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ABSTRACT 

There is a substantial ongoing integration of robots in the manufacturing process. Most of 

these robots have a rigid movement repertoire, making their upkeep and managing 

challenging, both in economical and manning terms. The market’s constant demand for 

better, newer and more intricate products can make these robots swiftly obsolete, creating 

more waste and unemployment since the need of more specialized workers increases. 

This thesis focuses on researching, designing and implementing a small scale, low cost and 

environmentally friendly robotic arm. The main goal behind its construction is its flexibility; 

By creating adaptable and easily tinkered modes of operation, this robotic arm aims to 

contribute to industrial construction lines, ameliorating the working conditions of the 

personnel and facilitating their training, without requiring a lot of proficiency in programming 

or mechanical skills.  

 

KEYWORDS 

Robotic Arm, Computer Vision, OpenCV, Micro Servos, 3D Printing, Raspberry Pi, Fusion 

360, Python 
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ΠΕΡΙΛΗΨΗ 

Υπάρχει μια τεράστια συνεχής ενσωμάτωση ρομπότ στη κατασκευαστική διαδικασία. Τα 

περισσότερα από αυτά τα ρομπότ έχουν ένα άκαμπτο ρεπερτόριο κινήσεων, καθιστώντας τη 

συντήρηση και την διαχείρισή τους δύσκολη, τόσο από οικονομική όσο και από επανδρωτική 

άποψη. Η συνεχής ζήτηση της αγοράς για καλύτερα, νεότερα και πιο περίπλοκα προϊόντα 

μπορεί να κάνει αυτά τα ρομπότ παρωχημένα, δημιουργώντας περισσότερα απόβλητα και 

ανεργία, καθώς αυξάνεται η ανάγκη πιο εξειδικευμένων εργαζομένων για τον χειρισμό τους. 

Η διατριβή επικεντρώνεται στην έρευνα, το σχεδιασμό και την εφαρμογή  ενός 

ρομποτικού βραχίονα μικρής κλίμακας, χαμηλού κόστους και φιλικού προς το περιβάλλον. 

Ο κύριος στόχος κατά την κατασκευή του είναι η ευελιξία του. Δημιουργώντας 

προσαρμόσιμους και εύκολα τροποποιημένους τρόπους λειτουργίας, αυτός ο ρομποτικός 

βραχίονας ευελπιστεί να συνεισφέρει στις βιομηχανικές γραμμές κατασκευής, βελτιώνοντας 

τις συνθήκες εργασίας του προσωπικού και διευκολύνοντας την εκπαίδευσή τους, χωρίς να 

απαιτείται μεγάλη επάρκεια στον προγραμματισμό ή στις μηχανικές δεξιότητες. 

 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ 

Ρομποτικός Βραχίονας, Οπτική Υπολογιστή, OpenCV, Micro Servos, 3D Εκτύπωση, 

Raspberry Pi, Fusion 360, Python 
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CHAPTER 1 

INTRODUCTION 

 

The technology-driven world is filled with promise and challenges most of which are 

created by the incessant developments in machine learning, robotics and artificial 

intelligence  [1]. Science and Technology have reached milestones previously thought of 

only in science fiction movies, milestones such as creating self-driven cars that will soon be 

a common sighting in the streets, microscopic robots which can be injected into the human 

body and be remotely operated [2], even hiring algorithms which promise employers more 

efficient use of their recruitment budgets. All these new manifestations of powerful forms 

of automation that increase productivity and our quality of life, bring forth numerous 

challenges that have already sparked public concern.  

Their usage has substituted a plethora of human activity and labor in the last decade. 

This substitution was needed due to the increasing cost of human labor (Figure 1.1.1) [3] 

in combination with the widespread of automation, the decrease of the robotic systems 

cost and the demand to produce more with less [4]. All the aforementioned have guided 

the industry and academia’s focus towards a deeper integration of industrial robots in the 

assembly lines of products that were traditionally assembled using more specific and 

dedicated automation machines or manual labor.  

 

Figure 1.1.1 Indexed Unit Labor Costs in the Manufacturing Sector of Selected Countries, 2000-2016 , [3] 
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There is a current tendency in the manufacturing process of reducing the production lot 

sizes which is caused by multiple factors. The most dominant ones are the expanding 

immersion of Lean approaches [5] and the never-ending customization of products which 

tend to complicate all the variants in a production line. In a mass production line, the 

dominant equipment is usually a rarely reconfigured, fixed automation, therefore mass-

customization is challenging especially when the production rates and the reconfiguration 

efficiency is taken into account. The lack of flexible equipment, user-friendly programming 

and ability for more intricate operations are some of the drawbacks which characterize a 

plethora of the current industrial robots. Drawbacks which prohibit their maintenance and 

operation by a non-expert user. 

 

1.1 Motivation 

The increasing complexity and intricacy which consumer products demand nowadays 

have surpassed the more rigid production line of an automobile or a food packaging item 

and manufacturers require more flexible tools in order to accommodate and keep up with 

what their customers want. The design period of the product is also getting shorter while 

the consumers’ tastes and needs change rapidly and can even occur in a single production 

run. Since the existing production lines are designed to produce countless products over a 

significantly extended period of time and the robots which are utilized are programmed in 

such a way that they only perform this one, repetitive task and are even unable of the 

smallest adjustment, the need of a low cost, safe and more user-friendly, flexible robot is 

paramount, always keeping in mind the uncertainty issues of the existing consumer market. 

 

1.2 Problem definition 

This thesis’ primary objective is to study, design and implement a low cost, small scale 

robotic arm which can be later integrated in any mass production line of small-sized 

lightweight parts, all the while maintaining and easily tinkering the flexibility of its 

movement repertoire, programming capabilities and user-friendliness. 
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1.3 Thesis structure 

In Chapter 2 some basic robot history as well as the current types of industrial robots 

and methods are presented. 

In Chapter 3 the hardware and techniques which were utilized for the robot’s 

implementation are discussed. 

Chapter 4 explores the 3D printing, materials and modelling process which were 

employed. 

In Chapter 5 the software which was utilized for the programming and the modelling 

part is presented. 

Chapter 6 spotlights the color model theory and the manner of which the image 

processing for the object detection was designed.  

A brief description of the robot’s action repertoire is presented in Chapter 7. 

Finally, Chapter 8 comprises of the conclusions and the suggestions for further 

improvement of this thesis’ robotic arm implementation.  
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CHAPTER 2 

ROBOTS AND INDUSTRIAL AUTOMATION 

2.1  Robots in History 

The term “robot” was first introduced by the Czech writer Karel Čapek [6] in his play, 

R.U.R. in 1920 and was referred to as an artificial automata. Although, the word “robot” 

can be attributed first to the Slavic language since it contains the word “robota”, meaning 

forced labor, Karel’s usage of it hits closer to its current meaning because it suggested the 

“technological creation of artificial human bodies without souls”  [7]. Defining the word 

“robot” is quite difficult because of its multifaceted aspects. According to the Robot 

Institute of America (1979), a robot can be defined as a “reprogrammable, multifunctional 

manipulator designed to move material, parts, tools, or specialized devices through various 

programmed motions for the performance of a variety of task.". 

The earliest conception of a robot dates back to the 3000 B.C in Egypt, where a water 

clock with human figurines that were striking bells every hour was built. Numerous robot-

like creations were designed and completed since then all around the world. Nonetheless, 

the earliest robot that mostly resembles today’s definition of the word robot, was 

presented in 1950, in Louisville, Kentucky: “Unimate” [8], from “Universal Automation”, a 

reprogrammable manipulator and was created and patented by George C. Devol (Figure 

2.1.1). Although Devol attempted to sell his product in the industry, he failed and it was in 

the late 1960s when Joseph Engleberger, after acquiring and modifying Devol’s patent, 

succeeded in selling it as an industrial robot which General Motors first integrated in its 

manufacturing process in 1961. For this achievement, Engleberger is considered the 

“Father of Robotics”.  

In 1978 the first “Pick and Place” Robot, a four-axis Selective Compliance Assembly 

Robot Arm (SCARA) was designed by Hiroshi Makino in Japan [9]. The SCARA study group 

that was formed for the robot’s development had participants from companies like Fujitsu 

and Toshiba. Each company commercialized its own version of the SCARA robot and 

integrated it in their manufacturing process. 
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The case of Amazon’s acquisition of Kiva Systems [10] highlights the impact that robots 

have in modern industries: 775 million dollars were spent to integrate the first robot 

automated fulfillment system into a warehouse. This integration relieved a lot of workers 

from hazardous manual labor and accelerated the pick and place process. 

According to the International Federation of Robotics (IFR), an estimated 2.7 million 

industrial robots are currently in operation worldwide [11] and the number keeps growing, 

noting the incessant progress and integration of robots in the manufacturing industrial 

scene. 

 

 

Figure 2.1.1 UNIMATE, the First Industrial Robot image  

(Image credit: SSPL/Getty Images) 

 

 

2.2 Industrial Robots 

Prior to analyzing the basic method behind the development of this thesis robotic arm, 

a brief description of the six main types of robots used for industrial purposes can be found 

below: 
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Articulated robots   

With a range of 2 to 10 or more joints, this 

articulated robot design features a base which 

is connected to one of its twisting joints and 

the rest of them are linked and arranged in a 

“chain”, supporting each other further in the 

chain. Each joint provides an additional degree 

of freedom or range of motion and their 

configuration closely resembles a human arm. 

Most of the articulated robots use 6 joints and 

are applicable in assembly lines, material 

handling, packaging and a plethora of other 

types of industrial lines (Figure 2.2.1). 

 

Cartesian coordinate robots 

A Cartesian coordinate robot (also called 

linear, gantry or rectilinear robot) uses the 

Cartesian coordinate system, working on three 

linear aces. Rather than rotating, its three 

principal axes of control are linear and move in 

straight lines (up and down, in and out, and 

side to side), making it highly flexible in its 

design since the user can adjust with ease the 

speed, precision, stroke and configuration of 

the robot (Figure 2.2.2). Their most frequent 

usage is in 3D printing, Computer Numerical 

Control (CNC) and pick and place machines. 

 

Figure 2.2.1 6-Axis Articulated Robot 

(Image downloaded from 

https://www.roboticautomationsystems.com/6-axis-

robots.html in June 2021) 

Figure 2.2.2 Rexroth 3-Axis Cartesian Robot 

(Image credit: Bosch Rexroth Corp.) 

https://www.roboticautomationsystems.com/6-axis-robots.html
https://www.roboticautomationsystems.com/6-axis-robots.html
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Cylindrical coordinate robots 

Cylindrical Robots have a rotary joint at the base 

and at least one prismatic joint (also known as a 

slider, which provides a linear sliding movement 

between two bodies) connecting its links. The 

rotary joint provides a rotational motion on the 

joint axis, while the prismatic joints work linearly, 

moving in a vertical or sliding motion depending on 

its position (Figure 2.2.3). With a compact design, 

they are excellent in simple assembly lines, coating 

applications or machine tending. 

  

Spherical coordinate robots 

These robots are also known as polar robots, spherical mobile robots, or ball-shaped 

robots and are mobile robots with spherical external shape. Their arm is connected to the 

base with the help of a twisting joint and one linear and two rotary joints connect the links. 

The aces create a polar coordinate system, enveloping a spherical-shaped workspace but 

restricting the arm within it. They can be operated as autonomous robots and are mainly 

used in situations where surveillance or monitoring conditions are needed. Unimate 

(Figure 2.1.1) is an example of a polar robot.  

 

SCARA robots 

Selective Compliance Assembly Robot Arm 

(SCARA) robots consist of two parallel joints 

with a vertically positioned rotating shaft and 

a horizontally moving end effector attached. 

They are mostly compliant in the x-y direction 

and quite rigid in the z direction. They excel in 

lateral movements and are faster moving than 

the Cartesian robots. SCARA robots are mostly 

used in bio-med applications, packaging, 

palletizing and machine loading (Figure 2.2.4). 

Figure 2.2.3 SciClops Microplate Handler 

(Image downloaded from 

https://hudsonrobotics.com/microplate-handling-

2/platecrane-sciclops-3/ in June 2021) 

Figure 2.2.4 EPSON SCARA LS10-B702S 

(image credit: Seiko Epson Corporation) 

https://hudsonrobotics.com/microplate-handling-2/platecrane-sciclops-3/
https://hudsonrobotics.com/microplate-handling-2/platecrane-sciclops-3/
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Delta robots 

Delta robots are also known as parallel 

robots and consist of three arms connected 

with a common base. Each end effector 

maintains its orientation due to the use of 

parallelograms in the arm. They work in a 

dome-shape envelope and due to the precise 

and high-speed movement of each joint of the 

end effector (Figure 2.2.5), are heavily used in 

food, pharmaceutical, electronic and mainly in 

industries which heavily rely on pick and place 

applications. 

 

 

2.3 Method Description: Flexible Automation 

The basic concept behind the design of this thesis robotic arm is its ability to be as 

flexible, purposeful, low cost and ecofriendly as a robot used in an industrial line can be. All 

the aforementioned qualities can be summarized in Flexible Automation. Flexible 

automation is the ability of a robot (or a system) to be easily and quickly reconfigured for 

changes which may occur in product design and production. While fixed automation may 

be less expensive in short term, its use can, in the long run, save production costs. It has 

the ability to reduce the production costs while improving the quality of the product and 

eliminate numerous health and safety issues. 

The typical features of flexible automation can be summed up in the following [12] : 

- Capability to change the sequence of operations and adaptability to different 

product configurations. The system should be able to be reprogrammed so that the 

operation sequence can be manipulated. 

-  Flexibility which will allow the system to be suited for different products. 

- Low production rates (as compared to fixed automation system). 

- High investment cost (but not as high as in case of fixed automation). 

Figure 2.2.5 Delta robot MPP3S 

(Image credit: YASKAWA Europe GmbH) 
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The goal of this robotic arm is to be able to mirror the motions of its counterpart, learn 

from it and repeat the given sequence of its movements in a loop, as well as be able to 

pinpoint the coordinates of given shapes through a camera with the intention of mimicking 

its action path. 
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CHAPTER 3 

HARDWARE PRESENTATION 

3.1 Raspberry Pi 4  

For the implementation of the robotic arm, a single board computer (SBC) is used, the 

Raspberry Pi 4 Model B [13] (Figure 3.1.1). It is a versatile and cheap option which can be 

utilized as the control module of the arm. Despite its small size, it is a fully featured 

computer with multiple connection ports and numerous Hardware on Top (HAT) that can 

be added directly to the board, making it convenient to use as a normal desktop computer 

by plugging a mouse, a keyboard, and a monitor.  

Specifications: 

CPU:     4× Cortex-A72 1.5 GHz 

GPU:     Broadcom VideoCore VI @ 500 MHz 

Memory (SDRAM):   4 GiB 

USB 2.0 ports:    2 

USB 3.0 ports:    2 

On-board storage:   MicroSDHC slot, USB Boot Mode 

Power source:   5 V via USB-C or GPIO header 

Environment:   Operating temperature 0–50ºC 

Standard 40-pin GPIO header (fully backwards-compatible with previous boards) 

 

Figure 3.1.1 Raspberry Pi 4 Model B Layout  

(Raspberry Pi Image Credit: Chicago Electronic Distributors) 
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3.2 GPIO 

GPIO stands for General Purpose Input/Output. The Raspberry Pi model used in this 

thesis has 40 GPIO pins (Figure 3.2.1), a practical number since it allows the user to connect 

a plethora of microcontrollers and electronic devices. These pins are practically the physical 

interface between the Pi and the external environment, denoting that they are the ones 

responsible of offering digital input/output. 

 

Figure 3.2.1 Raspberry Pi 4 Model B Pin Layout 

 (Image downloaded from https://www.programmersought.com/article/92047061453/ in June 2021) 

 

Pin Explanation: 

Voltages 

 

The board includes two 5V pins and two 3V3 pins, as well as several 

ground pins (0V), which cannot be configured. The remaining pins have 

their outputs set to 3V3 and their inputs to 3V3-tolerant (meaning they 

are all general purpose 3V3 pins). 

 

Outputs 

 

A GPIO pin assigned as an output pin can be set to high (3V3) or low (0V). 

 

Inputs 

 

A GPIO pin assigned as an input pin can be read as high (3V3) or low (0V). 

This is facilitated by the use of internal pull-up or pull-down resistors. Pins 

GPIO2 and GPIO3 have fixed pull-up resistors, but for other pins this can 

be configured in software. 

https://www.programmersought.com/article/92047061453/
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The GPIO pins can be used not only as simple input and output devices but also with a 

variety of alternative functions which some are available on all the pins and others on 

specific pins. 

 

PWM  

(pulse-width 

modulation) 

 

Software PWM available on all pins 

Hardware PWM available on GPIO12, GPIO13, GPIO18, GPIO19 

SPI SPI0 : MOSI (GPIO10); MISO (GPIO9); SCLK (GPIO11); CE0 (GPIO8), 

CE1 (GPIO7) 

SPI1 : MOSI (GPIO20); MISO (GPIO19); SCLK (GPIO21); CE0 (GPIO18); 

CE1 (GPIO17); CE2 (GPIO16) 

I2C 

 

Data: (GPIO2); Clock (GPIO3) 

EEPROM Data: (GPIO0); EEPROM Clock (GPIO1) 

Serial TX (GPIO14); RX (GPIO15) 

 

 

In order to facilitate the pin connectivity since multiple micro servos, potentiometers 

and other hardware are going to be connected, a GPIO extension board is connected along 

with 40 rainbow cables, into a solderless breadboard. It works like a bridge between the 

Raspberry Pi GPIO pins and the breadboard. 

 

A breadboard is a solderless device used for testing circuit designs and temporary 

prototyping electronics. It is consisted of a perforated block of plastic with numerous tin-

plated phosphor bronze or nickel silver alloy spring clips under the perforations [14]. The 

electronic components are interconnected by inserting their lead (or terminals) into the 

breadboard’s perforations and then making connections with wires where needed. The 

breadboards’ strips of metal allow the connection of those components as demonstrated 

in Figure 3.2.2 :  the top and bottom rows of perforations are connected horizontally and 

split in the middle while the remaining perforations in between are connected vertically. 
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Moreover, breadboards do not work with surface mount components since they have 

short, flat pins on their sides which are designed to be soldered onto the surface of a 

printed circuit board, instead of through holes. 

When a dual in-line pin package (DIP) integrated circuit (IC chips such as the MCP3008) 

is plugged into a breadboard, it must be situated on each side of the notch which the 

breadboard has in the middle, otherwise it might be short-circuited. This notch provides 

limited airflow (cooling) to those chips. 

 

 

Figure 3.2.2 Breadboard Internal Connections  

(Image downloaded from  

https://www.researchgate.net/publication/266472001_Data_Acquisition_and_Filter_Design/figures?lo=1 in June 2021) 

3.3 SPI Connectivity 

Unfortunately, the Raspberry Pi does not support analog input since it lacks an 

integrated Analog-to-Digital Converter (ADC) device. This drawback can be remedied with 

the help of ADC devices which can support analog input and allow the use of analog 

sensors. The MCP3008 10-bit Analog-to-Digital Converter (Figure 3.3.1) was chosen for the 

potentiometer’s analog data conversion of this project as it provides high performance with 

low power consumption at a cheap price. It also provides 8 input channels which is ideal 

for a robot with multiple degrees of freedom (Figure 3.3.4).  

 

https://www.researchgate.net/publication/266472001_Data_Acquisition_and_Filter_Design/figures?lo=1
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MCP3008 specifications [15]: 

 

The most used interface between peripheral ICs (such as sensors, ADCs, shift registers 

and others) is the Serial Peripheral Interface (SPI) (Figure 3.3.2). It has a synchronous, serial, 

full-duplex master-slave-based protocol and it was designed by Motorola. 

 

 

Figure 3.3.2 SPI's Protoco 

Max Sample Rate (ksamples/sec)   200 

Typ. INL ± (LSB) 0.5 

Max. Supply Current (µA) 500 

Input Type Single-ended 

# of Input Channels 8 

Resolution (bits) 10 

Interface SPI 

Temp Range (°C) -40 to +85°C 

Input Voltage Range (V) 0 to 5.5 

Figure 3.3.1 MCP3008 
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There is a notion of master and slave for this interface. In general, an Integrated Circuit 

(IC) is chosen as the slave, the device that “obeys” the master. The master is a device that 

generates the clock signal dictating when the communication is going to happen, and it is 

usually a micro controller or a Field-Programmable Gate Array (FPGA). The data from the 

master or the slave is synchronized on the rising or falling clock edge. Master and slave can 

transmit data simultaneously. A SPI device can support higher clock frequencies compared 

to an I²C interface (which is a synchronous, multi-master, multi-slave, packet switched, 

single-ended, serial communication bus) and can also have one master and one or several 

slaves. The selection of the slave is dictated by the chip select signal from the master. This 

is an active low signal and is pulled high when we need to disconnect the slave from the 

bus. When multiple slaves are used, an individual chip select signal for each of the slaves is 

required from the master (Figure 3.3.3).  

 

MOSI and MISO are the data lines: MOSI transmits data from the master to the slave 

and MISO transmits data from the slave to the master. 

 

 

Figure 3.3.3 SPI with Multiple Slaves 
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For the connection of the MCP3008 to the Raspberry Pi the following wirings were needed ( 

Figure 3.3.5): 

 

-MCP3008 VDD to Pi’s 3.3V 

-MCP3008 CLK to Pi’s SCLK 

-MCP3008 VREF to Pi’s 3.3V 

-MCP3008 AGND to Pi’s GND 

-MCP3008 DGND to Pi’s GND 

-MCP3008 DOUT to Pi’s MISO 

-MCP3008 DIN to Pi’s MOSI 

-MCP3008 CS to Pi’s D5 

 

 

 

 

Figure 3.3.5 MCP3008 Wiring to Raspberry Pi 

3.4 Potentiometers and Soldering 

Potentiometers, also known as pots, are variable resistors which provide variable 

resistance by turning the knob situated on their head. Two kinds of pots exist: resistance 

(R-Ohms) and power (P-Watts) pots.  

Figure 3.3.4 MCP3008 Pin Layout  

(Image downloaded from 

https://digitalsystemdesign.in/interfacing-adc-with-

fpga/ in June 2021) 

https://digitalsystemdesign.in/interfacing-adc-with-fpga/
https://digitalsystemdesign.in/interfacing-adc-with-fpga/
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The resistance potentiometers are classified according to the current they allow: the 

greater the resistor value of the pot, the smaller the current which will flow (also known as 

Power (wattage) rating). The higher the power rating, the bigger the resistor gets. For 

potentiometers, the power rating is 0.3W making it convenient to use for low current 

circuits. 

A potentiometer is basically a resistor with one variable end. The terminals 1 and 3 are 

fixed at the two edges of the resistive track and by measuring the resistance between them 

we will get the value of the potentiometer (Figure 3.4.1). The values of the potentiometers 

available at the market are usually 500Ω, 1K, 2K, 5K, 10K, 22K, 47K, 50K, 100K, 220K, 470K, 

500K, and 1 M.    

By placing the potentiometer’s wiper exactly at 20% from terminal 1 and measuring the 

resistance between the first and the second terminal, we will get 20% of the full resistive 

value of the potentiometer, while measuring across the second and the third terminal will 

get the rest 80% of this value. Consequently, by measuring the variable resistance when 

turning the potentiometer’s knob, we can alter the resistance and set the desired value. 

 

 

Figure 3.4.1 Potentiometer's Diagram  

(Image downloaded from https://components101.com/resistors/preset-potentiometer-trimpot-pinout-datasheet in June 

2021) 

 

Applications of a potentiometer:  

-Voltage and current control in electronic circuits 

-Volume, tone and linearity control in radio and television receiver 

-Analog input control knobs 

https://components101.com/resistors/preset-potentiometer-trimpot-pinout-datasheet
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For this project, the B10K potentiometer was selected (Figure 3.4.2). It is a resistance 

pot and is consisted of a 10K Ohm resistance. For the conversion of its analog input to 

digital, each potentiometer’s middle pin is connected to each channel of our MCP3008 

ADC, each left pin to the Pi’s GND and right pin to the Pi’s 3.3V. The arm consists of 3 

degrees of freedom, consequently, 3 potentiometers will be connected to channels 0,1 and 

2 of the ADC. 

 

 

Figure 3.4.2 B10K Potentiometer 

The B10K potentiometers’ tips are not prewired. Since these potentiometers will act as 

the joints of the robot, their distance between them and the breadboard might need to be 

bigger. To achieve flexibility in the construction and movement of the arm, soldering is 

unavoidable for connecting their tips with wires. 

 

Soldering 

The basic concept behind soldering is to bond two things together using solder, a metal 

alloy, as the glue. In electronics, soldering has the added requirement that the joints need 

to be electrically conducted. 

By using heat from an iron connected to a temperature controller, usually referred to as 

soldering iron (Figure 3.4.3), solder is melted onto the edges of the metals you wish to 

connect. When the solder cools down, it forms a strong permanent bond. 
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Figure 3.4.3 Soldering Iron. 

There are two types of solders: leaded and lead-free solder. The melting point of the 

lead in solders is 180 ºC. To transfer the heat from the soldering iron into anything we wish 

to solder, it is recommended to set the temperature of the soldering station above this 

number and preferably around 400 ºC. If we are using lead-free solder, this number would 

jump to 450 ºC. 

Most leaded solders consist of 60% tin and 40% lead. It is of paramount importance to 

note that lead is poisonous and good air ventilation is essential when working with it. Inside 

the solder, a little channel of flux is placed (Figure 3.4.4). Flux helps by stopping the 

oxidization process, making it easier for the solder to adhere. Solder must always be used 

on clean surfaces. 

 

Figure 3.4.4 Solder with Flux 
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There are two types of flux: active and passive. Active flux is acidic and corrosive. It takes 

layers off the metals that you are using when you solder. If it is not thoroughly cleaned off, 

it keeps corroding, destroying the electronics in the process. Passive flux is rosin flux. It is 

not corrosive, but it is still poisonous, so handwashing is recommended.  

Maintenance of soldering iron: always keep the tip of your iron clean by using a wet 

sponge or preferably by jabbing it into steel wool. 

Lastly, heat shrinks can be used on the joints. They are little tubes of plastic which come 

in ranges of different colors and sizes. Their usage is to seal up any joints instead of leaving 

them exposed, making the joints last longer. 

 

Procedure of Soldering: 

• Strip the wire from its insulation with a wire stripper and twist the end. Make sure both ends 

you wish to solder are clean. 

• The flux inside the solder only works at the time that it is melted so do not melt it first on the 

soldering tip. Use the soldering iron to get the wire hot and afterwards melt the solder onto the 

wire. 

• Repeat the above step on the other tip you wish to solder.  

• Put the heat shrink on the one side of your wire, away from the soldering iron so it does not 

melt prematurely. 

• Place both tips together, apply heat to the area and melt solder onto it. 

• Let it cool down. 

• Place the heat shrink on the joint. 

• Gently run heat from a lighter up and down the heat shrink. Be careful to not overheat 

otherwise it will be burnt. 

• Let it cool down. 

 

3.5 Micro Servos 

Servo motors are small devices with an external shaft. The shaft’s axis can be moved to 

different positions according to the coded signal which is sent to the servo. The servo will 

keep its position for as long as a signal is received from the input line. If the signal changes, 

the angle of the shaft will move accordingly. It offers precise control of angular or linear 

position, velocity, and acceleration.  
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Although they can be used in numerous practical applications such as remote-controlled 

airplanes and cars, they are extremely useful in robotics due to their micro mechanism, 

their built-in control system and the great deal of power they provide compared to their 

size. The energy which they consume is directly proportional to the mechanical load they 

receive: the lesser the load, the lesser the consumable energy. 

Most of the servo motors operate from 4.8V to 6.5V, the higher the voltage, the higher 

the torque they can achieve, but generally, they are operated at 5V. Roughly all servo 

motors can rotate from 0° to 180° thanks to their gear arrangement. To achieve a rotation 

of a 0° to 360°, a modification of the motor will be needed. Since the servos’ gears are easily 

susceptible to wear and tear, a servo with metal gears is preferred when heavier duties are 

required from the servo. 

If torque is of main concern, the most commonly available one is the 2.5kg/cm torque. 

This means that the motor can pull a weight of 2.5kg when it is suspended at 1cm.  

 

For this project, the SG90 Tower Pro Micro Servo was selected (Figure 3.5.1). 

Specifications: 

Dimension: 22mm x 11.5mm x 22.5mm 

Operating speed: 0.12second/ 60degree (4.8V no load) 

Stall Torque (4.8V): 17.5oz /in (1kg/cm) 

Temperature range: -30 to +60 

Dead band width: 7usec 

Operating voltage: 3.0V~7.2V 

 

Figure 3.5.1 SG90 Tower Pro Micro Servo 
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This servo has three wires which emerge out of its motor: a red, a brown and an orange 

one. The brown one is the ground wire and needs to be connected to the ground of the 

system. The red one powers the motor and usually needs 5V. Finally, the orange one is used 

to drive the motor through the pulse-width modulation (PWM) signal which it receives. We 

generate this signal with our microprocessor, the Raspberry Pi.  

By taking a closer look at the servo’s datasheet (Figure 3.5.2), we can understand how 

the direction of the motor is controlled:  

 

 

Figure 3.5.2 SG90 Tower Pro Micro Servo Datasheet 

This servo expects a pulse every 20 msec on their PWM pin. The pulse is active HIGH, 

and the width of the pulse determines the position (angle) of the servos shaft. The pulse 

can fluctuate between 1 msec and 2 msec. A 1 msec pulse positions the shaft at 0°. A 1.5 

msec pulse positions the shaft at 90° (centered in its range). A 2 msec pulse positions the 

shaft at 180°. Pulses with values in between these, position the shaft arbitrarily. 

 

3.6 Camera 

Complex teleoperative tasks generally require human control. Viewpoint control is vital 

in these tasks and helpful in automation. Nonetheless, teleoperating a robot with the 

assistance of indirect visual information can be technically challenging. The user is required 

to control both the movement of the camera and the robot’s arms among with many other 

parts. Due to the physical separation of the user from the target point and the indirect view 

of the site provided by the camera input, some significant challenges arise [16]. For 
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humans, camera positioning is challenging since it is a complicated task that can be prone 

to errors and a drain on the user’s resources.  

In this thesis’ robotic teleoperative task, the robotic system requires a user to remotely 

control the mechanical arm by using a master controller. This procedure cannot be 

characterized as an autonomous robotic system.  Correct detection of the robot’s position 

depends on obtaining distinctive features for the specific task we wish to achieve. 

Inadequate distinguishable features may deteriorate our system’s detection performance. 

By keeping the viewpoint of the camera fixed, the arm’s movement capability may be 

limited to the X and Y axis since the inputs of the visual sensors (i.e., the camera) do not 

provide clear information of the arm’s movement in the Z axis. However, the detection 

errors are diminished.   

The camera used on this project is the Raspberry Pi Camera Module V2 (Figure 3.6.1). It 

has a Sony IMX219 8-megapixel sensor, supports 1080p30, 720p60 and VGA90 video 

modes, as well as still capture. It attaches via a 15cm ribbon cable to the CSI port on the 

Raspberry Pi.  

 

Figure 3.6.1 Raspberry Pi Camera Module V2 
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CHAPTER 4 

3D PRINTING 

Digital fabrication technology, also known as 3D printing or additive manufacturing, is 

the process of creating a 3D object of any shape and form from a geometrical 

representation (usually a 3D model or other electronic data sources), by a successive 

addition of materials. It is widely used by R&D (research and development) departments of 

large companies in the field of agriculture, manufacturing, construction, locomotive, 

aviation, healthcare and many more.  

The first solid object printed by this method is credited to Hideo Kodama of Nayoga 

Municipal Industrial Research Institute [17]. Nevertheless, Charles Hull designed in 1984 

the first 3D printer and is considered the developer of the solid image process (known as 

stereolithography), and the STL file format which is the dominant format used in 3D 

printing. 

4.1 Types of 3D Printing 

Binder Jetting 

Originally developed at the Massachusetts Institute of Technology (MIT) in the early 

1990s, binder jetting is an additive manufacturing process in which a liquid binding agent 

is placed onto a thin layer of powder particles like hybrid, ceramics, polymers, metals and 

sands, in order to bind them together and build unique parts. The process is repeated layer 

by layer, following a map from a digital design file, until the object is completed. It is also a 

simple, fast and cheap process and has the ability to print large-scaled products. 

 

Directed Energy Deposition  

This printing process is more intricate and is frequently used in repairing or adding 

material to existing components. A nozzle mounted on a multi-axis arm provides 

movement in multiple directions and deposits material onto specified surface where it 

solidifies. Upon deposition, the material is melted with a laser or electron beam. With this 

procedure we are capable of creating and repairing parts used in numerous sectors since it 

adds new material features on existing objects.  
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Materials Extrusion  

Material extrusion is a widely used additive manufacturing process and was developed 

in the early 1990s. It utilizes continuous filament of thermoplastic or composite material to 

create 3D parts. The material is fed through an extruding nozzle in the form of plastic 

filament, where it is heated and then placed onto the build platform layer by layer from 

the bottom to the top. 

 

Material Jetting  

Material jetting uses a similar type of technology with the standard inkjet printer and it 

closely resembles the binder jetting process. The material, which is usually of a 

photosensitive kind, is placed directly onto the build surface through a printhead dispenser 

and solidifies, layer by layer, under ultraviolet light. Afterwards, the build platform adjusts 

its height and the procedure is repeated, creating a smooth surface finish with great 

dimensional accuracy. 

 

Powder Bed Fusion  

The Powder Bed Fusion process encompasses the following printing techniques: Direct 

metal laser sintering (DMLS), Electron beam melting (EBM), Selective heat sintering (SHS), 

Selective laser melting (SLM) and Selective laser sintering (SLS). With the use of a high-

energy power source, either an electron beam or a laser, the metallic powder bed is melted 

or sintered together. Then, a new layer of powder is spread across the previous layer with 

the help of a roller and after lowering the build platform, the process repeats itself until 

the entire model is created.   

 

Sheet Lamination  

Sheet lamination includes two types of manufacturing which are characterized by the 

materials and type of welding they use. Both processes bind together sheets of materials 

using either ultrasonic welding (Ultrasonic Additive Manufacturing process) or paper as a 

material and adhesive instead of welding (Laminated Object Manufacturing).  They both 

follow a layer-by-layer approach since the building steps are quite similar. The material is 

initially positioned on the cutting platform and is bonded in place over the previous layer 
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by using the adhesive. Afterwards, the required shape is cut from the layer and the next 

layer is added. The cutting can also occur before the bonding.  

 

Vat Photopolymerization 

Vat Photopolymerization is the 3D printing technology of curing photo-reactive 

polymers with the use of a laser (light or ultraviolet). The model is constructed layer by 

layer in a vat of liquid photopolymer resin with the use of an ultraviolet light which cures 

and/or hardens the resin where it is required, while the build platform is moving 

downwards after each layer is cured. The end result is of high quality with excellent details. 

 

4.2 Modelling and Printing Material 

The creation of 3D printed models can be derived either from a scanned object or 

manually. Both processes are quite complicated but numerous user friendly, Computer 

Aided Model (CAD) software exist such as Fusion 360, Solidworks, BRL-CAD and many more. 

The parts of this thesis’ robotic arm were designed in Fusion 360 [18] and printed in a 

material extrusion printer, the Raise 3D N2 [19] (Figure 4.2.1), with Polylactic Acid (PLA) 

filament. 

 

Figure 4.2.1 Raise 3D N2 during the Printing Process of the Parts 
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Polylactic Acid (PLA) (Figure 4.2.2)  is the most popular material in 3D printing because 

of its ease of use, environmentally friendly and low-cost material. It is originated from 

natural sources like corn starch or sugar cane and can be found in wide assortments of 

colors and blends. It has a low printing temperature, which starts around 180°C, and 

produces sharper features and better surface details compared to ABS and other 

thermoplastics with higher melting temperatures. PLA prints can also be easily sanded, 

polished and painted. It is non-toxic, biodegradable, and since it requires a smaller amount 

of energy to print, it emits less greenhouse gases. Nevertheless, PLA cannot be used in any 

high temperature application due to its low heat resistance and it also has a lower tensile 

strength in comparison to its counterparts. Since this is a small-scale robotic arm which is 

not required to withstand heavy loads or high temperatures, it was chosen as the more 

inexpensive and environmentally friendly solution.  

 

Figure 4.2.2 PLA Filament 
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CHAPTER 5 

SOFTWARE PRESENTATION 

5.1 Software Versions and Sources 

Python 3.9.6  https://www.python.org/downloads/release/python-396/  

OpenCV 4.5.2  https://opencv.org/releases/ 

Numpy 1.21   https://numpy.org/install/ 

GPIO Zero   https://gpiozero.readthedocs.io/en/stable/installing.html  

5.2 OpenCV 

OpenCV [20] is an open-source library of programming functions focusing on real-time 

computer vision systems. Initially launched by Intel in 1999, its alpha version debuted at 

the IEEE Conference on Computer Vision and Pattern Recognition in 2000 and after 

numerous betas, its first version was released in 2006. While OpenCV’s support and 

development has been transferred to numerous research teams, corporations and 

foundations, its main goal remains the same: the advancement of computer vision research 

and knowledge and the development of optimized, portable and free code focusing on its 

performance. 

OpenCV is platform-independent and uses binding (wrapper) functions which are 

initiated and called within another language (currently available for MATLAB, Java and 

Python). These wrappers are mapping OpenCV’s core functions [21] , maintaining the same 

core functionality for all supported languages, reducing callback delay and providing code 

robustness quality.  

5.3 Fusion 360 

Fusion 360 is developed and distributed under AUTODESK [18]. This 3D Design and 

Modeling software provides numerous modeling tools and unifies design, engineering, 

electronics and manufacturing, allowing the user to connect its entire product 

development process into one platform (Figure 5.3.1). 

https://www.python.org/downloads/release/python-396/
https://opencv.org/releases/
https://numpy.org/install/
https://gpiozero.readthedocs.io/en/stable/installing.html
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Figure 5.3.1 Fusion 360 Environment 

 

Seven STL files were printed after careful measurement of the potentiometers (Figure 

5.3.4, Figure 5.3.5 and Figure 5.3.6) and the servos’ dimensions (Figure 5.3.2 and Figure 

5.3.3). Each arm is comprised of 4 parts: the support unit, the base, the upper arm and the 

lower arm. The shoulders, elbows and wrists are represented by the micro servos and the 

potentiometers at each arm respectively.  

 

 

Figure 5.3.2 Servo's Encasement 
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Figure 5.3.3 Servo's Linkage 

 

 

Figure 5.3.4 Potentiometer's Socker for the Base 
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Figure 5.3.5 Extra Base Part for Potentiometer’s Base 

 

 

Figure 5.3.6 Potentiometer Linkage between Base, Shoulder and Wrist  
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CHAPTER 6 

Color Model, Color Space, Image Processing and Shape Detection 

 

6.1 Color Model Theory 

In the physical world, color exists as a wavelength of light. From the moment this 

wavelength reaches the rods and cones of the eye, complex processing is being carried out 

in the human neurons. This was the first human sense we were able to mathematically 

model, giving it its own space representation and unit/measurement; In 1931, the 

International Commission on Illumination, also known as Commission Internationale de 

l'Eclairage (CIE) [22], linked the average human being’s color vision to mathematical 

coordinates (Figure 6.1.1), and despite the constant evolution in complex colorimetric 

transformations and representations of a color, their origin is still based on the same 

colorimetric standard observer; 

 

 

Figure 6.1.1 CIE 1931 Chromaticity Diagram.  

(Image downloaded from: https://www.wikiwand.com/en/CIE_1931_color_space , in June 2021) 

 

https://www.wikiwand.com/en/CIE_1931_color_space
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Wavelength markers along the edges express every color on the visible spectrum as a 

set of coordinates on the diagram above. Color space is the relationship between the 

wavelength of light and Red Green and Blue (RGB) values. To store this color information 

in a computer, a combination of red, green and blue values is used. This combination is 

created by drawing a triangle over the top of the chromaticity diagram with 4 points (3 in 

the corners and one inside). The points at the triangle’s edges are the red, blue and green 

ones and the white point is in the middle (Figure 6.1.2). The RGB values operate on a scale 

from 0 to 255 and these points describe where the 0 to 255 values lie on the chromaticity 

diagram. This is called a color model. 

 

 

Figure 6.1.2 Chromaticity Diagram with RGB Points 

 

These RGB coordinates are only meaningful in relation to the color space we are working 

in. If the point of the triangle is defined in different locations then the same visible color 

will be represented with a different set of RGB coordinates. For a consistent color model, 

we need the triples of RGB coordinates (or quadruples in Cyan, Magenta, Yellow and Key, 

CMYK) and the color space they are relative to.  In essence, a color model (an abstract 

mathematical model describing representation of colors) in combination with an 

associated mapping function to a reference color space, is known as a gamut and defines a 

color space for a given color model. 
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The RGB color model is an attempt to accurately represent the additive properties of 

the red, green and blue components of light, but it is not the best one since it does not 

offer any information on the distinction between color and how bright that color is [23]. 

Therefore, depending on physics, human perception and additive or subtractive physical 

descriptions of color, multiple color models were created (Table 6.1.1).  

 

ACRONYM INTENTED USAGE AXIS 1, AXIS 2, AXIS 3 

RGB Device-specific color 

specification 

Intensity of Red, Green and 

Blue 

HSV Color Mixing Hue, Saturation, Value 

HLS Color Mixing Hue, Lightness, Value 

LAB Calculating color distance 

according to human perception 

Lightness, Red/Green 

balance, Green/Blue balance 

CMY Color Mixing Cyan, Magenta, Yellow 

Table 6.1.1 Some Common Color Models 

 

6.2 Color Space 

There are five major color space models subdivided into others, CIE, RGB, YUV, HSL/HSV, 

and CMYK.  The categorization is implemented according to their focus on the human 

perception (CIE 1931 XYZ, CIEUVW, CIELUV and CIELAB), the chromaticity component of a 

given color when luminance is excluded (sRGB, Adobe RGB, Adobe Wide Gamut RGB, Rec. 

2100), the separation of lightness from chroma signals in an RGB input (YCbCr, YUV, YCoCg, 

YCC), the printing process (CMYK) and lastly, on the transformation of the color model into 

lightness, colorfulness and hue (HSL, HSV).  

There are many color spaces in existence. In order to choose which color space will 

procure the best results in this environment, the work of A. Rasouli and J. Tsotsos [24] as 

well as A. Mukhopadhyay, I. Mukherjee and Pradita Biswas [25] were taken into 

consideration, concentrating on the spaces with the highest FM measurements, precision 

and accuracy in their experiments. YCbCr, c1c2c3 and the CIE L*a*b* will be tested in this 

scenario.  
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• YCbCr:  The human eye perception of color is of paramount importance in object 

detection. Consequently, the YUV representation was devised. Y stands for the 

Luminance (the brightness) and U and V are the chrominance (color) components 

(blue–luminance (U) and red–luminance (V)). The YUV color encoding can be 

overlapped by the terms Y′UV, YCbCr, YPbPr, etc., depending on where the model 

is used. YCbCr is the most frequent term usage of the YUV model in the digital 

encoding area thus, it will be used henceforth.  

• c1c2c3:  It is a powerful color model in object detection because of its invariability 

to a change in viewing direction, object geometry and illumination [26].  

• CIE L*a*b*:  If the color segmentation in a space lacks light sensitivity, this color 

space can avoid this drawback by increasing the accuracy of the color segmentation. 

It closely resembles the human eye perception.  

6.3 Image Processing for Object Detection 

Object detection refers to the existence or appearance or position of an object in a 

digital image [27]. The detection process can be extra challenging when clustered 

backgrounds and/or moving objects occur. Nonetheless, the environment of an industrial 

workplace can be controlled to a great extend and since a simple pattern-based object 

detection can be used and the angle of the viewpoint is fixed, there is no current need for 

convolutional neural network-based machine learning aids to be introduced in the 

modeling [28].  

 

Color space conversion 

Initially, the captured image needs to be converted from BGRA (red, green, blue, alpha) 

format, the format in which OpenCV saves its captures, to BGR (blue, green, red) format. 

The alpha in BGRA indicates the opaqueness of each pixel and BGRA cannot be used since 

it does not define what RGB color model is being used (6.1).  

 

# Transformation of original image to BGR  

captured_frame_bgr = cv2.cvtColor(captured_frame, cv2.COLOR_BGRA2BGR) 
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A median blur is then applied on the image which helps with noise reduction. It is a very 

crucial preprocessing step since by replacing the central element of the image with the 

median of all the pixels in the kernel area, the edges are processed all the while removing 

the noise.  

 

# First blur for noise reduction before color space conversion 

captured_frame_bgr = cv2.medianBlur(captured_frame_bgr, 3) 

 

Finally, the color space conversion can take place. The image is already converted in RGB 

nonetheless, the color segmentation in this space lacks light sensitivity. Therefore, it is 

converted in YCbCr, c1c2c3 and the CIE L*a*b* color space in order to compare the most 

appropriate color space for this work environment.  

 

# Conversion into YCR_CB color space 

captured_frame_ycr_cb = cv2.cvtColor(captured_frame_bgr, cv2.COLOR_BGR2YCR_C

B) 

 

# Conversion into Lab color space 

captured_frame_lab = cv2.cvtColor(captured_frame_bgr, cv2.COLOR_BGR2Lab) 

 

# Conversion into c1c2c3 color space  

prec1c2c3 = captured_frame_bgr.astype(np.float32)+0.001  

c1c2c3 = np.arctan(prec1c2c3/np.dstack((cv2.max(prec1c2c3[...,1], prec1c2c3[

...,2]), cv2.max(prec1c2c3[...,0], prec1c2c3[...,2]), cv2.max(prec1c2c3[...,

0], prec1c2c3[...,1])))) 

 

Segmentation 

Thresholding assists with the setting up of an object’s boundaries on a contrasting 

background by using a threshold rule. According to the colors selected for the circle, the 

inRange function of OpenCV keeps only the pixels of the image within the boundaries of 

the colors selected: 

(Following examples focus on the red pixels during Lab color space segmentation) 

captured_frame_lab_red = cv2.inRange(captured_frame_lab, np.array([20, 150, 

150]), np.array([190, 255, 255])) 
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A second blur is next applied (OpenCV function: GaussianBlur) which limits the noise and 

assists in the circle detection. By employing a Gaussian function, a smooth blur is applied 

on the image, which will afterwards appear as if seen through a translucent screen.  

 

captured_frame_lab_red = cv2.GaussianBlur(captured_frame_lab_red, (5, 5), 2,

 2) 

 

Shape detection 

For the circle detection, the Hough Transform OpenCV function is used. Patented in 

1962 by Paul V C Hough [29], it is a feature extraction technique which focuses on finding 

imperfect occurrences of objects of a certain shape by a voting procedure.  

 

# Hough transform for the red circle detection 

red_circles = cv2.HoughCircles(captured_frame_lab_red, cv2.HOUGH_GRADIENT, 1

, captured_frame_lab_red.shape[0] / 8, param1=100, param2=18, minRadius=5, m

axRadius=60) 
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CHAPTER 7 

IMPLEMENTATION AND DESCRIPTION OF THE ROBOTIC ARM CAPABILITIES 

 

7.1 Simple Movement Simulation 

The first benchmark was to achieve the accurate movement of the micro servos through 

the potentiometers. Since the selected micro servos are prone to wear and tear, anything 

can disrupt their smooth operation: power surges, extra weight, signals for movement 

which reach their limits and even a small amount of extra force when setting a screw on 

them.  Careful and meticulous fitting of the servo robot’s (Figure 7.1.1) components is of 

paramount importance. 

 

 

Figure 7.1.1 Micro Servo Robot 
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The micro servo robot is operated through the potentiometer robot (Figure 7.1.2). For 

its assembly, the crucial part is the correct soldering of each edge and its wiring. If the 

ground wiring of every potentiometer is not placed at the same grounding of the MCP 

channels, they will not work. 

 

 

Figure 7.1.2 Potentiometer Robot 

 

To reduce the jitter in the servos, gpiozero’s [30] PiGPIOFactory was imported. This 

library also facilitates remote control of the Raspberry’s GPIOs, an essential part in the 

incorporation of the robot in an industrial line. The python script in page 59 reads from 

channel 0, 1 and 2 of the MCP the values of the potentiometers and, after the necessary 

scaling, transmits them to each servo accordingly. 
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7.2 Teaching Algorithm 

The second target for this project is to combine the movement simulation with a 

repetitive motive. A “teachable” movement range is given to the servo robot through the 

control of the potentiometer robot by the user. The number of values that are saved 

depend on the user’s judgement and on the sampling rate which can be modified through 

the source’s delay (script page 60).  

7.3 Angle Finder 

The third and final benchmark for this robot is the correct localization and angle finding of 

strategically placed colored circles. By accomplishing it, the servo motor can be fed all the necessary 

info to accurately mimic movements from a distance. When distance is not an issue for the robot’s 

control, the industrial workspace can be decluttered and operated under safer conditions.  

The implementation was restricted in providing captures from the Raspberry’s Pi camera and 

not in live feed. Three different lightning scenarios ( Figure 7.3.1,Figure 7.3.6, Figure 7.3.11) in a 

were initially blurred for reduced noise (Figure 7.3.2, ,Figure 7.3.7, Figure 7.3.12 ) and next 

converted into 3 color spaces: LAB (  Figure 7.3.3, Figure 7.3.8, Figure 7.3.13), YCR_CB ( Figure 7.3.4, 

Figure 7.3.9, Figure 7.3.14)  and c1c2c3 ( Figure 7.3.5, Figure 7.3.10, Figure 7.3.15). 

1st LIGHTNING SCENARIO 

 

Figure 7.3.1 First Image 
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Figure 7.3.2 1st Image after First Noise Reduction 

 

 

Figure 7.3.3 LAB Color Space of 1st Image 
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Figure 7.3.4 YCR_CB Color Space of 1st Image 

 

 

Figure 7.3.5 c1c2c3 Color Space of 1st Image 
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2nd LIGHTNING SCENARIO 

 

Figure 7.3.6 Second Image 

 

Figure 7.3.7 2nd Image after First Noise Reduction 
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Figure 7.3.8 LAB Color Space of 2nd Image 

 

 

Figure 7.3.9 YCR_CB Color Space of 2nd Image 
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Figure 7.3.10 c1c2c3 Color Space of 2nd Image 

 

 

3rd LIGHTNING SCENARIO 

 

Figure 7.3.11 Third Image 
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Figure 7.3.12 3rd Image after First Noise Reduction 

 

 

Figure 7.3.13 LAB Color Space of 3rd Image 
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Figure 7.3.14 YCR_CB Color Space of 3rd Image 

 

 

Figure 7.3.15 c1c2c3 Color Space of 3rd Image 
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Comparing all the above color space, the LAB picture has more defined circles in most 

of the lightning scenarios. The environment of the picture was not staged and remained 

cluttered on purpose to observe the script’s power under unfavorable conditions. 

Following the LAB color space conversion of all the lightning scenarios, the process 

singles out all the red, blue and yellow pixels and blurs the image for a second time with 

Gaussian Blur ( Figure 7.3.16, Figure 7.3.18, Figure 7.3.20). Lastly, with the Hough Circles 

Transformation, the circle detection and angle calculation takes place ( Figure 7.3.17, 

Figure 7.3.19, Figure 7.3.21). 

 

 

Figure 7.3.16 Red, Yellow and Blue Thresholding and Gaussian Blur on 1st Image 
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Figure 7.3.17 Circles Detected in 1st Image. 

 

Under the first lightning condition, where the room is illuminated by the sun on 

afternoon hours, the detection is approximately 66% successful. With a little tinkering 

before the first color thresholding, the red circle can stand out more. 
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Figure 7.3.18 Red, Yellow and Blue Thresholding and Gaussian Blur on 2nd Image 
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Figure 7.3.19 Circles Detected in 2nd Image. 

 

The lighting source in the 2nd image faces directly the objective. With two true positives 

and one false positive result, this lightning scenario fosters for even better outcomes in a 

controlled environment.   
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Figure 7.3.20 Red, Yellow and Blue Thresholding and Gaussian Blur on 3rd Image 
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Figure 7.3.21 Circles Detected in 3rd Image 

 

The third lightning condition is quite discouraging but confirms the conclusions 

derived from the second condition. The background in the image is the primary receiver of 

the lightning source. Therefore, it is more difficult to distinguish the foreground where our 

objective is positioned. Nevertheless it managed to successfully identify one circle. 
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CHAPTER 8 

 

EPILOGUE 

 

8.1 Conclusion 

In this thesis, the implementation of a small-scale robotic arm was achieved. Cost 

efficient, environmentally friendly and highly adaptable within its structural limitations, this 

robotic arm can easily be tinkered with and introduced into many assembly lines. By 

adapting its dimensions, gear and redesigning the computer vision portion according to the 

required needs, it can easily be employed even outside the boundaries of a manufacturing 

industry.  

Unfortunately, there are some limitations in the instance of the robot’s wider 

integration into production lines. From a structural point of view, the mechanical parts and 

their connections require intricate work and knowledge in order to assemble the arm safely 

and effectively. In the case of an inexperienced designer, the cost can be raised 

exponentially due to the highly probable malfunctions of the parts due to poor planning or 

know-how. If an experienced mechanic were employed, his fee would raise the cost, 

nevertheless.  

There is a reason why robots are only flourishing at heavily industrial countries. It is 

because the capital exists and along with it a brain drain, bringing together all the best 

minds for the right job , advancing the scientific field.  

 

8.2 Future Work 

For future improvements, a more detailed comparison of color spaces is vital. There is 

room for better testing of lightning in controlled environments, with great promise in 

finding optimal conditions for clearer detections. With an unlimited or even a slightly bigger 

budget, the servos must be the first to go, making room for sturdier ones with mechanical 

gears. Furthermore, the software can be complimented with a GUI for more user-
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friendliness, and threading in the servo movement control for faster results. Lastly, the 

designing of the robotic arm can be more robust and tailor-made to adapt in each 

environment. By choosing the printed color according to the chosen color space’s needs 

for a better object detection, the algorithm will be able to provide thriving results. 
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APPENDIX 

PYTHON SCRIPTS 

1.  servoandpot_nojit.py 

from gpiozero.tools import scaled,multiplied 

from gpiozero import Servo, MCP3008 

from signal import pause 

import sys 

 

#The following imports help with the jitters of the servos 

from gpiozero import Device 

from gpiozero.pins.pigpio import PiGPIOFactory 

 

Device.pin_factory = PiGPIOFactory('127.0.0.1') 

 

try: 

     

    pot = MCP3008(channel=0) 

    servo = Servo(17, min_pulse_width=0.5/1000, max_pulse_width=2.5/1000) 

    servo.source = (scaled(pot.values,-1,1)) 

            

    pot = MCP3008(channel=1) 

    servo = Servo(27, min_pulse_width=0.5/1000, max_pulse_width=2.5/1000) 

    servo.source = scaled(pot.values,-1,1) 

 

    pot = MCP3008(channel=2) 

    servo = Servo(5, min_pulse_width=0.5/1000, max_pulse_width=2.5/1000) 

    servo.source = scaled(pot.values,-1,1) 

     

 

# Exit script and clean GPIO pins 

except KeyboardInterrupt: 

    GPIO.cleanup() 

    exit() 
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2. servoandpot_buttonrepeater.py 

from gpiozero import MCP3008, Servo, Button 

from gpiozero.tools import scaled 

from itertools import cycle 

from signal import pause 

from gpiozero import Device 

from gpiozero.pins.pigpio import PiGPIOFactory 

 

Device.pin_factory = PiGPIOFactory('127.0.0.1') 

 

class ServoRecorder(object): 

    def __init__(self , servonum, potnum, onbutnum, offbutnum): 

        servo_number = servonum 

        pot_number = potnum 

        on_button_number = onbutnum 

        off_button_number = offbutnum 

        self.recording = None 

        self.record_button_on = Button(on_button_number) 

        self.record_button_off = Button(off_button_number) 

        self.record_button_on.when_pressed = self.start_recording 

        self.record_button_off.when_pressed = self.stop_recording 

        self.servo = Servo(servo_number, min_pulse_width=0.5/1000,  

max_pulse_width=2.5/1000) 

        self.servo.source_delay = 1/100  

        self.pot = MCP3008(channel = pot_number) 

 

    def record(self, values): 

        self.recording = [] 

        for value in values: 

            self.recording.append(value) 

            yield value 

 

    def start_recording(self): 

        print('Recording values…') 

        self.servo.source = self.record(scaled(self.pot.values, -1, 1)) 

 

    def stop_recording(self): 

        print('Looping %d values' % len(self.recording)) 

        self.servo.source = cycle(self.recording) 

 

recorder1 = ServoRecorder(17,0,20,6) 

recorder2 = ServoRecorder(27,1,12,13) 

recorder3 = ServoRecorder(5,2,16,4) 
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3. circle_ localization.py 

import numpy as np 

from cv2 import cv2 

import math 

 

path=r"C:\Users\ifige\Diploma\opencv_testing\assets\rsp_shot.jpg" 

 

# Resize the image from the Pi 

output_frame_big = cv2.imread(path) 

original_src = cv2.imread(path, cv2.IMREAD_UNCHANGED) 

scale_percentage = 30 

 

width = int(original_src.shape[1] * scale_percentage / 100) 

height = int(original_src.shape[0] * scale_percentage / 100) 

final_size = (width, height) 

 

output_frame = cv2.resize(original_src, final_size) 

captured_frame = output_frame 

 

# Conversion of Raspberry Pi's capture to BGR  

captured_frame_bgr = cv2.cvtColor(captured_frame, cv2.COLOR_BGRA2BGR) 

 

# First blur to reduce noise before the color space conversion 

captured_frame_bgr = cv2.medianBlur(captured_frame_bgr, 3) 

 

## Conversion into YCR_CB color space 

#captured_frame_ycr_cb = cv2.cvtColor(captured_frame_bgr, cv2.COLOR_BGR2YCR_

CB) 

#cv2.imshow(' YCR_CB color space',captured_frame_ycr_cb) 

# Conversion into Lab color space 

captured_frame_lab = cv2.cvtColor(captured_frame_bgr, cv2.COLOR_BGR2Lab) 

cv2.imshow(' Lab color space',captured_frame_lab) 

## Conversion into c1c2c3 color space 

#im = captured_frame_bgr.astype(np.float32)+0.001  

#c1c2c3 = np.arctan(im/np.dstack((cv2.max(im[...,1], im[...,2]), cv2.max(im[

...,0], im[...,2]), cv2.max(im[...,0], im[...,1])))) 

 

 

# Threshold Lab picture by keeping only the red, yellow and blue pixels 

captured_frame_lab_red = cv2.inRange(captured_frame_lab, np.array([20, 150, 

150]), np.array([190, 255, 255])) 

captured_frame_lab_yellow = cv2.inRange(captured_frame_lab, np.array([196,96

,127]), np.array([244, 162, 244])) 

captured_frame_lab_blue = cv2.inRange(captured_frame_lab, np.array([96, 70, 

10]), np.array([221, 151, 107])) 

 

# Second blur for extra noise reduction and better circle localization 
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captured_frame_lab_red = cv2.GaussianBlur(captured_frame_lab_red, (5, 5), 2,

 2) 

captured_frame_lab_yellow = cv2.GaussianBlur(captured_frame_lab_yellow, (5, 

5), 2, 2) 

captured_frame_lab_blue = cv2.GaussianBlur(captured_frame_lab_blue, (5, 5), 

2, 2) 

 

# Hough transform for circly detection 

red_circles = cv2.HoughCircles(captured_frame_lab_red, cv2.HOUGH_GRADIENT, 1

, captured_frame_lab_red.shape[0] / 8, param1=100, param2=18, minRadius=5, m

axRadius=60) 

yellow_circles = cv2.HoughCircles(captured_frame_lab_yellow, cv2.HOUGH_GRADI

ENT, 1, captured_frame_lab_yellow.shape[0] / 8, param1=100, param2=18, minRa

dius=5, maxRadius=60) 

blue_circles = cv2.HoughCircles(captured_frame_lab_blue, cv2.HOUGH_GRADIENT,

 1, captured_frame_lab_blue.shape[0] / 8, param1=100, param2=18, minRadius=5

, maxRadius=60) 

 

# Outlining of the circle (Assuming one was found. If several were found, th

e first one is printed) 

if red_circles is not None: 

    red_circles = np.round(red_circles[0, :]).astype("int") 

    cv2.circle(output_frame, center=(red_circles[0, 0], red_circles[0, 1]), 

radius=red_circles[0, 2], color=(0, 255, 0), thickness=2) 

 

if yellow_circles is not None: 

    yellow_circles = np.round(yellow_circles[0, :]).astype("int") 

    cv2.circle(output_frame, center=(yellow_circles[0, 0], yellow_circles[0,

 1]), radius=yellow_circles[0, 2], color=(0, 255, 0), thickness=2) 

 

if blue_circles is not None: 

    blue_circles = np.round(blue_circles[0, :]).astype("int") 

    cv2.circle(output_frame, center=(blue_circles[0, 0], blue_circles[0, 1])

, radius=blue_circles[0, 2], color=(0, 255, 0), thickness=2) 

 

cv2.circle(output_frame, center=(5, 5), radius=10, color=(0, 255, 0), thickn

ess=10) 

 

# placing the red circle as the corner: 

 

ba = [ yellow_circles[0,0] - red_circles[0,0] , yellow_circles[0,1] - red_ci

rcles[0,1] ] 

bc = [blue_circles[0,0] - red_circles[0,0] , blue_circles[0,1] - red_circles

[0,1]] 
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my_angle = math.atan2( (yellow_circles[0,1] - red_circles[0,1]) , (yellow_ci

rcles[0,0] - red_circles[0,0]) ) -  math.atan2( (blue_circles[0,1] - red_cir

cles[0,1]) , (blue_circles[0,0] - red_circles[0,0]) ) 

my_dot = np.dot ( ba, bc ) 

my_absolute_1 = math.sqrt ( ( ba[0])**2 + ( ba[1])**2  ) 

my_absolute_2 = math.sqrt ( ( bc[0])**2 + ( bc[1])**2 ) 

my_cos = my_dot / (my_absolute_1 * my_absolute_2) 

my_angle = math.acos(my_dot / (my_absolute_1 * my_absolute_2)) # in radians 

 

print("Center angle in red circle:", math.degrees(my_angle))  # converted in

 degrees 

 

# Result 

cv2.imshow('frame', output_frame) 

 

# Button pressing for exit 

cv2.waitKey(0)  

cv2.destroyAllWindows()  

 


