
i

INTELLIGENT SYSTEMS AND SERVICES FOR IMAGE AND VIDEO ANALYSIS

Dimitrios E. Diamantis

Department of Computer Science and Biomedical Informatics

University of Thessaly

A thesis submitted for the degree of

Doctor of Philosophy

July 2021

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

ii

Copyright © Dimitrios E. Diamantis 2021

All Rights Reserved

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

iii

SUPERVISOR

Dimitris Iakovidis, Professor

University of Thessaly

ADVISORY COMMITTEE MEMBERS

Dimitris Iakovidis, Professor

University of Thessaly

Vassilis Plagianakos, Professor

University of Thessaly

Konstantinos Delimpasis, Associate Professor

University of Thessaly

REVIEWING COMMITTEE MEMBERS

Dimitris Iakovidis, Professor

University of Thessaly

Vassilis Plagianakos, Professor

University of Thessaly

Konstantinos Delimpasis, Associate Professor

University of Thessaly

Savelonas Michalis, Assistant Professor

University of Thessaly

Tasoulis Sotirios, Assistant Professor

University of Thessaly

Maglogiannis Ilias, Professor

University of Piraeus

Tsipouras Markos, Associate Professor

University of Western Macedonia

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

iv

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

v

ABSTRACT

 This doctoral dissertation explores intelligent systems and services for image and video

analysis. In view of scientific challenges for developing innovative solutions with a broad social

impact, it investigates applications in biomedicine and computer-assisted navigation of visually

impaired individuals. In this context, it focuses on machine learning, particularly the investigation

of methods to improve the efficiency and the effectiveness of deep artificial neural network

architectures, such as the Convolutional Neural Networks (CNNs).

 In Convolutional Neural Networks (CNNs) the input data can contain uncertainties, such

as noise, color and geometric ubiquities, that is naturally propagated from the input layer to the

convolution layers of the network affecting the quality of the extracted features. To cope with this

problem, a novel pooling operation based on (type-1) fuzzy sets is proposed, named Fuzzy Pooling,

which can be used as a drop-in replacement of the current, crisp, pooling layers of CNN

architectures. Several experiments using publicly available datasets show that the proposed

approach can enhance the classification performance of a CNN.

 Aiming to improve the effectiveness of CNNs, especially in the context of medical image

analysis, a novel architecture named Look Behind Fully Convolutional Neural Network (LB-FCN)

is proposed. The architecture is capable of extracting multi-scale image features by using blocks

of parallel convolutional layers with different filter sizes. These blocks are connected by look-

behind connections, so that the features they produce are combined with features extracted from

behind layers, thus preserving the respective information. Furthermore, it has a smaller number of

free parameters than conventional CNN architectures, which makes it suitable for training with

smaller datasets. This is particularly useful in medical image analysis, since data availability is

usually limited, due to ethicolegal constraints. Experiments on publicly available gastrointestinal

image datasets show higher classification performance compared to state-of-the-art machine and

deep learning methodologies. The architecture is capable of generalizing well even when the

training dataset is different than the one on which it is tested. To investigate that, a novel cross-

dataset experimental study was performed on various publicly available gastrointestinal tract

image datasets, containing images from different modalities, including Wireless Capsule

Endoscopy (WCE) and flexible endoscopy.

 The number of training samples in CNN training is directly linked to their generalization

performance. When the training samples are limited, such as in the case of medical images, the

generalization performance is negatively affected. A typical approach to mediate this problem is

to use data augmentation techniques, which image rotation and translation. While effective, this

technique still requires a substantial amount of training samples to be available. To battle this

problem, in the context of inflammatory conditions detection in WCE images, a novel approach is

presented that uses Generative Adversarial Networks (GANs) to generate artificial images. More

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

vi

specifically the study trained two GANs, one to generate healthy small bowel images and another,

images with inflammatory conditions. The images are then used to train a CNN architecture and

validate its performance in real images. The results from this study show that the substitution of

real with artificially generated endoscopic images for CNN training can be a viable option.

While CNNs have a remarkable performance in computer vision problems, usually, they

are computationally expensive. This limits their usage in high-end expensive devices with multiple

graphical processing units (GPUs). To mediate the problem, a typical approach is to reduce the

number of floating-point operations (FLOPs) required for inference, at the expense of

generalization performance. In this context, a novel LB-FCN inspired CNN architecture was

proposed, named LB-FCN light. The architecture features a relatively low number of free

parameters and FLOPs, while managing to maintain high generalization performance. The

performance of the network is validated in the problem of staircase detection in indoor and outdoor

environments, with application on assisted navigation of visually impaired individuals. The results

from the experimental evaluation of LB-FCN light indicate its advantageous performance over the

relevant state-of-the-art architectures.

The development of easy-to-use machine learning (ML) application frameworks has

enabled the development of advanced artificial intelligence (AI) applications with only a few lines

of self-explanatory code. However, the deployment of ML algorithms as a service for remote high

throughput ML task execution, involving complex data-processing pipelines can still be

challenging, especially with respect to production ML use cases. To cope with this issue, a novel

system architecture is presented, which enables Algorithm-agnostic, Scalable ML (ASML) task

execution for high throughput applications. It aims to provide an answer to the research question

of how to design and implement an abstraction framework, suitable for the deployment of end-to-

end ML pipelines in a generic and standard way. The architecture manages horizontal scaling, task

scheduling, reporting, monitoring and execution of multi-client ML tasks using modular,

extensible components that abstract the execution details of the underlying algorithms.

Applications of ASML are investigated for the analysis of image streams in the context of medical

image analysis and assisted navigation of visually impaired individuals. The results of the

experiments performed demonstrate its capacity for parallel, mission critical, task execution.

 Assistive navigation systems require the development, assessment, and optimization of

different algorithms for obstacle detection, recognition, and avoidance, as well as path planning.

This is a painstaking and costly process that requires repetitive measurements under stable

conditions, which is usually difficult to achieve. To this end, a novel digital twin framework for

the simulation and evaluation of assistive navigation systems is presented. The framework can

replicate relevant real-life situations, enabling the evaluation and optimization of algorithms

through adjustable and cost-effective simulations. The utility and the effectiveness of the

framework are demonstrated with an indicative simulation study in the context of a camera-based

wearable system for the navigation of visually impaired individuals in an outdoor cultural space.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

vii

 The work presented in this dissertation includes methods with both theoretical and practical

impact, that can be used as the basis for further research, and the applications presented can be

used as paradigms for applications on different domains, such as telemedicine, robotics, and

intelligent transportation systems.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

viii

ΠΕΡΙΛΗΨΗ

 Η παρούσα διδακτορική διατριβή διερευνά πρωτότυπα έξυπνα συστήματα και υπηρεσίες

ανάλυσης εικόνας και βίντεο. Λαμβάνοντας υπόψη τις επιστημονικές προκλήσεις για την

ανάπτυξη καινοτόμων λύσεων με ευρύ κοινωνικό αντίκτυπο, διερευνά εφαρμογές στη βιοϊατρική

και την καθοδήγηση ατόμων με προβλήματα όρασης. Σε αυτό το πλαίσιο, επικεντρώνεται στη

μηχανική μάθηση, εστιάζοντας στη διερεύνηση μεθόδων για τη βελτίωση της αποδοτικότητας και

αποτελεσματικότητας των αρχιτεκτονικών βαθέων τεχνητών νευρικών δικτύων, όπως τα

Συνελικτικά Νευρωνικά Δίκτυα (Convolutional Neural Networks, CNN).

 Τα δεδομένα εισόδου των CNN μπορούν να περιέχουν αβεβαιότητες, όπως θόρυβος,

χρώμα και γεωμετρική απροσδιοριστία, που μεταδίδονται από το επίπεδο εισόδου στα

συνελικτικά επίπεδα του δικτύου επηρεάζοντας την ποιότητα των εξαγόμενων χαρακτηριστικών.

Προκειμένου να αντιμετωπιστεί αυτό το πρόβλημα, προτείνεται μια νέα λειτουργία συγκέντρωσης

(pooling) βασισμένη σε ασαφή σύνολα (τύπου-1), με όνομα Fuzzy Pooling, η οποία μπορεί να

χρησιμοποιηθεί για την αντικατάσταση των υπαρχόντων επιπέδων pooling των CNN

αρχιτεκτονικών. Πειράματα σε δημοσίως διαθέσιμα δεδομένα έδειξαν ότι η χρήση της

προτεινόμενη προσέγγισης μπορεί να χρησιμοποιηθεί για την βελτίωση της απόδοσης

ταξινόμησης των CNN.

 Με στόχο τη βελτίωση της αποτελεσματικότητας των CNN, και ειδικότερα στο πλαίσιο

της ανάλυσης ιατρικών εικόνων, προτάθηκε μια νέα αρχιτεκτονική CNN που ονομάζεται Look

Behind Fully Convolutional Neural Network (LB-FCN). Η αρχιτεκτονική είναι ικανή να εξαγάγει

χαρακτηριστικά πολλαπλών κλιμάκων χρησιμοποιώντας σύνολα (μπλοκ) παράλληλων

συνελικτικών στρωμάτων με διαφορετικά μεγέθη φίλτρου. Τα σύνολα αυτά, συνδέονται με

οπίσθιες συνδέσεις, με στόχο τον συνδυασμό των παραγόμενων χαρακτηριστικών με τα

χαρακτηριστικά εισόδου, διατηρώντας έτσι τις αντίστοιχες πληροφορίες. Επιπλέον, η

αρχιτεκτονική έχει μικρότερο πλήθος ελεύθερων παραμέτρων σε σχέση με συμβατικές

αρχιτεκτονικές CNN, γεγονός που επιτρέπει την εκπαίδευσή της με μικρό πλήθος δεδομένων

εκπαίδευσης. Αυτό είναι ιδιαίτερα χρήσιμο στην ανάλυση ιατρικών εικόνας, δεδομένου ότι η

διαθεσιμότητα δεδομένων εκπαίδευσης είναι συνήθως περιορισμένη, λόγω βιοηθικών και

νομικών περιορισμών. Πειράματα σε δημοσίως διαθέσιμα δεδομένα εικόνων του γαστρεντερικού

συστήματος, παρουσιάζουν υψηλή απόδοση ταξινόμησης σε σύγκριση με άλλες σύγχρονες

προσεγγίσεις. Η αρχιτεκτονική είναι ικανή να γενικεύει καλά ακόμη και όταν το δεδομένα

εκπαίδευσης προέρχονται από διαφορετικά σύνολα δεδομένων από αυτά στα οποίο δοκιμάζεται.

Σε αυτό το πλαίσιο, πραγματοποιήθηκε πειραματική μελέτη σε πληθώρα δημοσίων διαθέσιμων

συνόλων δεδομένων γαστρεντερικού συστήματος, απαρτιζόμενα από εικόνες που έχουν ληφθεί

κάνοντας χρήση διαφορετικών ιατρικών οργάνων, όπως ενδοσκοπικής κάψουλας και εύκαμπτου

ενδοσκοπίου.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

ix

 Η δυνατότητα γενίκευσης των CNN συνδέεται άμεσα με το διαθέσιμο πλήθος δειγμάτων

εκπαίδευσης. Όταν τα δείγματα εκπαίδευσης είναι περιορισμένα, όπως στην περίπτωση ιατρικών

εικόνων, η δυνατότητα γενίκευσης επηρεάζεται αρνητικά. Μια τυπική προσέγγιση για τον

περιορισμό αυτού του προβλήματος είναι η χρήση τεχνικών επαύξησης δεδομένων,

τροποποιώντας τα υπάρχοντα δεδομένα. Αν και η τεχνική αυτή είναι αποτελεσματική και πάλι

απαιτείται σημαντικό πλήθος δεδομένων εκπαίδευσης. Για την καταπολέμηση αυτού του

προβλήματος, στο πλαίσιο της ανίχνευσης φλεγμονών σε εικόνες που προέρχονται από

ενδοσκοπική κάψουλα, παρουσιάζεται μια προσέγγιση που χρησιμοποιεί Παραγωγικά

Αντιπαραθετικά Δίκτυα (Generative Adversarial Networks, GAN) για τη δημιουργία συνθετικών

εικόνων. Πιο συγκεκριμένα, η μελέτη βασίζεται στην εκπαίδευση δύο GAN, ένα για να την

παραγωγή υγιών εικόνων του λεπτού εντέρου και ένα άλλο, για την παραγωγή εικόνων με

φλεγμονές. Οι παραγόμενες εικόνες στη συνέχεια χρησιμοποιούνται για την εκπαίδευση ενός

CNN με στόχο την αξιολόγηση της αποδοτικότητάς του σε πραγματικές εικόνες. Τα

αποτελέσματα αυτής της μελέτης δείχνουν ότι η αντικατάσταση πραγματικών με τεχνητά

παραγόμενων ενδοσκοπικών εικόνων για εκπαίδευση στο CNN μπορεί να είναι μια βιώσιμη

επιλογή.

Η αξιοσημείωτη απόδοση των CNN στον τομέα της υπολογιστικής όρασης, συνήθως,

συνοδεύεται από αυξημένο υπολογιστικό κόστος. Αυτό περιορίζει τη χρήση τους σε συσκευές

υψηλών υπολογιστικών προδιαγραφών εξοπλισμένες με πολλαπλές κάρτες γραφικών. Για την

αντιμετώπιση αυτού του προβλήματος, μια τυπική προσέγγιση είναι η μείωση των απαιτούμενων

αριθμητικών πράξεων, σε βάρος της απόδοσης γενίκευσης. Σε αυτό το πλαίσιο, προτάθηκε μια

νέα αρχιτεκτονική CNN, εμπνευσμένη από την LB-FCN, με όνομα LB-FCN light. Η

αρχιτεκτονική διαθέτει χαμηλό αριθμό ελεύθερων παραμέτρων και πράξεων, ενώ παράλληλα

διατηρεί υψηλή απόδοση γενίκευσης. Η απόδοση του δικτύου διερευνήθηκε στο πρόβλημα της

ανίχνευσης σκαλών σε εσωτερικούς και εξωτερικούς χώρους, με εφαρμογές στην υποβοηθούμενη

πλοήγηση ατόμων με προβλήματα όρασης. Τα αποτελέσματα από την πειραματική αξιολόγηση

του LB-FCN light δείχνουν πως απόδοσή του είναι υψηλότερη σε σύγκριση με άλλες, σύγχρονες

αρχιτεκτονικές CNNs.

Η ανάπτυξη εύχρηστων πλαισίων εφαρμογών μηχανικής μάθησης, δίνει την δυνατότητα

ανάπτυξης προηγμένων εφαρμογών τεχνητής νοημοσύνης με μόνο λίγες γραμμές κώδικα.

Ωστόσο, η εγκατάσταση αλγορίθμων μηχανικής μάθησης σε απομακρυσμένο περιβάλλον υψηλής

απόδοσης, που περιλαμβάνει περίπλοκα επίπεδα επεξεργασίας δεδομένων, εξακολουθεί να είναι

δύσκολη, ειδικά όταν τα περιβάλλοντα αυτά προορίζονται για χρήση από επιχειρήσεις. Για την

αντιμετώπιση αυτού του προβλήματος, παρουσιάζεται μια νέα αρχιτεκτονική συστήματος, η

οποία επιτρέπει την εκτέλεση εργασιών μηχανικής μάθησης για εφαρμογές υψηλής απόδοσης, με

όνομα Algorithm-agnostic, Scalable Machine Learning (ASML). Στόχος της αρχιτεκτονικής είναι

να δώσει μια απάντηση στο ερευνητικό πρόβλημα της σχεδίας και ανάπτυξης πλαισίου

εφαρμογής, κατάλληλο για την ανάπτυξη διεργασιών μηχανικής μάθησης με γενικό και

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

x

τυποποιημένο τρόπο, ανεξάρτητο του αλγορίθμου μηχανικής μάθησης. Η αρχιτεκτονική

διαχειρίζεται την οριζόντια κλιμάκωση, τον προγραμματισμό εργασιών, την αναφορά, την

παρακολούθηση και την εκτέλεση εργασιών μηχανικής μάθησης, με δυνατότητα χρήσης από

πολλαπλούς χρήστες, χρησιμοποιώντας ανεξάρτητα και επεκτάσιμα στοιχεία που αποκρύπτουν

τις λεπτομέρειες εκτέλεσης των υποκείμενων αλγορίθμων. Η δυνατότητες της αρχιτεκτονικής

διερευνήθηκαν σε εφαρμογές ανάλυσης ροών εικόνων από ιατρικά δεδομένα και στα πλαίσια της

υποβοηθούμενης πλοήγηση ατόμων με προβλήματα όρασης. Τα αποτελέσματα των πειραμάτων

που πραγματοποιήθηκαν δείχνουν ότι η αρχιτεκτονική είναι κατάλληλη για παράλληλη χρήση και

σε κρίσιμα συστήματα.

 Τα συστήματα υποβοηθούμενης πλοήγησης απαιτούν την ανάπτυξη, αξιολόγηση και

βελτιστοποίηση διαφορετικών αλγορίθμων για την ανίχνευση εμποδίων, την αναγνώριση και την

αποφυγή τους, καθώς και τον σχεδιασμό διαδρομών. Η διαδικασία αυτή είναι ιδιαιτέρως επίπονη

και δαπανηρή και απαιτεί επαναλαμβανόμενες μετρήσεις υπό σταθερές συνθήκες, κάτι που

συνήθως είναι δύσκολο να επιτευχθεί. Για το σκοπό αυτό, παρουσιάζεται ένα πρωτότυπο πλαίσιο

εφαρμογής για την προσομοίωση και την αξιολόγηση συστημάτων υποβοήθησης πλοήγησης. Το

πλαίσιο αυτό μπορεί να αναπαράγει πραγματικές καταστάσεις, επιτρέποντας την αξιολόγηση και

βελτιστοποίηση αλγορίθμων μέσω ρυθμιζόμενων και οικονομικά αποδοτικών προσομοιώσεων. Η

χρησιμότητα και η αποτελεσματικότητα του πλαισίου αποδεικνύονται με μια ενδεικτική μελέτη

προσομοίωσης στο πλαίσιο ενός φορητού συστήματος που βασίζεται σε κάμερα για την πλοήγηση

ατόμων με προβλήματα όρασης σε έναν υπαίθριο χώρο πολιτιστικού ενδιαφέροντος.

 Το έργο που παρουσιάστηκε στην παρούσα διατριβή περιλαμβάνει μεθόδους με θεωρητικό

και πρακτικό αντίκτυπο, οι οποίες μπορούν να χρησιμοποιηθούν ως βάση για περαιτέρω έρευνα.

Οι εφαρμογές που παρουσιάζονται μπορούν να χρησιμοποιηθούν ως πρότυπα για εφαρμογές σε

διαφορετικούς τομείς, όπως τηλεϊατρική, ρομποτική και έξυπνα συστήματα μετακίνησης.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xi

This thesis is dedicated to my family and friends.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xii

ACKNOWLEDGMENTS

The pathway for a doctoral degree is full of challenges and obstacles. In 1911, Constantine Peter

Cavafy wrote the poem “Ithaca”. One can say that the quote “When you depart for Ithaca, wish

for the road to be long, full of adventure, full of knowledge…”, closely resembles the doctoral

degree pathway. Crossing it I was lucky enough to meet great people, colleagues, who I now

consider friends. What a great outcome it is.

Firstly, and foremost I would like to thank my parents, who were there for me throughout my

studies, supporting and endorsing me to pursue my dreams, undercoating me with their protective

umbrella.

I would also like to thank the supervisor of this dissertation, Dr. Dimitris K. Iakovidis, for his

valuable contribution to my studies. The fruitful discussions, advice and optimism greatly

contributed throughout this doctoral dissertation. He is an excellent example of a knowledgeable,

hardworking researcher, who I was honored to meet and work alongside him.

I would like to thank my colleagues in the lab. Especially I would like to thank Dr. Michael

Vasilakakis, Mr. George Dimas, Ms. Dimitra-Christina Koutsiou, Dr. Panagiotis Kalozoumis and

Dr. Charis Ntakolia, who throughout this thesis, they were always there to help and encourage me.

I am honored to now consider them good friends.

Finally, I would like to express my gratitude to the Onassis Foundation for supporting this doctoral

dissertation through a scholarship.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xiii

TABLE OF CONTENTS

ABSTRACT ... v

ΠΕΡΙΛΗΨΗ.. viii

ACKNOWLEDGMENTS .. xii

INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Aims of this Dissertation ... 2

1.3 Thesis Contributions .. 3

1.4 Thesis Outline .. 4

ARTIFICIAL NEURAL NETWORKS .. 5

2.1 Introduction .. 5

2.1.1 Perceptron Training .. 7

2.1.2 The Activation Function ... 9

2.1.2 Feed Forward Networks and Multilayer Perceptron ... 11

2.2 Neural Network Training ... 13

2.2.1 Gradient Descent Optimization Algorithms ... 13

2.2.2 The Error Backpropagation ... 25

2.3 Tuning Neural Networks .. 30

2.3.1 The Early-Stopping Technique ... 30

2.3.2 Weight Initialization ... 31

2.3.3 The L2 Regularization .. 32

2.3.4 The L1 Regularization .. 34

2.3.5 Hyperparameter Selection ... 34

2.3.6 Training Dataset Expansion .. 35

2.3.7 The Neuron Dropout Technique ... 36

2.4 Deep Learning .. 36

2.4.1 Convolutional Neural Networks ... 37

2.4.2 Advancements in Convolutional Neural Networks... 44

2.4.3 Generative Adversarial Networks ... 62

2.4.4 Advancements in Generative Adversarial Networks .. 67

FUZZY POOLING ... 75

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xiv

3.1 Introduction .. 75

3.2 Related work .. 76

3.3 Type-1 Fuzzy Pooling .. 78

3.4 Evaluation Methodology .. 82

3.4.1 Classification Results .. 82

3.4.2 Qualitative Assessment ... 85

3.5 Conclusions .. 91

MACHINE LEARNING FOR COMPUTER-AIDED ENDOSCOPY .. 92

4.1 The Look-Behind Fully Convolutional Neural Network Architecture 94

4.1.2 Experiments and Evaluation of LB-FCN architecture .. 97

4.2 Cross-Dataset Abnormality Detection ... 106

4.2.1 Evaluation Methodology ... 106

4.3 Weakly Supervised Multilabel classification for Semantic Interpretation of Endoscopy Video

Frames .. 108

4.3.1 Experiments and Results ... 110

4.4 Substitution of Real with Artificially Generated Endoscopic Images for CNN Training 114

4.4.1 Medical Image Generation .. 116

4.4.2 Proposed Methodology ... 118

4.4.3 Evaluation Methodology and Results ... 119

MACHINE LEARNING FOR COMPUTER ASSISTED NAVIGATION ... 123

5.1 Introduction .. 123

5.2 The Lightweight Look-Behind Fully Convolutional Neural Network Architecture 125

5.2.2 The Network Architecture .. 126

5.2.3 Staircase Detection .. 128

5.2.4 Obstacle Recognition in the Context of Uncertainty-Aware Visual Perception System for

Outdoor Navigation of the Visually Challenged .. 133

5.3 Digital Twin for Simulation and Evaluation of Assistive Navigation Systems 137

5.3.1 State-of-the-Art Simulation Environments ... 138

5.3.2 The Digital Twin Navigation Framework ... 142

5.3.3 Simulation Studies .. 147

ASML: Algorithm-Agnostic Architecture for Scalable Machine Learning.. 157

6.1 Introduction .. 157

6.2 The ASML architecture ... 160

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xv

6.2.1 The Restful API .. 162

6.2.2 The Worker ... 163

6.2.3 The Task Scheduler ... 165

6.2.4 The Data Storage and System Monitoring Module .. 166

6.3 Example Use Cases and Evaluation ... 168

6.3.1 Realtime Obstacle Detection, Recognition and Tracking ... 168

6.3.2 Realtime Multi-User Endoscopic Video Analysis .. 174

6.3.3 User Case Response Time Analysis.. 176

6.4 Discussion .. 178

Conclusions and Future Research Directions ... 180

7.1 Concluding Remarks per Chapter .. 180

7.2 Overall Conclusions ... 184

7.3 Future Plans and Research Directions ... 184

APPENDIX ... 187

LIST OF PUBLICATIONS IN JOURNALS... 187

LIST OF BOOK CHAPTERS ... 187

LIST OF PUBLICATIONS IN PEER REVIEWED INTERNATIONAL CONFERENCES 188

REFERENCES ... 189

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xvi

LIST OF FIGURES

Figure 2.1 A stripped down human brain neuron. Dendrites reassemble the input of the cell body (neuron),

nucleus the computational unit and axon the output of the neuron. .. 5

Figure 2.2 A graphical representation of a perceptron. .. 6

Figure 2.3 (a) A generic linear classifier following 𝑓𝑥 = 𝑤 ∙ 𝑥 + 𝑏. (b) The NAND gate input space. 7

Figure 2.4 The step activation function .. 9

Figure 2.5 Commonly used activation functions. .. 10

Figure 2.6 Visual representation of the XOR logical function with the truth table on the left and the function

plot on the right. .. 11

Figure 2.7 A visual representation of an MLP architecture with two hidden layers, each one of arbitrary

number of neurons, and three output neurons. .. 12

Figure 2.8 A neural network capable of modeling the XOR logical function. .. 13

Figure 2.9 A 3D representation of upside-down cliff and a ball following a down-hill direction towards the

cliff global minimum. ... 14

Figure 2.10 A 3D representation of a loss function minimization. The red line represents the value been

minimized over a series of iterations, reaching the global minima of the function (denoted with black ×).

 .. 16

Figure 2.11 Visual representation of SGD (noisy line) and Gradient Descent (smooth line) over a period of

200 epochs. ... 17

Figure 2.12 A visual representation optimizing a loss function using the (a) SGD and (b) SGD with

Momentum algorithms. ... 20

Figure 2.13 An illustration of momentum (blue line) gradient descent compared with the NAG optimization

(green line) approach. The brown and red lines represent the jumps and the corrections made by the NAG

optimization approach. .. 21

Figure 2.14 An illustration of a simple MLP with one hidden layer of neurons. The 𝑤243 detonating

connection from 4th node of the second layer to the 3rd layer. ... 26

Figure 2.15 Validation and training dataset early stopping point. ... 31

Figure 2.16 Gaussian distribution of the values of a 500 weight and 1 bias neuron. 32

Figure 2.17 Gaussian distribution with standard deviation 1.22 and mean zero. 32

Figure 2.18 On the left a neural network before dropout and on the right a neural network after dropout

process. ... 36

Figure 2.19 Visual representation of the AlexNet (Krizhevsky et al. 2012) CNN architecture. 38

Figure 2.20 (a) The receptive field of a single neuron. (b) Overlapping receptive fields. 39

Figure 2.21 A visual representation of padding 𝑝 = 1 been used to surround and input volume of size 6×6

with zeros, resulting in volume of size 8×8. ... 40

Figure 2.22 Visualized feature maps formed by training a convolution layer using the MNIST dataset

(Deng 2012). ... 41

Figure 2.23 Visual demonstration of max and average pooling with filter size 2×2 and stride 2, when

applied on an input volume of spatial size 4×4. .. 42

Figure 2.24 Commonly used activation functions for the output layer of a CNN architecture. 44

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xvii

Figure 2.25 The LeNet-5 architecture. ... 45

Figure 2.26 The ZFNet architecture (Zeiler & Fergus 2014). .. 46

Figure 2.27 Deconvolution operation of the first and second layer of ZFNet model using as input the images

in the right (Zeiler & Fergus 2014). ... 47

Figure 2.28 The VGGNet-19 architecture (Simonyan & Zisserman 2014). .. 48

Figure 2.29 Variations of VGGNet architecture from smaller (A) to larger (E) (Simonyan & Zisserman

2014). .. 48

Figure 2.30 The GoogLeNet architecture (Szegedy et al. 2015). .. 49

Figure 2.31 The inception module (Szegedy et al. 2015). ... 50

Figure 2.32 (a) 5×5 convolution expressed as 3, 3×3 convolution layers (b) N×N factorized convolution

(Szegedy et al. 2016). .. 50

Figure 2.33 A ResNet architecture variant with 34 layers (He et al. 2016). .. 51

Figure 2.34 A visual representation of the residual block (He et al. 2016). .. 52

Figure 2.35 A visual representation of (a) the original residual block of ResNet and (b) a residual module

in ResNeXt model with 𝑐 = 32. ... 52

Figure 2.36 A visual representation of 5-layer dense bock (Huang et al. 2017). 53

Figure 2.37 Fire module visual representation. .. 54

Figure 2.38 The basic building block of the MobileNet-v1 architecture (Howard et al. 2017). 55

Figure 2.39 The basic building block of the MobileNet-v2 architecture (Sandler et al. 2018). 56

Figure 2.40 The basic building block of the MobileNet-v3 architecture (Howard et al. 2019). 57

Figure 2.41 The basic building block of the BlazeFace architecture (Bazarevsky et al. 2019). The max-

pooling layer is used only when the depthwise separable convolution layer includes a stride of 2. 58

Figure 2.42 The basic building block of the SqueezeNext architecture (Gholami et al. 2018). 58

Figure 2.43 Channel shuffling visualization after grouped convolution. ... 59

Figure 2.44 The basic building block of the ShuffleNet (Zhang et al. 2018) architecture. 60

Figure 2.45 The basic building block of the ShuffleNet-v2 (Ma et al. 2018) architecture. 61

Figure 2.46 A visual illustration of the GAN framework (Goodfellow et al. 2014). 64

Figure 2.47 A visual comparison between (a) the original GAN architecture (Goodfellow et al. 2014) and

(b) the CGAN architecture (Mirza & Osindero 2014). ... 70

Figure 2.48 An illustration of InfoGAN architecture (Chen et al. 2016). The shared network block

illustrates a single network with two output layers; one for discrimination and one for the classification. 71

Figure 2.49 An example of image-to-image translation in which a translation model is used to map/translate

edges to a real image. .. 72

Figure 2.50 A visual illustration of CycleGAN (Zhu et al. 2017) image translation framework. 73

Figure 2.51 A visual illustration of DiscoGAN (Kim et al. 2017) image translation framework. 74

Figure 3.1 Schematic representation of the proposed fuzzy pooling operation applied on a single volume

patch extracted from a set of z feature maps. .. 79

Figure 3.2 Sample images of the 10 classes from MNIST (Deng 2012) dataset 83

Figure 3.3 Sample images from the 10 classes of Fashion-MNIST (Xiao et al. 2017) dataset. 83

Figure 3.4 Standard CNN LeNet (LeCun et al. 1989) architecture .. 83

Figure 3.5 Sample images from the 10 classes of CIFAR-10 (Krizhevsky et al. 2009) dataset. 84

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xviii

Figure 3.6 Visual comparison of pooling results on standard images found in (Anon n.d.) and (Gonzalez

& Woods 2018) datasets. The images of “House”, “Fishing Boat”, “Baboon” and “Cameraman” are

presented on rows 1 to 4 respectively. (a) Original images, (b) Max-pooling, (c) Average pooling, (d) RegP

pooling (e) Proposed type-1 fuzzy pooling. .. 86

Figure 3.7 Visual comparison of details on the images illustrated in (Figure 3.6). (a) Original images, (b)

Max-pooling, (c) Average pooling, (d) RegP pooling (e) Fuzzy pooling. .. 88

Figure 3.8 Visual comparison of pooling results on a subset of 10 feature maps obtained by the

convolutional layer of the CNN (Figure 3.5). In each figure, the first row contains the original feature maps,

and the rest of them the results of max-pooling, average pooling, RegP, and Fuzzy Pooling, respectively.

(a) Images with Gaussian noise (b) “House”, (c) “Fishing Boat”, (d) “Baboon” and (e) “Cameraman”. .. 90.

Figure 4.1 A comparison between the core components of ResNet (He et al. 2016), ResNeXt (Xie et al.

2017), Inception-v4 (Szegedy et al. 2017) and the proposed LB-FCN (Diamantis et al. 2019)architectures.

The term “volume” represents either a set of feature maps (in case of hidden network components) or a

single image (in the case of network’s input). .. 95

Figure 4.2 Schematic representation of the LB-FCN (Diamantis et al. 2019) architecture proposed in this

study. ... 96

Figure 4.3 Schematic representation of the LB-FCN (Diamantis et al. 2019) architecture proposed in this

study. ... 98

Figure 4.4 Sample images from KID Dataset. The first row contains normal images, whereas the second

row contains images with abnormalities. .. 98

Figure 4.5 Mean ROC obtained by 10-fold CV on dataset D1, using LB-FCN. The grey area around the

curve the represents the respective confidence band. ... 101

Figure 4.6 ROC obtained on dataset D1B, using LB-FCN. ... 102

Figure 4.7 Mean ROC obtained by 10-fold CV on dataset D1, using LB-FCN. The grey area around the

curve the represents the respective confidence band. ... 102

Figure 4.8 Sample images from (a) GLAB, (b) GATLAS, (c) CVC, (d) ETIS, (e) KID and (f) GASTRO

datasets. ... 107

Figure 4.9 The proposed MM-CNN architecture, composed of LMSCBs. (a) The architecture of an

LMSCB. The input volume is forwarded to the multi-scale feature extraction component and then to the

addition operator. The final feature maps are then forwarded to the pooling component which results in a

50% dimensionality reduction. (b) The overall MM-CNN architecture composed of 5 LMSCB modules and

4 sigmoid output neurons, which are used for the multi-label classification. ... 110

Figure 4.10 Sample images from the KID dataset. (a) Debris, (b) Bubbles, (c) Lumen hole, (d)

Inflammation, (e) Polypoid and (f) Angiectasia. .. 113

Figure 4.11 Comparative multi-label lesion detection results for each multi-label method tested. 114

Figure 4.12 Comparative classification performance results for each semantic label in the KID dataset, for

each multi-label method. ... 114

Figure 4.13 Non-stationary texture synthesis (Zhou et al. 2018) GAN architecture. The generator receives

an input of k×k×3 size and expands it to 2k×2k ×3. The discriminator receives an input 2k×2k×3 and tries

to identify the validity of it. .. 118

Figure 4.14 Sample images from the KID Database. The first row contains healthy small bowel images.

The second row contains images of various inflammatory conditions. .. 120

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xix

Figure 4.15 Sample generated small bowel images using the non- stationary texture synthesis GAN (Zhou

et al. 2018). ... 120

Figure 4.16 Sample generated images with inflammatory conditions using the non-stationary texture

synthesis GAN (Zhou et al. 2018). ... 120

Figure 4. 17 ROC obtained by 10-fold Cross-Validation on LB-FCN light architecture trained using (a)

artificially generated images and (b) real images. .. 121

Figure 5.1 The main building block of LB-FCN light architecture. .. 127

Figure 5.2 The complete LB-FCN light architecture composed of four multi-scale blocks and three residual

connections. .. 128

Figure 5.3 Top: staircases found in StairFlickr dataset. Middle: staircases found in LM+Sun dataset.

Bottom: non-staircases images from LM+Sun dataset. .. 131

Figure 5.4 VPS architecture overview illustrating the components of the system along with their

interconnectivity. .. 135

Figure 5.5 Sample images from the five obstacle categories, (a) “benches”, (b) “columns”, (c) “crowd”, (d)

“stones”, and (e) “trees” from the “Flickr Obstacle Recognition” dataset.. 136

Figure 5.6 The graphical simulation framework of the Digital Twin. ... 143

Figure 5.7 Example path from the Historical Triangle of Athens, outlined in Google Earth. 144

Figure 5.8 The DT obstacle avoidance framework. ... 146

Figure 5.9 A DT route reconstruction of a route obtained from Google Earth, as illustrated in (Figure 5.7)

 .. 149

Figure 5.10 (a) Simple route selected from Google Earth; (b) Reconstructed route in smaller scale with

randomly positioned obstacles along the route. .. 149

Figure 5. 11 Visual representation of the membership functions of the four fuzzy sets. 152

Figure 5.12 Visual representation of the trajectory followed by the VI individual using the proposed

algorithm. The red and blue lines denote the trajectory followed with and without obstacles, respectively.

 .. 155

Figure 6.1 Diagram of the ASML architecture. The monitoring module is connected to all the components

of the system architecture. For readability purposes its connections are omitted. 160

Figure 6.2 Diagram of a worker with two input data source handlers, parallel and sequential processors

with multiple output data source handlers. ... 164

Figure 6.3 Illustration of the processing steps followed in (Dimas et al. 2020) for obstacle detection and

recognition. ... 169

Figure 6.4 Diagram of a worker implementing the steps required by the obstacle detection and recognition

framework (Dimas et al. 2020). .. 170

Figure 6.5 Comparison of frame rate achieved by the proposed architecture using different number of

workers and number of obstacle regions. The dotted line illustrates the real-time performance threshold of

30 frames per second (fps). ... 171

Figure 6.6 Classification example of 8 obstacle regions using the proposed architecture with 5 workers.

Each color corresponds to a different worker. .. 172

Figure 6.7 Diagram of a worker extending the obstacle detection and recognition framework (Dimas et al.

2020) methodology with and object tracking (Bochinski et al. 2017). ... 173

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xx

Figure 6.8 Comparison of frame rate achieved with object tracking by the proposed architecture using

different number of workers and number of obstacle regions. The dotted line illustrates the real-time

performance threshold of 30 frames per second (fps). .. 174

Figure 6.9 Diagram of a worker implementing the steps required for the flexible endoscopy and WCE

abnormality detection. In flexible endoscopy, the RTSP input data source handler is used while in WCE,

the HTTP input data source handler is used to provide the video from the object-store storage. 175

Figure 6.10 WCE frame classification using the proposed architecture. (a) Normal, (b) Polypoid, (c) Blood,

(d) Inflammatory condition. .. 176

Figure 6.11 Comparison of frame rate achieved by the proposed architecture using different number of

workers and number parallel endoscopes. The dotted line illustrates the real-time performance threshold of

30 fps. .. 176

Figure 6.12 Comparison of worker response times detecting and tracking different number of bounding

boxes corresponding to obstacles, sampled over a period of 30 minutes. The graph illustrates how the

system behaves when a worker is removed or added back to the system. The sampling points are linearly

interpolated for visualization purposes. .. 177

Figure 6.13 Comparison of worker response times for abnormality detection in GI tract images, when used

by different number of users, sampled over a period of 2 hours. The graph illustrates how the system

behaves when a worker is removed or added back to the system. The sampling points are linearly

interpolated for visualization purposes. .. 178

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

xxi

LIST OF TABLES

Table 2.1 The NAND gate behavior .. 7

Table 2.2 Summary of recent GAN models. .. 68

Table 3.1 Comparative Accuracy Results of the Type-1 Fuzzy Pooling Methodology on MINST Dataset

(Deng 2012) .. 85

Table 3.2 Comparative Accuracy Results of the Type-1 Fuzzy Pooling Methodology on CIFAR-10 Dataset

(Krizhevsky et al. 2009) .. 85

Table 3.3 Comparative Accuracy Results of the Type-1 Fuzzy Pooling Methodology on Fashion-MNIST

Dataset (Xiao et al. 2017) ... 85

Table 3.4 Comparative Results of the Proposed Type-1 Fuzzy Pooling Methodology on USC (USC, 2018)

Dataset .. 87

Table 4.1 Comparative abnormality detection results using 10-fold cross-validation on datasets D1, D1b

And D2, as they were obtained for an optimum selection of the meta-parameters of the compared nets and

methods. .. 101

Table 4.2 Comparison of the computational complexity of the top-ranked state-of-the-art architectures of

Table 4.1. .. 103

Table 4.3 Comparative abnormality detection results on cross-dataset evaluation. 108

Table 4.4 Comparative binary classification results, using various weakly supervised BoW methods with

SVM classifier and CNN method. The sensitivity, specificity, AUC and the confusion matrix (True

Positives – TP, False Negatives – FN, False Positives – FP, and True Negatives – TN) of each method is

included. .. 112

Table 5.1 Detection performance comparison, using 10-fold cross-validation, between state-of-the-art

MobileNet-v2 (Sandler et al. 2018) and LB-FCN light (Diamantis et al. 2019) 132

Table 5.2 Computation complexity comparison between state-of-the- MobileNet-v2 (Sandler et al. 2018)

and LB-FCN light (Diamantis et al. 2019) ... 133

Table 5.3 Confusion matrix of LB-FCN light (Diamantis et al. 2019) .. 133

Table 5.4 Comparative classification performance results between the LB-FCN light (Diamantis et al.

2019) architecture and the MobileNet-v2 (Sandler et al. 2018) architecture. .. 137

Table 5.5 Fuzzy rules of local path planning algorithm ... 153

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

1

CHAPTER 1

INTRODUCTION

This chapter introduces the notions investigated in this dissertation, it describes the research

context of the performed investigation, its aims, and its novel scientific contributions. It includes

references to the publications produced, as well as a structure of this document.

1.1 Introduction

Nowadays, intelligent systems based on Artificial Neural Networks (ANNs) are flourishing in the

context of multidimensional signal analysis, especially for the analysis of images and videos.

ANNs are Machine Learning (ML) systems that simulate the biological neural networks of living

organisms. They are used in a variety of applications that include pattern recognition, e.g., in the

identification of persons, objects, etc., and the solution of forecasting problems based on previous

observations, e.g., risk prediction from time series data. The increased computational power of

modern computer systems, especially the use of Graphical Processing Units (GPUs), enabled Deep

Learning (DL), a contemporary machine learning paradigm based on Deep Neural Network (DNN)

architectures, which are ANNs with multiple hidden layers of artificial neurons. DNNs are

increasingly becoming more efficient in recognizing patterns in large volume data (big data), but

also in solving complex prediction problems (Gu et al. 2018).

Conventional machine learning systems, such as Support Vector Machines (SVMs) (Vapnik 2013)

and ANNs, require a data pre-processing step in which typically features are extracted from the

data, or selected from existing features, and used as input to the model. This pre-processing step

typically requires a domain expert and aim to represent specific characteristics of the input that are

of interest in the context of an application. For this reason, these features are typically referred as

“hand-crafted”. In computer vision, such features mainly include color, shape, and textural

information. In deep learning, this data pre-processing step is eliminated, as the feature extraction

is automated through training, which removes some of the dependency on domain expert. Such

models ingest the entire data, instead of features, from which multiple levels of features are

extracted. Convolutional Neural Networks (CNNs) are a representative example of DL with high

efficiency (LeCun et al. 2015; Ravi et al. 2016).

Since 2012 (Krizhevsky et al. 2012), CNNs have revolutionized the domain of Computer Vision

(CV) and nowadays are considered the de-facto choice for image analysis tasks. Applications of

CNNs are numerous (Liu et al. 2017) . In this dissertation, motivated from the challenges posed by

the projects funding the respective research, more attention has been given to applications related

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

2

to the recognition and detection of objects in natural, assistive navigation systems for visually

impaired people, and medical image analysis (Appendix A).

Another area significantly impacted by DL are the generative models. Generative Adversarial

Networks (GANs) (Goodfellow et al. 2014) and Adversarial Auto Encoders (AE) (Makhzani et al.

2015) are examples of generative models with a remarkable performance in generating realistic

images. Applications of such models include, image generation from random noise (Goodfellow

et al. 2014), image-to-image translations (Isola et al. 2017), super-resolution (Ledig et al. 2017)

and realistic medical image generation (Kazeminia et al. 2020).

Nowadays most of the population of developed countries use cameras on a daily basis, e.g.,

through a mobile smartphone device. The increase in computational power of such portable

devices enabled the development of smart applications implementing elements of artificial

intelligence. Since 2014 (Jin et al. 2014), there has been an increased research interest towards the

reduction of the computational resource requirements of DL models, such as CNNs, to fit their

limited hardware requirements. To achieve that, most “mobile-oriented” models, primarily focus

on ways to reduce the free parameters of these models and consequently the number of floating-

point operations (FLOPs) required for inference. In effect, such models (Howard et al. 2017)

usually sacrifice the generalization capabilities of the model in favor of computational

performance.

This dissertation investigates DL models with enhanced generalization performance, even when

the samples available for training these models are limited, methodologies that can reduce the

computational requirements of such models to enable their use in embedded devices, and

methodologies to provide ML remotely as a service. The results of this dissertation show that the

proposed methodologies can be successfully used in a variety of different domains, including

medical image analysis for clinical decision support, navigation systems to assist visually impaired

people navigate in unknown environments, and software as a service deployment of complex ML

pipelines, such as the pipelines required in such applications, which enable the use of ML in a cost-

efficient and production-ready way.

1.2 Aims of this Dissertation

This doctoral research investigates novel approaches to ML with focus in deep learning and their

applications in computer-aided assistive technologies. The directions in which the research focuses

have broad social impact and can be summarized as:

• Investigate novel deep learning methodologies and develop DNN architectures and

methods offering improved generalization and computational performance.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

3

• Investigate image generation methodologies with applications in biomedical image

synthesis.

• Investigate methodologies that enable effective DNN training even when the data

availability is limited.

• Investigate methods that enable ML algorithms to be deployed in scalable production

environments, and offered through remote intelligent services.

• Investigate applications in the context of medical image analysis and computer-assisted

navigation systems.

• Investigate frameworks that enable in silico testing and evaluation of assistive navigation

systems.

1.3 Thesis Contributions

The effort invested for the accomplishment of the aforementioned aims, resulted in the

development of novel DNN architectures, methodologies, and applications:

• An image pooling methodology based on fuzzy logic, named Fuzzy Pooling, which aims

to cope with the local imprecision of the feature maps produced by the CNNs.

• A CNN architecture, named Look-Behind Fully Convolutional Neural Network (LB-

FCN), that can generalize well, even when the availability of training data is limited.

• A lightweight CNN architecture, named LB-FCN light, with relatively low computational

footprint and high generalization capabilities, designed for mobile and embedded

applications.

• An algorithm-agnostic architecture for scalable machine learning (ASML), enabling the

implementation of, even real-time, remote ML services.

• A GAN-based image synthesis methodology that enables substitution of real with

artificially generated endoscopic images for CNN training.

• Applications of LB-FCN and other CNN architectures in the context of medical image

analysis, including cross-dataset abnormality detection experiments and multi-label

classification on wireless capsule endoscopy (WCE) images.

• Applications of LB-FCN light in the context of obstacle detection for computer-assisted

navigation.

• Applications of ASML in the context of computer-aided endoscopy and computer-assisted

navigation.

• A digital twin framework, designed for the simulation and evaluation of assistive

navigation systems.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

4

The research and development in the scope of this doctoral thesis has been accepted for publication

in six (6) international journals, and two (2) book chapters, and have been presented in three (3)

international conferences. The list of publications is provided in Appendix A.

1.4 Thesis Outline

The rest of this thesis is organized in six (6) chapters:

• Chapter 2 provides the necessary theoretical background to artificial neural networks,

focusing on CNNs and GANs. It includes a detailed literature review.

• Chapter 3 presents the proposed fuzzy pooling methodology.

• Chapter 4 is dedicated to machine learning in the context of computer-aided endoscopy. It

includes literature review along with novel contributions of CNN and GAN architectures

that contribute to the aims of this study.

• Chapter 5 investigates machine learning in the context of computer-assisted navigation and

includes literature review of assistive navigation methodologies along with contributions

that enable the development of such methods.

• Chapter 6 presents a novel algorithm-agnostic system architecture that enables scalable

machine learning.

• Chapter 7 is the last chapter, where the conclusions and future prospects of further research

are summarized.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

5

CHAPTER 2

ARTIFICIAL NEURAL NETWORKS

This chapter aims to introduce the reader to the concepts of ML with primary focus on Deep

Learning techniques. It provides a brief introduction in the concept of Artificial Neural Networks

(ANNs), their usage and where their source of inspiration came from. Deep Learning is examined

in detail with primary focus on a special kind of deep ANN architecture named Convolutional

Neural Networks (CNNs) and their application in CV problems. The chapter also includes an

introduction to Generative Adversarial Networks (GANs) along with a review of the state-of-the-

art methods in the context of artificial image generation.

2.1 Introduction

It is well known that the human brain contains billions of neurons (Figure 2.1) that are connected

between each other via synapses and that these neurons are acting together in parallel and are

responsible for our perception.

Figure 2.1 A stripped down human brain neuron. Dendrites reassemble the input of the cell body (neuron),

nucleus the computational unit and axon the output of the neuron.

ANNs are inspired by the biological neurons and try to mimic the way human brain works. ANNs

are a simplified simulation of the human brain neurons connected with synapses forming a graph.

The basic computational unit firstly presented in late 50’s is called perceptron (Kubat 1999) and it

was inspired by the earlier work of (McCulloch & Pitts 1943). A basic perceptron is illustrated in

(Figure 2.2). It can be noticed that a perceptron is a direct translation of brain neuron into a

computational unit, with dendrites replaced by weights 𝑊𝑖, nucleus with an input and a weight

sum, known as transfer function, and the axon with an activation function 𝜑.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

6

Figure 2.2 A graphical representation of a perceptron.

Essentially a perceptron computes the weight sum of its inputs which are then passed by an

activation function. This produces a signal if a threshold value is reached. This can be expressed

as:

 𝑦 = 𝜑 (∑𝑥𝑖
𝑖

𝑤𝑖) (2.1)

Examining (2.1), one can notice that a single perceptron is a basic linear binary classifier (Figure

2.3) that can be expressed as:

 𝑓(𝑥) = {
1, 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.2)

The 𝑤 ∙ 𝑥 is the dot product of the input 𝑥 and weights 𝑤 matrices, respectively. The 𝑏, known as

bias, is an independent parameter which helps the decision boundary to move away from the origin.

Neurons with large bias, can be activated easily while neurons with negative bias can impact the

perceptron to activate harder.

An illustration of the effectiveness of a single perceptron model can be observed by modeling a

NAND gate (Figure 2.3b). The behavior of NAND logical gate is shown in Table 2.1 and can be

expressed as perceptron with two inputs, a bias and a threshold:

 𝑓(𝑥1, 𝑥2) = {
1, 𝑖𝑓 −2 ∙ 𝑥1 ∙ −2 ∙ 𝑥2 + 3 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.3)

where 𝑤1 = 𝑤2 = −2, 𝑏 = 3.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

7

(a) (b)

Figure 2.3 (a) A generic linear classifier following 𝑓(𝑥) = 𝑤 ∙ 𝑥 + 𝑏. (b) The NAND gate input space.

Table 2.1 The NAND gate behavior

𝒙𝟏 𝒙𝟐 𝒚

0 0 1

0 1 1

1 0 1

1 1 0

2.1.1 Perceptron Training

In simple cases, where the function is linearly separable, it is possible to tune the weights and the

threshold of the perceptron to output the desired values. In more complex scenarios, like the XOR

logical gate, more perceptrons are required to achieve the desired output. The question that arises,

is, when there are multiple perceptrons, how to compute, algorithmically those free parameters?

A simple yet computationally wasteful approach, to calculate the weights and thresholds of a

perceptron would be to follow an exhaustive search approach. As there is no guarantee that this

approach would lead to a desirable output within reasonable time, the need for an algorithmic

automation arises. There are multiple ways of computing these free parameters. The process of

finding these parameters, is called “training” of a neural network.

There are several methodologies to train a neural network such as the error back-propagation

(Rumelhart et al. 1986), which will be discussed in the following subsection, yet a simple example

for perceptron training (Minsky & Papert 1988) is beneficial as it presents the basic principles

behind training without the complications of a more complex approach. In the training phase of a

perceptron, a set of known examples called “training dataset” is presented to the network, multiple

times. Each time the training dataset is presented, the free parameters are adjusted, according to a

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

8

training rule. This process is called supervised training, as for all the samples included in the

training dataset, the input parameters and the desired output is known.

Let 𝑥𝑖 be the input parameters and 𝑤𝑖 the weights. Let 𝑇 be the training dataset, defined as a set

𝑇 = {𝑡1, 𝑡2…𝑡𝑖} which contain sample vectors 𝑡𝑖 = {𝑥1, 𝑥2…𝑥𝑖 , 𝑦} where 𝑦 is desired output. For

simplicity, the weights are combined with bias and the inputs of the model can be combined as a

matrix 𝑊 and 𝑋 respectively (2.4).

𝑊 =

[

𝑤1
𝑤2
…
𝑤𝑖
𝑏]

, 𝑋 = [

𝑥1
𝑥2
…
𝑥𝑖

] (2.4)

The result of the dot product between the two matrices (2.4) is the output of the neuron 𝑧:

𝑧 = 𝑤 ∙ 𝑥 (2.5)

Training is achieved by adjusting the weight vector 𝑊 according to the distance between the output

𝑧 of the perceptron and the desired output 𝑦 presented in the training vector 𝑡𝑖:

𝑤′ = 𝑤 ± 𝑛 ∙ 𝑡 (2.6)

Parameter 𝑛 is called learning rate, and is a small number, typically within [0,1], and it defines the

speed in which the weights will be adjusted in each iteration. Having a large learning rate, can

result into unstable learning while having too small, can lead to increased learning time. When

training, if 𝑧 is approaches the desired 𝑦, the term 𝑛 ∙ 𝑦 will be a positive value, and thus 𝑤′ =

𝑤 + 𝑛 ∙ 𝑦. On the other hand, if the desired 𝑦 is moving away then 𝑤′ = 𝑤 − 𝑛 ∙ 𝑦. The learning

rule derived from this can be expressed as:

𝑤′ = 𝑤 + 𝑛(𝑦 − 𝑧) ∙ 𝑤 (2.7)

The Eq. (2.7) can now be rewritten as a desired weight change 𝛥𝑤 = 𝑤′ −𝑤

𝛥𝑤 = 𝑛(𝑦 − 𝑧) ∙ 𝑡 (2.8)

This equation originally introduced by (Van Der Malsburg 1986) was historically the first used to

train logical unit and is called the “Perceptron Rule”. The perceptron rule can be algorithmically

expressed as:

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

9

Algorithm 2.1 The perceptron rule algorithm (Van Der Malsburg 1986)

1: while output != 𝑦 do

2: foreach 𝑡𝑖 in 𝑇:

3: output = evaluate model using 𝑡𝑖
4: if output != 𝑦 then

5: 𝑤 = 𝑤′ according to (2.7)

6: end if

7: end foreach

8: end while

Although variations of the perceptron rule were introduced by (Minsky & Papert 1988) and later

by (Kubat 1999), the main obstacle of how the above algorithm could generalize into training

multiple perceptrons remained unsolved, effectively halting the neuroscience research for nearly

15 years, placing neural networks power in question.

2.1.2 The Activation Function

An important component of an artificial neuron is the activation function, as it defines the way that

the function behaves based on different input. Without an activation function the network would

not be able to approximate complex, non-linear functional mapping between the input and the

output. The purpose of an activation function is to translate an input signal of a neuron in a network

to an output signal, usually within a specified range of values.

Figure 2.4 The step activation function

In the example of the pervious section, the step activation function (Figure 2.4) was used, which

activates whenever the input signal is greater than 0. Although computationally simple, it has

major disadvantage when used in a perceptron; small changes to the input space can significantly

alter the output of the neuron. An alternative function that enables smaller changes to the output

of the neuron according to the input value is desired. There are many functions that fulfill this

property, with the most commonly used one been the Logistic function (Figure 2.5a).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

10

(a)

Logistic

𝑎(𝑥) = 1 (1 + 𝑒−𝛽𝑥)⁄

(b)

Tanh

𝑎(𝑥) =
1 − 𝑒−2𝛽𝑥

1 + 𝑒−2𝛽𝑥

(c)

Rectified Linear Units (ReLU)

𝑎(𝑥) = max(0, 𝑥)

Figure 2.5 Commonly used activation functions.

The logistic non-linear function squashes the input value between 0 and 1 and has the advantage

of smoothing the output according to the change of the provided input. While effective, it can also

lead to computational mathematical loss as small real numbers are produced. When 𝛽 → ∞ the

logistic function becomes has the same properties as the step function. Similarly, the tanh function

(Figure 2.5b), squashes the values between -1 and 1, having the advantage of overcoming the

problem of non zero-centered values. Unfortunately, tanh is usually avoided as it can lead to

saturation problems while training, especially on large neural networks. Both logistic and tanh

function belong to the same family of activation functions commonly known as “Sigmoid”.

Recently, the Rectified Linear Units (ReLU) activation (Figure 2.5c) has been proposed (Nair &

Hinton 2010). The ReLU function battles the problem of neuron saturation and is relatively

computationally simple. These two properties are especially useful in deep neural networks, where

the problem vanishing gradient is more apparent. Another benefit of ReLU activations, is the

sparsity that arises when 𝑥 ≤ 0, while sigmoid functions tend to generate small non-zero values

leading to dense representations. While ReLU activation can lead to numeric explosions, newer

versions of the function have been proposed, such as capped ReLU (Howard et al. 2017)

𝑎(𝑥) = max (0,min (x, c)), where c is the max value, deal with this problem. Although there are

not enough mathematical evidence to prove that ReLU activation function performs better the

typical Sigmoid functions, the non-saturating properties of the function have empirically proven

that can improve the training performance (Krizhevsky et al. 2012).

Neurons with sigmoid functions as activations are called “sigmoid neuron” and, generally, neurons

are typically named after the activation function that is used. In literature though, the perceptron

term has been widely adopted to name any sort of artificial neuron. For historical reasons, neurons

are named by the by the widely used naming convention “perceptron” and the terms “sigmoid” or

“ReLU” neurons, or other, are only used when emphasis is required on their activation function.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

11

2.1.2 Feed Forward Networks and Multilayer Perceptron

Although a single perceptron can be used to model a simple, linear, binary classifier it is unable to

model more complex functions such as the XOR logical function. The XOR logical function is

non-linear and computes the eXclusive OR logical operation. The non-linearity of the XOR

function can be observed in (Figure 2.6).

Figure 2.6 Visual representation of the XOR logical function with the truth table on the left and the

function plot on the right.

Observing (Figure 2.6), it can be noticed that no single line is able separate the XOR two-

dimensional space. As a result, the need of extending the single-neural model arises. By including

more neurons effectively, we can incorporate more binary classifiers; forming a network of

neurons, that can approximate a desired function.

The Multilayer Perceptron networks architecture (MLPs) is an architecture that extends the

perceptron theory by incorporating multiple neuron (perceptron) units in layers, each one

connected with the next layer, in a fully connected feed forward neuron connection architecture.

An MLP network has a set of inputs, forming the so-called input layer (unlike other layers, it does

not include any neurons), at least one intermediate layer and an output layer. The intermediate

layer is also called “hidden” layer. A typical MLP architecture with two hidden layers is illustrated

in (Figure 2.7). It can be noticed that the neurons of each layer of the architecture is connected

with all the neurons of the next layer, thus the term fully-connected network. This means that in

an MLP architecture with 10 inputs, 1 hidden layer of 20 neurons and 3 output neurons will result

into 10 ∙ 20 + 20 ∙ 3 = 260 weights and 23 biases that need to be optimized.

MLPs belong to a wider range of neural network architectures known as “Multi-layer Feed-

Forward Neural Networks” (MFNNs). The naming of feed forward networks reflects their design,

which enables the signal flowing towards one direction, from the input neurons throughout the

network to the output without any backward connections. This signal propagation ensures a

synchronous behavior in which the signal is propagated by one neuron at a time interval, without

“delays” or “accumulation” of signals, which although it contradicts the complex connectivity of

the human brain neurons, it has proved relatively effective of solving both classification and

regression problems (Cybenko 1989; Hornik et al. 1989).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

12

It has been shown (Cybenko 1989; Hornik et al. 1989) that an MLP with at least one hidden layer

is able to simulate any kind of continue function. This is also known as the Universal

Approximation Theorem. The universality of MLP architectures can also be extended to

discontinuous functions, if the nature of the problem can accept an approximated solution.

Although based on this theorem, any MLP with a single hidden layer and enough neurons can be

used to approximate any function, in practice, architectures with multiple hidden layers are more

common. This is because, by limiting an MLP architecture to a single hidden layer, results into

increased number of neurons, which introduce more free parameters to the system and thus,

increase the overall complexity. Using more hidden layers, the approximation load is shared along

among the layers resulting into reduced weights and biases that have to be computed.

Figure 2.7 A visual representation of an MLP architecture with two hidden layers, each one of arbitrary

number of neurons, and three output neurons.

The number of hidden layers is another hyper-parameter that needs to be considered, when

designing an MLP architecture. Unfortunately, there is no mathematical way of computing the

number of hidden layers and their corresponding number of neurons. For this reason, heuristic

approaches are usually employed, which are based on trial and error, such as training the network

and validating its performance in unknown data. If the network is not capable of generalizing,

different hyper-parameters are tested. The changes include both the number of hidden layers and

the corresponding number of neurons of each layer (Murata et al. 1994; Bengio et al. 2007).

A simple example of an MLP architecture that is capable of modeling the XOR gate (Figure 2.6)

is illustrated in (Figure 2.8). The network consists of one input layer with two units, 𝑥1 and 𝑥2

which are connected to two-neuron, 𝑧1 and 𝑧2, hidden layer the output of which is connected to a

single output neuron 𝑌.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

13

Figure 2.8 A neural network capable of modeling the XOR logical function.

The input layer with the 𝑥1 and 𝑥2 neurons is considered fixed in terms that thee output of its

neurons is the same value as their input which explains their naming as “units”. The architecture

contains six weights and 3 biases. These parameters are also known as “free-parameters”, which

need to be fine-tuned, through training in order for the network to estimate the desired function.

Adding more neurons, the number of free-parameters also increases along with the computational

complexity of the overall model. In return, the network can estimate more complex functions. For

the XOR example the parameters can be computed by hand, yet for more complex scenarios, with

thousands or even millions of neurons, the need of an automated parameter computation becomes

a necessity.

2.2 Neural Network Training

Training of neural networks is an actively researched subject. Many methodologies have been

proposed over the years, which can be grouped into two main categories; evolutionary algorithms

(Jones 1993; Montana 1995) and error back-propagation (Hecht-Nielsen 1992). Both approaches

can be used to effectively train neural networks (Gupta & Sexton 1999), yet the error back-

propagation based algorithms have been the de-facto choice in literature, mainly due to its

effectiveness on training large networks.

2.2.1 Gradient Descent Optimization Algorithms

In literature, numerus gradient descent optimization algorithms have been proposed over the years

(Ruder 2016). The goal of these algorithms is to minimize the error of the output of the neural

network by adjusting the weights and biases of the model. A visual representation of gradient

descent in a three-dimensional space of an upside-down cliff containing a ball is illustrated in

(Figure 2.9), where the goal of the algorithm is to guide the ball towards the lowest point of the

cliff, which is known as global minima.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

14

Figure 2.9 A 3D representation of upside-down cliff and a ball following a down-hill direction towards

the cliff global minimum.

2.2.1.1 The Loss Function

To train an ANN, there is a need to quantify the output of performance. For this reason, a function

is used, named loss function, to quantify the error produced by the network comparing to the

expected output. In literature the name “loss function” can also be found as “cost”, “optimization”

or “error” function. The goal of this function is to be minimized through a training algorithm by

adjusting the free parameters of the network. A commonly used loss function, especially on

classification problems is the mean square error (MSE), which is also known as “quadratic

function” and is defined as:

𝐶(𝑤, 𝑏, 𝑥, 𝑦) =
1

2𝑛
∑|𝑦(𝑥) − 𝑦′|2

𝑥

 (2.4)

The 𝑤 and 𝑏 parameters are the free-parameters of the network, weights and biases respectively,

𝑥 the input of the network, 𝑦(𝑥) the expected output (target) of the network and 𝑦′ the output of

the network. The 𝑛 parameter represents the total number of samples presented to the model. It

can be noticed that the sum of the errors is always a positive real number, and it approximates

𝐶(𝑤, 𝑏) ≅ 0 only when 𝑦(𝑥) ≅ 𝑦′. This observation shows that the function can be used to

minimize the error, between the output of the network and the expected value. There are multiple

loss functions used in the literature (Rosasco et al. 2004), including cross entropy, root mean square

error etc. which can be used depending on the goal and the optimization algorithm that is used to

optimize them.

2.2.1.2 The Gradient Descent Algorithm

One of the simplest yet powerful optimization algorithms used to train an ANN, is the gradient

descent algorithm. This iterative algorithm tries to minimize the error of a loss function 𝐶 by

adjusting the free parameters of the network in small steps, upon every iteration of all training

samples. As it is the basis of many optimization algorithms it is worth understanding how it

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

15

operates. Let 𝑓 be a function with 𝑛 parameters that is minimized through a loss function 𝐶. Let

∆𝑥𝑖 be a small change in the direction of the function that is applied to 𝑥𝑖 original directions.

Following the mathematical calculus, the change of 𝐶 can be obtained following Eq. (2.5) which

has as a goal to obtain a negative ∆𝐶 and thus minimize 𝑓.

∆𝐶 ≅
𝜗𝐶

𝜗𝑥1
∆𝑥1 +⋯+

𝜗𝐶

𝜗𝑥𝑖
∆𝑥𝑖 (2.5)

Let ∆𝑥 be the transposed matrix of the variables and thus ∆𝑥 = (∆𝑥1, … , ∆𝑥𝑖)
𝑇 with the gradient

of 𝐶 defined as:

𝛻𝐶 = (
𝜗𝐶

𝜗𝑥1
, … ,

𝜗𝐶

𝜗𝑥𝑖
)
𝑇

 (2.6)

We can rewrite Eq. (2.6) with respect of ∆𝑥 and 𝛻𝐶:

∆𝐶 ≅ 𝛻𝐶 ∙ ∆𝑥 (2.7)

To minimize ∆𝐶 of Eq. (2.7) is possible by introducing a parameter 𝑛, which is called learning

rate:

∆𝑥 = −𝑛𝛻𝐶 (2.8)

The learning rate 𝑛, is a small positive real number. Based on Eq. (2.8) this can be written as:

∆𝐶 ≅ −𝑛𝛻𝐶2 (2.9)

As 𝛻𝐶2 is always positive number, ∆𝐶 ≤ 0 is guaranteed. The vector 𝑥 update can be expressed

as Eq. (2.10). Repeating this update for certain number of iterations, the change in the parameters

of the function 𝑓 will reach to global minimum.

𝑥 → 𝑥′ = 𝑥 − 𝑛𝛻𝐶 (2.10)

Gradient descent can be used to train a neural network directly, by estimating the best parameters

which the selected loss function 𝐶 is dependent on. Considering the neural network as a function

with parameters been the weights and biases of the neurons, we can rewrite Eq. (2.10) as:

𝑤 → 𝑤′ = 𝑤 − 𝑛
𝜗𝐶

𝜗𝑤
 (2.11)

𝑏 → 𝑏′ = 𝑏 − 𝑛𝛻𝐶 = 𝑏 −
𝜗𝐶

𝜗𝑏
 (2.12)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

16

There are challenges of using gradient descent on large number of free parameters, as the goal of

it is to minimize the quadratic loss function 𝐶 Eq. (2.4). As a result, to compute the gradient 𝛻𝐶

we also need to compute the 𝛻𝐶𝑥 for each training sample as the function is an average computed

by 𝐶𝑥 =
|𝑦(𝑥)−𝑎|2

2
 and 𝛻𝐶 =

1

𝑛
∑ 𝛻𝐶𝑥𝑥 . This is a computationally expensive task, both in terms of

time for large number of training examples and the learning, as the minimization of 𝐶, will occur

slowly.

Figure 2.10 A 3D representation of a loss function minimization. The red line represents the value been

minimized over a series of iterations, reaching the global minima of the function (denoted with black ×).

Although the goal of optimizing the loss function is to reach a global minimum, in most cases, and

especially in complex optimization problems such as, training an ANN with million free

parameters, that is not always the case. Local minima and vanishing gradient are some of the most

common problems found in such optimizations, that can lead to poor generalization performance

or the network to never converge. State-of-the-art optimization algorithms have been proposed

that mitigate this problem to a large extend, but without guarantees that global minima will be

found.

2.2.1.3 The Stochastic Gradient Descent Algorithm

To mitigate the slow learning rate of the conventional gradient descent algorithm, stochastic

gradient descent (SGD) was introduced. The algorithm operates by randomly selecting a subset 𝑚

of training samples from the training set 𝑇 and uses that to perform the normal gradient descent.

This subset is also known as “batch”. The principle behind the SGD algorithm is that instead of

computing the parameter change based on the entire dataset it estimates the change based on

smaller sample of data. As a result, more changes in the free parameters of the network are applied

per iteration (epoch) of the entire dataset which in return speeds up the converge time significantly.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

17

The SGD algorithm is very similar to conventional gradient descent. Let mini-batch 𝑀 =

{𝑋1, 𝑋2… ,𝑋𝑚} of the training dataset 𝑇, where 𝑀 ⊆ 𝑇. The gradient descent is estimated by

averaging 𝛻𝐶𝑋𝑖:

𝛻𝐶 =
∑ 𝛻𝐶𝑥𝑥

𝑛
≅
∑ 𝛻𝐶𝑋𝑖
𝑚
𝑖

𝑚
 (2.13)

To apply Eq. (2.13) in neural network training, an estimation of 𝛻𝐶𝑤 and 𝛻𝐶𝑏 for the weights and

biases of the network is obtained as:

𝑤 → 𝑤′ = 𝑤 −
𝑛

𝑚
∑

𝜗𝐶𝑋𝑖
𝜗𝑤

𝑖

 (2.14)

𝑏 → 𝑏′ = 𝑏 −
𝑛

𝑚
∑

𝜗𝐶𝑋𝑖
𝜗𝑏

𝑖

 (2.15)

Symbol ∑𝑖 represents the summing of all the mini-batch 𝑀 presented samples. To compute the

changes of the free-parameters of the network, the process is applied over all training samples. A

full iteration over all the training samples is called “epoch”. Repeating the same process for

multiple epochs the loss function is minimized.

Figure 2.11 Visual representation of SGD (noisy line) and Gradient Descent (smooth line) over a period

of 200 epochs.

SGD is characterized by the noisy convergence compared to conventional gradient descent

approach (Figure 2.11). This can wrongly lead to the assumption of model not performing well

based on chosen hyper-parameters, especially on the first epochs. For this reason, it is preferably

to wait for at least few epochs until conclusions about the performance of the model are drawn. A

special case of SGD called “on-line” learning can be achieved by choosing a batch size of 1. This

can be used when the training data are not available at the beginning of training, or if they are

made available to the model from a stream of data. Although powerful, on-line learning does not

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

18

always converge and training might end up getting “stuck” on a local minima, greatly affecting

the generalization performance of the model.

2.2.1.4 The Mini-Batch Gradient Descent

A similar algorithm to SGD, is the mini-batch gradient descent algorithm (MBGD). The algorithm

relies too on splitting the training dataset into multiple batches, but instead of updating the free-

parameters of the network once every epoch, it does on every batch. This reduces a lot the noisy

training behavior of conventional SGD and thus, keeps the best of both worlds.

The advancements in computer hardware and most importantly the Graphical Processing Units

(GPU) enables MBGD algorithm to take advantage of performing matrix multiplications right on

the GPU memory without having to wait for each mini-batch to get back from RAM which

involves CPU wait. As a result, this allows faster gradient computation, significantly increasing

the training performance. The batch size is an important hyper-parameter of the algorithm as it has

a direct correlation with the training speed. The size of the batch is determined mainly based on

the available resources (memory) of the computational unit.

Although MBGD can significantly increase the training speed of a network, the algorithm does

not guarantee good convergence of the network, as it can easily fell for a local minima. The

learning rate with which the algorithm will update the free-parameters is really important. A low

learning rate can significantly increase the training time, effectively eliminating the benefits of the

algorithm, while using a large one can create unstable learning. To deal with the problem of

learning rate selection, ad-hoc solutions have been developed including learning rate scheduling

(Robbins & Monro 1951; Moreira & Fiesler 1995), which adjust the learning rate based on the

fluctuation of the cost function. One down side of these approaches is that they have to be defined

before training and are not able to adapt with all the idiomorphic characteristics of a dataset

(Darken et al. 1992).

2.2.1.5 Newton’s Optimization Algorithm

Newton’s optimization (Kelley 1999) is an approach that uses second order derivates and it can

lead, in theory, to quicker converge times compared training with standard gradient descent.

According to this approach a loss function 𝐶(𝑤), where 𝑤 = {𝑤1, 𝑤2…𝑤𝑛}, can be approximated

using the Taylor’s theorem:

𝐶(𝑤 + 𝛥𝑤) = 𝐶(𝑤) +∑
𝜗𝐶

𝜗𝑋𝑤𝑗
𝑗

𝛥𝑤 +
1

2
∑𝛥𝑤𝑗

𝜗2𝐶

𝜗𝑤𝑗𝜗𝑤𝑘
𝑗𝑘

+⋯ (2.16)

This can be rewritten with respect to the gradient vector 𝛻𝐶 as:

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

19

𝐶(𝑤 + 𝛥𝑤) = 𝐶(𝑤) + 𝛻𝐶 ⋅ 𝛥𝑤 +
1

2
𝛥𝑤𝑇𝐻𝛥𝑤 +⋯ (2.17)

where 𝐻 is the Hessian matrix, with 𝑗, 𝑘𝑡ℎ entries set as
𝜗2𝐶

𝜗𝑤𝑗𝜗𝑤𝑘
. The 𝐶 can be estimated by

calculating:

𝐶(𝑤 + 𝛥𝑤) ≅ 𝐶(𝑤) + 𝛻𝐶 ⋅ 𝛥𝑤 +
1

2
𝛥𝑤𝑇𝐻𝛥𝑤 (2.18)

Using calculus Eq. (2.17) can be minimized by Eq. (2.18):

𝛥𝑤 = −𝐻−1𝛻𝐶 (2.19)

and thus, an estimation that decreases 𝐶 can be obtained as follows:

𝑤 → 𝑤′ = 𝑤 − 𝐻−1𝛻𝐶 (2.20)

Similarly, this can be extended for biases and any other free-parameter of the network. This

methodology can be expressed as an iterative algorithm with the following three steps:

1. Randomly initialize the weights 𝑤 and any other free-parameter of the network

2. Calculate the first order derivative of 𝑤 by using Eq. (2.19)

3. Update the calculated weights 𝑤′ using the second order derivative of 𝑤′′ such as

 𝑤′′ = 𝑤′ − 𝐻′
−1
𝛻′𝐶

Learning rate can also be introduced to the Eq. (2.19), which can control the learning speed of

training:

𝛥𝑤 = −𝑛𝐻−1𝛻𝐶 (2.21)

While Newton’s approximation converges faster than conventional gradient descent, it suffers

from increased complexity due to the second order derivatives used in the optimization process.

As a result, in a network with millions free-parameters this method can be considered not feasible

even with the today’s modern GPUs.

2.2.1.6 Introducing Momentum in Stochastic Gradient Descent

Local minima create relatively steep curves when optimizing a loss function using the conventional

SGD algorithm (Sutton 1986), leading to hesitant movement towards the local minima slope

(Figure 2.12a).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

20

A parameter that controls the velocity of the minimization rate, called “momentum” (Qian 1999)

can be introduced to the conventional SGD algorithm to deal with this problem. Effectively

momentum can be compared with the Newton’s optimization, Hessian matrix-based technique, yet

without the performance implications of computing second order derivatives. Introducing the

momentum 𝑚 parameter to the original SGD algorithm is relatively straight forward. Initially let

𝑣 be the velocity in which the weights are changed:

𝑣 → 𝑣′ = 𝑚𝑣 − 𝑛𝛻𝐶 (2.22)

where 𝑚 is a constant parameter (momentum), and 𝑛 the learning rate. Using momentum, the

update rule of SGD can be rewritten as:

𝑤 → 𝑤′ = 𝑤 + 𝑣′ (2.23)

(a) (b)

Figure 2.12 A visual representation optimizing a loss function using the (a) SGD and (b) SGD with

Momentum algorithms.

Typically, the momentum constant is a real number, ranging between 0 and 1 and it controls the

accumulation of speed of change towards the direction of the global minimum. Having m close to

1 can lead to velocity that builds up on every iteration of the algorithm which in return increases

the training speed, yet it creates fluctuations. Having relatively low momentum, or even 0, leads

to very small, or any, velocity build up, leading to behavior similar to the original gradient descent.

2.2.1.7 Nesterov Accelerated Gradient

Although momentum approach is capable of controlling the acceleration of training, it might

accelerate towards a local minimum. Aiming to solve this problem Nesterov Accelerated Gradient

(NAG) (Nesterov 1983) was introduced. NAG attempts to approximate the future direction of the

gradient, instead of blindly searching for the global minima, which results in forcing the gradient

direction to move towards the correct direction.

𝑣 → 𝑣′ = 𝑚𝑣 − 𝑛𝛻𝐶(𝑤 −𝑚𝑣) (2.24)

In the illustration of (Figure 2.13) it can be noticed that momentum gradient descent initially with

a small step towards the minima (blue line) accumulating velocity which creates a large “jump”

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

21

away from the global minima (long blue line). On the other hand, NAG, represented in green,

makes a big jump towards the direction of the previous gradient (brown line) and by measuring

the gradient in which it ends up, makes small corrections (small red lines)

Figure 2.13 An illustration of momentum (blue line) gradient descent compared with the NAG optimization

(green line) approach. The brown and red lines represent the jumps and the corrections made by the NAG

optimization approach.

2.2.1.8 Adagrad optimization

Adagrad is an adaptive optimization algorithm proposed by (Duchi et al. 2011) which adapts the

learning rate of the gradient descent based on the free-parameters state of the network. The

algorithm does large updates on the infrequently used free-parameters and smaller ones on the

ones used a lot, primarily suited for sparce data. As in Adagrad case the learning rate is varying on

every free-parameter update, the classic SGD algorithm can be written as:

𝑤𝑡 → 𝑤𝑡+1 = 𝑤𝑡 − 𝑛𝛻𝐶(𝑤𝑡) (2.25)

where 𝑤𝑡 are the free-parameters updated on every 𝑡 time step and 𝛻𝐶(𝑤𝑡) the gradient. Adagrad

learning rate is adjusted on every next step such as:

𝑤𝑡 → 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

𝐷𝑡
𝛻𝐶(𝑤𝑡) (2.26)

where 𝐷𝑡 = √𝐺𝑡 + 𝜀. The 𝜀 is a constant parameter, called “smoothing term”, usually set to 1𝑒 −

8 and 𝐺𝑡 a diagonal matrix with values the sum of squires of the gradients of all the previous time

steps. An element-wise matrix (⨀) multiplication can be performed between 𝐺𝑡 and the 𝛻𝐶(𝑤𝑡):

𝑤𝑡 → 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

𝐷𝑡
⨀𝛻𝐶(𝑤𝑡) (2.27)

The benefits of Adagrad compared to conventional SGD have been seen in several cases, such

when Google (Dean et al. 2012) used Adagrad to train a neural network on finding cats in YouTube

videos. Furthermore, Adagrad was used by (Pennington et al. 2014) to successfully train a neural

network on the “Glove Word Embeddings”, in which naturally frequent words require much

smaller updates than the infrequent ones.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

22

The main benefit of Adagrad algorithm is that the learning rate 𝑛, does not require pre-training

selection and thus reducing the number of hyper-parameters selection. A small learning rate is

typically selected in the initialization phase, such as n = 0.001. Unfortunately, Adagrad suffers

from exploding sums, as the accumulative terms are always positive which leads to gradually

vanishing learning rate, which in some cases can halt completely the training process.

2.2.1.9 Adadelta optimization

The problem of the vanishing learning rate of Adagrad is solved by the Adadelta optimization

approach (Zeiler 2012). The algorithm solves the problem of exploding sums by using fixed size

𝑤 of accumulated gradients. The accumulated gradients are stored efficiently by recursively

defining them as a decaying average of all previously computed squared gradients. The decaying

gradient can be defined as:

𝐸[𝛻𝐶(𝑤)2]𝑡 = 𝛾𝐸[𝛻𝐶(𝑤)
2]𝑡−1 + (1 − 𝛾)𝛻𝐶(𝑤)𝑡

2 (2.28)

where 𝐸[𝛻𝐶(𝑤)2]𝑡 is the running average at the timestep 𝑡 and 𝛾 the momentum constant which

is typically 0.9. According to this Eq. (2.29) the SGD can be re-written as:

𝛥𝑤𝑡 =
−𝑛

𝐷𝑡
⨀𝛻𝐶(𝑤𝑡) (2.29)

𝑤𝑡+1 = 𝑤𝑡 + 𝛥𝑤𝑡 (2.30)

where ⨀ represents element-wise matrix multiplication. The 𝐷𝑡 = √𝐺𝑡 + 𝜀 which is the same as

Adagrad, while in Adadelta case, 𝐺𝑡 is a vector of decaying average. Rewriting Eq. (2.30) we get:

𝛥𝑤𝑡 =
−𝑛

√𝐸[𝛻𝐶(𝑤)2]𝑡 + 𝜀
⨀𝛻𝐶(𝑤𝑡) (2.31)

Replacing the 𝐸[𝛻𝐶(𝑤)2]𝑡 parameter with the root mean square error criteria (RMS) of the

gradient, it can be noticed that the need for an initial learning rate is eliminated from the equation:

𝛥𝑤𝑡 =
−𝑅𝑀𝑆[𝛥𝑤]𝑡−1
𝑅𝑀𝑆[𝛻𝐶(𝑤)]𝑡

𝛻𝐶(𝑤𝑡) (2.32)

This new update rule relies on 𝐸[𝛥𝑤2]𝑡 = 𝛾𝐸[𝛻𝐶(𝑤)
2]𝑡−1 + (1 − 𝛾)𝛥𝑤𝑡

2. As a result, the RMS

parameter updates are:

𝑅𝑀𝑆[𝛥𝑤]𝑡 = √𝐸[𝛥𝑤2]𝑡 + 𝜀 (2.33)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

23

in which the 𝑅𝑀𝑆[𝛥𝑤]𝑡 value is unknown and an approximation of it can be achieved by

calculating the RMS until 𝑅𝑀𝑆[𝛥𝑤]𝑡−1.

2.2.1.10 RMSProp optimization

The RMSProp (Hinton et al. 2012) optimization algorithm, is a widely used optimizer based on

Adadelta. The algorithm, as Adadelta, it too tries to solve the problem of vanishing learning rate.

The equations behind RMSProp, closely resemble the Adadelta optimizer:

𝐸[𝛻𝐶(𝑤)2]𝑡 = 0.9𝐸[𝛻𝐶(𝑤)2]𝑡−1 + 0.1𝛻𝐶(𝑤)𝑡
2 (2.34)

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

√𝐸[𝛻𝐶(𝑤)]𝑡
2 + 𝜀

𝛻𝐶(𝑤)𝑡
2 (2.35)

where 𝑛 is the learning rate, and 𝛾 the momentum parameter, with initial values 0.001 and 0.9,

respectively. The difference between the two algorithms, is that in the case of RMSProp,

exponentially decaying average of the squared gradients are used to divide the learning rate. The

main drawback of RMSProp compared to Adadelta, is that the learning rate is a hyper parameter

that needs to be selected before training.

2.2.1.11 Adam optimization

Similarly to RMSProp and Adadelta, another adaptive learning rate method to compute gradient

descent is called Adaptive Moment Estimation (Adam) (Kingma & Ba 2014). At the time of

writing, the Adam optimizer is one of the most used optimizers in the field of Deep Learning. The

algorithm keeps the exponentially decaying gradient average factor 𝑣𝑡 and extends it by

incorporating an exponentially decaying average of the previous gradients 𝑚𝑡, which resembles a

momentum parameter. These two vectors are estimates of the first moment (mean) and second

moment (uncentered variance) of gradients, respectively:

𝑚𝑡 = 𝑝1𝑚𝑡−1 + (1 − 𝑝1)𝛻𝐶(𝑤)𝑡 (2.36)

𝑣𝑡 = 𝑝2𝑣𝑡−1 + (1 − 𝑝2)𝛻𝐶(𝑤)𝑡
2 (2.37)

The 𝑝1 and 𝑝2 are constant parameters, representing the decay rates with values, according to

(Kingma & Ba 2014), 0.9 and 0.999, respectively. The update rule of Adam optimizer can be

expressed as:

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

√𝑣𝑡 + 10−8
𝑚𝑡 (2.38)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

24

2.2.1.12 AdaMax optimization

Along with the Adam optimizer, (Kingma & Ba 2014) proposed another optimizer named

AdaMax. The authors noticed that the update rule of Adam, is inversely proportional to the 𝑙2 norm

of the previous gradients as the rule contains the 𝑣𝑡−1 term and current gradient |𝛻𝐶(𝑤)𝑡|
2.

AdaMax takes advantage of this by extending the 𝑙2 norm to 𝑙∞:

𝑣𝑡 = 𝑝1
𝑛𝑣𝑡−1 + (1 − 𝑝1

𝑛)|𝛻𝐶(𝑤)𝑡|
𝑛 (2.39)

It can be noticed that having relatively high value for the 𝑛 parameter can result into numerically

unstable problems. For this reason, a typical value for the parameters is either 𝑙1 or 𝑙2. An

interesting case, where the 𝑛 = ∞ also results into stable learning:

𝑢𝑡 = 𝑝2
∞𝑣𝑡−1 + (1 − 𝑝2

∞)|𝛻𝐶(𝑤)𝑡|
∞ = max(𝑝2𝑣𝑡−1, |𝛻𝐶(𝑤)𝑡|) (2.40)

The 𝑣𝑡 vector is denoted as 𝑢𝑡 to avoid mixing of the two equations. Using 𝑢𝑡 in Adam update rule

(2.39) we get:

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

𝑢𝑡
𝑚𝑡 (2.41)

Similar to Adam, the authors suggest 𝑝1, 𝑝2 constant decay rates as 0.9 and 0.999 respectively

and 𝑛 = 0.002.

2.2.1.13 Nadam optimization

Nesterov-accelerated Adaptive Moment Estimation (Nadam) (Dozat 2016) optimization algorithm

is an incorporation of Adam and Nesterov Acceleration Gradient (NAG) algorithms. The algorithm

modifies the Adam’s 𝑚𝑡 vector with a momentum like parameter (𝛾):

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝑛𝛻𝐶(𝑤𝑡 − 𝛾𝑚𝑡−1) (2.42)

𝑤𝑡+1 = 𝑤𝑡 −𝑚𝑡 (2.43)

Nadam alters the original NAG algorithm and instead of double computation of the momentum

step, the look-ahead momentum is performed directly on the update rule such that the Eq. (2.42)

and Eq. (2.43) become:

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝑛𝛻𝐶(𝑤𝑡) (2.44)

𝑤𝑡+1 = 𝑤𝑡 − (𝛾𝑚𝑡 + 𝑛𝛻𝐶(𝑤𝑡)) (2.45)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

25

It can be noticed that instead of using the previous 𝑚𝑡−1 for the update, the algorithm uses only

the current step 𝑚𝑡 momentum vector. Similarly to the NAG incorporation, Nesterov momentum

in Adam optimizer is incorporated as:

𝑚𝑡 = 𝑝1𝑚𝑡−1 + (1 − 𝑝1)𝛻𝐶(𝑤)𝑡 (2.46)

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

√𝑣𝑡 + 𝜀
(
𝑝1𝑚𝑡−1 + (1 − 𝑝1)𝛻𝐶(𝑤)𝑡

1 − 𝑝1
𝑡) (2.47)

The 𝑝1 parameter represents the decay rate and
𝑝1𝑚𝑡−1

1−𝑝1
𝑡 is a bias corrected estimation of the

momentum vector (𝑚𝑡−1) of the previous step, expressed as an estimation of current momentum

vector 𝑚𝑡. The final update rule of Nadam can be expressed as:

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

√𝑣𝑡 + 𝜀
(𝑝1𝑚𝑡

(1 − 𝑝1)𝛻𝐶(𝑤)𝑡
1 − 𝑝1

𝑡) (2.48)

2.2.2 The Error Backpropagation

Although in the previous section, a large variety of optimization algorithms have been examined,

the incorporation of them in neural network training has not been presented. One of the most

widely used approaches in training neural networks is the error backpropagation. The algorithm

has been originally proposed in mid 70s, year it did not receive enough attention until it was used

in neural network training (Rumelhart et al. 1986). The authors showed that using back

propagation method, the training of neural networks was significantly faster compared to older

training approaches. To understand error backpropagation, a simple MLP is illustrated in (Figure

2.14), where 𝑤𝑗𝑘
𝑙 is the weight of the 𝑘𝑡ℎ neuron in the (𝑙 − 1)𝑡ℎ layer to the 𝑗𝑡ℎ neuron on 𝑙𝑡ℎ

layer. Similar to the weights, let 𝑏𝑗
𝑙 be the bias and 𝑎𝑗

𝑙 the activation function, of the 𝑗𝑡ℎ neuron in

the 𝑙𝑡ℎ layer, respectively. The activation function of a neuron can now be expressed as sums of

all the neurons on the 𝑘𝑡ℎneurons the (previous) layer 𝑙 − 1:

𝑎𝑗
𝑙 = 𝜎(∑𝑤𝑗𝑘

𝑙

𝑘

𝑎𝑗
𝑙−1 + 𝑏𝑗

𝑙) (2.49)

The computational efficiency of Eq. (2.49) can be improved by using matrix multiplications, and

thus enable modern GPU acceleration techniques to be used:

𝑎𝑙 = 𝜎(𝑤𝑙𝑎𝑙−1 + 𝑏𝑙) (2.50)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

26

where 𝑎𝑙 notates a matrix of the activation function outputs of the 𝑙𝑡ℎ layer, 𝑤𝑙 and 𝑏𝑙 matrices

with all the weights and biases of the neurons in 𝑙𝑡ℎ layer and 𝑎𝑙−1 a matrix with the activation

function output of each neuron of the previous layer. The intermediate 𝑙 − 1 activation function

matrices are computed, when Eq. (2.50) is applied on a forward pass of the network to get the

output of the last layer. These matrices, which are denoted as 𝑧𝑙, are kept as they are used to reduce

the computational complexity of the next steps of backpropagation algorithm.

Figure 2.14 An illustration of a simple MLP with one hidden layer of neurons. The 𝑤24
3 detonating

connection from 4th node of the second layer to the 3rd layer.

2.2.2.1 Loss Function Characteristics

The target of backpropagation algorithms is to compute the partial derivatives
𝜗𝐶

𝜗𝑤
,
𝜗𝐶

𝜗𝑏
 of a loss

function 𝐶 with respect of all the weights, the biases and in general the free-parameters of the

network. To do that, backpropagation mandates the loss function to meet two requirements. The

first, is that loss function 𝐶 shall be expressible as an average sum of all 𝐶𝑡 of individual all training

examples and thus 𝐶 =
1

𝑛
∑ 𝐶𝑥𝑥 . This ensures that the algorithm can compute the

𝜗𝐶𝑡

𝜗𝑤
,
𝜗𝐶𝑡

𝜗𝑏

derivatives and later or average them in order to compute the actual
𝜗𝐶

𝜗𝑤
,
𝜗𝐶

𝜗𝑏
. The second

requirement mandates the loss function to be expressed as a function of the output of each neuron

of the last layer, such that 𝐶 = 𝐶(𝑎𝑙). To demonstrate a function which relies on the output of all

the previous activations we can think the quadratic loss function. In this case, for a single training

example 𝑡, the loss can be expressed as:

𝐶 =
1

2
(|𝑦 − 𝑎𝐿|)2 =

1

2
∑(𝑦𝑗 − 𝑎𝑗

𝐿)
2

𝑗

 (2.51)

where 𝑦 is the desired output (target) of the training example 𝑡.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

27

2.2.2.2 The Fundamental Equations of the Backpropagation Algorithm

Ultimately, the backpropagation algorithm computes the
𝜗𝐶

𝜗𝑤𝑗𝑘
𝑙 ,

𝜗𝐶

𝜗𝑏𝑗
𝑙 partial derivatives using the

error of a loss function 𝐶. To do that, an intermediate quantity is used, that corresponds to the

“error of the neuron 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer” notated as 𝛿𝑗
𝑙. Using the backpropagation

algorithm, the aim is to compute the 𝛿𝑗
𝑙 matrices and later associate them with

𝜗𝐶

𝜗𝑤𝑗𝑘
𝑙 and

𝜗𝐶

𝜗𝑏𝑗
𝑙 partial

derivatives. In effect, the error 𝛿𝑗
𝑙 is considered as a small noise introduced when the input passes

through the neurons of the network in the feed-forward pass. Let 𝛥𝑧𝑗
𝑙 be the noise to the input

weights of the neuron, which in return produce 𝜎(𝑧𝑗
𝑙 + 𝛥𝑧𝑗

𝑙) instead of 𝜎(𝑧𝑗
𝑙). This small error

propagates through the neurons of the network, affecting the overall performance. This can be

expressed as
𝜗𝐶

𝜗𝑧𝑗
𝑙 𝛥𝑧𝑗

𝑙. The aim of the algorithm is to compute the 𝛥𝑧𝑗
𝑙 values that reduces the overall

loss function 𝐶 output. When the
𝜗𝐶

𝜗𝑧𝑗
𝑙 has a large value, we can lower down the loss by choosing a

𝛥𝑧𝑗
𝑙 with opposite sign, while when the

𝜗𝐶

𝜗𝑧𝑗
𝑙 is close to zero, the 𝛥𝑧𝑗

𝑙 has also to be close to zero.

Having a small
𝜗𝐶

𝜗𝑧𝑗
𝑙 means that the neurons are already optimized. The quantity 𝛿𝑗

𝑙 can be defined as

Eq. (2.52) where 𝛿𝑙 is the error of the 𝑙𝑡ℎ layer in a vectorized form.

𝛿𝑗
𝑙 ≡

𝜗𝐶

𝜗𝑧𝑗
𝑙 , 𝛿

𝑙 ≡
𝜗𝐶

𝜗𝑧𝑙
 (2.52)

In the output layer of a neural network the components 𝛿𝑙 can be computed as:

𝛿𝑗
𝐿 ≡

𝜗𝐶

𝜗𝑎𝑗
𝐿 𝜎

′(𝑧𝑗
𝐿)

 (2.53)

The rate of change of the loss function in respect to activation of the 𝑗𝑡ℎneuron of the last layer is

expressed in the first part of the equation, i.e.
𝜗𝐶

𝜗𝑎𝑗
𝐿, while the last part 𝜎′(𝑧𝑗

𝐿)
, measures the rate of

change of the activation function 𝜎 at 𝑧𝑗
𝐿. The Eq. (2.53) is relatively computationally inexpensive

to calculate. The only computational overhead is to the 𝜎′(𝑧𝑗
𝐿)

. For the quadratic loss function, the

computation is as simple as:

𝜗𝐶

𝜗𝑎𝑗
𝐿 = 𝑎𝑗

𝐿 − 𝑦𝑗 (2.54)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

28

As the Eq. (2.53) is expressing the rate of change of each neuron, it can be rewritten using matrices,

speed up the computations:

𝛿𝐿 = 𝛻𝑎𝐶𝜎
′(𝑧𝐿) (2.55)

where 𝛻𝑎𝐶 is a matrix whom components are the partial derivatives
𝜗𝐶

𝜗𝑎𝑗
𝐿

The second equation on which backpropagation relies on, calculates the error 𝛿𝑙 in respect to the

errors of the next layer:

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1) ⊙ 𝜎′(𝑧
𝑙) (2.56)

where (𝑤𝑙+1)𝑇 is the transposed weight matrix of the (𝑙 + 1)𝑡ℎ layer. Notice that the transposed

weight matrix is multiplied by the error 𝛿(𝑙+1). This expresses that the error is passed backward

through the network. The Hadamard product ⊙, on which the second component of the equation

relies on, is similar to the first component but in this case, it uses the backward error propagation

through the activation functions of the previous layer 𝑙𝑡ℎlayer. Using Eq. (2.53) and Eq. (2.56) the

error 𝛿𝑙 can be calculated for any layer of the network.

The rate of change of the loss function with respect to the biases of the network, is controlled by

the third equation of the backpropagation algorithm:

𝜗𝐶

𝜗𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 (2.57)

The vectorized equivalent of this equation can be expressed as
𝜗𝐶

𝜗𝑏
= 𝛿. Using these equations, it is

possible to compute the 𝛿𝑙 error as the quantity
𝜗𝐶

𝜗𝑏
 is already known by the previous steps.

The fourth and last equation of the algorithm computes the rate of change of the loss function with

respect of any weight in neural network from which, it is already known how to compute the error

𝛿𝑙and the 𝑎𝑙−1:

𝜗𝐶

𝜗𝑤
= 𝑎in𝛿out (2.58)

The 𝑎in parameter of the equation is the activation of the neural input to the weight 𝑤 and the 𝛿out

is the error of the output with respect to the weights 𝑤.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

29

An important characteristic of the backpropagation algorithm is that based on Eq. (2.51) if 𝜎(𝑧𝑙) ≈

0 or 𝜎(𝑧𝑙) ≈ 1 then the 𝜎′(𝑧
𝑙) ≈ 0. This is because the output of the sigmoid function is nearly

constant on regions close to zero or one. This has a direct consequence to the weights of the final

layer which will learn slower when the output value is relatively high or low. This is also known

as “saturated neuron” as the neurons stop learning. This extends to all free parameters of the

network, included the biases. Following the second equation of the backpropagation algorithm,

this is extended to all the neurons of the network. To battle this problem, other activation functions

such as the ReLU activation function are commonly used, especially in deep neural networks.

The error backpropagation algorithm can be expressed as five iterative steps:

1) Input: training examples

Set the activations 𝑎1 for the input layer.

2) Feed-Forward

For each layer 𝑙 in {2,3, … , 𝐿} compute the 𝑧𝑙 = 𝑤𝑙𝑎(𝑙−1) + 𝑏𝑙 and 𝑎𝑙 = 𝜎(𝑧𝑙).

3) Output error 𝛿𝐿

Calculate the matrix 𝛿𝐿 = 𝛻𝑎𝐶 ⊙ 𝜎′(𝑧
𝐿).

4) Backpropagate the error

For each layer 𝑙 in {𝐿 − 1, 𝐿 − 2,… ,2} compute 𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1) ⊙ 𝜎′(𝑧
𝑙).

5) Output

Compute the
𝜗𝐶

𝜗𝑤
= 𝑎in𝛿out and

𝜗𝐶

𝜗𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 which are the gradient of the cost function 𝐶.

The algorithm name comes from the fact that the error is backpropagated through the network.

The reason that the algorithm starts with the initial feed-forward phase, is that the overall error of

the network is a result of previous errors accumulated by the neurons of each layer. By performing

the feed-forward pass it is becoming possible to use the chain rule, from mathematical calculus,

working backwards throughout the previous layers to obtain the final expression.

To use mini-batch gradient descent, the algorithm is slightly modified:

1) Input: training examples

2) For each of the training examples 𝑡

Set the activations 𝑎1 for the input layer.

1) Feed-Forward

For each 𝑙 in {2,3,… , 𝐿} compute 𝑧𝑡,𝑙 = 𝑤𝑙𝑎(𝑡,𝑙−1) + 𝑏𝑙 and 𝑎𝑡,𝑙 = 𝜎(𝑧𝑡,𝑙)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

30

2) Output error 𝛿𝑡,𝐿

Calculate the matrix 𝛿𝑡,𝐿 = 𝛻𝑎𝐶 ⊙ 𝜎′(𝑧
𝐿)

3) Backpropagate the error

For each layer 𝑙 in {𝐿 − 1, 𝐿 − 2,… ,2} compute 𝛿𝑡,𝑙 = ((𝑤𝑙+1)
𝑇
𝛿𝑡,𝑙+1)⊙ 𝜎′(𝑧

𝑡,𝑙).

3) Gradient descent

For each layer 𝑙 in {𝐿 − 1, 𝐿 − 2,… ,2} update the weights according to the rule 𝑤𝑙 → 𝑤𝑙 −

𝑛 𝑚⁄ ∑ 𝛿𝑡,𝑙𝑡 αt,l−1 and the biases 𝑏𝑙 → 𝑏𝑙 − 𝑛 𝑚⁄ ∑ 𝛿𝑡,𝑙𝑡

The same algorithm can also be used in the case of SGD, in which the only modification needed

is the 2nd step, in which an outer loop needs to be added that selects the subset of the training

examples training in multiple epochs.

2.3 Tuning Neural Networks

Training a neural network that generalizes well on unknown data is a challenging task (Goodfellow

et al. 2016). When training a network, the goal is to generalize well from the training data to any

unknown data from the problem domain. The number of free-parameters of a model define its

learning capacity and thus affect its the generalization performance. A model with small number

of free-parameters might not be able to learn and thus generalize (underfitting), whereas a model

with too many free-parameters, is prone to overfitting. Overfitting describes a situation where the

trained model becomes really good on predicting on data that has already been trained with, yet

behaves poorly when tested on unknown data. Having an “ideal” learning capacity in a network,

does not guarantee good generalization performance. This is because the free-parameters of the

network are optimized according to the data available upon training and thus, having enough and

diverse training data is a requirement for good generalization performance. Finding the balance

between the learning capacity and the number of training samples required for training is a

challenging task in neural network tuning. The rest of this section describes techniques to cope

with neural network tuning.

2.3.1 The Early-Stopping Technique

In the process of training an ANN, a training dataset is used to evaluate the performance of the

model by computing the output of the loss function. This process prone to overfitting as the model

free-parameters are calibrated based on that training data. Furthermore, as the training data are

used to evaluate the performance of the network, the hyper parameters of the model are biased

towards the training dataset. A more accurate approach of evaluating the performance of the

network, while training, is to use a validation dataset. More specifically, this dataset is a subset of

the training dataset, that is excluded from training, and is used solely for the model generalization

performance evaluation, typically after every epoch.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

31

Using the validation dataset, it is possible to evaluate the performance of the network while training

independently of the training dataset. Monitoring the generalization performance of the network

on the validation dataset in comparison with the training data generalization performance, it is

possible to detect and prevent overfitting. This process is also called early stopping (Girosi et al.

1995), which as the name suggest, when the network begins to generalize better on the training

data compared to unknown, validation data, the training process should be halted. This is visually

illustrated in (Figure 2.15). Although in theory this works well, when SGD or other “noisy”

optimization algorithms are used, the stopping point can become hard to identify. To deal with this

problem, the model is allowed to be training for a fixed number of epochs, beyond the early

stopping point, while keeping track of the generalization performance degradation. If the

degradation continues, early stopping is applied, otherwise the model continues to train until the

next early stopping point is found. Nowadays, and because of the increase storage capacity of

modern computers, it is common to keep a history of every epoch in a form of model snapshot, in

order to find the optimal accuracy between validation and training dataset.

Figure 2.15 Validation and training dataset early stopping point.

2.3.2 Weight Initialization

Weight and biases initialization is an important decision when training any kind of ANN.

Initializing with random weights might degrade the performance of the entire training process or

even prevent it entirely. The later usually occurs when weights or biases have zero value and thus

the neurons are already saturated before the training process even begins. In practice a common

approach is to use random independent values that follow the Gaussian distribution, normalized to

have 0 mean and 1 standard deviation. Let 𝑧 be the sum of all the weights and biases of a single

neuron and thus:

𝑧 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏 (2.59)

That means that 𝑧 is a sum of random Gaussian variables an extra bias term. Assuming that half

of 𝑥𝑖 will be turned off, or in other words they will be set to 0, and the rest are activated, if the

number of weights connected to a single neuron is large, for example 500 weights, 𝑧 will have a

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

32

value of 501 considering 500 weights and 1 bias. The standard deviation of 𝑧 will be √501 ≅

22.4 with zero mean (Figure 2.16) which shows that the 𝑎𝑏𝑠(𝑧) will be a large value and thus

𝑧 ≫ 1 𝑜𝑟 𝑧 ≪ −1. In case of a sigmoid neuron, this will lead to a pre-saturated neuron as 𝜎(𝑧)

will be either strongly 0 or 1. As backpropagation works by applying small weights in order to

explore the surface of the cost function of the network, the changes will have little to no effect to

the neuron which leads to slow learning and thus damages the whole training process.

Figure 2.16 Gaussian distribution of the values of a 500 weight and 1 bias neuron.

To prevent this, an alternative approach is use Gaussian normalized free parameters with mean

zero, yet change the standard deviation to be around 1 √𝑛⁄ , where 𝑛 the number of free-parameters

connected to the neuron. This causes the Gaussian distribution to be squashed down and thus have

much less possibility for the neuron to be saturated upon initialization. By following that in the

previous example, the standard deviation of 𝑧 will be √
2

3
= 1.22 with a much sharper Gaussian

distribution (Figure 2.17).

Figure 2.17 Gaussian distribution with standard deviation 1.22 and mean zero.

2.3.3 The L2 Regularization

Weight decay is a regularization technique, also known as L2 regularization. To incorporate weight

decay, a modification of the loss function is required in which a regularization term is added.

Examining the original cross-entropy loss function, the regularization term can be added as:

C = −
1

𝑛
∑ (𝑦𝑙𝑛(𝑎) + (1 − 𝑦) ln(1 − 𝑎)) +𝑡

𝜆

2𝑛
∑ 𝑤2
𝑤 (2.60)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

33

in which the first term is the original cross-entropy loss function, followed by the sum of the

squares of all the weights. The scaling factor
𝝀

𝟐𝒏
 , where 𝝀>0 and 𝒏 the number of training

examples, is added in order to regularize the parameters. Similarly for the quadratic loss function,

weight decay can be incorporated which as:

𝐶 =
1

2
(|𝑦 − 𝑎𝐿|)2 =

1

2
∑(𝑦𝑗 − 𝑎𝑗

𝐿)
2

𝑗

+
𝜆

2𝑛
∑𝑤2

𝑤

 (2.61)

In fact, the L2 regularization term, can be added to any loss function by following:

𝐶 = 𝐶0 +
𝜆

2𝑛
∑𝑤2

𝑤

 (2.62)

where 𝑪𝟎 is the original lost function. The regularization parameter addition guides the network to

learn small weights while larger weights are allowed only if they result in a considerable change

of the original loss function output. The term that regulates the weight scale balance is 𝝀 where a

small value swifts the attention to minimize the original cost function 𝑪𝟎 while a larger value swifts

the preference to the small weights.

To incorporate the regularization factor 𝜆 in SGD algorithm, the partial derivatives of gradient

descent are expressed as:

𝜗𝐶

𝜗𝑤
=
𝜗𝐶0
𝜗𝑤

+
𝜆

𝑛
𝑤 (2.63)

𝜗𝐶

𝜗𝑏
=
𝜗𝐶0
𝜗𝑏

 (2.64)

Notice that the partial derivatives of biased remain unchanged, as the regularization The is applied

only on the weights of the network. In that sense the update rule of the backpropagation algorithm

can be re-written as:

𝑤 → 𝑤′ = 𝑤 − (1 −
𝑛𝜆

𝑛
)𝑤 − 𝑛

𝜗𝐶0
𝜗𝑤

 (2.65)

𝑏 → 𝑏′ = 𝑏 − 𝑛
𝜗𝐶0
𝜗𝑏

 (2.66)

The only to the original update rule is the rescaling of the weights, which is also called weight

decay. According to these equations the update rules of the SGD algorithm ca be rewritten as:

𝑤 → 𝑤′ = 𝑤 − (1 −
𝑛𝜆

𝑛
)𝑤 −

𝑛

𝑚
∑

𝜗𝐶𝑡
𝜗𝑤

𝑡

 (2.67)

𝑏 → 𝑏′ = 𝑏 −
𝑛

𝑚
∑

𝜗𝐶𝑡
𝜗𝑏

𝑡

 (2.68)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

34

The term 𝐶𝑡 is the unregularized cost of each training example of each mini-batch as computed by

the original backpropagation algorithm.

2.3.4 The L1 Regularization

L1 regularization is similar to L2 regularization, with the only difference been on the regularization

term of the loss function, which in L1 case, calculates the absolute sum of the weights of the

network multiplied by the regularization factor 𝜆:

𝐶 = 𝐶0 +
𝜆

𝑛
∑𝑎𝑏𝑠(𝑤)

𝑤

 (2.69)

The partial derivative of Eq. (2.69) with respect to the weights of the network can be written as:

𝜗𝐶

𝜗𝑤
=
𝜗𝐶0
𝜗𝑤

+
𝜆

𝑛
𝑠𝑔𝑛(𝑤) (2.70)

in which the 𝑠𝑔𝑛(𝑤) represents the sign of the weight 𝑤. The update rule of the regularized model

is expressed as:

𝑤 → 𝑤′ = 𝑤 (1 −
𝑛𝜆

𝑛
) − 𝑛

𝜗𝐶0
𝜗𝑤

 (2.71)

𝑏 → 𝑏′ = 𝑏 − 𝑛
𝜗𝐶0
𝜗𝑏

 (2.72)

Both L1 and L2 regularization are affecting the weights of the network, yet the first shrinks the

weights by a constant amount towards zero, while the second the weight shrinkage is proportional

to the weight. The result of this, is that when the magnitude of |𝑤| is large, the L1 regularized

network shrinks the weight less than L2. In contrast, when the magnitude of the weight is small

L1 regularization will affect more the weight than an L2. Concluding, an L1 regularized network

focuses the weights on a relatively smaller number of high importance connections, while the rest

are led towards zero. Although the difference between the two regularization forms is definite, it

is still unclear which performs the better and in fact, both are widely used in literature.

2.3.5 Hyperparameter Selection

In the context of neural networks, the parameters that have to be decided prior the training process

are known as “hyper-parameters”. These parameters depend on the different set of algorithms that

are used while training which includes, the learning rate 𝒏, the regularization parameter 𝝀, the

batch size 𝒎 in case of stochastic gradient descent like algorithms. Unfortunately, there is no

definite answer to what values they should get and thus, most of the researchers are following

heuristic approaches. Similarly, the same heuristic approaches are followed for the rest of hyper-

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

35

parameters of the network, including the number of hidden layers that the network should have,

the number of neurons of each hidden layer and even the activation function of the neurons. In

most of the cases the most effective way is the trial and error, yet there are some basic principles

that can be followed as short paths.

To speed up the learning process, and quickly evaluate the effectiveness of a hyper-parameter,

such as the learning rate, a common practice is to keep the training dataset small thus on each

epoch, the generalization performance can be monitored and if the model performance does not

follow an upwards direction alter the learning rate accordingly. Depending on the gradient descent

algorithm that is used, the learning rate and the regularization parameter are usually provided by

the creator of the algorithm, yet if that is not the case, a common approach is to follow a learning

rate reduction by a factor of 10 on each trial. As an example, a usual starting point for learning

rate, can be 𝑛 = 10−1, if the accuracy is unstable, then a lower learning rate should be applied. On

the other hand, if the classification accuracy grows steadily but slowly, learning rate should

increase, usually again at the same rate as the reduction. To determine the number of epochs that

the model should be used, it is a good practice to follow early stopping approach and thus avoid

overfitting too. For the regularization parameter, a common approach is first to start the training

without regularization at all and thus 𝜆 = 0, after learning rate adjustments, the regularization

parameter can be increased by a steady factor of 10, following the same principles with learning

rate, yet instead of starting from high values, usually the initial value is as low as 𝜆 = 10−5.

Various automated techniques have been proposed to help on hyper-parameter selection for neural

networks. A common approach is the “grid search” which systematically searches through grid in

hyper-parameter space to find the optimal values. A Bayesian optimization approach of parameter

selection has been proposed in (Snoek et al. 2012) in which a learning algorithm’s generalization

performance is modeled as a sample from a Gaussian process. A review of existing algorithms

along with practical ways to implement them can be found in (Bergstra & Bengio 2012) and a

recent review that covers essential topics of hyper-parameter optimization is presented in (Yu &

Zhu 2020).

2.3.6 Training Dataset Expansion

The artificial increase of the training samples is commonly employed in the field of ANN training.

This is because, in order to train a model with thousands or million free-parameters using a small

dataset often leads to overfitting. An example that is commonly used in the field of CV and is to

apply affine transformations such as rotations, translations and rescaling of the training samples

while keeping the same class. That enables the model to adjust the free parameters accordingly

and thus increase the generalization capabilities of the whole network. Another technique that has

been recently employed is to use artificially generated images, typically from a generative model,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

36

such as a GAN, to create visually and semantically new images from existing dataset. This can be

extended to train a neural network solely on artificially generated images (Diamantis et al. 2019).

2.3.7 The Neuron Dropout Technique

Neuron dropout (Srivastava et al. 2014) is another technique that is commonly used against

overfitting. The technique involves randomly switching off neurons while training in order to

prevent “strong connections” to be formed between neurons. An example of this can be seen in

(Figure 2.18) where temporarily a fixed percentage of neurons are disabled. By repeating this

process over every epoch, the neurons are getting trained in a way that resembles using multiple

neural network architectures and thus, they learn to generalize better. Furthermore, the complexity

of using multiple neural network architectures and then choosing the best is minimized as with this

technique, the trials are based on every epoch which would have been computed on each network

individually. This technique was used successfully in (Krizhevsky et al. 2012) were it was

described as a technique that reduces the complex co-adaptations of neurons.

Figure 2.18 On the left a neural network before dropout and on the right a neural network after dropout

process.

2.4 Deep Learning

Deep learning is a subset of ML which uses ANNs with multiple cascade neural layers to

progressively extract higher level features from the data. The main difference between

conventional ML algorithms and deep learning is the type of data used for training the model.

Conventional ML algorithms require a data pre-processing step in which typically features are

extracted from the data, or selected from existing features, and used as input to the model. This

pre-processing step typically requires a domain expert and aim to represent specific characteristics

of the input that are of interest in the context of an application. For this reason, these features are

typically referred as “hand-crafted”. In CV, such features mainly include color, shape, and textural

information. In deep learning models, this data pre-processing step is eliminated, as the feature

extraction is automated through training, thus removing some of the dependency on domain expert.

Such models ingest the entire data, instead of features from which multiple levels of features are

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

37

extracted. As an example, considering that we have a dataset containing images of pets, such as

cats, dogs, and parrots. In deep learning the model ingest entire images as and, through training,

determines which features are more important in distinguishing each animal. In ML this hierarchy

is established manually from a domain expert. Deep neural networks are usually trained using the

well-known back propagation algorithm.

2.4.1 Convolutional Neural Networks

In the last decade and especially after the work of (Krizhevsky et al. 2012), a lot of attention has

been drawn to a special type of deep neural network architecture called CNNs. CNNs are a type

of multi-layer feed-forward neural network architecture that at its core, contains at least one layer

of neurons, with connections that perform a special kind of operation known as convolution. Their

architecture is inspired by the natural biological process of animal visual cortex, in which neurons

are individually responding to small regions of the visual field. This biological arrangement was

discovered by examining the visual system of cats and monkeys from the biologists Hubel and

Wiesel in 50s and 60s. Later on (Hubel & Wiesel 1968) the authors identified that there are two

basic types of visual cells in the brains. The first type is called “single cells” whose output is

maximized by edges with particular orientation within their receptive field, which is effectively

the portion of the visual image that the cell is able to view. The second type of cells referred as

“complex cells” have a relatively larger receptive field compared to the first and their output is

insensitive to the exact position of the edges presented into that field.

In early 80s, the work of (Hubel & Wiesel 1968), inspired an adoption of this in the field of ANNs

(Fukushima & Miyake 1982) with the name “Neocognitron”. The big difference between

Neocognitron and the previously used architectures, was that the neurons did not require to share

the same trainable parameters (weights). As a result, the architecture, instead of relying on neurons

in fully connected arrangement, it was able use neurons with connection similar to ones found in

the biological visual context. Due to the increased computational complexity of training such

networks, the idea was effectively abandoned for almost a decade. In 1998, and mainly due to the

computational power of modern computers the Neocognitron architecture revisited and improved

(LeCun et al. 1998). More specifically the so called, LeNet architecture (LeCun et al. 1998),

proposed a CNN architecture featuring seven layers, which was successfully trained to recognize

handwritten digits in grayscale images of size 32×32 pixels. In 2003 a generalized approach was

proposed (Behnke 2003), which was simplified and standardized by (Simard et al. 2003). This

opened the path to the scientific community to leverage the power of these type of networks in the

field of CV.

Maybe the most well-known modern CNN architecture was proposed by (Krizhevsky et al. 2012)

in 2012 with the name “AlexNet”. The network was trained, using modern Graphical Processing

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

38

Units (GPUs), significantly speeding up the training process. Training on GPUs was a relatively

complex task, that was made possible by using the a framework provided by NVIDIA known as

Compute Unified Device Architecture (CUDA) (Nickolls et al. 2008), which nowadays the de-

facto backbone framework of modern neural network frameworks, such as Tensorflow (Abadi et

al. 2016) and Pytorch (Paszke et al. 2019). AlexNet was trained on the ImageNet (Deng et al.

2009) dataset and competed in the “ImageNet Large Scale Visual Recognition Challenge”

(ILSVRC) (Russakovsky et al. 2015), which is an annual CV competition began in 2010 and

follows the principles set by PASCAL VOC challenge (Everingham et al. 2010).

Figure 2.19 Visual representation of the AlexNet (Krizhevsky et al. 2012) CNN architecture.

The AlexNet architecture was trained on the ILSVRC-2010 ImageNet dataset, which contains 1.3

million high resolution images of various sizes, categorized in 1000 classes. The network achieved

39.7% and 18.9% error rates on top-1 and top-5 scales1, respectively, largely outperforming

machine-learning based approaches, winning the competition, sparking the research “frenzy” in

the field of CNNs. AlexNet architecture consists of five convolution layers, some of which

followed by max-pooling and normalization layers. The last layers of the network are two fully

connected layers followed by one output layer of 1000 neurons with softmax activations. The

architecture had more than 60 million free-parameters and 500.000 neurons which was a

considerably big number compared to previously proposed networks. An illustration of the

architecture is included in (Figure 2.19).

1 In ImageNet classification challenge the error rates of the model are reported based on the predictions of the top
5 most likely classes. The “top-5” error rate refers to the fraction of the test images for which the correct class is
amongst this top 5, while the “top-1” error rate refers to the fraction of test images for which the correct class is the
one judged most likely by the model.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

39

2.4.1.1 The Convolution Layer

At the core of any CNN architecture there is a special type of layer, called convolution layer, from

which this family of networks takes its name. A convolution layer is similar to a classic hidden

layer that is found in conventional MLP architectures. The difference between a fully connected

layer and a convolution layer lies on the neuron connection arrangement. While in a typical MLP

architecture all neurons of the previous layer are connected with all the neurons of the next layer,

in a convolution layer, each neuron is connected with a specific set of neurons from the previous

layer, which is called “receptive field” (Figure 2.20). The input of a convolution layer is

commonly referred as “input volume”. The receptive field is defined as the region in the input

volume that a particular neuron is looking. The region has a fixed size of 𝒘 × 𝒉, where 𝒘 and 𝒉

are the width and height, respectively. Similarly to a conventional sliding window algorithm, each

neuron is connected to the next set of neurons, until the entire surface of neurons from the previous

layer is covered. It is not mandatory for the regions to overlap each other. The distance, or step, by

which the region shifts on (filters) the input volume is called is called stride 𝒔.

(a) (b)

Figure 2.20 (a) The receptive field of a single neuron. (b) Overlapping receptive fields.

Depending on the filter size and stride used by the convolution layer, the outermost filters might

fell outside of the input volume. To overcome this problem, padding 𝒑 is used, which effectively

expands the input volume so that all filters can fit. An example of padding with 𝒑 = 𝟏 is illustrated

in (Figure 2.21), where the surrounding pixels of the input volume are padded with zeros.

The receptive field of each neuron in a convolution layer is extended across the depth of the input

volume. To understand this, we can consider a 3D input volume, such as an RGB image, in which

each channel can be considered as another slice added for the creation of a cube with a width and

height equal to the width and height of the image, and depth equal to the number of channels. In

such cases, the receptive field of neurons, which is also known as filter or kernel, raster scans the

input volume, covering their whole width and height. A convolution layer can raster scan the input

volume with many filters. The filters of the same type are sharing the same weights, increasing the

computational efficiency while training. This is also known as “parameter sharing”.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

40

Figure 2.21 A visual representation of padding 𝑝 = 1 been used to surround and input volume of size

6×6 with zeros, resulting in volume of size 8×8.

Parameter sharing is the main difference of the convolution layers from the conventional fully

connected layers. In a convolution layer, each neuron connection represents a receptive field, on

which weights and biases need to be computed. Instead of using different parameters for each of

neuron connection, the parameters are shared between them:

𝜎(𝑏 + ∑∑ 𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚)

ℎ

𝑚=0

𝑤

𝑙=0

 (2.73)

where 𝜎 is the activation function of a neuron, 𝑏 the shared bias and 𝑤𝑙,𝑚 the array of 𝑤 × ℎ shared

weights. The 𝑎𝑗+𝑙,𝑘+𝑚 detonates the activation function output of the previous layer neuron at

position 𝑗 + 𝑙, 𝑘 + 𝑚. This equation is also known as mathematical convolution and is the one

from which the name of the layer derives. In literature, this equation can also be found as:

𝑎𝑙,𝑚 = 𝜎(𝑏 + 𝑤 ∙ 𝑎𝑙−1) (2.74)

where 𝑎𝑙,𝑚 is the set of output activations of feature map 𝑚 in layer 𝑙 and 𝑎𝑙−1 a set of inputs from

the previous layer. The “∙” represents the convolution operation between the input and the shared

free-parameters of the feature map.

Due to the parameter sharing properties, the same filter is computed across all the input volume,

forming a feature detector, which is translation invariant. This derives from the fact that all neurons

look for the same feature across the input volume and as a result high activations will be achieved

wherever that feature is found. This mapping between the input and the filters of a convolution

layers is named as “feature map”. A convolution layer can have multiple feature maps, forming

multiple layers of feature detectors. A visual representation of such feature maps is depicted in

(Figure 2.22), in which 20 feature maps formed by training a CNN using the MNIST dataset (Deng

2012).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

41

Figure 2.22 Visualized feature maps formed by training a convolution layer using the MNIST dataset

(Deng 2012).

From the visualization of the feature maps in (Figure 2.22) it can be noticed that the features have

a spatial structure with lighter and darker regions, sensitive to corners, which resemble the

conventional approaches of feature extraction such as the Gabor filters. The difference between

these approaches and the feature maps is that the later, are learned based on the training samples

and they do not follow a specific mathematical procedure. The parameter sharing of feature maps,

is extended across the depth of the input volume. A benefit from the parameter sharing is that it

reduces the number of free parameters of the convolution layer, especially when compared with

conventional fully connected layers. As this extends along the whole network, the training and

inference process become considerably faster, even for deeper architectures. The lower

computational requirements in conjunction with modern computer hardware, mainly GPUs,

enabled deep learning to become a reality.

2.4.1.2 Pooling Layer

Convolution layers are usually followed by a pooling layer. A pooling layer can be considered as

a summarization layer of the input volume. The units of this layer have the same hyper-parameters

with the convolution layer, such that they too have a receptive field, stride, and padding, yet instead

of computing convolution operation, depending on the type of the pooling, they summarize the

receptive field of each unit into a single scalar value. Typically, a pooling layer has three hyper

parameters; the size of their receptive field, stride and padding. The benefit of using pooling layers

is that they reduce the number free-parameters in the network and thus lower the overall

computation cost of the model. The reduction of the spatial size of the model, also help to mitigate

the problem of overfitting, which will be discussed in the following sections.

Common pooling types include the max and average pooling, which compute the maximum and

average value from the receptive field of each unit, respectively. Commonly used hyper-

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

42

parameters are filter of size 2×2 and stride of 2 which in down sample the input volume by

discarding 75% of the activations. Higher pooling filter size, result into larger information loss

that, in most cases is not desirable. Max-pooling aim to keep the most important features of the

feature map, such us edges, while the average-pooling summarizes the input volume acting like

low pass filter. Although max and average pooling (Figure 2.23) are widely used, mainly due to

their simplicity, they “blindly” discard or mix the values of the input volume. For this reason, more

advanced pooling operations have been proposed, such as a fuzzy-set based pooling operation,

named “Fuzzy Pooling” (Diamantis & Iakovidis 2020), which aim to cope with the local

imprecision of the feature maps. It has been shown that similar benefits with the pooling layer can

be achieved by replacing them with larger filter size of convolution layers (Springenberg et al.

2014). Finally in some cases, discarding completely pooling layers can be beneficial in training,

especially in the case generative models such as variational autoencoders (VAEs) (Kingma &

Welling 2013) or GANs (Goodfellow et al. 2014).

Figure 2.23 Visual demonstration of max and average pooling with filter size 2×2 and stride 2, when

applied on an input volume of spatial size 4×4.

2.4.1.3 Fully Connected Layer

A commonly used layer, especially in older CNN architectures, such as the AlexNet (Krizhevsky

et al. 2012), fully connected layers are used as the last layers of the architecture. The reasoning

behind that is that the convolution layers are used to exploit the local associations between the

input signals yet and not to access whether a signal is strong enough to be considered significant.

For this reason, fully connected layers, which are the classic layers of neurons found in MLPs, are

used to classify the responses of the convolution layers. On the other hand, using fully connected

layers in network can significantly increase the free-parameters of the overall architecture, and

thus the overall computational complexity. Furthermore, as the layer is fully connected, spatial

information that is embedded in the responses of the previous layers is lost. For these reasons

newer architecture, such as in (Springenberg et al. 2014), discard completely the use of fully

connected layers and opt for convolution layers with small filter size or by global average pooling.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

43

To replace a fully connected layer using the global average pooling technique, a convolution layer

is used in combination with a global average pooling layer. The number of feature maps of this

convolution layer matches the number of neurons that would have been used with a fully connected

layer. The global average pooling layer receives as input the output the convolution layer and

computes the average value for each feature map. The resulting vector is then used directly as input

for the output layer of the network.

2.4.1.4 Normalization

Signal normalization is commonly used between the layers of CNN architectures. It consists of

computational units that receives as an input the output signals of a previous layer and adjust their

values according to a normalization procedure. For this reason, it is also commonly referred as

“Normalization Layer”. A variety of normalization operations have been proposed, including

Local Response Normalization (LRN), Mean Variance Normalization (MVN) (Krizhevsky et al.

2012) and Batch Normalization (BN) (Ioffe & Szegedy 2015), which are inspired by the biological

normalizations of signals that happen in brain. LRN performs a “lateral inhibition” by normalizing

over input regions, which useful when ReLU type activations are used in the previous layer. This

is because the ReLU neurons have unbound activations and thus, LRN aims to detect frequency

features with large response. That means that if normalization is done around local neighborhood

of an explicit neuron, it becomes more sensitive as compared to its neighbors.

A drawback of LRN is that it discriminates the responses that are uniformly large in any given

local neighborhood, which in return the normalization diminishes them. The goal of the LRN is to

encourage some kind of inhibition and boost the neurons with relatively large activations

(Krizhevsky et al. 2012). The normalization can be done either to a specific channel or depth of

the previous layer, or it can be extended across all depth. In both cases the size of normalization

filter follows the same principles as any other layer and thus it can be configured based on the size

of the receptive field that normalization is desired. MVN is working similarly to LRN layer; yet it

handles the normalization differently, as it normalizes the input volume so that its values will have

0 mean and a variance of 1.

2.4.1.5 The Output Layer

The last layer of a CNN architecture is typically called “output layer”. The activation function used

for the neurons of this layer depends on the type of prediction problem. Commonly used activation

functions include the linear, logistic and softmax activation functions.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

44

The linear activation function is also known as “identity” function, as it does not have any effect

on the output of the neuron. This function is typically used in regression problems. The logistic

function was discussed in Section 2.1.2 and when used as the activation function for the neurons

of the output layer, each element of the resulting vector can be interpreted as a confidence score.

When the softmax function is used as the activation for the neurons of the output layer, the

algebraic sum of each element of the resulting vector would be 1. The element with the highest

probability corresponds to the predicted class.

Figure 2.24 Commonly used activation functions for the output layer of a CNN architecture.

Depending on the type of the classification problem (Figure 2.24), both logistic and softmax

activation functions are used. In binary classification problems the output layer can consists of one

or two neurons. In the first case, the logistic activation is used, while when two neurons are used,

the softmax activation is preferred. When there are more than two mutually exclusive classes

(multiclass classification) the output layer consists of one neuron per class with softmax

activations. When there are two or more mutually inclusive classes (multilabel classification), then

the output layer has one neuron per class and the logistic activation is used.

2.4.2 Advancements in Convolutional Neural Networks

Since 2012 and more specifically after the spike in research interest triggered by the AlexNet

(Krizhevsky et al. 2012) architecture, there have been many advancements in the field of CNNs.

This section includes the most characteristic CNN architectures along with their contribution in

the field of deep learning.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

45

2.4.2.1 The LeNet Architecture

The LeNet (LeCun et al. 1998) architecture, is considered the father of CNN architectures. The

LeNet-5 consists of 5 convolution layers, followed by pooling and two hidden fully connected

layers. A summary of the architecture is illustrated in (Figure 2.25).

Figure 2.25 The LeNet-5 architecture.

As an input the architecture uses an input layer of 1024 units which are used for raw grayscale

image input of size 32×32 pixels in size. The second layer is a convolution layer which extracts 6

different feature maps with relatively large filter size of 28×28 spatial size, followed by a max-

pooling layer of 14×14 filters. The second convolution layer extracts 16 feature maps of with filter

size of 10×10. A second sub-sampling layer is followed with filter size 5×5 followed by 2 fully

connected layer and an output layer of 10 neurons; one for each possible class of the training

dataset. The architecture was trained using the MNIST dataset (Deng 2012) and used in banking

industry to recognize handwritten bank notes. Compared with modern CNN architectures, such as

the AlexNet (Krizhevsky et al. 2012), it is a relatively swallower architecture, using sigmoid

activation functions as rectified linear units, appeared almost 15 years layer, yet the performance

of the network on the classification task of handwritten digits was relatively high.

AlexNet (Krizhevsky et al. 2012) architecture, presented in Section 2.4.1, was based on LeNet-5

architecture, improved the initial model at many points. The introduction of rectified linear units

(ReLU) as activation functions for the neurons of the network along with the introduction of local

response normalization layers reduced drastically the overfitting issues of the initial model

allowing the entire architecture to go deeper and thus improve the predictive power of the entire

model. Parallel GPU training neural network training was also firstly introduced by the AlexNet

authors. Furthermore, the experiments included, helped to understand the importance of smaller

filter sizes for the feature maps. Finally, in this architecture the introduction of dropout layer in the

last fully connected layers to reduce overfitting was adopted.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

46

2.4.2.2 The ZFNet Architecture

This ZFNet architecture (Zeiler & Fergus 2014) is a CNN architecture based on the original

AlexNet (Krizhevsky et al. 2012) architecture, which keeps the same number of convolution and

pooling layers, with small changes on the hyper-parameters of the layers, with the most significant

one to expanding the filter size of the middle convolution layers (Figure 2.26). This enabled the

network to achieve a top-5 error rate of 14.8% in ILSVRC 2013 challenge, marking it as the winner

of the challenge that year. Although the network is relatively similar to AlexNet, it was trained on

only 1.3 million images compared to AlexNet which was 15 million. The first change compared

to AlexNet was the smaller filter size of the first convolution layer which changed from 11×11 to

7×7 size. This enabled the network to retain more pixel information from the input volume. The

authors of that study found that the original large 11×11 filter size, opt-out a lot of the relevant,

spatial information found in pixels and was the reason why ZFNet was able to be trained with

much smaller dataset. The same principle was followed for the rest of the layers, decreasing the

filter size in deeper layers, providing more abstract features to the final layers. Although winning

the ILSVRC challenge was a major achievement for the network, the main contribution of (Zeiler

& Fergus 2014) was that they used feature map visualization, which gave an understanding of how

the convolution layer operates and thus provide means to “debug” existing architectures.

Figure 2.26 The ZFNet architecture (Zeiler & Fergus 2014).

The ZFNet architecture was used to demontrate that classification performance of CNNs can be

attributed mainly to the existence of large datasets, such as ImageNet (Deng et al. 2009), combined

with the existence of powerful computational resources, such as GPUs. By that time, there was no

clear understanding of how CNNs work. Their contribution to provide a visualization the feature

maps, increased the general understanding of the CNNs as it became possible to visually assess

the quality of the features learned during training. The feature map visualization was implemented

using a methodology called “DeConvNet” which acts as a reverse convolution layer.

DeConvNet works by attaching a deconvolution layer after every convolution layer of a trained

network. To examine the features that a feature map has learned in the 𝑛𝑡ℎ layer, the activations

of that map are held while, the rest of feature maps are set to zero. Then the feature map is passed

through the deconvolution layer which has the same features as the original CNN. The input vector

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

47

then passes through a series of up-sampling layers, named unpooling, rectify and filter operations,

one for each preceding layer until the input space match the input volume. The result of the

operation for the first two layers on ZFNet model are illustrated in (Figure 2.28). More specifically

it can be observed that the initial convolution layer learns more specific features about the images,

like colors that reassemble close the original input volume, while moving to deeper layers the

network learn more abstract features like corners.

Figure 2.27 Deconvolution operation of the first and second layer of ZFNet model using as input the

images in the right (Zeiler & Fergus 2014).

2.4.2.3 The VGGNet Architecture

A popular architecture, known for its depth is the “VGGNet” architecture (Simonyan & Zisserman

2014) which was proposed in ILSVCR 2014. Aims of the architecture was the exploration of

deeper CNN architectures and their behavior upon training. Although the architecture is deeper

than, ZFNet and AlexNet, it is relatively simple, as the receptive field of all convolution layers is

fixed, with size of 3×3 and stride 1. The idea behind the fixed size filters is that the variable size

of AlexNet (11×11, 5×5 and 3×3), can replicated in respect of the receptive field coverage by

making use of multiple 3×3 building blocks. Two variants were proposed, one having 16 layers

and another having 19 layers (Figure 2.29). In respect to number of free-parameters the VGGNet

architecture is relatively large, as it consists of 138×106 free-parameters in its smaller version (16

layers), which make the training process a relatively computational and resource demanding

operation, prone to overfitting.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

48

Figure 2.28 The VGGNet-19 architecture (Simonyan & Zisserman 2014).

Figure 2.29 Variations of VGGNet architecture from smaller (A) to larger (E) (Simonyan & Zisserman

2014).

Due to the large number of free-parameters, (Simonyan & Zisserman 2014) used an incremental

approach to train the network, in which training starts with a smaller, swallow network. Every time

that the network converges, the training process pauses, more layers are added and training

resumes, effectively using the trained layers as initializers for the untrained, newly added layers.

The network used for each incremental training stage is illustrated in (Figure 2.29). Although this

methodology is effective, it is relatively time consuming, as it requires an entire network to be

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

49

trained before it can be used as an initializer for a deeper network. The VGGNet-16 variant was

trained in ILSVRC-2012-validation dataset achieving a top-5 error of 7.5% and on ILSVRC-2012-

test with top-5 error of 7.4%.

2.4.2.4 The GoogLeNet and the Inception-Based architectures

GoogLeNet (Szegedy et al. 2015) also known as Inception-v1 was the winner of ILSVRC-2014

challenge, with top-5 error rate of 6.7%, and introduced a ra dically different CNN

architecture design. Compared to the VGGNet architecture that was proposed in the same

challenge, GoogLeNet, over 100 layers organized in the so-called “inception” modules (Figure

2.30). The inception module aims to minimize the computational resources required by the process

of stacking multiple convolution layers together along with the problem of overfitting due to the

increased number of free-parameters.

Figure 2.30 The GoogLeNet architecture (Szegedy et al. 2015).

Compared to conventional CNNs, the inception module, illustrated in (Figure 2.31), process the

input volume in parallel. In the architecture, each inception module has the chance to perform both

convolution and pooling operations using multiple filter sizes, as opposed of having one operation

per layer. The output of all parallel layers is then concatenated creating a feature reach

representation of the input volume, which is then passed to the next module of the network. To

manage the increased number of free-parameters introduced by the multiple feature map

concatenation, inception module uses 1×1 convolutions, also known as pointwise convolutions,

which control the number of feature maps.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

50

Figure 2.31 The inception module (Szegedy et al. 2015).

In total the architecture features 9 inception modules, with over 100 layers. Furthermore, the

architecture does not use any fully connected layer, following a similar approach with the fully

convolutional architecture (Springenberg et al. 2014), which reduced the number of free

parameters by 12 times compared to AlexNet. ReLU activations along with max-pooling was

employed to deal with the overfitting problem which improve the nonlinearity of the network. By

replacing the conventional output fully connected layer average pooling layer, reduced the input

volume from 7×7×1024 to 1×1×1024.

(a) (b)

Figure 2.32 (a) 5×5 convolution expressed as 3, 3×3 convolution layers (b) N×N factorized convolution

(Szegedy et al. 2016).

Variations of GoogLeNet architecture include, Inception-v2 and Inception-v3 (Szegedy et al.

2016) and feature increased classification accuracy along with computational performance

improvements. Inception-v2 aimed to reduce the representational bottleneck of inception module,

which arises from severe dimensionality reduction, introduced typically by the pointwise

convolution usage. To increase the computational efficiency of the network, the authors of that

study proposed to use factorized convolutions. As an example, using this methodology a 5×5

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

51

convolution layer can be expressed in 3, 3×3 convolution layers, which computationally wise, is

2.78 times computationally cheaper. This is illustrated in (Figure 2.32a). This can be extended to

any N×N convolution layer which can be expressed as a combination of 1×N and N×1

convolutions (Figure 2.32b). The authors found that this methodology, can be 33% cheaper in the

case of 3×3 convolutions.

In an effort to battle the bottleneck problem, the filter banks found in the original Inception module

were also expanded, making them wider instead of deeper. The authors found that in Inception-

v2 the auxiliary classifiers did not contribute a lot especially in the end of the architecture, mainly

due to neuron saturation. For this reason in Inception-v3 variant, they enhanced Inception-v2 with

factorized 7×7 convolutions, batch normalization (Ioffe & Szegedy 2015) and trained using label

smoothing, which was proposed as a regularization method, and the RMSProp optimizer (Hinton

et al. 2012).

2.4.2.5 The ResNet architecture

The ResNet architecture (He et al. 2016), was introduced in ILSVRC-2015 challenge winning it

with a remarkably low top-5 error rate of 3.6%, considerably lower than the pre-accentors and for

the first time, outperforming the human top-5 error rate which is between 5 and 10%. The

architecture was relatively deep, yet simple. It introduced the concept of residual blocks, which

made use of residual connections, similarly stacked together as in the case of Inception model,

forming a deep CNN architecture of 152 layers (Figure 2.33).

Figure 2.33 A ResNet architecture variant with 34 layers (He et al. 2016).

A residual block consists of a three-step process, convolution – ReLU – convolution forming a

block that implements 𝑯(𝒙) = 𝑭(𝒙) + 𝒙. Notice the addition of 𝒙 in the function. This is the

residual connection of the block which adds the input volume back to the output of the residual

block. This addition was introduced to battle the problem of vanishing gradient as it enables an

easier flow of the gradient in the backpropagation backward pass (Figure. 2.34). Using residual

modules, enabled the architecture to become very deep and still trained effectively, without facing

extreme overfitting problems. It should be noted that the architecture that won the ILSVCR

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

52

challenge was trained on 8 high end GPUs for three weeks. Although the residual block is effective

in battling the problem of vanishing gradient, it does not prevent overfitting. This was

demonstrated by the network authors (He et al. 2016) by experimenting on a 1202 layer ResNet

architecture which significantly under-performed when compared to the 152 layer ResNet, which

was attributed to the increased number of free-parameters which led to overfitting.

Figure 2.34 A visual representation of the residual block (He et al. 2016).

(a) (b)

Figure 2.35 A visual representation of (a) the original residual block of ResNet and (b) a residual module

in ResNeXt model with 𝑐 = 32.

ResNet inspired many architectures that followed. More specifically Inception-v4 and Inception-

ResNet (Szegedy et al. 2017) variants are improvements of Inception-v2 and Inception-v3

architectures, that aimed to explore the residual connections and formalize the original inception

module, achieving higher classification performance with lower computational requirements. The

ResNeXt (Xie et al. 2017), which appeared and won the ILSVRC-2017 challenge was also inspired

by the original ResNet design. The architecture enhanced the residual module with multiple

parallel convolutions, which perform an aggregated transformation of the input volume. The

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

53

number of parallel blocks (𝑐) define the cardinality of the module, which is in effect a new

dimension on top of the width and depth of the original ResNet module. An example of such

module with 𝑐 = 32 is illustrated in (Figure 2.35).

2.4.2.6 The DenseNet architecture

The Densely Connected Convolutional Network (Huang et al. 2017) also known as DenceNet,

extends the residual connections in such a way that every layer in the network is connected with

every other layer, in a feed-forward fashion, meaning that a DenseNet has
𝑛(𝑛+1)

2
 residual

connections. Each layer of the network has the feature maps of all previous layers as input. The

advantage of this is that the gradient is not vanished the time it reaches the end of the network.

Figure 2.36 A visual representation of 5-layer dense bock (Huang et al. 2017).

The DenseNet architecture can be composed by four types of dense blocks. The first is the basic

DenseNet composition layer, in which each layer is followed by batch normalization, ReLU

activations and a 3×3 convolution layer. The second type is called “BottleNeck” or DenseNet-B,

in which a pointwise convolution is inserted between a DenseNet composition layer. The third

type of layer, named DenseNet Compression (DenseNet-C), focuses on the model compactness as

it tries to reduce the feature maps within a transition layer which introduces a compression factor

between 0 and 1. When this compression factor is 1 then all feature maps are retained, yet when

its smaller it the number of feature maps will change accordingly. When both bottleneck and

transition layer are used with a compression factor lower than 1 the model is referred as DenseNet-

BC. The last type of DenseNet is composed by multiple dense blocks and transition layers in which

the dense blocks are followed by pointwise convolutions and 2×2 average pooling layers. The

feature maps in this type of dense block, have the same size and thus the transition layer output

can be concatenated forming a feature reach representation of the block. To reduce the

computational complexity, fully connected layers are replaced by global average pooling followed

by a Softmax classifier.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

54

2.4.2.7 Mobile Oriented CNN architectures

Although the advancements in CNN architectures towards increasing their classification

performance are plenty, one of the main drawbacks is that as their depth increases, and their

computational complexity follows the same trend. This results in CNN architectures, that although

they can be very powerful, they are unable to perform inference in a computationally limited

environment, such as mobile phones and embedded devices. The main reason behind that is the

high number of free-parameters which result in relatively large number of Floating-Point

Operations (FLOPs) which can only be executed, in reasonable time, in high-end systems equipped

with modern GPUs. To deal with this limitation, a variety of architectures have been proposed that

typically require much lower computational resources, usually in expense of classification

performance.

2.4.2.7.1 The SqueezeNet architecture

The SqueezeNet (Iandola et al. 2016) architecture, was one of the first mobile-oriented CNN

architectures. The idea behind is architecture was to create a neural network composed by efficient

building blocks, aiming to reduce the number of free-parameters of the network. Compared to the

Figure 2.37 Fire module visual representation.

AlexNet (Krizhevsky et al. 2012) architecture which uses five convolution layers with large filter

sizes and fully connected layers, SqueezeNet uses small pointwise convolutions combined with

convolution layers having a filter size of 3×3. The building block behind the architecture is known

as the “Fire module”. The first layer of the module is a pointwise convolution layer which squeezes

the input volume. The output of the layer is then parallelly guided to another pointwise convolution

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

55

and a convolution layer with filter size 3×3. The output of them is then concatenated. This is

illustrated in (Figure 2.37).

The SqueezeNet architecture consists of eight fire modules in succession, where between them

max-pooling is used for spatial dimensionality reduction. To minimize the free-parameters the

architecture is fully convolutional, since no fully-connected layers are used. Following similar

approach to DenseNet type models, global average pooling is employed along with softmax as the

output layer of the network. In total the network consists of 1.25×106 free-parameters, making it

50 times smaller than AlexNet, while managing to maintain the same classification accuracy.

2.4.2.7.2 The MobileNet architectures

A family of network architectures that were designed specifically for mobile application usage are

known as MobileNets. The first version of the architecture was named MobileNet-v1 (Howard et

al. 2017), made use of the concept of depthwise separable convolutions, originally proposed in

(Chollet 2017), to replace the computationally expensive convolutions. The architecture is

relatively simple, as it consists of, usually 13, modules that depthwise separable convolution, batch

normalization and pointwise convolution to fuse the separable convolutions. The module is

illustrated in (Figure 2.38). Notice the capped ReLU activations used after the batch

normalization. These are normal ReLU activations but with a capped output, which in the case of

MobileNets is 6. The ReLU activation can be expressed as 𝑅𝑒𝐿𝑈(𝑥, 𝑥𝑚𝑎𝑥) =

min(max(𝑥, 0) , 𝑥𝑚𝑎𝑥). The benefits of the capped ReLU version include the increased speed in

GPU inference and help the network to learn more sparse features earlier. In total the MobileNet-

v1 architecture consists of 4.24×106 free-parameters which are three times smaller than

SqueezeNet, yet, in ImageNet classification, MobileNet-v1 outperforms the later by 20% and 9%

in the top-1 and top-5 error score respectively.

Figure 2.38 The basic building block of the MobileNet-v1 architecture (Howard et al. 2017).

The architecture includes a hyper-parameter named “depth-multiplier”, also known as “width-

multiplier”, which controls the number of feature maps extracted by the convolution layers. This

parameter effectively balances the computational complexity versus the classification performance

of the network. Depth-multiplier should be selected according to the application needs. Choosing

a multiplier smaller than 1, results in a smaller computationally efficient network, with low

classification performance.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

56

MobileNet-v2 (Sandler et al. 2018) is an updated version of the original MobileNet-v1

architecture, which increases the classification performance while reducing the computational

complexity. It has ~1 million lower number of free-parameters. The architecture uses depth-wise

separable convolutions, yet arranges them with inverted residual connections (Figure 2.40). The

idea behind this module is to expand, reduce and then re-expand the input volume, which is the

opposite of SqueezeNet approach. Same as the first version, the network uses the depth-multiplier

hyper-parameter to control the balance of computation efficiency and classification performance.

Figure 2.39 The basic building block of the MobileNet-v2 architecture (Sandler et al. 2018).

MobileNet-v3 (Howard et al. 2019) is the third revision of the MobileNet architecture. Instead of

revising the original architecture, the authors, used MnasNet-A1 (Tan et al. 2019) mobile CNN

architecture and adjusted using NetAdapt (T.-J. Yang et al. 2018) algorithm. NetAdapt is an

algorithm that by automatically simplifying a pre-trained model, reaches to a given latency, which

is translated to computational efficiency, while keeping the classification performance at a certain

threshold. The MobileNet-v3 architecture was also adjusted manually, by adjusting the

computationally expensive layers of the network, use “swish” activations instead of capped ReLU

and introduced squeeze-and-excitation modules.

The authors identified that the regular 3×3 convolution layers with 32 filters used in the previous

version of the network, although have low number of free-parameters, are computationally

expensive, mainly due to the spatial size of the input feature maps. Experiments showed, that using

16 filters were sufficient to reduce the complexity without damaging the classification

performance. The capped ReLU activations were replaced with hard-swish activation functions,

also known as h-swish, ℎ𝑠𝑤𝑖𝑠ℎ(𝑥,𝑥𝑚𝑎𝑥) = 𝑥 ∗
𝑅𝑒𝐿𝑈(𝑥+

𝑥𝑚𝑎𝑥
2

,𝑥𝑚𝑎𝑥)

𝑥𝑚𝑎𝑥
. This activation allows for a small

negative slop to be present, compared to conventional ReLU activations, which was found to be

beneficial to the overall performance, with more profound effect when used in deeper layers of the

network. To reduce the computational complexity, h-swish was only used in the deeper layers. A

visual illustration of the main building block of the architecture is illustrated in (Figure 2.40).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

57

Figure 2.40 The basic building block of the MobileNet-v3 architecture (Howard et al. 2019).

The final optimization of the architecture involves the last layers of the model, in which, the

previous architectures used a pointwise convolution that expand the feature maps just after the

global average pooling layer. This was done so that the classification layer will have enough

features for reasoning. Although that worked well, it introduced a bloated layer that was

computationally expensive compared to the rest of the network. For this reason, in MobileNet-v3

architecture this layer was placed before the global average pooling layer, so that it works with the

much smaller feature maps of size 1×1 instead of 7×7. This change enabled the authors to remove

the previous bottleneck layer, without classification performance loss. The authors released several

variations of the architecture, depending on the classification and computational performance

requirements, with the smallest requiring 2.9×106 number of free parameters and the largest 5.4

×106. Similar to the previous versions of the network, the smaller variations sacrifice the

classification performance in favor of computational efficiency.

2.4.2.7.3 The BlazeFace architecture

The BlazeFace (Bazarevsky et al. 2019) architecture, is a mobile oriented CNN architecture that

aims to perform accurate face detection in mobile devices with sub-millisecond inference times.

Although the architecture was designed to be used as a feature extractor for object detection task

and not a general-purpose CNN, it is worth mentioning as it consists of only 0.1×106 free-

parameters. The architecture is inspired by the MobileNet-v1 architecture, extending it with

residual connections. The main building block of BlazeFace is illustrated in (Figure 2.41). The

most profound changes to the MobileNet-v1 architecture was the increase of the filter size in the

first depthwise separable convolution layer, to 5×5, similarly to MnasNet-A1 (Tan et al. 2019).

Instead of using the MobileNet-v2 residual connections, which are between the bottleneck layers,

BlazeNet added them on the depthwise separable convolution layers, in which, to match the output

volume feature maps, channel padding is used after max-pooling. This effectively adds empty

feature maps to the input volume. Finally, the activations used were simply ReLU instead of

capped ReLU. In total the architecture consists of 16 modules, some of which include stride of 2

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

58

in the depthwise separable convolution. When stride is used the residual connection spatial

dimensionality reduction is performed using max-pooling, while in the rest of the cases only

channel padding is used.

Figure 2.41 The basic building block of the BlazeFace architecture (Bazarevsky et al. 2019). The max-

pooling layer is used only when the depthwise separable convolution layer includes a stride of 2.

2.4.2.7.4 The SqueezeNext architecture

SqueezeNext (Gholami et al. 2018) is an architectural improvement of the original SqueezeNet

model. The basic building block of the architecture consists of two bottleneck layers in series, in

which the first reduces the feature maps in half and the second by four. The original convolution

layer with 3×3 filter size that follows the bottleneck layers is replaced with two equivalent

factorized convolution layers, 3×1 and 1×3 respectively, which increase the depth of the model.

The final layer is an expansion pointwise convolution layer which increases the feature maps to be

equal with the ones found in the input volume. To this the input volume of the block is added using

Figure 2.42 The basic building block of the SqueezeNext architecture (Gholami et al. 2018).

a residual connection. This basic building block of the architecture is illustrated in (Figure 2.42).

Similarly to MobileNets, the SqueezeNext architecture includes a hyper-parameter that can control

the size of the model. The authors examined four variants of the model, with the first been the

lightest, requiring 0.7×106 free-parameters and achieving 59.05% and 82.60% top-1 and top-5

accuracy in ImageNet classification task.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

59

2.4.2.7.5 The ShuffleNets architectures

The ShuffleNet (Zhang et al. 2018) architecture is one of the first CNN architectures specifically

designed to be computationally efficient. The idea behind the model was that many modern

architectures use pointwise convolutions which are relatively expensive in terms of FLOPs. To

deal with this issue, grouped convolution were used instead, which although they easier to compute

they introduce side effects that harm the classification performance of the network. In an effort to

mitigate these effects, channel shuffling was introduced, from which the name of the network

derives. The principle behind the grouped convolutions is to divide the input volume feature maps

into groups on which the convolution operation is performed. Having, for example, two groups,

only half parameters are required as each convolution filter only works on half the input volume.

It is important to state here that the free-parameters between the groups are not shared, so each

group needs its own set of parameters.

The grouped convolution is similar to depthwise convolution and in fact, the later can be

implemented using a generalized version of the grouped convolution. The main difference between

the two is that for depthwise convolution, each feature map forms its own group and thus it has

one output feature map. Using the generalized form of grouped convolutions, the number of output

feature maps of each group do not have to equal the number of input feature maps in the group.

The main drawback of the grouped convolution approach is that the output derives from a fraction

of the original input. As a solution to this problem, the feature maps can be shuffled after the group

convolution, which in effect rearranges the output feature maps along the depth dimensions. This

is illustrated in (Figure 2.43).

Figure 2.43 Channel shuffling visualization after grouped convolution.

The basic building block of the ShuffleNet architecture is illustrated in (Figure 2.45). In total the

network consists of 8 building blocks. An interesting side effect of grouped convolutions is that

the more groups the architectures consist of, the smaller the computational footprint is. Examining

the block, the first layer is a bottleneck layer performed using a grouped convolution with filter

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

60

size of 1×1 and reduces the number of feature maps to four. This is followed by channel shuffling

which is then followed by a depthwise separable convolution of filter size 3×3, which is followed

by batch normalization yet without an activation function. The final layer consists of a grouped

convolution without channel shuffling in which a residual connection is added using the standard

algebraic sum operation. To reduce the spatial size, some blocks use stride of 2 in the last layer,

where in that case, the input feature maps are concatenated to the output feature maps, matching

their dimensions using average pooling with pooling size of 3×3. The final ShuffleNet architecture

scores 68% and 86.4% top-1 and top-5 score in ImageNet classification challenge having 2.4×106

free-parameters.

Figure 2.44 The basic building block of the ShuffleNet (Zhang et al. 2018) architecture.

The ShuffleNet-v2 architecture (Ma et al. 2018) is a revised version of the original ShuffleNet

design. The authors primarily focused on measuring the computational performance overhead of

each layer on specific, mobile hardware. The conclusions of that study was to opt-out the use of

grouped convolutions, as although they require fewer free-parameters, to increase their

classification performance, more feature maps were required. The result of this was increased Input

and Output (I/O) on RAM which in return results into slower network performance. The revised

building block of ShuffleNet-v2 is illustrated in (Figure 2.45). It can be noted that the original

grouped convolutions were replaced by a channel split operation in which half of the channels are

sent as is through a residual connection to the feature map concatenation layer and the rest follow

the bottleneck block. The bottleneck layer is now performed using regular pointwise convolution

instead of grouped which is then followed by batch normalization and 3×3 depthwise separable

convolution. Another change is that the algebraic sum of the residual connection has been replaced

with a concatenation layer. The reasoning behind this change is that the elementwise operations,

are relatively expensive compared to concatenation. The last layer of the block is a channel

shuffling layer, similar to the original ShuffleNet architecture. The architecture uses a scale factor

as a hyper-parameter to control the number of feature maps of the model, which in return controls

the classification performance versus the computational complexity of the network. Using a scale

factor of 1, the architecture performs similarly to the original ShuffleNet, having 69.4% and 88.9%

top-1 and top-5 score respectively in ImageNet classification challenge using 2.3×106 free

parameters. The largest ShuffleNet-v2 variation consists of 6.7×106 free parameters and scores

77.1% and 93.3% top-1 and top-5 score, respectively. Although the network has higher

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

61

classification performance with lower number of free parameters when compared to MobileNets,

the model is not optimized for GPU usage and as a result, MobileNets are more widely adopted.

Figure 2.45 The basic building block of the ShuffleNet-v2 (Ma et al. 2018) architecture.

Similar approach with the ShuffleNet-v1 architecture was followed by CondenceNet-v1 (Huang

et al. 2018) and the newer CondenceNet-v2 architectures (Yang et al. 2021), which used the

DenceNet architecture as a starting point and included grouped convolutions with channel

shuffling layers along with an alternation to the residual connection where feature map

concatenation was used instead of algebraic sum. The lightweight version of CondenceNet-v1

architecture, which consists of 8 building blocks and can be compared with ShuffleNet-v1, scores

71% and 90% top-1 and top-5 accuracy in ImageNet classification challenge and requires 2.9×106

free parameters.

2.4.2.7.6 Other Computationally Efficient CNN Architectures

Nowadays the need for computationally efficient CNN architectures is becoming more apparent,

especially by the increased use of ML in mobile devices. In the previous sections a variety of

mobile oriented architecture was presented, covering the most notable architectures and their

contributions. There is a plethora of other architectures that aim towards CNNs with lower

computational footprint. Such architectures include, the ESPNet-v1 (Mehta et al. 2018) and a

lighter version of it, ESPNet-v2 (Mehta et al. 2019), which focused on decomposing the standard

convolution layer into pointwise convolutions. These are followed by spatial pyramids of dilated

convolutions. The lighter version of ESPNet-v2 consists of 3.49×106 free parameters and achieves

72.1% and 90.4% on top-1 and top-5 accuracy respectively in ImageNet classification challenge.

The DiCENet (Mehta et al. 2020) architecture in an effort to reduce the computational complexity

replaces the regular convolutions with dimension-wise convolution and fusion. The light version

of the network consists of only 1.81×106 free parameters scoring 66.5% and 86.6% top-1 and top-

5 accuracy, yet heavier version has 3.98×106 free parameters and has similar classification

accuracy with ESPNet architecture. FBNet (Wu et al. 2019) and ChamNet (Dai et al. 2019)

architectures, similarly to (Tan et al. 2019) focused on improving the NAS algorithm, yet in the

context of not having to train and evaluate each potential architecture separately. The lighter

versions of the proposed networks, named FBNet-A and ChamNet-C have 4.3×106 and 3.4×106

free parameters, respectively. GhostNet (Han et al. 2020) which focused on reduction of number

of feature maps and lower elementwise operations. Furthermore, the authors focused on the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

62

creation of extra feature maps using linear, cheap operations and more specifically depthwise

convolutions. The lightest version of GhostNet scores 66.2% and 86.6% top-1 and top-5 accuracy

in ImageNet classification, and consists of 2.6×106 free parameters. The MixNet (Tan & Q. V. Le

2019) architecture introduced mixed convolutions which use multiple filter sizes in a single

convolution layer. The idea behind it is that the filter size matters, when it comes to classification

performance, so instead of deciding a single size, the authors used filter sizes of 3×3, 5×5 and 7×7.

The light version of the MixNet architecture consists of 4.1×106 free parameters and 75.8% and

92.8% top-1 and top-5 accuracy in ImageNet classification. EfficientNet (Tan & Q. Le 2019) is a

widely used mobile oriented architecture that includes three different hyper-parameters that control

the computational efficiency and classification performance of the architecture. This enables the

network to be used in a variety of different applications, including conventional GPU enabled

deployments and mobile or embedded usages. The first hyper-parameter controls the width of the

network, and it controls the number of filters used per convolutional layer. The second controls

the depth of the network by controlling the number of convolution layers used in its blocks. The

last parameter controls the input resolution, which conventionally is 224×224 but can be scaled up

to increase the accuracy. The light version of EfficientNet features 4.7×106 free parameters and

scores 74.8% and 92.2% top-1 and top-5 accuracy in ImageNet classification task, while one of

the largest versions, requires 13×106 free parameters and scores 81.5% and 95.7% top-1 and top-

5 accuracy in the same task. LB-FCN light (Diamantis et al. 2019) architecture, which will be

discussed in the next sections use similar filter sizes with the MixNet (Tan & Q. V. Le 2019)

architecture, yet operates in principle of multi-scale feature extraction using parallel convolutions

to increase the classification performance and maintain low number of free parameters. The light

version of the architecture consists of only 0.3×106 free-parameters making it one among the

smallest in the mobile-oriented CNN architecture list. Concluding, there is a large variety of

computationally efficient CNN architectures that have been proposed in literature, deciding the

“best” is a question of finding the one that performs better in based on the available hardware and

operating system.

2.4.3 Generative Adversarial Networks

The performance of discriminative models such as CNNs were revolutionary in the field of CV.

Deep generative models were less impactful since they require to estimate complex probability

distributions of high dimensionality, which in the past was often considered impossible. GANs,

introduced by (Goodfellow et al. 2014), overcome this issue by combining two deep models, from

which one is acting as a generative model (Generator) and another acting as a discriminative model

(Discriminator). While training, the two networks act as opponents in game were the generator

tries to fool the discriminator by producing real-like fake samples. The introduction of GANs was

relatively successful in the context of data generation and with the most profound effect in the field

of CV, mainly because of their remarkable performance in generating real-like images. Their

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

63

applications include, image generation (Goodfellow et al. 2014; Diamantis et al. 2019), image-to-

image translation such as style transfer (Karras et al. 2019) and super resolution (Ledig et al. 2017),

image generation from text (Reed et al. 2016) and even music generation (Gui et al. 2020).

GANs belong to a broad range of algorithms called generative models. The basics of a generative

model is to map a simple probability distribution, such as a uniform distribution, to a more complex

one. The complex probability distribution is named model distribution. In effect a generative

model tries to map a probability distribution to a high-dimensional space distribution. To

understand that, let us consider the process of generating images that resemble cats using random

pixels. In that brute-force approach, not all images would resemble cats. In fact, some pixels can

be considered to have lower probability than others when it comes to their contribution in the cat

generation. The result of this process is that the cat image follows a high-dimensional probability

distribution over the input space. Therefore, the problem of generating a new image of a cat is

equivalent to the problem of generating a new vector that follows the “cat probability distribution”

over the N dimensional vector space. The problem can be considered as generating a random

variable with respect to a specific true dimensional distribution. The true data distribution is

relatively hard or impossible to be defined. For this reason, an empirical approach is employed

which approximates the true data distribution through training using samples from the same

distribution that we try to approximate. There are many generative models that aim to approximate

true data distributions. They can be classified into two main categories: explicit and implicit.

Explicit generative models have access to the model likelihood function and are typically trained

by maximizing the likelihood. They are commonly used in probabilistic modeling as training

procedure optimizes a well-defined quantity and the likelihood can be used for model comparison

and selection. Such models include Restricted Boltzmann Machines (RBMs) (Hinton 2012), Deep

Boltzmann Machines (DBMs) (Salakhutdinov & Hinton 2009) and Variational Autoencoders

(VAEs) (Kingma & Welling 2019). GANs (Goodfellow et al. 2014) belong in the implicit model

classification and provide a sampling mechanism for generating data, but do not require to

explicitly define a likelihood function, which in many cases, such as photo-realistic image

synthesis is relatively hard to find. This section focuses on the advancements of GANs, mainly

due to their profound contribution in the field of CV and the broad range of applications in which

they can be used.

The GAN framework was originally proposed in the work of (Goodfellow et al. 2014). That work

defined a process of training simultaneously two opponent networks; the generator 𝐺 and the

discriminator 𝐷. Both networks can be expressed as differentiable functions, so that the generator

receives an input from a simple probability distribution 𝑧, such as random noise, and outputs a

sample 𝑥, 𝐺(𝑧; 𝜃𝐺), and the discriminator receives the output of the generator 𝐷(𝑥; 𝜃𝐷) and

predicts if the input came from the probability distribution of the generator (fake) or from the true

data distribution (real). The generator and discriminator, with 𝜃𝐺 and 𝜃𝐷 representing the free

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

64

parameters of the networks respectively, are usually deep neural networks, such as CNNs, which

are able to cope with the complex nature of the true probability distributions. The GAN framework

is illustrated in (Figure 2.46).

Figure 2.46 A visual illustration of the GAN framework (Goodfellow et al. 2014).

The GAN framework (Goodfellow et al. 2014) was introduced with two loss functions; the first is

known as the minimax GAN loss and the second is known as non-saturating GAN loss. In both

cases the discriminator loss function is the same as it seeks to minimize the probability assigned

to real and fake samples. Mathematically the discriminator loss aims to maximize the average of

the log probability for real samples and the average log of the inverted probabilities of fake samples

Eq. (2.75). As this is a maximization problem, if Eq. (2.75) is applied directly, it would require

stochastic gradient ascent weight change instead of the conventional stochastic gradient descent.

𝐶 = 𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) (2.75)

For this reason, Eq. (2.75) is usually implemented as a binary classification problem with class

labels 0 and 1 for fake and real samples, respectively. Based on that, the model fitting process aims

to minimize the average binary cross entropy, which is also known as log loss:

𝐶 = 𝑦 ∙ −𝑙𝑜𝑔(𝑦′) + 𝑙𝑜𝑔(1 − 𝑦) ∙ − log(1 − 𝑦′) (2.76)

where 𝑦 corresponds to the expected output and 𝑦′ the prediction.

The minimax GAN loss refers to the simultaneous minimax optimization of the generator and the

discriminator models. Minimax is an optimization strategy in a two-player turn-based game for

minimizing the loss for the worst case of the player. In the case of GANs the discriminator and the

generator are the players of the game in which upon each turn their weights of their model are

getting updated. The min and max from the minimax loss refer to the minimization and the

maximization of the generator and discriminator loss, respectively. This is expressed as the

maximization of Eq. (2.75) and minimization of (2.77):

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

65

𝐶𝐺 = log (1 − 𝐷(𝐺(𝑧))) (2.77)

Although the use of minimax methodology served in the mathematical analysis of the GAN

framework, in practice this loss does not provide sufficient gradient for the generator to learn well.

The saturating gradient becomes apparent especially in the early stages of learning, as the

discriminator can easily identify the forged generated samples of the untrained generator.

To overcome the gradient saturation of minimax, the non-saturating GAN loss was proposed. The

generator loss is modified so that it maximizes the log discriminator probabilities for the generated

samples instead of minimizing the inverted probabilities:

𝐶𝐺 = log (𝐷(𝐺(𝑧))) (2.78)

This also changes the framing of the problem. In fact, using the minimax loss the generator tries

to minimize the probability of the samples predicted as fake, while in the non-saturating loss, the

generator tries to maximize the probabilities of samples predicted as real. (Goodfellow et al. 2014)

found that this loss prevents gradient saturation and in general promotes stable learning. Similarly,

to the discriminator the implementation of the non-saturating loss is done by expressing the

problem as binary classification. This is done by flipping the labels of real and fake samples and

minimizing the cross-entropy.

Many loss functions have been proposed over the years (Pan et al. 2020). Two widely used losses

are the Least squares GAN loss (Mao et al. 2017) and the Wasserstein GAN loss (Arjovsky et al.

2017). Least squares GAN loss was proposed aiming to solve the limitations of using binary cross-

entropy loss when generated images. The authors observed that when binary cross-entropy is used,

the generated images are relatively different that the real, which can lead to small or vanishing

gradients, resulting from little to no weight updates for the model. The least square GAN loss aims

for the discriminator to minimize the sum squared difference between the predicted and the real

values (2.86) and for the generator to minimize the sum squared difference between the predicted

and expected values as though the predicted images were real Eq. (2.80). The main benefit of this

loss is that it penalizes more the large errors, which results in larger corrections and thus, battles

the problem of vanishing gradient.

𝐶𝐷 = (𝐷(𝑥) − 1)2 + 𝐷(𝐺(𝑧))
2
 (2.79)

𝐶𝐺 = (𝐷(𝐺(𝑧)) − 1)
2
 (2.80)

The Wasserstein GAN loss (Arjovsky et al. 2017), was motivated by the fact that conventional

GANs aim to minimize the distance between the predicted and actual probability distributions of

real and the generated samples. The authors proposed an alternative methodology in which the the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

66

problem instead of following the conventional Kullback-Leibler divergence (KLD) modeling,

follows the Earth-Mover’s distance (EMD), which is also called Wasserstein-1 distance. EMD

calculates the distance between two probabilities in terms of the cost of turning one distribution

into another. Wasserstein GAN loss changes the notion of discriminator as a critic, that updates

more frequently than the generator. The critic receives as an input a sample, which instead of

predicting a probability of been real or fake, predicts a real value which can be considered a score.

The score is calculated so that the distance between real and generated samples are maximally

separated. This is achieved by calculating the average predicted score across the real and generated

samples and multiplying the average score by 1 and -1, respectively. The main benefit of

Wasserstein GAN loss is that it produces strong gradient in almost every case, which enables the

continuation of training. Another benefit of this loss is that it directly correlates with the generator

generating power as the lower the loss, the better the generated samples. The result of this is that

the methodology, gives the loss of the GAN convergence properties as it explicitly seeks for the

minimization of the generator loss.

Training a GAN is a complicated task as it involves the training of two different networks. In

general, training the discriminator involves the optimization of two loss functions: the generator

loss and the discriminator loss. The first is ignored upon the discrimination phase while the second

is used when training the generator.

During the discriminator training, the network classifies real samples coming from the training

dataset and fake samples coming from the generator. The discriminator loss penalizes the

discriminator for errors involving sample misclassifications of been real while is fake and visa-

versa. The error backpropagation is typically used to update the weights of the discriminator. In

the generator training phase, the network is trained through the discriminator network. To perform,

input is provided through the generator, whose output is connected directly to the discriminator

network and using the output of the discriminator the generator loss, penalizes the generator for

producing samples that are classified correctly by the discriminator. The error backpropagation

passes the error backward, through the entire network stack, including the discriminator, yet on

the update phase, only the weights of the generator are updated.

In the training process of a GAN, the generator and discriminator training are performed in two

alternating steps. The first involves the training of the discriminator, for one or more epochs and

the second trains the generator for one or more epochs depending on the GAN architecture. On

each turn of this process, the weights of the network that waits its turn, do not update, which is

also called weight freezing. This give a “fair chance” of the network that is being trained to

recognize the “flows” of the “opponent” network. Accessing the convergence of a GAN is a

relatively hard. This is because as the generator training progress, the discriminator becomes more

and more inaccurate on trying to access the validity of the input data. A perfectly trained generator

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

67

should degrade the discriminator accuracy to 50% which would be equal of flipping a coin to guess

if a sample is real or fake. The disadvantage of this is that as the training progress, the discriminator

feedback is becoming less meaningful, which if when continues at some point the discriminator

starts providing random feedback. This random feedback can lead to generator performance

degradation which is also known as “generator collapse”.

A common problem other than the vanishing gradient, in which GANs may run into while training

is called “mode collapse”. This problem arises when a generator, instead of producing a variety of

samples, it learns to generate a single sample, that “tricks” the discriminator. The result of this is

that if the generator starts to produce the same sample repeatedly, that can lead the discriminator

training to optimize for this edge case. If the discriminator gets stuck into a local minimum and it

does not find the best strategy to reject the generated sample, it is easy for the generator in the next

training iteration to find another output that tricks the discriminator. By repeating this process

several times, the generator is overoptimized for the discriminator of that training iteration. To

mitigate this problem, Wasserstein GAN loss (Arjovsky et al. 2017) can be used, which enables

the discriminator to train optimally without the problem of vanishing gradient. Unrolled GANs

(Metz et al. 2016) are also commonly used because of their generator loss function as it

incorporates the possible outputs of future discriminators, 𝑘 steps in the future, along with the

current discriminator output, leading to a generator that does not overfit to a single discriminator.

Another common problem in GAN training, is that it is relatively common to simple not converge.

This can be due to the limited amount of training samples or poorly constructed training strategy,

such as not allowing the discriminator to train on enough iterations. Regularization techniques are

commonly employed in an effort to mitigate this problem. Such methods include to introduction

of noise in the input of the discriminator (Arjovsky & Bottou 2017), or penalizing the weights

(Roth et al. 2017) of the discriminator.

2.4.4 Advancements in Generative Adversarial Networks

Many variations of the original GAN framework (Goodfellow et al. 2014), have been proposed

over the years (Gonog & Zhou 2019). The variations can be classified into two different

taxonomies: loss variations and architectural variations. In the first taxonomy, the main focus of

the change is on the loss function of the generator and/or the discriminator while on the second the

focus is shifted on the neural network(s) used for the generator and the discriminator. A summary

of these architectures along with their taxonomy (Wang et al. 2019) is included in Table 2.2.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

68

Table 2.2 Summary of recent GAN models.

Taxonomy Year Name Summary

Architecture – Latent space 2014

Conditional GAN

(CGAN)

(Mirza & Osindero 2014)

Info of labels into the

discrimination and the

generator

Architecture – Latent space 2016

Bidirectional GAN

(BiGAN)

(Donahue et al. 2016)

Learning inverse

mapping using an

encoder

Architecture – Latent space 2016
SGAN

(Odena 2016)

Multi-headed

discriminator

Architecture – Latent space 2016
InfoGAN

(Chen et al. 2016)
Label classification

Architecture – Latent space 2017

Auxiliary Classifier GAN

(AC-GAN)

(Odena et al. 2017)

Auxiliary classifier

Architecture – Application specific 2016
SRGAN

(Ledig et al. 2017)

Image super-

resolution

Architecture – Application specific 2017
CycleGAN

(Zhu et al. 2017)
Image style-transfer

Architecture – Application specific 2017
DiscoGAN

(Kim et al. 2017)
Image style-transfer

Architecture – Application specific 2017
DualGAN

(Yi et al. 2017)
Image style-transfer

Architecture – Application specific 2017
Pix2Pix

(Isola et al. 2017)
Image style-transfer

Architecture – Application specific 2017
Face Completion GAN

(Li et al. 2017)
Face completion

Architecture – Application specific 2018
AlphaGAN

(Lutz et al. 2018)
Image matting

Architecture – Application specific 2018
Moco-GAN

(Tulyakov et al. 2018)
Video generation

Architecture – Application specific 2019
DVD-GAN

(Clark et al. 2019)
Video generation

Architecture – Application specific 2019
SinGAN

(Shaham et al. 2019)

Manipulations of

image when trained on

single image

Architecture – Application specific 2019
StyleGAN

(Karras et al. 2019)
Face generation

Architecture – Application specific 2020
StyleGAN2

(Karras et al. 2020)
Face generation

Architecture – Network change 2015
LAPGAN

(Denton et al. 2015)

Laplacian pyramid

coding

Architecture – Network change 2016
DCGAN

(Radford et al. 2015)

Generator with

transposed

convolutions

Architecture – Network change 2017
BEGAN

(Berthelot et al. 2017)

Discriminator using an

autoencoder

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

69

Taxonomy Year Name Summary

Architecture – Network change 2017

Progressive GAN

(PROGAN)

(Karras et al. 2017)

Progressive training

Architecture – Network change 2018

Self-attention GAN

(SAGAN)

(H. Zhang et al. 2019)

Usage of a self-

attention module

Architecture – Network change 2018

Non-stationary texture

synthesis

(NSTS-GAN)

(Zhou et al. 2018)

Texture Synthesis

from image patches

Architecture – Network change 2019
AutoGAN

(Gong et al. 2019)

Automatic searching

for multi-level

architectures

Architecture – Network change 2019
BigGAN

(Brock et al. 2018)

Self-attention module

with deeper networks

and larger batch size

Architecture – Network change 2020

Your Local GAN

(YLG)

(Daras et al. 2020)

Local sparse attention

layer

Loss function – Type 2014

Fully Connected GAN

(FCGAN)

(Goodfellow et al. 2014)

Jensen–Shannon

divergence

Loss function – Type 2016

Least Square GAN

(LS-GAN)

(Mao et al. 2017)

Pearson divergence

Loss function – Type 2016
f-GAN

(Nowozin et al. 2016)
f-divergence

Loss function – Type 2016

Unrolled GAN

(UGAN)

(Metz et al. 2016)

Gradient loss with

second order

derivatives

Loss function – Type 2017
LS-GAN

(Mao et al. 2017)

Designated margin

difference between

real and generated

samples

Loss function – Type 2017
Geometric GAN

(Lim & Ye 2017)
Hinge loss

Loss function – Type 2017
WGAN

(Arjovsky et al. 2017)
Wasserstein distance

Loss function – Type 2018

Relativistic GAN

(RGAN)

(Jolicoeur-Martineau 2018)

Integral probability

metric

Loss function – Type 2019
Sphere GAN

(Park & Kwon 2019)
Riemannian manifolds

Loss function – Regularization 2016

Mode Regularized

(MRGAN)

(Che et al. 2016)

Missing mode

penalization

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

70

Taxonomy Year Name Summary

Loss function – Regularization 2017
WGAN-GP

(Gulrajani et al. 2017)

WGAN based with

gradient penalty

Loss function – Regularization 2017
WGAN-LP

(Petzka et al. 2017)

WGAN based with

Lipschitz penalty

Loss function – Regularization 2018

Spectral normalization GAN

(SN-GAN)

(Miyato et al. 2018)

Spectral

Normalization

Loss function – Regularization 2019

Self-supervised GAN

(SS-GAN)

(T. Chen et al. 2019)

Self-supervision to

avoid discrimination

forgetting previous

generations

A detailed review of all the methodologies included in Table 2.2, is out of the scope of this thesis,

yet a selection of those is worth examining due to their contribution in the field of GANs.

Figure 2.47 A visual comparison between (a) the original GAN architecture (Goodfellow et al. 2014) and

(b) the CGAN architecture (Mirza & Osindero 2014).

2.4.4.1 The Conditional GAN

The conventional GAN framework (Goodfellow et al. 2014), was originally designed to take as an

input a random noise vector a produce an image. Although this is effective, the random noise input

(a)

(b)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

71

allows no control over the type of the generated image. Conditional GANs (CGANs) (Mirza &

Osindero 2014) aim to improve that by incorporating class label information in the GAN model.

The introduction of additional information as an input not only enables targeted output, it also

improves the GAN performance, as it promotes more stable training and quicker convergence.

CGAN authors validated conditional GANs on the MNIST (Deng 2012) dataset, from which the

class labels were used as additional information when training the generator and the discriminator

of the model. An illustration of the CGAN architecture is illustrated in (Figure 2.47b).

2.4.4.2 The InfoGAN

InfoGAN (Chen et al. 2016) is an extension of the CGAN architecture (Mirza & Osindero 2014)

and aims to incorporate interpretable representations in an unsupervised manner by maximizing

the mutual information between the conditional variables, i.e. class labels, and the generated data.

To achieve that, InfoGAN, incorporates a classifier (𝑄) which predicts the conditional variable (𝑦)

given by the generator 𝐺(𝑧|𝑦). This closely resembles an autoencoder which aims to encode the

𝐺(𝑧|𝑦) by minimizing the cross entropy between the actual conditional variable 𝑦 and the

predicted variable 𝑦′. Another change compared to CGAN is that the discriminator of InfoGAN

does not take as an input the conditional variable and instead operates the same as the original

discriminator of (Goodfellow et al. 2014).

Figure 2.48 An illustration of InfoGAN architecture (Chen et al. 2016). The shared network block

illustrates a single network with two output layers; one for discrimination and one for the classification.

To reduce the computational resources required by the introduction of the classifier, both the

discriminator and the classifier use the same network with different two output layers. The first

output layer is considered the discriminator and predicts if a sample is real or fake and the second

the classifier for the conditional variable. The architecture is illustrated in (Figure 2.48). A

relatively similar architecture is AC-GAN (Odena et al. 2017), which share the same principles

with InfoGAN, yet the discriminator and the classifier are combined using an auxiliary classifier.

It should be noted that while in CGAN and InfoGAN case, the conditional variable can be from

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

72

different domains, the AC-GAN architecture limits the variable to be a class label from the same

domain.

2.4.4.3 The Deep Convolutional GAN

Deep Convolutional GAN (Radford et al. 2015), also known as DCGAN, is the first GAN

architecture that incorporates deconvolutional layers in the generator architecture. The use of

deconvolutional layers in CNNs was firstly introduced in ZFNet (Zeiler & Fergus 2014) for feature

visualization. DCGAN makes use of the spatial up-sampling ability of the deconvolution layer, to

generate images with similar statistics with the real image, but in higher resolution. Compared to

the original GAN architecture DCGAN introduced changes that benefit the high-resolution

generation and stabilize training. More specifically, pooling layers were replaced by convolution

layers with a stride of 2 for the discriminator and fractional-strides for the generator. Batch

normalization was used in both generator and discriminator. For the generator ReLU activations

were used across all layers of the network with the exception of the output layer in which tanh was

used. To prevent the discriminator to saturate, LeakyReLU activations were used across the

discriminator layers. LeakyReLU is a variation of the conventional ReLU activation which allows

for a relatively small negative number to “leak” from the activation.

2.4.4.4 Image to Image Translation GANs

The object in an image-to-image translation problem is to learn the mapping between an output

and an input image using a training set of aligned image pairs. An example is illustrated visually

in the (Figure 2.49). A variety of GAN models have been proposed for this process, with the first

Figure 2.49 An example of image-to-image translation in which a translation model is used to

map/translate edges to a real image.

been the Pix2Pix (Isola et al. 2017) architecture which re-purposed the CGAN (Mirza & Osindero

2014) architecture to translate images when paired input and output samples are available. Such

samples include image edges used as an input and output the actual image. As an example, Pix2Pix

used canny filters to create the training image pairs.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

73

While this approach works relatively well, Pix2Pix was not able to translate images from

unmapped pairs. Aiming towards this direction, CycleGAN (Zhu et al. 2017) was introduced

which uses a cycle consistency loss to enforce the mapping between the two domains. In effect

this is achieved by transforming the source distribution to target and then back to the source

distribution leading to get samples from the source distribution (Figure 2.50). As an input,

CycleGAN takes an image from a domain 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 which is then given to a generator 𝐺𝐴→𝐵. The

role of 𝐺𝐴→𝐵 is to translate the image from the 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 to the target 𝐷𝑜𝑚𝑎𝑖𝑛𝐵. The generated

image is then given to a second generator 𝐺𝐵→𝐴 which converts it back to the original 𝐷𝑜𝑚𝑎𝑖𝑛𝐴.

The output of this process is an image that is close to the original input space, which in return

creates a meaningful mapping between the two pairs. Two inputs are used in both discriminators,

one been the original image and the other the generated sample. The goal of the discriminator is

to distinguish them, so that the discriminator defies the adversary and reject the generated samples.

The result of this, while training, is that the generator tries to trick the discriminator by creating

samples as close to the original image 𝐷𝑜𝑚𝑎𝑖𝑛𝐵.

(a)

(b)

Figure 2.50 A visual illustration of CycleGAN (Zhu et al. 2017) image translation framework.

DiscoGAN (Kim et al. 2017), is a relatively similar architecture with CycleGAN, as they both aim

to learn two transformation functions, from a 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 → 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 and 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 → 𝐷𝑜𝑚𝑎𝑖𝑛𝐴.

Furthermore, both follow the same principle of transforming an image from one domain to another

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

74

and then back to the original domain the output should match the original image. The primary

difference between the two models is that in the case of DiscoGAN (Figure 2.51), two

reconstruction losses are used, one for each domain, while CycleGAN uses a single cycle-

consistency loss.

Figure 2.51 A visual illustration of DiscoGAN (Kim et al. 2017) image translation framework.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

75

CHAPTER 3

FUZZY POOLING

Convolutional neural networks are artificial learning systems typically based on two operations:

convolution, which implements feature extraction through filtering, and pooling, which

implements dimensionality reduction. The impact of pooling in the classification performance of

the CNNs has been highlighted in several previous works, and a variety of alternative pooling

operators have been proposed. However, only a few of them tackle with the uncertainty that is

naturally propagated from the input layer to the feature maps of the hidden layers through

convolutions. In chapter a novel pooling operation based on (type-1) fuzzy sets is presented that

aims to cope with the local imprecision of the feature maps. An investigation of its performance

in the context of image classification is also included. Fuzzy pooling is performed by fuzzification,

aggregation and defuzzification of feature map neighborhoods. It is used for the construction of a

fuzzy pooling layer that can be applied as a drop-in replacement of the current, crisp, pooling

layers of CNN architectures. Several experiments using publicly available datasets show that the

proposed approach can enhance the classification performance of a CNN. A comparative

evaluation shows that it outperforms state-of-the-art pooling approaches.

3.1 Introduction

CNNs (Krizhevsky et al. 2012; LeCun et al. 1989) have revolutionized CV and image analysis. At

the core of every CNN architecture there is a special type of neural layer called convolutional

layer. This bioinspired layer has a neuron arrangement that mimics the connections of the visual

cortex. The number of connections of each neuron in a convolutional layer is called receptive field.

This is a key element of the layer as it determines the size of the filter applied throughout the input

volume of the layer. The weights between the same type of filters in a convolutional layer are

shared, forming a feature map. A single convolutional layer can produce multiple feature maps.

One or more convolutional layers are usually connected to each other through a pooling layer for

spatial dimensionality reduction (Simonyan & Zisserman 2014).

The progress in CNN-based ML research is rapidly evolving (Jiao & Zhao 2019). Advances

include novel architectures (Diamantis et al. 2019), methodologies for training (Ioffe & Szegedy

2015), activation functions (He et al. 2015a; Maas et al. 2013), and convolutional layer

optimizations (Chollet 2017), whereas reported classification performance enhancements are

usually associated with increase in the complexity of the networks (Szegedy et al. 2017; He et al.

2016). The role of pooling in classification performance has been highlighted in previous studies

(Malinowski & Fritz 2013; Zeiler & Fergus 2013; Yu et al. 2014; Graham 2014; Yildirim &

Baloglu 2019) however, only a few approaches have been reported tackling the problem of

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

76

uncertainty (Sharma et al. 2019).

A pooling layer, typically, performs a down-sampling operation to reduce the spatial size of an

input volume using a sliding window of 𝑘 × 𝑘 features per feature map, with a stride 𝜎. Pooling is

performed on each window, reducing the size of the respective patches from 𝑘 × 𝑘, to a single

feature. This results in a reduction of the number of free-parameters of the CNN, and thus in a

reduction of the overall network complexity. Contemporary CNN architectures use the maximum

(max-pooling) or the average pooling operations (Boureau et al. 2010), mainly due to their

implementation simplicity. In the case of max-pooling, the majority of features are discarded,

favoring only the highest neuron responses, whereas in the case of average pooling the features

are mixed. As a result, the information represented by the features of the respective feature maps

is distorted and possible uncertainties, e.g., due to input noise, are propagated to subsequent layers

and dispersed throughout the network.

In this chapter we propose a novel fuzzy pooling operation used for the construction of a fuzzy

CNN pooling layer, tackling with uncertainties in the feature values. This is achieved by

transforming the crisp input volume space into a fuzzy feature space, generated by the

memberships of the original feature values, to fuzzy sets, facilitating linguistic representation of

different value intervals. Fuzzy pooling is implemented by fuzzy aggregation and defuzzification

of the fuzzified input features. This is performed aiming to a better preservation of the information

of the original feature maps.

3.2 Related work

Fuzzy set theory has been proved effective in modeling uncertainty in the context of robust image

processing and analysis applications. Such uncertainties may originate from various sources,

including greylevel ambiguity, vagueness of image features, noise introduced by the image sensor

(Chacón M 2006). Relevant recent applications include image segmentation based on multiple-

kernel fuzzy c-means clustering (Chen et al. 2011), and segmentation by thresholding, based on

type-2 fuzzy sets (Yüksel & Borlu 2009). In the context of pedestrian segmentation in infrared

images, symmetry information based fuzzy clustering has been exploited. In (Lee et al. 2005) a

genetic-based fuzzy image filter was proposed to remove additive identical independent

distribution impulse noise from highly corrupted images with very promising results. In (Kumar

et al. 2015) an alternative to conventional histogram-based image descriptors is presented, where

fuzzy membership functions are used. In the same study a novel methodology is presented, named

“gamma mixture fuzzy model”, which enables the detection of geometrically consistent

correspondence between two images.

In the field of ML, and more specifically of ANNs, fuzzy set theory has been employed to model

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

77

data uncertainties. In (Juang & Ku 2005) a recurrent fuzzy network was presented. The network

was capable of performing temporal sequence recognition and it was applied in the challenging

problem of gesture recognition. In the subject of dynamic-system modeling, a locally recurrent

fuzzy neural network with support vector regression was proposed (Juang & Hsieh 2010). More

specifically a five-layered network was considered in which the recurrent capabilities come from

locally feeding the activations of each fuzzy rule back to itself. Recently in (Kebria et al. 2019) an

adaptive interval type-2 fuzzy neural network control scheme was proposed in the context of

teleoperation systems with time-varying delays and uncertainties.

Pooling alternatives for CNNs include trainable pooling approaches such as (Malinowski & Fritz

2013), which jointly optimizes both the classifier and the pooling regions, instead of relying on

fixed, spatial pooling regions. A CNN-specific stochastic pooling operation was proposed in

(Zeiler & Fergus 2013), aiming to be used as an effective regularization method in deep networks

in combination with other regularization methods such as data augmentation and dropout

(Srivastava et al. 2014) layers. The method relies on a non-deterministic approach of randomly

picking an activation from the pooling region according to a multinomial distribution, which is

given by the activities in the pooling region. Similarly another pooling operation named mixed

pooling was proposed in (Yu et al. 2014) which also aims to be used as a regularization method in

CNN training. The approach randomly selects between average and max pooling operations in a

non-deterministic way, following similar principles applied in typical dropout layer. Another

promising stochastic pooling operation, named Fractional Max-Pooling, was proposed in (Graham

2014), as a variation of max-pooling in which the pooling regions can output more than one values

at a time. A recent pooling algorithm, called RegP (Yildirim & Baloglu 2019), follows a different,

deterministic approach. The algorithm analyzes each activation value in the pooling region by

examining the values of the surrounding activations and computes a score that represents the

number of same or similar values around them. The activation with the maximum similarity value

is selected as the output. In ambiguous cases, were multiple activations have the same score, the

average value is selected as the output of the pooling region.

Only a few works have considered fuzzy set theory with respect to pooling. Recently in (Sharma

et al. 2019) a type-2 fuzzy based pooling was proposed, as a solution to the value selection

uncertainty that is present in conventional pooling operations, such as max and average pooling.

The methodology reduces the spatial input size in two steps. Initially the dominant values of the

pooling window are identified using type-2 fuzzy logic. Spatial size reduction is performed using

type-1 fuzzy logic with weighted average of the dominant values found in the first step. To identify

the importance of each value, the values are compared to a threshold computed using the average

of the minimum and maximum values of Gaussian membership functions applied on the input

space. The algorithm requires a minimum set of important values to be present in order to apply

the fuzzy pooling operation; if this criterion is not met, the algorithm falls back to the conventional

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

78

crisp pooling. In that sense, that approach can be considered as hybrid. The authors evaluated their

type-2 fuzzy based pooling on the standard LeNet (LeCun et al. 1989) CNN architecture, using

two standard datasets showing promising results compared to max and average pooling.

Ιn this chapter we propose an effective fuzzy pooling methodology that can be used as a drop-in

replacement of the pooling layer used in any of the current CNN architectures. The proposed

methodology considers the CNN feature maps as locally imprecise, due to the uncertainty

propagated from the previous layers, and it uses fuzzy sets as a means to model this imprecision

and implement pooling through fuzzy aggregation and defuzzification. The importance of each

value in a pooling window is characterized by a score obtained from its membership value in type-

1 fuzzy sets which are determined by the activation function used by the previous layer. Comparing

to (Sharma et al. 2019), no value-specific thresholds are used, which enables the proposed fuzzy

pooling methodology to be applied uniformly on all the pooling areas of the input space; thus not

leaving any uncertainties to be propagated to the following layers of the network.

3.3 Type-1 Fuzzy Pooling

Fuzzy pooling is defined in the context of a CNN architecture. It constitutes the basis of a novel

pooling layer for uncertainty-aware dimensionality reduction. Considering that the pixel values of

the input images of a CNN are prone to uncertainty (e.g., noise, color, and geometrical ambiguity),

and that the information is forwardly propagated from the input to the subsequent hidden layers,

the uncertainty, which is part of this information, is also propagated through the different network

layers; thus, affecting the values of their feature maps. Convolution is a local operation; therefore,

the uncertainty is expected to be also local in the output space of a convolutional layer.

Given a feature map extracted from a convolutional layer, the uncertainty in its values can be

modeled by fuzzy sets:

𝑦̃𝑣 = {〈𝑥, 𝜇𝑣(𝑥)〉 | 𝑥 ∈ 𝐸}, 𝑣 = 1, … , 𝑉 (3.1)

representing overlapping value intervals that can be linguistically expressed, e.g., as small,

medium and large values. The universe E is selected upon the output value ranges representing

overlapping value intervals that can be linguistically expressed, e.g., as small, medium and large

values. The universe E is selected upon the output value ranges of the neural activation functions

of the convolutional layer. To illustrate this, the Rectified Linear Unit (ReLU) (Nair & Hinton

2010) activation function is considered as a representative example. ReLU is defined as:

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (3.2)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

79

Figure 3.1 Schematic representation of the proposed fuzzy pooling operation applied on a single volume

patch extracted from a set of z feature maps.

Where 𝑥 ∈ ℝ, and it is usually preferred to conventional sigmoid activations, because it is

computationally simpler, and it reduces the possibility of vanishing gradients from which, deep

neural networks suffer (Hochreiter 1998). Also, empirical studies have shown that a network with

ReLU activation functions tend to converge faster than sigmoid (Krizhevsky et al. 2012). Recent

studies (Howard et al. 2017) suggest that ReLU is capped by a maximum value 𝑟𝑚𝑎𝑥:

 𝑅𝑒𝐿𝑈(𝑥, 𝑟𝑚𝑎𝑥) = min(max(𝑥, 0) , 𝑟𝑚𝑎𝑥) (3.3)

where typically 𝑟𝑚𝑎𝑥 = 6, as it has been shown that it helps the network learn sparse features

earlier. Therefore, in this case 𝐸 = [0, 𝑟𝑚𝑎𝑥].

Let 𝛽 stand for a volume 𝑤 × ℎ × 𝑧, representing a set of 𝑧 feature maps 𝛽𝑛 with a size of 𝑤 × ℎ,

i.e., 𝛽 = {𝛽𝑛 | 𝑛 = 1,2, … , 𝑧}. The first step of the proposed methodology is sampling the input

volume with a pooling window of size 𝑘 × 𝑘. Commonly used values for these hyperparameters

include 𝑘 = 3 and 𝜎 = 2, which result in a reduction of the width and the height of the input

volume in half. With this process a set of volume patches is obtained from the input volume 𝛽 with

stride 𝜎. Each volume patch, consists of spatial patches 𝑝𝑛 extracted from feature maps 𝛽𝑛, i.e.,

𝑝 = {𝑝𝑛 | 𝑛 = 1,2, … , 𝑧}. The number of patches 𝑐 that can be extracted from an input volume 𝛽

can be calculated by:

 𝑐 =
(𝑤 − 𝑘 + 2𝑡𝑤)(ℎ − 𝑘 + 2𝑡ℎ)

2𝜎 + 2
 (3.4)

where 𝑡𝑤 =
(𝜎−1)(𝑤−𝜎+𝑘)

2
 and 𝑡ℎ =

(𝜎−1)(ℎ−𝜎+𝑘)

2
 is the zero-padding used in the patch extraction

process on the width and height axis of the input volume 𝑥 respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

80

Let 𝑝𝑖,𝑗
𝑛 stand for an element of a volume patch 𝑝 at depth 𝑛 and position 𝑖, 𝑗 where 𝑖 = 1,… , 𝑘,

𝑗 = 1,… , 𝑘 and 𝑛 = 1,… , 𝑧. Without loss of generality, let us consider a set of three fuzzy sets

defined by (1) for V=3. These 𝑦̃1, 𝑦̃2 and 𝑦̃3 fuzzy sets with membership functions 𝜇1, 𝜇2 and 𝜇3,

are used to represent small, medium and large values of 𝑝𝑖,𝑗
𝑛 , respectively. The membership

functions of these sets are used for the fuzzification of the patches. For example, in the case of

triangular membership functions 𝜇𝑖, 𝑖 = 1,2,3, using (1), this can be expressed as follows:

 𝜇1(𝑝𝑖,𝑗
𝑛) =

{

 0 𝑝𝑖,𝑗

𝑛 > 𝑑

𝑑 − 𝑝𝑖,𝑗
𝑛

𝑑 − 𝑐
𝑐 ≤ 𝑝𝑖,𝑗

𝑛 ≤ 𝑑

1 𝑝𝑖,𝑗
𝑛 < 𝑐

 (3.5)

where 𝑑 =
𝑟𝑚𝑎𝑥

2
 and 𝑐 =

𝑑

3
,

 𝜇2(𝑝𝑖,𝑗
𝑛) =

{

0 𝑝𝑖,𝑗

𝑛 ≤ 𝑎

𝑝𝑖,𝑗
𝑛 − 𝑎

𝑚 − 𝑎
𝑎 ≤ 𝑝𝑖,𝑗

𝑛 ≤ 𝑚

𝑏 − 𝑝𝑖,𝑗
𝑛

𝑏 − 𝑚
𝑚 < 𝑝𝑖,𝑗

𝑛 < 𝑏

0 𝑝𝑖,𝑗
𝑛 ≥ 𝑏

 (3.6)

where 𝑎 =
𝑟𝑚𝑎𝑥

4
 , 𝑚 =

𝑟𝑚𝑎𝑥

2
 and 𝑏 = 𝑚 + 𝑎,

 𝜇3(𝑝𝑖,𝑗
𝑛) =

{

0 𝑝𝑖,𝑗

𝑛 < 𝑟

𝑝𝑖,𝑗
𝑛 − 𝑟

𝑞 − 𝑟
𝑟 ≤ 𝑝𝑖,𝑗

𝑛 ≤ 𝑞

1 𝑝𝑖,𝑗
𝑛 > 𝑞

 (3.7)

where 𝑟 =
𝑟𝑚𝑎𝑥

2
 and 𝑞 = 𝑟 +

𝑟𝑚𝑎𝑥

4
.

For each patch 𝑝𝑛, 𝑛 = 1,… , 𝑧, a fuzzy patch 𝜋𝑣
𝑛 is defined as

𝜋𝑣
𝑛 = 𝜇𝑣(𝑝

𝑛) = (
𝜇𝑣(𝑝1,1

𝑛) … 𝜇𝑣(𝑝1,𝑘
𝑛)

… ⋱ …
𝜇𝑣(𝑝1,𝑘

𝑛) … 𝜇𝑣(𝑝𝑘,𝑘
𝑛)

) (3.8)

Pooling begins with the spatial aggregation of the values of the fuzzy patch, using the fuzzy

algebraic sum operator (𝛴̇) (Zimmermann 2011), as follows:

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

81

 𝑠𝜋𝑣
𝑛 = ∑∑𝜋𝑣𝑖,𝑗

𝑛

𝑘.

𝑗=1

𝑘.

𝑖=1

, 𝑛 = 1,… , 𝑧. (3.9)

This operator was selected as a standard s-norm considering all the neighboring values of the fuzzy

patch. It has a relatively low computational complexity, and it can be easily vectorized to be

efficiently performed on a GPU. The value of each 𝑠𝜋𝑣
𝑛 is considered as a score quantifying the

overall membership of 𝑝𝑛 to 𝑦̃𝑣. Based on these scores, for each volume patch 𝑝 a new fuzzy

volume patch 𝜋′ is created by selecting the spatial fuzzy patches 𝜋𝑣
𝑛 , 𝑣 = 1,… , 𝑉 that have the

largest scores 𝑠𝜋𝑣
𝑛 , i.e.,

 𝜋′ = {𝜋𝑣
′𝑛 = 𝜋𝑣

𝑛| 𝑣 = argmax(𝑠𝜋𝑣
𝑛), 𝑛 = 1,2, … , 𝑧} (3.10)

This way patches of higher certainty are selected. The dimensionality of each patch is then reduced

by defuzzification using the Center of Gravity (CoG):

 𝑝′
𝑛
=
∑ ∑ (𝜋′𝑖,𝑗

𝑛
∙ 𝑝𝑖,𝑗

𝑛)𝑘
𝑗=1

𝑘
𝑖=1

∑ ∑ 𝜋′𝑖,𝑗
𝑛𝑘

𝑗=1
𝑘
𝑖=1

, 𝑛 = 1… 𝑧 (3.11)

where 𝑝′ = {𝑝′
𝑛
 | 𝑛 = 1,2, … , 𝑧}.

Algorithm 3.1 Proposed Fuzzy Pooling.

Algorithm

Input: Input Volume 𝛽

1: 𝑃 = Extract patches from 𝛽

2: foreach (𝑝 in patches 𝑃) do

3: for (v = 1…𝑉) do

4: for (𝑛 = 1…𝑧) do

5: Calculate 𝜋𝑣
𝑛 using Eq. (3.8)

6: end for

7: end for

8: for (v = 1…𝑉) do

9: for (𝑛 = 1…𝑧) do

10: Calculate the scores 𝑠𝜋𝑣
𝑛 using Eq. (3.9)

11: end for

12: end for

13: Calculate 𝜋′ using Eq. (3.10)

14: Calculate 𝑝′ using Eq. (3.11)

15: end for

Output: return 𝑝′

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

82

3.4 Evaluation Methodology

To evaluate the performance of the proposed methodology we conducted experiments on widely

used, publicly available datasets. The experimental investigation is divided in two parts. The first

part compares the proposed, over current pooling approaches with respect to classification

performance. The second part performs a qualitative assessment of the proposed fuzzy pooling,

aiming to investigate why it favors the classification performance.

3.4.1 Classification Results

Classification performance was assessed using MNIST (Deng 2012), Fashion-MNIST (Xiao et

al. 2017) and CIFAR-10 (Krizhevsky et al. 2009) datasets. MNIST dataset (Figure 3.2) consists

of 70.000 grayscale 28×28 pixels in size images of handwritten digits split into two subsets from

which 60.000 are used for training and 10.000 for testing. Fashion-MNIST (Figure 3.3) includes

images having the same size with the original MNIST dataset, but instead of classes of handwritten

digits it includes classes of clothes. This renders the classification problem more challenging,

especially on swallower networks, such as the one used in this chapter. CIFAR-10 dataset (Figure

3.4) can be considered as the equivalent of MNIST dataset in natural images. It consists of 60.000

natural RGB images of 32×32 pixels in size from 10 different classes from which, 50.000 are used

for training and 10.000 for testing. The dataset contains 6.000 images per class. We have selected

these datasets as they are relatively simpler compared to other, larger datasets such as ImageNet

(Deng et al. 2009), which would require complicated CNN architectures to be used in order to

yield any meaningful results.

In an effort to minimize the performance bias introduced by the high number of hyper-parameters

required by deep CNN architectures, such as EfficientNet (Tan & Q. Le 2019), ResNet (He et al.

2016), VGGNet (Simonyan & Zisserman 2014), we choose to evaluate the classification

performance of the proposed pooling methodology using the LeNet (LeCun et al. 1989) baseline

CNN architecture (Figure 3.5). Although the classification performance of such a baseline

architecture is significantly lower compared to state-of-the-art architectures, it offers a relatively

low number of hyper and free-parameters (weights) which highlights the performance impact of

pooling.

In the convolutional layer, the capped ReLU activation (3) is used. The proposed pooling layer

performs fuzzy pooling using the fuzzy membership functions defined in (5-7), with 𝑟𝑚𝑎𝑥 = 6, as

suggested in (Howard et al. 2017). Thus, the parameters of the membership functions are 𝑑 = 3,

𝑐 = 1, 𝑎 = 1.5, 𝑚 = 3, 𝑟 = 3, and 𝑞 = 4.5.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

83

Figure 3.2 Sample images of the 10 classes from MNIST (Deng 2012) dataset

Figure 3.3 Sample images from the 10 classes of Fashion-MNIST (Xiao et al. 2017) dataset.

Figure 3.4 Standard CNN LeNet (LeCun et al. 1989) architecture

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

84

Figure 3.5 Sample images from the 10 classes of CIFAR-10 (Krizhevsky et al. 2009) dataset.

For the baseline architecture training we used the Stochastic Gradient Descent (SGD) (Kiefer et

al. 1952) with a batch-size of 32 images. We did not perform any type of data-preprocessing or

data-augmentation, in an effort to keep the experiments focused solely on the impact of the

selection of the pooling layer on the overall classification performance of the network. All

experiments were conducted using the same software and hardware equipment. More specifically,

the proposed pooling was implemented using the Tensorflow (Abadi et al. 2016) framework in

Python, which is a popular framework for deep learning applications, enabling training and

inference of the model to be conducted on Graphical Processing Units (GPUs). All the experiments

were conducted using the training and testing subsets provided by the datasets, which are class-

balanced. For this reason, to assess the classification performance of the proposed pooling,

classification accuracy was used as a sufficient measure. Comparative evaluations were conducted

using the same, baseline architecture described above, switching only the pooling layer of the

baseline architecture. The methods considered for comparison include the max-pooling, the

average pooling, the state-of-the-art RegP (Yildirim & Baloglu 2019) and the type-2 fuzzy pooling

(Sharma et al. 2019). The results obtained per dataset are presented in Tables 3.1, 3.2 and 3.3,

respectively.

It can be noticed that the proposed methodology outperforms the existing state-of-the-art and

conventional pooling approaches. This can be attributed to the value selection approach that it

follows, which is based entirely on fuzzy logic. The results show that the classification

performance improvement is independent from the dataset used. On the contrary, the type-2 fuzzy

pooling approach (Sharma et al. 2019), does not perform well on the more complex CIFAR-10

dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

85

Table 3.1 Comparative Accuracy Results of the Type-1 Fuzzy Pooling Methodology on MINST Dataset

(Deng 2012)

Methodology Classification Accuracy

Max Pooling 88.48%

Average Pooling 94.06%

RegP (Yildirim & Baloglu 2019) 95.46%

Type-2 Fuzzy Pooling (Sharma et al. 2019) 94.40%

Fuzzy Pooling (Diamantis & Iakovidis 2020) 98.56%

Table 3.2 Comparative Accuracy Results of the Type-1 Fuzzy Pooling Methodology on CIFAR-10

Dataset (Krizhevsky et al. 2009)

Methodology Classification Accuracy

Max Pooling 70.73%

Average Pooling 74.83%

RegP (Yildirim & Baloglu 2019) 75.44%

Type-2 Fuzzy Pooling (Sharma et al. 2019) 27.92%

Fuzzy Pooling (Diamantis & Iakovidis 2020) 78.35%

Table 3.3 Comparative Accuracy Results of the Type-1 Fuzzy Pooling Methodology on Fashion-MNIST

Dataset (Xiao et al. 2017)

Methodology Classification Accuracy

Max Pooling 84.28%

Average Pooling 85.90%

RegP (Yildirim & Baloglu 2019) 86.41%

Type-2 Fuzzy Pooling (Sharma et al. 2019) N/A

Fuzzy Pooling (Diamantis & Iakovidis 2020) 88.57%

3.4.2 Qualitative Assessment

As noted in the previous subsection, the performance advantage of the proposed pooling approach

relies on the feature selection strategy it applies. However, to obtain a deeper understanding of

how it affects the feature maps of the CNN, a qualitative assessment of its effects has been

performed. Considering that the feature maps are 2D image representations, to obtain visually

meaningful results we performed comparisons on a collection of standard images obtained from

the USC Image Database – Miscellaneous dataset (Anon n.d.). The dataset consists of 44 images

from which 16 are RGB images and 28 grayscale. The aspect ratio of the images is 1:1 while the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

86

spatial size is 256×256, 512×512 or 1024×1024 pixels. To conduct the experiments uniformly

across the images, as a pre-processing step, the images were downscaled to 256×256 pixels in size

and converted to grayscale. To assess the effect of pooling on these images, different quality

metrics were estimated after the pooling operations. These include the Root Mean Square (RMS)

contrast (Peli 1990), Peak Signal-to-Noise Ratio (PSNR) (Instruments 2013) and the Structural

Similarity Index (SSIM) (Wang et al. 2004) between the original image and the resulting image

after pooling using max, average and the proposed fuzzy pooling. RMS contrast is defined as the

standard deviation of the pixel intensities; therefore, a larger value of RMS contrast indicates a

better contrast. PSNR measures image quality with respect to distortions, in decibels (dB); with

the higher quality images to have higher PSNR values. SSIM is an index that considers image

degradation as perceived change in structural information; with the SSIM for non-degraded images

to be equal to 1. The average results are summarized in Table 3.3, with a standard deviation of

approximately 2.3% with respect to the estimated values. The results indicate that the output

images obtained with the proposed approach have a higher contrast and lower noise levels

(a) (b) (c) (d) (e)

Figure 3.6 Visual comparison of pooling results on standard images found in (Anon n.d.) and (Gonzalez

& Woods 2018) datasets. The images of “House”, “Fishing Boat”, “Baboon” and “Cameraman” are

presented on rows 1 to 4 respectively. (a) Original images, (b) Max-pooling, (c) Average pooling, (d) RegP

pooling (e) Proposed type-1 fuzzy pooling.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

87

compared to the other pooling approaches. The SSIM is a measure of the perceptual similarity of

the images before and after processing. Therefore, in these terms the results indicate that the

proposed approach has an obvious advantage over max-pooling, whereas it provides a visually

compatible result with average pooling. However, at this point it should be noted that pooling is

performed on feature maps and not directly on images, which are assessed by artificial neuron

arrangements and not humans. Considering the classification results presented in the previous

subsection, it can be derived that the perceptual similarity is insufficient to justify the observed

performance advantage (Table 3.1, 3.2 and 3.3).

Figure 5 illustrates the results of the different pooling operations tested on representative images

from the USC dataset. It can be noticed that the output of the average pooling operation looks

smoother and therefore, more satisfactory for the human observer, which justifies the results in

terms of SSIM. In most cases the max-pooling operator cause human-perceivable distortions, e.g.,

it destroys the face of the cameraman, and it inverts the eyes of the baboon. On the contrary, the

output of the proposed fuzzy pooling is both perceptually compatible and it better preserves the

information of the original images, while enhancing their contrast. Also, it is worth noting that the

boundaries of some objects, e.g., the tripod of the camera and the region over the wheel of the car

in the “house” image, look more ‘digital’, as compared with the original image. This effect is due

to the minimization or absence of greylevel diffusion on the object boundaries in the output images.

Such a diffusion observed in the original and the outputs of the compared pooling approaches can

be considered as an indication of greylevel uncertainty on the object boundaries, which may be

positive for human perception; however, it can limit the spatial discrimination of the features in a

feature map.

Table 3.4 Comparative Results of the Proposed Type-1 Fuzzy Pooling Methodology on USC (USC,

2018) Dataset

Metric
Max

 Pooling

Average

Pooling

RegP

Pooling

Fuzzy

Pooling

RMS Contrast (Peli 1990) 44.28 47.98 46.88 48.19

PSNR (Instruments 2013) (dB) 5.29 5.29 5.28 5.42

SSIM (Wang et al. 2004) 0.72 0.78 0.73 0.77

To make these observations clearer to the reader, we have included magnifications of

representative samples from the images of (Figure 3.6). These samples are illustrated in (Figure

3.7) showing that that the proposed methodology preserves the important details of the image

better than max and average pooling. It is important to note that in the second row of (Figure 3.7)

the “mast” from the original fishing boat image, has disappeared in the case of the widely used

max pooling.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

88

(a) (b) (c) (d) (e)

Figure 3.7 Visual comparison of details on the images illustrated in (Figure 3.6). (a) Original images, (b)

Max-pooling, (c) Average pooling, (d) RegP pooling (e) Fuzzy pooling.

To provide further insights on the way the proposed fuzzy pooling copes with uncertainty

propagation to the feature maps of a CNN, indicative feature map visualizations are provided in

(Figure 3.8). These feature maps were extracted from the network described in Section IV.A

(Figure 3.5), using the same input images, as the ones used to produce the results of (Figure 3.6).

More specifically, we selected the network that was pre-trained on CIFAR-10 (Krizhevsky et al.

2009) dataset, as this includes more general classes of objects, resembling those illustrated in the

input images. To increase the uncertainty levels of the input images, Gaussian noise was added

with variance 0.01, resulting in images with a PSNR of 20 dB. The various pooling methods

compared, were applied on the feature maps resulting from the convolutional layer. The pooling

results in (Figure 3.8) show that the visualizations of the different methods have significant

differences with respect to their capability to preserve as many as possible from the details of the

convolutional layer. It can be noticed that the proposed fuzzy pooling approach looks more similar

with the output of the convolutional layer. As this may not be obvious to all readers, it can also be

noticed by the average PSNR estimated per pooling methodology on these images, as a

representative metric. In the case of the proposed fuzzy pooling this is 23.38 dB, whereas the

respective values for max, average and RegP pooling it is 19.25 dB, 21.64 dB, and 21.51 dB, with

a standard deviation of ± 0.3 dB in all cases.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

89

(a)

(b)

(c)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

90

(d)

(e)

Figure 3.8 Visual comparison of pooling results on a subset of 10 feature maps obtained by the

convolutional layer of the CNN (Figure 3.5). In each figure, the first row contains the original feature maps,

and the rest of them the results of max-pooling, average pooling, RegP, and Fuzzy Pooling, respectively.

(a) Images with Gaussian noise (b) “House”, (c) “Fishing Boat”, (d) “Baboon” and (e) “Cameraman”.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

91

3.5 Conclusions

In this chapter we presented a novel fuzzy pooling operation for CNN architectures, coping with

the uncertainty of feature values. Experiments performed on publicly available datasets, show that

the proposed methodology significantly increases the classification performance of CNNs, as

compared to other state-of-the-art pooling approaches. We show that fuzzy pooling can be used as

a drop-in replacement of existing pooling layers, in CNN architectures, increasing the

generalization performance. Furthermore, experiments conducted on standard image datasets

(Anon n.d.)(Gonzalez & Woods 2018), show that the proposed methodology is able to preserve

better the important features of the pooling areas. This was validated both visually and statistically

by the higher classification performance obtained using the fuzzy pooling approach.

Future work includes optimization of the current implementation of fuzzy pooling to fully exploit

GPU-level parallelism. This will enable us to perform larger-scale experimentation with very large

datasets, such as ImageNet (Deng et al. 2009), using deeper CNN architectures, such as (Simonyan

& Zisserman 2014). Other interesting research perspectives include the extension of the learnable

set of network parameters to include the parameters for the fuzzy rules, and the extension of the

proposed approach using generalized fuzzy sets, such as intuitionistic fuzzy sets.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

92

CHAPTER 4

MACHINE LEARNING FOR COMPUTER-AIDED ENDOSCOPY

Gastrointestinal (GI) diseases are becoming more and more common (Foundation 2017). Each

year in the United States 130,000 patients are diagnosed with colon cancer, making it the second

most common form of cancer in the country. Recent studies show that the modern way of life,

especially in the developed countries, has increased the number of cases with GI lesions. In this

chapter we aim to provide a computer-aided approach for abnormality detection addressing variety

of diseases, such as polyps, vascular bleeding, and inflammatory conditions.

The GI tract can be broken down into four sections, namely the esophagus, the stomach, the small

intestine, and the colon. A typical examination method of the GI tract is Flexible Endoscopy (FE)

(Muller & Sonnenberg 1995) and its variations (Yao 2013; Kiesslich et al. 2005; Gono et al. 2004).

Wireless Capsule Endoscopy (WCE) (Swain 2008) is becoming increasingly popular as a method

of capturing images from the entire GI tract due to its non-invasiveness. This method uses a

swallowable camera to capture low-resolution images throughout the entire GI tract which are

afterwards examined by a clinician. A lot of manual human effort is required, which is typically

interpreted into 45-90 minutes work, demanding undisrupted concentration. Thus, the review of

an entire WCE video is prone to human errors since the video reviewers can become tired over the

time. This raises the need for a computer-aided diagnosis methodology that could increase the

overall diagnostic accuracy, and reduce the required examination time.

Computer-aided abnormality detection in endoscopic images of the GI tract has been an active

research subject over the last 18 years (Iakovidis & Koulaouzidis 2015; Liedlgruber & Uhl 2011;

Karkanis et al. 2003). Abnormality detection refers to the ability of discriminating abnormal tissues

from normal image contents. Normal image contents include non-pathologic tissues and intestinal

content, such as debris and bubbles. First approaches were aiming to the detection of abnormalities

in FE (Liedlgruber & Uhl 2011; Karkanis et al. 2003). In that context, abnormality detection

systems contribute to the early detection of life-threatening conditions such as cancer. Their use

can contribute in speeding up the FE procedures, which are generally uncomfortable for the

patients. An added benefit is that cost reduction can be achieved by the use of such systems, as

they could enable less experienced personnel to perform the examination.

The abnormality detection methodologies that have been proposed in the context of GI FE (Vemuri

2019; Liedlgruber & Uhl 2011) and WCE (Dray et al. 2021; Iakovidis & Koulaouzidis 2015) can

be grouped into two main categories, according to the type of features used to describe the images.

The methodologies of the first category are based on hand-crafted features for the representation

of image properties, including color, texture and shape (Iakovidis & Koulaouzidis 2015;

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

93

Koulaouzidis et al. 2017; Vasilakakis et al. 2016; Sommen et al. 2016; Mamonov et al. 2014; D.-

Y. Liu et al. 2016; Liedlgruber & Uhl 2011; Iakovidis et al. 2015; Hegenbart et al. 2013; Häfner

et al. 2015; Cong et al. 2015; Cong et al. 2016). However, such features are usually selected based

on considerations about the modality used to acquire the images or about the abnormalities to be

detected. In the second category, which comprises more recent methodologies, the feature

extraction process is automatic. This is usually implemented through adaptation on the annotated

dataset used for training of the overall system. State-of-the-art approaches of this kind are based

on CNNs (Tajbakhsh et al. 2015; Sekuboyina et al. 2017; Ribeiro et al. 2016; He et al. 2018;

Wimmer et al. 2016).

Recently, supervised methodologies based on weakly annotated images have shown promising

results for the classification of endoscopy images. The so-called weak labels are essentially

keywords, only semantically describing image content. Therefore, weak labeling constitutes a

time-efficient approach to obtain image annotations from the experts (Wang et al. 2015; Wang et

al. 2016). In this context we proposed a MIL-based approach following the Bag of visual Words

(BoW) model, for classification of GI endoscopy images (Vasilakakis et al. 2016). More recently,

we proposed a methodology for weakly supervised detection and localization of abnormalities in

GI endoscopy images (Iakovidis et al. 2018). This includes Weakly supervised CNN-based

(WCNN) classification of the endoscopic images, followed by the detection of salient points,

which were subsequently filtered by a clustering process to enable within-frame localization of the

abnormalities. Specifically for bleeding detection and segmentation, a two stage approach has been

proposed by (Jia & Meng 2017). Initially the images obtained from WCE, are classified as active

or in-active subgroups based on handcrafted statistically derived color probability features. Then

the segmentation is done using a deep FCN architecture (Springenberg et al., 2014), i.e., an

architecture composed of only convolutional layers.

Other CNN architectures for classification of weakly labeled images, proposed in the context of GI

endoscopy, include a CNN that receives RGB images along with their Hessian and Laplacian

transformations as input (Segu𝚤 et al. 2016); a cascaded CNN architecture for the recognition of the

different organs of the GI tract and normal intestinal content (Chen et al. 2017); and, a CNN

architecture for blood detection, using an SVM instead of the fully-connected layer of the

conventional CNNs (Jia & Meng 2016). A recent, generic CNN-based approach to abnormality

detection in GI endoscopy has been proposed in (Zhang et al. 2016) . It utilizes a pre-trained CNN

architecture, and more specifically the CaffeNet (Jia et al. 2014), as a feature extractor. The

features are extracted from the intermediate layers of the network. The extracted feature-maps are

then used to train an SVM classifier. A remarkable aspect of that approach is that it was trained

solely on ImageNet (Russakovsky et al. 2015), which is a large dataset of natural images that does

not include any endoscopic or other relevant images.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

94

While the usage of CNNs, including FCNs, has provided superior results compared to other

conventional approaches, they generally require large training datasets. A drawback of current

CNN approaches is that the use of smaller training datasets limits their generalization capacity.

This derives from the fact that, as the number of the free parameters of the network increases, the

need for more training examples also increases, in order to avoid overfitting (Du & Swamy 2006).

However, the availability of such large training datasets in the medical domain is usually limited;

thus, CNN training can become challenging. The challenge is to develop an architecture that

generalizes well, even with smaller datasets. Furthermore, the increase of free parameters,

increases the needs for computational resources, with a consequent deterioration of the time-

performance of the system for both training and testing (Krizhevsky et al. 2012; Simonyan &

Zisserman 2014). Considering that the access to high-end Graphical Processing Units (GPUs) can

become costly, the development of a less resource-demanding architecture is a challenge that needs

to be addressed.

To address these challenges we have proposed the Look-Behind Fully Convolutional Neural

Network (LB-FCN) (Diamantis et al. 2019), which is a CNN architecture that focuses on

minimizing the number of free parameters along, which enables it to generalize well even when

the number of training data are limited. LB-FCN architecture is a result of two novel studies; In

the first, a cross-dataset experimental study (Diamantis et al. 2018) that investigates the

generalization performance of an earlier version of architecture on various publicly available

datasets. The second study (Vasilakakis et al. 2018) investigated the generalization performance

of a similar, multi-scale feature extraction enabled architecture, named MM-CNN, in the context

of weakly-supervised multi-label endoscopy video frames classification.

In some cases, obtaining even small number of images for training is relatively hard, mainly due

to the annotations that are required to be added to the images by a skilled physician. Aiming to

address this problem, we recently proposed a novel GAN methodology in which GI tract images

are generated automatically (Diamantis et al. 2019). The normal (healthy) and abnormal

(unhealthy) generated images were used as training dataset to train the LB-FCN architecture with

promising results when tested on real images.

4.1 The Look-Behind Fully Convolutional Neural Network Architecture

The design of the proposed architecture follows the FCN approach (Springenberg et al. 2014),

where the fully-connected layers, typically used in the conventional CNN architectures

(Krizhevsky et al. 2012; Simonyan & Zisserman 2014), are replaced by fully-convolutional layers.

It is based on two fundamental elements, which differentiate it from other FCN architectures.

These are: a) the Multi-scale Convolutional Block (MCB), which enables multi-scale feature

extraction from its input, and b) the LB connection, which aims to preserve the input volume, along

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

95

Figure 4.1 A comparison between the core components of ResNet (He et al. 2016), ResNeXt (Xie et al.

2017), Inception-v4 (Szegedy et al. 2017) and the proposed LB-FCN (Diamantis et al. 2019)architectures.

The term “volume” represents either a set of feature maps (in case of hidden network components) or a

single image (in the case of network’s input).

with the extracted features per MCB. Both the MCB and the LB connection form the basic,

complete structural component (module) of the LB-FCN, illustrated in (Figure 4.1). The input

volume, in the case of the first LB-MCB module of the LB-FCN, is an RGB endoscopic image,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

96

and in the case of subsequent layers it is the output of the previous LB-MCB modules. Overall,

LB connections contribute in enhanced classification performance; however, in some cases where

the performance is not significantly affected, they can be pruned for reduced computational

complexity.

Figure 4.2 Schematic representation of the LB-FCN (Diamantis et al. 2019) architecture proposed in this

study.

The MCB is a small CNN composed of five convolutional layers (Figure 4.1). The first

convolutional layer performs a convolution operation with a filter size 1×1 on the input volume.

The output of this layer is used as input to a parallel arrangement of three convolutional layers,

with the same number of filters, performing 8×8, 4×4 and 2×2 convolution operations,

respectively. This way, larger, medium, and smaller features of the input space can be captured.

The choice of these filters has been driven by preliminary experimentation using various numbers

of filters (1 to 5) with different sizes (from 2×2 to 12×12) on the available datasets. We observed

that by using less than 3 filters the classification performance was deteriorating, whereas by using

more than 3 filters the classification performance was not improving. The output feature maps of

these parallel layers are concatenated and subsequently entered to the fifth convolutional layer of

the MCB, with 1×1 filter size. Each MCB has a respective LB connection in parallel, forward

passing its input through a 1×1 convolutional layer.

An addition operator is used to aggregate the outputs of the MCB and the LB connection. The

resulting feature maps pass through a convolutional layer with 1×1 filter size. Multiple MCBs

along with or without LB connections can be sequentially arranged and connected to each other.

After the aggregation of the output of the MCB with the output volume of the LB connection, a

pooling operation is performed. Pooling is performed by a convolution layer of filter size 2×2 and

stride 2. The usage of a convolution layer instead of a conventional max-pooling layer, was

employed to introduce another level of non-linearity to the network architecture, and to unify and

logically simplify the overall network architecture. The max pooling layer can be replaced by a

convolution layer of appropriate size and stride without affecting the overall classification

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

97

performance of the model (Springenberg et al. 2014). The 1×1 convolution operations that are used

across the MCB serve two purposes. Firstly, they are helping to keep the overall number of free

parameters of the network manageable and secondly, they allow the addition operation of the LB

connection to the output of MCB to be valid.

An illustration of the LB-FCN architecture is included in (Figure 4.2). It is composed of five

modules, four of which are complete, including both MCB and LB connections as in (Figure 4.1).

One of them is incomplete, in the sense that it includes an MCB module without an LB connection

(which was pruned as it did not contribute to an increase in the classification performance). Each

MCB receives 192 feature maps as input, while for each large, medium, and small convolutional

blocks, 64 feature maps are extracted. Experimentally, we have observed that by using less

structural components the classification performance was deteriorating, whereas the use of more

than five modules did not result in any classification performance increase either. The last layer of

the network is composed of two neurons with Softmax activations, which are used as the output

of the model.

All the convolutional layers have PReLU activations followed by batch normalization.

Normalization is performed so that the values are centered on a zero mean with a unit standard

deviation. It was empirically confirmed that this choice can contribute in a faster convergence by

using higher learning rates, and also in limiting overfitting phenomena without using a dropout

layer (Srivastava et al. 2014). The PReLU was chosen over the conventional non-parametric ReLU

activation function, because its use has proven to be beneficial in overcoming saturation problems

that have been observed with the latter during training (He et al. 2016).

4.1.2 Experiments and Evaluation of LB-FCN architecture

4.1.2.1 The Datasets

Extensive experimentation was performed to investigate the classification performance of LB-

FCN on two representative datasets of different GI endoscopy modalities that include a variety of

abnormalities. The first dataset (D1) was made publicly available from Endovis challenge, held in

MICCAI 2015 (Navab et al. 2015). We used the data from the sub-challenge referring to the

detection of abnormalities in gastroscopic images (Abnormal 2015) . The selection of this dataset

over others in that challenge was driven by the diversity of the abnormalities that it included, and

the fact that it also included normal images. The gastroscopy challenge dataset was derived from

a total of 10,000 images obtained from 544 healthy volunteers and 519 volunteers having various

abnormalities, such as cancer, bleeding, and gastritis.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

98

Figure 4.3 Schematic representation of the LB-FCN (Diamantis et al. 2019) architecture proposed in this

study.

Figure 4.4 Sample images from KID Dataset. The first row contains normal images, whereas the second

row contains images with abnormalities.

The images had originally a resolution of 768×576 pixels and they were cropped by the data

providers down to 489×409 pixels in order to be anonymized (Cong et al. 2015). For the purposes

of the challenge a subset of 698 images from 137 volunteers was released (Figure 4.3). The dataset

then was split into two approximately balanced subsets; one for training with 465 images (205

normal and 260 abnormal) and one for test containing 233 images (104 normal and 129 abnormal)

(Abnormal 2015)(“EndoVisSub - Abnormal,” 2015). This dataset will be referred to as D1B.

The second dataset (D2), originates from our database called KID (Koulaouzidis et al. 2017). This

is a public, open access database of both semantically and graphically annotated WCE images and

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

99

videos (Figure 4.4). Dataset 2 consists of a total of 2,352 images with a resolution of 360×360

pixels. It contains 1,778 normal images from the whole GI tract, including 282 esophagus images,

599 stomach images, 728 small bowel images, and 169 images from the colon. It also contains a

total of 574 images of various abnormalities found along the entire gastrointestinal tract, including

vascular (303 images), polypoid (44 images) and inflammatory (227 images) conditions. It should

be noted that in order to keep the dataset as realistic as possible, images with artifacts naturally

occurring during a WCE procedure were not excluded. These include blurry frames, bubbles,

intestinal juices, stool, and other debris.

4.1.2.2 Evaluation Methodology

To evaluate the classification performance of LB-FCN architecture a comparison to state-of-the-

art abnormality detection systems for GI endoscopy, a 10-fold cross-validation (CV) procedure

was followed to limit the bias, i.e., the dataset was randomly partitioned into 10 equally sized

disjoint subsets, a single subset was retained as the validation data for testing the model, and the

remaining 9 subsets was used as training data. This was repeated until all subsets are used for

testing. Therefore, per CV fold, in the case of D1 a total of 628 images were used for training and

70 images were used for testing, and in the case of D2 a total of 2117 images were used for training

and 235 images were used for testing. The distribution of the normal and abnormal images, as well

as the distribution of the abnormal frame categories, were held approximately constant in the

training and testing sets per fold, i.e., 76% normal to 24% abnormal, out of which 53% were

vascular, 8% were polypoid and 40% inflammatory conditions.

The metrics used to assess the classification performance include accuracy (ACC), specificity

(SPC) and sensitivity (TPR), as estimated from Eq. (4.1,4.2,4.3).

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.1)

𝑆𝑃𝐶 =
𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 (4.2)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.3)

𝐹𝑃𝑅 = 1 − 𝑆𝑃𝐶 (4.4)

where the number of true negatives are denoted as TN, true positives as TP, false positives FP and

false negatives FN.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

100

The Receiver Operating Characteristic (ROC) curves were considered to visualize the tradeoff

between TPR and FPR at different decision thresholds. The Area Under ROC (AUC) is used as a

more reliable and intuitive classification performance measure, that is insensitive to class

imbalance (Fawcett 2006), which characterizes most medical datasets, as the ones used in this

study.

4.1.2.3 Results

The proposed LB-FCN architecture was evaluated using all images of datasets D1 and D2. Since

the proposed architecture uses weakly labeled images, the available graphic annotations were not

used. Only semantic annotations of the images, indicating whether they contain an abnormality or

not, were used as ground truth. The semantics “abnormal” and “normal” are represented as vectors

(1,0) and (0,1), respectively, at the output of the network.

The network was trained using Root Mean Square Propagation (RMSProp) (Hinton et al. 2012)

optimizer with an initial learning rate n=0.01 and fuzz factor 81 −= e . The network was

implemented utilizing the Python Keras (Gulli & Pal 2017) library on top of the TensorFlow

(Abadi et al. 2016) graph framework trained for 2000 epochs with mini-batch of size 32 samples

on an NVIDIA GTX-960 GPU, with 1024 CUDA (Nickolls et al. 2008) cores, 2GB of RAM and

clock speed of 1127MHz.

In the following, LB-FCN is compared with state-of-the-art architectures, both in terms of

effectiveness and efficiency.

4.1.2.3.1 Effectiveness Assessment

The evaluation of the network using CV yielded a mean Area Under Curve (AUC) of 99.72%

(Figure 5.5). The entire training process of each fold took 2 hours as the network had only 9

million parameters to be trained (while conventional CNN architectures used in this context, such

as CaffeNet (Zhang et al. 2016) and VGG-16 (Simonyan & Zisserman 2014), have between 60-

130 million parameters).

For completeness and further promote reproducibility of the results, we evaluated the classification

performance of the proposed architecture on dataset D1B. This resulted in an AUC of 99.82%,

which is comparable to that obtained with CV (Figure 4.6).

For generality, the experiments on dataset D2 were performed using the same LB-FCN

configuration with the experiments on datasets D1 and D1B. The average Receiver Operation

Characteristic (ROC) curve obtained by the evaluation of the model using CV had an AUC of

93.5% (Figure 4.7).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

101

Table 4.1 Comparative abnormality detection results using 10-fold cross-validation on datasets D1, D1b

And D2, as they were obtained for an optimum selection of the meta-parameters of the compared nets and

methods.

Figure 4.5 Mean ROC obtained by 10-fold CV on dataset D1, using LB-FCN. The grey area around the

curve the represents the respective confidence band.

To compare the performance of LB-FCN for abnormality detection in endoscopic images we

implemented the most relevant state-of-the-art CNN architectures, including Transfer Learning

(Zhang et al., 2017), FCN (Springenberg et al. 2014), ResNet (He et al. 2016), (Xie et al. 2017)

ResNeXt and Inception-v4 (Szegedy et al. 2017). The results obtained on the same datasets, using

10-fold cross validation, are summarized in Table 4.1. In the same table provide the results of

 LB-FCN
(Diamantis et al. 2019)

BoW
(Vasilakakis et al. 2016)

Transfer Learning
(Zhang et al. 2016)

WCNN
(Iakovidis et al. 2018)

 D1 D2 D1B D1 D2 D1B D1 D2 D1B D1 D2 D1B

Accuracy (%) 97.84 88.29 97.42 89.20 76.80 90.56 89.90 80.01 90.98 89.90 77.50 90.90

Sensitivity (%) 98.05 92.11 97.11 91.10 45.40 90.70 90.70 86.22 91.40 90.70 36.20 93.00

Specificity (%) 97.67 76.49 97.67 87.20 88.60 90.38 88.20 60.78 90.38 88.20 91.30 88.50

AUC (%) 99.72 93.50 99.82 94.60 80.20 95.44 96.30 81.62 96.34 96.30 81.40 96.84

 FCN
(Springenberg et al. 2014)

ResNet
(He et al. 2016)

ResNeXt
 (Xie et al. 2017)

Inception-v4
(Szegedy et al. 2017)

 D1 D2 D1B D1 D2 D1B D1 D2 D1B D1 D2 D1B

Accuracy (%) 97.13 87.60 96.13 96.27 87.22 95.99 95.98 86.93 96.56 95.98 87.92 96.99

Sensitivity (%) 96.66 77.87 95.34 97.94 83.26 95.12 95.63 80.13 96.89 94.60 82.17 96.89

Specificity (%) 97.53 85.97 97.11 96.04 90.42 98.07 96.44 89.13 96.15 97.53 90.71 97.11

AUC (%) 97.19 81.92 96.23 97.19 86.84 97.10 96.03 84.63 96.52 96.16 86.44 97.03

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

102

BoW (Vasilakakis et al. 2016) and WCNN (Iakovidis et al. 2018) as they were recently reported

on the same datasets using the same evaluation procedure.

Figure 4.6 ROC obtained on dataset D1B, using LB-FCN.

Figure 4.7 Mean ROC obtained by 10-fold CV on dataset D1, using LB-FCN. The grey area around the

curve the represents the respective confidence band.

To validate the significance of the results obtained by the proposed architecture in comparison to

the results obtained with the state-of-the-art architectures and methods we performed two

statistical significance tests; a non-parametric Friedman test and a two-sided Wilcoxon rank sum

test (Wilcoxon 1947), In both tests the null hypothesis (i.e., that the samples are derived by

identical continuous distribution with equal means and are independent) was rejected (p-value <

0.05), which indicates that there are differences between the examined methods at a 5%

significance level.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

103

Table 4.2 Comparison of the computational complexity of the top-ranked state-of-the-art architectures of

Table 4.1.

Architecture FLOPs
Convolution

Layers

Trainable

Free Parameters

LB-FCN
(Diamantis et al. 2019)

1.36 × 107 32 8.26 × 106

ResNet
(He et al. 2016)

4.74 × 107 53 2.35 × 107

ResNeXt
(Xie et al. 2017)

2.83 × 107 94 5.63 × 106

Inception-v4
(Szegedy et al. 2017)

2.05 × 108 149 4.11 × 107

4.1.2.3.2 Efficiency Assessment

The total time-complexity of all convolution layers in a CNN is given by (He & Sun 2015):

𝑂 (∑𝑛𝑙−1 ∙

𝑑

𝑙=1

𝑠𝑙
2 ∙ 𝑛𝑙 ∙ 𝑚𝑙

2) (4.5)

where 𝑙 is the index of convolution layer, 𝑑 is the number of all convolution layers; 𝑛𝑙 is the width

of the 𝑙-th layer, 𝑛𝑙−1is the input channels of the 𝑙-th layer; 𝑠𝑙 and 𝑚𝑙are the spatial size of the

filter and the output feature map, respectively. Therefore, for a given dataset with a specific size,

the number of computations are proportional to the sum of products described in (5). The same

time-complexity applies to both training and testing time, although on different scale; as training

time involves one forward and two backward passes because of the error back propagation training

algorithm. As a result, the training time of an image is roughly three times the testing time of an

image.

The top-ranked architectures of Table 4.1 are compared in terms of computational complexity in

Table 4.2. It includes the number of Floating-Point Operations (FLOPs), the number of

convolution layers and the number of trainable free parameters. It can be noticed that LB-FCN has

a comparable number of trainable parameters (and consequently similar memory requirements)

with the rest of the architectures. However, the number of FLOPs of LB-FCN is smaller; more

specifically, it is approximately 3.5 times smaller than ResNet, 2 times smaller than ResNeXt, and

an order of magnitude smaller than Inception-v4.

It is worth noting that the LB-FCN architecture tends to converge faster. For example, the average

number of epochs for the convergence of the LB-FCN architecture on dataset D2 was

approximately 2000 as compared to 2400, 2900, 3100 epochs for ResNeXt, ResNet and Inception-

v4 respectively. Also, for the same dataset, the average training time of the proposed architecture,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

104

is significantly smaller, compared to the rest of tested networks, averaging to 2 hours. ResNeXt

required on average 3.4 hours, ResNet 4.2 hours, and Inveption-v4 6 hours.

4.1.2.3.1 Findings

The results obtained from the application of LB-FCN architecture on datasets D1, D1B and D2,

show that it outperforms the state-of-the-art architectures and methods in terms of AUC. The

difference in AUC of LB-FCN in D1 and D1B datasets from the ResNet, which is the second-best

performing methodology, are 2.53% and 2.72% respectively. On the larger and even more diverse

dataset D2, the classification performance of LB-FCN is significantly higher, reaching a difference

in AUC of 6.66% from the same methodology. We believe that this is due to the multiscale feature

extraction capabilities of the architecture. It is important to note here that the methodologies that

follow handcrafted feature classification technique (Vasilakakis et al. 2016), are significantly

lower than the CNN based approaches.

The multi-scale design of LB-FCN is inspired by GoogLeNet (Szegedy et al. 2015) and its

variation Inception-v4 architecture (Szegedy et al. 2017), were features of different abstraction

levels are combined to produce a richer representation of the input volume. The LB connections

are inspired by the work of Gers and Schmidhuber (Gers and Schmidhuber, 2000) where, the so-

called peephole connections, were introduced in Long-Short-Term Memory (LSTM) networks to

provide their gates with the ability to maintain information from previous states of the network.

The multiscale feature extraction approach used in MCB is similar but not the same with that of

the Inception module of GoogLeNet architecture. While both modules aim to the same goal

(multiscale feature extraction), MCB does not use pooling to perform downsampling of the input

volume. This enables the LB connection to be aggregated as is, to the output volume of the MCB.

Furthermore, the MCB extracts the same number of feature maps, across the entire network, on

three different scales (convolution with 2×2, 4×4 and 8×8 filters and stride 1) instead of two

(convolution with 3×3 and 5×5 filters and stride 2), extracted by the Inception module. This aims

to provide more diverse feature representation of the input volume. In the case of GoogLeNet the

number of feature maps extracted by each inception module is doubled, whenever the input volume

size is downscaled by two. In the case of LB-FCN architecture, doubling the number of feature

maps of the LB-MCB module after every convolutional pooling, did not yield any better results,

yet it increased the number of the overall free parameters of the network. Also, it is important to

note that unlike the proposed LB-FCN architecture, GoogLeNet neither has any peephole-like

connections nor any addition operator (Figure 5.1). Also, unlike GoogLeNet, LB-FCN does not

utilize any fully-connected and dropout layers. Other differences of LB-FCN with GoogLeNet

include the use of PReLU activations and batch normalization.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

105

Peephole-like connections, known as “identity shortcut connections”, have been adopted in the

Residual Blocks (RBs) of ResNet (He et al. 2016). The RBs do not have MCB-like, parallel layers;

instead, it is composed of sequentially arranged convolutional layers. In each RB the shortcut

connection transfers its input volume unaltered for addition with the output of its last convolutional

layer. The role of the shortcut connection is similar to that of LB. A variant of ResNet architecture,

called ResNeXt (Xie et al. 2017) utilizes parallel but not multiscale convolutional layers, as the

LB-FCN does. In the case of ResNeXt the outputs of the parallel layers are first summed up

together and the resulting feature maps are subsequently aggregated with the output of the shortcut

connection using an addition operator. In LB-FCN the outputs of the parallel layers of the MCB

are not summed up, instead they are concatenated to form a richer output volume. Similarly to

ResNeXt, the output of the MCB is aggregated by addition with the output of the LB connection.

This allows the next MCB module to have an aggregated view of the initial input volume with the

MCB output volume, which helps the overall classification performance of the network. A notable

difference between ResNext and LB-FCN is not only that the MCB extracts feature maps of

different filter sizes but that after each convolution operation the output is passed to a 1×1

convolution operation with batch output normalization. We found that the addition of this step

increased the classification performance of the network approximately by 1.3% and reduced the

training time by 5.6%.

Similarly to our recent WCNN architecture (Iakovidis et al. 2018), and unlike most relevant

abnormality detection methodologies (Iakovidis & Koulaouzidis 2015), LB-FCN aims to the

detection (not the identification) of various types of abnormalities, and not just a single pathologic

condition. From the results we observe a significant advantage of the LB-FCN over WCNN. The

differences are 12.1%, 3.42% and 2.98% on D2, D1 and D1B datasets, respectively). We believe

that this advantage is due to the introduction of multiscale feature extraction combined with look-

behind connections and the overall deeper architecture. The results of ResNet, ResNeXt and

Inception-v4 architectures, confirm that the depth of the network plays an essential role on the

overall classification performance. This can be observed on the more complex and diverse datasets

such as D2, on which all three architectures outperform the classification performance of the

shallower WCNN architecture.

The comparative study shows that the hand-crafted feature extraction approach used in

(Vasilakakis et al. 2016) results in a significantly lower classification performance compared to

LB-FCN architecture. The AUC differences observed are 13.3% and 5.12% on D2 and D1 datasets

respectively. It also shows that the LB-FCN outperforms WCNN (Zhang et al. 2016); consequently

it outperforms other state-of-the-art CNN-based methodologies, such as (Sekuboyina et al. 2017).

It is also worth noting that D1B dataset was introduced in the work of (Cong et al. 2015), in which

DSSVM approach was presented achieving an AUC of 89.83%. It is worth mentioning that the

AUC difference between DSSVM and LB-FCN on D1B dataset is 9.99%.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

106

4.2 Cross-Dataset Abnormality Detection

The multi-scale feature extraction CNN (MFCNN) (Diamantis et al. 2018) architecture on which

LB-FCN architecture is based on, was inspired by our work on the problem of cross-dataset

abnormality detection in GI tract images. MFCNN. The study aims to investigate the

generalization performance of architecture, compared with conventional, hand-crafted feature

techniques on various publicly available GI tract image datasets. The results validate that the

MFCNN architecture outperforms state-of-the-art approaches, with results reaching up to 90.66%

in terms of the area under the receiver operating characteristic.

4.2.1 Evaluation Methodology

In order to evaluate the classification performance of the MFCNN architecture we performed two

different sets of experiments. The first set assessed its performance on a single dataset, as a

reference, whereas the second set, assessed its ability to generalize using various different datasets

for training and testing. The Area under the Receiver Operating Characteristic (AUC) was used as

a reliable classification measure, that is not affected by the fact that the class distributions of the

datasets used were generally imbalanced (Fawcett 2006). The overall implementation was based

on the Keras (Gulli & Pal 2017) library backed by TensorFlow (Abadi et al. 2016) graph

framework. For the training we used RMSProp (Hinton et al. 2012) optimizer with learning rate

n=0.001, a fuzz factor ε=1e-8, and a batch size of 32 images.

The single-dataset evaluation was based on the largest and most diverse publicly available dataset

of gastrointestinal images, which is “Dataset 2” of KID database (Koulaouzidis et al. 2017). The

evaluation was performed by 10-fold cross validation obtaining an average AUC of 93.5%. For

comparison purposes we implemented and tested the transfer-learning approach proposed by

(Zhang et al. 2016), which resulted in an AUC of 81.62%.

4.2.1.1 The Datasets

Cross-dataset evaluation was based on four datasets: KID (Koulaouzidis et al. 2017), Gastroscopy

(GASTRO) (Cong et al. 2015) , CVC-ClinicDB (CVC) (Bernal et al. 2015), ETIS-Larib Polyp DB

(ETIS) (Silva et al. 2014) dataset. The last three datasets were made publicly available as part of

the Endovis Grand Challenge which was held in MICCAI 2015 conference (Navab et al. 2015).

The Gastroscopy dataset contains a total of 698 gastroscopic images of size 489×409 pixels from

which 389 contain various pathologic conditions. The rest are normal images. CVC-ClinicDB and

ETIS-Larib Polyp DB contain only abnormal images with polyps that were obtained from

colonoscopy videos. The former contains 612 images with a size of 384×288 pixels, and the latter

contains 196 high resolution images with a size of 1225×966 pixels. The lack of normal images in

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

107

these datasets makes them unsuitable for weakly-supervised training of the proposed architecture,

because both normal and abnormal images are required for this purpose.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.8 Sample images from (a) GLAB, (b) GATLAS, (c) CVC, (d) ETIS, (e) KID and (f) GASTRO

datasets.

In order to be able to use the CVC-ClinicDB and ETIS-Larib Polyp DB for training, we enriched

them with 302 images from 10 normal colonoscopic videos from the publicly available

GASTROLAB (GLAB) (GASTROLAB 2018) and El Salvador Atlas of Gastrointestinal

Endoscopy (GATLAS) (Atlas 2018) video databases. GLAB dataset consists of images from the

videos with filenames: vid132, vid146, vid148, vid149, vid176 and vid177, and GATLAS consists

of images from videos: colonoscopy, colonoscopy2, videocolonoscopy2, and videocolonoscopy3.

The images were sampled with a period of 1 sec. GLAB dataset was combined with CVC dataset

(CVC+GLAB) and GATLAS was combined with ETIS dataset (ETIS+GATLAS). All images

were linearly downscaled to 64×64 pixels before entering the CNN. A sample image from each

dataset that was used in this study is presented in (Figure 4.8).

4.2.1.2 Results

The results obtained from the evaluation of the proposed architecture in comparison to the results

obtained by the architecture used in (Zhang et al. 2016) trained and tested on the respective datasets

are presented in Table 4.3. Training with ETIS+GATLAS dataset and testing on CVC+GLAB

yield the best results (90.66%), which we believe is due to the similarity of the two datasets, as

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

108

they are both colonoscopic datasets with polyp lesions. The lowest score (57.83%) was obtained

upon training the architecture with ETIS+GATLAS dataset and testing it on KID dataset. This can

be explained by the fact that KID is a very diverse dataset, containing images from the entire GI

tract, not only from the colon. The fact that ETIS is smaller than CVC dataset can explain the

lower performance of the network trained with ETIS+GATLAS for the classification of KID

images, as compared with CVC+GLAB. Comparing the results of the MFCNN architecture with

the ones obtained using (Zhang et al. 2016) approach we notice the former yields significantly

higher classification performance. We believe that this is due to the training image relevancy, as

(Zhang et al. 2016) features are obtained from a pre-trained network which was trained on non-

medical images. It is also important to note that (Zhang et al. 2016) approach utilizes a network of

approximately 60 million parameters while the proposed architecture has only 9 million.

Furthermore, the image classification performed with the MFCNN methodology is handled by the

network itself, whereas (Zhang et al. 2016) employs an SVM binary classifier for the classification

of the extracted features.

Table 4.3 Comparative abnormality detection results on cross-dataset evaluation.

Train Test MFCNN (Zhang et al. 2016)

KID GASTRO 82.85% 58.41%

KID CVC+GLAB 61.40% 50.32%

KID ETIS+GATLAS 62.99% 50.93%

GASTRO KID 62.37% 53.84%

GASTRO CVC+GLAB 71.32% 50.40%

GASTRO ETIS+GATLAS 80.17% 50.18%

CVC+GLAB KID 64.12% 50.39%

CVC+GLAB GASTRO 67.87% 50.28%

CVC+GLAB ETIS+GATLAS 76.28% 65.80%

ETIS+GATLAS KID 57.83% 50.19%

ETIS+GATLAS GASTRO 57.91% 62.68%

ETIS+GATLAS CVC+GLAB 90.66% 50.30%

4.3 Weakly Supervised Multilabel classification for Semantic Interpretation of

Endoscopy Video Frames

A variety of studies address the problem of abnormality detection in medical images using

computer-based systems. Most of these systems are based on binary classification algorithms that

rely on fully annotated data in order to operate. In image classification problems such annotations

require pixel-level selection within the image that indicate the location of these abnormalities.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

109

Such annotations are relatively hard, and time consuming to obtain. Furthermore, they do not take

into consideration the diversity of the image content, which may include a variety of structures

and artifacts. In the context of GI video-endoscopy, the semantics of the normal contents of the

endoscopic images include mucosal tissues, bubbles, debris, and the hole of the lumen. The

abnormal frames might include additional semantics corresponding to lesions or blood. Based on

this observation, in (Vasilakakis et al. 2018) we investigated various multi-label classification

methods, aiming to a richer semantic interpretation of the endoscopic images. Two novel

methodologies were presented, which include an image-saliency enabled bag-of-words approach

and a multilabel CNN architecture enabling multi-scale feature extraction (MM-CNN). The

weakly-supervised learning is achieved by using only semantically labeled data, i.e., meaningful

keywords describing the image, which greatly reduce the time spent on the demanding pixelwise

annotation of the training images. The experiments conducted on the publicly available KID

(Koulaouzidis et al. 2017) WCE image dataset, show that the weakly-supervised multi-label

classification can provide enhanced discrimination of the GI tract abnormalities, with MM-CNN

method to provide the best performance.

The MM-CNN architecture is considered a pre-accessor of LB-FCN (Diamantis et al. 2019)

architecture, as it employees multi-scale feature extraction in order to obtain a feature rich

representation of the weakly annotated data. The network architecture is illustrated in (Figure 4.9).

Instead of the convention softmax output layer, MM-CNN uses sigmoid neurons which enables

multi-label image classification.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

110

(a)

(b)

Figure 4.9 The proposed MM-CNN architecture, composed of LMSCBs. (a) The architecture of an

LMSCB. The input volume is forwarded to the multi-scale feature extraction component and then to the

addition operator. The final feature maps are then forwarded to the pooling component which results in a

50% dimensionality reduction. (b) The overall MM-CNN architecture composed of 5 LMSCB modules and

4 sigmoid output neurons, which are used for the multi-label classification.

4.3.1 Experiments and Results

Experiments were conducted to evaluate the effectivity of multi-label classification in the context

of semantic interpretation of endoscopy video frames. The performance of both presented

methodologies, MM-CNN and saliency-enabled BoW, were compared with state-of-the-art

approaches.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

111

In the case of the saliency-enabled BoW methodology, for each video frame, features have been

extracted using the proposed Difference of Maxima (DoM) salient point detection method and the

“naive” approach of dense feature extraction. For the proposed DoM salient point detection

method we used image samples of 24×24 pixels. The BoW model was constructed with a visual

vocabulary with sizes in the range from 500 to 2000 words using the k-means clustering algorithm

(Drake & Hamerly 2012). The classification of the feature vectors obtained using the BoW

method, was implemented by an SVM classifier. We have tested linear, polynomial and Radial

Basis Function (RBF) kernels, and followed the grid search approach (Chang 2011) to determine

its optimal parameters. The RBF kernel provided the best results, for a minimum cost parameter

c=10 and γ=2−8.

In the case of the MM-CNN the training of the network was performed using the back-propagation

algorithm with a batch size of 32 images and the root mean square propagation (RMSProp) (Hinton

et al. 2012) optimizer with learning rate l = 0.0001 and fuzz factor ε = 1e − 8. Furthermore, video

frames from the KID dataset 2 have been cropped to 320 × 320 pixels by removing the excess

surrounding black border. Then, they were downsized to a resolution of 256 × 256 pixels. The

network has been implemented the Keras (Gulli & Pal 2017) Python library backed by TensorFlow

(Abadi et al. 2016) graph framework. It was trained using an NVIDIA GTX-960 enabled graphical

processing unit (GPU) with 1024 CUDA (Nickolls et al. 2008) cores having 2 GB of RAM and

clock frequency of 1127 MHz. It is worth mentioning that the entire training of the network for

each fold took approximately 8 h. The early stopping technique was adopted to optimize the

network’s generalization performance, using 15% of the data as validation subset. The number of

training epochs required per fold was approximately 2000. This could be considered as being

relatively low when compared to other networks, e.g., the one of (Simonyan & Zisserman 2014).

Yet, it happens due to the low number of free-parameters of the overall architecture (Figure 4.9).

To compare the classification performance of MM-CNN with the transfer learning approach in

multi-label classification of WCE gastrointestinal tract images, we implemented the methodology

followed by (Zhang et al. 2016). More specifically, for the feature extraction we followed the same

procedure as presented by the authors, while for the classification of the extracted features, we

followed multilabel “one-vs-all” SVM with c = 2−9 and polynomial kernel. The parameters of the

SVM were selected after a series of experiments in order to determine the optimal values for the

domain.

The classification performance was thoroughly investigated using receiver operating characteristic

(ROC) analysis (Fawcett 2006). Experiments were performed using the 10-fold cross validation

evaluation scheme, using SVMs as a binary classifier. Multi-label classification was implemented

using a derivative of WEKA library (Garner & others 1995) called MEKA (Read et al. 2016).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

112

Initially, we examined the case of binary classification of the video frames into normal and

abnormal classes. We investigate the performance of BoW method using the proposed DoM for

salient point detection in comparison with the state-of-the-art methodologies, (Yuan et al. 2015)

in which SIFT algorithm (Lowe 2004) was used for the detection of interest points and a

concatenated feature vector of SIFT and LBP, or SIFT and CLBP (Yuan et al. 2015), for the

description of video frame regions. The comparison also includes the method proposed in

(Vasilakakis et al. 2016), which use the SURF (Bay et al. 2006) algorithm for salient point

detection in the a-channel (SURF(a)) of CIE-Lab and the dense BoW approach and the CNN

(Zhang et al. 2016). The results with regards to lesion detection are presented in Table 4.3. It can

be noticed that the use of the proposed DoM algorithm increases the binary classification

performance to an AUC of 0.81%. All methods provide a low sensitivity. This indicates the

difficulty of the lesion detection problem. The BoW method using DoM provided significantly

higher specificity (less false positives) than all other methods. The higher sensitivity was obtained

by CNN, at the cost of a higher false positive rate.

Table 4.4 Comparative binary classification results, using various weakly supervised BoW methods with

SVM classifier and CNN method. The sensitivity, specificity, AUC and the confusion matrix (True

Positives – TP, False Negatives – FN, False Positives – FP, and True Negatives – TN) of each method is

included.

Methods TP FN FP TN Sensitivity Specificity AUC

BoW+SURF(a) 23 34 22 156 0.40 0.87 0.78

BoW+SIFT+LBP 17 40 21 157 0.30 0.88 0.72

BoW+SIFT+CLBP 21 36 20 158 0.36 0.88 0.78

BoW+Dense 24 33 18 160 0.42 0.89 0.8

CNN 30 27 27 151 0.52 0.85 0.78

BoW+DoM 25 32 17 161 0.44 0.91 0.81

Multi-label classification was performed using the following labels: abnormal, debris, bubbles,

and lumen hole. Indicative images from the KID dataset for each label are included in (Figure

4.10). The use of DoM for multi-label classification, results in an even higher classification

performance than the conventional binary classification scheme. Best results were obtained using

the multi-layer perceptron (MLP) multi-label classification method with 100 hidden layer neurons,

a learning rate of 0.1, trained with the features extracted from BoW model. The obtained AUC

reached up to 0.83% using a vocabulary of 800 visual words. The results for all weakly methods

using BoW features are presented in (Figure 4.11). The basic methods for multi-label

classification, which used, were binary relevance (BR), label combination (LC), ranking and

thresholding (RT) and pairwise classification (PC). For all multi label methods we used the same

SVM with radial basis function kernel (RBF) with c=10. As in the binary classification

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

113

experiments, these parameters were determined using the afore-mentioned kernels and grid-search

approach. Also, (Figure 4.11) includes the results of CNN (Zhang et al. 2016) for multi-label

classification in order to compare our proposed MM-CNN. It can be noticed that MM-CNN

provided the highest performance compared to all the other approaches and achieved an AUC

equal to 0.90%.

(a) (b) (c)

(d) (e) (f)

Figure 4.10 Sample images from the KID dataset. (a) Debris, (b) Bubbles, (c) Lumen hole, (d)

Inflammation, (e) Polypoid and (f) Angiectasia.

The classification results per semantic category are presented in (Figure 4.12). It can be noticed

that the result for debris are significantly higher than the results of bubbles and lumen hole. The

reason is that the most video frames in KID dataset had debris as content compared to the number

of video frames that had bubbles and/or lumen hole.

It can also be noticed that the classification performance of the CNN is not always better than the

BoW-based approaches, although it has been proved effective in the context of endoscopy (Zhang

et al. 2016). This could be explained by the diversity of the KID dataset, which includes several

different kinds of lesions, whereas the dataset used in (Zhang et al. 2016) included only colorectal

polyps.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

114

Figure 4.11 Comparative multi-label lesion detection results for each multi-label method tested.

Figure 4.12 Comparative classification performance results for each semantic label in the KID dataset,

for each multi-label method.

4.4 Substitution of Real with Artificially Generated Endoscopic Images for

CNN Training

Over the years, the frequency of Gastrointestinal (GI) tract diseases is increasing (Anon 2018).

This is even more apparent in developed countries. A typical examination of the GI tract is Flexible

Endoscopy (Muller & Sonnenberg 1995) and its variations. A non-invasive screening technique,

called Wireless Capsule Endoscopy (Swain 2008) (WCE) is becoming increasingly popular, as the

examination is performed using an ingestible capsule camera, which can capture images

throughout the GI tract of the patient. The retrieved images are then examined by a clinician, in a

labor-intense process which typically requires 45-90 minutes of video reading. As a result,

computer-aided GI tract lesion detection can be employed to simplify the diagnosis process, thus

minimizing the possibility of human-error linked clinician weariness.

One of prime indications for performing WCE is the diagnosis or topographic mapping of GI

lesions in known and/or suspected Inflammatory Bowel Disease (IBD) (Koulaouzidis et al. 2013).

0.83

0.62

0.7

0.64

0.75

0.8

0.9

0.5

0.6

0.7

0.8

0.9

1

BoW+MLP BoW+BR BoW+PW BoW+LC BoW+RT CNN MM-CNN

A
U

C

0.92

0.74

0.8
0.77

0.83

0.87

0.94

0.82

0.62

0.71

0.67

0.72

0.86

0.91

0.76

0.5

0.59 0.6

0.69
0.67

0.85

0.5

0.6

0.7

0.8

0.9

1

BoW+MLP BoW+BR BoW+PW BoW+LC BoW+RT CNN MM-CNN

A
U

C

Debris

Bubbles

Lumen Hole

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

115

The most common inflammatory lesions are ulcers, aphthae, mucosal breaks with surrounding

erythema, cobblestone mucosa, stenoses and/or fibrotic strictures, and significant mucosal/villous

oedema. State-of-the-art CNNs have been developed and applied for abnormality detection

(including inflammatory lesions) in WCE achieving a remarkable performance (Iakovidis et al.

2018)(Diamantis et al. 2019). Earlier approaches specifically for inflammatory lesion detection

include methods based on handcrafted color features and Bag-of-visual-Words (BoW) with

Support Vector Machine (SVM) classifiers (Vasilakakis et al. 2016).

It is known that the generalization performance of neural networks is linked with the number and

variations of samples available for their training (Neyshabur et al. 2017). This is more apparent in

CNN architectures mainly due to the large number of free parameters that need to be trained. To

cope with this problem, data augmentation techniques such as, scaling and rotation, is typically

employed in order to artificially increase the number of samples found in a dataset. While this can

enhance the generalization performance of a CNN, the enhancement is limited as the augmented

samples are similar to each other. In most applications this can be tolerated as data availability is

not a problem. On the other hand, in the medical domain, mainly due to the data privacy

regulations, e.g., the General Data Protection Regulation (GDPR) (Voigt & Bussche 2017),

obtaining real medical images as training samples, is becoming harder over the years. In addition,

existing accessible datasets are often inadequate for use in the training of deep learning

applications, mainly due to their limited size and lack of expert annotations (Guibas et al. 2017).

The aforementioned issues could be sidestepped with the usage of synthetic data, since those

cannot be traced back to patients and can also be produced in abundance. For these reasons, data

generation and more specifically image synthesis has been extensively researched.

To cope with the problem of data availability in the medical domain a novel approach is presented.

More specifically our methodology employs a combination of a state-of-the-art LB-FCN

(Diamantis et al. 2019), as it has been recently evolved into a lightweight, more efficient, classifier

(LB-FCN light) (Diamantis et al. 2019), which will be discussed in detail in Section 5 of this thesis,

and a Generational Adversarial Network (GAN) (Goodfellow et al. 2014) for training data

generation. The GAN was trained to perform non-stationary texture synthesis (Zhou et al. 2018),

to generate small bowel WCE images, with and without inflammatory lesions. The artificially

generated images were then used to train the LB-FCN light architecture. LB-FCN light architecture

was selected as it combines multi-scale feature extraction and significantly low number of free

parameters. We then evaluated the performance of the trained model on real images from the KID

WCE image (Koulaouzidis et al. 2017) dataset in the context of inflammatory lesion detection.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

116

4.4.1 Medical Image Generation

The goal of texture synthesis is the generation of new samples perceptually similar to an input

texture. Conventional approaches to texture synthesis fall into two categories. Non-parametric

methods include pixel-based methods (Efros & Leung 1999), which synthesize a new image pixel

by pixel. The value of each pixel in the output is being determined by its neighborhood. Pixel-

based methods can be improved by replacing pixels with patches as the synthesis unit (Wei et al.

2009). Until recently (Barnes & Zhang 2017), patch-based methods were widely used. Non-

parametric techniques for texture synthesis offer the ability to produce high quality results.

However, they cannot learn the underlying model of the data since they essentially rearrange the

input image based on local similarity criteria (Jetchev et al. 2016). Thus, they are unable to

reproduce large-scale structures, including those found in medical images. Another texture

synthesis approach is based on the extraction of statistical descriptors to model a texture. A new

texture is synthesized by finding an image with matching descriptors such as by optimizing a

Gaussian white noise image (Portilla & Simoncelli 2000). While it yields good results on some

texture types, in most cases fails to cope with highly inhomogeneous textures.

In recent years, deep learning-based texture synthesis approaches have gained popularity. As

opposed to conventional approaches, deep learning methods are capable of discovering models

that describe the complex natural world, without the need of hand-crafted features (LeCun et al.

2015). The method presented in (Gatys et al. 2015) is the first to use a deep neural network for

texture synthesis. It utilizes a CNN to capture an input texture’s spatial statistics by taking

advantage of the CNN’s powerful feature space. Follow-up works (Ulyanov et al. 2016; Johnson

et al. 2016) improve the approach of (Gatys et al. 2015) in terms of speed.

Since the conception of GANs, several variations have been developed (Mirza & Osindero 2014;

Odena et al. 2017; Odena 2016; Denton et al. 2015; Radford et al. 2015) able to produce high-

quality, natural looking images that can be mistaken for real ones when assessed by human

observers. In (Isola et al. 2017) the effectiveness of GANs for image-to-image translation tasks is

demonstrated. In the field of medical image generation, GANs have been successfully employed

for a variety of tasks, such as the generation of computer tomography (CT) images from their

corresponding magnetic resonance (MR) images (Nie et al. 2016), the transformation between

different MR image modalities (Nie et al. 2018) and the prediction of PET images from abdominal

CT scans for highlighting liver tumors (Ben-Cohen et al. 2017). Similarly a GAN was used in

(Calimeri et al. 2017) to generate MR slices of the human brain. To assess the effectiveness, the

authors used quantitative and human-based human-based evaluations of generated images. In the

context of Cardiac Magnetic Resonance (CMR) image generation, (Zhang et al. 2017) proposed a

GAN named Semi-Coupled GAN (SCGAN). The authors proposed a semi-supervised framework

to identify CMR images with incomplete Left Ventricle (LV), aiming to ease the process of

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

117

manual, identification process which is a relatively time-consuming task. The two-stage

framework consists of the SCGAN which, generates samples used to extract high-level features

from the CMR images. The features are then used to detect missing basal and apical slices.

Realistic brain MR image generation using a DCGAN (Radford et al. 2015), was also proposed in

the work of (Bermudez et al. 2018). (Beers et al. 2018) used PGGANs (Karras et al. 2017) to

synthesize high resolution medical images. The authors evaluated the performance in two domains;

fundus photographs exhibiting vascular pathology associated with retinopathy of prematurity

(ROP), and multi-modal MR images of glioma. A PGGAN was also used in the work of (Bowles

et al. 2018), yet the generated images were used a data augmentation technique, in an effort to

mitigate the medical image data scarcity problem. Similarly, recently, (Kaur et al. 2021) used a

DCGAN to generate brain MR images that were later used to increase the training data and thus

the classification performance of a CNN architecture.

Image-to-image translation has also been used to map binary retinal vessel trees, reconstructed

with an adversarial autoencoder (Makhzani et al. 2015), to photorealistic RGB retina fundi images

(Costa et al. 2018). In (Guibas et al. 2017), a two-stage pipeline is presented, in which a GAN

produces the segmentation masks for retina fundi images, while a second GAN learns the

transformation between the binary masks and the fully-colored images. In the work of (Shin et al.

2018), a conditional GAN is presented, able generate colon polyp images to improve polyp

detection performance. GANs have also been used for synthetic segmentation images of the lungs

and heart in chest X-ray scans (Dai et al. 2017). The work of (C. Han et al. 2018) adopts the

DCGAN and WGAN (Arjovsky et al. 2017) variations to create realistic brain MR images. In

(Frid-Adar et al. 2018), a DCGAN and an ACGAN (Odena et al. 2017) are trained to produce

synthetic liver lesions, which are then used for data augmentation in order to improve the

performance of a CNN trained on liver lesion classification. Recently, (Marzullo et al. 2021), used

a Pix2Pix GAN(Isola et al. 2017) to perform image-domain translations in order to synthesize

realistic laparoscopic images.

While GANs have been used to increase the available samples in the training datasets as a method

to increase the generalization performance of CNNs, to the best of our knowledge, no work has

been done to investigate their generalization performance when the training dataset consists of

only generated images. In this work we investigate the generalization capabilities of state-of-the-

art CNN (Diamantis et al. 2019) architecture when trained solely with generated WCE GI tract

images on the problem of inflammatory conditions detection in real images, the results of which

are promising.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

118

4.4.2 Proposed Methodology

The proposed methodology is based on two components; the classifier and the data generator. The

first component is a state-of-the-art lightweight CNN architecture, named LB-FCN light

(Diamantis et al. 2019) which is discussed in detail in Section 5. The second component of our

methodology uses a GAN, which performs non-stationary texture synthesis (Zhou et al. 2018). Its

architecture is illustrated in (Figure 4.13). As input, it uses sample patches from the available

images and artificially generates new images that follow the input textural pattern. Non-stationary

texture synthesis was selected because the generated images mimic well, the non-stationary

patterns that appear in GI tract images. More specifically (Zhou et al. 2018), generalizes the

original GAN architecture (Goodfellow et al. 2014) by having a fully convolutional generator to

learn common patterns from a k × k block, randomly sampled from the input image, and produce

a 2k × 2k image, instead of learning the mapping from a simple uniform distribution to the image

space. The resulting image is perceptually similar to a target block of the same size, also cropped

from the input image. The output of the generator, along with the real 2k × 2k image, are then

provided as input to the discriminator which learns to recognize whether a 2k × 2k image is real

or fake. Once trained, the generator can be applied to an image of arbitrary size, effectively

synthesizing a new image. The GAN uses a linear combination of adversarial loss Ladv

(Goodfellow et al. 2014), L1 loss (Janocha & Czarnecki 2017) and style loss Lstyle (Gatys et al.

2015) to optimize the generator Eq. (4.6).

Figure 4.13 Non-stationary texture synthesis (Zhou et al. 2018) GAN architecture. The generator receives

an input of k×k×3 size and expands it to 2k×2k ×3. The discriminator receives an input 2k×2k×3 and tries

to identify the validity of it.

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑎𝑑𝑣 + 𝜆1 + 𝐿1 + 𝜆2 + 𝐿2 (4.6)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

119

where λ1 are λ2 are constants with values 100 and 1 respectively, as recommended by the authors

(Zhou et al. 2018). The output is primarily affected by the adversarial loss, while L1 and style loss

help reduce artifacts.

4.4.3 Evaluation Methodology and Results

The performance of the proposed methodology was evaluated in the context of WCE image

inflammatory condition detection in the small bowel of the GI tract. For this reason we used the

publicly available KID (Koulaouzidis et al. 2017) Database 2. In total, the database contains 1778

normal images and 574 images containing various abnormalities such as, polypoids, vascular and

inflammatory conditions. The size and variations of images that appear in the database, made it an

appropriate choice to serve as a baseline for our experiments. For the purpose of our experiment,

we selected a subset of the KID dataset which contains normal images from the small bowel (728

images) of the GI tract along with images that contain inflammatory lesions (227 images).

In order to diversify the output from a single input, during testing 6 random image patches are

selected from the original input, which are then used as the input for the generator. Output from

the trained generator is illustrated in (Figures 4.15, 4.16). For our experiments, we trained the

adversarial expansion GAN on 728 non-pathologic images from the small bowel and 227 images

with GI tract inflammatory conditions. We then randomly chose one of the 6 alternative results to

be used in the training of LB-FCN light.

To investigate the effect of training with fake images, artificially generated by the GAN, we

evaluated the classification performance of LB-FCN light architecture in two experiments. In the

first experiment we trained the model with fake images, and evaluated its performance on real

images, while on the second experiment, we trained and tested the model with real images. To

limit the bias, in both experiments stratified 10-fold cross-validation technique was employed. In

this procedure the dataset is split into 10 disjoined subsets from which 9 are used for training and

1 is kept for testing. The process is then repeated 10 times, each time keeping a different subset

for testing. To assure that both of our experiments are comparable, the same image subsets were

used upon testing. To assess and visualize the results of our experiments we used the Receiver

Operating Characteristic (ROC) curves, which represent the tradeoff between True Positive (TPR)

and False Positive (FPR) Rates under different decision thresholds. To measure the classification

performance of both of our experiments, we choose to use the Area Under ROC (AUC) (Fawcett

2006), as it is insensitive to the class imbalance that was present to our dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

120

Figure 4.14 Sample images from the KID Database. The first row contains healthy small bowel images.

The second row contains images of various inflammatory conditions.

Figure 4.15 Sample generated small bowel images using the non- stationary texture synthesis GAN (Zhou

et al. 2018).

Figure 4.16 Sample generated images with inflammatory conditions using the non-stationary texture

synthesis GAN (Zhou et al. 2018).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

121

The LB-FCN light architecture was implemented using the popular open source Python library

Keras (Gulli & Pal 2017) with TensorFlow (Abadi et al. 2016) framework backend. The training

was conducted using two high-end GPUs (GTX-1080 TI) with each one having 3584 CUDA

(Nickolls et al. 2008) cores. To prevent the network from overfitting, the early stopping technique

was employed. The training of (Zhou et al. 2018) GAN, was also conducted using the same

equipment and implemented using the open source python framework Pytorch (Paszke et al.

2019).

(a) (b)

Figure 4. 17 ROC obtained by 10-fold Cross-Validation on LB-FCN light architecture trained using (a)

artificially generated images and (b) real images.

Training the LB-FCN light architecture using generated images and evaluating on real images

resulted into a 79.1% AUC (Figure 4.17a) while training and testing using real images resulted

into 90.9% AUC (Figure 4.17b). It is clear that the classification performance of the LB-FCN in

the first case is lower. However, by comparing it to the results of other recent approaches on the

same dataset, it can be considered comparable. In (Vasilakakis et al. 2016) the BoW-based

methodology using features extracted from the CIE-Lab color space, resulted in a performance

ranging from 77% to 81%. Therefore, the results obtained can be considered as promising, since

the proposed approach is only a first attempt to tackle the presented problem.

We believe that the lower AUC of LB-FCN light trained using generated images can be attributed

to the lower quality of the generated images with inflammatory conditions (Figure 4.16). More

specifically we notice that although the non-stationary texture synthesis GAN (Zhou et al. 2018)

was able to capture the small bowel texture and produce high quality real-like images (Figure

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

122

4.15), when inflammatory conditions were present, the generated images were of lower quality.

From a medical viewpoint, the main problem affecting their quality is the clarity of pathology;

although the fake images with normal content are generally satisfactory, the fake images including

pathologies look like taken from a procedure with either unclear/semiopaque luminal content or at

least non-translucent. We believe that this is due to the nature of the inflammatory conditions, as

in some cases, the conditions are so severe that can harm the uniformity of the overall small bowel

texture and thus affecting the overall performance of the generator.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

123

CHAPTER 5

MACHINE LEARNING FOR COMPUTER ASSISTED

NAVIGATION

This chapter presents the novel contributions of this study towards the use of ML in the context of

assistive navigation systems. In the first section it illustrates the Lightweight Look-Behind Fully

Convolutional Neural etwork (LB-FCN light) which is an extension of the LB-FCN architecture,

designed to work in applications that require high inference speeds running on low-end devices,

such as mobile devices and embedded systems. Applications of the LB-FCN light architecture

include staircase detection in outdoor environments (Diamantis et al. 2019) and obstacle

recognition in the context of obstacle avoidance for the navigation of visually impaired individuals

(Dimas et al. 2020). The second section of this chapter includes a novel digital twin framework for

the simulation and evaluation of assistive navigation systems, and its application in the context of

a camera-based wearable system for visually impaired individuals in an outdoor cultural space.

5.1 Introduction

Today, visual impairment (of any form) affects approximately 16% of the world’s population

(WHO 2018). The affected individuals deal with various daily challenges, struggling to fit in the

modern society. To address this problem, researchers in the fields of medicine, smart electronics

and computer science are joining forces to create assistive systems for visually impaired

individuals. To date, several designs and components of wearable, camera-enabled systems have

been proposed. Recently, we presented a novel solution to this problem that can evolve into an

everyday visual aid for people with limited sight or total blindness (Iakovidis et al. 2020). This

dissertation has contributed in that investigation, and the solution is now integrated into a first

prototype of a wearable smart-glasses system for the visually impaired. The system is equipped

with RGB-D cameras, it incorporates efficient deep learning and uncertainty-aware decision-

making algorithms, interprets the video scenes, translates them into speech, and describes them to

the user through audio.

One of the key components of any assistive navigation system is the detection and recognition of

objects and scenes. Due to the advancements of CNNs in the field of CV (Section 2), most modern

navigation assistive systems include a deep learning based intelligent module. Αn integrated

CNN-based framework for object detection was presented in (Sermanet et al. 2013). That

framework combined a CNN architecture for feature extraction based on AlexNet (Krizhevsky et

al. 2012), named OverFeat, and a regression network to detect multiple bounding boxes around

objects in images. A Region-based CNN architecture for object detection was presented in

(Girshick et al. 2014) with the name R-CNN. The methodology uses selective search (Uijlings et

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

124

al. 2013) to extract 2.000 class-agnostic region proposals from each image, which are then resized

and feed-forwarded into a pre-trained CNN model to extract features. The extracted features are

then used to train a linear Support Vector Machine (SVM) classifier (Theodoridis & Koutroumbas

2009) which classifies the extracted feature representations. Although R-CNN outperformed the

OverFeat approach (Sermanet et al. 2013) for object detection, it requires more computational

resources. To reduce its computational complexity, the Fast R-CNN (Girshick 2015) was

proposed, in which feature maps are extracted from the entire input image. From these feature

maps, region proposals are extracted and reshaped into a fixed size, by a technique called Region

of Interest (RoI) pooling, so that they can be processed by a fully connected layer. The Softmax

function is used to predict the class of the RoI vector while in parallel it computes the offset values

for the bounding box of the object.

Another architecture, called Spatial Pyramid Pooling Network (SPPNet) (He et al. 2015b) aimed

to cope with the problem of the fixed-size input required by the CNNs which may impact the

detection accuracy of the overall model. This was done by implementing a novel spatial pyramid

pooling which enabled the network to generate fixed-length image representation regardless of the

image size. Compared with R-CNN, SPPNet relies on the same principles, yet it does not have to

process 2.000 region proposals per image, as R-CNN does. Εach bounding box is classified by an

SVM and bounding box regressor. A Faster R-CNN (Ren et al. 2015) achieved real-time object

detection capabilities, by removing the selective search used by the previous methodologies.

A methodology for object detection that is fundamentally different from the previous ones was

presented in (Redmon et al. 2016). It is called You Only Look Once (YOLO) and it relies solely

on a single forward pass of an input image. The image is subdivided using a fixed-size grid, and

entered to a CNN that predicts bounding boxes and class probabilities for each box. A saliency-

inspired neural network model for object detection was proposed in (Erhan et al. 2014). It predicts

a set of class-agnostic bounding boxes along with a single score for each box, corresponding to its

likelihood of containing any object of interest. In (W. Liu et al. 2016) an object detector with name

Single Shot multibox Detector (SSD) which achieved good balance between computational

performance and prediction accuracy. A region-based, Fully Convolutional Network (FCN: a CNN

without fully-connected layers) was proposed in (Dai et al. 2016). It relies on the generation of

position-sensitive score maps to cope with the dilemma between translation-invariance in image

classification and translation-variance in object detection. In (Lin et al. 2017) an object detector

for multi-scale object detection was proposed. That detector relies on a feature extractor, named

Feature Pyramid Network (FPN), which was designed to improve detection accuracy and speed.

In (Redmon & Farhadi 2017) YOLO9000, an extension of the YOLO approach (Redmon et al.

2016), was introduced for real-time object detection, considering 9000 object categories. Newer

incremental improvements of the original YOLO architecture include YOLO-v3 (Redmon &

Farhadi 2018) and recently YOLO-v4 (Bochkovskiy et al. 2020). A single-shot object detector,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

125

named Deconvolutional SSD (DSSD), was presented in (Fu et al. 2017). It extended SSD by

replacing the original VGGNet with a Residual Network (ResNet) (He et al. 2016) for feature

extraction. RetinaNet, proposed in (T.-Y. Lin et al. 2018), is a single, unified network composed

of a backbone network and two task-specific sub-networks. The backbone network is implemented

by a ResNet architecture, used for feature extraction. The first sub-network, performs the

classification and the second one, performs bounding box regression. A multi-scale extension of

the DSSD network, called Multi-Scale Deconvolutional SSD (MDSSD), has been proposed in

(Cui 2018), specifically for small object detection.

The backbone network of single shot detectors heavily affects their computational and

classification performance. This is expected, since both the detection and classification steps are

based on the quality of the features being extracted from the backbone network. Towards this

direction, we presented LB-FCN light (Diamantis et al. 2019) which aims to create features of

various scales, using multi-scale feature extraction and, reduce the computational complexity,

speeding up detector performance, using depthwise separable convolutions. In Section 5.2 the

network architecture is presented along with use-cases, benchmarking the network over state-of-

the-art.

5.2 The Lightweight Look-Behind Fully Convolutional Neural Network

Architecture

The Lightweight Look-Behind Fully Convolutional neural network (LB-FCN light) (Diamantis et

al. 2019) was originally proposed in the context of staircase detection in outdoor environments.

The aim of the architecture is to reduce the computational complexity that is typically found in

conventional deep CNNs, such as (Simonyan & Zisserman 2014), which suffer from high

computational complexity mainly due to their large number of free parameters. As a result, high-

end computational equipment such as Graphical Processing Units (GPUs) is needed for both

training and testing time, limiting their use in indoor workstations.

Studies such as (Iandola et al. 2016),(Howard et al. 2017; Sandler et al. 2018; Howard et al. 2019)

focus their interest in computational complexity reduction of CNN architectures, aiming to enable

their usage in mobile and embedded devices. In this context, the tradeoff between computational

efficiency and detection performance has been investigated by (Sandler et al. 2018), resulting in a

state-of-the-art architecture called MobileNet-v2, extending the original MobileNet-v1 proposed

in (Howard et al. 2017). More specifically this architecture keeps the basic principles of depthwise

convolutions for the original design enhances it by adding linear bottleneck layers and shortcut

connections between each bottleneck. Linear bottleneck layers were utilized as experimental

evidence that the non-linear ones were damaging the extracted features between the bottlenecks.

As a result of these changes the architecture contains 30% less parameters than MobileNet-v1

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

126

while providing a higher accuracy. Recently, we presented LB-FCN (Diamantis et al. 2019)

architecture in the context of abnormality detection in medical images. The architecture featured

multi-scale feature extraction modules composed of conventional convolutional layers, to better

represent the different scales of abnormalities. In addition, look-behind connections were used,

which connect the input features to the output of each multi-scale feature extraction module. This

was required, so that the high-level features will propagate throughout the network, allowing the

network to converge faster and increasing the overall detection accuracy.

The core of LB-FCN light architecture is inspired by LB-FCN (Diamantis et al. 2019) and includes

modification to enable efficient computations on mobile and embedded devices, while providing

a sufficient staircase detection accuracy. More specifically, LB-FCN light extends the original LB-

FCN design by replacing the multi-scale conventional convolutional layers with depthwise

convolutional layers (Chollet 2017). Key features of this architecture include the utilization of

multi-scale depthwise separable convolution layers (Chollet 2017) and residual learning (He et al.

2016) connections which help to maintain relatively low number of free parameters, without

sacrificing the detection accuracy.

5.2.2 The Network Architecture

The design of the LB-FCN light architecture follows the FCN (Springenberg et al. 2014) network

design, where only convolutional layers are utilized throughout the network. By replacing the fully

connected layers, usually found in the classification layer of conventional CNN architectures such

as (Krizhevsky et al. 2012; Simonyan & Zisserman 2014), a significant reduction of the number

free parameters of the architecture can be achieved. Inspired by the Mobilenet architecture,

proposed in (Howard et al. 2017), depthwise separable convolutions (Chollet 2017) are

implemented throughout the network to further reduce the complexity of the overall architecture.

While in conventional convolution the filters are connected on the entire depth of the input

channels, in depthwise separable convolution the filter is applied separately on each channel. To

connect the separate filters, the layers are followed by a 1×1 conventional convolution.

The main component of LB-FCN light is the Multi-Scale Depthwise Convolution module (Figure

5.1) which follows the principles established in (Diamantis et al. 2019). This module is capable of

extracting features from parallel depthwise separable convolution layers, each one with a different

filter size. More specifically the layers extract features at three different scales: 3×3, 5×5 and 7×7

respectively. The feature maps from each layer are then concatenated forming a multi-scale feature

representation of the input which is then followed by 1×1 convolution layer. The architecture

features residual connections, which connect the input volume of the multi-scale module using

adding operator aggregation with the output of it. This is done in order to preserve the higher-level

features extracted from the previous multi-scale blocks throughout the network.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

127

Following the FCN (Springenberg et al. 2014) approach which shows that conventional max

pooling operation can be replaced with a convolutional based, we utilized convolutional pooling

with filter size 3×3 and stride 2. This introduces another level of non-linearity to the network while

keeping the overall architecture logically unified. After each pooling operation the number of

extracted filters of each convolutional layer is doubled. In total four multi-scale depthwise

convolution modules are utilized in the network with three residual connections as illustrated in

(Figure 5.2). For the staircase detection, a softmax layer of two neurons is used as the output of

the network.

Figure 5.1 The main building block of LB-FCN light architecture.

Throughout the architecture all convolution layers use ReLU activations followed by output batch

normalization. The normalization is used so that the output of the convolution layers are centered

on zero mean with the unit standard deviation. It has been empirically confirmed that output

normalization can contribute to a faster network converge while reducing overfitting phenomenon.

As a result of the above no Dropout layer (Srivastava et al. 2014) was used.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

128

Figure 5.2 The complete LB-FCN light architecture composed of four multi-scale blocks and three

residual connections.

While we maintained the multi-scale feature extraction characteristics established in the original

LB-FCN (Diamantis et al. 2019) architecture, the change in original filter size selection block

increased the overall accuracy of the network. Furthermore, we used conventional ReLU activation

functions throughout the network instead of Parametric ReLU that were used in original LB- FCN

architecture, which resulted in lower computational complexity without any significant detection

performance overhead. The overall improvements made in original LB-FCN architecture, resulted

in a significant increase in computational efficiency. As a result, LB-FCN light architecture is

capable to efficiently run on mobile and embedded devices.

5.2.3 Staircase Detection

Staircase detection in natural images has several applications in the context of robotics and

navigation of visually impaired individuals. Previous works are mainly based on handcrafted

feature extraction and supervised learning using fully annotated images. In this work we address

the problem of staircase detection in weakly labeled natural images, using a novel Fully

Convolutional neural Network (FCN), named LB-FCN light.

Staircases can be found almost everywhere in different colors, shapes and sizes in both indoor and

outdoor environments. Staircases are useful in everyday life; however, they can be seen also as an

obstacle for the navigation of humans with disabilities, as well as the navigation of artificial,

robotic, agents. The detection of a staircase can be even more difficult in unknown environments,

especially for the visually impaired, where there is no previous knowledge about the surroundings,

and they can become hazardous. Therefore, staircase detection can be considered as an important

component of any system aiming to provide navigational assistance in either indoor or outdoor

environments. In controlled, indoor environments, markers, such as augmented reality markers can

be used to provide high success rate of staircase detection (Yu et al. 2018). The detection problem

usually becomes much harder in outdoor, uncontrolled environments, where different types of

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

129

staircases of various sizes can be found under various illumination conditions, and can be observed

from different viewpoints.

In this chapter we address image-based staircase detection as a pattern recognition problem in the

context of embedded and mobile devices. The main challenge is to be able to provide sufficient

detection accuracy by utilizing the limited computational resources of such devices, especially in

outdoor environments with low latency and limited network accessibility. To address this

challenge, we propose a novel lightweight Fully Convolutional neural Network (FCN) architecture

as a modification of our recent Look-Behind FCN (LB-FCN) architecture (Diamantis et al. 2019).

This novel architecture, named LB-FCN light, has significantly fewer free parameters and requires

fewer Floating-Point Operations (FLOPs) compared to the previous LB-FCN and state-of-the-art

architectures for mobile devices. This was achieved by implementing depthwise separable

convolutions throughout the convolutional layers of the network. Also, it enables multi-scale

feature extraction and residual learning, making it suitable for multi-scale staircase detection in

both indoor and outdoor environments. To evaluate the performance of LB-FCN light we created

a weakly labeled image dataset, with staircases found in natural images collected from publicly

available datasets, i.e., a dataset with semantically labeled images as containing or not containing

staircases.

5.2.3.1 Related Work

Staircase detection has been an active research topic in CV and robotics, with an increasing interest

nowadays as we are going through the era of ubiquitous computing and pervasive intelligence.

One of the first relevant works (Se & Brady 2000) was based on Gabor filters and concurrent line

grouping for distant and close staircase detection respectively. In the context of autonomous

vehicle navigation, an outdoor descending staircase detection algorithm was presented by (Hesch

et al. 2010), based on texture energy, optical flow, and scene geometry features. In the context of

computer aided navigation of visually impaired in outdoor environments using a wearable stereo

camera, (Lee et al. 2012) utilized Haar features and Adaboost learning providing real-time

detection performance. A similar approach that utilizes Haar-like features and an improved

staircase specific Viola-Jones (Viola et al. 2001) detector was proposed in (Maohai et al. 2014).

Frequency domain features obtained by ultrasonic sensors were investigated in (Bouhamed et al.

2013), to detect and recognize floor and staircases in electronic white cane. A wearable RGB-D

camera mounted on the chest of a visually impaired individual, was used in (Pérez-Yus et al. 2014),

where an indoor environment for staircase detection and modeling was proposed. Their approach

is capable of providing information for the presence and location along with the number of steps

of staircases. Recently an indoor staircase detection framework was proposed in (Ciobanu et al.

2017), utilizing depth images, capable of running on mobile devices. The approach is based on the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

130

detection and clustering of image patches that have the surface vectors pointing to the top direction.

In addition, information from the Inertial Measurement Unit (IMU) sensor of the device is used to

calibrate the surface vectors with the camera orientation. Most of the current staircase detection

approaches are supervised, requiring fully annotated training images from controlled

environments, i.e., images indicating the location of the staircases within the images. Furthermore,

to the best of our knowledge the staircase detection has not been previously investigated to a

sufficiently generic extent.

Although deep learning and more specifically CNNs (LeCun et al. 1989) have demonstrated

impressive performance in CV applications, especially in natural image classification (Krizhevsky

et al. 2012), staircase detection approaches have not been previously reported.

5.2.3.2 The Dataset and Evaluation Methodology

To evaluate the performance of the proposed architecture in the context of natural image staircase

detection we have considered two publicly available datasets. The first dataset, named LM+Sun

(Tighe & Lazebnik 2010), is a fully annotated natural image dataset obtained from the combination

of LabelMe Database (Russell et al. 2008) and SUN dataset (Xiao et al. 2010). The dataset consists

of 45,676 images from 232 categories, found in indoor and outdoor environment under various

conditions and sizes. For the purpose of our experiment, we used a subset of LM+Sun dataset

which includes natural images found in urban and street areas. While the full LM+Sun dataset

contains 314 staircase labeled images, most of them are found in indoor environments. Images

containing staircases were also found in the urban and street subsets of this dataset, e.g., staircases

of buildings that can be directly recognized by a human observer, considering: a) staircases that

have at least two steps, and b) staircases covering >15% of the image (in staircases of smaller

coverage the steps are not distinguishable; therefore, they cannot be perceived directly as such,

without contextual information). To minimize the possibility of a human error in the annotation

process, two reviewers separately reviewed and annotated the dataset, and found in total 245

images that include outdoor staircases. To further increase the number of outdoor staircase images,

we have created a second dataset named “StairFlickr” which extends LM+Sun staircases with a

total of 524 outdoor staircase images. StairFlickr dataset images were obtained from the popular

photo management and sharing web application Flickr (Flickr Inc. 2019).

For the purposes of our research, we omitted the fully annotated metadata provided about the

staircases in the original LM+Sun dataset. This was performed as our architecture aims for

staircase detection on solely weakly-labeled natural images. In total the described dataset includes

5,539 images from which 1,083 images contain staircases2. Indicative images from this dataset are

2 http://enorasi.dib.uth.gr/database/index.html.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

131

illustrated in (Figure 5.3). As it can be observed, the dataset includes various types of staircases

found in various positions, sizes, capture from different viewpoints.

 (a)

 (b)

(c)

Figure 5.3 Top: staircases found in StairFlickr dataset. Middle: staircases found in LM+Sun dataset.

Bottom: non-staircases images from LM+Sun dataset.

To evaluate the detection performance of the proposed architecture we followed the stratified 10-

fold cross-validation (CV) procedure. The dataset was partitioned into 10 stratified subsets from

which 9 were used for training and 1 for testing. This was repeated 10 times, each time selecting

a different subset, until all folds have been tested. For each evaluation we calculated the accuracy

(ACC), specificity (SPC), and sensitivity (TPR) of the trained model.

To better evaluate the classification performance of the trained network, we utilized the Area

Under ROC (AUC) measure. AUC measure is a reliable classification performance measure that

is insensitive to imbalanced class distributions (Fawcett 2006). This was chosen as the total number

of images containing staircases was significantly fewer than the rest of the rest natural images in

the dataset.

5.2.3.3 Results

We trained the LB-FCN light architecture using the images from both Flickr and LM+Sun datasets.

As the images differ from each other in both size and aspect ratio we rescaled the dataset to the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

132

standardized input size of the network which is 224×224 pixels. To maintain the original aspect

ratio of the images, they were padded with zeros to match the network’s input dimensions. It is

worth mentioning that no further pre-processing step was applied to the images. As the proposed

architecture focuses on weakly labeled images, the detailed annotations for the staircases provided

by LM+Sun (Tighe & Lazebnik 2010) dataset were ignored. We utilized only the semantic

annotations of the images which indicate the presence or absence of staircases.

For the training of the network we utilized the Adam (Kingma & Ba 2014) optimizer with initial

learning rate alpha = 0.001 and first and second moment estimates exponential decay rate beta1 =

0.9 and beta2 = 0.999 respectively. For the implementation of the architecture we utilized the

Python Keras (Chollet & others 2015) library and the Tensorflow (Abadi et al. 2016) tensor graph

framework. The network was trained with mini-batch size of 32 samples on NVIDIA TITAN X

GPU, equipped with 3584 CUDA (Sanders & Kandrot 2010) cores, 12 GB of RAM and base clock

speed of 1417 MHz. On each fold we utilized the early-stopping technique where a small subset

of the training fold was utilized as a validation dataset.

To evaluate the effectiveness in both detection accuracy and computational complexity reduction

of LB-FCN light architecture we used the MobileNet-v2 (Sandler et al. 2018) as a state-of-the-art

architecture for comparison. The results obtained by the two architectures are illustrated in Table

5.1.

While the detection performance is slightly higher in case on LB-FCN light, the noticeable

difference between the two architectures is the computational complexity requirements. Table 5.2

includes a comparison between the architectures in terms of both the number of trainable free

parameters and the total number of required FLOPs. The improvements made on the original LB-

FCN design, resulted in a significant reduction of the overall number of FLOPs, from 1.3×107

down to 0.6×106, and reduction of the free parameters of the network, from 8.2×106 down to

0.3×106 respectively.

Table 5.1 Detection performance comparison, using 10-fold cross-validation, between state-of-the-art

MobileNet-v2 (Sandler et al. 2018) and LB-FCN light (Diamantis et al. 2019)

Architecture AUC (%) Accuracy (%) Specificity (%) Sensitivity (%)

LB-FCN light 88.93 ± 1.86 91.89 ± 2.12 93.80 ± 2.61 84.05 ± 3.51

MobileNet-v2 87.86 ± 2.11 89.99 ± 2.37 93.58 ± 2.45 83.78 ± 3.22

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

133

Table 5.2 Computation complexity comparison between state-of-the- MobileNet-v2 (Sandler et al. 2018)

and LB-FCN light (Diamantis et al. 2019)

Architecture FLOPs (×106) Trainable Free Parameters (×106)

LB-FCN light 0.6 0.3

MobileNet-v2 4.7 2.2

Table 5.3 Confusion matrix of LB-FCN light (Diamantis et al. 2019)

 Staircase actual Non-Staircases actual

Staircases predicted 910 276

Non-Staircases predicted 173 4180

5.2.4 Obstacle Recognition in the Context of Uncertainty-Aware Visual

Perception System for Outdoor Navigation of the Visually Challenged

In the context of Visual Challenged People (VCP) navigation, a novel Visual Perception System

(VPS) (Dimas et al. 2020) was proposed for outdoor navigation that can be evolved into an

everyday visual aid for VCP. The methodology incorporates deep learning, object recognition

models, along with an obstacle detection methodology based on human eye fixation prediction

using GANs (Pan et al. 2017) and fuzzy-based risk assessment. The system is integrated in

wearable visual perception system and incorporates system architecture for remote task execution

for the computationally expensive components of the system.

5.2.4.1 The System Architecture

As the stereoscopic depth aware RGB camera, namely the Intel® RealSenseTM D435 was chosen,

since it provides all the functionalities needed by the proposed system in a single unit. This

component is connected via a USB cable to a BCU of the wearable system. The barebone computer

unit (BCU) used in the system was a Raspberry Pi Zero. The BCU orchestrates the communication

between the user and the external services that handle the computationally expensive deep learning

requirements of the system on a remote cloud computing infrastructure. Another role of the BCU

is to handle the linguistic interpretation of the detected objects in the scenery and communicate

with the Bluetooth component of the system, which handles the playback operation. For the

communication of the BCU component with the cloud computing component, we choose to use a

low-end mobile phone that connects to the internet using 4G or Wi-Fi when available, effectively

acting as a hotspot device.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

134

For the communication between the BCU and the cloud computing component of the system, we

choose to use the Hyper Text Transfer Protocol version 2.0 (HTTP/2), which provides a simple

communication protocol, since the messages between the peers are fully encrypted using the

SSL/TLS v1.3 protocol. As the entry point of the cloud computing component, we use a load

balancer HTTP microservice, which implements a REpresentational State Transfer (RESTful)

Application Programming Interface (API) that handles the requests coming from the BCU, placing

them in a message queue for processing. The queue follows the Advanced Message Queuing

Protocol (AMQP), which enables a platform agnostic message distribution. A set of message

consumers, equipped with Graphical Processing Units (GPUs), are processing the messages that

are placed in the queue and, based on the result, communicate back to the MPUs using the HTTP

protocol. This architecture enables the system to be extensible both in terms of infrastructure, since

new works can be added on demand, and in terms of functionality, depending on future needs of

the platform.

The VPS component communication is shown in (Figure 5.4). More specifically, the BCU

component of the system, receives RGB-D images from the stereoscopic camera at a real-time

interval. Each image is then analyzed using fuzzy logic by the object detection component of the

system on the BCU itself, performing risk assessment. In parallel, the BCU communicates with

the cloud computing component by sending a binary representation of the image to the load

balancer, using the VPS RESTful API. A worker then receives the message placed in the queue

from the load balancer and performs the object detection task, which involves the computation of

the image saliency map from the received images using a GAN. When an object is detected and

its boundaries determined, the worker performs the object recognition task using a CNN, the result

of which is a class label for each detected object in the image. The worker, using HTTP, informs

the MPU about the presence and location of the object in the image along with the detected labels.

As a last step, the MPU linguistically translates the object position along with the detected labels

provided from the proposed methodology, using the build-in text to speech synthesizer of the BCU.

In detail, as an initialization step of the user-system interaction, the system detects and recognizes

immediate obstacles found in the scenery, which are communicated to the user. Upon the next

iteration, in case of absence of new high-risk obstacles, new notifications are not provided to the

user. In the event of detection of a new high-risk obstacle or change with respect to the risk factor

of an already detected obstacle, the user is provided with a “stop” notification from the speech

module. Additionally, the user is provided with the updated obstacle statuses, i.e. spatial location,

category and distance. The text-to-speech result is communicated via Bluetooth with the speaker

attached to the ear of the user for playback. It is important to mention here that, in case of repeated

object detections, the BCU component avoids the playback of the same detected object based on

the change of the scenery, which enables the system to prevent unnecessary playbacks.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

135

Furthermore, the functionalities of pause, start and stop of the system are accessible to the user

through button click gestures available on the Bluetooth headset of the BCU.

Figure 5.4 VPS architecture overview illustrating the components of the system along with their

interconnectivity.

5.2.4.2 The Object Recognition module

Although object detection has a critical role in the safety assurance of VCP, the VPS aims to

provide an effective object and scene recognition module, which enables the user to make

decisions based on the visual context of the environment. More specifically, object recognition

provides the capability to the user to identify what type of object has been detected by the object

detection module. Object recognition can be considered as a more complex module compared to

object detection, since it requires an intelligent system that can incorporate the additional free

parameters required to distinguish between the different detected object.

CNNs have also been used for object and scene recognition tasks in the context of assisting VCP.

In the work of (Poggi & Mattoccia 2016), a mobility aid solution was proposed that uses a LeNet

architecture for object categorization in 8 classes. An architecture named “KrNet” was proposed

in (S. Lin et al. 2018), which relies on a CNN architecture to provide real-time road barrier

recognition in the context of navigational assistance of VCP. A terrain awareness framework was

proposed in (K. Yang et al. 2018) that uses CNN architectures, such as SegNet (Vijay

Badrinarayanan et al. 2017), to provide semantic image segmentation. In the proposed VSP the

LB-FCN light (Diamantis et al. 2019) was used to classify the bounding boxes of the object

detection component, as it offers high classification performance with relatively low

computational requirements compared to other mobile oriented architectures, such as (Sandler et

al. 2018).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

136

The original LB-FCN light architecture was trained on the binary classification problem of

staircase detection in outdoor environments. In order to train the network on obstacles that can be

found by the VPS, a new dataset named “Flickr Obstacle Recognition” dataset was created (Figure

5.5) with images found on the popular social media platform “Flickr” (Flickr Inc. 2019). The

dataset contains 1646 RGB images of various sizes that contain common obstacles which can be

found in the open space. More specifically, the images are weakly annotated based on their content

in 5 obstacle categories; “benches” (427 images), “columns” (229 images), “crowd” (265 images),

“stones” (224 images), and “trees” (501 images). It is worth mentioning that the dataset is

considered relatively challenging, since the images were obtained by different modalities, under

various lighting conditions and different landscapes.

(a) (b) (c) (d) (e)

Figure 5.5 Sample images from the five obstacle categories, (a) “benches”, (b) “columns”, (c) “crowd”, (d)

“stones”, and (e) “trees” from the “Flickr Obstacle Recognition” dataset.

For the implementation of the LB-FCN light architecture, the popular Keras (Chollet & others

2015) python library with the Tensorflow (Abadi et al. 2016) was used as the backend tensor graph

framework. To train the network, the images were downscaled to a size of 224×224 pixels and

zero-padded where needed to maintain the original aspect ratio. No further pre-processing was

applied to the images. For the network training, the Adam (Kingma & Ba 2014) optimizer was

used with an initial learning rate of alpha = 0.001 and first and second moment estimates

exponential decay as rate beta1 = 0.9 and beta2 = 0.999, respectively. The network was trained

using a high-end NVIDIA 1080TI GPU equipped with 3584 CUDA cores (Sanders & Kandrot

2010), 11 GB of GDDR5X RAM, and base clock speed of 1480 MHz.

To evaluate the recognition performance of the trained model, the testing images were composed

by the detected objects found by the object detection component of the system. More specifically,

212 obstacles of various sizes were detected. The pre-processing of the validation images was

similar to that described above for the training set.

For comparison, the state-of-the-art mobile-oriented architecture named “MobileNet-v2” (Sandler

et al. 2018) was trained and tested using the same training and testing data. The comparative

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

137

results, presented in Table 3, demonstrate that the LB-FCN light architecture is able to achieve

higher recognition performance, while requiring lower computational complexity, compared to the

MobileNet-v2 architecture (Table 5.4).

Table 5.4 Comparative classification performance results between the LB-FCN light (Diamantis et al.

2019) architecture and the MobileNet-v2 (Sandler et al. 2018) architecture.

Metrics LB-FCN light MobileNet-v2

Accuracy 93.8% 91.4%

Sensitivity 92.4% 90.5%

Specificity 91.3% 91.1%

5.3 Digital Twin for Simulation and Evaluation of Assistive Navigation

Systems

The assistive navigation of visually impaired individuals requires the development of different

algorithms for obstacle detection, recognition, and avoidance, as well as path planning. The

assessment and optimization of such algorithms in the real world is a painstaking process that

requires repetitive measurements under stable conditions, which is usually difficult to achieve, as

well as costly. To this end, digital twin environments can be used to replicate relevant real-life

situations, enabling the evaluation and optimization of algorithms through adjustable and cost-

effective simulations. This section presents a digital twin framework for the simulation and

evaluation of assistive navigation systems, and its application in the context of a camera-based

wearable system for visually impaired individuals in an outdoor cultural space. The system

incorporates an obstacle avoidance algorithm based on fuzzy logic. The utility and the

effectiveness of this framework are demonstrated with an indicative simulation study.

Currently, the rapid development of computer visualization tools and techniques has enabled some

advanced visual applications based on virtual reality (VR), which have been used in a wide variety

of scientific and industrial fields. VR is a contemporary visualization tool through which realistic

virtual environments can be produced to help researchers simplify their workflow. Mainstream VR

technologies used in engineering fields, such as architecture or civil engineering, can provide

virtual environments with high rendering quality that resemble closely the real environment. More

advanced VR tools enable the simulation of human actions or real conditions. Contrary to

augmented reality, VR is a completely simulated environment, which does not link with the real

world, and it provides an interactive computer-generated environment that enables users to

perform several tasks. VR has been successfully used in flight and driving simulators, robot

simulators, training in medicine, and production line simulations. Many VR platforms are available

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

138

nowadays, which are either commercial or open source, and are commonly used to simulate and

optimize the navigation of robots or avatars.

Several research groups have been working on systems and devices that are used to assist

individuals with different kinds of disabilities, such as visually impaired (VI) individuals (Dimas

et al. 2020). VR simulations can be employed to assess the performance of such systems,

facilitating their optimization. One of the main aspects related with the assisted navigation of VI

individuals is obstacle avoidance. VR simulations can be used to evaluate, in a highly-adjustable

and cost-effective environment, different methodologies that can help VI individuals avoid the

collision with obstacles. Over the years, several studies with respect to obstacle avoidance have

been proposed. Although these systems are effective, when it comes to detecting and avoiding

obstacles, they are typically based on methodologies that have been designed for robotic systems

(Mohanan & Salgoankar 2018). While in theory such systems can be directly applied to human

guidance, they are usually uncomfortable or alien to the individual, rendering them unusable in a

day-to-day basis since they fail to address human specific requirements (Ntakolia, Dimas, et al.

2020).

Considering the state-of-the-art developments and to deal with the issue of assistive navigation

testing, in this chapter, a novel simulation framework, i.e., a “Digital Twin” (DT), is proposed.

The proposed DT combines a simulation environment capable of converting real-world

environments into a 3D simulation with a general-purpose obstacle avoidance framework, which

enables rapid and reliable prototyping and testing of navigation pipelines. The proposed

framework is characterized by its generality since all the components of both the simulation and

the obstacle avoidance framework can be changed, facilitating the testing of new algorithms.

Furthermore, the implementation of the DT framework was conducted using the Python

programming language, which is commonly used by researchers. The source code of the

framework and the 3D assets used in the simulations have been released as open source.

5.3.1 State-of-the-Art Simulation Environments

Virtual environments implementing the DT concept for navigation have been proposed mainly in

the context of robotics, whereas fewer have been proposed in the context of assistive systems for

people with disabilities. In both contexts obstacle avoidance comprises an integral component of

the respective navigation systems.

5.3.1.1 Robot Navigation

There are several available commercial or open-source VR simulation platforms, including

Gazebo, Unity, USARSim, V-REP, Choreonoid, Open-HRP, AI2THOR, VirtualHome, Webots,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

139

and SIGVerse (Inamura & Mizuchi 2020; Inamura & Mizuchi 2017). These platforms are

commonly used to simulate and optimize the navigation of robots or avatars. For example, (S.

Zhang et al. 2019) used a simulated environment in Webots to evaluate an algorithm for on-line

terrain complexity evaluation according to the touchdown times of swing feet in order to make a

quadruped robot obtain the terrain information without using any machine vision system. (Li et al.

2019) proposed a VR environment in Unity to improve the navigation of a mecanum wheel mobile

robot. (Y.-J. Han et al. 2018) proposed a humanoid robot navigation algorithm consisting of an

image processing and optimization algorithm, which realizes navigation with less computational

time than conventional navigation algorithms using map building and path planning processes.

They used a VR environment to assess if their algorithm could cope with an environment that

changes in real‐time. In another study (Pang et al. 2019), analyzed the characteristics of swarm

robotic exploration and introduced an improved random walk method, where each robot adjusts

its step size adaptively to decrease the number of repeated searches by estimating the density of

robots in a virtual environment. In (Inamura & Mizuchi 2020; Inamura & Mizuchi 2017) combined

cloud computing and an immersive VR system to perform and measure cognitive and social

human-robot interaction in a VR environment. In (Hungerford et al. 2016) proposed an algorithm

that allows the coordination of robots in order to fully cover inaccessible portions of Voronoi cells

with complete, non-overlapping coverage. The performance of their algorithm was quantified in

the Webots simulator using e-puck robots in different environments with obstacles with different

characteristics.

For indoor robot navigation, (Guldenring et al. 2020) developed frameworks build on the

separation between global and local planners and presented a system to train neural networks for

such a local planner component, explicitly accounting for humans navigating the space. More

specifically, deep reinforcement learning (DRL)-agents were trained in randomized virtual 2D

environments with simulated human interaction. In another research, (Fraichard & Levesy 2020)

investigated to what extent the results obtained in a crowd simulation domain could be used to

control a mobile robot navigating among people. Their results revealed that all the investigated

techniques entailed safety problems, i.e., they would cause collisions in the real world. Finally,

(Asiain & Godoy 2020) reviewed navigation approaches for multi-robot systems in VR

environments.

5.3.1.2 Assistive Systems

Several studies have been focused on the development of systems and devices that can be used to

assist individuals with different types of disabilities, such as VI individuals (Dimas et al. 2020).

The performance of such systems and devices can be assessed and optimized through VR

simulations. For instance, (Kreimeier & Götzelmann 2019) presented a user study where

individuals with visual impairments explored a virtual environment by walking in a VR treadmill

and reported the first results from their feasibility study investigating this walk-in-place

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

140

interaction. In another study, (Moldoveanu et al. 2017) focused on the challenges faced by VI

individuals in order to become familiar with the functionalities of electronical devices. Their study

demonstrated the importance of training VI individuals for an advanced sensory substitution

device. A series of 3D virtual scenes were developed using the advantages of VR in order to ease

the training process for the device. In Unity (Tao et al. 2017) developed a validation framework of

an indoor navigation system for blind and VI users as a step toward the development of cost-

effective indoor way-finding solutions for VI users who require detailed landmark-based

navigation instructions that can help them arrive at the chosen destination.

In a different study, (Zhao et al. 2018) created Canetroller, which is a haptic cane controller that

simulates white cane interactions, enabling VI individuals to navigate a virtual environment by

transferring their cane skills into the virtual world. Indoor and outdoor VR scenes were designed

to assess the effectiveness of their controller. VI individuals typically have difficulties in

identifying people in crowded environments, and the difficulties may differ depending on the

origin of the visual impairment. To examine the potential differences in visual search performance,

(Bennett et al. 2018) developed a first-person perspective VR environment integrated with eye-

tracking, designed to simulate the dynamic movement of humans in a hallway. The participants

were tasked with locating a specific target individual walking among a crowd of people moving in

various directions in the hallway. To assess the effect of task difficulty, factors of crowd density

and presence of object disorder within the hallway were altered. In general, VI individuals perceive

their surroundings differently than those with healthy vision and it is difficult to realize how they

perceive their surroundings. To this end, (Stock et al. 2018) introduced a VR platform capable of

simulating the effects of common visual impairments, through which a realistic VR representation

of actual visual fields obtained from a medical perimeter can be created. From a similar point of

view, (McIntosh et al. 2020) investigated whether the experience of an impairment can be usefully

simulated for empathetic design, which is of particular importance for the comprehension of

proposed designs during the early planning and design phases, without costly and time-consuming

use of full participatory processes. They concluded that there is significant potential for the use of

VR as an approach to simulate the experiences of certain spaces by VI individuals, enabling

empathetic design.

5.3.1.3 Obstacle Avoidance

Together with obstacle detection and recognition, obstacle avoidance is a significant factor

regarding the assisted navigation of VI individuals. Through VR, real environments can be

simulated for the assessment and optimization of different algorithms that can assist VI individuals

avoid collisions with obstacles. For example, (Zapf et al. 2016) used the CRYENGINE

development engine (v3.5.6, Crytek, Frankfurt, Germany) to design a virtual pedestrian scenario.

In particular, they employed simulated prosthetic vision to evaluate the prospective efficacy of

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

141

peripheral retinal prostheses for guiding orientation and mobility in the absence of residual vision

in comparison to an implant for the central visual field. CRYENGINE modifications included

tracking of head movement and orientation through an integrated gyroscope on the head-mounted

display, acquiring angular data and tallying of collisions. In another study, (Katz et al. 2012)

developed NAVIG to increase the autonomy of VI individuals through a virtual augmented reality

system, which assists in route selection and guidance for complex routes through integrating a

geographic information system with different classes of objects. While its precision rate is high, it

requires an internet connection in real-time. The concept of a virtual environment that allows

experiencing unknown locations by real walking while remaining in a controlled environment was

introduced in (Kunz et al. 2018). Since the complexity of this virtual environment is controllable,

it can be adjusted from abstract training scenarios to real-life situations, such as train stations or

airports.

The available literature with respect to obstacle avoidance is primarily focused on the navigation

of autonomous systems, such as robots (Xu et al. 2017; Wyrkabkiewicz et al. 2020) and UAVs

(Iacono & Sgorbissa 2018; Wang et al. 2020) in known (Pratama et al. 2016; Shi et al. 2010) or

unknown environments (Chai et al. 2017; Kumar et al. 2017). These studies have mainly relied on

multiple sensors to map the surrounding environment, detect obstacles, and find and plan routes

to avoid them, using common and well-tested methods, such as BUG-based algorithms (Ng &

Bräunl 2007) and SLAM (Saeedi et al. 2016).

Obstacle avoidance has also been an essential component of systems that aim to assist individuals

with vision and kinetic disabilities (Dakopoulos & Bourbakis 2009; Manjari et al. 2020; Tapu et

al. 2018). However, these systems are usually based on approaches that have been designed for

robotic systems (Mohanan & Salgoankar 2018), which makes them inadequate to meet specific

human-based requirements (Ntakolia, Dimas, et al. 2020). For instance, such systems usually

require fine control over the movements of the subject, and sometimes require directional and

speed changes to be applied in a very short time span, which are unnatural to humans. Trying to

bridge the gap between robotics and human guidance systems, in the case of VI individuals,

(Weiss et al. 2020) proposed an interesting approach, which is based on reinforcement learning to

create navigation agents that mimic the real guidance dogs to which VI individuals are already

familiar with, and promising results were reported. Deep learning-based object detectors are

commonly used in obstacle avoidance applications. We recently proposed an uncertainty-aware

obstacle detection approach (Dimas et al. 2020) (Section 5.2.4). A smartphone-based outdoor

obstacle avoidance method using a Single Shot Detector (SSD) (W. Liu et al. 2016) was proposed

in (Q. Chen et al. 2019). The authors used the lightweight MobileNetV2 (Sandler et al. 2018) CNN

feature extractor as the backbone of the SSD, which was fine-tuned to detect typical road obstacles,

such as cars, motorcycles, and pedestrians. Similarly, (Vaishnav et al. 2021) proposed a wearable

device in a form of a hat. The device is based on a portable Raspberry PI Zero W platform which

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

142

is attached to the hat and performs object detection and recognition using the You Only Look Once

(YOLO) SSD detector (Redmon et al. 2016). The advantage of the system is its ability to perform

detection and recognition tasks both online and offline. This is important especially in outdoor

environments where the network availability can be a problem. While these systems can detect

objects and obstacles at high framerates, they typically rely on voice commands to inform the user

about the presence and the type of the obstacle along with its location with respect to the input

sensors. This can be confusing since the user may have to perform multiple direction changes until

the obstacle disappears from their field of view. The validation of obstacle avoidance algorithms

and the comparison of their performance are crucial requirements for human-centric assistive

systems. In theory, real-world experiments would be the preferred choice. In practice, it is

relatively hard to maintain an unbiased environment, since the environment in which the

algorithms need to be tested must remain unchanged, along with the participants with whom the

experiments are conducted. In addition, as the environment remains the same, after a few

experiments, the participants will develop memory of their surroundings, introducing positive bias

to the results.

5.3.2 The Digital Twin Navigation Framework

For the development of the DT assistive navigation framework in this study, the open-source robot

simulator Webots was chosen. Webots is a commercial robot simulator developed by Cyberbotics

Ltd., which is used in more than 800 universities and research centers worldwide. It supports a

wide range of hardware, including GPU rendering acceleration. In addition, it uses the open

dynamics engine (ODE) for the detection of collisions and the dynamic simulation of rigid bodies.

The ODE library allows the physics of the objects to be simulated. Moreover, in Webots, a large

collection of sensors is incorporated, including distance sensors, light sensors, cameras, LiDARs,

GPS, accelerometer, and force-sensors (Rosique et al. 2019). The proposed DT simulation

framework can be divided into two logical components; the Graphical Simulator and the Obstacle

Avoidance Framework.

5.3.2.1 The Graphical Simulator

The graphical simulation framework of the DT aims to create a real-life environment based on

data obtained from the real world. More specifically, the simulator is capable of transferring

existing marked and unmarked terrains found in maps into the Webots environment, creating a

realistic environment on which navigation algorithms can be tested, assessed, and optimized. The

components of the DT simulation framework are illustrated in (Figure 5.6).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

143

Figure 5.6 The graphical simulation framework of the Digital Twin.

The framework provides the capability to import pathways and existing terrains from both Open

Street Maps (OSM) and Google Earth, using different sets of importers. In particular, the

framework makes use of the OpenStreetMap importer module of Webots to import data from Open

Street Maps. Although this module was designed for automobile simulations, it can be used to

import arbitrary mapped pathways from any location of the world. Various configuration options

are available, including the ability to include roads, lakes, parking spots, trees, etc., effectively

enabling fine control of the resulting simulation. Unfortunately, pathways from unmapped or semi-

mapped terrains, such as the Historical Triangle of Athens, cannot be imported in the module. To

enter such pathways in the proposed simulation framework, the user can parse Keyhole Markup

Language (KML) files, which can be obtained from Google Earth. KML files are in XML format,

which is a standard developed by Google to express geographic annotations of two- and three-

dimensional maps. KML files can be easily obtained from Google Earth by drawing paths and

adding annotations to the map. An example pathway is illustrated in (Figure 5.7)

The DT simulation framework using a parser is capable of parsing both OSM and KML file

formats, translating them into an internal DT simulation file format. This ensures the extensibility

of the framework, since, if needed, more file formats can be added in the future. In some cases,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

144

such as when arbitrary random paths need to be generated for path planning algorithm testing,

OSM and KML files are impractical. For this reason, the DT parser is capable of parsing files in

DOT file format, which is a widely used text file format for arbitrary graph representations.

Figure 5.7 Example path from the Historical Triangle of Athens, outlined in Google Earth.

To setup the simulation, the framework parses the DT simulation file and, using the World

Generator (WG) component of the framework, creates dynamically a simulation environment. The

WG component controls various parameters of the simulation, including the GPS coordinate

system translation, the scale of the simulated area, and the assets and obstacles that can be included.

In real-life environments obstacles are not always present. Although obstacles can be added as

markers in the KML or OSM files, this is can be a rather tedious and time-consuming process,

since the size, location, and obstacle type need to be manually defined. For this reason, the WG

component enables the user to dynamically insert obstacles and landmarks in the simulated

environment, and control the scale, location, orientation, and type of the objects. This is

particularly useful in scenarios where obstacle avoidance algorithms are tested, as it creates an

unbiased simulation environment. The WG component of the framework is also capable of

including moving obstacles, such as crowds, simulating their movement through a specified

algorithm. A variety of crowd movement simulation algorithms have been proposed over the years

(Curtis et al. 2016; Kim et al. 2016). For this reason, the WG component uses an abstraction that

enables algorithm-independent crowd movement simulation. This is achieved by giving access to

both the simulated surrounding and the movement controls of each simulated person individually.

To simulate crowd movement, the open-source CROMOSIM Python library is integrated, which

includes implementations of a variety of moving simulation algorithms found in (Maury & Faure

2018).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

145

Although Webots includes a variety of built-in graphics, such as trees, benches, roads, stairs, rocks,

and houses, in some cases custom objects need to be included in the simulation. For example, to

replicate an archaeological site, such as the Historical Triangle of Athens, objects including ancient

columns and temples are needed. To achieve this, the WG component is capable of automatically

including in the simulated environment objects from external sources that are in WebBot (WBT)

file format. Such objects can be designed in computer-aided design (CAD) software or obtained

directly from existing CAD libraries and converted in WBT format.

Since designing 3D objects is a relative complex and time-consuming task, an environment in

which such assets can be freely shared is highly desirable. For this reason, the presented DT

framework includes a publicly available asset repository3 in which peers can use and share custom

3D models. The asset repository of the framework aims to include both existing simulation files

in the Webots “World” file format (WBT) and 3D models in VRML format. An important

contribution of the asset repository is that it enables arbitrary simulations to be shared among peers.

This allows fast prototyping, but most importantly, testing of different algorithms under the exact

same conditions. The WD component of the simulation framework integrates directly with the

report asset repository, enabling the framework to fetch and use the files, without requiring manual

action. As files can be large, local asset caching and versioning are also included. In some cases,

the public sharing of simulation files or custom 3D objects might be not feasible due to license and

copyright. To this end, the WD component can use files located in the local hard drive or a private

remote repository located in intranet, as long as the files are available through the HTTP protocol.

5.3.2.2 The Obstacle Avoidance Framework

The obstacle avoidance framework is an important component of the DT simulation. Although not

simulation-specific, since it can be used in real-world scenarios, it can provide, in an abstract and

unified way, all the components required for the problem of obstacle avoidance. More specifically,

the framework comprises seven individual components which are illustrated in (Figure 5.8)

The first component of the framework is the Image Streamer (IS). The component provides a

stream of images to the core framework as an object named ImageStreamItem. Along with the

image, the object can incorporate metadata, such as a depth map, when the camera allows it, and

the GPS location of the image. The framework provides multiple implementations of the IS

component, including capturing images from a web camera, i.e., Intel RealSense D435i, capturing

images from an RTMP stream and an H264 encoded video. Finally, for the purpose of integration

3 https://digital-twin.innoisys.com

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

146

in the DT simulation environment, an implementation of the IS that uses the RGB and depth

cameras of Webots is also included.

Figure 5.8 The DT obstacle avoidance framework.

The Object Detector (OD) component of the framework aims to abstract the implementation details

of the object detection and recognition algorithm. The component takes as an input one or more

ImageStreamItems from the IS component and performs the detection and recognition processes.

When one or more objects are detected in the input, the component creates objects that include the

bounding box of the object within the image, the label of the recognized object, and the distance

and location of the object with respect to the camera. Implementations of the OD component

include the YOLOv4 object detector (Bochkovskiy et al. 2020), which is a lightweight deep

learning-based object detection and recognition network and the object detection and recognition

framework proposed by (Dimas et al. 2020). The latter is a complex two-stage object detection

framework specifically designed to be used to assist visually challenged individuals to navigate in

unknown environments. Although the OD component can be used directly in the Webots

simulation environment, the performance of the object detection and recognition component

cannot be validated directly on 3D models. To this end, the DT framework can associate 3D models

with real images, which are automatically presented to the component as soon as the 3D model

appears on the camera. A limitation of such a use-case is that the depth map component of the

ImageStreamItem would not be associated with the corresponding RGB image.

The third component of the framework is the Object Tracking (OT) component, which receives as

input the detected objects from the OD component and tracks them. The DT framework includes

an implementation of tracking-by-detection algorithm proposed by (Bochinski et al. 2017) and an

integration with the DT Webots simulation environment, in which the objects have an

automatically generated unique identifier. It is worth mentioning that this component can be

enabled or disabled dynamically, depending on the use-case scenario.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

147

Path planning is an essential part in the obstacle avoidance framework, since its role is to estimate

if a detected object is an obstacle that must be avoided and to find the optimal alternative path. For

this reason, the path planning component of the framework is divided into two sub-modules; the

path planning algorithm and the risk assessment module. When an object is detected, the path

planning component initially identifies the collision risk of the individual and, based on that, the

path planning algorithm handles the navigation.

When a new path is selected from the path planning component, it needs to be translated into the

local coordinate system of the framework. To abstract this process, the Path to Coordinates (PtC)

component has been introduced into the framework. The abstraction here is required since this

component translates the new path into coordinates of the DT Webots simulation framework, and

it is used as the output integration point of the obstacle avoidance framework of the DT system.

The last component of the framework is the Path to Speech (PtS) component, which acts as the

integration point between users and the avoidance system output. It aims to abstract the algorithm

used to translate the path into a form that humans can understand and interact with the surrounding

environment.

Finally, the framework is able to capture all the details of the obstacle avoidance process into an

output video along with the details in a log format that can be examined after the simulation has

been completed. This enables the DT user to run parallel simulations and test different algorithms

and environments, the results and behavior of which can be examined subsequently.

5.3.3 Simulation Studies

Vision-based navigation and accessibility for VI individuals in indoor places of cultural interest,

such as museums, has been extensively investigated (Alkhafaji et al. 2016; Shah & Ghazali 2018)

(Alkhafaji et al. 2016; Shah and Ghazali 2018). On the other hand, the accessibility of outdoor

sites of cultural interest has been less explored despite the significance of such a venture. In the

ENORASI project (Iakovidis et al. 2020; Dimas et al. 2020), a pre-commercial digital system has

been investigated to assist the VI individuals navigate safely in outdoor environments of cultural

interest, e.g., archeological sites. While providing information concerning the sights in a

descriptive way, the system supports the user with audible guidance and instructions for obstacle

avoidance. The system comprises mainly a stereoscopic CV system for depth assessment through

visual sensors incorporated in a wearable device, emotion-aware speech interaction through a

microphone and earphones, and communication with a customized GPS-enabled mobile

processing unit (MPU), such as a smart-phone or a tablet. The core advantage of the system is its

robust performance based solely on visual sensors, without augmentation from additional sensors,

such as ultrasound, LiDAR, and IMU sensors.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

148

More specifically, the proposed system is based on image, video, and audio processing and

analysis methods, which include CV algorithms for automatic object recognition and estimation

of their distance from the user, as well as decision-making algorithms. The processing and analysis

of the acquired data is conducted in the MPU and in a remote server through a computational cloud

environment. The tasks performed in the MPU include obstacle detection, which is the most

critical task associated with user safety, critical speech-based communication with the user, and

object or scene recognition. On the other hand, more complex computational processes, such as

decision making with respect to route planning and obstacle avoidance, are performed on remote

servers accessible through the cloud. Assessing such methodologies in real word scenarios, is a

challenging task, since it requires repetitive on-site measurements under changing conditions (e.g.,

weather, lighting, crowds) which can be non-deterministic, as well as costly, since it may involve

a considerable human effort and hardware adaptations.

To evaluate the proposed DT simulation framework, a series of simulations of vision-based

navigation of VI individuals in the outdoor environment of the Historical Triangle of Athens were

conducted. This geolocation was selected since it includes a variety of complex pathways that are

not fully mapped in neither Google Earth nor Open Street Maps, making the navigation of VI

individuals challenging.

5.3.3.1 The Simulation Environment

To demonstrate the simulation capabilities of the proposed DT framework an unmapped area of the

Historical Triangle of Athens was chosen. The Triangle is composed of multiple routes and small pathways

of historical significance. The selected pathway is illustrated in (Figure 5.7), in which the yellow lines

correspond to the route that was manually drawn in the Google Earth web application. Subsequently, the

selected route was downloaded as a KML file, which was then imported using the DT simulation framework

in the Webots platform. An obstacle-free route reconstructed using the route obtained from the KML file is

illustrated in (Figure 5.9)

In unmapped regions, such as the one presented in (Figure 5.10a), obstacles are not included in

the map. In such cases, random obstacles of any form can be added to the simulation. In (Figure

5.10b), an example route with randomly set obstacles is presented. Although the position, the size,

and the type of the obstacles included are randomly selected, a universal random seed can be used,

which guarantees the same simulation properties in multiple experiments. Another important

characteristic of the DT simulation is the scale in which the environment will be created. For

example, in (Figure 5.10), it can be noticed that the selected scale of the simulated route is much

smaller than the actual one obtained from Google Earth. When simulating large-scale

environments, this can help to reduce the runtime resources required by the simulation and help

the researcher to identify problems of the testing algorithm faster.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

149

Figure 5.9 A DT route reconstruction of a route obtained from Google Earth, as illustrated in (Figure 5.7)

(a) (b)

Figure 5.10 (a) Simple route selected from Google Earth; (b) Reconstructed route in smaller scale with

randomly positioned obstacles along the route.

5.3.3.2 The Obstacle Avoidance Algorithm

To demonstrate the capabilities of the obstacle avoidance framework, an experiment using the

route illustrated in (Figure 5.10) was conducted, to assess a simple local path planning algorithm

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

150

for VI human navigation. The Webots environment provides an RGB camera along with a depth

camera that can be used as an input for the image streamer of the obstacle avoidance framework.

Using the depth information obtained from the image streamer along with the name of the object,

which is provided as meta-data information along with the image stream item, an object detector

was created. Using the track-by-detection approach (Bochinski et al. 2017), the object tracker of

the framework tracks the obstacles throughout the simulation. This is done to avoid multiple path

changes from the local path planning algorithm, since the same obstacle is visible in multiple

frames. Subsequently, the detected obstacles are passed to the path planning algorithm for risk

assessment. The path planning algorithm navigates the individual considering the following

criteria:

• the distance from the obstacle;

• the location of the obstacle with respect to the individual;

• the angle required to by-pass the obstacle

More specifically, the risk assessment algorithm uses the bounding boxes of the detected obstacles

to calculate the distance from the individual. The distance is measured by averaging the depth map

of the bounding box. In some cases, noisy depth points might exist in the depth map, which can

affect the measurement performance. To compensate for this, before the distance calculation, the

standard deviation of the depth map is computed, and outliers are removed. Thus, the distance 𝑠𝑜

from an obstacle 𝑜 enclosed by a bounding box 𝐵 of size 𝑤 × ℎ, where 𝑤 is the width and ℎ the

height of the bounding box, can be expressed as:

𝑠𝑜 =

(∑ ∑ {
𝜇 , 𝜇 − 𝜎 > 𝐵𝑖𝑗 > 𝜇 + 𝜎

𝐵𝑖,𝑗 , 𝜇 − 𝜎 ≤ 𝐵𝑖𝑗 ≤ 𝜇 + 𝜎
ℎ
𝑗=1 𝑤

𝑖=1)

(𝑤 ∙ ℎ)

(5.1)

where 𝜇 is the mean depth of the elements of 𝐵 and 𝜎 is the standard deviation. It has been found

that, when the outliers are considered, the average distance error is reduced from ±0.7 m to ±0.2

m.

To calculate the angle under which the individual can avoid the obstacle, the algorithm determines

the angles from the left and right sides of the bounding box with respect to the individual. Since

the horizontal and vertical field of view (FoV) of the camera is known for the simulated camera

(Intel RealSense D435i), i.e., 86 and 57, respectively, the horizontal angle ℎ𝜑 and vertical angle

𝑣𝜑 of a pixel 𝑝 can be calculated as follows:

ℎ𝜑
𝑝 = (

(𝑝𝑥−
𝑊

2
)

(
𝑊

2
)
)(

𝐻𝐹𝑜𝑉

2
) (5.2)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

151

𝑣𝜑
𝑝 = (

(𝑝𝑦 −
𝐻
2)

(
𝐻
2)

)(
𝑉𝐹𝑜𝑉
2
)

(5.3)

where 𝐼 denotes an image with width 𝑊 and height 𝐻, and 𝑝𝑥 and 𝑝𝑦 are the positions of the pixel

𝑝 in the image.

Using the outermost pixel of each side of the bounding box, the algorithm calculates the angle of

the left and right side of the obstacle according to Eq. (5.2), as we are only interested in the

horizontal angle. Similarly, the location of the obstacle with respect to the target GPS coordinates

is determined by calculating the location of the obstacle, which is calculated by translating the

coordinates of the individual using the angle and distance of the previous step. This process is

repeated for all detected obstacles that are within a specific distance 𝑐. This threshold is a hyper-

parameter of the algorithm and is selected based on the application needs. In the case of VI

individuals, according to (Ntakolia, Dimas, et al. 2020), this is defined as any object within the

distance of 2.5 m.

In contrast to robots, humans usually interpret the surrounding environment in verbal, vague terms;

that is, instead of expressing turns using degrees, they use verbal terms, such as “small”, “large”,

or “medium” turn. Furthermore, in unknown, outdoor environments, obstacle detection and depth

estimation contain uncertainty, which is introduced by sources such as greylevel ambiguity, noise

introduced by the sensor, and vagueness of image features (Chacón M 2006). For these reasons,

the path planning algorithm uses fuzzy logic to determine the optimal path for navigating the

individual around the obstacle. This process involves the fuzzification of the crisp values, the

number of obstacles 𝑛 , the distance 𝑠 from the obstacle, and the turn angle 𝑎 of the individual

into the fuzzy domain as 𝑛̃𝑣, 𝑠̃𝑣 and 𝑎̃𝑣, respectively. Given each crisp value, the uncertainty can

be modeled by fuzzy sets:

𝑛̃𝑣 = {〈𝑥, 𝜇𝑛𝑣 ,
(𝑥)〉 | 𝑥 ∈ 𝑈𝑛}, 𝑣 = {𝑓𝑒𝑤,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒,𝑚𝑎𝑛𝑦}

(5.4)

𝑠̃𝑣 = {〈𝑥, 𝜇𝑠𝑣,(𝑥)〉 | 𝑥 ∈ 𝑈𝑠}, 𝑣 = {𝑠ℎ𝑜𝑟𝑡,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝑙𝑜𝑛𝑔} (5.5)

𝑎̃𝑣 = {〈𝑥, 𝜇𝑎𝑣,(𝑥)〉 | 𝑥 ∈ 𝑈𝑎}, 𝑣 = {𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑎𝑟𝑔𝑒} (5.6)

The representing overlapping value intervals can be expressed linguistically, e.g., “small”,

“medium”, or “large” in the case of the angle, “short”, “moderate”, or “long” in the case of the

distance, and “few”, “moderate”, or “many” in the case of the number of obstacles. 𝑈𝑛, 𝑈𝑠, and 𝑈𝑎

represent the universes of discourse for the fuzzy sets defined for the number of obstacles Eq.

(5.4), the distance Eq. (5.5), and the angle Eq. (5.6), respectively. The quality of a path 𝑝 is also

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

152

Number of obstacles Turn angle (degrees)

Distance from the obstacle (meters) Path quality

Figure 5. 11 Visual representation of the membership functions of the four fuzzy sets.

represented by fuzzy sets, which can be linguistically expressed as “very low”, “low”, “medium”,

“high”, “very high” in the fuzzy domain 𝑝𝑣.

𝑝𝑣 = {〈𝑥, 𝜇𝑝𝑣 ,(𝑥)
〉 | 𝑥 ∈ 𝑈𝑝}, 𝑣 = {𝑣𝑒𝑟𝑦 𝑙𝑜𝑤, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ, 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ}

(5.7)

where 𝑈𝑝 is the respective universe. The membership functions, illustrated in (Figure 5.11), were

selected based on the possible values of each variable, such that 𝑈𝑛 = [0,5], 𝑈𝑠 = [0,5], 𝑈𝑎 =

[0,45], and 𝑈𝑝 = [0,1]. The quality of the path is a real number ranging from very low (0) to very

high (1). The turn angle (𝑈𝑎) and distance from the obstacle (𝑈𝑝) are measured in degrees and

meters, respectively. To determine the best path for avoiding the obstacle, for each side, the

algorithm translates the crisp numerical values of the number of obstacles, distance of the

individual, and turn angle that the individual must perform, into the fuzzy domain.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

153

Table 5.5 Fuzzy rules of local path planning algorithm

Rules Obstacles Turn Distance Quality path

Rule 1 Few AND Small AND Short → Very high

Rule 2 Few AND Small AND Moderate → High

Rule 3 Few AND Medium AND Short → High

Rule 4 Moderate AND Small AND Short → High

Role 5 Moderate AND Small AND Moderate → High

Rule 6 Few AND Small AND Long → Medium

Rule 7 Few AND Medium AND Moderate → Medium

Role 8 Moderate AND Small AND Long → Medium

Rule 9 Moderate AND Medium AND Short → Medium

Rule 10 Moderate AND Medium AND Moderate → Medium

Rule 11 Many AND Small AND Short → Medium

Rule 12 Many AND Small AND Moderate → Medium

Rule 13 Many AND Small AND Long → Medium

Rule 14 Many AND Medium AND Short → Medium

Rule 15 Few AND Medium AND Long → Low

Rule 17 Few AND Large AND Moderate → Low

Rule 18 Few AND Large AND Long → Low

Rule 19 Moderate AND Medium AND Long → Low

Rule 20 Moderate AND Large AND Short → Low

Rule 21 Many AND Medium AND Moderate → Low

Rule 22 Many AND Large AND Short → Low

Rule 23 Moderate AND Large AND Moderate → Very Low

Rule 24 Moderate AND Large AND Long → Very Low

Rule 25 Many AND Medium AND Long → Very Low

Rule 26 Many AND Large AND Moderate → Very Low

Rule 27 Many AND Large AND Long → Very Low

The quality of the path is determined using the fuzzy rules defined in (Table 5.5) and the Mamdani

inference methodology (Gopal 2019). The quality of each path 𝑝 is then defuzzyfied into a crisp

value by calculating the Center of Gravity (CoG) as follows:

𝑝𝑡𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
∑ 𝑝𝑡𝑖 ∙ 𝜇𝑝𝑣(𝑝𝑡𝑖)
𝑘
𝑖=1

∑ (𝜇𝑝𝑣(𝑝𝑡𝑖))
𝑘
𝑖=1

(5.8)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

154

where 𝑡 represents the side (left or right), 𝑘 the number of subareas obtained by the rule inference,

and 𝑝𝑡𝑖 the value of 𝑝𝑡 in the center of the area 𝑖.

Subsequently, the path with the highest quality is selected. To navigate the individual to the new

location, (5.1) and (5.2) are calculated again, taking into consideration the minimum distance 𝑐 at

which the individual can safely bypass the obstacle. Then, the new location is translated into verbal

instructions, informing the individual about the angle and the distance. When the obstacle

disappears from the image, the algorithm re-calculates the path according to the coordinates of the

individual and the target location, informing the individual about the angle change. This process

is repeated until target location is reached.

5.3.3.3 Indicative Results

Simulations were performed for different unmapped pathways from the environment of the

Historical Triangle of Athens, with a random number obstacles introduced per simulation. The

obstacle avoidance algorithm described in the previous paragraph was tested. In each simulation

the obstacles were detected by the DT of the ENORASI system and based on the obstacle

avoidance algorithm, the agent representing the VI individual was navigated. In every simulation,

the agent was safely navigated to its target destination, verifying that the obstacle avoidance

algorithm is effective. A visualization of the trajectory followed by the agent in one of the

simulated pathways of the Historical Triangle of Athens is illustrated in (Figure 5.12). The blue

line indicates the trajectory that would have been followed if the pathway did not contain any

obstacles, whereas the red line indicates the actual trajectory of the agent obtained after the obstacle

avoidance simulation. This is a representative result, since similar results were obtained in all

simulations. Therefore, the simulation results indicate that this algorithm can be used for the safe

navigation of VI individuals.

To integrate the path planning algorithm into the simulation, the generated path is translated into

the coordinate system of the DT simulation. In parallel, the resulting path is converted to speech

using the PtS component of the obstacle avoidance framework. The translation is handled by the

Python pyttsx3 library (Natesh 2021), which is a cross platform text synthesis library. Although

the simulation is executed in the Webots environment, it is important to be able to view the

navigation from the individual’s perspective. For this reason, the obstacle avoidance framework

records the entire 3D simulation, including the audio, as perceived by the individual, into an MP4

file for further examination.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

155

Figure 5.12 Visual representation of the trajectory followed by the VI individual using the proposed

algorithm. The red and blue lines denote the trajectory followed with and without obstacles, respectively.

5.3.3.4 Discussion

The VR technology enables researchers to perform multiple experiments in environments that

closely resemble the real world. The capability to simulate scenarios free of unpredictable factors,

such as weather conditions, allows the re-producibility of experiments, which is difficult and

sometimes impossible to be achieved in the real world. The proposed DT framework, which is

based on the Webots simulation environment, includes a generalized approach for VR simulations

in the context of computer-aided navigation, and aims to provide a general and extensible

framework that enables the assessment of algorithms in a standardized and unbiased environment.

The experiments conducted in this study demonstrated that the proposed DT can automatically

generate VR environments based on real-world environments, such as the ones found in Google

Earth and Open Street Maps. When the characteristics of the environment to be simulated are

known, the DT framework can introduce 3D objects with a size that is proportional to the real

ones, which is especially important for the evaluation of algorithms that take into consideration

the spatial size of objects. Although a variety of 3D assets are available, their use in a simulation

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

156

environment is not always straightforward, mainly due to incompatibility with the platform or

licensing issues. Since these assets are essential for the simulation of realistic environments, the

above problem is addressed by the DT publicly-available asset repository, in which researchers

can share their 3D models, thereby accelerating the process of performing realistic simulations

using the DT framework. It should be mentioned that the significance and usefulness of such DT

frameworks has been augmented during the COVID-19 pandemic, since outdoor measurements

and algorithm verification studies were impossible to be conducted under the social distancing

rules and the quarantine measures taken all over the world.

The DT obstacle avoidance framework was developed due to the necessity of evaluating assistive

navigation systems for VI individuals. It is composed of abstract interchangeable components that

can be used in the context of computer vision-based navigation. Moreover, it can be used by

researchers to evaluate different aspects of the navigation pipeline, including obstacle detection,

recognition, tracking, and avoidance, in a simulated environment. To enable independent

algorithm testing, all components of the pipeline provide simulated equivalents, which can be used

in the DT simulation environment. The conducted experiments based on our obstacle avoidance

framework illustrate how the DT can be used to develop and assess a simple local path planning

algorithm in the context of VI human navigation. The algorithm was developed to address specific

human requirements (Ntakolia et al. 2020), and to enable easy navigation around obstacles,

without requiring frequent direction changes that are typically met in navigation methodologies

made for robotic systems, such as BUG-based algorithms (Ng and Bräunl 2007). Using the DT

framework, the algorithm was tested in multiple scenarios of unmapped regions of the Historical

Triangle of Athens. The scenarios included the random placement of obstacles along the

automatically generated pathways. A major advantage of the proposed DT is that the obstacle

avoidance framework is independent, i.e., it can be integrated with the DT simulation environment

and can be used without any significant modifications in real-world environments, enabling quick

prototyping and testing.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

157

CHAPTER 6

ASML: Algorithm-Agnostic Architecture for Scalable Machine

Learning

ML applications are growing in an unprecedented scale. The development of easy-to-use machine-

learning application frameworks has enabled the development of advanced artificial intelligence

(AI) applications with only a few lines of self-explanatory code. As a result, ML-based AI is

becoming approachable by mainstream developers and small businesses. However, the

deployment of ML algorithms for remote high throughput ML task execution, involving complex

data-processing pipelines can still be challenging, especially with respect to production ML use

cases. This chapter presents a novel system architecture (Diamantis & Iakovidis 2021) that enables

Algorithm-agnostic, Scalable ML (ASML) task execution for high throughput applications. It aims

to provide an answer to the research question of how to design and implement an abstraction

framework, suitable for the deployment of end-to-end ML pipelines in a generic and standard way.

The ASML architecture manages horizontal scaling, task scheduling, reporting, monitoring and

execution of multi-client ML tasks using modular, extensible components that abstract the

execution details of the underlying algorithms. Experiments in the context of obstacle detection

and recognition, as well as in the context of abnormality detection in medical image streams,

demonstrate its capacity for parallel, mission critical, task execution.

6.1 Introduction

Deep learning growth has triggered the appearance of frameworks for easy development of ML-

enabled applications. Many of these frameworks are supported by tech industry leaders, such as

Google, Facebook and Microsoft, which usually provide deep learning Platforms as a Service

(PaaS) (Beimborn et al. 2011) or Software as a Service (SaaS) (Waters 2005) on their Cloud

Computing infrastructures, specialized in executing deep learning frameworks. For instance,

Google, which supports the Tensorflow framework, provides Google Cloud. This is a general

purpose cloud computing service, enabled by Tensor Processing Units (TPUs) (Jouppi et al. 2017),

offering better performance for deep learning applications that use that framework.

While pre-configured virtual machines and containerized ML solutions exist, they still require a

technical understanding of the underlying platform; thus, they are not directly applicable to any

production environment. For this reason, SaaS providers, such as Amazon and Google offer in

their platforms pre-trained deep learning models for specific use cases, typically through a

representational state transfer (RESTful) HTTP (Richardson & Ruby 2008) application

programming interface (API). In most cases, it is also possible to deploy pre-trained models such

as (V. Badrinarayanan et al. 2017) and (Gao et al. 2021), as long as they are implemented in a

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

158

supported framework. The flexibility of such services is limited, as while it is relatively easy to

get started, it is difficult to efficiently incorporate ML models based on novel components, such

as the fuzzy pooling layer proposed in (Diamantis & Iakovidis 2020), or complex ML-based data-

processing pipelines, such as pipelines that include image preprocessing, integration of multiple

heterogeneous ML algorithms with bidirectional data communication. Such pipelines are

frequently met in state-of-the-art pattern analysis applications spanning a variety of domains e.g.,

web content perception (Tian et al. 2018), obstacle detection and navigation for robotics (Zhou et

al. 2017) and assistive technologies (Dimas et al. 2020), realtime analysis of medical image

sequences during brain surgery (Fabelo et al. 2016) and gastrointestinal (GI) endoscopy (Iakovidis

et al. 2018). However, their deployment in a SaaS context, using current ML frameworks, is far

from straightforward, especially when high-throughput capacity is required. Today, to deal with

this shortcoming, the implementation of such pipelines usually requires from the client to handle

the communication and monitor the status of the ML components and implement preprocessing.

However, this is not always possible, e.g., in the case of wearable devices and other low-powered

embedded systems.

There has been work towards the development of system architectures and frameworks that aim

to encapsulate and abstract the usage of complex business logic for different purposes in various

domains. A framework for algorithm agnostic video analysis was proposed in (Iakovidis &

Diamantis 2014). In (Wang et al. 2013) a system architecture and platform, called Public-oriented

Health care Information Service Platform (PHISP) was presented for personalized healthcare

services and support remote health care. A system architecture and a framework for discovering

content from the web using a RESTful architecture design was presented in (Fernández-Villamor

et al. 2013). For managing big semantic data in real-time an architecture, called SOLID, was

proposed in (Mart𝚤nez-Prieto et al. 2015). This architecture is characterized by its layered design

which isolate the real-time and big data specific responsibilities. In the context of time-

complemented and event-driven control models, an architecture offering modularity and flexibility

of automation software was presented in (Pang et al. 2014). That architecture unifies the two

models, aiming to preserve the expressiveness of event-driven programming along with the

determinism of time-driven logic. In the context of Enterprise Internet of Things (EIoT), a multi-

device, multi-task management and orchestration reference architecture was proposed in (Ahmad

& Kim 2020). The architecture focuses the orchestration on the task-level focusing on the business

process modeling of enterprise systems. Similarly for task offloading in IoT applications, an

architecture named “EdgeABC” was proposed in (Xiao et al. 2020). The architecture splits the

tasks into multiple subtasks based on the application workflow and then uses blockchain algorithm

to ensure the integrity of resource transaction data and the profits of the resource provider. In

(Kraska et al. 2013) a scalable system for ML task declaration and learning, called “MLBase”, was

proposed. That system aims to make ML accessible to broad audience of users, by simplifying the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

159

declaration of ML models in a Pig Latin-like (Olston et al. 2008) declarative language and

automatic ML algorithm selection. In the context of remote Machine Learning as a Service

(MLaaS) (Ribeiro et al. 2015), the “PredictionIO” (Chan et al. 2013) framework, integrated a

variety of ML models into a prediction service, access to which is provided using an API and a

graphical user interface. In (García et al. 2020) a framework that aims to provide assistance

throughout ML task lifecycle, such as training, validation and testing, was proposed with the name

“DEEP-Hybrid-DataCloud”. That framework uses a standardized API that enables the

functionality of the ML models to be exposed based on known semantics. In (Habiba et al. 2018)

a unified component based architecture was proposed primarily focused on utility service

deployment in cloud environments. The architecture focused on maximizing the availability of the

deployed service with minimum configuration overhead. In (Zhou et al. 2017) a distributed

architecture was proposed for motion planning of multi-robotics systems in real-time. Although

such architectures can be flexible and sometimes extensible, they are tailored on domain-specific

problems, limiting their scope.

ASML architecture addresses the problem of remote high throughput ML task execution involving

complex data-processing pipelines. It aims to cope with well-recognized challenges (Schelter et

al. 2018; Baier et al. 2019) that include the deployment of ML applications in a generic and

standard way through a framework that provides the necessary level of abstraction. This

framework is independent from the application domain and implementation details, such as the

ML algorithms and the different programming languages used for the implementation of different

components within these pipelines. To implement this framework, we propose a novel Algorithm-

agnostic Scalable architecture for ML applications (ASML) that combines:

• Algorithm-agnostic architecture design, that enable arbitrary ML applications to be modeled.

• Modular design and extensible components that allow extensibility both in terms of the

supported tasks and the input and output of the architecture.

• Highly scalable architecture multi-client and parallel execution task support, enabling SaaS

deployment scenarios Synchronous and asynchronous task execution.

No such ML-oriented system architecture has ever been proposed, despite the emerging needs for

remote artificial intelligence (AI) services in different application domains. The main contributions

of the architecture include:

• It provides an answer to the open research question of how to design and implement an

abstraction framework, suitable for the deployment of end-to-end ML pipelines in a generic and

standard way.

• It provides technical details and application scenarios that can be used as examples for

implementation of other ML application pipelines.

• It provides a performance evaluation indicating its efficiency.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

160

To evaluate the performance and the flexibility of the proposed system architecture, we conducted

Figure 6.1 Diagram of the ASML architecture. The monitoring module is connected to all the components

of the system architecture. For readability purposes its connections are omitted.

experiments for two SaaS use case scenarios, where pattern recognition is provided as a cloud

service. The first use case addresses the complex task of multi-user obstacle avoidance in the

context of navigation of visually impaired individuals, using a state-of-the-art obstacle avoidance

framework (Dimas et al. 2020). The second use case includes synchronous and asynchronous task

execution in the context of abnormality detection in gastrointestinal endoscopy images (Iakovidis

et al. 2018). It should be noted that ASML is applied for the first time for the SaaS implementation

of these use case scenarios.

6.2 The ASML architecture

The proposed system architecture is task-oriented. A task is defined as a self-contained series of

actions that is required to be completed to achieve a goal. A goal can be thought as the output of a

procedure such as, image classification, object detection, object tracking etc. A task can contain

multiple actions that can be executed in parallel or sequentially, depending on the goal needs.

When actions are executed sequentially, the execution of the next actions is postponed until the

previous ones are completed. Each action defined in the series is receiving the output of all

previously completed actions, enabling complex use case scenarios to be defined. When an action

in the series results into multiple outputs which are required to be processed separately by the next

actions in the series, the task can create multiple tasks to parallelize the process. This is important,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

161

especially on high throughput use cases, where a significant performance improvement can be

achieved by process parallelization. The input and the output of a task, including data transport, is

implemented by data source handlers, and the actions are implemented by processors. Both data

source handlers and processors are instantiations of reusable, abstractly defined, software

components. The data of all input and output data source handlers are tagged by unique identifiers,

which enable dynamic routing of the data to processors. The routing of both data source handlers

and processors, is facilitated by a specialized, reusable software component, called interceptor.

Overall, the ASML architecture (Figure 6.1) consists of four logical components:

• The RESTful API, which acts as the entry point of the overall architecture.

• The worker, which handles the task execution.

• The task scheduler.

• The data storage and system monitoring module.

To ensure redundancy, all the components of the ASML architecture can be deployed in a cluster

configuration (Bader & Pennington 2001), which considers multiple instances per component, as

illustrated in (Figure 6.1). Assuming that a client has the required access rights to access and

dispatch tasks to the proposed system architecture, a typical task flow can be summarized as

follows. Initially the client obtains an access token using the API of the architecture. Using this

token, the client can make calls to the API to create, cancel, or obtain information about a task.

Historical data, such as the output of previous tasks can be obtained using the same API. When a

new task is submitted by a client to the API, a record is created in the database of the system

containing the task information along with meta data such as, the status of the task, the user who

created it etc. In parallel, a record is created in a key-value pair data store, which is used to track

the progress and other temporal data about the task lifecycle. This data store offers high throughput

read/write operations and is used internally by the system as a temporal meta data storage medium

instead of a conventional Relational Database Management System (RDBMS). This design

decision was made because temporal data, such as the progress of a task, usually requires frequent

updates (can be thousand times per second), which can degrade the time-performance of the system

and increase the resource requirements, such as CPU and memory use, of a conventional RDBMS

store (Li & Manoharan 2013). The task is then registered to a message queue to be delivered to a

worker. At this point a response is issued to the client by the API, containing identification

information about the newly created task, which can be used by the client as a reference for future

requests, such as tracking the task progress etc. When the task is enqueued, a worker which

monitors the message queues, consumes the task and initializes the execution. Depending on the

input data source handlers, the processors and the output data source handlers, the worker unravels

the task, pulls the appropriate modules and starts the execution of the task. Depending on the task

configuration, the worker can communicate directly with the client, receiving and dispatching

information or asynchronously inform the client about the progress and the output of the task.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

162

When the task execution is completed the API receives a request from the worker informing about

the outcome. At this stage, all temporal data are deleted and the meta data stored in the key-value

pair store are permanently written to the RDBMS store.

A more detailed description of the architecture components and their interaction for the

implementation of a complex data processing task is provided in the following sections.

6.2.1 The Restful API

The API component facilitates the communication with the clients and is the entry point of the

ASML architecture. To maintain high compatibility and easy integration with most clients, the

API is implemented as a RESTful HTTP service (Richardson & Ruby 2008). To enable ASML

architecture to be used in a SaaS deployment, the authentication and authorization of the clients is

handled by following the OAuth 2.0 (Hardt & others 2012) protocol. As a result, clients using

existing OAuth 2.0 service providers can make use of the architecture without the need of

providing their private credentials. Depending on the use case scenario new service providers can

be added or disabled dynamically. To ensure high service availability, multiple instances of the

API can run simultaneously in an HTTP load balanced environment.

The API exposes four endpoints. The first endpoint is responsible for the creation of a task. The

request must contain a payload, which describe the task by identifying the processors, input and

output data source handlers that will be used. Along with the payload, the request can contain other

parameters, such as the desired priority of the task, the remote callback endpoints that the system

will request when the status of the task changes, and flags indicating if a task should be re-

processed in case of a failure.

When a task is created, a unique identifier is generated and returned to the client along with two

endpoints; one that can be used to track the status of the task and one that can be used for task

cancelation. The fourth endpoint can be used by a client to track asynchronously the history of all

the tasks that have been created along with their output. While the protocol for the creation of the

task depends on the architecture, the requests can be encoded using JavaScript Object Notation

(JSON) or Extensible Markup Language (XML), depending on the content type of the HTTP

request. This is done to maximize the client compatibility.

As many client applications are nowadays executed on web browsers, the API implements cross-

origin resource sharing (CORS) (Van Kesteren & others 2010). Depending on the use case

scenario, the API can be equipped with request quote thresholds that can be enforced on per user

basis. Such thresholds can be applied on the number of requests that a user can issue within specific

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

163

time period, resources allocated per user etc. This capability can be used as a pricing schema or to

ensure a fair use of the system and prevent denial of service (DOS) (Garber 2000) attacks.

6.2.2 The Worker

A worker is an extensible component that can be thought as a handler, subscribed to one or many

queues, and it consumes tasks. It is equipped with one or more input and output data source

handlers and it can have multiple processors, which are responsible for the execution of several

actions (Figure 6.2). As a result, the capabilities of a worker and the information about the queues

to which it will subscribe, are derived from the types of actions that it can process. This enables

the worker to process pipelines that otherwise would be incompatible to each other, based on their

software and hardware dependencies, e.g., a worker could execute a pipeline with two ML

processors, one capable of executing models implemented in PyTorch models and the other in

Tensorflow. This battles the limitations of “MLBase”-like (Kraska et al. 2013) models, where a

single framework must be used. Furthermore, the parallel processor design, enables the

implementation of complex use-cases, where more than one models are used in parallel to produce

results for the next processor in the pipeline, which is not possible by systems such as (Chan et al.

2013) and (García et al. 2020).

When a task is consumed, a worker initially loads the input data source handlers along with the

processors and their output data source handlers and instantiates them using the parameters found

in the payload of the task. An example payload with multiple input data source handlers, sequential

and parallel processors is illustrated in (Figure 6.2). Upon initialization, it executes the input data

source handlers found in the task and passes their output to the processors identified in the payload.

A processor may or may not have one or more output data source handlers, which are executed

when the processor execution step finishes. In the special case where the output of one processor

is needed as an input for the execution of the next one, the processor execution is delayed until all

previous processors finish their execution. The output of all processors along with the initial input

data source output handler is then piped to the processor as input. In the case where an action can

be parallelized, the processor can create new tasks using the API component of the architecture

and wait for their output. This enables the worker to use the available resources of the system,

when available, and increase its throughput. The scheduling of these tasks is handled by the task

scheduling component of the architecture. Considering that processors are re-usable components,

not all the outputs of all previous processors are always needed. For this reason, interceptors can

be used to select the input of the processors. Finally, when all processors finish their execution,

the worker informs the API about the completion of the task.

In all steps of the process, the worker is updating the progress of each processor in a key-value

pair database. This is used by the API when a request about the status of the task is received by a

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

164

client. In some cases, a client might require intermediate information about the execution of some

processors; for this reason, the worker can inform the client using remote endpoints after the

execution or the failure of a processor.

Figure 6.2 Diagram of a worker with two input data source handlers, parallel and sequential processors

with multiple output data source handlers.

While a worker can be extended to support any type of processors and data source handlers, the

architecture already contains a series of predefined modules that cover most use case scenarios.

The default input and output data source handlers include, HTTP, FTP, SCP, S3, Swift (Sefraoui

et al. 2012) protocols along with Web Real-Time Communication (WebRTC) (Bergkvist et al.

2012) and Real-time Streaming Protocol (RTSP) (Schulzrinne et al. 1998) for real-time input and

video streaming. ASML architecture is equipped with general purpose processors that enable

image, audio and video processing along with ML. For example, in the case of the scenarios

described in Section III, the image processor is implemented as a wrapper around the widely used

ImageMagick library API. Similarly, the audio and video processor act as wrappers around the

FFmpeg library API. The ML processor can be used for inference (not for training) on pre-trained

ML models coming from a variety of ML libraries, including Pytorch and Tensorflow frameworks.

The later supports the majority of the popular deep learning frameworks such as Tensorflow,

Pytorch, CNTK and Darknet and provide variable configuration depending on the use case. The

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

165

trained models can be provided to the processor using an input data source handler. For

extensibility purposes the worker exposes a well-defined API and documentation that can be used

for the development of new modules.

Nowadays web applications, i.e., applications that run solely on web browsers, are becoming more

and more common. While they offer the flexibility of running on web browsers, which most

devices are equipped with, they are limited by the APIs exposed by the browser. For this, common

real-time protocols such as the Real-time Messaging Protocol (RTMP) (Parmar & Thornburgh

2012) and the RTSP (Schulzrinne et al. 1998) cannot be used. Recently, web browsers adopted the

WebRTC (Bergkvist et al. 2012) standard for real-time audio and video communication.

The ASML architecture supports WebRTC peer-to-peer communication between the workers and

the client by using a Traversal Using Relay NAT (TURN) (Mahy et al. 2010) server, since

typically, workers and clients are behind a Network Address Translation (NAT) service. Signaling

between workers and the WebRTC clients is handled via WebSockets (Fette & Melnikov 2016),

which is an open standard for real-time messaging. WebSockets can also be used by the workers

to communicate messages to the client in real-time. Authentication and authorization to the TURN

server and the WebSockets is handled by the API component of the architecture using OAuth 2.0

Bearer Tokens (Jones & Hardt 2012).

The worker module is designed so that it allows the implementation of any ML application

pipeline, as new processors and new input and output data source handlers can be added. In ASML

architecture, an ML pipeline implementation can be summarized into four steps:

1) Deploy the pre-trained ML model in the storage module of the architecture

2) Define which input data source handler(s) are going to provide input to the pipeline

3) Configure the ML processor to use the pre-trained model

4) Define one or many output data source handlers which are going to be used as the output of the

processor.

Given an ML model created using a common ML framework, such as Tensorflow or PyTorch, the

system can automatically load it and use it. Otherwise, a new ML processor should be implemented

to enable support of less popular frameworks. In Section 6.3, two complex use-case scenarios are

examined along with the steps followed to implement them as ASML pipelines.

6.2.3 The Task Scheduler

When a client creates a task using the API component, the tasks are placed in a queue and recorded

in a database. The task scheduler acts as an intermediate between the task queue and the API,

handling the priority in which the task will be executed. Depending on the priority and the

requirements of the task, it will be placed in the appropriate queue. For queuing, the architecture

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

166

uses Advanced Message Queuing Protocol (AMQP) (Vinoski 2006) compliant servers in cluster

mode to ensure redundancy. The requirements of the task are derived from hardware and software

dependencies of the task actions. Such requirements can be e.g., the need for a GPU or for a

specific software, such as FFmpeg (FFmpeg 2016). Upon the registration of a new worker, its

capabilities are announced to the system through the monitoring component. The queues from

which the worker consumes messages are then marked as capable of executing tasks with these

requirements. Although software dependencies can be included in the list of the worker

requirements, we consider that for a given ASML deployment, a subset of libraries or utilities will

be available as common resources to all workers.

The priority of a task is determined by the client, upon the creation of a task, and it can be one of

the following types: low, normal, high and critical. This flag indicates the urgency of execution of

the task and it is used as a method to weight the task priority in the corresponding queue. In case

of a critical task, the scheduler guarantees that the task will be executed immediately, whereas for

the other types, the task will be executed in a first-in-first-out (FIFO) order. The scheduler

performs a series of steps in order to guarantee the execution of critical tasks. Initially the scheduler

tries to find an empty queue. If that fails, it communicates with the monitoring component to create

and register a new worker. When the resources are saturated, the scheduler checks if a worker with

proper capabilities is busy executing a lower priority task. In that case the scheduler places the task

in the appropriate queue and signals the worker to halt the execution of the task which is then

placed back in the queue. Only tasks with priority marked as low or normal are eligible for halting.

In the unlikely event that the scheduler is unable to allocate resources for a new critical task, the

task creation will fail, and an error is returned to the client.

Scheduling tasks derived from parallelized actions are considered a special case for the scheduler.

These tasks are queued only when workers with the action requirements are idle, otherwise they

fail before creation. This enables the workers to continue processing without waiting parallelized

actions to be picked by a worker. It can also be used to create scenarios were resources become

available after the parallelization, the parent worker can retry to parallelize the action at specific

time intervals, this option is only available to tasks with high and critical priorities. To avoid

resource stagnation, all tasks that derive from task parallelization are marked with low or medium

priority depending on their parent task priority.

6.2.4 The Data Storage and System Monitoring Module

The architecture uses two types of data storage; one for heavy Input/Output (I/O) load use cases

and one for file storage. For heavy I/O load use cases, Ceph (Weil et al. 2006) is used as a

network file system mounted on all components of the architecture. For client file storage, such as

pre-trained neural networks, image masks and the output of the workers, an object-store storage is

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

167

used. The object-store storage enables meta-data to be saved along with the actual files. This

property is used by ASML architecture to deal with the problem of model versioning (Baier et al.

2019), by saving the model version along with the pre-trained models. The redundancy of the

network file system is achieved using ZFS (Rodeh & Teperman 2003) filesystem format in RAID-

Z2 (the ZFS version of RAID-6) configuration, while the object-store redundancy is handled by

software.

Monitoring is integrated at the core of the proposed system architecture and it can be broken down

into two categories: one specific to system load monitoring, and one for general events such as

hardware failure. In both cases of monitoring, all events are stored and are accessible by the system

administrator. The information gathered by the monitoring component include, CPU, memory and

GPU. As all components of the architecture are deployed as containers (Rosen 2014), the load

monitoring system offers the ability to activate workers or API instances on-demand, depending

on the hardware available to the architecture.

The monitoring component monitors the utilization of the system resources in combination with

the number of tasks queued for processing and when this number exceeds a configurable threshold,

it instantiates a new worker. As tasks are prioritized based on their urgency, the monitoring

component is capable of reserving hardware for the execution of critical tasks. High and normal

priority tasks are eligible for additional hardware allocation when available, while tasks that are

marked as low priority are not. Similarly, tasks that are created by other tasks, typically derived

from the parallelization of actions, are also not considered eligible for additional resource

allocation in order to avoid resource saturation. This also ensures that parallelized tasks will not

get affected by the latency imposed by the hardware resource allocation, such as the virtual

machine or container startup. To increase the reliability of the system, the monitoring component

takes into consideration worker failures and the corresponding tasks that are processed by these

workers. In the case of a failure due to hardware or network issues, the monitoring component will

try to allocate new hardware resources to recover. Tasks with critical, high or normal priority and

failed due to this error, are automatically prioritized to be assigned on the new allocated hardware.

This is important for critical tasks with high-throughput requirements, as their service is not

interrupted, while tasks with high and normal priority, experience only the initial latency of the

hardware initialization.

In commercial cases, where a cloud provider is used, this feature enables cost-effective

deployment, where the resources are allocated according to the real-time needs of the system. As

each cloud service provider offer different access to its cloud infrastructure, the load monitoring

component generates events in a form of HTTP requests to a configurable endpoint.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

168

The object-store storage of the architecture is accessible by the clients through the API component

of the architecture. Upon initial authorization for each client is created, an object container (user

space) to which only the authorized client has access to. A common use case scenario for this

storage, is its use as a primary data-store in which a client stores trained ML component, such as

trained neural networks, with meta-data information for the trained models. These are used

primarily for version control and backward compatibility, which are important and still open issues

with respect to the deployment of ML applications (Schelter et al. 2018). For this reason, the

object-store component allows the client to issue signed URLs to these resources, granting access

to the internal components of the architecture, with the ability to set expiration date for them (TTL).

The monitoring component, records access to the object- store storage and all requests, enabling

limiting access or bandwidth use of the store configurable on a client base manner.

The described ASML architecture is generic, suitable for the time-efficient SaaS deployment of

ML-based data processing applications. In the following section, its capabilities are experimentally

demonstrated with two contemporary use cases, where its capacity for real-time video processing

is evaluated.

6.3 Example Use Cases and Evaluation

To demonstrate the effectiveness of the ASML system architecture, we conducted experiments on

two different ML-based data processing use cases. The first use case considers the problem of

obstacle detection and recognition in the context of an assistive system for navigation of Visually

Challenged (VC) individuals. Considering that such a system is meant to be used by people with

disabilities, it must be accurate, fast, and reliable. The second use case considers the problem of

abnormality detection in gastrointestinal (GI) tract videos, in an effort to provide a solution for

real-time assistance to the physicians during GI endoscopy. When the endoscopic modality used

does not require real-time streaming capabilities, such as in the case of WCE (Iakovidis &

Koulaouzidis 2015), we demonstrate how the same processor can be used to process the videos

asynchronously.

6.3.1 Realtime Obstacle Detection, Recognition and Tracking

Recently we presented a methodology for the detection and recognition of obstacles, and evaluated

its effectiveness (Dimas et al. 2020). We consider this as an indicative scenario to show how such

a methodology can be implemented using the generic ASML architecture described in Section 6.2,

how the ASML-based implementation can be extended by incorporating an obstacle tracking

algorithm, and we assess its efficiency and scalability.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

169

6.3.1.1 Obstacle Detection and Recognition

The methodology presented in (Dimas et al. 2020), considers that color RGB-Depth (RGB-D)

image streams are captured using a stereoscopic camera. Each image is processed by two parallel

components and their results are aggregated to determine image regions where high-risk obstacles

are located. The first component uses a GAN (Pan et al. 2017) to generate human eye fixations

that highlight salient image regions. The second component uses the depth channel of the RGB-D

image, to compute three risk maps, representing high, medium and low risk obstacles, based on

fuzzy logic. Following the fuzzy aggregation of the outputs of these components, the resulting sub-

images corresponding to obstacle regions are provided to a CNN, called Look Behind Fully

Convolutional Neural Network (LB-FCN) light (Diamantis et al. 2019), to perform the obstacle

recognition step. The processing steps required by the methodology (Dimas et al. 2020), are

illustrated in (Figure 6.3).

Figure 6.3 Illustration of the processing steps followed in (Dimas et al. 2020) for obstacle detection and

recognition.

The two deep learning inference steps described, are performed on a GPU-enabled server, remotely

accessible for the navigation of the VC individuals. Each individual, carries a mobile phone-based

wearable system, running a lightweight client application that performs image acquisition and

communication with the server. Considering that not all users use the same mobile phones and that

native applications are platform-dependent, as a client we considered a conventional web browser.

To enable real-time streaming between the client and the system, we used WebRTC capabilities

of the architecture, as it is natively supported by all major web browsers. Similarly, for real-time

messaging, we used WebSockets to communicate the output of the obstacle detection and

recognition back to the client. For the implementation of the obstacle avoidance schema, initially

a new processor is required that splits the original RGB-D image into two parts; one with the RGB

channels, and one with only the depth information. For the salient region detection and obstacle

recognition, the ML processor of the proposed architecture can be used directly; thus, only the pre-

trained networks need to be deployed on the object-store storage of the system. For the high-risk

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

170

map generation, a new processor is required that takes as an input the depth channel of the RGB-

D image and computes the high-risk map. For the detection of obstacle subimages, a processor

was added following the methodology proposed (Dimas et al. 2020), which takes as input the

output of the second the third processor and performs the aggregation (Figure 6.4, step 4). Finally,

the obstacle regions along with the RGB image is piped to the ML processor which performs the

obstacle recognition (Figure 6.4, step 5). The worker configuration with the corresponding

processors, input and output data source handlers is illustrated in (Figure 6.4). Interceptors are

used to select the RGB and depth channels for the ML and high-risk map processors. The pre-

trained ML models are provided to the worker as input data source handlers from the object-share

storage of the architecture, the selection of which is performed using interceptors.

Figure 6.4 Diagram of a worker implementing the steps required by the obstacle detection and recognition

framework (Dimas et al. 2020).

In this use case scenario, the performance of the worker is highly dependent on the number of

obstacle regions found by the aggregation processor. As a result, in images where multiple obstacle

regions are identified in a single image, the performance of the worker drops exponentially (Figure

6.5). For this reason, we considered parallelization of the object recognition component (Figure

6.4, step 5). To achieve this, the obstacle region processor creates a new task for each detected

obstacle region and submits it to the API component for processing, effectively performing the

same operation as a client would do. The output of each object recognition task is received by the

worker directly, using an HTTP request, produced by the output data source handler of each object

recognition task. Each request contains the label of the recognized object along with an

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

171

identification number which is used by the processor to identify the obstacle region to which the

label belongs to. Accounting for the latency that is introduced by the network, this enables higher

frame rate compared to the conventional approach where all the information is processed on a

single instance.

Figure 6.5 Comparison of frame rate achieved by the proposed architecture using different number of

workers and number of obstacle regions. The dotted line illustrates the real-time performance threshold of

30 frames per second (fps).

To perform our experiments and evaluate the performance of the proposed architecture, we used a

typical smartphone device with 4 ARM based CPUs and 2 GB of RAM each one paired with Intel

RealSense (Keselman et al. 2017) D435i RGB-D camera. To maximize mobile cross-platform

compatibility, our experiments were conducted using Google Chrome web browser as the client.

For the deployment of the architecture, we used virtualization and more specifically containers

through Docker (Merkel 2014). For the HTTP load balancing we used NGINX (Reese 2008) to

distribute the incoming requests on multiple instances of API components deployed on lightweight

containers. As RDBMS we used master-master deployment of MariaDB. Caching and message

queueing was implemented using Redis and RabbitMQ (Dossot 2014) running in cluster mode

respectively. The API and monitoring components, the TURN server and the workers are

implemented in Go programming language.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

172

Figure 6.6 Classification example of 8 obstacle regions using the proposed architecture with 5 workers.

Each color corresponds to a different worker.

To demonstrate the performance improvement that the proposed system architecture offers

compared to conventional synchronous approaches, we conducted four experiments using

different number of workers. In all experiments the workers infrastructure was equipped with an

NVIDIA GTX-1080 TI GPU. The implementation of (Dimas et al. 2020) deep learning algorithms

was performed using the TensorFlow framework, which enables the ML algorithms to be executed

on GPUs, significantly increasing the performance. The results of the frame rate achieved by the

proposed architecture using different number of workers are illustrated in (Figure 6.5). The single

worker experiment demonstrates the performance of a conventional deployment without the use

of the proposed architecture. On average, 3.2ms are required for the obstacle detection task while

the obstacle recognition requires 2.1ms for each obstacle region. We found that in a typical

scenario, the obstacle region processor detects 12 objects on average per image. Any increase in

that number can significantly decrease the performance of a single instance deployment. A visual

representation of the parallelized obstacle region classification procedure is illustrated in (Figure

6.6). The performance improvements that the proposed ASML architecture offers become even

more apparent when multiple clients are required to be processed in parallel. In this case, a single

instance deployment would have been insufficient and would require scaling, which the proposed

architectures offer. Communication between multiple workers introduce network latency which

can degrade the overall performance. In our experiments, using intranet connections, the network

latency was on average 1.3ms. Using the ASML architecture, (Figure 6.5) shows that when more

than 3 obstacle regions are required to be recognized, the overall performance improvement

overcome the network latency.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

173

6.3.1.2 Obstacle Tracking

In the context of an obstacle avoidance application, tracking of the objects found in previous

frames is important as it can be used to avoid re-informing the user multiple times for the same

obstacle, or compute the trajectory of a moving object, such as a vehicle. The methodology

presented in (Dimas et al. 2020) does not include tracking; however, several single (Fu & Xu 2019)

and multiple (Ciaparrone et al. 2020) object tracking methodologies have been proposed over the

years, which can be introduced to the system as an additional processing step. These approaches

usually rely on conventional handcrafted features (such as color, shape and texture), deep learning

(Fiaz et al. 2019), or follow the tracking-by-detection (Bochinski et al. 2017) approach. In

tracking-by-detection methodologies, the state of the algorithm, which contains the history of the

detected objects from previous frames need to be preserved in order to be compared with the

detected objects of the current frame. This can be challenging when this state must be shared across

multiple workers.

Figure 6.7 Diagram of a worker extending the obstacle detection and recognition framework (Dimas et al.

2020) methodology with and object tracking (Bochinski et al. 2017).

To overcome this, ASML architecture uses the key-value pair store to share the state across

multiple workers. To demonstrate that, we enhanced the obstacle detection methodology proposed

in (Dimas et al. 2020) to include obstacle tracking by following the approach proposed in

(Bochinski et al. 2017). We followed this approach as it has minimal computational footprint and

it relies on detection algorithms with high frame rates, such as the one used in (Dimas et al. 2020).

The algorithm of (Bochinski et al. 2017) relies on the fact, that in high frame rate scenarios

consecutive frames have significantly overlapping detections. When the intersection-over-union

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

174

(IOU) of the consecutive detections is lower than a certain threshold, the detection belongs to the

same object.

Figure 6.8 Comparison of frame rate achieved with object tracking by the proposed architecture using

different number of workers and number of obstacle regions. The dotted line illustrates the real-time

performance threshold of 30 frames per second (fps).

To include the method proposed in (Bochinski et al. 2017) in the obstacle detection pipeline, a new

processor was created (Figure 6.7, step 6). This processor accepts as input the detected obstacles

and their corresponding classes and outputs their tracking information. This is illustrated in

(Figure 6.7). As processors are stateless, the previously computed tracking information, are stored

in the key-value pair store. The overhead of this is minimal (on average 4.7ms per frame). This

includes the data transmission time, deserialization and post processing data serialization. (Figure

6.8) demonstrates how the performance (FPS) is affected when a different set of workers is used

in comparison to the number of bounding boxes that need to be tracked.

6.3.2 Realtime Multi-User Endoscopic Video Analysis

In the context of computer-aided detection of abnormalities in GI endoscopy, we used the state-

of-the-art LB-FCN deep CNN architecture, pre-trained to detect abnormalities in flexible

endoscopy (colonoscopy) videos and Wireless Capsule Endoscopy (WCE) (Diamantis et al. 2019;

Diamantis et al. 2018). To use this model in the proposed architecture the ML processor of ASML

was utilized. Considering that the CNN architecture requires an input with spatial dimensions

224×224 pixels, the video frames received as input, have to be resized accordingly. For this reason,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

175

an image processor was used to resize the video frames to the required size using zero-padding to

prevent the aspect ratio as suggested in (Diamantis et al. 2019).

Figure 6.9 Diagram of a worker implementing the steps required for the flexible endoscopy and WCE

abnormality detection. In flexible endoscopy, the RTSP input data source handler is used while in WCE,

the HTTP input data source handler is used to provide the video from the object-store storage.

The same CNN architecture can be used in both flexible endoscopy and WCE abnormality

detection applications. In the latter case the videos are not usually streamed in real-time; instead

they are obtained only after the capsules are excreted from the GI tract. For this reason, in the case

of flexible endoscopy RTSP input data source handler is used, while in the case of WCE the video

is stored in the object-store storage and provided to the worker via the HTTP input data source

handler. In both cases, when an abnormality is detected by the ML processor, an HTTP request is

sent, informing the client about the detection and the frame at which the abnormality was detected.

As multiple medical instates can be benefited by such a service, in both cases we considered a

SaaS cloud deployment of the ASML, where multiple physicians can access it simultaneously

(Figure 6.9) illustrates the worker configuration. (Figure 6.10) includes samples of WCE image

classification results, from the KID (Koulaouzidis et al. 2017) dataset, obtained using the proposed

ASML architecture.

To evaluate the real-time performance of the proposed ASML architecture, multi-user experiments

were conducted using different number of workers on the problem of flexible endoscopy

abnormality detection. In our experiments, on average 2.8ms were required for frame classification

using a single worker. (Figure 6.11), shows that when more than 12 endoscopes are streaming in

parallel, such a singular deployment becomes insufficient. ASML is capable of scaling

horizontally by increasing the number of workers according to the required number of streams and

the resources available to the architecture. This can be proven particularly useful in the case of a

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

176

(a) (b) (c) (d)

Figure 6.10 WCE frame classification using the proposed architecture. (a) Normal, (b) Polypoid, (c) Blood,

(d) Inflammatory condition.

Figure 6.11 Comparison of frame rate achieved by the proposed architecture using different number of

workers and number parallel endoscopes. The dotted line illustrates the real-time performance threshold of

30 fps.

SaaS deployment, where abnormality detection is offered as a service to multiple clients, e.g.,

several clinics with one or more endoscopy units using the abnormality detection service.

6.3.3 User Case Response Time Analysis

To demonstrate the performance of the proposed architecture design we conducted two

experiments based on the presented use cases. In both experiments three workers were used to

measure the system’s response times over a period of time. In the case of obstacle detection,

recognition and tracking (Figure 6.12), the experiment recorded the average response time of the

workers and the number of bounding boxes found at a 15 second sampling interval, over a period

of 30 minutes. To show the behavior of the system in the case of a worker failure, different workers

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

177

were shortly removed from the system, at different times. (Figure 6.12) shows that upon a worker

failure, one of the running workers is successfully compensating for the loss, with the expected

expense of higher average response time, due to the extra computation overhead. In total the

average response time of the system was 28.1ms, and the maximum and minimum response times

48.2ms and 22.1ms respectively.

Figure 6.12 Comparison of worker response times detecting and tracking different number of bounding

boxes corresponding to obstacles, sampled over a period of 30 minutes. The graph illustrates how the

system behaves when a worker is removed or added back to the system. The sampling points are linearly

interpolated for visualization purposes.

A similar system behavior can also be observed in the second use case scenario. For the

abnormality detection in GI tract images, the experiment measured the average response time of

the workers when used by different number of users with a sampling interval of 1 minute for 2

hours. The average response time of the workers was 3.6ms, and the maximum and minimum

response times were 6.1ms and 2.4ms, respectively. When each of the two workers was removed

from the system for a short period of time, the system had the same behavior as in the first use

case. The response time fluctuations that are observed in both use cases (Figures 6.12, 6.13), can

be attributed to the network latency, whereas the higher response times are due to worker

initialization.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

178

Figure 6.13 Comparison of worker response times for abnormality detection in GI tract images, when used

by different number of users, sampled over a period of 2 hours. The graph illustrates how the system

behaves when a worker is removed or added back to the system. The sampling points are linearly

interpolated for visualization purposes.

6.4 Discussion

There has been work towards scalable system architectures and application frameworks that aim

to provide scalable task execution. When it comes to ML, the deployment of such systems tends

to be complicated and usually coupled to specific domains and use cases. The lack of an abstraction

framework for the whole ML pipeline and need for a generic and standard deployment approach

has been highlighted in the recent literature (Schelter et al. 2018)(Baier et al. 2019). Architectures

such as (Wang et al. 2013) and (Fernández-Villamor et al. 2013), although scalable, are domain

specific and thus they do not allow arbitrary ML task declaration and execution. The needs of ML

task execution are also not satisfied by the generic architecture proposed in (Ahmad & Kim 2020)

as it focuses on task orchestration in EIoT applications which limits the scope to periodic or event-

driven task modeling and it does not include an abstraction framework that can be used as a

standard solution for ML pipeline task modeling. Although the declarative ML task execution

system “MLBase” (Kraska et al. 2013) has the advantage of automatic scaling, the platform is

coupled with a specific ML framework and language (Nguyen et al. 2019), which is a limitation

for use in production environments. The “DEEP-Hybrid-DataCloud” framework proposed in

(García et al. 2020), although it satisfies the needs for a generic ML task deployment and execution

environment, it does not offer flexibility in terms of generic ML pipeline modeling, as models with

non-standard functionality exposure semantics are not compatible. Furthermore, the architecture

presented in (García et al. 2020) does not include any standard ML task input and output handling.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

179

To cope with these issues in the context of remote, high throughput ML task execution, involving

complex data-processing pipelines, we proposed ASML as a novel algorithm-agnostic and

platform-independent system architecture. The architecture achieves that by:

• Providing a standardized, extensible and unified algorithm-agnostic task-oriented pipeline

framework, with interchangeable platform independent processing units;

• Handling the pipeline execution in a highly scalable system architecture;

• Task scheduling for task parallelization.

Access to the architecture is provided through a RESTful API, enabling platform independence.

This in combination with the use of open technologies, such as WebRTC, enables thin clients, such

as a web browser, to use the system without special software requirements.

The results obtained from the deployment of two state-of-the-art SaaS ML application scenarios

indicated that the ASML architecture is suitable for high throughput applications in different

domains. The extensibility of ASML architecture was also investigated, where in the first use case

the obstacle detection pipeline was extended to include obstacle tracking by the addition of an

object tracking processor. There are several other domains where ASML architecture is applicable,

including robotics, transportation, and security, e.g., for SaaS deployment of ML-assisted

navigation of autonomous robots and vehicles, and recognition of suspicious patterns from

multiple surveillance cameras.

As a limitation of the proposed architecture, one could consider its inability to automatically

identify the software requirements of each task, which can result into dependency issues. To solve

this problem, the tasks are required to include labels to indicate which software dependencies are

required by the task. Another limitation of the architecture is that processors are considered as

black boxes and only the workers are informed about what input and output can be accepted. As a

result, the API has no way of knowing if an input or output data source handler is compatible with

a declared processor. This can result into situations where invalid tasks are successfully created

and queued to the system, failing later, when they are picked by a worker. Although this can be

resolved by including documentation for each processor, we plan to include automation validation

prior task execution.

The ASML architecture can utilize platforms specifically designed for parallel process execution

in a multi-host environment, such as Spark (Zaharia et al. 2010); however, configuring these

platforms still requires advanced technical knowledge and skills. To cope with this issue, within

our future research prospects is to extend the proposed system architecture to include automated

host clustering, enabling parallel task execution without special configuration. An open access

implementation of the proposed system architecture is planned for distribution to the wider

research community.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

180

CHAPTER 7

Conclusions and Future Research Directions

This doctoral dissertation investigated and developed novel DNN architectures and DNN-based

image analysis and synthesis methodologies, in the context of intelligent systems and services with

applications in biomedicine and assisted living. The presented work included extensive

experimentation for benchmarking and validation on large datasets, most of which are publicly

available. This chapter summarizes the conclusions of this research, and indicates directions for

future research.

7.1 Concluding Remarks per Chapter

Chapter 2 provided the theoretical knowledge that was the basic background for the understanding

of the methods that were described in the rest of this thesis’ chapters along with detailed and

literature review of most impactful deep learning models, including the CNNs and GANs.

Chapter 3 introduced a novel fuzzy pooling (Diamantis & Iakovidis 2020) operation for CNN

architectures, coping with the uncertainty of feature values. Experiments performed on publicly

available datasets, show that the proposed methodology significantly increases the classification

performance of CNNs, as compared to other state of-the-art pooling approaches. We showed that

fuzzy pooling can be used as a drop-in replacement of existing pooling layers, in CNN

architectures, increasing the generalization performance. Furthermore, experiments conducted on

standard image datasets (Anon n.d.; Gonzalez & Woods 2018), showed that the proposed

methodology is able to preserve better the important features of the pooling areas. This was

validated both visually and statistically by the higher classification performance obtained using

the fuzzy pooling approach.

Chapter 4 presented the novel contributions of this thesis in the context of computer-aided

endoscopy. More specifically,

Section 4.1 presented a novel CNN architecture (Diamantis et al. 2019), named Look-Behind Fully

Convolutional Neural Network (LB-FCN), to deal with the problem of computer-aided human GI

tract image classification. To the best of our knowledge none of the existing deep neural network

architectures combined in the same way multi-scale feature extraction along with look-behind

connections. The overall conclusions that can be derived about LB-FCN architecture can be

summarized as follows:

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

181

• It has a simplified design following the FCN (Springenberg et al. 2014) architecture

approach.

• Its relatively low number of free parameters along with its multi-scale feature extraction

capability enables efficient training with either smaller or larger datasets.

• It outperforms state-of-the-art architectures and methods in the detection of different types

of abnormalities in images obtained from different endoscopic modalities, including

gastroscopy and WCE.

Section 4.2 presented an investigation in the context of cross-dataset abnormality detection in

endoscopy images using a novel CNN architecture named Multi-scale Feature extraction CNN

(MFCNN) (Diamantis et al. 2018) which was a predecessor of LB-FCN architecture. The

generalization capabilities of MFCNN architecture was evaluated on multiple publicly available

gastrointestinal image datasets validating that it is able to generalize well even when the training

and testing datasets are significantly different.

Section 4.3 investigated multi-label classification methods for a richer semantic interpretation of

endoscopy video frames (Vasilakakis et al. 2018). The rationale behind this was that the

classification of the video frame contents into multiple semantic categories, could simplify the

detection of contents corresponding to abnormalities especially since the presence of intestinal

content, such as debris and bubbles, is dominant in parts of the GI tract (Iakovidis & Koulaouzidis

2015). In this context a novel CNN architecture was presented, named “MM-CNN”, for multi-

label WCE image classification. The results validate that the effect of using multiple labels can

enhance abnormality detection, with MM-CNN achieving higher classification accuracy when

compared to state-of-the-art.

Section 4.4 presented a novel approach (Diamantis et al. 2019) to cope with the problem of small

number of training data availability in the medical domain. We showed that data generation using

non-stationary texture synthesis technique can be used effectively to generate small bowel wireless

capsule endoscopy images with and without inflammatory conditions. Furthermore, we explored

the generalization performance of the state-of-the-art LB-FCN light (Diamantis et al. 2019)

architecture trained on fake, artificially generated, images and evaluated its performance on real

WCE small bowel images. One could argue that training on synthetic images may create fault

detections on real cases. This is likely to happen; however, classifiers create fault detections even

when they are trained with real data. Our experiments assessed the capacity of the state-of-the-art

LB-FCN light classifier to create such fault detections. We have trained the classifier separately

using synthetic and real images, and assessed its classification performance on real images. The

results showed that the training of the LB-FCN light with real images yields better classification

performance, than training with artificially generated images. However, using fake images for

training the classification performance obtained was comparable with the performance of state-of-

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

182

the-art approaches based on 522 handcrafted features. To date there is no classifier creating zero

false detections on the dataset used in this study. The most important conclusion that can be derived

from this study is that it is feasible to substitute real medical images with fake ones and obtain

useful, medically relevant, results. Therefore, the medical data providers could use the proposed

medical image generation methodology to provide realistic datasets to the information technology

scientists without ethical and legal constraints. Today, it is well-known that such constraints are

responsible for delays of relevant projects, e.g., by waiting for approvals from ethical committees.

This situation is also responsible for the limited public data availability, which, as it has been

already pinpointed in the past (Iakovidis & Koulaouzidis 2015), it is also limiting for the essential

progress in the research for computer-aided medical decision support system.

Chapter 5 presented the novel contributions of this thesis in the context of assistive navigation of

visually impaired. Section 5.1 presented a novel lightweight CNN architecture (Diamantis et al.

2019) , named Look-Behind Fully Convolutional Neural Network light (LB-FCN light), and

examine the generalization capabilities of the network in the context of staircase detection in

natural images (Section 5.3). To evaluate the performance of the architecture we extended the

LM+Sun (Tighe & Lazebnik 2010) natural image dataset with staircase images obtained from

Flickr (Flickr Inc. 2019) social network. To the best of our knowledge there has been no existing

work in this field that utilize solely weakly-labeled images to detect staircases in the natural

images. The key features of the proposed LB-FCN light architecture can be summarized as

follows:

• It has a relatively low number of free parameters requiring an also low number of FLOPs,

which makes it suitable to be used on mobile and embedded devices.

• It features multi-scale feature extraction design allowing the architecture to detect

staircases of various sizes and under difficult conditions, such as natural images.

• Following the FCN (Springenberg et al. 2014) architecture approach it offers a lightweight

and logically unified design.

• Compared to MobileNet-v2 (Sandler et al. 2018) network, the proposed architecture offers

a relatively lower number of FLOPs and free parameters and a slightly higher detection

performance. This makes it attractive for lower-end mobile and embedded devices.

Section 5.2.4 presented an application of LB-FCN light architecture in which the model was used

as the object recognition component of a two-stage object detector in the context of navigation of

visually impaired individuals (Dimas et al. 2020). To train the network, a new dataset was created,

named “Flickr Obstacle Recognition” dataset, containing RGB outdoor images from five common

obstacle categories (benches, columns, crowd, stones, and trees). A novel system architecture was

also presented which enables the computationally intensive object detection and recognition

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

183

components of the assistive navigation system to be executed on the cloud, in an effort to achieve

high inference throughput.

Navigation assistive systems consist of complex pipelines that include object detection,

recognition, and tracking, along with path planning and risk assessment algorithms. Assessing and

optimizing the performance of such pipelines is a relatively complex and time-consuming task,

especially when it is performed in real-world environments, where parameters such as the weather

and lighting conditions may vary. The recent COVID-19 pandemic has raised an additional

problem, since it has been impossible to assess algorithms that require real-world outdoor

measurements, mainly due to the social distancing rules and quarantine measures. Aiming to

address this problem Section 5.3 presented a novel Digital Twin simulation and evaluation

framework for assistive navigation systems. More specifically, it presented a novel framework that

enables the assessment and optimization of navigation assistive systems for visually impaired

individuals in a controlled virtual reality environment. The proposed framework is able to simulate

real-world environments obtained using Google Earth or Open Street Maps from both mapped and

unmapped regions of the world. The DT framework is integrated with a VR repository in which

assets, such as 3D objects and existing simulated worlds, can be stored and shared with peers,

facilitating the virtualization process. The integrated obstacle avoidance framework is specifically

designed for complex, algorithm-agnostic, navigation pipeline assessment. It enables algorithms

to be evaluated in both simulated and real-world environment since it is implemented using the

Python programming language.

Chapter 6 presented a novel algorithm-agnostic and platform-independent architecture for scalable

ML named “ASML” (Diamantis & Iakovidis 2021). While there has been work towards scalable

system architectures and application frameworks that aim to provide scalable task execution, when

it comes to ML, the deployment of such systems tends to be complicated and usually coupled to

specific domains and use cases. The lack of an abstraction framework for the whole ML pipeline

and need for a generic and standard deployment approach has been highlighted in the recent

literature (Schelter et al. 2018; Baier et al. 2019). ASML architecture aims to cope with these issues

in the context of remote, high throughput ML task execution, involving complex data-processing

pipelines. The architecture achieves that by:

• Providing a standardized, extensible, and unified algorithm-agnostic task-oriented pipeline

framework, with interchangeable platform independent processing units.

• Handling the pipeline execution in a highly scalable system architecture.

• Task scheduling for task parallelization.

Access to the architecture is provided through a RESTful API, enabling platform independence.

This in combination with the use of open technologies, such as WebRTC, enables thin clients, such

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

184

as a web browser, to use the system without special software requirements. The results obtained

from the deployment of two state-of-the-art SaaS ML application scenarios indicated that the

ASML architecture is suitable for high throughput applications in different domains. The

extensibility of ASML architecture was also investigated, where in the first use case the obstacle

detection pipeline was extended to include obstacle tracking by the addition of an object tracking

processor. There are several other domains where ASML architecture is applicable, including

robotics, transportation, and security, e.g., for SaaS deployment of ML-assisted navigation of

autonomous robots and vehicles, and recognition of suspicious patterns from multiple surveillance

cameras.

7.2 Overall Conclusions

The work presented in this dissertation has identified several research challenges, and it provided

solutions on related open issues. The overall conclusions derived from the presented DNN

architectures, methodologies and applications can be summarized as follows:

• Fuzzy pooling can be used to tackle the uncertainty that is naturally propagated from the

input layer to the feature maps of the hidden layers through convolutions. Tackling with

such uncertainty improves the quality of features selected by the CNN pooling layers, and

contributes to the overall improvement of the generalization performance of the trained

network.

• The LB-FCN light paradigm indicates that CNNs with a low number of free parameters

combined with multi-scale feature extraction and residual learning, can generalize well,

even when the training samples are limited.

• It is feasible to use GANs to substitute real medical images with synthetic ones, which can

be used for CNN training, especially when real data are limited, and obtain useful,

medically relevant, results.

• Remote intelligent image and video analysis services have become possible with ASML,

in a generic and standardized way, even with a near-real time performance.

• Using digital twins for system testing can be an effective tool, especially when real-world

experimentation is difficult or costly.

7.3 Future Plans and Research Directions

Considering the advancements in the context of deep learning, the proposed methods can be further

evolved and extended in respect to both their efficiency and effectiveness.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

185

In respect to the Fuzzy Pooling methodology presented in (Diamantis & Iakovidis 2020), future

work includes optimization of the current implementation to fully exploit GPU-level parallelism.

This will enable us to perform larger-scale experimentation with very large datasets, such as

ImageNet (Deng et al. 2009) using deeper CNN architectures, such as (Simonyan & Zisserman

2014). Other interesting research perspectives include the extension of the learnable set of network

parameters to include the parameters for the fuzzy rules, and the extension of the proposed

approach using generalized fuzzy sets, such as intuitionistic fuzzy sets.

The methodologies presented in Chapter 4, although they have been evaluated in the context of

biomedical applications and more specifically in the context of computer-aided endoscopy, can be

used in wide range of applications such as natural image analysis. Topics such as coping with the

large number of free parameters and overfitting are still open in deep learning applications.

Towards these issues, we plan to apply systematic experiments on architecture variations of LB-

FCN while applying it to larger, even more diverse datasets of human GI tract images.

Furthermore, the future research directions is to extend the proposed architecture to enable

localization of the abnormalities through supervised learning using weakly labeled images, and the

identification of the different types and subtypes of abnormalities. Similarly, we plan to extend

LB-FCN light architecture to enable weakly-labeled localization of the staircases and other object

classes within the natural images. Although LB-FCN light is primarily designed for outdoor

mobile use, is has also been used in medical domain applications, such as in bone metastasis image

classification (Ntakolia, Diamantis et al. 2020), with promising results. Towards object

localization, the first steps have already been done, as LB-FCN light architecture has been used as

the feature extractor for the YOLO-v3 (Redmon & Farhadi 2018) architecture with promising

results.

In the context of artificially generated endoscopic images, the presented methodology was only a

first, preliminary, approach to cope with the problem of artificial medical image generation for

effective training of classifiers without real data. The results obtained from this study are

promising, and can be improved. To this direction we are planning to enhance the GAN, to better

represent the abnormalities. Due to the advancements in GAN architectures, we consider using

different variations of GANs, such as (Karras et al. 2020). Furthermore, we plan apply this

technique to a larger variety of GI tract lesions, such as polypoids and vascular conditions.

The Digital Twin simulation framework future work includes the expansion of the VR asset

repository since the design of new 3D models using CAD or equivalent software is a relatively

time-consuming task. Although it is possible to evaluate detection and recognition algorithms

using real-world images, the simulation capabilities in the 3D space are still limited. To this end,

we aim to extend the framework to automatically translate the spatial information found in objects

obtained from RGB-D images in the 3D space of the virtual environment.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

186

Finally, in the context of the ASML architecture, limitation of the architecture, one could consider

its inability to automatically identify the software requirements of each task, which can result into

dependency issues. To solve this problem, the tasks are required to include labels to indicate which

software dependencies are required by the task. Another limitation of the architecture is that

processors are considered as black boxes and only the workers are informed about what input and

output can be accepted. As a result, the API has no way of knowing if an input or output data source

handler is compatible with a declared processor. This can result into situations where invalid tasks

are successfully created and queued to the system, failing later, when they are picked by a worker.

Although this can be resolved by including documentation for each processor, we plan to include

automation validation prior task execution. The architecture can utilize platforms specifically

designed for parallel process execution in a multi-host environment, such as Spark (Zaharia et al.

2010); however, configuring these platforms still requires advanced technical knowledge and skills.

To cope with this issue, within our future research prospects is to extend the proposed system

architecture to include automated host clustering, enabling parallel task execution without special

configuration. An open access implementation of the proposed system architecture is planned for

distribution to the wider research community.

Deep learning continues to evolve at a rapid pace. Future research directions include:

• Methodologies that improve the generalization performance of DNNs with minimal training

samples. Such methods include advanced data-augmentation techniques, such as the use of

GANs to synthesize images for training data expansion.

• DNNs with minimal computational footprint, which is important for applications in low-

powered embedded devices, such as the ones powering the upcoming Internet of Things

(IoT). The first step towards that was the minimization of the number of free parameters of

the network. While effective, such methods can degrade the overall generalization

performance. Methods such as automated DNN architecture search and post-training neuron

ablation based on their contribution are promising as they can enable networks to grow

deeper.

• The use of fuzzy logic in deep learning can be an effective tool to increase classification

performance of existing networks. An interesting direction is to use fuzzy logic in other

components of CNN architectures, such as the convolution layer and input pre-processing.

• Although the photo-realistic image synthesis performance of GANs is remarkable, they are

still relatively hard to train. Problems such as, convergence detection and model collapsing

are still open. Towards coping with such problems, more advanced loss functions need to be

investigated.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

187

APPENDIX

LIST OF PUBLICATIONS IN JOURNALS

• D. E. Diamantis and D. K. Iakovidis, "ASML: Algorithm-Agnostic Architecture for

Scalable Machine Learning," IEEE Access, vol. 9, pp. 51970-51982, 2021, doi:

10.1109/ACCESS.2021.3069857. (IF 3.7)

• X. Dray, D. Iakovidis, C. Houdeville, R. Jover, D. Diamantis, A. Histace, and A.

Koulaouzidis, “Artificial intelligence in small bowel capsule endoscopy - current status,

challenges and future promise.,” Journal of Gastroenterology and Hepatology, vol. 36, no.

1, pp. 12–19, Jan. 2021. doi: 10.1111/jgh.15341 (IF 3.4)

• D. Diamantis and D. Iakovidis, "Fuzzy Pooling," IEEE Transactions on Fuzzy Systems,

doi: 10.1109/TFUZZ.2020.3024023. (IF 9.5)

• G. Dimas, D. E. Diamantis, P. Kalozoumis, and D. K. Iakovidis, “Uncertainty-Aware

Visual Perception System for Outdoor Navigation of the Visually Challenged,” Sensors,

vol. 20, no. 8, p. 2385, 2020. doi:10.3390/s20082385 (IF 3.3)

• D. E. Diamantis, D. K. Iakovidis, and A. Koulaouzidis, “Look-behind fully convolutional

neural network for computer-aided endoscopy,” Biomedical Signal Processing and Control,

vol. 49, pp. 192–201, 2019. doi:10.1016/j.bspc.2018.12.005 (IF 3.1)

• M. Vasilakakis, D. Diamantis, E. Spyrou, A. Koulaouzidis, D. K. Iakovidis, “Weakly

supervised multilabel classification for semantic interpretation of endoscopy video frames,”

Evolving Systems 11, 409–421 (2020). doi:10.1007/s12530-018-9236-x

LIST OF BOOK CHAPTERS

• D. K. Iakovidis, D. Diamantis, G. Dimas, C. Ntakolia, and E. Spyrou, “Digital

Enhancement of Cultural Experience and Accessibility for the Visually Impaired,” in

Technological Trends in Improved Mobility of the Visually Impaired, S. Paiva, Ed. Cham:

Springer International Publishing, 2020, pp. 237–271. doi: 10.1007/978-3-030-16450-

8_10

• D. E. Diamantis, P. G. Kalozoumis and D. K. Iakovidis "Digital Twin for Assistive

Navigation", in Digital Twins for Digital Transformation and Innovation in Industry:

applications and future perspectives. A.L.Hassanien, A. Darwish, Ed. (Accepted)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

188

LIST OF PUBLICATIONS IN PEER REVIEWED INTERNATIONAL

CONFERENCES

• D. E. Diamantis, A. E. Zacharia, D. K. Iakovidis and A. Koulaouzidis, "Towards the

Substitution of Real with Artificially Generated Endoscopic Images for CNN Training," in

Proc. IEEE International Conference on Bioinformatics and Bioengineering (BIBE), 2019,

pp. 519-524, doi: 10.1109/BIBE.2019.00100

• D. E. Diamantis, D.-C. C. Koutsiou, and D. K. Iakovidis, “Staircase Detection Using a

Lightweight Look-Behind Fully Convolutional Neural Network,” in Proc. Engineering

Applications of Neural Networks (EANN), 2019, pp. 522–532, doi:10.1007/978-3-030-

20257-6

• D. Diamantis, D. K. Iakovidis and A. Koulaouzidis, "Investigating Cross-Dataset

Abnormality Detection in Endoscopy with A Weakly-Supervised Multiscale

Convolutional Neural Network," in Proc. 25th IEEE International Conference on Image

Processing (ICIP), 2018, pp. 3124-3128, doi: 10.1109/ICIP.2018.8451673

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

189

REFERENCES

Abadi, M. et al., 2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX

symposium on operating systems design and implementation OSDI 16). pp. 265–283.

Abnormal, E., 2015. Available at: https://endovissub-abnormal.grand-challenge.org.

Ahmad, S. & Kim, D., 2020. A multi-device multi-tasks management and orchestration

architecture for the design of enterprise IoT applications. Future Generation Computer

Systems, 106, pp.482–500.

Alkhafaji, A. et al., 2016. A survey study to gather requirements for designing a mobile service

to enhance learning from cultural heritage. In European Conference on Technology

Enhanced Learning. Springer, pp. 547–550.

Anon, 2018. Digestive Disorders & Gastrointestinal Diseases | Cleveland Clinic. Available at:

https://my.clevelandclinic.org/health/articles/7040-gastrointestinal-disorders.

Anon, USC University of Southern California - SIPI Image Dataset - Misc

http://sipi.usc.edu/database/database.php?volume=misc, USC. Available at:

http://sipi.usc.edu/database/database.php?volume=misc.

Arjovsky, M. & Bottou, L., 2017. Towards principled methods for training generative adversarial

networks. arXiv preprint arXiv:1701.04862.

Arjovsky, M., Chintala, S. & Bottou, L., 2017. Wasserstein generative adversarial networks. In

International conference on machine learning. PMLR, pp. 214–223.

Asiain, J. & Godoy, J., 2020. Navigation in Large Groups of Robots. Current Robotics Reports,

1(4), pp.203–213.

Atlas, T.G., 2018. Available at: https://www.gastrointestinalatlas.com/videos/.

Bader, D.A. & Pennington, R., 2001. Applications. The International Journal of High

Performance Computing Applications, 15(2), pp.181–185.

Badrinarayanan, V., Kendall, A. & Cipolla, R., 2017. Segnet: A deep convolutional encoder-

decoder architecture for image segmentation. IEEE transactions on pattern analysis and

machine intelligence, 39(12), pp.2481–2495.

Badrinarayanan, V., Kendall, A. & Cipolla, R., 2017. SegNet: A Deep Convolutional Encoder-

Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(12), pp.2481–2495.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

190

Baier, L., Jöhren, F. & Seebacher, S., 2019. Challenges in the deployment and operation of

machine learning in practice. In 27th European Conference on Information Systems

(ECIS). Stockholm-Uppsala,Sweden, pp. 1–15.

Barnes, C. & Zhang, F.-L., 2017. A survey of the state-of-the-art in patch-based synthesis.

Computational Visual Media, 3(1), pp.3–20.

Bay, H., Tuytelaars, T. & Van Gool, L., 2006. Surf: Speeded up robust features. In European

conference on computer vision. Springer, pp. 404–417.

Bazarevsky, V. et al., 2019. Blazeface: Sub-millisecond neural face detection on mobile gpus.

arXiv preprint arXiv:1907.05047.

Beers, A. et al., 2018. High-resolution medical image synthesis using progressively grown

generative adversarial networks. arXiv preprint arXiv:1805.03144.

Behnke, S., 2003. Hierarchical neural networks for image interpretation, Springer.

Beimborn, D., Miletzki, T. & Wenzel, S., 2011. Platform as a service (PaaS). Business &

Information Systems Engineering, 3(6), pp.381–384.

Bengio, Y. et al., 2007. Greedy layer-wise training of deep networks. Advances in neural

information processing systems, 19, p.153.

Bennett, C.R. et al., 2018. Assessing Visual Search Performance in Ocular Compared to Cerebral

Visual Impairment Using a Virtual Reality Simulation of Human Dynamic Movement. In

Proceedings of the Technology, Mind, and Society. ACM.

Bergkvist, A. et al., 2012. Webrtc 1.0: Real-time communication between browsers. , 91.

Available at: https://www.w3.org/TR/2021/REC-webrtc-20210126/.

Bergstra, J. & Bengio, Y., 2012. Random search for hyper-parameter optimization. Journal of

machine learning research, 13(2).

Bermudez, C. et al., 2018. Learning implicit brain MRI manifolds with deep learning. In Medical

Imaging 2018: Image Processing. International Society for Optics and Photonics, p.

105741L.

Bernal, J. et al., 2015. WM-DOVA maps for accurate polyp highlighting in colonoscopy:

Validation vs. saliency maps from physicians. Computerized Medical Imaging and

Graphics, 43, pp.99–111.

Berthelot, D., Schumm, T. & Metz, L., 2017. Began: Boundary equilibrium generative

adversarial networks. arXiv preprint arXiv:1703.10717.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

191

Bochinski, E., Eiselein, V. & Sikora, T., 2017. High-speed tracking-by-detection without using

image information. In 14th IEEE International Conference on Advanced Video and

Signal Based Surveillance (AVSS). IEEE, pp. 1–6.

Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y.M., 2020. Yolov4: Optimal speed and accuracy of

object detection. arXiv preprint arXiv:2004.10934.

Bouhamed, S.A., Kallel, I.K. & Masmoudi, D.S., 2013. Stair case detection and recognition

using ultrasonic signal. In Telecommunications and Signal Processing (TSP), 2013 36th

International Conference on. IEEE, pp. 672–676.

Boureau, Y.-L., Ponce, J. & LeCun, Y., 2010. A theoretical analysis of feature pooling in visual

recognition. In Proceedings of the 27th international conference on machine learning

(ICML-10). pp. 111–118.

Bowles, C. et al., 2018. Gan augmentation: Augmenting training data using generative

adversarial networks. arXiv preprint arXiv:1810.10863.

Brock, A., Donahue, J. & Simonyan, K., 2018. Large scale GAN training for high fidelity natural

image synthesis. arXiv preprint arXiv:1809.11096.

Calimeri, F. et al., 2017. Biomedical data augmentation using generative adversarial neural

networks. In International conference on artificial neural networks. Springer, pp. 626–

634.

Chacón M, M.I., 2006. Fuzzy logic for image processing: definition and applications of a fuzzy

image processing scheme. Advanced Fuzzy Logic Technologies in Industrial

Applications, pp.101–113.

Chai, X. et al., 2017. Obstacle avoidance for a hexapod robot in unknown environment. Science

China Technological Sciences, 60(6), pp.818–831.

Chan, S. et al., 2013. PredictionIO: a distributed machine learning server for practical software

development. In Proceedings of the 22nd ACM international conference on Information

& Knowledge Management. pp. 2493–2496.

Chang, C., 2011. A library for support vector machines.[(accessed on 10 June 2015)]. ACM

Trans. Intell. Syst. Technol, 2, p.27.

Che, T. et al., 2016. Mode regularized generative adversarial networks. arXiv preprint

arXiv:1612.02136.

Chen, H. et al., 2017. Automatic content understanding with cascaded spatial–temporal deep

framework for capsule endoscopy videos. Neurocomputing, 229, pp.77–87.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

192

Chen, L., Chen, C.P. & Lu, M., 2011. A multiple-kernel fuzzy c-means algorithm for image

segmentation. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 41(5), pp.1263–1274.

Chen, Q. et al., 2019. Smartphone Based Outdoor Navigation and Obstacle Avoidance System

for the Visually Impaired. In International Conference on Multi-disciplinary Trends in

Artificial Intelligence. Springer, pp. 26–37.

Chen, T. et al., 2019. Self-supervised gans via auxiliary rotation loss. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12154–12163.

Chen, X. et al., 2016. Infogan: Interpretable representation learning by information maximizing

generative adversarial nets. arXiv preprint arXiv:1606.03657.

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In

Proceedings of the IEEE conference on computer vision and pattern recognition. pp.

1251–1258.

Chollet, F. & others, 2015. Keras.

Ciaparrone, G. et al., 2020. Deep learning in video multi-object tracking: A survey.

Neurocomputing, 381, pp.61–88.

Ciobanu, A. et al., 2017. Real-time indoor staircase detection on mobile devices. In Control

Systems and Computer Science (CSCS), 2017 21st International Conference on. IEEE,

pp. 287–293.

Clark, A., Donahue, J. & Simonyan, K., 2019. Adversarial video generation on complex datasets.

arXiv preprint arXiv:1907.06571.

Ben-Cohen, A. et al., 2017. Virtual PET Images from CT Data Using Deep Convolutional

Networks: Initial Results. In S. A. Tsaftaris et al., eds. SASHIMI@MICCAI. Lecture

Notes in Computer Science. Springer, pp. 49–57.

Cong, Y. et al., 2015. Deep sparse feature selection for computer aided endoscopy diagnosis.

Pattern Recognition, 48(3), pp.907–917.

Cong, Y. et al., 2016. UDSFS: Unsupervised deep sparse feature selection. Neurocomputing,

196, pp.150–158.

Costa, P. et al., 2018. End-to-End Adversarial Retinal Image Synthesis. IEEE Trans. Med.

Imaging, 37(3), pp.781–791.

Cui, L., 2018. MDSSD: Multi-scale Deconvolutional Single Shot Detector for small objects.

arXiv preprint arXiv:1805.07009.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

193

Curtis, S., Best, A. & Manocha, D., 2016. Menge: A modular framework for simulating crowd

movement. Collective Dynamics, 1, pp.1–40.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4), pp.303–314.

Dai, J. et al., 2016. R-fcn: Object detection via region-based fully convolutional networks. In

Advances in neural information processing systems. pp. 379–387.

Dai, W. et al., 2017. SCAN: Structure Correcting Adversarial Network for Chest X-rays Organ

Segmentation. CoRR, abs/1703.08770. Available at: http://arxiv.org/abs/1703.08770.

Dai, X. et al., 2019. Chamnet: Towards efficient network design through platform-aware model

adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. pp. 11398–11407.

Dakopoulos, D. & Bourbakis, N.G., 2009. Wearable obstacle avoidance electronic travel aids for

blind: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 40(1), pp.25–35.

Daras, G. et al., 2020. Your local GAN: Designing two dimensional local attention mechanisms

for generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. pp. 14531–14539.

Darken, C. et al., 1992. Learning rate schedules for faster stochastic gradient search. In Neural

networks for signal processing. Citeseer.

Dean, J. et al., 2012. Large scale distributed deep networks.

Deng, J. et al., 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE

conference on computer vision and pattern recognition. Ieee, pp. 248–255.

Deng, L., 2012. The mnist database of handwritten digit images for machine learning research

[best of the web]. IEEE Signal Processing Magazine, 29(6), pp.141–142.

Denton, E. et al., 2015. Deep generative image models using a laplacian pyramid of adversarial

networks. arXiv preprint arXiv:1506.05751.

Van Der Malsburg, C., 1986. Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and

the Theory of Brain Mechanisms. In G. Palm & A. Aertsen, eds. Brain Theory. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 245–248.

Diamantis, D., Iakovidis, D.K. & Koulaouzidis, A., 2018. Investigating Cross-Dataset

Abnormality Detection in Endoscopy with A Weakly-Supervised Multiscale

Convolutional Neural Network. In 2018 25th IEEE International Conference on Image

Processing (ICIP). pp. 3124–3128.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

194

Diamantis, D., Iakovidis, D.K. & Koulaouzidis, A., 2018. Investigating cross-dataset

abnormality detection in endoscopy with a weakly-supervised multiscale convolutional

neural network. In 2018 25th IEEE International Conference on Image Processing

(ICIP). IEEE, pp. 3124–3128.

Diamantis, D.E., Zacharia, A.E., Iakovidis, D.K., et al., 2019. Towards the Substitution of Real

with Artificially Generated Endoscopic Images for CNN Training. In 2019 IEEE 19th

International Conference on Bioinformatics and Bioengineering (BIBE). pp. 519–524.

Diamantis, D.E. & Iakovidis, D.K., 2021. ASML: Algorithm-Agnostic Architecture for Scalable

Machine Learning. IEEE Access, 9, pp.51970–51982.

Diamantis, D.E. & Iakovidis, D.K., 2020. Fuzzy Pooling. IEEE Transactions on Fuzzy Systems.

Diamantis, D.E., Iakovidis, D.K. & Koulaouzidis, A., 2019. Look-behind fully convolutional

neural network for computer-aided endoscopy. Biomedical Signal Processing and

Control, 49, pp.192–201. Available at:

https://www.sciencedirect.com/science/article/pii/S1746809418303033.

Diamantis, D.E., Iakovidis, D.K. & Koulaouzidis, A., 2019. Look-behind fully convolutional

neural network for computer-aided endoscopy. Biomedical Signal Processing and

Control, 49, pp.192–201.

Diamantis, D.E., Koutsiou, D.-C.C. & Iakovidis, D.K., 2019. Staircase Detection Using a

Lightweight Look-Behind Fully Convolutional Neural Network. In J. Macintyre et al.,

eds. Engineering Applications of Neural Networks. Cham: Springer International

Publishing, pp. 522–532.

Dimas, G. et al., 2020. Uncertainty-Aware Visual Perception System for Outdoor Navigation of

the Visually Challenged. Sensors, 20(8), p.2385.

Donahue, J., Krähenbühl, P. & Darrell, T., 2016. Adversarial feature learning. arXiv preprint

arXiv:1605.09782.

Dossot, D., 2014. RabbitMQ essentials, Packt Publishing Ltd.

Dozat, T., 2016. Incorporating nesterov momentum into adam.

Drake, J. & Hamerly, G., 2012. Accelerated k-means with adaptive distance bounds. In 5th NIPS

workshop on optimization for machine learning.

Dray, X. et al., 2021. Artificial intelligence in small bowel capsule endoscopy - current status,

challenges and future promise. Journal of gastroenterology and hepatology, 36(1),

pp.12–19.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

195

Du, K.-L. & Swamy, M.N., 2006. Neural networks in a softcomputing framework, Springer

Science & Business Media.

Duchi, J., Hazan, E. & Singer, Y., 2011. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of machine learning research, 12(7).

Efros, A.A. & Leung, T.K., 1999. Texture synthesis by non-parametric sampling. In Computer

Vision, 1999. The Proceedings of the Seventh IEEE International Conference on. pp.

1033–1038.

Erhan, D. et al., 2014. Scalable Object Detection using Deep Neural Networks. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

Everingham, M. et al., 2010. The pascal visual object classes (voc) challenge. International

journal of computer vision, 88(2), pp.303–338.

Fabelo, H. et al., 2016. HELICoiD project: a new use of hyperspectral imaging for brain cancer

detection in real-time during neurosurgical operations. In D. P. Bannon, ed.

Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards 2016.

SPIE, pp. 1–12. Available at: https://doi.org/10.1117/12.2223075.

Fawcett, T., 2006. An introduction to ROC analysis. Pattern recognition letters, 27(8), pp.861–

874.

Fernández-Villamor, J.I., Iglesias, C.A. & Garijo, M., 2013. A framework for goal-oriented

discovery of resources in the RESTful architecture. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 44(6), pp.796–803.

Fette, I. & Melnikov, A., 2016. The websocket protocol (2011). Available at:

https://tools.ietf.org/html/rfc6455.

FFmpeg, 2016. ffmpeg tool (Version be1d324). Available at: https://ffmpeg. org.

Fiaz, M. et al., 2019. Handcrafted and deep trackers: Recent visual object tracking approaches

and trends. ACM Computing Surveys (CSUR), 52(2), pp.1–44.

Flickr Inc., 2019. Find your inspiration. | Flickr.

Foundation, T.C.C., 2017. Digestive Disorders & Gastrointestinal Diseases | Cleveland Clinic.

Available at: https://my.clevelandclinic.org/health/articles/gastrointestinal-disorder.

Fraichard, T. & Levesy, V., 2020. From Crowd Simulation to Robot Navigation in Crowds.

IEEE Robotics and Automation Letters, 5(2), pp.729–735.

Frid-Adar, M. et al., 2018. GAN-based synthetic medical image augmentation for increased

CNN performance in liver lesion classification. Neurocomputing, 321, pp.321–331.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

196

Fu, C.-Y. et al., 2017. DSSD: Deconvolutional single shot detector. arXiv preprint

arXiv:1701.06659.

Fu, J. & Xu, C., 2019. A survey of single object tracking methods. Nanjing Xinxi Gongcheng

Daxue Xuebao, 11(6), pp.638–650.

Fukushima, K. & Miyake, S., 1982. Neocognitron: A self-organizing neural network model for a

mechanism of visual pattern recognition. In Competition and cooperation in neural nets.

Springer, pp. 267–285.

Gao, S.-H. et al., 2021. Res2Net: A New Multi-Scale Backbone Architecture. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 43(2), pp.652–662.

Garber, L., 2000. Denial-of-service attacks rip the Internet. Computer, (4), pp.12–17.

García, Á.L. et al., 2020. A Cloud-Based Framework for Machine Learning Workloads and

Applications. IEEE Access, 8, pp.18681–18692.

Garner, S.R. & others, 1995. Weka: The waikato environment for knowledge analysis. In

Proceedings of the New Zealand computer science research students conference. pp. 57–

64.

GASTROLAB, 2018. High Resolution Videos and Images: Colon, the Large Bowel. Available

at: http://www.gastrolab.fi/videos/.

Gatys, L.A., Ecker, A.S. & Bethge, M., 2015. Texture Synthesis Using Convolutional Neural

Networks. In C. Cortes et al., eds. Advances in Neural Information Processing Systems

28: Annual Conference on Neural Information Processing Systems 2015, December 7-12,

2015, Montreal, Quebec, Canada. pp. 262–270. Available at:

http://papers.nips.cc/book/advances-in-neural-information-processing-systems-28-2015.

Gholami, A. et al., 2018. Squeezenext: Hardware-aware neural network design. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp.

1638–1647.

Girosi, F., Jones, M. & Poggio, T., 1995. Regularization theory and neural networks

architectures. Neural computation, 7(2), pp.219–269.

Girshick, R., 2015. Fast r-cnn. In Proceedings of the IEEE international conference on computer

vision. pp. 1440–1448.

Girshick, R. et al., 2014. Rich feature hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on computer vision and pattern

recognition. pp. 580–587.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

197

Gong, X. et al., 2019. Autogan: Neural architecture search for generative adversarial networks.

In Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.

3224–3234.

Gono, K. et al., 2004. Appearance of enhanced tissue features in narrow-band endoscopic

imaging. Journal of biomedical optics, 9(3), pp.568–577.

Gonog, L. & Zhou, Y., 2019. A review: Generative adversarial networks. In 2019 14th IEEE

Conference on Industrial Electronics and Applications (ICIEA). IEEE, pp. 505–510.

Gonzalez, R.C. & Woods, R.E., 2018. Digital image processing 3rd ed., Pearson.

Goodfellow, I., Bengio, Y. & Courville, A., 2016. Deep Learning, MIT Press.

Goodfellow, I.J. et al., 2014. Generative adversarial networks. arXiv preprint arXiv:1406.2661.

Gopal, M., 2019. Applied machine learning, McGraw-Hill Education.

Graham, B., 2014. Fractional max-pooling. arXiv preprint arXiv:1412.6071.

Gu, J. et al., 2018. Recent advances in convolutional neural networks. Pattern Recognition, 77,

pp.354–377.

Gui, J. et al., 2020. A review on generative adversarial networks: Algorithms, theory, and

applications. arXiv preprint arXiv:2001.06937.

Guibas, J.T., Virdi, T.S. & Li, P.S., 2017. Synthetic Medical Images from Dual Generative

Adversarial Networks. CoRR, abs/1709.01872. Available at:

http://arxiv.org/abs/1709.01872.

Guldenring, R. et al., 2020. Learning Local Planners for Human-aware Navigation in Indoor

Environments. In 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, pp. 6053–6060.

Gulli, A. & Pal, S., 2017. Deep learning with Keras, Packt Publishing Ltd.

Gulrajani, I. et al., 2017. Improved training of wasserstein gans. arXiv preprint

arXiv:1704.00028.

Gupta, J.N. & Sexton, R.S., 1999. Comparing backpropagation with a genetic algorithm for

neural network training. Omega, 27(6), pp.679–684.

Habiba, M., Islam, M.R. & Ali, A.S., 2018. A component based unified architecture for utility

service in cloud. Future Generation Computer Systems, 87, pp.725–742.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

198

Häfner, M. et al., 2015. Local fractal dimension based approaches for colonic polyp

classification. Medical image analysis, 26(1), pp.92–107.

Han, C. et al., 2018. GAN-based synthetic brain MR image generation. In ISBI. IEEE, pp. 734–

738. Available at:

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8359997.

Han, K. et al., 2020. Ghostnet: More features from cheap operations. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1580–1589.

Han, Y.-J., Kim, I.-S. & Hong, Y.-D., 2018. Optimization-based humanoid robot navigation

using monocular camera within indoor environment. ETRI Journal, 40(4), pp.446–457.

Hardt, D. & others, 2012. The OAuth 2.0 authorization framework, RFC 6749, October.

He, J.-Y. et al., 2018. Hookworm detection in wireless capsule endoscopy images with deep

learning. IEEE Transactions on Image Processing, 27(5), pp.2379–2392.

He, K. et al., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. pp. 770–778.

He, K. et al., 2015a. Delving deep into rectifiers: Surpassing human-level performance on

imagenet classification. In Proceedings of the IEEE international conference on

computer vision. pp. 1026–1034.

He, K. et al., 2015b. Spatial pyramid pooling in deep convolutional networks for visual

recognition. IEEE transactions on pattern analysis and machine intelligence, 37(9),

pp.1904–1916.

He, K. & Sun, J., 2015. Convolutional neural networks at constrained time cost. In Proceedings

of the IEEE conference on computer vision and pattern recognition. pp. 5353–5360.

Hecht-Nielsen, R., 1992. Theory of the backpropagation neural network. In Neural networks for

perception. Elsevier, pp. 65–93.

Hegenbart, S. et al., 2013. Scale invariant texture descriptors for classifying celiac disease.

Medical image analysis, 17(4), pp.458–474.

Hesch, J.A., Mariottini, G.L. & Roumeliotis, S.I., 2010. Descending-stair detection, approach,

and traversal with an autonomous tracked vehicle. In Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on. IEEE, pp. 5525–5531.

Hinton, G., Srivastava, N. & Swersky, K., 2012. Neural networks for machine learning lecture 6a

overview of mini-batch gradient descent. Cited on, 14(8).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

199

Hinton, G.E., 2012. A practical guide to training restricted Boltzmann machines. In Neural

networks: Tricks of the trade. Springer, pp. 599–619.

Hochreiter, S., 1998. The vanishing gradient problem during learning recurrent neural nets and

problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 6(02), pp.107–116.

Hornik, K., Stinchcombe, M. & White, H., 1989. Multilayer feedforward networks are universal

approximators. Neural networks, 2(5), pp.359–366.

Howard, A. et al., 2019. Searching for mobilenetv3. In Proceedings of the IEEE/CVF

International Conference on Computer Vision. pp. 1314–1324.

Howard, A.G. et al., 2017. Mobilenets: Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

Huang, G. et al., 2018. Condensenet: An efficient densenet using learned group convolutions. In

Proceedings of the IEEE conference on computer vision and pattern recognition. pp.

2752–2761.

Huang, G. et al., 2017. Densely connected convolutional networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition. pp. 4700–4708.

Hubel, D.H. & Wiesel, T.N., 1968. Receptive fields and functional architecture of monkey striate

cortex. The Journal of physiology, 195(1), pp.215–243.

Hungerford, K., Dasgupta, P. & Guruprasad, K.R., 2016. A Repartitioning Algorithm to

Guarantee Complete, Non-overlapping Planar Coverage with Multiple Robots. In

Springer Tracts in Advanced Robotics. Springer Japan, pp. 33–48.

Iacono, M. & Sgorbissa, A., 2018. Path following and obstacle avoidance for an autonomous

UAV using a depth camera. Robotics and Autonomous Systems, 106, pp.38–46.

Iakovidis, D.K. et al., 2015. Blood detection in wireless capsule endoscope images based on

salient superpixels. In 2015 37th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 731–734.

Iakovidis, D.K. et al., 2018. Detecting and Locating Gastrointestinal Anomalies Using Deep

Learning and Iterative Cluster Unification. IEEE Transactions on Medical Imaging,

37(10), pp.2196–2210.

Iakovidis, D.K. et al., 2020. Digital Enhancement of Cultural Experience and Accessibility for

the Visually Impaired. In S. Paiva, ed. Technological Trends in Improved Mobility of the

Visually Impaired. Cham: Springer International Publishing, pp. 237–271. Available at:

https://doi.org/10.1007/978-3-030-16450-8_10.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

200

Iakovidis, D.K. & Diamantis, D.E., 2014. Open-Access Framework for Efficient Object-Oriented

Development of Video Analysis Software. Journal of Software Engineering and

Applications, Vol.07No.08. Available at:

//www.scirp.org/journal/paperinformation.aspx?paperid=48124.

Iakovidis, D.K. & Koulaouzidis, A., 2015. Software for enhanced video capsule endoscopy:

challenges for essential progress. Nature Reviews Gastroenterology & Hepatology, 12(3),

pp.172–186.

Iandola, F.N. et al., 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<

0.5 MB model size. arXiv preprint arXiv:1602.07360.

Inamura, T. & Mizuchi, Y., 2017. Competition design to evaluate cognitive functions in human-

robot interaction based on immersive VR. In Robot World Cup. Springer, pp. 84–94.

Inamura, T. & Mizuchi, Y., 2020. SIGVerse: A cloud-based VR platform for research on social

and embodied human-robot interaction. arXiv preprint arXiv:2005.00825.

Instruments, N., 2013. Peak signal-to-noise ratio as an image quality metric.

Ioffe, S. & Szegedy, C., 2015. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International conference on machine learning.

PMLR, pp. 448–456.

Isola, P. et al., 2017. Image-to-image translation with conditional adversarial networks. In

Proceedings of the IEEE conference on computer vision and pattern recognition. pp.

1125–1134.

Janocha, K. & Czarnecki, W.M., 2017. On loss functions for deep neural networks in

classification. arXiv preprint arXiv:1702.05659.

Jetchev, N., Bergmann, U. & Vollgraf, R., 2016. Texture Synthesis with Spatial Generative

Adversarial Networks. CoRR, abs/1611.08207. Available at:

http://arxiv.org/abs/1611.08207.

Jia, X. & Meng, M.Q.-H., 2016. A deep convolutional neural network for bleeding detection in

wireless capsule endoscopy images. In 2016 38th annual international conference of the

IEEE engineering in medicine and biology society (EMBC). IEEE, pp. 639–642.

Jia, X. & Meng, M.Q.-H., 2017. A study on automated segmentation of blood regions in wireless

capsule endoscopy images using fully convolutional networks. In 2017 IEEE 14th

International Symposium on Biomedical Imaging (ISBI 2017). IEEE, pp. 179–182.

Jia, Y. et al., 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings

of the 22nd ACM international conference on Multimedia. pp. 675–678.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

201

Jiao, L. & Zhao, J., 2019. A Survey on the New Generation of Deep Learning in Image

Processing. IEEE Access, 7, pp.172231–172263.

Jin, J., Dundar, A. & Culurciello, E., 2014. Flattened convolutional neural networks for

feedforward acceleration. arXiv preprint arXiv:1412.5474.

Johnson, J., Alahi, A. & Li, F.-F., 2016. Perceptual Losses for Real-Time Style Transfer and

Super-Resolution. CoRR, abs/1603.08155. Available at: http://arxiv.org/abs/1603.08155.

Jolicoeur-Martineau, A., 2018. The relativistic discriminator: a key element missing from

standard GAN. arXiv preprint arXiv:1807.00734.

Jones, A.J., 1993. Genetic algorithms and their applications to the design of neural networks.

Neural Computing and Applications, 1(1), pp.32–45.

Jones, M. & Hardt, D., 2012. The oauth 2.0 authorization framework: Bearer token usage,

Available at: https://tools.ietf.org/html/rfc6750.

Jouppi, N.P. et al., 2017. In-datacenter performance analysis of a tensor processing unit. In

Proceedings of the 44th Annual International Symposium on Computer Architecture. pp.

1–12.

Juang, C.-F. & Hsieh, C.-D., 2010. A locally recurrent fuzzy neural network with support vector

regression for dynamic-system modeling. IEEE Transactions on Fuzzy Systems, 18(2),

pp.261–273.

Juang, C.-F. & Ku, K.-C., 2005. A recurrent fuzzy network for fuzzy temporal sequence

processing and gesture recognition. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 35(4), pp.646–658.

Karkanis, S.A. et al., 2003. Computer-aided tumor detection in endoscopic video using color

wavelet features. IEEE transactions on information technology in biomedicine, 7(3),

pp.141–152.

Karras, T. et al., 2020. Analyzing and improving the image quality of stylegan. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8110–8119.

Karras, T. et al., 2017. Progressive growing of gans for improved quality, stability, and variation.

arXiv preprint arXiv:1710.10196.

Karras, T., Laine, S. & Aila, T., 2019. A style-based generator architecture for generative

adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. pp. 4401–4410.

Katz, B.F.G. et al., 2012. NAVIG: augmented reality guidance system for the visually impaired.

Virtual Reality, 16(4), pp.253–269.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

202

Kaur, S., Aggarwal, H. & Rani, R., 2021. MR Image Synthesis Using Generative Adversarial

Networks for Parkinson’s Disease Classification. In Proceedings of International

Conference on Artificial Intelligence and Applications. Springer, pp. 317–327.

Kazeminia, S. et al., 2020. GANs for medical image analysis. Artificial Intelligence in Medicine,

p.101938.

Kebria, P.M. et al., 2019. Adaptive Type-2 Fuzzy Neural-Network Control for Teleoperation

Systems with Delay and Uncertainties. IEEE Transactions on Fuzzy Systems.

Kelley, C.T., 1999. Iterative methods for optimization, SIAM.

Keselman, L. et al., 2017. Intel realsense stereoscopic depth cameras. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops. pp. 1–10.

Van Kesteren, A. & others, 2010. Cross-origin resource sharing. Available at:

https://www.w3.org/TR/2010/WD-cors-20100727/.

Kiefer, J., Wolfowitz, J. & others, 1952. Stochastic estimation of the maximum of a regression

function. The Annals of Mathematical Statistics, 23(3), pp.462–466.

Kiesslich, R. et al., 2005. Confocal laser endomicroscopy. Gastrointestinal endoscopy clinics of

North America, 15(4), pp.715–731.

Kim, S. et al., 2016. Interactive and adaptive data-driven crowd simulation. In 2016 IEEE Virtual

Reality (VR). IEEE, pp. 29–38.

Kim, T. et al., 2017. Learning to discover cross-domain relations with generative adversarial

networks. In International Conference on Machine Learning. PMLR, pp. 1857–1865.

Kingma, D.P. & Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kingma, D.P. & Welling, M., 2019. An introduction to variational autoencoders. arXiv preprint

arXiv:1906.02691.

Kingma, D.P. & Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114.

Koulaouzidis, A. et al., 2017. KID Project: an internet-based digital video atlas of capsule

endoscopy for research purposes. Endosc Int Open, 5(6), pp.E477–E483.

Koulaouzidis, A., Rondonotti, E. & Karargyris, A., 2013. Small-bowel capsule endoscopy: a ten-

point contemporary review. World journal of gastroenterology: WJG, 19(24), p.3726.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

203

Kraska, T. et al., 2013. MLbase: A Distributed Machine-learning System. In Proc. 6th Biennial

Conference on Innovative Data Systems Research (CIDR). Available at:

http://cidrdb.org/cidr2013/Papers/CIDR13_Paper118.pdf.

Kreimeier, J. & Götzelmann, T., 2019. First Steps Towards Walk-In-Place Locomotion and

Haptic Feedback in Virtual Reality for Visually Impaired. In Extended Abstracts of the

2019 CHI Conference on Human Factors in Computing Systems. ACM.

Krizhevsky, A., Hinton, G. & others, 2009. Learning multiple layers of features from tiny

images, Citeseer.

Krizhevsky, A., Sutskever, I. & Hinton, G.E., 2012. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25,

pp.1097–1105.

Kubat, M., 1999. Neural networks: a comprehensive foundation by Simon Haykin, Macmillan,

1994, ISBN 0-02-352781-7. The Knowledge Engineering Review, 13(4), pp.409–412.

Kumar, M. et al., 2015. Fuzzy membership descriptors for images. IEEE Transactions on Fuzzy

Systems, 24(1), pp.195–207.

Kumar, N., Takács, M. & Vámossy, Z., 2017. Robot navigation in unknown environment using

fuzzy logic. In 2017 IEEE 15th International Symposium on Applied Machine

Intelligence and Informatics (SAMI). IEEE, pp. 279–284.

Kunz, A. et al., 2018. Virtual Navigation Environment for Blind and Low Vision People. In

Lecture Notes in Computer Science. Springer International Publishing, pp. 114–122.

LeCun, Y. et al., 1989. Backpropagation applied to handwritten zip code recognition. Neural

computation, 1(4), pp.541–551.

LeCun, Y. et al., 1998. Gradient-based learning applied to document recognition. Proceedings of

the IEEE, 86(11), pp.2278–2324.

LeCun, Y., Bengio, Y. & Hinton, G.E., 2015. Deep learning. Nature, 521(7553), pp.436–444.

Ledig, C. et al., 2017. Photo-realistic single image super-resolution using a generative

adversarial network. In Proceedings of the IEEE conference on computer vision and

pattern recognition. pp. 4681–4690.

Lee, C.-S., Guo, S.-M. & Hsu, C.-Y., 2005. Genetic-based fuzzy image filter and its application

to image processing. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 35(4), pp.694–711.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

204

Lee, Y.H., Leung, T.-S. & Medioni, G., 2012. Real-time staircase detection from a wearable

stereo system. In Pattern Recognition (ICPR), 2012 21st International Conference On.

IEEE, pp. 3770–3773.

Li, Y. et al., 2017. Generative face completion. In Proceedings of the IEEE conference on

computer vision and pattern recognition. pp. 3911–3919.

Li, Y. et al., 2019. Navigation Simulation of a Mecanum Wheel Mobile Robot Based on an

Improved Aast Algorithm in Unity3D. Sensors, 19(13), p.2976.

Li, Y. & Manoharan, S., 2013. A performance comparison of SQL and NoSQL databases. In

2013 IEEE Pacific Rim Conference on Communications, Computers and Signal

Processing (PACRIM). IEEE, pp. 15–19.

Liedlgruber, M. & Uhl, A., 2011. Computer-aided decision support systems for endoscopy in the

gastrointestinal tract: a review. IEEE reviews in biomedical engineering, 4, pp.73–88.

Lim, J.H. & Ye, J.C., 2017. Geometric gan. arXiv preprint arXiv:1705.02894.

Lin, S. et al., 2018. KrNet: A kinetic real-time convolutional neural network for navigational

assistance. In International Conference on Computers Helping People with Special

Needs. Springer, pp. 55–62.

Lin, T.-Y. et al., 2017. Feature Pyramid Networks for Object Detection. In CVPR. p. 4.

Lin, T.-Y. et al., 2018. Focal loss for dense object detection. IEEE transactions on pattern

analysis and machine intelligence.

Liu, D.-Y. et al., 2016. Identification of lesion images from gastrointestinal endoscope based on

feature extraction of combinational methods with and without learning process. Medical

image analysis, 32, pp.281–294.

Liu, W. et al., 2017. A survey of deep neural network architectures and their applications.

Neurocomputing, 234, pp.11–26.

Liu, W. et al., 2016. Ssd: Single shot multibox detector. In European conference on computer

vision. Springer, pp. 21–37.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. International

journal of computer vision, 60(2), pp.91–110.

Lutz, S., Amplianitis, K. & Smolic, A., 2018. Alphagan: Generative adversarial networks for

natural image matting. arXiv preprint arXiv:1807.10088.

Ma, N. et al., 2018. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In

Proceedings of the European conference on computer vision (ECCV). pp. 116–131.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

205

Maas, A.L., Hannun, A.Y. & Ng, A.Y., 2013. Rectifier nonlinearities improve neural network

acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech and

Language Processing.

Mahy, R., Matthews, P. & Rosenberg, J., 2010. Traversal using relays around nat (turn): Relay

extensions to session traversal utilities for nat (stun), Available at:

https://tools.ietf.org/html/rfc5766.

Makhzani, A. et al., 2015. Adversarial Autoencoders. CoRR, abs/1511.05644. Available at:

http://arxiv.org/abs/1511.05644.

Malinowski, M. & Fritz, M., 2013. Learnable pooling regions for image classification. arXiv

preprint arXiv:1301.3516.

Mamonov, A.V. et al., 2014. Automated polyp detection in colon capsule endoscopy. IEEE

transactions on medical imaging, 33(7), pp.1488–1502.

Manjari, K., Verma, M. & Singal, G., 2020. A survey on assistive technology for visually

impaired. Internet of Things, 11, p.100188.

Mao, X. et al., 2017. Least squares generative adversarial networks. In Proceedings of the IEEE

international conference on computer vision. pp. 2794–2802.

Maohai, L. et al., 2014. A robust vision-based method for staircase detection and localization.

Cognitive processing, 15(2), pp.173–194.

Mart𝚤nez-Prieto, M.A. et al., 2015. The solid architecture for real-time management of big

semantic data. Future Generation Computer Systems, 47, pp.62–79.

Marzullo, A. et al., 2021. Towards realistic laparoscopic image generation using image-domain

translation. Computer Methods and Programs in Biomedicine, 200, p.105834.

Maury, B. & Faure, S., 2018. Crowds in Equations: An Introduction to the Microscopic

Modeling of Crowds, World Scientific.

McCulloch, W.S. & Pitts, W., 1943. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4), pp.115–133.

McIntosh, J., Marques, B. & Harkness, R., 2020. Simulating impairment through virtual reality.

International Journal of Architectural Computing, 18(3), pp.284–295.

Mehta, S. et al., 2018. Espnet: Efficient spatial pyramid of dilated convolutions for semantic

segmentation. In Proceedings of the european conference on computer vision (ECCV).

pp. 552–568.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

206

Mehta, S. et al., 2019. Espnetv2: A light-weight, power efficient, and general purpose

convolutional neural network. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. pp. 9190–9200.

Mehta, S., Hajishirzi, H. & Rastegari, M., 2020. DiCENet: Dimension-wise convolutions for

efficient networks. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Merkel, D., 2014. Docker: lightweight linux containers for consistent development and

deployment. Linux journal, 2014(239), p.2.

Metz, L. et al., 2016. Unrolled generative adversarial networks. arXiv preprint

arXiv:1611.02163.

Minsky, M.L. & Papert, S.A., 1988. Perceptrons: expanded edition.

Mirza, M. & Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784.

Miyato, T. et al., 2018. Spectral normalization for generative adversarial networks. arXiv

preprint arXiv:1802.05957.

Mohanan, M. & Salgoankar, A., 2018. A survey of robotic motion planning in dynamic

environments. Robotics and Autonomous Systems, 100, pp.171–185.

Moldoveanu, A.D.B. et al., 2017. Mastering an advanced sensory substitution device for visually

impaired through innovative virtual training. In 2017 IEEE 7th International Conference

on Consumer Electronics - Berlin (ICCE-Berlin). IEEE.

Montana, D.J., 1995. Neural network weight selection using genetic algorithms. Intelligent

Hybrid Systems, 8(6), pp.12–19.

Moreira, M. & Fiesler, E., 1995. Neural networks with adaptive learning rate and momentum

terms, Idiap.

Muller, A.D. & Sonnenberg, A., 1995. Prevention of colorectal cancer by flexible endoscopy and

polypectomy: a case-control study of 32 702 veterans. Annals of internal medicine,

123(12), pp.904–910.

Murata, N., Yoshizawa, S. & Amari, S., 1994. Network information criterion-determining the

number of hidden units for an artificial neural network model. IEEE transactions on

neural networks, 5(6), pp.865–872.

Nair, V. & Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann machines. In

Proceedings of the 27th international conference on machine learning (ICML-10). pp.

807–814.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

207

Navab, N. et al., 2015. Medical Image Computing and Computer-Assisted Intervention–MICCAI

2015: 18th International Conference, Munich, Germany, October 5-9, 2015,

Proceedings, Part III, Springer.

Nesterov, Y., 1983. A method of solving a convex programming problem with convergence rate

O (1/k 2) O (1/k2). In Sov. Math. Dokl.

Neyshabur, B. et al., 2017. Exploring generalization in deep learning. In Advances in Neural

Information Processing Systems. pp. 5947–5956.

Ng, J. & Bräunl, T., 2007. Performance comparison of bug navigation algorithms. Journal of

Intelligent and Robotic Systems, 50(1), pp.73–84.

Nguyen, G. et al., 2019. Machine learning and deep learning frameworks and libraries for large-

scale data mining: a survey. Artificial Intelligence Review, 52(1), pp.77–124.

Nickolls, J. et al., 2008. Scalable parallel programming with cuda: Is cuda the parallel

programming model that application developers have been waiting for? Queue, 6(2),

pp.40–53.

Nie, D. et al., 2016. Medical Image Synthesis with Context-Aware Generative Adversarial

Networks. CoRR, abs/1612.05362. Available at: http://arxiv.org/abs/1612.05362.

Nie, D. et al., 2018. Medical Image Synthesis with Deep Convolutional Adversarial Networks.

IEEE Trans. Biomed. Engineering, 65(12), pp.2720–2730.

Nowozin, S., Cseke, B. & Tomioka, R., 2016. f-gan: Training generative neural samplers using

variational divergence minimization. arXiv preprint arXiv:1606.00709.

Ntakolia, C., Diamantis, D.E., et al., 2020. A Lightweight Convolutional Neural Network

Architecture Applied for Bone Metastasis Classification in Nuclear Medicine: A Case

Study on Prostate Cancer Patients. Healthcare, 8(4). Available at:

https://www.mdpi.com/2227-9032/8/4/493.

Ntakolia, C., Dimas, G. & Iakovidis, D.K., 2020. User-centered system design for assisted

navigation of visually impaired individuals in outdoor cultural environments. Universal

Access in the Information Society, pp.1–26.

Odena, A., 2016. Semi-supervised learning with generative adversarial networks. arXiv preprint

arXiv:1606.01583.

Odena, A., Olah, C. & Shlens, J., 2017. Conditional image synthesis with auxiliary classifier

gans. In International conference on machine learning. PMLR, pp. 2642–2651.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

208

Olston, C. et al., 2008. Pig latin: a not-so-foreign language for data processing. In Proceedings of

the 2008 ACM SIGMOD international conference on Management of data. pp. 1099–

1110.

Pan, J. et al., 2017. Salgan: Visual saliency prediction with generative adversarial networks.

arXiv preprint arXiv:1701.01081.

Pan, Z. et al., 2020. Loss Functions of Generative Adversarial Networks (GANs): Opportunities

and Challenges. IEEE Transactions on Emerging Topics in Computational Intelligence,

4(4), pp.500–522.

Pang, B. et al., 2019. A Swarm Robotic Exploration Strategy Based on an Improved Random

Walk Method. Journal of Robotics, 2019, pp.1–9.

Pang, C., Yan, J. & Vyatkin, V., 2014. Time-complemented event-driven architecture for

distributed automation systems. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 45(8), pp.1165–1177.

Park, S.W. & Kwon, J., 2019. Sphere generative adversarial network based on geometric

moment matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. pp. 4292–4301.

Parmar, H. & Thornburgh, M., 2012. Adobe’s real time messaging protocol. Copyright Adobe

Systems Incorporated, pp.1–52.

Paszke, A. et al., 2019. Pytorch: An imperative style, high-performance deep learning library.

arXiv preprint arXiv:1912.01703.

Peli, E., 1990. Contrast in complex images. Journal of the Optical Society of America A, 7(10),

pp.2032–2040.

Pennington, J., Socher, R. & Manning, C.D., 2014. Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP). pp. 1532–1543.

Pérez-Yus, A., López-Nicolás, G. & Guerrero, J.J., 2014. Detection and modelling of staircases

using a wearable depth sensor. In European Conference on Computer Vision. Springer,

pp. 449–463.

Petzka, H., Fischer, A. & Lukovnicov, D., 2017. On the regularization of wasserstein gans. arXiv

preprint arXiv:1709.08894.

Poggi, M. & Mattoccia, S., 2016. A wearable mobility aid for the visually impaired based on

embedded 3D vision and deep learning. In 2016 IEEE Symposium on Computers and

Communication (ISCC). pp. 208–213.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

209

Portilla, J. & Simoncelli, E.P., 2000. A Parametric Texture Model Based on Joint Statistics of

Complex Wavelet Coefficients. International Journal of Computer Vision, 40(1), pp.49–

70. Available at: http://dx.doi.org/10.1023/A:1026553619983.

Pratama, P.S. et al., 2016. Positioning and obstacle avoidance of automatic guided vehicle in

partially known environment. International Journal of Control, Automation and Systems,

14(6), pp.1572–1581.

Qian, N., 1999. On the momentum term in gradient descent learning algorithms. Neural

networks, 12(1), pp.145–151.

Radford, A., Metz, L. & Chintala, S., 2015. Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Ravi, D. et al., 2016. Deep learning for health informatics. IEEE journal of biomedical and

health informatics, 21(1), pp.4–21.

Read, J. et al., 2016. Meka: a multi-label/multi-target extension to weka.

Redmon, J. et al., 2016. You only look once: Unified, real-time object detection. In Proceedings

of the IEEE conference on computer vision and pattern recognition. pp. 779–788.

Redmon, J. & Farhadi, A., 2017. YOLO9000: better, faster, stronger. arXiv preprint.

Redmon, J. & Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767.

Reed, S. et al., 2016. Generative adversarial text to image synthesis. In International Conference

on Machine Learning. PMLR, pp. 1060–1069.

Reese, W., 2008. Nginx: the high-performance web server and reverse proxy. Linux Journal,

2008(173), p.2.

Ren, S. et al., 2015. Faster r-cnn: Towards real-time object detection with region proposal

networks. In Advances in neural information processing systems. pp. 91–99.

Ribeiro, E., Uhl, A. & Häfner, M., 2016. Colonic polyp classification with convolutional neural

networks. In 2016 IEEE 29th International Symposium on Computer-Based Medical

Systems (CBMS). IEEE, pp. 253–258.

Ribeiro, M., Grolinger, K. & Capretz, M.A., 2015. Mlaas: Machine learning as a service. In 2015

IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

IEEE, pp. 896–902.

Richardson, L. & Ruby, S., 2008. RESTful Web Services, O"Reilly Media, Inc. Available at:

https://www.oreilly.com/library/view/restful-web-services/9780596529260/.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

210

Robbins, H. & Monro, S., 1951. A stochastic approximation method. The annals of mathematical

statistics, pp.400–407.

Rodeh, O. & Teperman, A., 2003. zFS - a scalable distributed file system using object disks. In

20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies,

2003. (MSST 2003). Proceedings. pp. 207–218.

Rosasco, L. et al., 2004. Are loss functions all the same? Neural computation, 16(5), pp.1063–

1076.

Rosen, R., 2014. Linux containers and the future cloud. Linux J, 240(4), pp.86–95.

Rosique, F. et al., 2019. A Systematic Review of Perception System and Simulators for

Autonomous Vehicles Research. Sensors, 19(3), p.648.

Roth, K. et al., 2017. Stabilizing training of generative adversarial networks through

regularization. arXiv preprint arXiv:1705.09367.

Ruder, S., 2016. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Rumelhart, D.E., Hinton, G.E. & Williams, R.J., 1986. Learning representations by back-

propagating errors. nature, 323(6088), pp.533–536.

Russakovsky, O. et al., 2015. Imagenet large scale visual recognition challenge. International

journal of computer vision, 115(3), pp.211–252.

Russell, B.C. et al., 2008. LabelMe: a database and web-based tool for image annotation.

International journal of computer vision, 77(1-3), pp.157–173.

Saeedi, S. et al., 2016. Multiple-robot simultaneous localization and mapping: A review. Journal

of Field Robotics, 33(1), pp.3–46.

Salakhutdinov, R. & Hinton, G., 2009. Deep boltzmann machines. In Artificial intelligence and

statistics. PMLR, pp. 448–455.

Sanders, J. & Kandrot, E., 2010. CUDA by example: an introduction to general-purpose GPU

programming, Addison-Wesley Professional.

Sandler, M. et al., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings

of the IEEE conference on computer vision and pattern recognition. pp. 4510–4520.

Schelter, S. et al., 2018. On challenges in machine learning model management. Bulletin of the

IEEE Computer Society Technical Committee on Data Engineering, pp.5–15.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

211

Schulzrinne, H., Rao, A. & Lanphier, R., 1998. Real time streaming protocol (RTSP). Available

at: https://tools.ietf.org/html/rfc2326.

Se, S. & Brady, M., 2000. Vision-based detection of staircases. In Fourth Asian Conference on

Computer Vision ACCV. pp. 535–540.

Sefraoui, O., Aissaoui, M. & Eleuldj, M., 2012. OpenStack: toward an open-source solution for

cloud computing. International Journal of Computer Applications, 55(3), pp.38–42.

Segu𝚤, S. et al., 2016. Generic feature learning for wireless capsule endoscopy analysis.

Computers in biology and medicine, 79, pp.163–172.

Sekuboyina, A.K., Devarakonda, S.T. & Seelamantula, C.S., 2017. A convolutional neural

network approach for abnormality detection in wireless capsule endoscopy. In 2017 IEEE

14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE, pp. 1057–

1060.

Sermanet, P. et al., 2013. Overfeat: Integrated recognition, localization and detection using

convolutional networks. arXiv preprint arXiv:1312.6229.

Shah, N.F.M.N. & Ghazali, M., 2018. A systematic review on digital technology for enhancing

user experience in museums. In International Conference on User Science and

Engineering. Springer, pp. 35–46.

Shaham, T.R., Dekel, T. & Michaeli, T., 2019. Singan: Learning a generative model from a

single natural image. In Proceedings of the IEEE/CVF International Conference on

Computer Vision. pp. 4570–4580.

Sharma, T. et al., 2019. Fuzzy based Pooling in Convolutional Neural Network for Image

Classification. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

IEEE, pp. 1–6.

Shi, C., Wang, Y. & Yang, J., 2010. A local obstacle avoidance method for mobile robots in

partially known environment. Robotics and Autonomous Systems, 58(5), pp.425–434.

Shin, Y., Qadir, H.A. & Balasingham, I., 2018. Abnormal Colon Polyp Image Synthesis Using

Conditional Adversarial Networks for Improved Detection Performance. IEEE Access, 6,

pp.56007–56017.

Silva, J. et al., 2014. Toward embedded detection of polyps in wce images for early diagnosis of

colorectal cancer. International journal of computer assisted radiology and surgery, 9(2),

pp.283–293.

Simard, P.Y. et al., 2003. Best practices for convolutional neural networks applied to visual

document analysis. In Icdar. Citeseer.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

212

Simonyan, K. & Zisserman, A., 2014. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Snoek, J., Larochelle, H. & Adams, R.P., 2012. Practical bayesian optimization of machine

learning algorithms. arXiv preprint arXiv:1206.2944.

Sommen, F. van der et al., 2016. Computer-aided detection of early neoplastic lesions in

Barrett’s esophagus. Endoscopy, 48(07), pp.617–624.

Springenberg, J.T. et al., 2014. Striving for simplicity: The all convolutional net. arXiv preprint

arXiv:1412.6806.

Srivastava, N. et al., 2014. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1), pp.1929–1958.

Stock, S., Erler, C. & Stork, W., 2018. Realistic simulation of progressive vision diseases in

virtual reality. In Proceedings of the 24th ACM Symposium on Virtual Reality Software

and Technology. ACM.

Sutton, R., 1986. Two problems with back propagation and other steepest descent learning

procedures for networks. In Proceedings of the Eighth Annual Conference of the

Cognitive Science Society, 1986. pp. 823–832.

Swain, P., 2008. The future of wireless capsule endoscopy. World journal of gastroenterology:

WJG, 14(26), p.4142.

Szegedy, C. et al., 2015. Going deeper with convolutions. In Proceedings of the IEEE conference

on computer vision and pattern recognition. pp. 1–9.

Szegedy, C. et al., 2017. Inception-v4, inception-resnet and the impact of residual connections on

learning. In Proceedings of the AAAI Conference on Artificial Intelligence.

Szegedy, C. et al., 2016. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recognition. pp.

2818–2826.

Tajbakhsh, N., Gurudu, S.R. & Liang, J., 2015. Automatic polyp detection in colonoscopy

videos using an ensemble of convolutional neural networks. In 2015 IEEE 12th

International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 79–83.

Tan, M. et al., 2019. Mnasnet: Platform-aware neural architecture search for mobile. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

pp. 2820–2828.

Tan, M. & Le, Q., 2019. Efficientnet: Rethinking model scaling for convolutional neural

networks. In International Conference on Machine Learning. PMLR, pp. 6105–6114.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

213

Tan, M. & Le, Q.V., 2019. Mixconv: Mixed depthwise convolutional kernels. arXiv preprint

arXiv:1907.09595.

Tao, Y., Ding, L. & Ganz, A., 2017. Indoor Navigation Validation Framework for Visually

Impaired Users. IEEE Access, 5, pp.21763–21773.

Tapu, R., Mocanu, B. & Zaharia, T., 2018. Wearable assistive devices for visually impaired: A

state of the art survey. Pattern Recognition Letters.

Theodoridis, S. & Koutroumbas, K., 2009. Pattern Recognition (Fourth Edition) Fourth Edition.

S. Theodoridis & K. Koutroumbas, eds., Boston: Academic Press. Available at:

http://www.sciencedirect.com/science/article/pii/B9781597492720500037.

Tian, S. et al., 2018. A Unified Framework for Tracking Based Text Detection and Recognition

from Web Videos. IEEE Transactions on Pattern Analysis and Machine Intelligence,

40(3), pp.542–554.

Tighe, J. & Lazebnik, S., 2010. Superparsing: scalable nonparametric image parsing with

superpixels. In European conference on computer vision. Springer, pp. 352–365.

Tulyakov, S. et al., 2018. Mocogan: Decomposing motion and content for video generation. In

Proceedings of the IEEE conference on computer vision and pattern recognition. pp.

1526–1535.

Uijlings, J.R. et al., 2013. Selective search for object recognition. International journal of

computer vision, 104(2), pp.154–171.

Ulyanov, D. et al., 2016. Texture Networks: Feed-forward Synthesis of Textures and Stylized

Images. CoRR, abs/1603.03417. Available at: http://arxiv.org/abs/1603.03417.

Vaishnav, D., Rao, B.R. & Bade, D., 2021. Wearable Assistance Device for the Visually

Impaired. In Advances in Machine Learning and Computational Intelligence. Springer,

pp. 667–676.

Vapnik, V., 2013. The nature of statistical learning theory, Springer science & business media.

Vasilakakis, M. et al., 2016. Weakly-supervised lesion detection in video capsule endoscopy

based on a bag-of-colour features model. In International workshop on computer-assisted

and robotic endoscopy. Springer, pp. 96–103.

Vasilakakis, M.D. et al., 2018. Weakly supervised multilabel classification for semantic

interpretation of endoscopy video frames. Evolving Systems, pp.1–13.

Vemuri, A.S., 2019. Survey of Computer Vision and Machine Learning in Gastrointestinal

Endoscopy. arXiv e-prints, p.arXiv:1904.13307.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

214

Vinoski, S., 2006. Advanced message queuing protocol. IEEE Internet Computing, 10(6), pp.87–

89.

Viola, P., Jones, M. & others, 2001. Robust real-time object detection. International journal of

computer vision, 4(34-47), p.4.

Voigt, P. & Bussche, A. Von dem, 2017. The eu general data protection regulation (gdpr). A

Practical Guide, 1st Ed., Cham: Springer International Publishing.

Wang, D. et al., 2020. UAV environmental perception and autonomous obstacle avoidance: A

deep learning and depth camera combined solution. Computers and Electronics in

Agriculture, 175, p.105523.

Wang, P. et al., 2013. Design and implementation of a web-service-based public-oriented

personalized health care platform. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 43(4), pp.941–957.

Wang, S. et al., 2015. Computer aided endoscope diagnosis via weakly labeled data mining. In

2015 IEEE International Conference on Image Processing (ICIP). IEEE, pp. 3072–3076.

Wang, S. et al., 2016. Computer-aided endoscopic diagnosis without human-specific labeling.

IEEE Transactions on Biomedical Engineering, 63(11), pp.2347–2358.

Wang, Z. et al., 2004. Image quality assessment: from error visibility to structural similarity.

IEEE transactions on image processing, 13(4), pp.600–612.

Wang, Z., She, Q. & Ward, T.E., 2019. Generative adversarial networks in computer vision: A

survey and taxonomy. arXiv preprint arXiv:1906.01529.

Waters, B., 2005. Software as a service: A look at the customer benefits. Journal of Digital Asset

Management, 1(1), pp.32–39.

Wei, L.-Y. et al., 2009. State of the art in example-based texture synthesis. In Eurographics

2009, State of the Art Report, EG-STAR. pp. 93–117.

Weil, S.A. et al., 2006. Ceph: A scalable, high-performance distributed file system. In

Proceedings of the 7th symposium on Operating systems design and implementation. pp.

307–320.

Weiss, M. et al., 2020. Navigation Agents for the Visually Impaired: A Sidewalk Simulator and

Experiments. In L. P. Kaelbling, D. Kragic, & K. Sugiura, eds. Proceedings of the

Conference on Robot Learning. Proceedings of Machine Learning Research. PMLR, pp.

1314–1327. Available at: http://proceedings.mlr.press/v100/weiss20a.html.

WHO, 2018. World Health Organization - Blindness and visual impairement. Available at:

http://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

215

Wilcoxon, F., 1947. Probability tables for individual comparisons by ranking methods.

Biometrics, 3(3), pp.119–122.

Wimmer, G. et al., 2016. Convolutional neural network architectures for the automated diagnosis

of celiac disease. In International Workshop on Computer-Assisted and Robotic

Endoscopy. Springer, pp. 104–113.

Wu, B. et al., 2019. Fbnet: Hardware-aware efficient convnet design via differentiable neural

architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. pp. 10734–10742.

Wyrkabkiewicz, K., Tarczewski, T. & Niewiara, L., 2020. Local Path Planning for Autonomous

Mobile Robot Based on APF-BUG Algorithm with Ground Quality Indicator. In

Advanced, Contemporary Control. Springer, pp. 979–990.

Xiao, H., Rasul, K. & Vollgraf, R., 2017. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xiao, J. et al., 2010. Sun database: Large-scale scene recognition from abbey to zoo. In 2010

IEEE computer society conference on computer vision and pattern recognition. IEEE, pp.

3485–3492.

Xiao, K. et al., 2020. EdgeABC: An architecture for task offloading and resource allocation in

the Internet of Things. Future Generation Computer Systems, 107, pp.498–508.

Xie, S. et al., 2017. Aggregated residual transformations for deep neural networks. In

Proceedings of the IEEE conference on computer vision and pattern recognition. pp.

1492–1500.

Xu, Q.-L., Yu, T. & Bai, J., 2017. The mobile robot path planning with motion constraints based

on Bug algorithm. In 2017 Chinese Automation Congress (CAC). IEEE, pp. 2348–2352.

Yang, K. et al., 2018. Unifying terrain awareness for the visually impaired through real-time

semantic segmentation. Sensors (Switzerland), 18(5), pp.1–32.

Yang, L. et al., 2021. CondenseNet V2: Sparse Feature Reactivation for Deep Networks. arXiv

preprint arXiv:2104.04382.

Yang, T.-J. et al., 2018. Netadapt: Platform-aware neural network adaptation for mobile

applications. In Proceedings of the European Conference on Computer Vision (ECCV).

pp. 285–300.

Yao, K., 2013. Zoom gastroscopy: Magnifying endoscopy in the stomach, Springer Science &

Business Media.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

216

Yi, Z. et al., 2017. Dualgan: Unsupervised dual learning for image-to-image translation. In

Proceedings of the IEEE international conference on computer vision. pp. 2849–2857.

Yildirim, O. & Baloglu, U., 2019. REGP: A New Pooling Algorithm for Deep Convolutional

Neural Networks. Neural Network World, 29(1), pp.45–60.

Yu, D. et al., 2014. Mixed pooling for convolutional neural networks. In International

Conference on Rough Sets and Knowledge Technology. Springer, pp. 364–375.

Yu, T. & Zhu, H., 2020. Hyper-parameter optimization: A review of algorithms and applications.

arXiv preprint arXiv:2003.05689.

Yu, X. et al., 2018. AR Marker Aided Obstacle Localization System for Assisting Visually

Impaired. In 2018 IEEE International Conference on Electro/Information Technology

(EIT). IEEE, pp. 271–276.

Yuan, Y., Li, B. & Meng, M.Q.-H., 2015. Improved bag of feature for automatic polyp detection

in wireless capsule endoscopy images. IEEE Transactions on automation science and

engineering, 13(2), pp.529–535.

Yüksel, M.E. & Borlu, M., 2009. Accurate segmentation of dermoscopic images by image

thresholding based on type-2 fuzzy logic. IEEE Transactions on Fuzzy Systems, 17(4),

pp.976–982.

Zaharia, M. et al., 2010. Spark: Cluster computing with working sets. HotCloud, 10(10-10), p.95.

Zapf, M.P.H. et al., 2016. Assistive peripheral phosphene arrays deliver advantages in obstacle

avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study. Journal of

Neural Engineering, 13(2), p.026022.

Zeiler, M.D., 2012. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Zeiler, M.D. & Fergus, R., 2013. Stochastic pooling for regularization of deep convolutional

neural networks. arXiv preprint arXiv:1301.3557.

Zeiler, M.D. & Fergus, R., 2014. Visualizing and understanding convolutional networks. In

European conference on computer vision. Springer, pp. 818–833.

Zhang, H. et al., 2019. Self-attention generative adversarial networks. In International

conference on machine learning. PMLR, pp. 7354–7363.

Zhang, L., Gooya, A. & Frangi, A.F., 2017. Semi-supervised assessment of incomplete LV

coverage in cardiac MRI using generative adversarial nets. In International Workshop on

Simulation and Synthesis in Medical Imaging. Springer, pp. 61–68.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

217

Zhang, R. et al., 2016. Automatic detection and classification of colorectal polyps by transferring

low-level CNN features from nonmedical domain. IEEE journal of biomedical and health

informatics, 21(1), pp.41–47.

Zhang, S. et al., 2019. Static Gait Planning Method for Quadruped Robot Walking on Unknown

Rough Terrain. IEEE Access, 7, pp.177651–177660.

Zhang, X. et al., 2018. Shufflenet: An extremely efficient convolutional neural network for

mobile devices. In Proceedings of the IEEE conference on computer vision and pattern

recognition. pp. 6848–6856.

Zhao, Y. et al., 2018. Enabling People with Visual Impairments to Navigate Virtual Reality with

a Haptic and Auditory Cane Simulation. In Proceedings of the 2018 CHI Conference on

Human Factors in Computing Systems. ACM.

Zhou, Y. et al., 2017. A real-time and fully distributed approach to motion planning for

multirobot systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

49(12), pp.2636–2650.

Zhou, Y. et al., 2018. Non-stationary texture synthesis by adversarial expansion. arXiv preprint

arXiv:1805.04487.

Zhu, J.-Y. et al., 2017. Unpaired image-to-image translation using cycle-consistent adversarial

networks. In Proceedings of the IEEE international conference on computer vision. pp.

2223–2232.

Zimmermann, H.-J., 2011. Fuzzy set theory—and its applications, Springer Science & Business

Media.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13

