynamics based on measured modal properties is 

presented in Section 6.3. In Section 6.4, a three-DOF spring mass chain system is taken as a 

simulated example to illustrate the effectiveness of the proposed framework. The application 

to the parameter inference and uncertainty quantification of probabilistic S-N curves used in 

fatigue damage accumulation is given in Section 6.5. Conclusions are presented in Section 

6.6.  

6.2 Proposed Bayesian Modeling Framework 

6.2.1 Probabilistic model 

Fig. 6-1 shows the structure of the proposed probabilistic modeling framework. Assume a 

parameterized model of a structural system and let  kq θ , 1, , qk n  be the model 

predictions for qn  output quantities, where θ  is model parameter vector to be identified by 

measurements available for these output quantities. To account for model error and 

environmental/operational variabilities in the model predictions, an additive error term ke  is 

considered so that the predictions from the model are taken as 

   k k k kq q w e θ θ   (6.1) 

where kw  is a weighting factor that scales the error terms ke .  

Uncertainties are embedded in the model parameter set θ  by assigning to the set θ  a 

Gaussian distribution with mean vector θμ  and covariance matrix θΣ . To account for the 

unmodelled dynamics, the error term ke  is assumed to follow a Gaussian distribution 

 2| 0,k ee   with zero mean and variance 
2

e , where the general notation ( | , ) x    is 

introduced to denote a multivariable normal distribution evaluated at x  with mean vector μ  

and covariance matrix  . It should be noted that the weights kw  introduced in Eq. (6.1) 

provides the flexibility to scale differently the error term ke  for each quantity of interest 
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 kq θ . This is needed when the intensities of the measured or response quantities involved in 

Eq. (6.1) have considerable differences for each k . In this case it is best to choose kw  values 

to correspond to a measure of the intensity of the respective measured or response quantity, 

such as the mean of the measured or response quantity.  

 

 

Fig. 6-1 Proposed probabilistic modeling framework 

 

To distinguish from the model parameters θ  and the error term ke , the parameters 

 , , eθ θ
h = μ Σ  are called hyper parameters. Given the hyper parameters, one can obtain the 

conditional PDF ( | )kp q h  of k-th model output quantity kq  given the values of the hyper 

parameters h  by propagating the uncertainties in the model parameters θ  and the error term 

ke .  

For a conditional PDF that can be approximated by a Gaussian distribution, one has 

2

| |( | ) ( | , )
k kk k q qp q q   

h h
h , where |kq h  is the mean and 2

|kq h
 is the variance of kq  given h . 

In particular, a Gaussian distribution arises for the case of a linear model ( )  q θ Aθ b , 

where 1, ,
qnq q



 
 

q , 
1[ , , ]

q

T T

n

A a a , 
1[ , , ]

qnb b b  and ka , 1, , qk n  , is the k -th 

row (vector) of A  with the same dimension as θ . Given θμ , θΣ  and e , one readily derives 

that the mean |kq h  and the variance 2

|kq h
 of the quantity kq  in terms of the hyperparameters 

h  as follows  

|kq k kb  
h θ

a μ   (6.2) 

2 2 2

|kq k k k ew  
h θ

a Σ a   (6.3) 

The PDF of k-th model output 
|kqP
h

 can be directly obtained in the form 
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2 2 2

| |( | ) ( | , ) ( | , )
k kk k q q k k k k k k ep q q q b w       

h h θ θ
h a μ a Σ a   (6.4) 

For nonlinear models, the PDF ( | ) ( | , , )k k ep q p q 
θ θ

h μ Σ  of k-th model output can be 

derived by the total probability theorem as 

     

   2( ) 2

| , , | ,  Ν | ,

1
                           | ,

s

k e k e

n
j j

k k k e

js

p q p q d

q q w
n

 





 





θ θ θ θ

θ

μ Σ θ θ μ Σ θ

θ

  (6.5) 

where  j
θ , 1, , sj n , are sampled from  | ,

θ θ
θ μ Σ . The structure of the model error in 

Eq. (6.1) was used to replace conditional PDF  | ,k ep q θ  in Eq. (6.5) by a normal PDF 

  2 2| ,k k k eq q w  θ  with mean  kq θ  and variance 
2 2

k ew  .  

Let ( )ky  denotes the PDF of k-th measured quantity ky , so that the PDFs for all the 

measurements are  ( ),  1, ,k qy k n  . For the situation where the measurements are the 

statistics of measured quantities, the ( )ky  can be directly obtained by moments-based PDF 

simulation methods, like maximum entropy method (MEM) [27,28]. For the situation where 

only measured data   , 1, ,
i

k k dD y i n  are available for the k-th measured quantity ky , 

where dn  denotes the number of measured data of k-th measured quantity, the kernel density 

estimation (KDE) [29,30] can be used to simulate ( )ky  for sufficient large number of 

measurements dn , as follows 

 
1

( )
d

in

k k
k

id

y y
y K

n h h


 
     

   (6.6) 

Also, if dn  is not big enough, ( )ky  can be assumed to be a Gaussian distribution with mean 

and variance calculated by the data set kD .  

Given ( )ky  and ( | )kp q h , the discrepancy between them is then quantified by the 

Kullback–Leibler divergence (KL-div) [31]. However, considering the asymmetry of KL-div, 

a symmetric measure of the discrepancy can be used, defined as  

   

 
 

 
 

 

 

( , | ) , ,

|1 1
                    log | log

2 | 2

k k k KL KL

x x

y q D p D p

x p x
x dx p x dx

p x x

  






 

   
       

   
 

h

h
h

h

  (6.7) 
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For a Gaussian distribution 2

| |( | ) ( | , )
k kk k q qp q q   

h h
h  of kq  given h  and for k-th 

measurement that is Gaussian distributed, i.e.    2| ,
k kk k y yy y     for all k, the KL-div 

simplifies to the analytical form 

2
2 2

||

2 2 2

| |

2
2 2

||

2 2 2

|

1
( , | ) log 1

4

1
                       log 1

4

1
                   

4

k kk k

k k k

k kk k

k k k

y qq y

k k k

y q q

y qy q

q y y

y q
  


  

  

  



          
    

          
    



hh

h h

hh

h

h

2
2 2 2

|| |

2 2 2 2

| |

1 1
1 1 1

4 4

k kk k k

k k k k

y qq y q

y q q y

  

   

                
          

hh h

h h

  (6.8) 

Note that the first two terms give a measure of the error between the variance of the 

experimental value and the variance predicted from the model. These two terms become zero 

when the variance 2

ky  of the experimental value equals the variance 2

|kq h
 of the model 

prediction. Also, the last term gives the error between the mean of the experimental value and 

the mean of the model predictions. When the mean of the experimental value is equal to the 

mean of the model predictions, then the third term disappears. The discrepancy as defined by 

KL-div is a weighted sum of the discrepancies between the variances of the two PDFs and the 

means of the two PDFs. However, the KL-div measure is a rational method to assign the 

weights which otherwise one would have to select arbitrarily. 

For non-Gaussian PDFs arising from nonlinear models, Eq. (6.8) for the KL-div can also 

be used as an approximate measure of the discrepancy between the two PDFs in terms of the 

first two moments of the PDFs. Alternatively, for nonlinear models, the integral can be 

approximated by Monte Carlo (MC) sample estimates  

  
  

 
 

( )

( )

1 1
( , | ) log log

2 2|

i i
n n

k k

k k k ii
i i kk

y p q
y q

n n qp y






   
    

  
  

 h
h

  (6.9) 

where ( )i

ky  and  i
kq , 1, ,i n , are the samples distributed as  ky  and  |kp q h , 

respectively. Estimating the KL-div from Eq. (6.9) requires a large number of samples and 

can be a computationally very tedious procedure. Simplified approximations, such as Eq. 

(6.8), based on the first two moments of the non-Gaussian PDFs are preferred.  
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6.2.2 Estimation of hyper parameters uncertainty 

The first task of uncertainty quantification is to identify the hyper parameters in the proposed 

probabilistic model. This is accomplished by introducing a probabilistic model to represent 

the variables  , 1, ,k qk n    quantifying the discrepancy between the PDF of the model 

predictions and the measurements. Specifically, the variables in the set  , 1, ,k qk n    

are assumed to follow a truncated normal distribution  2| 0, , 0k k     because of the 

non-negative values of KL-div, with the parameter   be another hyper parameter to be 

inferred from the data. Thus, in the proposed probabilistic model, the hyper parameters can 

be categorized into two types: one is to describe the uncertainty of the prediction model, 

which comprises { , , }e
θ θ

h μ Σ  and the other is  . 

According to the relationship between measurements and model predictions described by 

Eq. (6.7), the Bayes theorem is applied to infer the posterior distribution of hyper parameters 

as 

       , | | ,p p p p      h h h   (6.10) 

where  , |p  h  is joint posterior distribution;  p h  and  p   are the prior distributions 

assuming that h  and   are independent; and  | ,p  h  is the likelihood function. 

Assuming that k  in  , 1, ,k qk n    are independent, the likelihood function takes the 

form 

   
1

| , | ,
qn

k

k

p p    


h h   (6.11) 

Using the assumed truncated normal distribution for k , one has 

   
2

2

2

( , | )2
| , | 0, exp

22

k k k
k k k

y q
p 




   



 
    

 

h
h   (6.12) 

with all 0k  . Substituting Eq. (6.12) and (6.11) into Eq. (6.10), the posterior distribution 

takes the form 

     2

1
, | exp ( ;{ },{ })

2q

q

k kn

n
p J y q p p 



  


 
  

 
h h h   (6.13) 

where the notations { }ky  and { }kq  are defined as the sets 
1{ } { , , }

qk ny y y  and 

1{ } { , , }
qk nq q q , and  
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2

1

1
( ;{ },{ }) ( , | )

qn

k k k k k

kq

J y q y q
n




 h h   (6.14) 

is the mean square discrepancy function formed from the individual discrepancies for each 

measurement property. It should be noted that ( ;{ },{ })k kJ y qh  stabilizes to a finite value as 

the number of output measured quantities increases. Given the prior distribution, samples 

    , ; 1, ,
i i

i n h
        , , , ; 1, ,
i i i i

e i n  θ θμ Σ  of hyper parameters distributed 

proportional to the joint posterior distribution can be generated by using any sampling 

algorithm. Herein, the nested sampling algorithm [32] is used to generate samples.  

For a large number of output quantities qn , with the prior distribution  p h  selected to be 

uniform, Eq. (6.13) can be approximated as 

     2ˆ ˆ, | | ,p p       hh h h Σ    (6.15) 

where  ˆ arg min ( ;{ },{ })k kJ y q
h

h h , 11ˆ ˆ( )
qn

hΣ H h , 
2

ˆ

( ;{ },{ })ˆ( ) k kJ y q







 
h h

h
H h

h h
. The 

derivation is given in Appendix A. Noting also that ˆ( )H h  stabilizes to a finite value as the 

number of output measured quantities increases, the uncertainty in the estimates of the 

hyperparameters h  quantified by ˆ
hΣ  is inversely proportional to the number of measured 

variables qn , which implies that the uncertainty decreases as the number of measured 

variables increases. For uniform prior PDF  p  , it can be readily shown using Eq. (A.1) 

that the most probable value of the parameter   is given by ˆ ( ;{ },{ })k kJ y q  h  which is 

an overall measure of discrepancy between the model predictions and the measurements.  

Note that the estimated   can be used to evaluate the accuracy of the prediction model 

quantitatively. As k , 1, , qk n , are assumed to follow a truncated Gaussian distribution 

with zero mean,   quantifies the average distance of all KL-div values from zero. So it can 

be treated as an index of prediction accuracy between the measured and model predicted 

PDFs. The smaller the value of  , the better the accuracy.  

 

6.2.3 Uncertainty quantification of structural model parameters and error term  

The posterior distribution of model parameters can be derived using the total probability 

theorem 
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     | = | ,  , , , |     

e

e ep p d d d d



 

 

        
θ θ

θ θ θ θ θ θ

μ Σ

θ θ μ Σ μ Σ Σ μ   (6.16) 

where use was made of the fact that conditional PDF    | , , , , | ,ep     
θ θ θ θ

θ μ Σ θ μ Σ  

depends only on the values of θμ  and θΣ . Based on the samples of θμ  and θΣ , the integral 

can be approximated as 

      1
| | ,

n
i i

i

p
n

   θ θ
θ θ μ Σ   (6.17) 

Similarly, the posterior distribution of the error term is 

     2| = | 0, , , , |     

e

k k e e ep e e p d d d d



 

 

         
θ θ

θ θ θ θ

μ Σ

μ Σ Σ μ   (6.18) 

where use was made of the fact that    2| , , , , | 0,k e k ep e e    θ θμ Σ  depends only on 

the values of 
2

e . The integral can be approximated by the following sample estimate 

    
21

| | 0,
n

i

k k e

i

p e e
n

   
    (6.19) 

 

6.2.4 Uncertainty propagation to output QoI 

Let   jz θq , 1, , tj n  be an output QoI that depends on the quantities 

     1{ , , }
qnq qθ θ θq . For example,  θq  can be related to the modal frequencies and 

mode shape components and   , 1, ,j tz j nθq  can be the response time histories 

(displacement, acceleration, strain, stresses) that are computed from the modal properties 

using modal analysis. Using samples 
( )lθ  and 

( )l

ke  generated from the PDFs defined in Eqs. 

(6.17) and (6.19), respectively, then the samples of   jz θq  can be obtained 

as   ( ) ( ) ( )l l l

jz  θq w e  from which the %  to 1 %  quantiles of the response QoI can 

be estimated, where 
( ) ( )l lw e  expresses element-wise product. Also the statistics of the 

response QoI, such as mean and higher moments, can be predicted by the following Monte 

Carlo estimates  

     

      
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                      =  |  |   
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 



        

 

  

 



θ

θ θ

θ θ θ

θ

e

q q w e

q w e e e

q w e

  (6.20) 
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The mean is given by   E
jz jz     θq w e  and the variance by 

  2 2 2= E
j jz j zz     θq w e . Note that for   jz  θq w e  j j jq w e θ , 1, , qj n , 

one obtains the predictions of the observed QoI.  

6.3 Application to Structural Dynamics using Measured Modal Properties 

For a linear system with n  degrees of freedom (DOF), the PDF of measured modal 

properties are expressed as  , 0
ˆ ˆ( ),  ( ),  1,2, , ;  1,2, ,r r jf r R j n     , where ˆ

rf  

represents the r-th modal frequency, 
0 ,1 ,2 ,

ˆ ˆ ˆ ˆ, , ,r r r r n       is the r-th normalized mode 

shape vector at 0n  measured locations, and R  is the number of contributed modes. Treating 

each modal property to be a model output, as there are R  modal frequencies and 0R n  

mode shapes, the number of model outputs is  0 1R n  . Consider a model parameterized 

by θ , the model outputs corresponding to the measurements are      , , 1,2, ,r rf r Rθ θ , 

and the predictions from the model that take into account model errors are defined as 

   

   , , , ,

r r r r

r j r j r j r j

f f w e

w e 

 

 

θ θ

θ θ
  (6.21) 

where re  and ,r je  are assigned to follow an identical Gaussian distribution  20, e . To 

take into account the different intensities of the modal frequencies and the mode shape 

components, the weight factors rw  and ,r jw  are respectively selected to be the mean of ˆ
rf  

and ,
ˆ

r j .  

Based on the measurements and probabilistic model described above, the proposed 

probabilistic modeling framework can be implemented. The posterior distribution of hyper 

parameters is given by Eq. (6.13) where the discrepancy function in Eq. (6.14) becomes 

0

2 2

, , ,

1 1 10

1 ˆ ˆ( ;{ },{ }) ( , | ) ( , | )
( 1)

nR R

k k r r r r j r j r j

r r j

J y q f f
R n

   
  

 
  

  
 h h h   (6.22) 

and 0( 1)qn R n  . Approximating the PDFs ˆ( )rf  and ,
ˆ( )r j   by Gaussian distributions, 

the formula of KL-div can be simplified using Eq. (6.8), so that the expressions 

ˆ({ },{ }| )r r rf f h  and 
, , ,

ˆ({ },{ }| )r j r j r j   h  depend on the mean and variances of the model 

predictions conditional on the values of the hyperparameters h , given by 
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  (6.23) 

To calculate the multi-dimensional integrals efficiently, the univariate dimension 

reduction method (UDRM) [33] is introduced to approximate them. The UDRM involves an 

additive decomposition of a multivariate response function into multiple univariate functions, 

so the multi-dimensional integral required by response moments are approximated by a series 

of one-dimensional integral of these univariate functions. According to UDRM,  rf θ  and 

 ,r j θ  can be approximated as 

       

       

1

, , ,

1

1 + ,

1 + ,

i

i

n

r r r i

i

n

r j r j r j i

i

f n f f

n



   





  

  





θ θ

θ θ

θ μ μ

θ μ μ

  (6.24) 

where 
iθ

μ  represents the mean vector of 
nθ  that excludes the component 

i
 , and 

 ,
ir if  θμ  is defined as    

1 2 1 1
, , , , , , , ,

i i i nr i r if f           
 

θμ . Substituting Eq. 

(6.24) into Eq. (6.23), the mean and variance can be approximated into a series of one-

dimensional integral of univariate functions in Eq. (6.24) [33], which can be easily solved by 

numerical integral methods, hereby a lot of computation can be saved. 

6.4 Simulated Example 

A population of 3-DOF linear systems manufactured to be identical is taken as a simulated 

example. Due to manufacturing variabilities, the properties of the system, such as stiffness 

vary for each member in the population. The modal properties of the members of the 

population are chosen as measured quantities to study the effectiveness of the proposed 

probabilistic modeling framework. 
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6.4.1 Model description 

Consider a three DOF model, shown in Fig. 6-2, introduced to represent each member in the 

population. The nominal values of the mass for the model DOFs are set to be 1 6kgm  , 

2 5kgm   and 3 5kgm  , while the nominal values of the stiffness of each link are set to 

10 22kN/mk  , 20 21kN/mk   and 30 20kN/mk  . With these assumptions, the modal 

properties of the nominal model are listed in Table 6-1. 

 

 

Fig. 6-2 3-DOF spring mass chain system 

 

Table 6-1 Modal properties 

 Frequency (Hz) 
Mode shape  

at DOF 1 

Mode shape  

at DOF 2 

Mode shape  

at DOF 3 

Mode 1 4.59 0.324 0.587 0.741 

Mode 2 12.2 0.740 0.281 -0.611 

Mode 3 17.9 -0.498 0.787 -0.362 

 

6.4.2 Uncertainty quantification  

The properties of each member in the population are simulated as follows. To consider the 

variation of model parameters from member to member due to manufacturing variability, the 

stiffness of the link i  of each member is generated from a Gaussian distribution 

    2

0 0| , 0.03i i ik x N x k k  , 1,2,3i  , corresponding to approximately 3% variation of the 
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stiffness parameters about their nominal values. The modal properties are then simulated 

from Eq. (6.21) using 
310  MCs samples. The error terms defined in Eq. (6.21) are assumed to 

follow the Normal distribution with zero mean and standard deviation equals to 0.05, 

corresponding to a 5% model error. The mean and variance of modal properties are then 

computed and listed in Table 6-2 serving as known statistics of measurements. Then the 

uncertainty quantification for the stiffness parameters can be conducted according to the 

methodology presented in Section 6.3.  

 

Table 6-2 Mean and variance of simulated modal properties 

 

Frequency 
Mode shape  

at DOF 1 

Mode shape  

at DOF 2 

Mode shape  

at DOF 3 

mean variance mean variance mean variance mean variance 

Mode 1 4.59 0.015 0.324 43.1 10
 

0.587 48.8 10
 

0.741 31.4 10
 

Mode 2 12.2 0.106 0.740 31.5 10
 

0.281 45.4 10
 

-0.611 49.8 10
 

Mode 3 17.9 0.233 -0.498 48.3 10
 

0.787 31.6 10
 

-0.362 45.2 10
 

 

The 3-DOF model shown in Fig. 6-2 is used to represent each member in the group. To 

take into account the variation in the model properties, the stiffness of each link is 

parameterized by  1 2 3    


θ  such as   0i i i ik k   , where θ  are model parameters to 

be identified. Assuming the prior distributions of all the hyper parameters to be uniform 

distributions with their upper and lower boundaries listed in Table 6-3, the nested sampling 

algorithm [32] is implemented to generate samples of hyper parameters. The results are 

shown in Fig. 6-3, while the mean and standard deviation of the posterior distributions of 

hyper parameters are summarized in Table 6-4. As expected, the estimated mean values of all 

the hyper parameters θμ  and θΣ  (defined to be diagonal), as well as the prediction error 

parameter e , show good agreement with the nominal values used to simulate the 

measurements. The standard deviations of the hyperparameters are small, which means the 

uncertainty of identified results is small. Also, the values of the samples for   are very 

small, which means the prediction results have a good accuracy compared with 

measurements. The closeness of the results to the values used to simulate the measurements 
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also demonstrates that the Gaussian approximation of modal properties assumed in Section 

6.3 is reasonable. 

 

Table 6-3 Upper and lower boundaries of hyper parameters 

 
1

  
1

  
2

  
2

  
3

  
3

  e    

Upper 

boundary 
0.8 0 0.8 0 0.8 0 0 0 

Lower 

boundary 
1.2 0.1 1.2 0.1 1.2 0.1 0.1 1 

 

 

Fig. 6-3 Samples of joint posterior distribution of hyper parameters 

 

Table 6-4 Estimates of mean and standard deviation of hyper parameters  

 
1

  
2

  
3

  
1

  
2

  
3

  e  

Nominal 

value 
1 1 1 0.03 0.03 0.03 0.05 

Mean 1.0001 1.0002 1.0001 0.0305 0.0299 0.0301 0.0500 

Standard 

deviation 
42.1 10

 42.2 10
 42.1 10

 46 10
 47 10

 43 10
 55 10
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Based on Eq. (6.16) and (6.18), the posterior distributions of θ  and ,,r r je e  are computed 

using sampling and shown in Fig. 6-4. As ,,r r je e  are identically distributed, there is only one 

figure for their posterior distribution. The estimated statistics of θ  and e  are summarized in 

Table 6-5. The values are compared with the nominal values assigned to simulate the 

measurements. It can be seen that the mean and standard deviation of posterior distributions 

of model parameters and error terms are very close to the nominal values. The samples of   

are close to zeros, which indicates that the discrepancy between the PDFs of measurements 

and predictions is small enough. 

 

Fig. 6-4 Samples of posterior distribution of θ ,  , 0, ; , 1, 2, , ; , 1, 2, ,r r je e e r R j n    and 

  

 

Table 6-5 Estimates of mean and standard deviation of model parameters and error terms 

 1  2  3  e  

Mean 1.0010 1.0010 1.0000 -0.0012 

Standard deviation 0.0307 0.0293 0.0301 0.0494 
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6.4.3 Uncertainty propagation  

Using the samples of θ , 
re  and ,r je , the mean and variance of modal properties are predicted 

and listed in Table 6-6. These values should be compared with the mean and variance of the 

measurements in Table 6-2. The predicted results are of good accuracy, and the maximum 

relative error is less than 4%. The predicted PDFs of modal properties are also computed and 

compared with Gaussian PDFs of the measurements in Fig. 6-5. A very good agreement is 

also observed, validating the effectiveness of the proposed methodology in identifying the 

model parameters. It should be noted that such uncertainty bounds are expected to be thin for 

classical Bayesian framework based on multiple datasets used for the modal properties [34]. 

The level of uncertainty is expected in classical Bayesian approaches to decrease as the 

number of data increases.  

 

Table 6-6 Predicted mean and variance of the modal properties 

 

Frequency 
Mode shape  

at DOF 1 

Mode shape  

at DOF 2 

Mode shape  

at DOF 3 

mean variance mean variance mean variance mean variance 

Mode 1 4.59 0.015 0.324 43.1 10
 

0.587 48.8 10
 

0.743 31.4 10
 

Mode 2 12.2 0.107 0.741 31.5 10
 

0.280 45.7 10
 

-0.611 49.7 10
 

Mode 3 17.9 0.225 -0.498 48.4 10
 

0.787 31.6 10
 

-0.363 45.0 10
 

 

Furthermore, based on the identified modal properties, the response time history of 

displacement or acceleration or velocity can also be predicted. For this, a zero mean discrete 

Gaussian white noise base excitation with standard deviation 1, shown in Fig. 6-6, is applied 

and the mean and variance of time history response of displacement of the third DOF is 

estimated taking into account the uncertainties in the model parameters and error terms 

assumed to simulate the measurements in Section 6.4.2. The modal analysis is used to 

perform the corresponding predictions based on the predicted modal properties with error 

terms taken into consideration. To make a comparison, the mean and 90% credible interval 

boundaries obtained respectively from measurements and predictions are shown in Fig. 6-7. 

As we can see, the model prediction results match very well the measurements. For the 

situation that the error terms of modal properties are not considered in the predictions the 

predicted uncertainty intervals are smaller than that of measurement uncertainty intervals, as 
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shown in Fig. 6-8, signifying that the error terms are necessary to be included in the 

propagation analysis for accurate model predictions.  

 

 

Fig. 6-5 Comparison between measured and predicted PDFs for the modal properties 

 

Fig. 6-6 Base excitation 
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Fig. 6-7 Comparison between measured and predicted results for the displacement time 

history at DOF 3 

 

 

Fig. 6-8 Comparison between measured and predicted results for the displacement time 

history at DOF 3 without consideration of error terms in prediction 
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6.5 Estimation of S-N Curve Model Parameters using Fatigue Data 

In this section, the experimental data from fatigue tests are used to infer the uncertainties in 

the model parameters of the S-N curves. As the S-N data is usually modelled by a linear 

model, the equations derived for the linear model in Section 6.2.1 are directly applicable. 

 

6.5.1 Model description 

Materials fatigue performance is commonly characterized in the form of an S-N curve, which 

is usually simulated by the Basquin’s relation [35] 

B

k kN AS    (6.25) 

where kN  expresses the fatigue life at the k -th stress level, kS  expresses corresponding 

stress level, while 0A  and 0B   are material parameters to be estimated using 

experimental data. For the laboratory fatigue tests, the fatigue life dispersion always exists 

due to many factors, such as uncertainties of mechanical properties of structure and material, 

changing environmental factors in laboratory, and random error in observations, etc. Taking 

the variability into consideration, Eq. (6.25) can be expressed as 

B

k k kN AS    (6.26) 

where k  quantifies the randomness of fatigue life in stress level kS . For the sake of 

simplicity, Eq. (6.26) is usually rewritten in log scale as [36]  

+k k kq x e     (6.27) 

where  10logk kq N , 
10 10

1

1
log log

n

k k j

j

x S S
n 

   ,  10 10

1

1
log log

n

j

j

A B S
n




   , B  , 

and lnk ke   is assumed to follow a zero mean normal distribution with dispersion  .  

Eq. (6.27) is usually adopted as a probabilistic model to estimate probabilistic S-N curves. 

To consider the variability of the model parameter set { , } θ  for different specimens, the 

parameters   and   are respectively assumed to follow Gaussian distributions as 

 2| ,     and  2| ,    , where  ,  ,   and 
 are the hyperparameters. To 

avoid unidentifiability issues with respect to the model parameters   and   due to the 

presence of the additive terms ke   in Eq. (6.27), the term ke  and its uncertainty is 

absorbed in   by replacing Eq. (6.27) with the model  

k kq x     (6.28) 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



194 

Based on this model, both the variability of different specimens in one stress level and across 

stress levels can be comprehensively considered in   and  .  

 

6.5.2 Uncertainty quantification using fatigue tests 

The data listed in Table 6-7, taken from [37], are used to infer the model parameters. Fatigue 

tests were conducted with standard plate specimens of aluminum alloy 2524-T3 under four 

stress levels with about 15 observations each. The data from each stress level is assumed to 

follow a Gaussian distribution, and the mean and standard deviation are solved as measured 

statistics. Based on the probabilistic model described above, the proposed probabilistic 

modeling framework can be implemented. Given the prior distributions of all the hyper 

parameters as uniform distribution with their upper and lower bounds listed in Table 6-8, the 

nested sampling algorithm is implemented to generate samples of the hyper parameters 

 , , ,        as shown in Fig. 6-9. Moreover, the most probable values of 

 , , ,        computed according to Eq. (A.3), as well as the standard deviation of the 

estimates of the hyper-parameters computed using the samples, are listed in Table 6-9. Based 

on Eq. (6.17), the posterior distribution of   and   are shown in Fig. 6-10. Using the 

samples in Fig. 6-9, the uncertainties in the estimates of the hyperparameters are of the order 

of 0.83% and 12% for the hyper-mean parameters  ,    and of the order of 46% and 70% 

for the hyper-standard deviation parameters  ,   . Also, from Table 6-9 the coefficient of 

variation of the parameters   and   based on the mean values of the hyper parameters are 

ˆ ˆ/ 1.7%     and ˆ ˆ/ 21%    , respectively. It can be seen that there is considerable 

uncertainty in the values of the parameters   and   that can affect fatigue predictions.  
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Table 6-7 Fatigue life test data of aluminum alloy 2524-T3 

 MPaiS
 10log iN

 

200 
5.603, 5.544, 5.528, 5.630, 5.594, 5.540, 5.581, 5.548, 

5.426, 5.567, 5.554, 5.627, 5.630, 5.596, 5.626 

300 
5.028, 5.074, 5.016, 4.894, 4.993, 5.071, 5.024, 5.035, 

4.954, 5.039, 5.098, 5.057, 5.092, 5.082, 5.005 

350 
4.784, 4.842, 4.776, 4.813, 4.813, 4.860, 4.798, 4.776, 

4.758, 4.770, 4.755, 4.837, 4.736, 4.842, 4.796 

400 
4.477, 4.400, 4.426, 4.462, 4.592, 4.411, 4.447, 

4.402, 4.665, 4.475, 4.458, 4.551, 4.525, 4.641 

 

Table 6-8 Upper and lower bounds of hyper parameters 

           

Upper bound -30 -30 0 0 0 

Lower bound 30 30 10 10 10 

 

Fig. 6-9 Samples of joint posterior distribution of hyper parameters 
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Table 6-9 Most probable values of hyper parameters 

           

MPV 4.984 -3.435 0.511 0.372 0.387 

Standard 

deviation 
0.0127 0.1533 0.0166 0.1958 0.1367 

 

 

Fig. 6-10 Samples of posterior distribution of  ,   and   

 

6.5.3 Uncertainty propagation  

Using the samples of   and   generated by Eq. (6.17), the samples of kq  for various stress 

levels are predicted and the 90% credible interval is estimated. Results are shown in Fig. 6-11 

and compared with measured data available for the four stress levels. Predictions of the 90% 

credible intervals take into account the uncertainty in the hyper-parameters. Results are also 

presented for the 90% credible intervals estimated by ignoring the uncertainties in the hyper-

parameters. This is achieved by drawing samples from the distribution  ˆˆ| , θ θθ μ Σ  and 

propagating these samples for predicting the fatigue life for different stress levels in Fig. 6-11. 

It can be seen that the 90% uncertainty intervals considering the uncertainties in the hyper 

parameters are narrow enough and contain the fatigue data available at the four stress levels. 

Moreover, these uncertainty intervals are comparable to uncertainty intervals obtained by 

methods based on HBM [38,39]. The uncertainty intervals computed using the MPV of the 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



197 

hyper parameters, ignoring the uncertainties in the hyper parameters, are narrower and 

contain well a large percentage of fatigue data. It is evident, however, that propagation based 

on the MPV of the hyper parameters fail to fully contain all the data. The discrepancy 

between the two credible intervals is expected to decrease as one includes fatigue data from 

more than four stress levels.  

 

Fig. 6-11 Predicted 90% credible intervals and comparison with measured fatigue data 

 

Finally, from the results in Fig. 6-9, it is observed that the values of   are not close to 

zero, which means there are some discrepancies between predicted PDFs and the measured 

PDFs. This is also depicted in Fig. 6-11, as well as in Fig. 6-12 comparing, for each stress 

level, the prediction of the Gaussian PDF of kq  based on the model to the Gaussian PDF 

based on the measurements. For the model predictions, the PDF corresponding to the most 

probable values of the hyperparameters is presented along with the PDF taking into account 

the uncertainties in the hyper parameters. It can be seen that the most probable values of two 

PDFs in each figure are consistent, while the uncertainty predicted using only MPV is 

narrower than that considering uncertainties of hyper parameters. The reason for the 

discrepancies between measured and model predicted PDFs is that the variation of the 

available fatigue data from the four stress levels deviates from the linear model, so that the 

predictions from the linear model cannot exactly account for the mean and variance of 

experimental data for all four stress levels simultaneously.  

 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:13:57 EEST - 137.108.70.13



198 

 

Fig. 6-12 Comparison of PDF of experimental data and model predicted PDFs for the four 

stress levels  

6.6 Conclusion  

The new Bayesian inference method proposed in this work addresses the issue of 

underestimation of the uncertainty in the model parameters due to model error, mentioned in 

[24], arising from multiple measurements available for a structure or measurements available 

for members of a population of identically manufactured structures [18,19]. The proposed 

method offers an alternative to HBM methods recently proposed in the literature [21,25] to 

correctly address the uncertainty in the model parameters. Based on the proposed framework, 

uncertainties are embedded in the model parameters by assigning a Normal distribution with 

mean and covariance constituting the hyperparameters to be estimated using Bayesian 

inference. The posterior distribution of hyper parameters of the model parameters is directly 

computed by Bayes theorem applied on KL-div measures between the model predicted PDF 

and the PDF of the experimental data. In particular, the proposed framework is applicable 

when the statistics of the measured quantities are available. Computationally efficient and 

insightful analytical expressions for the posterior distribution of the hyperparameters were 

developed for the case for which the PDFs are approximated by Normal distributions. In 

particular, Normal distributions for the predictions arise when the output QoI depend linearly 

on the model parameters. In this case the posterior PDF of the model parameters depends on 

the lower two moments of the respective PDFs. This representation of the posterior is also 

used for non-Gaussian PDFs to approximate the uncertainty in the model parameters. For 
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nonlinear relations between the output QoI and the model parameters, the univariate 

dimension reduction method (UDRM) is used to efficiently estimate the involved multi-

dimensional integrals for the lower two moments of model predicted PDF.  

An application to structural dynamics based on measured modal properties from a group 

of identically manufactured 3-DOF systems is presented based on simulated data to illustrate 

the proposed framework. The effectiveness of the methodology is demonstrated by noting 

that the estimates of hyperparameters, model parameters, and uncertainties recover the values 

used to simulate the data. Also, the method is applied to the quantification of uncertainties of 

the parameters of S-N curves based on the experimental data from fatigue tests, 

demonstrating that the proposed framework can also obtain competitive results to alternative 

methods based on HBM.  

 

Appendix A 

Introduce the function  ,L h  defined as the negative of the logarithm of the posterior 

distribution in Eq. (6.13) 

    2
, ln , | = ln ( ;{ },{ })

2

q

q k k

n
L p n J y q  



   


  h h h   (A.1) 

where the prior PDF  p h  is assumed to be uniform. Using Taylor series expansion with 

respect to variables h  about the most probable value ĥ  of  , |p  h , given by  

 ˆ arg min ( ;{ },{ })k kJ y q
h

h h   (A.2) 

and keeping the first two non-zero terms in the expansion, the posterior PDF 

    , | exp ,p L    h h  can be approximated as (valid for larger number of output 

quantities)  

     2ˆ ˆ, | ,p p       hh h | h Σ   (A.3) 

where the covariance matrix 2 ˆ
 hΣ  equals to the inverse of Hessian matrix ˆ( , )H h  of the 

function  ,L h  evaluated at ĥ  and given by 
2

ˆ( )
qn


H h , where 

2

ˆ

( ;{ },{ })ˆ( ) k kJ y q







 
h h

h
H h

h h
  (A.4) 
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So the covariance matrix ˆ
hΣ  is given by 11ˆ ˆ( )

qn

hΣ H h . The MPV can be directly 

computed using an optimization tool, while the hessian matrix can be computed numerically 

or analytically [40,41]. 
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Chapter 7. Conclusions and Future Work 

7.1 Concluding Remarks 

This thesis has presented novel methodologies for performing uncertainty quantification and 

propagation in structural dynamical simulations, with Bayesian inference as the platform for 

integrating physics-based models of dynamical structures, and measurement information 

collected during system operation. The presented methodologies provided a versatile and 

efficient Bayesian probabilistic framework to properly account for and quantify the parameter 

uncertainties, realistically predict the output responses as well as efficiently assess system 

reliability and robustness to uncertainty. Key conclusions and innovations of this thesis are 

outlined as follows.  

A hierarchical Bayesian modeling (HBM) framework is developed to account for the 

uncertain variabilities due to model error, based on modal properties for linear systems and 

time histories responses in nonlinear systems. This framework introduces probabilistic 

models for the model parameters as well as the prediction error parameter that depend on 

their hyper parameters to capture the uncertainties due to variabilities from test to test. 

Asymptotic approximations have been developed within the HBM framework, providing 

insights for the interpretations of different sources of uncertainties. Specifically, according to 

the framework, uncertainty due to model error arising from experimental, operational, 

environmental and manufacturing variabilities is embedded in the structural model 

parameters by assigning a parameterized prior probability distribution in the model 

parameters with hyperparameters to be inferred from multiple datasets available. The 

unmodelled dynamics is quantified by a Gaussian prediction error term with covariance to be 

either estimated from the available datasets or further described by parameterized probability 

distributions to account for the variability of the prediction error covariance matrix over the 

available datasets. Analytical expressions for the hyper parameters reveal that the 

uncertainties due to variabilities that arise from the multiple data sets are irreducible and 

dominant as compared to the identification uncertainties estimated within a data set. 
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Conventional Bayesian technique fails to take into account such uncertainties, resulting in an 

underestimation of the parameter uncertainties, while the proposed HBM framework provides 

more reasonable account for the parameter uncertainties. Besides the insightful expressions, 

the asymptotic approximations considerably improve the computational efficiency of the 

HBM framework compared to the framework using a full sampling procedure. Within this 

framework, uncertainties of model parameters and prediction error parameter can be 

propagated to predict more reliable uncertainty bounds for observed and unobserved output 

quantities of interests. Reliability analysis perspective has been also incorporated into the 

framework to account for the data-driven uncertainty in the model parameters in the 

prediction of the probability of failure of dynamical systems. Simulated and experimental 

studies with identified modal properties are utilized for calibrating models, predicting 

responses and updating system reliability. Results from these studies demonstrate that the 

proposed HBM framework provides better understanding of parameter uncertainties and 

offers realistic uncertainty bounds of response predictions as compared to the conventional 

Bayesian method which severely underestimates the parameter uncertainties and lumps all 

the uncertainties into the prediction error function.  

An innovation of this thesis lies in the capability of capturing diverse sources of 

uncertainty in the model parameters within a multi-level modeling approach for a structure 

consisting of components, subsystem and systems levels.  Test and monitoring data from 

each level in the modeling hierarchy provide essential information required to build 

confidence in the models used, guiding the process of selecting, calibrating and improving 

the mathematical models. Data-driven modeling is important for narrowing the uncertainties 

through the modeling and simulation process of the system, leading to improved and accurate 

predictions of the system performance and safety under various operational and 

environmental conditions. To build reliable models from multi-level data one should also 

take into account that models set up at component, sub-system and system levels may share 

common parameters and thus these common parameters should be inferred from data 

obtained from more than one modeling level. The aforementioned HBM framework has the 

great potential to be extended to the multi-level modeling approach of a structure. In such a 

model hierarchy, hyper parameters are defined as the sharing information between lower 

levels and higher levels of a system. The estimation process of the hyper parameters is 

conducted based on the available datasets in all levels of model hierarchy, and the response 

QoI are predicted according to the uncertainties obtained from the parameter estimation 

process. A simple dynamical system example is used as a verification of the concept and a 
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benchmark of the proposed method in the context of real engineering applications. Results 

indicated that the proposed framework can consider the overall information of a multi-level 

structure to account for all datasets available at different levels of hierarchy, thus building 

more reliable models and obtaining more accurate response predictions.  

This thesis also revisits the underestimation problem of parameter uncertainties within the 

conventional Bayesian framework, proposing three data features-based models for likelihood 

informed Bayesian model updating. Data features herein are introduced as the average of the 

square of the discrepancy between the measurements and model predictions. Two data 

features-based models are developed for the uncorrelated prediction error case, while one 

data features-based model is presented for spatial correlated case. Analytical expressions are 

carried out for the model parameters with the uncorrelated data features models. Based on 

such analytical solutions, relations between the proposed models and the likelihood free ABC 

method are investigated and obtained. Deriving such relations are beneficial especially for the 

choices of the tolerance values used in ABC algorithm. A dynamical system is employed for 

demonstration purposes. Model updating, response predictions and model selections are 

conducted using the proposed models. Conventional Bayesian formulations using a Gaussian 

prediction error model are also performed and compared with the proposed models. Results 

showed that the proposed data features-based model inference using an exponential 

distribution provides the best one over the three proposed distributions. It is also indicated 

that all the proposed models provide consistent confidence intervals for the model parameters 

which are independent of the sampling rate that is used to accurately represent the same time 

histories response data. In contrast, the conventional Bayesian formulation fails to properly 

account for different sampling rates, resulting to unrealistically small uncertainties as the 

sampling rate increases or the number of data points representing the time history increases.  

For the case where the multiple data sets are not available, but only given by PDF or 

statistics of the measurements, this thesis proposed a statistics-based Bayesian framework for 

uncertainty quantification and propagation in engineering simulations. As in the HBM 

framework, uncertainties are embedded in the structural model by assigning a parameterized 

prior probability distribution of the model parameters, with the hyperparameters to be 

estimated from the multiple statistics available for measured QoI. In this framework, the 

discrepancy of the PDFs or statistics between the measurements and model predictions are 

quantified using a measure of KL-divergence. The posterior PDF of the model parameters 

depends on the lower two moments of the respective PDFs. This representation of the posterior is 

also used for non-Gaussian PDFs of measurements and model predictions to approximate the 
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uncertainty in the model parameters. The proposed framework is advantageous to engineering 

problems especially for S-N curve fatigue analysis where difficulties arise from the selection 

of multiple data sets. The proposed framework can also be viewed as an alternative to the 

HBM framework to tackle the situation where only PDFs or statistical characteristics are 

available for measurements. Comparisons are also made between the proposed method and 

conventional Bayesian approach. It has been shown that the proposed method is more flexible 

to quantify the parameter uncertainties and obtain better predictions than that from the 

conventional Bayesian approach.  

7.2 Future Work 

According to the current development of Bayesian methodologies for uncertainty 

quantification and propagation in structural dynamical simulations in this thesis, several 

potential future work could be followed: 

1. Hierarchical modeling framework for multi-level models with model nonlinearities. 

Although the proposed Bayesian methodologies in this thesis are conceptually distinct, 

mathematically elegant, theoretically rigorous, it has not been tested in the real 

changeling dynamical problem. Specifically, for more complicated multi-level models, 

the effectiveness for model nonlinearities needs to be demonstrated using the 

hierarchical modeling framework integrating real data from components, subsystems 

and systems. The computational issues for such a complicated model could be 

addressed using model reduction techniques or surrogate models.  

 

2. Hierarchical Bayesian neural network for model calibration and verification in 

structural dynamics. 

The methodologies presented in this thesis are based on physics-based models and 

measured data during system operation. A pure data-driven approach is also preferred 

as one of the future directions incorporating into the HBM framework. For this, 

Bayesian neural network could be potentially applied to link the model input and 

output. Analytical expressions could be derived and further developed for general 

cases in structural dynamics. This might be an important step forward on the 

development of HBM framework.  

 

3. Hierarchical Bayesian learning for damage identification. 
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This thesis proposed a novel hierarchical Bayesian modeling framework for model 

updating and response predictions in structural dynamics. Damage identification is of 

great importance in the field of dynamical structures, especially in the area of 

structural health monitoring. This thesis lacks sufficient discussions and applications 

on this topic. However, it has the great potential to be applied to this area to consider 

the local damage affected by the uncertainty due to variability arisen from 

environmental conditions and different loading excitations. Sparse Bayesian learning 

techniques can be incorporated within the HBM framework to effectively account for 

the sparseness of damage and address the ill-conditioning associated with the large 

number of model parameters required to be introduced in order to cover all possible 

damage scenarios.    
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