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ABSTRACT  

 This doctoral dissertation explores intelligent systems and services for image and video 

analysis. In view of scientific challenges for developing innovative solutions with a broad social 

impact, it investigates applications in biomedicine and computer-assisted navigation of visually 

impaired individuals. In this context, it focuses on machine learning, particularly the investigation 

of methods to improve the efficiency and the effectiveness of deep artificial neural network 

architectures, such as the Convolutional Neural Networks (CNNs). 

 In Convolutional Neural Networks (CNNs) the input data can contain uncertainties, such 

as noise, color and geometric ubiquities, that is naturally propagated from the input layer to the 

convolution layers of the network affecting the quality of the extracted features. To cope with this 

problem, a novel pooling operation based on (type-1) fuzzy sets is proposed, named Fuzzy Pooling, 

which can be used as a drop-in replacement of the current, crisp, pooling layers of CNN 

architectures. Several experiments using publicly available datasets show that the proposed 

approach can enhance the classification performance of a CNN. 

 Aiming to improve the effectiveness of CNNs, especially in the context of medical image 

analysis, a novel architecture named Look Behind Fully Convolutional Neural Network (LB-FCN) 

is proposed. The architecture is capable of extracting multi-scale image features by using blocks 

of parallel convolutional layers with different filter sizes. These blocks are connected by look-

behind connections, so that the features they produce are combined with features extracted from 

behind layers, thus preserving the respective information. Furthermore, it has a smaller number of 

free parameters than conventional CNN architectures, which makes it suitable for training with 

smaller datasets. This is particularly useful in medical image analysis, since data availability is 

usually limited, due to ethicolegal constraints. Experiments on publicly available gastrointestinal 

image datasets show higher classification performance compared to state-of-the-art machine and 

deep learning methodologies. The architecture is capable of generalizing well even when the 

training dataset is different than the one on which it is tested. To investigate that, a novel cross-

dataset experimental study was performed on various publicly available gastrointestinal tract 

image datasets, containing images from different modalities, including Wireless Capsule 

Endoscopy (WCE) and flexible endoscopy.  

 The number of training samples in CNN training is directly linked to their generalization 

performance. When the training samples are limited, such as in the case of medical images, the 

generalization performance is negatively affected. A typical approach to mediate this problem is 

to use data augmentation techniques, which image rotation and translation. While effective, this 

technique still requires a substantial amount of training samples to be available. To battle this 

problem, in the context of inflammatory conditions detection in WCE images, a novel approach is 

presented that uses Generative Adversarial Networks (GANs) to generate artificial images. More 
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specifically the study trained two GANs, one to generate healthy small bowel images and another, 

images with inflammatory conditions. The images are then used to train a CNN architecture and 

validate its performance in real images. The results from this study show that the substitution of 

real with artificially generated endoscopic images for CNN training can be a viable option. 

While CNNs have a remarkable performance in computer vision problems, usually, they 

are computationally expensive. This limits their usage in high-end expensive devices with multiple 

graphical processing units (GPUs). To mediate the problem, a typical approach is to reduce the 

number of floating-point operations (FLOPs) required for inference, at the expense of 

generalization performance. In this context, a novel LB-FCN inspired CNN architecture was 

proposed, named LB-FCN light. The architecture features a relatively low number of free 

parameters and FLOPs, while managing to maintain high generalization performance. The 

performance of the network is validated in the problem of staircase detection in indoor and outdoor 

environments, with application on assisted navigation of visually impaired individuals. The results 

from the experimental evaluation of LB-FCN light indicate its advantageous performance over the 

relevant state-of-the-art architectures. 

The development of easy-to-use machine learning (ML) application frameworks has 

enabled the development of advanced artificial intelligence (AI) applications with only a few lines 

of self-explanatory code. However, the deployment of ML algorithms as a service for remote high 

throughput ML task execution, involving complex data-processing pipelines can still be 

challenging, especially with respect to production ML use cases. To cope with this issue, a novel 

system architecture is presented, which enables Algorithm-agnostic, Scalable ML (ASML) task 

execution for high throughput applications. It aims to provide an answer to the research question 

of how to design and implement an abstraction framework, suitable for the deployment of end-to-

end ML pipelines in a generic and standard way. The architecture manages horizontal scaling, task 

scheduling, reporting, monitoring and execution of multi-client ML tasks using modular, 

extensible components that abstract the execution details of the underlying algorithms. 

Applications of ASML are investigated for the analysis of image streams in the context of medical 

image analysis and assisted navigation of visually impaired individuals. The results of the 

experiments performed demonstrate its capacity for parallel, mission critical, task execution.  

 Assistive navigation systems require the development, assessment, and optimization of 

different algorithms for obstacle detection, recognition, and avoidance, as well as path planning. 

This is a painstaking and costly process that requires repetitive measurements under stable 

conditions, which is usually difficult to achieve. To this end, a novel digital twin framework for 

the simulation and evaluation of assistive navigation systems is presented. The framework can 

replicate relevant real-life situations, enabling the evaluation and optimization of algorithms 

through adjustable and cost-effective simulations. The utility and the effectiveness of the 

framework are demonstrated with an indicative simulation study in the context of a camera-based 

wearable system for the navigation of visually impaired individuals in an outdoor cultural space. 
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 The work presented in this dissertation includes methods with both theoretical and practical 

impact, that can be used as the basis for further research, and the applications presented can be 

used as paradigms for applications on different domains, such as telemedicine, robotics, and 

intelligent transportation systems. 
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ΠΕΡΙΛΗΨΗ  

 Η παρούσα διδακτορική διατριβή διερευνά πρωτότυπα έξυπνα συστήματα και υπηρεσίες 

ανάλυσης εικόνας και βίντεο. Λαμβάνοντας υπόψη τις επιστημονικές προκλήσεις για την 

ανάπτυξη καινοτόμων λύσεων με ευρύ κοινωνικό αντίκτυπο, διερευνά εφαρμογές στη βιοϊατρική 

και την καθοδήγηση ατόμων με προβλήματα όρασης. Σε αυτό το πλαίσιο, επικεντρώνεται στη 

μηχανική μάθηση, εστιάζοντας στη διερεύνηση μεθόδων για τη βελτίωση της αποδοτικότητας και 

αποτελεσματικότητας των αρχιτεκτονικών βαθέων τεχνητών νευρικών δικτύων, όπως τα 

Συνελικτικά Νευρωνικά Δίκτυα (Convolutional Neural Networks, CNN). 

 Τα δεδομένα εισόδου των CNN μπορούν να περιέχουν αβεβαιότητες, όπως θόρυβος, 

χρώμα και γεωμετρική απροσδιοριστία, που μεταδίδονται από το επίπεδο εισόδου στα 

συνελικτικά επίπεδα του δικτύου επηρεάζοντας την ποιότητα των εξαγόμενων χαρακτηριστικών. 

Προκειμένου να αντιμετωπιστεί αυτό το πρόβλημα, προτείνεται μια νέα λειτουργία συγκέντρωσης 

(pooling) βασισμένη σε ασαφή σύνολα (τύπου-1), με όνομα Fuzzy Pooling, η οποία μπορεί να 

χρησιμοποιηθεί για την αντικατάσταση των υπαρχόντων επιπέδων pooling των CNN 

αρχιτεκτονικών. Πειράματα σε δημοσίως διαθέσιμα δεδομένα έδειξαν ότι η χρήση της  

προτεινόμενη προσέγγισης μπορεί να χρησιμοποιηθεί για την βελτίωση της απόδοσης 

ταξινόμησης των CNN. 

 Με στόχο τη βελτίωση της αποτελεσματικότητας των CNN, και ειδικότερα στο πλαίσιο 

της ανάλυσης ιατρικών εικόνων, προτάθηκε μια νέα αρχιτεκτονική CNN που ονομάζεται Look 

Behind Fully Convolutional Neural Network (LB-FCN). Η αρχιτεκτονική είναι ικανή να εξαγάγει 

χαρακτηριστικά πολλαπλών κλιμάκων χρησιμοποιώντας σύνολα (μπλοκ) παράλληλων 

συνελικτικών στρωμάτων με διαφορετικά μεγέθη φίλτρου. Τα σύνολα αυτά, συνδέονται με 

οπίσθιες συνδέσεις, με στόχο τον συνδυασμό των παραγόμενων χαρακτηριστικών με τα 

χαρακτηριστικά  εισόδου, διατηρώντας έτσι τις αντίστοιχες πληροφορίες. Επιπλέον, η 

αρχιτεκτονική έχει μικρότερο πλήθος ελεύθερων παραμέτρων σε σχέση με συμβατικές 

αρχιτεκτονικές CNN, γεγονός που επιτρέπει την εκπαίδευσή της με μικρό πλήθος δεδομένων 

εκπαίδευσης. Αυτό είναι ιδιαίτερα χρήσιμο στην ανάλυση ιατρικών εικόνας, δεδομένου ότι η 

διαθεσιμότητα δεδομένων εκπαίδευσης είναι συνήθως περιορισμένη, λόγω βιοηθικών και 

νομικών περιορισμών. Πειράματα σε δημοσίως διαθέσιμα δεδομένα εικόνων του γαστρεντερικού 

συστήματος, παρουσιάζουν υψηλή απόδοση ταξινόμησης σε σύγκριση με άλλες σύγχρονες 

προσεγγίσεις. Η αρχιτεκτονική είναι ικανή να γενικεύει καλά ακόμη και όταν το δεδομένα 

εκπαίδευσης προέρχονται από διαφορετικά σύνολα δεδομένων από αυτά στα οποίο δοκιμάζεται. 

Σε αυτό το πλαίσιο, πραγματοποιήθηκε πειραματική μελέτη σε πληθώρα δημοσίων διαθέσιμων 

συνόλων δεδομένων γαστρεντερικού συστήματος, απαρτιζόμενα από εικόνες που έχουν ληφθεί 

κάνοντας χρήση διαφορετικών ιατρικών οργάνων, όπως ενδοσκοπικής κάψουλας και εύκαμπτου 

ενδοσκοπίου.  
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 Η δυνατότητα γενίκευσης των CNN συνδέεται άμεσα με το διαθέσιμο πλήθος δειγμάτων 

εκπαίδευσης. Όταν τα δείγματα εκπαίδευσης είναι περιορισμένα, όπως στην περίπτωση ιατρικών 

εικόνων, η δυνατότητα γενίκευσης επηρεάζεται αρνητικά. Μια τυπική προσέγγιση για τον 

περιορισμό αυτού του προβλήματος είναι η χρήση τεχνικών επαύξησης δεδομένων, 

τροποποιώντας τα υπάρχοντα δεδομένα. Αν και η τεχνική αυτή είναι αποτελεσματική και πάλι 

απαιτείται σημαντικό πλήθος δεδομένων εκπαίδευσης. Για την καταπολέμηση αυτού του 

προβλήματος, στο πλαίσιο της ανίχνευσης φλεγμονών σε εικόνες που προέρχονται από 

ενδοσκοπική κάψουλα, παρουσιάζεται μια προσέγγιση που χρησιμοποιεί Παραγωγικά 

Αντιπαραθετικά Δίκτυα (Generative Adversarial Networks, GAN) για τη δημιουργία συνθετικών 

εικόνων. Πιο συγκεκριμένα, η μελέτη βασίζεται στην εκπαίδευση δύο GAN, ένα για να την 

παραγωγή υγιών εικόνων του λεπτού εντέρου και ένα άλλο, για την παραγωγή εικόνων με 

φλεγμονές. Οι παραγόμενες εικόνες στη συνέχεια χρησιμοποιούνται για την εκπαίδευση ενός 

CNN με στόχο την αξιολόγηση της αποδοτικότητάς του σε πραγματικές εικόνες. Τα 

αποτελέσματα αυτής της μελέτης δείχνουν ότι η αντικατάσταση πραγματικών με τεχνητά 

παραγόμενων ενδοσκοπικών εικόνων για εκπαίδευση στο CNN μπορεί να είναι μια βιώσιμη 

επιλογή. 

Η αξιοσημείωτη απόδοση των CNN στον τομέα της υπολογιστικής όρασης, συνήθως, 

συνοδεύεται από αυξημένο υπολογιστικό κόστος. Αυτό περιορίζει τη χρήση τους σε συσκευές 

υψηλών υπολογιστικών προδιαγραφών εξοπλισμένες με πολλαπλές κάρτες γραφικών. Για την 

αντιμετώπιση αυτού του προβλήματος, μια τυπική προσέγγιση είναι η μείωση των απαιτούμενων 

αριθμητικών πράξεων, σε βάρος της απόδοσης γενίκευσης. Σε αυτό το πλαίσιο, προτάθηκε μια 

νέα αρχιτεκτονική CNN, εμπνευσμένη από την LB-FCN, με όνομα LB-FCN light. Η 

αρχιτεκτονική διαθέτει χαμηλό αριθμό ελεύθερων παραμέτρων και πράξεων, ενώ παράλληλα 

διατηρεί υψηλή απόδοση γενίκευσης. Η απόδοση του δικτύου διερευνήθηκε στο πρόβλημα της 

ανίχνευσης σκαλών σε εσωτερικούς και εξωτερικούς χώρους, με εφαρμογές στην υποβοηθούμενη 

πλοήγηση ατόμων με προβλήματα όρασης. Τα αποτελέσματα από την πειραματική αξιολόγηση 

του LB-FCN light δείχνουν πως απόδοσή του είναι υψηλότερη σε σύγκριση με άλλες, σύγχρονες 

αρχιτεκτονικές CNNs.  

Η ανάπτυξη εύχρηστων πλαισίων εφαρμογών μηχανικής μάθησης, δίνει την δυνατότητα 

ανάπτυξης προηγμένων εφαρμογών τεχνητής νοημοσύνης με μόνο λίγες γραμμές κώδικα. 

Ωστόσο, η εγκατάσταση αλγορίθμων μηχανικής μάθησης σε απομακρυσμένο περιβάλλον υψηλής 

απόδοσης, που περιλαμβάνει περίπλοκα επίπεδα επεξεργασίας δεδομένων, εξακολουθεί να είναι 

δύσκολη, ειδικά όταν τα περιβάλλοντα αυτά προορίζονται για χρήση από επιχειρήσεις. Για την 

αντιμετώπιση αυτού του προβλήματος, παρουσιάζεται μια νέα αρχιτεκτονική συστήματος, η 

οποία επιτρέπει την εκτέλεση εργασιών μηχανικής μάθησης για εφαρμογές υψηλής απόδοσης, με 

όνομα Algorithm-agnostic, Scalable Machine Learning (ASML). Στόχος της αρχιτεκτονικής είναι 

να δώσει μια απάντηση στο ερευνητικό πρόβλημα της σχεδίας και ανάπτυξης πλαισίου 

εφαρμογής, κατάλληλο για την ανάπτυξη διεργασιών μηχανικής μάθησης με γενικό και 
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τυποποιημένο τρόπο, ανεξάρτητο του αλγορίθμου μηχανικής μάθησης. Η αρχιτεκτονική 

διαχειρίζεται την οριζόντια κλιμάκωση, τον προγραμματισμό εργασιών, την αναφορά, την 

παρακολούθηση και την εκτέλεση εργασιών μηχανικής μάθησης, με δυνατότητα χρήσης από 

πολλαπλούς χρήστες, χρησιμοποιώντας ανεξάρτητα και επεκτάσιμα στοιχεία που αποκρύπτουν 

τις λεπτομέρειες εκτέλεσης των υποκείμενων αλγορίθμων. Η δυνατότητες της αρχιτεκτονικής 

διερευνήθηκαν σε εφαρμογές ανάλυσης ροών εικόνων από ιατρικά δεδομένα και στα πλαίσια της 

υποβοηθούμενης πλοήγηση ατόμων με προβλήματα όρασης. Τα αποτελέσματα των πειραμάτων 

που πραγματοποιήθηκαν δείχνουν ότι η αρχιτεκτονική είναι κατάλληλη για παράλληλη χρήση και 

σε κρίσιμα συστήματα. 

 Τα συστήματα υποβοηθούμενης πλοήγησης απαιτούν την ανάπτυξη, αξιολόγηση και 

βελτιστοποίηση διαφορετικών αλγορίθμων για την ανίχνευση εμποδίων, την αναγνώριση και την 

αποφυγή τους, καθώς και τον σχεδιασμό διαδρομών. Η διαδικασία αυτή είναι ιδιαιτέρως επίπονη 

και δαπανηρή και απαιτεί επαναλαμβανόμενες μετρήσεις υπό σταθερές συνθήκες, κάτι που 

συνήθως είναι δύσκολο να επιτευχθεί. Για το σκοπό αυτό, παρουσιάζεται ένα πρωτότυπο πλαίσιο 

εφαρμογής για την προσομοίωση και την αξιολόγηση συστημάτων υποβοήθησης πλοήγησης. Το 

πλαίσιο αυτό μπορεί να αναπαράγει πραγματικές καταστάσεις, επιτρέποντας την αξιολόγηση και 

βελτιστοποίηση αλγορίθμων μέσω ρυθμιζόμενων και οικονομικά αποδοτικών προσομοιώσεων. Η 

χρησιμότητα και η αποτελεσματικότητα του πλαισίου αποδεικνύονται με μια ενδεικτική μελέτη 

προσομοίωσης στο πλαίσιο ενός φορητού συστήματος που βασίζεται σε κάμερα για την πλοήγηση 

ατόμων με προβλήματα όρασης σε έναν υπαίθριο χώρο πολιτιστικού ενδιαφέροντος. 

 Το έργο που παρουσιάστηκε στην παρούσα διατριβή περιλαμβάνει μεθόδους με θεωρητικό 

και πρακτικό αντίκτυπο, οι οποίες μπορούν να χρησιμοποιηθούν ως βάση για περαιτέρω έρευνα. 

Οι εφαρμογές που παρουσιάζονται μπορούν να χρησιμοποιηθούν ως πρότυπα για εφαρμογές σε 

διαφορετικούς τομείς, όπως τηλεϊατρική, ρομποτική και έξυπνα συστήματα μετακίνησης. 
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CHAPTER 1  

INTRODUCTION  

This chapter introduces the notions investigated in this dissertation, it describes the research 

context of the performed investigation, its aims, and its novel scientific contributions. It includes 

references to the publications produced, as well as a structure of this document.  

1.1 Introduction 

Nowadays, intelligent systems based on Artificial Neural Networks (ANNs) are flourishing in the 

context of multidimensional signal analysis, especially for the analysis of images and videos. 

ANNs are Machine Learning (ML) systems that simulate the biological neural networks of living 

organisms. They are used in a variety of applications that include pattern recognition, e.g., in the 

identification of persons, objects, etc., and the solution of forecasting problems based on previous 

observations, e.g., risk prediction from time series data. The increased computational power of 

modern computer systems, especially the use of Graphical Processing Units (GPUs), enabled Deep 

Learning (DL), a contemporary machine learning paradigm based on Deep Neural Network (DNN) 

architectures, which are ANNs with multiple hidden layers of artificial neurons. DNNs are 

increasingly becoming more efficient in recognizing patterns in large volume data (big data), but 

also in solving complex prediction problems (Gu et al. 2018).  

Conventional machine learning systems, such as Support Vector Machines (SVMs)  (Vapnik 2013) 

and ANNs, require a data pre-processing step in which typically features are extracted from the 

data, or selected from existing features, and used as input to the model. This pre-processing step 

typically requires a domain expert and aim to represent specific characteristics of the input that are 

of interest in the context of an application. For this reason, these features are typically referred as 

“hand-crafted”.  In computer vision, such features mainly include color, shape, and textural 

information. In deep learning, this data pre-processing step is eliminated, as the feature extraction 

is automated through training, which removes some of the dependency on domain expert. Such 

models ingest the entire data, instead of features, from which multiple levels of features are 

extracted. Convolutional Neural Networks (CNNs) are a representative example of DL with high 

efficiency (LeCun et al. 2015; Ravi et al. 2016).  

Since 2012 (Krizhevsky et al. 2012), CNNs have revolutionized the domain of Computer Vision 

(CV) and nowadays are considered the de-facto choice for image analysis tasks. Applications of 

CNNs are numerous (Liu et al. 2017) . In this dissertation, motivated from the challenges posed by 

the projects funding the respective research, more attention has been given to applications related 
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to the recognition and detection of objects in natural, assistive navigation systems for visually 

impaired people, and medical image analysis (Appendix A).  

Another area significantly impacted by DL are the generative models. Generative Adversarial 

Networks (GANs) (Goodfellow et al. 2014) and Adversarial Auto Encoders (AE) (Makhzani et al. 

2015) are examples of generative models with a remarkable performance in generating realistic 

images. Applications of such models include, image generation from random noise (Goodfellow 

et al. 2014), image-to-image translations (Isola et al. 2017), super-resolution (Ledig et al. 2017) 

and realistic medical image generation (Kazeminia et al. 2020). 

Nowadays most of the population of developed countries use cameras on a daily basis, e.g., 

through a mobile smartphone device. The increase in computational power of such portable 

devices enabled the development of smart applications implementing elements of artificial 

intelligence. Since 2014 (Jin et al. 2014), there has been an increased research interest towards the 

reduction of the computational resource requirements of DL models, such as CNNs, to fit their 

limited hardware requirements. To achieve that, most “mobile-oriented” models, primarily focus 

on ways to reduce the free parameters of these models and consequently the number of floating-

point operations (FLOPs) required for inference. In effect, such models (Howard et al. 2017) 

usually sacrifice the generalization capabilities of the model in favor of computational 

performance.  

This dissertation investigates DL models with enhanced generalization performance, even when 

the samples available for training these models are limited, methodologies that can reduce the 

computational requirements of such models to enable their use in embedded devices, and 

methodologies to provide ML remotely as a service. The results of this dissertation show that the 

proposed methodologies can be successfully used in a variety of different domains, including 

medical image analysis for clinical decision support, navigation systems to assist visually impaired 

people navigate in unknown environments, and software as a service deployment of complex ML 

pipelines, such as the pipelines required in such applications, which enable the use of ML in a cost-

efficient and production-ready way.  

1.2 Aims of this Dissertation 

This doctoral research investigates novel approaches to ML with focus in deep learning and their 

applications in computer-aided assistive technologies. The directions in which the research focuses 

have broad social impact and can be summarized as:  

• Investigate novel deep learning methodologies and develop DNN architectures and 

methods offering improved generalization and computational performance. 
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• Investigate image generation methodologies with applications in biomedical image 

synthesis.  

• Investigate methodologies that enable effective DNN training even when the data 

availability is limited.   

• Investigate methods that enable ML algorithms to be deployed in scalable production 

environments, and offered through remote intelligent services. 

• Investigate applications in the context of medical image analysis and computer-assisted 

navigation systems. 

• Investigate frameworks that enable in silico testing and evaluation of assistive navigation 

systems. 

1.3 Thesis Contributions  

The effort invested for the accomplishment of the aforementioned aims, resulted in the 

development of novel DNN architectures, methodologies, and applications:  

• An image pooling methodology based on fuzzy logic, named Fuzzy Pooling, which aims 

to cope with the local imprecision of the feature maps produced by the CNNs.  

• A CNN architecture, named Look-Behind Fully Convolutional Neural Network (LB-

FCN), that can generalize well, even when the availability of training data is limited. 

• A lightweight CNN architecture, named LB-FCN light, with relatively low computational 

footprint and high generalization capabilities, designed for mobile and embedded 

applications. 

• An algorithm-agnostic architecture for scalable machine learning (ASML), enabling the 

implementation of, even real-time, remote ML services. 

• A GAN-based image synthesis methodology that enables substitution of real with 

artificially generated endoscopic images for CNN training. 

• Applications of LB-FCN and other CNN architectures in the context of medical image 

analysis, including cross-dataset abnormality detection experiments and multi-label 

classification on wireless capsule endoscopy (WCE) images.  

• Applications of LB-FCN light in the context of obstacle detection for computer-assisted 

navigation. 

• Applications of ASML in the context of computer-aided endoscopy and computer-assisted 

navigation. 

• A digital twin framework, designed for the simulation and evaluation of assistive 

navigation systems. 
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The research and development in the scope of this doctoral thesis has been accepted for publication 

in six (6) international journals, and two (2) book chapters, and have been presented in three (3) 

international conferences. The list of publications is provided in Appendix A. 

1.4 Thesis Outline 

The rest of this thesis is organized in six (6) chapters:  

• Chapter 2 provides the necessary theoretical background to artificial neural networks, 

focusing on CNNs and GANs. It includes a detailed literature review. 

• Chapter 3 presents the proposed fuzzy pooling methodology.  

• Chapter 4 is dedicated to machine learning in the context of computer-aided endoscopy. It 

includes literature review along with novel contributions of CNN and GAN architectures 

that contribute to the aims of this study.  

• Chapter 5 investigates machine learning in the context of computer-assisted navigation and 

includes literature review of assistive navigation methodologies along with contributions 

that enable the development of such methods. 

• Chapter 6 presents a novel algorithm-agnostic system architecture that enables scalable 

machine learning.  

• Chapter 7 is the last chapter, where the conclusions and future prospects of further research 

are summarized.  
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CHAPTER 2 

ARTIFICIAL NEURAL NETWORKS 

This chapter aims to introduce the reader to the concepts of ML with primary focus on Deep 

Learning techniques. It provides a brief introduction in the concept of Artificial Neural Networks 

(ANNs), their usage and where their source of inspiration came from. Deep Learning is examined 

in detail with primary focus on a special kind of deep ANN architecture named Convolutional 

Neural Networks (CNNs) and their application in CV problems. The chapter also includes an 

introduction to Generative Adversarial Networks (GANs) along with a review of the state-of-the-

art methods in the context of artificial image generation.  

2.1 Introduction 

It is well known that the human brain contains billions of neurons (Figure 2.1) that are connected 

between each other via synapses and that these neurons are acting together in parallel and are 

responsible for our perception.  

 

Figure 2.1 A stripped down human brain neuron. Dendrites reassemble the input of the cell body (neuron), 

nucleus the computational unit and axon the output of the neuron. 

ANNs are inspired by the biological neurons and try to mimic the way human brain works. ANNs 

are a simplified simulation of the human brain neurons connected with synapses forming a graph. 

The basic computational unit firstly presented in late 50’s is called perceptron (Kubat 1999) and it 

was inspired by the earlier work of  (McCulloch & Pitts 1943). A basic perceptron is illustrated in 

(Figure 2.2). It can be noticed that a perceptron is a direct translation of brain neuron into a 

computational unit, with dendrites replaced by weights 𝑊𝑖, nucleus with an input and a weight 

sum, known as transfer function, and the axon with an activation function 𝜑.  
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Figure 2.2 A graphical representation of a perceptron. 

Essentially a perceptron computes the weight sum of its inputs which are then passed by an 

activation function. This produces a signal if a threshold value is reached. This can be expressed 

as:  

 𝑦 = 𝜑 (∑𝑥𝑖
𝑖

𝑤𝑖) (2.1) 

Examining (2.1), one can notice that a single perceptron is a basic linear binary classifier (Figure 

2.3) that can be expressed as:     

 𝑓(𝑥) = {
1, 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 (2.2) 

The 𝑤 ∙ 𝑥 is the dot product of the input 𝑥 and weights 𝑤 matrices, respectively. The 𝑏, known as 

bias, is an independent parameter which helps the decision boundary to move away from the origin. 

Neurons with large bias, can be activated easily while neurons with negative bias can impact the 

perceptron to activate harder.    

An illustration of the effectiveness of a single perceptron model can be observed by modeling a 

NAND gate (Figure 2.3b). The behavior of NAND logical gate is shown in Table 2.1 and can be 

expressed as perceptron with two inputs, a bias and a threshold: 

 𝑓(𝑥1, 𝑥2) = {
1, 𝑖𝑓 −2 ∙ 𝑥1 ∙ −2 ∙ 𝑥2 + 3 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 

 (2.3) 

where 𝑤1 = 𝑤2 = −2, 𝑏 = 3. 
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(a) (b) 

Figure 2.3 (a) A generic linear classifier following 𝑓(𝑥) = 𝑤 ∙ 𝑥 + 𝑏. (b) The NAND gate input space.  

Table 2.1 The NAND gate behavior 

𝒙𝟏 𝒙𝟐 𝒚 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

2.1.1 Perceptron Training  

In simple cases, where the function is linearly separable, it is possible to tune the weights and the 

threshold of the perceptron to output the desired values. In more complex scenarios, like the XOR 

logical gate, more perceptrons are required to achieve the desired output. The question that arises, 

is, when there are multiple perceptrons, how to compute, algorithmically those free parameters?  

A simple yet computationally wasteful approach, to calculate the weights and thresholds of a 

perceptron would be to follow an exhaustive search approach. As there is no guarantee that this 

approach would lead to a desirable output within reasonable time, the need for an algorithmic 

automation arises. There are multiple ways of computing these free parameters. The process of 

finding these parameters, is called “training” of a neural network.  

There are several methodologies to train a neural network such as the error back-propagation 

(Rumelhart et al. 1986), which will be discussed in the following subsection, yet a simple example 

for perceptron training  (Minsky & Papert 1988) is beneficial as it presents the basic principles 

behind training without the complications of a more complex approach.  In the training phase of a 

perceptron, a set of known examples called “training dataset” is presented to the network, multiple 

times. Each time the training dataset is presented, the free parameters are adjusted, according to a 
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training rule. This process is called supervised training, as for all the samples included in the 

training dataset, the input parameters and the desired output is known.  

Let 𝑥𝑖 be the input parameters and 𝑤𝑖 the weights. Let 𝑇 be the training dataset, defined as a set 

𝑇 = {𝑡1, 𝑡2…𝑡𝑖} which contain sample vectors 𝑡𝑖 = {𝑥1, 𝑥2…𝑥𝑖 , 𝑦} where 𝑦 is desired output. For 

simplicity, the weights are combined with bias and the inputs of the model can be combined as a 

matrix 𝑊 and 𝑋 respectively (2.4). 

𝑊 =

[
 
 
 
 
𝑤1
𝑤2
…
𝑤𝑖
𝑏 ]
 
 
 
 

, 𝑋 = [

𝑥1
𝑥2
…
𝑥𝑖

] (2.4) 

The result of the dot product between the two matrices (2.4) is the output of the neuron 𝑧: 

𝑧 = 𝑤 ∙ 𝑥 (2.5) 

Training is achieved by adjusting the weight vector 𝑊 according to the distance between the output 

𝑧 of the perceptron and the desired output 𝑦 presented in the training vector 𝑡𝑖: 

𝑤′ = 𝑤 ± 𝑛 ∙ 𝑡 (2.6) 

Parameter 𝑛 is called learning rate, and is a small number, typically within [0,1], and it defines the 

speed in which the weights will be adjusted in each iteration. Having a large learning rate, can 

result into unstable learning while having too small, can lead to increased learning time.  When 

training, if 𝑧 is approaches the desired 𝑦, the term 𝑛 ∙ 𝑦 will be a positive value, and thus 𝑤′ =

𝑤 + 𝑛 ∙ 𝑦. On the other hand, if the desired 𝑦 is moving away then  𝑤′ = 𝑤 − 𝑛 ∙ 𝑦. The learning 

rule derived from this can be expressed as: 

𝑤′ = 𝑤 + 𝑛(𝑦 − 𝑧) ∙ 𝑤 (2.7) 

The Eq. (2.7) can now be rewritten as a desired weight change 𝛥𝑤 = 𝑤′ −𝑤 

𝛥𝑤 = 𝑛(𝑦 − 𝑧) ∙ 𝑡 (2.8) 

This equation originally introduced by (Van Der Malsburg 1986) was historically the first used to 

train logical unit and is called the “Perceptron Rule”. The perceptron rule can be algorithmically 

expressed as: 
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Algorithm 2.1 The perceptron rule algorithm (Van Der Malsburg 1986)  

1: while output != 𝑦 do  

2:     foreach 𝑡𝑖 in 𝑇: 

3:         output = evaluate model using 𝑡𝑖 
4:         if output != 𝑦 then 

5:            𝑤 = 𝑤′ according to (2.7) 

6:         end if 

7:     end foreach 

8: end while 

Although variations of the perceptron rule were introduced by (Minsky & Papert 1988) and later 

by (Kubat 1999), the main obstacle of how the above algorithm could generalize into training 

multiple perceptrons remained unsolved, effectively halting the neuroscience research for nearly 

15 years, placing neural networks power in question.  

2.1.2 The Activation Function 

An important component of an artificial neuron is the activation function, as it defines the way that 

the function behaves based on different input. Without an activation function the network would 

not be able to approximate complex, non-linear functional mapping between the input and the 

output.  The purpose of an activation function is to translate an input signal of a neuron in a network 

to an output signal, usually within a specified range of values. 

 
Figure 2.4 The step activation function 

In the example of the pervious section, the step activation function (Figure 2.4) was used, which 

activates whenever the input signal is greater than 0. Although computationally simple, it has 

major disadvantage when used in a perceptron; small changes to the input space can significantly 

alter the output of the neuron. An alternative function that enables smaller changes to the output 

of the neuron according to the input value is desired. There are many functions that fulfill this 

property, with the most commonly used one been the Logistic function (Figure 2.5a).   
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(a) 

Logistic  

𝑎(𝑥) = 1 (1 + 𝑒−𝛽𝑥)⁄  

(b)  

Tanh  

𝑎(𝑥) =
1 − 𝑒−2𝛽𝑥

1 + 𝑒−2𝛽𝑥
 

(c) 

Rectified Linear Units (ReLU) 

𝑎(𝑥) = max(0, 𝑥) 

 

Figure 2.5 Commonly used activation functions.  

The logistic non-linear function squashes the input value between 0 and 1 and has the advantage 

of smoothing the output according to the change of the provided input. While effective, it can also 

lead to computational mathematical loss as small real numbers are produced. When 𝛽 → ∞ the 

logistic function becomes has the same properties as the step function. Similarly, the tanh function 

(Figure 2.5b), squashes the values between -1 and 1, having the advantage of overcoming the 

problem of non zero-centered values. Unfortunately, tanh is usually avoided as it can lead to 

saturation problems while training, especially on large neural networks. Both logistic and tanh 

function belong to the same family of activation functions commonly known as “Sigmoid”. 

Recently, the Rectified Linear Units (ReLU) activation (Figure 2.5c) has been proposed (Nair & 

Hinton 2010). The ReLU function battles the problem of neuron saturation and is relatively 

computationally simple. These two properties are especially useful in deep neural networks, where 

the problem vanishing gradient is more apparent. Another benefit of ReLU activations, is the 

sparsity that arises when 𝑥 ≤  0, while sigmoid functions tend to generate small non-zero values 

leading to dense representations. While ReLU activation can lead to numeric explosions, newer 

versions of the function have been proposed, such as capped ReLU (Howard et al. 2017) 

𝑎(𝑥) = max (0,min (x, c)), where c is the max value, deal with this problem. Although there are 

not enough mathematical evidence to prove that ReLU activation function performs better the 

typical Sigmoid functions, the non-saturating properties of the function have empirically proven 

that can improve the training performance (Krizhevsky et al. 2012).  

Neurons with sigmoid functions as activations are called “sigmoid neuron” and, generally, neurons 

are typically named after the activation function that is used. In literature though, the perceptron 

term has been widely adopted to name any sort of artificial neuron. For historical reasons, neurons 

are named by the by the widely used naming convention “perceptron” and the terms “sigmoid” or 

“ReLU” neurons, or other, are only used when emphasis is required on their activation function. 
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2.1.2 Feed Forward Networks and Multilayer Perceptron 

Although a single perceptron can be used to model a simple, linear, binary classifier it is unable to 

model more complex functions such as the XOR logical function. The XOR logical function is 

non-linear and computes the eXclusive OR logical operation. The non-linearity of the XOR 

function can be observed in (Figure 2.6). 

 

Figure 2.6 Visual representation of the XOR logical function with the truth table on the left and the 

function plot on the right. 

Observing (Figure 2.6), it can be noticed that no single line is able separate the XOR two-

dimensional space. As a result, the need of extending the single-neural model arises. By including 

more neurons effectively, we can incorporate more binary classifiers; forming a network of 

neurons, that can approximate a desired function.  

The Multilayer Perceptron networks architecture (MLPs) is an architecture that extends the 

perceptron theory by incorporating multiple neuron (perceptron) units in layers, each one 

connected with the next layer, in a fully connected feed forward neuron connection architecture. 

An MLP network has a set of inputs, forming the so-called input layer (unlike other layers, it does 

not include any neurons), at least one intermediate layer and an output layer. The intermediate 

layer is also called “hidden” layer.   A typical MLP architecture with two hidden layers is illustrated 

in (Figure 2.7). It can be noticed that the neurons of each layer of the architecture is connected 

with all the neurons of the next layer, thus the term fully-connected network.  This means that in 

an MLP architecture with 10 inputs, 1 hidden layer of 20 neurons and 3 output neurons will result 

into 10 ∙ 20 + 20 ∙ 3 = 260 weights and 23 biases that need to be optimized.   

MLPs belong to a wider range of neural network architectures known as “Multi-layer Feed-

Forward Neural Networks” (MFNNs). The naming of feed forward networks reflects their design, 

which enables the signal flowing towards one direction, from the input neurons throughout the 

network to the output without any backward connections. This signal propagation ensures a 

synchronous behavior in which the signal is propagated by one neuron at a time interval, without 

“delays” or “accumulation” of signals, which although it contradicts the complex connectivity of 

the human brain neurons, it has proved relatively effective of solving both classification and 

regression problems (Cybenko 1989; Hornik et al. 1989).  
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It has been shown  (Cybenko 1989; Hornik et al. 1989) that an MLP with at least one hidden layer 

is able to simulate any kind of continue function. This is also known as the Universal 

Approximation Theorem.  The universality of MLP architectures can also be extended to 

discontinuous functions, if the nature of the problem can accept an approximated solution. 

Although based on this theorem, any MLP with a single hidden layer and enough neurons can be 

used to approximate any function, in practice, architectures with multiple hidden layers are more 

common. This is because, by limiting an MLP architecture to a single hidden layer, results into 

increased number of neurons, which introduce more free parameters to the system and thus, 

increase the overall complexity. Using more hidden layers, the approximation load is shared along 

among the layers resulting into reduced weights and biases that have to be computed.  

 

Figure 2.7 A visual representation of an MLP architecture with two hidden layers, each one of arbitrary 

number of neurons, and three output neurons.  

The number of hidden layers is another hyper-parameter that needs to be considered, when 

designing an MLP architecture. Unfortunately, there is no mathematical way of computing the 

number of hidden layers and their corresponding number of neurons. For this reason, heuristic 

approaches are usually employed, which are based on trial and error, such as training the network 

and validating its performance in unknown data. If the network is not capable of generalizing, 

different hyper-parameters are tested. The changes include both the number of hidden layers and 

the corresponding number of neurons of each layer (Murata et al. 1994; Bengio et al. 2007).  

A simple example of an MLP architecture that is capable of modeling the XOR gate (Figure 2.6) 

is illustrated in (Figure 2.8). The network consists of one input layer with two units, 𝑥1 and 𝑥2 

which are connected to two-neuron, 𝑧1 and 𝑧2, hidden layer the output of which is connected to a 

single output neuron 𝑌.   
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Figure 2.8 A neural network capable of modeling the XOR logical function. 

The input layer with the 𝑥1 and 𝑥2 neurons is considered fixed in terms that thee output of its 

neurons is the same value as their input which explains their naming as “units”. The architecture 

contains six weights and 3 biases. These parameters are also known as “free-parameters”, which 

need to be fine-tuned, through training in order for the network to estimate the desired function. 

Adding more neurons, the number of free-parameters also increases along with the computational 

complexity of the overall model. In return, the network can estimate more complex functions. For 

the XOR example the parameters can be computed by hand, yet for more complex scenarios, with 

thousands or even millions of neurons, the need of an automated parameter computation becomes 

a necessity.  

2.2 Neural Network Training 

Training of neural networks is an actively researched subject. Many methodologies have been 

proposed over the years, which can be grouped into two main categories; evolutionary algorithms 

(Jones 1993; Montana 1995) and  error back-propagation (Hecht-Nielsen 1992). Both approaches 

can be used to effectively train neural networks (Gupta & Sexton 1999), yet the error back-

propagation based algorithms have been the de-facto choice in literature, mainly due to its 

effectiveness on training large networks.  

2.2.1 Gradient Descent Optimization Algorithms 

In literature, numerus gradient descent optimization algorithms have been proposed over the years 

(Ruder 2016). The goal of these algorithms is to minimize the error of the output of the neural 

network by adjusting the weights and biases of the model. A visual representation of gradient 

descent in a three-dimensional space of an upside-down cliff containing a ball is illustrated in 

(Figure 2.9), where the goal of the algorithm is to guide the ball towards the lowest point of the 

cliff, which is known as global minima. 
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Figure 2.9 A 3D representation of upside-down cliff and a ball following a down-hill direction towards 

the cliff global minimum. 

2.2.1.1 The Loss Function  

To train an ANN, there is a need to quantify the output of performance. For this reason, a function 

is used, named loss function, to quantify the error produced by the network comparing to the 

expected output. In literature the name “loss function” can also be found as “cost”, “optimization” 

or “error” function. The goal of this function is to be minimized through a training algorithm by 

adjusting the free parameters of the network. A commonly used loss function, especially on 

classification problems is the mean square error (MSE), which is also known as “quadratic 

function” and is defined as:   

𝐶(𝑤, 𝑏, 𝑥, 𝑦) =  
1

2𝑛
∑|𝑦(𝑥) − 𝑦′|2

𝑥

 (2.4) 

The 𝑤 and 𝑏 parameters are the free-parameters of the network, weights and biases respectively, 

𝑥 the input of the network, 𝑦(𝑥) the expected output (target) of the network and 𝑦′ the output of 

the network. The 𝑛 parameter represents the total number of samples presented to the model. It 

can be noticed that the sum of the errors is always a positive real number, and it approximates 

𝐶(𝑤, 𝑏) ≅ 0 only when 𝑦(𝑥) ≅ 𝑦′. This observation shows that the function can be used to 

minimize the error, between the output of the network and the expected value. There are multiple 

loss functions used in the literature (Rosasco et al. 2004), including cross entropy, root mean square 

error etc. which can be used depending on the goal and the optimization algorithm that is used to 

optimize them.  

2.2.1.2 The Gradient Descent Algorithm   

One of the simplest yet powerful optimization algorithms used to train an ANN, is the gradient 

descent algorithm. This iterative algorithm tries to minimize the error of a loss function 𝐶 by 

adjusting the free parameters of the network in small steps, upon every iteration of all training 

samples.  As it is the basis of many optimization algorithms it is worth understanding how it 
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operates.  Let 𝑓 be a function with 𝑛 parameters that is minimized through a loss function 𝐶. Let 

∆𝑥𝑖 be a small change in the direction of the function that is applied to 𝑥𝑖 original directions. 

Following the mathematical calculus, the change of 𝐶 can be obtained following Eq. (2.5) which 

has as a goal to obtain a negative ∆𝐶 and thus minimize 𝑓.  

∆𝐶 ≅
𝜗𝐶

𝜗𝑥1
∆𝑥1 +⋯+

𝜗𝐶

𝜗𝑥𝑖
∆𝑥𝑖 (2.5) 

Let ∆𝑥 be the transposed matrix of the variables and thus ∆𝑥 = (∆𝑥1, … , ∆𝑥𝑖)
𝑇 with the gradient 

of  𝐶 defined as: 

𝛻𝐶 = (
𝜗𝐶

𝜗𝑥1
, … ,

𝜗𝐶

𝜗𝑥𝑖
)
𝑇

 (2.6) 

We can rewrite Eq. (2.6) with respect of ∆𝑥 and 𝛻𝐶: 

∆𝐶 ≅ 𝛻𝐶 ∙ ∆𝑥 (2.7) 

To minimize ∆𝐶 of Eq. (2.7) is possible by introducing a parameter 𝑛, which is called learning 

rate: 

∆𝑥 = −𝑛𝛻𝐶 (2.8) 

The learning rate 𝑛, is a small positive real number. Based on Eq. (2.8) this can be written as: 

∆𝐶 ≅ −𝑛𝛻𝐶2 (2.9) 

As 𝛻𝐶2 is always positive number, ∆𝐶 ≤ 0 is guaranteed. The vector 𝑥 update can be expressed 

as Eq. (2.10). Repeating this update for certain number of iterations, the change in the parameters 

of the function 𝑓 will reach to global minimum.  

𝑥 → 𝑥′ = 𝑥 − 𝑛𝛻𝐶 (2.10) 

 

Gradient descent can be used to train a neural network directly, by estimating the best parameters 

which the selected loss function 𝐶 is dependent on. Considering the neural network as a function 

with parameters been the weights and biases of the neurons, we can rewrite Eq. (2.10) as:   

𝑤 → 𝑤′ = 𝑤 − 𝑛
𝜗𝐶

𝜗𝑤
 (2.11) 

𝑏 → 𝑏′ = 𝑏 − 𝑛𝛻𝐶 = 𝑏 −
𝜗𝐶

𝜗𝑏
 (2.12) 
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There are challenges of using gradient descent on large number of free parameters, as the goal of 

it is to minimize the quadratic loss function 𝐶 Eq. (2.4). As a result, to compute the gradient 𝛻𝐶 

we also need to compute the 𝛻𝐶𝑥 for each training sample as the function is an average computed 

by 𝐶𝑥 =
|𝑦(𝑥)−𝑎|2

2
  and 𝛻𝐶 =

1

𝑛
∑ 𝛻𝐶𝑥𝑥 .  This is a computationally expensive task, both in terms of 

time for large number of training examples and the learning, as the minimization of 𝐶, will occur 

slowly.  

 

Figure 2.10 A 3D representation of a loss function minimization. The red line represents the value been 

minimized over a series of iterations, reaching the global minima of the function (denoted with black ×).  

Although the goal of optimizing the loss function is to reach a global minimum, in most cases, and 

especially in complex optimization problems such as, training an ANN with million free 

parameters, that is not always the case. Local minima and vanishing gradient are some of the most 

common problems found in such optimizations, that can lead to poor generalization performance 

or the network to never converge. State-of-the-art optimization algorithms have been proposed 

that mitigate this problem to a large extend, but without guarantees that global minima will be 

found.  

2.2.1.3 The Stochastic Gradient Descent Algorithm 

To mitigate the slow learning rate of the conventional gradient descent algorithm, stochastic 

gradient descent (SGD) was introduced. The algorithm operates by randomly selecting a subset 𝑚 

of training samples from the training set 𝑇 and uses that to perform the normal gradient descent. 

This subset is also known as “batch”. The principle behind the SGD algorithm is that instead of 

computing the parameter change based on the entire dataset it estimates the change based on 

smaller sample of data. As a result, more changes in the free parameters of the network are applied 

per iteration (epoch) of the entire dataset which in return speeds up the converge time significantly.  
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The SGD algorithm is very similar to conventional gradient descent. Let mini-batch 𝑀 =

{𝑋1, 𝑋2… ,𝑋𝑚} of the training dataset 𝑇, where 𝑀 ⊆ 𝑇. The gradient descent is estimated by 

averaging 𝛻𝐶𝑋𝑖: 

𝛻𝐶 =
∑ 𝛻𝐶𝑥𝑥

𝑛
≅
∑ 𝛻𝐶𝑋𝑖
𝑚
𝑖

𝑚
 (2.13) 

 

To apply Eq. (2.13) in neural network training, an estimation of 𝛻𝐶𝑤 and 𝛻𝐶𝑏 for the weights and 

biases of the network is obtained as:   

𝑤 → 𝑤′ = 𝑤 −
𝑛

𝑚
∑

𝜗𝐶𝑋𝑖
𝜗𝑤

𝑖

 (2.14) 

𝑏 → 𝑏′ = 𝑏 −
𝑛

𝑚
∑

𝜗𝐶𝑋𝑖
𝜗𝑏

𝑖

 (2.15) 

Symbol ∑𝑖 represents the summing of all the mini-batch 𝑀 presented samples. To compute the 

changes of the free-parameters of the network, the process is applied over all training samples. A 

full iteration over all the training samples is called “epoch”. Repeating the same process for 

multiple epochs the loss function is minimized.  

 

Figure 2.11 Visual representation of SGD (noisy line) and Gradient Descent (smooth line) over a period 

of 200 epochs.   

SGD is characterized by the noisy convergence compared to conventional gradient descent 

approach (Figure 2.11). This can wrongly lead to the assumption of model not performing well 

based on chosen hyper-parameters, especially on the first epochs. For this reason, it is preferably 

to wait for at least few epochs until conclusions about the performance of the model are drawn. A 

special case of SGD called “on-line” learning can be achieved by choosing a batch size of 1. This 

can be used when the training data are not available at the beginning of training, or if they are 

made available to the model from a stream of data.  Although powerful, on-line learning does not 
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always converge and training might end up getting “stuck” on a local minima, greatly affecting 

the generalization performance of the model.  

2.2.1.4 The Mini-Batch Gradient Descent  

A similar algorithm to SGD, is the mini-batch gradient descent algorithm (MBGD). The algorithm 

relies too on splitting the training dataset into multiple batches, but instead of updating the free-

parameters of the network once every epoch, it does on every batch. This reduces a lot the noisy 

training behavior of conventional SGD and thus, keeps the best of both worlds.  

The advancements in computer hardware and most importantly the Graphical Processing Units 

(GPU) enables MBGD algorithm to take advantage of performing matrix multiplications right on 

the GPU memory without having to wait for each mini-batch to get back from RAM which 

involves CPU wait. As a result, this allows faster gradient computation, significantly increasing 

the training performance. The batch size is an important hyper-parameter of the algorithm as it has 

a direct correlation with the training speed. The size of the batch is determined mainly based on 

the available resources (memory) of the computational unit.  

Although MBGD can significantly increase the training speed of a network, the algorithm does 

not guarantee good convergence of the network, as it can easily fell for a local minima. The 

learning rate with which the algorithm will update the free-parameters is really important. A low 

learning rate can significantly increase the training time, effectively eliminating the benefits of the 

algorithm, while using a large one can create unstable learning. To deal with the problem of 

learning rate selection, ad-hoc solutions have been developed including learning rate scheduling 

(Robbins & Monro 1951; Moreira & Fiesler 1995), which adjust the learning rate based on the 

fluctuation of the cost function. One down side of these approaches is that they have to be defined 

before training and are not able to adapt with all the idiomorphic characteristics of a dataset 

(Darken et al. 1992).  

2.2.1.5 Newton’s Optimization Algorithm  

Newton’s optimization (Kelley 1999) is an approach that uses second order derivates and it can 

lead, in theory, to quicker converge times compared training with standard gradient descent.  

According to this approach a loss function 𝐶(𝑤), where 𝑤 = {𝑤1, 𝑤2…𝑤𝑛}, can be approximated 

using the Taylor’s theorem:  

𝐶(𝑤 + 𝛥𝑤) = 𝐶(𝑤) +∑
𝜗𝐶

𝜗𝑋𝑤𝑗
𝑗

𝛥𝑤 +
1

2
∑𝛥𝑤𝑗

𝜗2𝐶

𝜗𝑤𝑗𝜗𝑤𝑘
𝑗𝑘

+⋯ (2.16) 

This can be rewritten with respect to the gradient vector 𝛻𝐶 as: 
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𝐶(𝑤 + 𝛥𝑤) = 𝐶(𝑤) + 𝛻𝐶 ⋅ 𝛥𝑤 +
1

2
𝛥𝑤𝑇𝐻𝛥𝑤 +⋯ (2.17) 

where 𝐻 is the Hessian matrix, with 𝑗, 𝑘𝑡ℎ entries set as 
𝜗2𝐶

𝜗𝑤𝑗𝜗𝑤𝑘
. The 𝐶 can be estimated by 

calculating:  

𝐶(𝑤 + 𝛥𝑤) ≅ 𝐶(𝑤) + 𝛻𝐶 ⋅ 𝛥𝑤 +
1

2
𝛥𝑤𝑇𝐻𝛥𝑤 (2.18) 

Using calculus Eq. (2.17) can be minimized by Eq. (2.18): 

𝛥𝑤 = −𝐻−1𝛻𝐶 (2.19) 

and thus, an estimation that decreases 𝐶 can be obtained as follows: 

𝑤 → 𝑤′ = 𝑤 − 𝐻−1𝛻𝐶 (2.20) 

Similarly, this can be extended for biases and any other free-parameter of the network. This 

methodology can be expressed as an iterative algorithm with the following three steps:  

1. Randomly initialize the weights 𝑤 and any other free-parameter of the network  

2. Calculate the first order derivative of 𝑤 by using Eq. (2.19) 

3. Update the calculated weights 𝑤′ using the second order derivative of 𝑤′′ such as 

 𝑤′′ = 𝑤′ − 𝐻′
−1
𝛻′𝐶  

Learning rate can also be introduced to the Eq. (2.19), which can control the learning speed of 

training:  

𝛥𝑤 = −𝑛𝐻−1𝛻𝐶 (2.21) 

While Newton’s approximation converges faster than conventional gradient descent, it suffers 

from increased complexity due to the second order derivatives used in the optimization process. 

As a result, in a network with millions free-parameters this method can be considered not feasible 

even with the today’s modern GPUs.   

2.2.1.6 Introducing Momentum in Stochastic Gradient Descent  

Local minima create relatively steep curves when optimizing a loss function using the conventional 

SGD algorithm (Sutton 1986), leading to hesitant movement towards the local minima slope 

(Figure 2.12a). 
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A parameter that controls the velocity of the minimization rate, called “momentum” (Qian 1999) 

can be introduced to the conventional SGD algorithm to deal with this problem. Effectively 

momentum can be compared with the Newton’s optimization, Hessian matrix-based technique, yet 

without the performance implications of computing second order derivatives.  Introducing the 

momentum 𝑚 parameter to the original SGD algorithm is relatively straight forward. Initially let 

𝑣 be the velocity in which the weights are changed: 

𝑣 → 𝑣′ = 𝑚𝑣 − 𝑛𝛻𝐶 (2.22) 

where 𝑚 is a constant parameter (momentum), and 𝑛 the learning rate. Using momentum, the 

update rule of SGD can be rewritten as:  

𝑤 → 𝑤′ = 𝑤 + 𝑣′ (2.23) 

  
(a) (b) 

Figure 2.12 A visual representation optimizing a loss function using the (a) SGD and (b) SGD with 

Momentum algorithms. 

Typically, the momentum constant is a real number, ranging between 0 and 1 and it controls the 

accumulation of speed of change towards the direction of the global minimum. Having m close to 

1 can lead to velocity that builds up on every iteration of the algorithm which in return increases 

the training speed, yet it creates fluctuations. Having relatively low momentum, or even 0, leads 

to very small, or any, velocity build up, leading to behavior similar to the original gradient descent. 

2.2.1.7 Nesterov Accelerated Gradient 

Although momentum approach is capable of controlling the acceleration of training, it might 

accelerate towards a local minimum. Aiming to solve this problem Nesterov Accelerated Gradient 

(NAG) (Nesterov 1983) was introduced. NAG attempts to approximate the future direction of the 

gradient, instead of blindly searching for the global minima, which results in forcing the gradient 

direction to move towards the correct direction. 

𝑣 → 𝑣′ = 𝑚𝑣 − 𝑛𝛻𝐶(𝑤 −𝑚𝑣) (2.24) 

In the illustration of (Figure 2.13) it can be noticed that momentum gradient descent initially with 

a small step towards the minima (blue line) accumulating velocity which creates a large “jump” 
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away from the global minima (long blue line). On the other hand, NAG, represented in green, 

makes a big jump towards the direction of the previous gradient (brown line) and by measuring 

the gradient in which it ends up, makes small corrections (small red lines)  

 

Figure 2.13 An illustration of momentum (blue line) gradient descent compared with the NAG optimization 

(green line) approach. The brown and red lines represent the jumps and the corrections made by the NAG 

optimization approach.  

2.2.1.8 Adagrad optimization 

Adagrad is an adaptive optimization algorithm proposed by (Duchi et al. 2011) which adapts the 

learning rate of the gradient descent based on the free-parameters state of the network. The 

algorithm does large updates on the infrequently used free-parameters and smaller ones on the 

ones used a lot, primarily suited for sparce data. As in Adagrad case the learning rate is varying on 

every free-parameter update, the classic SGD algorithm can be written as:  

𝑤𝑡 → 𝑤𝑡+1 = 𝑤𝑡 − 𝑛𝛻𝐶(𝑤𝑡) (2.25) 

where 𝑤𝑡 are the free-parameters updated on every 𝑡 time step and 𝛻𝐶(𝑤𝑡) the gradient. Adagrad 

learning rate is adjusted on every next step such as:  

𝑤𝑡 → 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

𝐷𝑡
𝛻𝐶(𝑤𝑡) (2.26) 

where 𝐷𝑡 = √𝐺𝑡 + 휀. The  휀 is a constant parameter, called “smoothing term”, usually set to 1𝑒 −

8 and 𝐺𝑡 a diagonal matrix with values the sum of squires of the gradients of all the previous time 

steps. An element-wise matrix (⨀) multiplication can be performed between 𝐺𝑡 and the 𝛻𝐶(𝑤𝑡):  

𝑤𝑡 → 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

𝐷𝑡
⨀𝛻𝐶(𝑤𝑡) (2.27) 

 

The benefits of Adagrad compared to conventional SGD have been seen in several cases, such 

when Google (Dean et al. 2012) used Adagrad to train a neural network on finding cats in YouTube 

videos. Furthermore, Adagrad was used by (Pennington et al. 2014) to successfully train a neural 

network on the “Glove Word Embeddings”, in which naturally frequent words require much 

smaller updates than the infrequent ones.  
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The main benefit of Adagrad algorithm is that the learning rate 𝑛, does not require pre-training 

selection and thus reducing the number of hyper-parameters selection. A small learning rate is 

typically selected in the initialization phase, such as n = 0.001.  Unfortunately, Adagrad suffers 

from exploding sums, as the accumulative terms are always positive which leads to gradually 

vanishing learning rate, which in some cases can halt completely the training process.  

2.2.1.9 Adadelta optimization  

The problem of the vanishing learning rate of Adagrad is solved by the Adadelta optimization 

approach (Zeiler 2012).  The algorithm solves the problem of exploding sums by using fixed size 

𝑤 of accumulated gradients. The accumulated gradients are stored efficiently by recursively 

defining them as a decaying average of all previously computed squared gradients.  The decaying 

gradient can be defined as:  

𝐸[𝛻𝐶(𝑤)2]𝑡 = 𝛾𝐸[𝛻𝐶(𝑤)
2]𝑡−1 + (1 − 𝛾)𝛻𝐶(𝑤)𝑡

2 (2.28) 

where 𝐸[𝛻𝐶(𝑤)2]𝑡 is the running average at the timestep 𝑡 and 𝛾 the momentum constant which 

is typically 0.9. According to this Eq. (2.29) the SGD can be re-written as:   

𝛥𝑤𝑡 =
−𝑛

𝐷𝑡
⨀𝛻𝐶(𝑤𝑡) (2.29) 

𝑤𝑡+1 = 𝑤𝑡 + 𝛥𝑤𝑡 (2.30) 

where ⨀ represents element-wise matrix  multiplication. The 𝐷𝑡 = √𝐺𝑡 + 휀 which is the same as 

Adagrad, while in Adadelta case,  𝐺𝑡 is a vector of decaying average. Rewriting Eq. (2.30) we get:  

𝛥𝑤𝑡 =
−𝑛

√𝐸[𝛻𝐶(𝑤)2]𝑡 + 휀
⨀𝛻𝐶(𝑤𝑡) (2.31) 

Replacing the 𝐸[𝛻𝐶(𝑤)2]𝑡 parameter with the root mean square error criteria (RMS) of the 

gradient, it can be noticed that the need for an initial learning rate is eliminated from the equation:  

𝛥𝑤𝑡 =
−𝑅𝑀𝑆[𝛥𝑤]𝑡−1
𝑅𝑀𝑆[𝛻𝐶(𝑤)]𝑡

𝛻𝐶(𝑤𝑡) (2.32) 

This new update rule relies on 𝐸[𝛥𝑤2]𝑡 = 𝛾𝐸[𝛻𝐶(𝑤)
2]𝑡−1 + (1 − 𝛾)𝛥𝑤𝑡

2. As a result, the RMS 

parameter updates are: 

𝑅𝑀𝑆[𝛥𝑤]𝑡 = √𝐸[𝛥𝑤2]𝑡 + 휀 (2.33) 
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in which the 𝑅𝑀𝑆[𝛥𝑤]𝑡 value is unknown and an approximation of it can be achieved by 

calculating the RMS until 𝑅𝑀𝑆[𝛥𝑤]𝑡−1.  

2.2.1.10 RMSProp optimization 

The RMSProp (Hinton et al. 2012) optimization algorithm, is a widely used optimizer based on 

Adadelta. The algorithm, as Adadelta, it too tries to solve the problem of vanishing learning rate. 

The equations behind RMSProp, closely resemble the Adadelta optimizer:  

𝐸[𝛻𝐶(𝑤)2]𝑡 = 0.9𝐸[𝛻𝐶(𝑤)2]𝑡−1 + 0.1𝛻𝐶(𝑤)𝑡
2 (2.34) 

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

√𝐸[𝛻𝐶(𝑤)]𝑡
2 + 휀

𝛻𝐶(𝑤)𝑡
2 (2.35) 

where 𝑛 is the learning rate, and 𝛾  the momentum parameter, with initial values 0.001 and 0.9, 

respectively. The difference between the two algorithms, is that in the case of RMSProp, 

exponentially decaying average of the squared gradients are used to divide the learning rate. The 

main drawback of RMSProp compared to Adadelta, is that the learning rate is a hyper parameter 

that needs to be selected before training.  

2.2.1.11 Adam optimization  

Similarly to RMSProp and Adadelta, another adaptive learning rate method to compute gradient 

descent is called Adaptive Moment Estimation (Adam) (Kingma & Ba 2014). At the time of 

writing, the Adam optimizer is one of the most used optimizers in the field of Deep Learning. The 

algorithm keeps the exponentially decaying gradient average factor 𝑣𝑡 and extends it by 

incorporating an exponentially decaying average of the previous gradients 𝑚𝑡, which resembles a 

momentum parameter.  These two vectors are estimates of the first moment (mean) and second 

moment (uncentered variance) of gradients, respectively:  

𝑚𝑡 = 𝑝1𝑚𝑡−1 + (1 − 𝑝1)𝛻𝐶(𝑤)𝑡 (2.36) 

𝑣𝑡 = 𝑝2𝑣𝑡−1 + (1 − 𝑝2)𝛻𝐶(𝑤)𝑡
2 (2.37) 

 

The 𝑝1 and 𝑝2 are constant parameters, representing the decay rates with values, according to 

(Kingma & Ba 2014), 0.9 and 0.999, respectively. The update rule of Adam optimizer can be 

expressed as:  

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

√𝑣𝑡 + 10−8
𝑚𝑡 (2.38) 
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2.2.1.12 AdaMax optimization  

Along with the Adam optimizer, (Kingma & Ba 2014) proposed another optimizer named 

AdaMax. The authors noticed that the update rule of Adam, is inversely proportional to the 𝑙2 norm 

of the previous gradients as the rule contains the 𝑣𝑡−1 term and current gradient |𝛻𝐶(𝑤)𝑡|
2. 

AdaMax takes advantage of this by extending the 𝑙2 norm to 𝑙∞:  

𝑣𝑡 = 𝑝1
𝑛𝑣𝑡−1 + (1 − 𝑝1

𝑛)|𝛻𝐶(𝑤)𝑡|
𝑛 (2.39) 

It can be noticed that having relatively high value for the 𝑛 parameter can result into numerically 

unstable problems. For this reason, a typical value for the parameters is either 𝑙1 or 𝑙2. An 

interesting case, where the 𝑛 = ∞ also results into stable learning:  

𝑢𝑡 = 𝑝2
∞𝑣𝑡−1 + (1 − 𝑝2

∞)|𝛻𝐶(𝑤)𝑡|
∞ = max(𝑝2𝑣𝑡−1, |𝛻𝐶(𝑤)𝑡|) (2.40) 

The 𝑣𝑡 vector is denoted as 𝑢𝑡 to avoid mixing of the two equations. Using 𝑢𝑡 in Adam update rule 

(2.39) we get:  

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

𝑢𝑡
𝑚𝑡 (2.41) 

 

Similar to Adam, the authors suggest  𝑝1, 𝑝2 constant decay rates as 0.9 and 0.999 respectively 

and 𝑛 = 0.002. 

2.2.1.13 Nadam optimization  

Nesterov-accelerated Adaptive Moment Estimation (Nadam) (Dozat 2016) optimization algorithm 

is an incorporation of Adam and Nesterov Acceleration Gradient (NAG) algorithms. The algorithm 

modifies the Adam’s 𝑚𝑡 vector with a momentum like parameter (𝛾):   

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝑛𝛻𝐶(𝑤𝑡 − 𝛾𝑚𝑡−1) (2.42) 

𝑤𝑡+1 = 𝑤𝑡 −𝑚𝑡 (2.43) 

Nadam alters the original NAG algorithm and instead of double computation of the momentum 

step, the look-ahead momentum is performed directly on the update rule such that the Eq. (2.42) 

and Eq. (2.43) become:  

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝑛𝛻𝐶(𝑤𝑡) (2.44) 

𝑤𝑡+1 = 𝑤𝑡 − (𝛾𝑚𝑡 + 𝑛𝛻𝐶(𝑤𝑡)) (2.45) 
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It can be noticed that instead of using the previous 𝑚𝑡−1 for the update, the algorithm uses only 

the current step 𝑚𝑡 momentum vector. Similarly to the NAG incorporation, Nesterov momentum 

in Adam optimizer is incorporated as:  

𝑚𝑡 = 𝑝1𝑚𝑡−1 + (1 − 𝑝1)𝛻𝐶(𝑤)𝑡 (2.46) 

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

√𝑣𝑡 + 휀
(
𝑝1𝑚𝑡−1 + (1 − 𝑝1)𝛻𝐶(𝑤)𝑡

1 − 𝑝1
𝑡 ) (2.47) 

The 𝑝1 parameter represents the decay rate and 
𝑝1𝑚𝑡−1

1−𝑝1
𝑡  is a bias corrected estimation of the 

momentum vector (𝑚𝑡−1) of the previous step, expressed as an estimation of current momentum 

vector 𝑚𝑡. The final update rule of Nadam can be expressed as:  

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

√𝑣𝑡 + 휀
(𝑝1𝑚𝑡

(1 − 𝑝1)𝛻𝐶(𝑤)𝑡
1 − 𝑝1

𝑡 ) (2.48) 

2.2.2 The Error Backpropagation 

Although in the previous section, a large variety of optimization algorithms have been examined, 

the incorporation of them in neural network training has not been presented. One of the most 

widely used approaches in training neural networks is the error backpropagation. The algorithm 

has been originally proposed in mid 70s, year it did not receive enough attention until it was used 

in neural network training (Rumelhart et al. 1986). The authors showed that using back 

propagation method, the training of neural networks was significantly faster compared to older 

training approaches. To understand error backpropagation, a simple MLP is illustrated in (Figure 

2.14), where 𝑤𝑗𝑘
𝑙  is the weight of the 𝑘𝑡ℎ neuron in the (𝑙 − 1)𝑡ℎ layer to the 𝑗𝑡ℎ neuron on 𝑙𝑡ℎ 

layer. Similar to the weights, let 𝑏𝑗
𝑙  be the bias and 𝑎𝑗

𝑙 the activation function, of the 𝑗𝑡ℎ neuron in 

the 𝑙𝑡ℎ layer, respectively. The activation function of a neuron can now be expressed as sums of 

all the neurons on the 𝑘𝑡ℎneurons the (previous) layer 𝑙 − 1:  

𝑎𝑗
𝑙 = 𝜎(∑𝑤𝑗𝑘

𝑙

𝑘

𝑎𝑗
𝑙−1 + 𝑏𝑗

𝑙) (2.49) 

The computational efficiency of Eq. (2.49) can be improved by using matrix multiplications, and 

thus enable modern GPU acceleration techniques to be used:  

𝑎𝑙 = 𝜎(𝑤𝑙𝑎𝑙−1 + 𝑏𝑙) (2.50) 
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where  𝑎𝑙 notates a matrix of the activation function outputs of the 𝑙𝑡ℎ layer, 𝑤𝑙 and 𝑏𝑙  matrices 

with all the weights and biases of the neurons in 𝑙𝑡ℎ layer and 𝑎𝑙−1 a matrix with the activation 

function output of each neuron of the previous layer. The intermediate 𝑙 − 1 activation function 

matrices are computed, when Eq. (2.50) is applied on a forward pass of the network to get the 

output of the last layer. These matrices, which are denoted as 𝑧𝑙, are kept as they are used to reduce 

the computational complexity of the next steps of backpropagation algorithm.  

 

Figure 2.14 An illustration of a simple MLP with one hidden layer of neurons. The 𝑤24
3  detonating 

connection from 4th node of the second layer to the 3rd layer.  

2.2.2.1 Loss Function Characteristics  

The target of backpropagation algorithms is to compute the partial derivatives 
𝜗𝐶

𝜗𝑤
,
𝜗𝐶

𝜗𝑏
 of a loss 

function 𝐶 with respect of all the weights, the biases and in general the free-parameters of the 

network. To do that, backpropagation mandates the loss function to meet two requirements. The 

first, is that loss function 𝐶 shall be expressible as an average sum of all 𝐶𝑡 of individual all training 

examples and thus 𝐶 =
1

𝑛
∑ 𝐶𝑥𝑥 . This ensures that the algorithm can compute the 

𝜗𝐶𝑡

𝜗𝑤
,
𝜗𝐶𝑡

𝜗𝑏
 

derivatives and later or average them in order to compute the actual 
𝜗𝐶

𝜗𝑤
,
𝜗𝐶

𝜗𝑏
. The second 

requirement mandates the loss function to be expressed as a function of the output of each neuron 

of the last layer, such that 𝐶 = 𝐶(𝑎𝑙). To demonstrate a function which relies on the output of all 

the previous activations we can think the quadratic loss function. In this case, for a single training 

example 𝑡, the loss can be expressed as: 

𝐶 =
1

2
(|𝑦 − 𝑎𝐿|)2 =

1

2
∑(𝑦𝑗 − 𝑎𝑗

𝐿)
2

𝑗

 (2.51) 

where 𝑦 is the desired output (target) of the training example 𝑡.  
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2.2.2.2 The Fundamental Equations of the Backpropagation Algorithm 

Ultimately, the backpropagation algorithm computes the 
𝜗𝐶

𝜗𝑤𝑗𝑘
𝑙 ,

𝜗𝐶

𝜗𝑏𝑗
𝑙 partial derivatives using the 

error of a loss function 𝐶. To do that, an intermediate quantity is used, that corresponds to the 

“error of the neuron 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer” notated as 𝛿𝑗
𝑙. Using the backpropagation 

algorithm, the aim is to compute the 𝛿𝑗
𝑙 matrices and later associate them with 

𝜗𝐶

𝜗𝑤𝑗𝑘
𝑙  and 

𝜗𝐶

𝜗𝑏𝑗
𝑙 partial 

derivatives. In effect, the error 𝛿𝑗
𝑙 is considered as a small noise introduced when the input passes 

through the neurons of the network in the feed-forward pass. Let 𝛥𝑧𝑗
𝑙 be the noise to the input 

weights of the neuron, which in return produce 𝜎(𝑧𝑗
𝑙 + 𝛥𝑧𝑗

𝑙) instead of 𝜎(𝑧𝑗
𝑙). This small error 

propagates through the neurons of the network, affecting the overall performance. This can be 

expressed as 
𝜗𝐶

𝜗𝑧𝑗
𝑙 𝛥𝑧𝑗

𝑙.  The aim of the algorithm is to compute the 𝛥𝑧𝑗
𝑙 values that reduces the overall 

loss function 𝐶 output. When the 
𝜗𝐶

𝜗𝑧𝑗
𝑙  has a large value, we can lower down the loss by choosing a 

𝛥𝑧𝑗
𝑙 with opposite sign, while when the 

𝜗𝐶

𝜗𝑧𝑗
𝑙 is close to zero, the 𝛥𝑧𝑗

𝑙 has also to be close to zero. 

Having a small 
𝜗𝐶

𝜗𝑧𝑗
𝑙  means that the neurons are already optimized. The quantity 𝛿𝑗

𝑙 can be defined as 

Eq. (2.52) where 𝛿𝑙 is the error of the 𝑙𝑡ℎ layer in a vectorized form.  

𝛿𝑗
𝑙 ≡

𝜗𝐶

𝜗𝑧𝑗
𝑙 , 𝛿

𝑙 ≡
𝜗𝐶

𝜗𝑧𝑙
 (2.52) 

In the output layer of a neural network the components 𝛿𝑙 can be computed as: 

𝛿𝑗
𝐿 ≡

𝜗𝐶

𝜗𝑎𝑗
𝐿 𝜎

′(𝑧𝑗
𝐿)

 (2.53) 

The rate of change of the loss function in respect to activation of the 𝑗𝑡ℎneuron of the last layer is 

expressed in the first part of the equation, i.e. 
𝜗𝐶

𝜗𝑎𝑗
𝐿, while the last part 𝜎′(𝑧𝑗

𝐿)
, measures the rate of 

change of the activation function 𝜎 at 𝑧𝑗
𝐿. The Eq. (2.53) is relatively computationally inexpensive 

to calculate. The only computational overhead is to the 𝜎′(𝑧𝑗
𝐿)

. For the quadratic loss function, the 

computation is as simple as:  

𝜗𝐶

𝜗𝑎𝑗
𝐿 = 𝑎𝑗

𝐿 − 𝑦𝑗 (2.54) 
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As the Eq. (2.53) is expressing the rate of change of each neuron, it can be rewritten using matrices, 

speed up the computations:   

𝛿𝐿 = 𝛻𝑎𝐶𝜎
′(𝑧𝐿) (2.55) 

where 𝛻𝑎𝐶 is a matrix whom components are the partial derivatives 
𝜗𝐶

𝜗𝑎𝑗
𝐿 

The second equation on which backpropagation relies on, calculates the error 𝛿𝑙 in respect to the 

errors of the next layer: 

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1) ⊙ 𝜎′(𝑧
𝑙) (2.56) 

where (𝑤𝑙+1)𝑇 is the transposed weight matrix of the (𝑙 + 1)𝑡ℎ layer. Notice that the transposed 

weight matrix is multiplied by the error 𝛿(𝑙+1). This expresses that the error is passed backward 

through the network. The Hadamard product ⊙, on which the second component of the equation 

relies on, is similar to the first component but in this case, it uses the backward error propagation 

through the activation functions of the previous layer 𝑙𝑡ℎlayer. Using Eq. (2.53) and Eq. (2.56) the 

error  𝛿𝑙 can be calculated for any layer of the network. 

The rate of change of the loss function with respect to the biases of the network, is controlled by 

the third equation of the backpropagation algorithm:  

𝜗𝐶

𝜗𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 (2.57) 

 

The vectorized equivalent of this equation can be expressed as 
𝜗𝐶

𝜗𝑏
= 𝛿. Using these equations, it is 

possible to compute the 𝛿𝑙 error as the quantity 
𝜗𝐶

𝜗𝑏
 is already known by the previous steps.  

The fourth and last equation of the algorithm computes the rate of change of the loss function with 

respect of any weight in neural network from which, it is already known how to compute the error 

𝛿𝑙and the 𝑎𝑙−1: 

𝜗𝐶

𝜗𝑤
= 𝑎in𝛿out (2.58) 

The 𝑎in parameter of the equation is the activation of the neural input to the weight 𝑤 and the 𝛿out 

is the error of the output with respect to the weights 𝑤.   
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An important characteristic of the backpropagation algorithm is that based on Eq. (2.51) if 𝜎(𝑧𝑙) ≈

0 or 𝜎(𝑧𝑙) ≈ 1 then the 𝜎′(𝑧
𝑙) ≈ 0. This is because the output of the sigmoid function is nearly 

constant on regions close to zero or one. This has a direct consequence to the weights of the final 

layer which will learn slower when the output value is relatively high or low. This is also known 

as “saturated neuron” as the neurons stop learning. This extends to all free parameters of the 

network, included the biases. Following the second equation of the backpropagation algorithm, 

this is extended to all the neurons of the network. To battle this problem, other activation functions 

such as the ReLU activation function are commonly used, especially in deep neural networks.  

The error backpropagation algorithm can be expressed as five iterative steps:  

1) Input: training examples  

Set the activations 𝑎1 for the input layer. 

2) Feed-Forward  

For each layer 𝑙 in {2,3, … , 𝐿} compute the 𝑧𝑙 = 𝑤𝑙𝑎(𝑙−1) + 𝑏𝑙 and 𝑎𝑙 = 𝜎(𝑧𝑙). 

3) Output error 𝛿𝐿 

Calculate the matrix 𝛿𝐿 = 𝛻𝑎𝐶 ⊙ 𝜎′(𝑧
𝐿). 

4) Backpropagate the error  

For each layer 𝑙 in {𝐿 − 1, 𝐿 − 2,… ,2} compute 𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1) ⊙ 𝜎′(𝑧
𝑙). 

5) Output  

Compute the 
𝜗𝐶

𝜗𝑤
= 𝑎in𝛿out and 

𝜗𝐶

𝜗𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 which are the gradient of the cost function 𝐶. 

The algorithm name comes from the fact that the error is backpropagated through the network. 

The reason that the algorithm starts with the initial feed-forward phase, is that the overall error of 

the network is a result of previous errors accumulated by the neurons of each layer. By performing 

the feed-forward pass it is becoming possible to use the chain rule, from mathematical calculus, 

working backwards throughout the previous layers to obtain the final expression.  

To use mini-batch gradient descent, the algorithm is slightly modified:  

1) Input: training examples  

2) For each of the training examples 𝑡 

Set the activations 𝑎1 for the input layer. 

1) Feed-Forward 

For each 𝑙 in {2,3,… , 𝐿} compute 𝑧𝑡,𝑙 = 𝑤𝑙𝑎(𝑡,𝑙−1) + 𝑏𝑙 and 𝑎𝑡,𝑙 = 𝜎(𝑧𝑡,𝑙) 
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2) Output error 𝛿𝑡,𝐿 

Calculate the matrix 𝛿𝑡,𝐿 = 𝛻𝑎𝐶 ⊙ 𝜎′(𝑧
𝐿) 

3) Backpropagate the error  

For each layer 𝑙 in {𝐿 − 1, 𝐿 − 2,… ,2} compute 𝛿𝑡,𝑙 = ((𝑤𝑙+1)
𝑇
𝛿𝑡,𝑙+1)⊙ 𝜎′(𝑧

𝑡,𝑙). 

3) Gradient descent 

For each layer 𝑙 in {𝐿 − 1, 𝐿 − 2,… ,2} update the weights according to the rule 𝑤𝑙 → 𝑤𝑙 −

𝑛 𝑚⁄ ∑ 𝛿𝑡,𝑙𝑡 αt,l−1 and the biases 𝑏𝑙 → 𝑏𝑙 − 𝑛 𝑚⁄ ∑ 𝛿𝑡,𝑙𝑡  

The same algorithm can also be used in the case of SGD, in which the only modification needed 

is the 2nd step, in which an outer loop needs to be added that selects the subset of the training 

examples training in multiple epochs. 

2.3 Tuning Neural Networks  

Training a neural network that generalizes well on unknown data is a challenging task (Goodfellow 

et al. 2016). When training a network, the goal is to generalize well from the training data to any 

unknown data from the problem domain. The number of free-parameters of a model define its 

learning capacity and thus affect its the generalization performance. A model with small number 

of free-parameters might not be able to learn and thus generalize (underfitting), whereas a model 

with too many free-parameters, is prone to overfitting. Overfitting describes a situation where the 

trained model becomes really good on predicting on data that has already been trained with, yet 

behaves poorly when tested on unknown data. Having an “ideal” learning capacity in a network, 

does not guarantee good generalization performance. This is because the free-parameters of the 

network are optimized according to the data available upon training and thus, having enough and 

diverse training data is a requirement for good generalization performance. Finding the balance 

between the learning capacity and the number of training samples required for training is a 

challenging task in neural network tuning. The rest of this section describes techniques to cope 

with neural network tuning.  

2.3.1 The Early-Stopping Technique  

In the process of training an ANN, a training dataset is used to evaluate the performance of the 

model by computing the output of the loss function. This process prone to overfitting as the model 

free-parameters are calibrated based on that training data. Furthermore, as the training data are 

used to evaluate the performance of the network, the hyper parameters of the model are biased 

towards the training dataset. A more accurate approach of evaluating the performance of the 

network, while training, is to use a validation dataset. More specifically, this dataset is a subset of 

the training dataset, that is excluded from training, and is used solely for the model generalization 

performance evaluation, typically after every epoch.   
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Using the validation dataset, it is possible to evaluate the performance of the network while training 

independently of the training dataset. Monitoring the generalization performance of the network 

on the validation dataset in comparison with the training data generalization performance, it is 

possible to detect and prevent overfitting. This process is also called early stopping (Girosi et al. 

1995), which as the name suggest, when the network begins to generalize better on the training 

data compared to unknown, validation data, the training process should be halted. This is visually 

illustrated in (Figure 2.15). Although in theory this works well, when SGD or other “noisy” 

optimization algorithms are used, the stopping point can become hard to identify. To deal with this 

problem, the model is allowed to be training for a fixed number of epochs, beyond the early 

stopping point, while keeping track of the generalization performance degradation. If the 

degradation continues, early stopping is applied, otherwise the model continues to train until the 

next early stopping point is found. Nowadays, and because of the increase storage capacity of 

modern computers, it is common to keep a history of every epoch in a form of model snapshot, in 

order to find the optimal accuracy between validation and training dataset. 

 

Figure 2.15 Validation and training dataset early stopping point. 

2.3.2 Weight Initialization  

Weight and biases initialization is an important decision when training any kind of ANN. 

Initializing with random weights might degrade the performance of the entire training process or 

even prevent it entirely. The later usually occurs when weights or biases have zero value and thus 

the neurons are already saturated before the training process even begins. In practice a common 

approach is to use random independent values that follow the Gaussian distribution, normalized to 

have 0 mean and 1 standard deviation. Let 𝑧 be the sum of all the weights and biases of a single 

neuron and thus: 

𝑧 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏  (2.59) 

That means that 𝑧 is a sum of random Gaussian variables an extra bias term. Assuming that half 

of 𝑥𝑖 will be turned off, or in other words they will be set to 0, and the rest are activated, if the 

number of weights connected to a single neuron is large, for example 500 weights, 𝑧  will have a 
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value of 501 considering 500 weights and 1 bias. The standard deviation of 𝑧  will be √501 ≅

22.4 with zero mean (Figure 2.16) which shows that the 𝑎𝑏𝑠(𝑧) will be a large value and thus 

𝑧 ≫ 1 𝑜𝑟 𝑧 ≪ −1. In case of a sigmoid neuron, this will lead to a pre-saturated neuron as 𝜎(𝑧) 

will be either strongly 0 or 1. As backpropagation works by applying small weights in order to 

explore the surface of the cost function of the network, the changes will have little to no effect to 

the neuron which leads to slow learning and thus damages the whole training process.  

 

Figure 2.16 Gaussian distribution of the values of a 500 weight and 1 bias neuron. 

To prevent this, an alternative approach is use Gaussian normalized free parameters with mean 

zero, yet change the standard deviation to be around  1 √𝑛⁄ , where 𝑛 the number of free-parameters 

connected to the neuron. This causes the Gaussian distribution to be squashed down and thus have 

much less possibility for the neuron to be saturated upon initialization. By following that in the 

previous example, the standard deviation of 𝑧 will be √
2

3
= 1.22 with a much sharper Gaussian 

distribution (Figure 2.17). 

 

Figure 2.17 Gaussian distribution with standard deviation 1.22 and mean zero.  

2.3.3 The L2 Regularization  

Weight decay is a regularization technique, also known as L2 regularization. To incorporate weight 

decay, a modification of the loss function is required in which a regularization term is added. 

Examining the original cross-entropy loss function, the regularization term can be added as: 

C = −
1

𝑛
∑ (𝑦𝑙𝑛(𝑎) + (1 − 𝑦) ln(1 − 𝑎)) +𝑡

𝜆

2𝑛
∑ 𝑤2
𝑤   (2.60) 
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in which the first term is the original cross-entropy loss function, followed by the sum of the 

squares of all the weights. The scaling factor 
𝝀

𝟐𝒏
 , where 𝝀>0 and 𝒏 the number of training 

examples, is added in order to regularize the parameters. Similarly for the quadratic loss function, 

weight decay can be incorporated which as: 

𝐶 =
1

2
(|𝑦 − 𝑎𝐿|)2 =

1

2
∑(𝑦𝑗 − 𝑎𝑗

𝐿)
2

𝑗

+
𝜆

2𝑛
∑𝑤2

𝑤

 (2.61) 

In fact, the L2 regularization term, can be added to any loss function by following: 

𝐶 = 𝐶0 +
𝜆

2𝑛
∑𝑤2

𝑤

 (2.62) 

where 𝑪𝟎 is the original lost function. The regularization parameter addition guides the network to 

learn small weights while larger weights are allowed only if they result in a considerable change 

of the original loss function output. The term that regulates the weight scale balance is 𝝀 where a 

small value swifts the attention to minimize the original cost function 𝑪𝟎 while a larger value swifts 

the preference to the small weights. 

To incorporate the regularization factor 𝜆 in SGD algorithm, the partial derivatives of gradient 

descent are expressed as: 

𝜗𝐶

𝜗𝑤
=
𝜗𝐶0
𝜗𝑤

+
𝜆

𝑛
𝑤 (2.63) 

𝜗𝐶

𝜗𝑏
=
𝜗𝐶0
𝜗𝑏

 (2.64) 

Notice that the partial derivatives of biased remain unchanged, as the regularization The is applied 

only on the weights of the network. In that sense the update rule of the backpropagation algorithm 

can be re-written as:  

𝑤 → 𝑤′ = 𝑤 − (1 −
𝑛𝜆

𝑛
)𝑤 − 𝑛

𝜗𝐶0
𝜗𝑤

 (2.65) 

𝑏 → 𝑏′ = 𝑏 − 𝑛
𝜗𝐶0
𝜗𝑏

 (2.66) 

The only to the original update rule is the rescaling of the weights, which is also called weight 

decay. According to these equations the update rules of the SGD algorithm ca be rewritten as:  

𝑤 → 𝑤′ = 𝑤 − (1 −
𝑛𝜆

𝑛
)𝑤 −

𝑛

𝑚
∑

𝜗𝐶𝑡
𝜗𝑤

𝑡

 (2.67) 

𝑏 → 𝑏′ = 𝑏 −
𝑛

𝑚
∑

𝜗𝐶𝑡
𝜗𝑏

𝑡

 (2.68) 
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The term 𝐶𝑡 is the unregularized cost of each training example of each mini-batch as computed by 

the original backpropagation algorithm. 

2.3.4 The L1 Regularization   

L1 regularization is similar to L2 regularization, with the only difference been on the regularization 

term of the loss function, which in L1 case, calculates the absolute sum of the weights of the 

network multiplied by the regularization factor  𝜆: 

𝐶 =  𝐶0 +
𝜆

𝑛
∑𝑎𝑏𝑠(𝑤)

𝑤

 (2.69) 

The partial derivative of Eq. (2.69) with respect to the weights of the network can be written as:  

𝜗𝐶

𝜗𝑤
=
𝜗𝐶0
𝜗𝑤

+
𝜆

𝑛
𝑠𝑔𝑛(𝑤) (2.70) 

in which the 𝑠𝑔𝑛(𝑤) represents the sign of the weight 𝑤. The update rule of the regularized model 

is expressed as:  

𝑤 → 𝑤′ = 𝑤 (1 −
𝑛𝜆

𝑛
) − 𝑛

𝜗𝐶0
𝜗𝑤

 (2.71) 

𝑏 → 𝑏′ = 𝑏 − 𝑛
𝜗𝐶0
𝜗𝑏

 (2.72) 

Both L1 and L2 regularization are affecting the weights of the network, yet the first shrinks the 

weights by a constant amount towards zero, while the second the weight shrinkage is proportional 

to the weight. The result of this, is that when the magnitude of  |𝑤| is large, the L1 regularized 

network shrinks the weight less than L2. In contrast, when the magnitude of the weight is small 

L1 regularization will affect more the weight than an L2. Concluding, an L1 regularized network 

focuses the weights on a relatively smaller number of high importance connections, while the rest 

are led towards zero. Although the difference between the two regularization forms is definite, it 

is still unclear which performs the better and in fact, both are widely used in literature. 

2.3.5 Hyperparameter Selection  

In the context of neural networks, the parameters that have to be decided prior the training process 

are known as “hyper-parameters”. These parameters depend on the different set of algorithms that 

are used while training which includes, the learning rate 𝒏, the regularization parameter 𝝀, the 

batch size 𝒎 in case of stochastic gradient descent like algorithms. Unfortunately, there is no 

definite answer to what values they should get and thus, most of the researchers are following 

heuristic approaches.  Similarly, the same heuristic approaches are followed for the rest of hyper-
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parameters of the network, including the number of hidden layers that the network should have, 

the number of neurons of each hidden layer and even the activation function of the neurons. In 

most of the cases the most effective way is the trial and error, yet there are some basic principles 

that can be followed as short paths. 

To speed up the learning process, and quickly evaluate the effectiveness of a hyper-parameter, 

such as the learning rate, a common practice is to keep the training dataset small thus on each 

epoch, the generalization performance can be monitored and if the model performance does not 

follow an upwards direction alter the learning rate accordingly. Depending on the gradient descent 

algorithm that is used, the learning rate and the regularization parameter are usually provided by 

the creator of the algorithm, yet if that is not the case, a common approach is to follow a learning 

rate reduction by a factor of 10 on each trial. As an example, a usual starting point for learning 

rate, can be 𝑛 = 10−1, if the accuracy is unstable, then a lower learning rate should be applied. On 

the other hand, if the classification accuracy grows steadily but slowly, learning rate should 

increase, usually again at the same rate as the reduction. To determine the number of epochs that 

the model should be used, it is a good practice to follow early stopping approach and thus avoid 

overfitting too. For the regularization parameter, a common approach is first to start the training 

without regularization at all and thus 𝜆 = 0, after learning rate adjustments, the regularization 

parameter can be increased by a steady factor of 10, following the same principles with learning 

rate, yet instead of starting from high values, usually the initial value is as low as 𝜆 = 10−5. 

Various automated techniques have been proposed to help on hyper-parameter selection for neural 

networks. A common approach is the “grid search” which systematically searches through grid in 

hyper-parameter space to find the optimal values. A Bayesian optimization approach of parameter 

selection has been proposed in (Snoek et al. 2012) in which a learning algorithm’s generalization 

performance is modeled as a sample from a Gaussian process. A review of existing algorithms 

along with practical ways to implement them can be found in (Bergstra & Bengio 2012) and a 

recent review that covers essential topics of hyper-parameter optimization is presented in (Yu & 

Zhu 2020).  

2.3.6 Training Dataset Expansion    

The artificial increase of the training samples is commonly employed in the field of ANN training. 

This is because, in order to train a model with thousands or million free-parameters using a small 

dataset often leads to overfitting. An example that is commonly used in the field of CV and is to 

apply affine transformations such as rotations, translations and rescaling of the training samples 

while keeping the same class. That enables the model to adjust the free parameters accordingly 

and thus increase the generalization capabilities of the whole network. Another technique that has 

been recently employed is to use artificially generated images, typically from a generative model, 
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such as a GAN, to create visually and semantically new images from existing dataset. This can be 

extended to train a neural network solely on artificially generated images (Diamantis et al. 2019).  

2.3.7 The Neuron Dropout Technique  

Neuron dropout (Srivastava et al. 2014) is another technique that is commonly used against 

overfitting. The technique involves randomly switching off neurons while training in order to 

prevent “strong connections” to be formed between neurons. An example of this can be seen in 

(Figure 2.18) where temporarily a fixed percentage of neurons are disabled. By repeating this 

process over every epoch, the neurons are getting trained in a way that resembles using multiple 

neural network architectures and thus, they learn to generalize better. Furthermore, the complexity 

of using multiple neural network architectures and then choosing the best is minimized as with this 

technique, the trials are based on every epoch which would have been computed on each network 

individually.  This technique was used successfully in (Krizhevsky et al. 2012) were it was 

described as a technique that reduces the complex co-adaptations of neurons. 

 

Figure 2.18 On the left a neural network before dropout and on the right a neural network after dropout 

process. 

2.4 Deep Learning 

Deep learning is a subset of ML which uses ANNs with multiple cascade neural layers to 

progressively extract higher level features from the data. The main difference between 

conventional ML algorithms and deep learning is the type of data used for training the model. 

Conventional ML algorithms require a data pre-processing step in which typically features are 

extracted from the data, or selected from existing features, and used as input to the model. This 

pre-processing step typically requires a domain expert and aim to represent specific characteristics 

of the input that are of interest in the context of an application. For this reason, these features are 

typically referred as “hand-crafted”.  In CV, such features mainly include color, shape, and textural 

information. In deep learning models, this data pre-processing step is eliminated, as the feature 

extraction is automated through training, thus removing some of the dependency on domain expert. 

Such models ingest the entire data, instead of features from which multiple levels of features are 
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extracted. As an example, considering that we have a dataset containing images of pets, such as 

cats, dogs, and parrots. In deep learning the model ingest entire images as and, through training, 

determines which features are more important in distinguishing each animal. In ML this hierarchy 

is established manually from a domain expert. Deep neural networks are usually trained using the 

well-known back propagation algorithm.  

2.4.1 Convolutional Neural Networks 

In the last decade and especially after the work of (Krizhevsky et al. 2012), a lot of attention has 

been drawn to a special type of deep neural network architecture called CNNs. CNNs are a type 

of multi-layer feed-forward neural network architecture that at its core, contains at least one layer 

of neurons, with connections that perform a special kind of operation known as convolution. Their 

architecture is inspired by the natural biological process of animal visual cortex, in which neurons 

are individually responding to small regions of the visual field. This biological arrangement was 

discovered by examining the visual system of cats and monkeys from the biologists Hubel and 

Wiesel in 50s and 60s. Later on (Hubel & Wiesel 1968) the authors identified that there are two 

basic types of visual cells in the brains. The first type is called “single cells” whose output is 

maximized by edges with particular orientation within their receptive field, which is effectively 

the portion of the visual image that the cell is able to view. The second type of cells referred as 

“complex cells” have a relatively larger receptive field compared to the first and their output is 

insensitive to the exact position of the edges presented into that field.  

In early 80s, the work of (Hubel & Wiesel 1968), inspired an adoption of this in the field of ANNs 

(Fukushima & Miyake 1982) with the name “Neocognitron”. The big difference between 

Neocognitron and the previously used architectures, was that the neurons did not require to share 

the same trainable parameters (weights). As a result, the architecture, instead of relying on neurons 

in fully connected arrangement, it was able use neurons with connection similar to ones found in 

the biological visual context. Due to the increased computational complexity of training such 

networks, the idea was effectively abandoned for almost a decade. In 1998, and mainly due to the 

computational power of modern computers the Neocognitron architecture revisited and improved 

(LeCun et al. 1998). More specifically the so called, LeNet architecture (LeCun et al. 1998), 

proposed a CNN architecture featuring seven layers, which was successfully trained to recognize 

handwritten digits in grayscale images of size 32×32 pixels. In 2003 a generalized approach was 

proposed (Behnke 2003), which was simplified and standardized by (Simard et al. 2003). This 

opened the path to the scientific community to leverage the power of these type of networks in the 

field of CV.  

Maybe the most well-known modern CNN architecture was proposed by (Krizhevsky et al. 2012) 

in 2012 with the name “AlexNet”. The network was trained, using modern Graphical Processing 
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Units (GPUs), significantly speeding up the training process. Training on GPUs was a relatively 

complex task, that was made possible by using the a framework provided by NVIDIA known as 

Compute Unified Device Architecture (CUDA) (Nickolls et al. 2008), which nowadays the de-

facto backbone framework of modern neural network frameworks, such as Tensorflow (Abadi et 

al. 2016) and Pytorch (Paszke et al. 2019). AlexNet was trained on the ImageNet (Deng et al. 

2009) dataset and competed in the “ImageNet Large Scale Visual Recognition Challenge” 

(ILSVRC) (Russakovsky et al. 2015), which is an annual CV competition began in  2010 and 

follows the principles set by PASCAL VOC challenge (Everingham et al. 2010). 

 

Figure 2.19 Visual representation of the AlexNet (Krizhevsky et al. 2012) CNN architecture. 

The AlexNet architecture was trained on the ILSVRC-2010 ImageNet dataset, which contains 1.3 

million high resolution images of various sizes, categorized in 1000 classes. The network achieved 

39.7% and 18.9% error rates on top-1 and top-5 scales1, respectively, largely outperforming 

machine-learning based approaches, winning the competition, sparking the research “frenzy” in 

the field of CNNs. AlexNet architecture consists of five convolution layers, some of which 

followed by max-pooling and normalization layers.  The last layers of the network are two fully 

connected layers followed by one output layer of 1000 neurons with softmax activations. The 

architecture had more than 60 million free-parameters and 500.000 neurons which was a 

considerably big number compared to previously proposed networks. An illustration of the 

architecture is included in (Figure 2.19). 

 
1 In ImageNet classification challenge the error rates of the model are reported based on the predictions of the top 
5 most likely classes. The “top-5” error rate refers to the fraction of the test images for which the correct class is 
amongst this top 5, while the “top-1” error rate refers to the fraction of test images for which the correct class is the 
one judged most likely by the model.   
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2.4.1.1 The Convolution Layer 

At the core of any CNN architecture there is a special type of layer, called convolution layer, from 

which this family of networks takes its name. A convolution layer is similar to a classic hidden 

layer that is found in conventional MLP architectures. The difference between a fully connected 

layer and a convolution layer lies on the neuron connection arrangement. While in a typical MLP 

architecture all neurons of the previous layer are connected with all the neurons of the next layer, 

in a convolution layer, each neuron is connected with a specific set of neurons from the previous 

layer, which is called “receptive field” (Figure 2.20). The input of a convolution layer is 

commonly referred as “input volume”. The receptive field is defined as the region in the input 

volume that a particular neuron is looking. The region has a fixed size of 𝒘 × 𝒉, where 𝒘 and 𝒉 

are the width and height, respectively. Similarly to a conventional sliding window algorithm, each 

neuron is connected to the next set of neurons, until the entire surface of neurons from the previous 

layer is covered. It is not mandatory for the regions to overlap each other. The distance, or step, by 

which the region shifts on (filters) the input volume is called is called stride 𝒔.  

 

   

(a) (b) 

Figure 2.20 (a) The receptive field of a single neuron. (b) Overlapping receptive fields. 

Depending on the filter size and stride used by the convolution layer, the outermost filters might 

fell outside of the input volume. To overcome this problem, padding 𝒑 is used, which effectively 

expands the input volume so that all filters can fit. An example of padding with 𝒑 = 𝟏 is illustrated 

in (Figure 2.21), where the surrounding pixels of the input volume are padded with zeros.  

 

The receptive field of each neuron in a convolution layer is extended across the depth of the input 

volume. To understand this, we can consider a 3D input volume, such as an RGB image, in which 

each channel can be considered as another slice added for the creation of a cube with a width and 

height equal to the width and height of the image, and depth equal to the number of channels. In 

such cases, the receptive field of neurons, which is also known as filter or kernel, raster scans the 

input volume, covering their whole width and height. A convolution layer can raster scan the input 

volume with many filters. The filters of the same type are sharing the same weights, increasing the 

computational efficiency while training. This is also known as “parameter sharing”. 
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Figure 2.21 A visual representation of padding 𝑝 = 1 been used to surround and input volume of size 

6×6 with zeros, resulting in volume of size 8×8.  

Parameter sharing is the main difference of the convolution layers from the conventional fully 

connected layers. In a convolution layer, each neuron connection represents a receptive field, on 

which weights and biases need to be computed. Instead of using different parameters for each of 

neuron connection, the parameters are shared between them: 

𝜎(𝑏 + ∑∑ 𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚)

ℎ

𝑚=0

𝑤

𝑙=0

 (2.73) 

where 𝜎 is the activation function of a neuron, 𝑏 the shared bias and 𝑤𝑙,𝑚 the array of 𝑤 × ℎ shared 

weights. The 𝑎𝑗+𝑙,𝑘+𝑚 detonates the activation function output of the previous layer neuron at 

position 𝑗 + 𝑙, 𝑘 + 𝑚. This equation is also known as mathematical convolution and is the one 

from which the name of the layer derives. In literature, this equation can also be found as:  

𝑎𝑙,𝑚 =  𝜎(𝑏 + 𝑤 ∙ 𝑎𝑙−1) (2.74) 

where 𝑎𝑙,𝑚 is the set of output activations of feature map 𝑚 in layer 𝑙 and 𝑎𝑙−1 a set of inputs from 

the previous layer. The “∙” represents the convolution operation between the input and the shared 

free-parameters of the feature map.  

Due to the parameter sharing properties, the same filter is computed across all the input volume, 

forming a feature detector, which is translation invariant. This derives from the fact that all neurons 

look for the same feature across the input volume and as a result high activations will be achieved 

wherever that feature is found. This mapping between the input and the filters of a convolution 

layers is named as “feature map”. A convolution layer can have multiple feature maps, forming 

multiple layers of feature detectors. A visual representation of such feature maps is depicted in 

(Figure 2.22), in which 20 feature maps formed by training a CNN using the MNIST dataset (Deng 

2012).  
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Figure 2.22 Visualized feature maps formed by training a convolution layer using the MNIST dataset 

(Deng 2012).  

From the visualization of the feature maps in (Figure 2.22) it can be noticed that the features have 

a spatial structure with lighter and darker regions, sensitive to corners, which resemble the 

conventional approaches of feature extraction such as the Gabor filters. The difference between 

these approaches and the feature maps is that the later, are learned based on the training samples 

and they do not follow a specific mathematical procedure. The parameter sharing of feature maps, 

is extended across the depth of the input volume. A benefit from the parameter sharing is that it 

reduces the number of free parameters of the convolution layer, especially when compared with 

conventional fully connected layers. As this extends along the whole network, the training and 

inference process become considerably faster, even for deeper architectures. The lower 

computational requirements in conjunction with modern computer hardware, mainly GPUs, 

enabled deep learning to become a reality. 

2.4.1.2 Pooling Layer  

Convolution layers are usually followed by a pooling layer. A pooling layer can be considered as 

a summarization layer of the input volume. The units of this layer have the same hyper-parameters 

with the convolution layer, such that they too have a receptive field, stride, and padding, yet instead 

of computing convolution operation, depending on the type of the pooling, they summarize the 

receptive field of each unit into a single scalar value. Typically, a pooling layer has three hyper 

parameters; the size of their receptive field, stride and padding. The benefit of using pooling layers 

is that they reduce the number free-parameters in the network and thus lower the overall 

computation cost of the model. The reduction of the spatial size of the model, also help to mitigate 

the problem of overfitting, which will be discussed in the following sections.  

Common pooling types include the max and average pooling, which compute the maximum and 

average value from the receptive field of each unit, respectively. Commonly used hyper-
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parameters are filter of size 2×2 and stride of 2 which in down sample the input volume by 

discarding 75% of the activations. Higher pooling filter size, result into larger information loss 

that, in most cases is not desirable. Max-pooling aim to keep the most important features of the 

feature map, such us edges, while the average-pooling summarizes the input volume acting like 

low pass filter. Although max and average pooling (Figure 2.23) are widely used, mainly due to 

their simplicity, they “blindly” discard or mix the values of the input volume. For this reason, more 

advanced pooling operations have been proposed, such as a fuzzy-set based pooling operation, 

named “Fuzzy Pooling” (Diamantis & Iakovidis 2020), which aim to cope with the local 

imprecision of the feature maps. It has been shown that similar benefits with the pooling layer can 

be achieved by replacing them with larger filter size of convolution layers (Springenberg et al. 

2014). Finally in some cases, discarding completely pooling layers can be beneficial in training, 

especially in the case generative models such as variational autoencoders (VAEs) (Kingma & 

Welling 2013) or GANs (Goodfellow et al. 2014). 

 

Figure 2.23 Visual demonstration of max and average pooling with filter size 2×2 and stride 2, when 

applied on an input volume of spatial size 4×4.  

2.4.1.3 Fully Connected Layer  

A commonly used layer, especially in older CNN architectures, such as the AlexNet (Krizhevsky 

et al. 2012), fully connected layers are used as the last layers of the architecture. The reasoning 

behind that is that the convolution layers are used to exploit the local associations between the 

input signals yet and not to access whether a signal is strong enough to be considered significant. 

For this reason, fully connected layers, which are the classic layers of neurons found in MLPs, are 

used to classify the responses of the convolution layers. On the other hand, using fully connected 

layers in network can significantly increase the free-parameters of the overall architecture, and 

thus the overall computational complexity. Furthermore, as the layer is fully connected, spatial 

information that is embedded in the responses of the previous layers is lost. For these reasons 

newer architecture, such as in (Springenberg et al. 2014), discard completely the use of fully 

connected layers and opt for convolution layers with small filter size or by global average pooling. 
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To replace a fully connected layer using the global average pooling technique, a convolution layer 

is used in combination with a global average pooling layer. The number of feature maps of this 

convolution layer matches the number of neurons that would have been used with a fully connected 

layer. The global average pooling layer receives as input the output the convolution layer and 

computes the average value for each feature map. The resulting vector is then used directly as input 

for the output layer of the network.  

2.4.1.4 Normalization  

Signal normalization is commonly used between the layers of CNN architectures.  It consists of 

computational units that receives as an input the output signals of a previous layer and adjust their 

values according to a normalization procedure. For this reason, it is also commonly referred as 

“Normalization Layer”. A variety of normalization operations have been proposed, including 

Local Response Normalization (LRN), Mean Variance Normalization (MVN) (Krizhevsky et al. 

2012) and Batch Normalization (BN) (Ioffe & Szegedy 2015), which are inspired by the biological 

normalizations of signals that happen in brain. LRN performs a “lateral inhibition” by normalizing 

over input regions, which useful when ReLU type activations are used in the previous layer. This 

is because the ReLU neurons have unbound activations and thus, LRN aims to detect frequency 

features with large response. That means that if normalization is done around local neighborhood 

of an explicit neuron, it becomes more sensitive as compared to its neighbors.  

 

A drawback of LRN is that it discriminates the responses that are uniformly large in any given 

local neighborhood, which in return the normalization diminishes them. The goal of the LRN is to 

encourage some kind of inhibition and boost the neurons with relatively large activations 

(Krizhevsky et al. 2012). The normalization can be done either to a specific channel or depth of 

the previous layer, or it can be extended across all depth. In both cases the size of normalization 

filter follows the same principles as any other layer and thus it can be configured based on the size 

of the receptive field that normalization is desired. MVN is working similarly to LRN layer; yet it 

handles the normalization differently, as it normalizes the input volume so that its values will have 

0 mean and a variance of 1.  

 

2.4.1.5 The Output Layer  

The last layer of a CNN architecture is typically called “output layer”. The activation function used 

for the neurons of this layer depends on the type of prediction problem. Commonly used activation 

functions include the linear, logistic and softmax activation functions.  
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The linear activation function is also known as “identity” function, as it does not have any effect 

on the output of the neuron.  This function is typically used in regression problems. The logistic 

function was discussed in Section 2.1.2 and when used as the activation function for the neurons 

of the output layer, each element of the resulting vector can be interpreted as a confidence score. 

When the softmax function is used as the activation for the neurons of the output layer, the 

algebraic sum of each element of the resulting vector would be 1. The element with the highest 

probability corresponds to the predicted class.  

 

Figure 2.24 Commonly used activation functions for the output layer of a CNN architecture. 

Depending on the type of the classification problem (Figure 2.24), both logistic and softmax 

activation functions are used. In binary classification problems the output layer can consists of one 

or two neurons. In the first case, the logistic activation is used, while when two neurons are used, 

the softmax activation is preferred. When there are more than two mutually exclusive classes 

(multiclass classification) the output layer consists of one neuron per class with softmax 

activations. When there are two or more mutually inclusive classes (multilabel classification), then 

the output layer has one neuron per class and the logistic activation is used.   

2.4.2 Advancements in Convolutional Neural Networks 

Since 2012 and more specifically after the spike in research interest triggered by the AlexNet 

(Krizhevsky et al. 2012) architecture, there have been many advancements in the field of CNNs. 

This section includes the most characteristic CNN architectures along with their contribution in 

the field of deep learning.  
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2.4.2.1 The LeNet Architecture  

The LeNet (LeCun et al. 1998) architecture, is considered the father of CNN architectures. The 

LeNet-5 consists of 5 convolution layers, followed by pooling and two hidden fully connected 

layers. A summary of the architecture is illustrated in (Figure 2.25). 

 

Figure 2.25 The LeNet-5 architecture.   

As an input the architecture uses an input layer of 1024 units which are used for raw grayscale 

image input of size 32×32 pixels in size. The second layer is a convolution layer which extracts 6 

different feature maps with relatively large filter size of 28×28 spatial size, followed by a max-

pooling layer of 14×14 filters. The second convolution layer extracts 16 feature maps of with filter 

size of 10×10. A second sub-sampling layer is followed with filter size 5×5 followed by 2 fully 

connected layer and an output layer of 10 neurons; one for each possible class of the training 

dataset. The architecture was trained using the MNIST dataset (Deng 2012) and used in banking 

industry to recognize handwritten bank notes. Compared with modern CNN architectures, such as 

the AlexNet (Krizhevsky et al. 2012), it is a relatively swallower architecture, using sigmoid 

activation functions as rectified linear units, appeared almost 15 years layer, yet the performance 

of the network on the classification task of handwritten digits was relatively high.  

AlexNet (Krizhevsky et al. 2012) architecture, presented in Section 2.4.1, was based on LeNet-5 

architecture, improved the initial model at many points. The introduction of rectified linear units 

(ReLU) as activation functions for the neurons of the network along with the introduction of local 

response normalization layers reduced drastically the overfitting issues of the initial model 

allowing the entire architecture to go deeper and thus improve the predictive power of the entire 

model. Parallel GPU training neural network training was also firstly introduced by the AlexNet 

authors. Furthermore, the experiments included, helped to understand the importance of smaller 

filter sizes for the feature maps. Finally, in this architecture the introduction of dropout layer in the 

last fully connected layers to reduce overfitting was adopted. 
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2.4.2.2 The ZFNet Architecture  

This ZFNet architecture (Zeiler & Fergus 2014) is a CNN architecture based on the original 

AlexNet (Krizhevsky et al. 2012) architecture, which keeps the same number of convolution and 

pooling layers, with small changes on the hyper-parameters of the layers, with the most significant 

one to expanding the filter size of the middle convolution layers (Figure 2.26). This enabled the 

network to achieve a top-5 error rate of 14.8% in ILSVRC 2013 challenge, marking it as the winner 

of the challenge that year.  Although the network is relatively similar to AlexNet, it was trained on 

only 1.3 million images compared to AlexNet which was 15 million. The first change compared 

to AlexNet was the smaller filter size of the first convolution layer which changed from 11×11 to 

7×7 size. This enabled the network to retain more pixel information from the input volume. The 

authors of that study found that the original large 11×11 filter size, opt-out a lot of the relevant, 

spatial information found in pixels and was the reason why ZFNet was able to be trained with 

much smaller dataset. The same principle was followed for the rest of the layers, decreasing the 

filter size in deeper layers, providing more abstract features to the final layers. Although winning 

the ILSVRC challenge was a major achievement for the network, the main contribution of (Zeiler 

& Fergus 2014) was that they used feature map visualization, which gave an understanding of how 

the convolution layer operates and thus provide means to “debug” existing architectures.  

 

Figure 2.26 The ZFNet architecture (Zeiler & Fergus 2014).   

The ZFNet architecture was used to demontrate that classification performance of CNNs can be 

attributed mainly to the existence of large datasets, such as ImageNet (Deng et al. 2009), combined 

with the existence of powerful computational resources, such as GPUs. By that time, there was no 

clear understanding of how CNNs work. Their contribution to provide a visualization the feature 

maps, increased the general understanding of the CNNs as it became possible to visually assess 

the quality of the features learned during training. The feature map visualization was implemented 

using a methodology called “DeConvNet” which acts as a reverse convolution layer.  

DeConvNet works by attaching a deconvolution layer after every convolution layer of a trained 

network. To examine the features that a feature map has learned in the 𝑛𝑡ℎ layer, the activations 

of that map are held while, the rest of feature maps are set to zero. Then the feature map is passed 

through the deconvolution layer which has the same features as the original CNN. The input vector 
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then passes through a series of up-sampling layers, named unpooling, rectify and filter operations, 

one for each preceding layer until the input space match the input volume. The result of the 

operation for the first two layers on ZFNet model are illustrated in (Figure 2.28). More specifically 

it can be observed that the initial convolution layer learns more specific features about the images, 

like colors that reassemble close the original input volume, while moving to deeper layers the 

network learn more abstract features like corners. 

 

Figure 2.27 Deconvolution operation of the first and second layer of ZFNet model using as input the 

images in the right  (Zeiler & Fergus 2014).   

2.4.2.3 The VGGNet Architecture  

A popular architecture, known for its depth is the “VGGNet” architecture (Simonyan & Zisserman 

2014) which was proposed in ILSVCR 2014. Aims of the architecture was the exploration of 

deeper CNN architectures and their behavior upon training. Although the architecture is deeper 

than, ZFNet and AlexNet, it is relatively simple, as the receptive field of all convolution layers is 

fixed, with size of 3×3 and stride 1. The idea behind the fixed size filters is that the variable size 

of AlexNet (11×11, 5×5 and 3×3), can replicated in respect of the receptive field coverage by 

making use of multiple 3×3 building blocks. Two variants were proposed, one having 16 layers 

and another having 19 layers (Figure 2.29). In respect to number of free-parameters the VGGNet 

architecture is relatively large, as it consists of 138×106 free-parameters in its smaller version (16 

layers), which make the training process a relatively computational and resource demanding 

operation, prone to overfitting.  
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Figure 2.28 The VGGNet-19 architecture (Simonyan & Zisserman 2014).   

 

Figure 2.29 Variations of VGGNet architecture from smaller (A) to larger (E) (Simonyan & Zisserman 

2014).   

Due to the large number of free-parameters, (Simonyan & Zisserman 2014) used an incremental 

approach to train the network, in which training starts with a smaller, swallow network. Every time 

that the network converges, the training process pauses, more layers are added and training 

resumes, effectively using the trained layers as initializers for the untrained, newly added layers. 

The network used for each incremental training stage is illustrated in (Figure 2.29). Although this 

methodology is effective, it is relatively time consuming, as it requires an entire network to be 
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trained before it can be used as an initializer for a deeper network. The VGGNet-16 variant was 

trained in ILSVRC-2012-validation dataset achieving a top-5 error of 7.5% and on ILSVRC-2012-

test with top-5 error of 7.4%.   

2.4.2.4 The GoogLeNet and the Inception-Based architectures  

GoogLeNet (Szegedy et al. 2015) also known as Inception-v1 was the winner of  ILSVRC-2014 

challenge, with top-5 error rate of 6.7%, and introduced a ra dically different CNN 

architecture design. Compared to the VGGNet architecture that was proposed in the same 

challenge, GoogLeNet, over 100 layers organized in the so-called “inception” modules (Figure 

2.30). The inception module aims to minimize the computational resources required by the process 

of stacking multiple convolution layers together along with the problem of overfitting due to the 

increased number of free-parameters.  

 

Figure 2.30 The GoogLeNet architecture (Szegedy et al. 2015).   

Compared to conventional CNNs, the inception module, illustrated in (Figure 2.31), process the 

input volume in parallel. In the architecture, each inception module has the chance to perform both 

convolution and pooling operations using multiple filter sizes, as opposed of having one operation 

per layer. The output of all parallel layers is then concatenated creating a feature reach 

representation of the input volume, which is then passed to the next module of the network. To 

manage the increased number of free-parameters introduced by the multiple feature map 

concatenation, inception module uses 1×1 convolutions, also known as pointwise convolutions, 

which control the number of feature maps.   
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Figure 2.31 The inception module (Szegedy et al. 2015).   

In total the architecture features 9 inception modules, with over 100 layers. Furthermore, the 

architecture does not use any fully connected layer, following a similar approach with the fully 

convolutional architecture (Springenberg et al. 2014), which reduced the number of free 

parameters by 12 times compared to AlexNet. ReLU activations along with max-pooling was 

employed to deal with the overfitting problem which improve the nonlinearity of the network. By 

replacing the conventional output fully connected layer average pooling layer, reduced the input 

volume from 7×7×1024 to 1×1×1024. 

 

  
(a) (b) 

 

Figure 2.32 (a) 5×5 convolution expressed as 3, 3×3 convolution layers (b) N×N factorized convolution 

(Szegedy et al. 2016).   

Variations of GoogLeNet architecture include, Inception-v2 and Inception-v3 (Szegedy et al. 

2016) and feature increased classification accuracy along with computational performance 

improvements. Inception-v2 aimed to reduce the representational bottleneck of inception module, 

which arises from severe dimensionality reduction, introduced typically by the pointwise 

convolution usage. To increase the computational efficiency of the network, the authors of that 

study proposed to use factorized convolutions. As an example, using this methodology a 5×5 
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convolution layer can be expressed in 3, 3×3 convolution layers, which computationally wise, is 

2.78 times computationally cheaper. This is illustrated in (Figure 2.32a). This can be extended to 

any N×N convolution layer which can be expressed as a combination of 1×N and N×1 

convolutions (Figure 2.32b). The authors found that this methodology, can be 33% cheaper in the 

case of 3×3 convolutions.  

In an effort to battle the bottleneck problem, the filter banks found in the original Inception module 

were also expanded, making them wider instead of deeper.  The authors found that in Inception-

v2 the auxiliary classifiers did not contribute a lot especially in the end of the architecture, mainly 

due to neuron saturation. For this reason in Inception-v3 variant, they enhanced Inception-v2 with 

factorized 7×7 convolutions, batch normalization (Ioffe & Szegedy 2015) and trained using label 

smoothing, which was proposed as a regularization method, and the RMSProp optimizer (Hinton 

et al. 2012). 

2.4.2.5 The ResNet architecture  

The ResNet architecture (He et al. 2016), was introduced in ILSVRC-2015 challenge winning it 

with a remarkably low top-5 error rate of 3.6%, considerably lower than the pre-accentors and for 

the first time, outperforming the human top-5 error rate which is between 5 and 10%. The 

architecture was relatively deep, yet simple. It introduced the concept of residual blocks, which 

made use of residual connections, similarly stacked together as in the case of Inception model, 

forming a deep CNN architecture of 152 layers (Figure 2.33). 

 

Figure 2.33 A ResNet architecture variant with 34 layers (He et al. 2016).  

A residual block consists of a three-step process, convolution – ReLU – convolution forming a 

block that implements 𝑯(𝒙) = 𝑭(𝒙) +  𝒙. Notice the addition of 𝒙 in the function. This is the 

residual connection of the block which adds the input volume back to the output of the residual 

block. This addition was introduced to battle the problem of vanishing gradient as it enables an 

easier flow of the gradient in the backpropagation backward pass (Figure. 2.34). Using residual 

modules, enabled the architecture to become very deep and still trained effectively, without facing 

extreme overfitting problems. It should be noted that the architecture that won the ILSVCR 
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challenge was trained on 8 high end GPUs for three weeks. Although the residual block is effective 

in battling the problem of vanishing gradient, it does not prevent overfitting. This was 

demonstrated by the network authors (He et al. 2016) by experimenting on a 1202 layer ResNet 

architecture which significantly under-performed when compared to the 152 layer ResNet, which 

was attributed to the increased number of free-parameters which led to overfitting.  

 

 

Figure 2.34 A visual representation of the residual block  (He et al. 2016).   

  
(a) (b) 

Figure 2.35 A visual representation of (a) the original residual block of ResNet and (b) a residual module 

in ResNeXt model with 𝑐 = 32. 

ResNet inspired many architectures that followed. More specifically Inception-v4 and Inception-

ResNet (Szegedy et al. 2017) variants are improvements of Inception-v2 and Inception-v3 

architectures, that aimed to explore the residual connections and formalize the original inception 

module, achieving higher classification performance with lower computational requirements. The 

ResNeXt (Xie et al. 2017), which appeared and won the ILSVRC-2017 challenge was also inspired 

by the original ResNet design. The architecture enhanced the residual module with multiple 

parallel convolutions, which perform an aggregated transformation of the input volume. The 
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number of parallel blocks (𝑐) define the cardinality of the module, which is in effect a new 

dimension on top of the width and depth of the original ResNet module. An example of such 

module with 𝑐 = 32 is illustrated in (Figure 2.35).  

2.4.2.6 The DenseNet architecture  

The Densely Connected Convolutional Network (Huang et al. 2017) also known as DenceNet, 

extends the residual connections in such a way that every layer in the network is connected with 

every other layer, in a feed-forward fashion, meaning that a DenseNet has 
𝑛(𝑛+1)

2
 residual 

connections. Each layer of the network has the feature maps of all previous layers as input. The 

advantage of this is that the gradient is not vanished the time it reaches the end of the network.  

 

 

Figure 2.36 A visual representation of 5-layer dense bock (Huang et al. 2017). 

The DenseNet architecture can be composed by four types of dense blocks. The first is the basic 

DenseNet composition layer, in which each layer is followed by batch normalization, ReLU 

activations and a 3×3 convolution layer. The second type is called “BottleNeck” or DenseNet-B, 

in which a pointwise convolution is inserted between a DenseNet composition layer. The third 

type of layer, named DenseNet Compression (DenseNet-C), focuses on the model compactness as 

it tries to reduce the feature maps within a transition layer which introduces a compression factor 

between 0 and 1. When this compression factor is 1 then all feature maps are retained, yet when 

its smaller it the number of feature maps will change accordingly. When both bottleneck and 

transition layer are used with a compression factor lower than 1 the model is referred as DenseNet-

BC. The last type of DenseNet is composed by multiple dense blocks and transition layers in which 

the dense blocks are followed by pointwise convolutions and 2×2 average pooling layers. The 

feature maps in this type of dense block, have the same size and thus the transition layer output 

can be concatenated forming a feature reach representation of the block. To reduce the 

computational complexity, fully connected layers are replaced by global average pooling followed 

by a Softmax classifier. 
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2.4.2.7 Mobile Oriented CNN architectures 

Although the advancements in CNN architectures towards increasing their classification 

performance are plenty, one of the main drawbacks is that as their depth increases, and their 

computational complexity follows the same trend. This results in CNN architectures, that although 

they can be very powerful, they are unable to perform inference in a computationally limited 

environment, such as mobile phones and embedded devices. The main reason behind that is the 

high number of free-parameters which result in relatively large number of Floating-Point 

Operations (FLOPs) which can only be executed, in reasonable time, in high-end systems equipped 

with modern GPUs. To deal with this limitation, a variety of architectures have been proposed that 

typically require much lower computational resources, usually in expense of classification 

performance.  

2.4.2.7.1 The SqueezeNet architecture  

The SqueezeNet (Iandola et al. 2016) architecture, was one of the first mobile-oriented CNN 

architectures. The idea behind is architecture was to create a neural network composed by efficient 

building blocks, aiming to reduce the number of free-parameters of the network. Compared to the 

 

Figure 2.37 Fire module visual representation. 

AlexNet (Krizhevsky et al. 2012) architecture which uses five convolution layers with large filter 

sizes and fully connected layers, SqueezeNet uses small pointwise convolutions combined with 

convolution layers having a filter size of 3×3. The building block behind the architecture is known 

as the “Fire module”. The first layer of the module is a pointwise convolution layer which squeezes 

the input volume. The output of the layer is then parallelly guided to another pointwise convolution 
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and a convolution layer with filter size 3×3. The output of them is then concatenated. This is 

illustrated in (Figure 2.37).  

The SqueezeNet architecture consists of eight fire modules in succession, where between them 

max-pooling is used for spatial dimensionality reduction. To minimize the free-parameters the 

architecture is fully convolutional, since no fully-connected layers are used. Following similar 

approach to DenseNet type models, global average pooling is employed along with softmax as the 

output layer of the network. In total the network consists of 1.25×106 free-parameters, making it 

50 times smaller than AlexNet, while managing to maintain the same classification accuracy.  

2.4.2.7.2 The MobileNet architectures 

A family of network architectures that were designed specifically for mobile application usage are 

known as MobileNets. The first version of the architecture was named MobileNet-v1 (Howard et 

al. 2017), made use of the concept of depthwise separable convolutions, originally proposed in 

(Chollet 2017), to replace the computationally expensive convolutions. The architecture is 

relatively simple, as it consists of, usually 13, modules that depthwise separable convolution, batch 

normalization and pointwise convolution to fuse the separable convolutions. The module is 

illustrated in (Figure 2.38). Notice the capped ReLU activations used after the batch 

normalization. These are normal ReLU activations but with a capped output, which in the case of 

MobileNets is 6. The ReLU activation can be expressed as 𝑅𝑒𝐿𝑈(𝑥, 𝑥𝑚𝑎𝑥) =

min(max(𝑥, 0) , 𝑥𝑚𝑎𝑥). The benefits of the capped ReLU version include the increased speed in 

GPU inference and help the network to learn more sparse features earlier. In total the MobileNet-

v1 architecture consists of 4.24×106 free-parameters which are three times smaller than 

SqueezeNet, yet, in ImageNet classification, MobileNet-v1 outperforms the later by 20% and 9% 

in the top-1 and top-5 error score respectively.  

 

Figure 2.38 The basic building block of the MobileNet-v1 architecture (Howard et al. 2017). 

The architecture includes a hyper-parameter named “depth-multiplier”, also known as “width-

multiplier”, which controls the number of feature maps extracted by the convolution layers. This 

parameter effectively balances the computational complexity versus the classification performance 

of the network. Depth-multiplier should be selected according to the application needs.  Choosing 

a multiplier smaller than 1, results in a smaller computationally efficient network, with low 

classification performance. 
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MobileNet-v2 (Sandler et al. 2018) is an updated version of the original MobileNet-v1 

architecture, which increases the classification performance while reducing the computational 

complexity. It has ~1 million lower number of free-parameters. The architecture uses depth-wise 

separable convolutions, yet arranges them with inverted residual connections (Figure 2.40). The 

idea behind this module is to expand, reduce and then re-expand the input volume, which is the 

opposite of SqueezeNet approach.  Same as the first version, the network uses the depth-multiplier 

hyper-parameter to control the balance of computation efficiency and classification performance.  

 

Figure 2.39 The basic building block of the MobileNet-v2 architecture (Sandler et al. 2018). 

MobileNet-v3 (Howard et al. 2019) is the third revision of the MobileNet architecture. Instead of 

revising the original architecture, the authors, used MnasNet-A1 (Tan et al. 2019) mobile CNN 

architecture and adjusted using NetAdapt (T.-J. Yang et al. 2018) algorithm. NetAdapt is an 

algorithm that by automatically simplifying a pre-trained model, reaches to a given latency, which 

is translated to computational efficiency, while keeping the classification performance at a certain 

threshold. The MobileNet-v3 architecture was also adjusted manually, by adjusting the 

computationally expensive layers of the network, use “swish” activations instead of capped ReLU 

and introduced squeeze-and-excitation modules.  

The authors identified that the regular 3×3 convolution layers with 32 filters used in the previous 

version of the network, although have low number of free-parameters, are computationally 

expensive, mainly due to the spatial size of the input feature maps. Experiments showed, that using 

16 filters were sufficient to reduce the complexity without damaging the classification 

performance. The capped ReLU activations were replaced with hard-swish activation functions, 

also known as h-swish, ℎ𝑠𝑤𝑖𝑠ℎ(𝑥,𝑥𝑚𝑎𝑥) = 𝑥 ∗
𝑅𝑒𝐿𝑈(𝑥+

𝑥𝑚𝑎𝑥
2

,𝑥𝑚𝑎𝑥)

𝑥𝑚𝑎𝑥
. This activation allows for a small 

negative slop to be present, compared to conventional ReLU activations, which was found to be 

beneficial to the overall performance, with more profound effect when used in deeper layers of the 

network. To reduce the computational complexity, h-swish was only used in the deeper layers. A 

visual illustration of the main building block of the architecture is illustrated in (Figure 2.40).   
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Figure 2.40 The basic building block of the MobileNet-v3 architecture (Howard et al. 2019). 

The final optimization of the architecture involves the last layers of the model, in which, the 

previous architectures used a pointwise convolution that expand the feature maps just after the 

global average pooling layer. This was done so that the classification layer will have enough 

features for reasoning. Although that worked well, it introduced a bloated layer that was 

computationally expensive compared to the rest of the network. For this reason, in MobileNet-v3 

architecture this layer was placed before the global average pooling layer, so that it works with the 

much smaller feature maps of size 1×1 instead of 7×7.  This change enabled the authors to remove 

the previous bottleneck layer, without classification performance loss. The authors released several 

variations of the architecture, depending on the classification and computational performance 

requirements, with the smallest requiring 2.9×106 number of free parameters and the largest 5.4 

×106. Similar to the previous versions of the network, the smaller variations sacrifice the 

classification performance in favor of computational efficiency. 

 

2.4.2.7.3 The BlazeFace architecture 

The BlazeFace (Bazarevsky et al. 2019) architecture, is a mobile oriented CNN architecture that 

aims to perform accurate face detection in mobile devices with sub-millisecond inference times.  

Although the architecture was designed to be used as a feature extractor for object detection task 

and not a general-purpose CNN, it is worth mentioning as it consists of only 0.1×106 free-

parameters. The architecture is inspired by the MobileNet-v1 architecture, extending it with 

residual connections. The main building block of BlazeFace is illustrated in (Figure 2.41). The 

most profound changes to the MobileNet-v1 architecture was the increase of the filter size in the 

first depthwise separable convolution layer, to 5×5, similarly to MnasNet-A1 (Tan et al. 2019). 

Instead of using the MobileNet-v2 residual connections, which are between the bottleneck layers, 

BlazeNet added them on the depthwise separable convolution layers, in which, to match the output 

volume feature maps, channel padding is used after max-pooling. This effectively adds empty 

feature maps to the input volume. Finally, the activations used were simply ReLU instead of 

capped ReLU. In total the architecture consists of 16 modules, some of which include stride of 2 
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in the depthwise separable convolution. When stride is used the residual connection spatial 

dimensionality reduction is performed using max-pooling, while in the rest of the cases only 

channel padding is used.  

 

Figure 2.41 The basic building block of the BlazeFace architecture (Bazarevsky et al. 2019). The max-

pooling layer is used only when the depthwise separable convolution layer includes a stride of 2. 

2.4.2.7.4 The SqueezeNext architecture 

SqueezeNext (Gholami et al. 2018) is an architectural improvement of the original SqueezeNet 

model. The basic building block of the architecture consists of two bottleneck layers in series, in 

which the first reduces the feature maps in half and the second by four. The original convolution 

layer with 3×3 filter size that follows the bottleneck layers is replaced with two equivalent 

factorized convolution layers, 3×1 and 1×3 respectively, which increase the depth of the model. 

The final layer is an expansion pointwise convolution layer which increases the feature maps to be 

equal with the ones found in the input volume. To this the input volume of the block is added using 

 

Figure 2.42 The basic building block of the SqueezeNext architecture (Gholami et al. 2018).  

a residual connection. This basic building block of the architecture is illustrated in (Figure 2.42). 

Similarly to MobileNets, the SqueezeNext architecture includes a hyper-parameter that can control 

the size of the model. The authors examined four variants of the model, with the first been the 

lightest, requiring 0.7×106 free-parameters and achieving 59.05% and 82.60% top-1 and top-5 

accuracy in ImageNet classification task.  
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2.4.2.7.5 The ShuffleNets architectures 

The ShuffleNet (Zhang et al. 2018) architecture is one of the first CNN architectures specifically 

designed to be computationally efficient. The idea behind the model was that many modern 

architectures use pointwise convolutions which are relatively expensive in terms of FLOPs. To 

deal with this issue, grouped convolution were used instead, which although they easier to compute 

they introduce side effects that harm the classification performance of the network. In an effort to 

mitigate these effects, channel shuffling was introduced, from which the name of the network 

derives. The principle behind the grouped convolutions is to divide the input volume feature maps 

into groups on which the convolution operation is performed. Having, for example, two groups, 

only half parameters are required as each convolution filter only works on half the input volume. 

It is important to state here that the free-parameters between the groups are not shared, so each 

group needs its own set of parameters.  

The grouped convolution is similar to depthwise convolution and in fact, the later can be 

implemented using a generalized version of the grouped convolution. The main difference between 

the two is that for depthwise convolution, each feature map forms its own group and thus it has 

one output feature map. Using the generalized form of grouped convolutions, the number of output 

feature maps of each group do not have to equal the number of input feature maps in the group.   

The main drawback of the grouped convolution approach is that the output derives from a fraction 

of the original input. As a solution to this problem, the feature maps can be shuffled after the group 

convolution, which in effect rearranges the output feature maps along the depth dimensions. This 

is illustrated in (Figure 2.43).  

 

Figure 2.43 Channel shuffling visualization after grouped convolution.  

The basic building block of the ShuffleNet architecture is illustrated in (Figure 2.45). In total the 

network consists of 8 building blocks. An interesting side effect of grouped convolutions is that 

the more groups the architectures consist of, the smaller the computational footprint is. Examining 

the block, the first layer is a bottleneck layer performed using a grouped convolution with filter 
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size of 1×1 and reduces the number of feature maps to four. This is followed by channel shuffling 

which is then followed by a depthwise separable convolution of filter size 3×3, which is followed 

by batch normalization yet without an activation function. The final layer consists of a grouped 

convolution without channel shuffling in which a residual connection is added using the standard 

algebraic sum operation. To reduce the spatial size, some blocks use stride of 2 in the last layer, 

where in that case, the input feature maps are concatenated to the output feature maps, matching 

their dimensions using average pooling with pooling size of 3×3. The final ShuffleNet architecture 

scores 68% and 86.4% top-1 and top-5 score in ImageNet classification challenge having 2.4×106 

free-parameters.  

 

Figure 2.44 The basic building block of the ShuffleNet (Zhang et al. 2018) architecture.  

The ShuffleNet-v2 architecture (Ma et al. 2018) is a revised version of the original ShuffleNet 

design. The authors primarily focused on measuring the computational performance overhead of 

each layer on specific, mobile hardware. The conclusions of that study was to opt-out the use of 

grouped convolutions, as although they require fewer free-parameters, to increase their 

classification performance, more feature maps were required. The result of this was increased Input 

and Output (I/O) on RAM which in return results into slower network performance. The revised 

building block of ShuffleNet-v2 is illustrated in (Figure 2.45). It can be noted that the original 

grouped convolutions were replaced by a channel split operation in which half of the channels are 

sent as is through a residual connection to the feature map concatenation layer and the rest follow 

the bottleneck block. The bottleneck layer is now performed using regular pointwise convolution 

instead of grouped which is then followed by batch normalization and 3×3 depthwise separable 

convolution. Another change is that the algebraic sum of the residual connection has been replaced 

with a concatenation layer. The reasoning behind this change is that the elementwise operations, 

are relatively expensive compared to concatenation. The last layer of the block is a channel 

shuffling layer, similar to the original ShuffleNet architecture. The architecture uses a scale factor 

as a hyper-parameter to control the number of feature maps of the model, which in return controls 

the classification performance versus the computational complexity of the network. Using a scale 

factor of 1, the architecture performs similarly to the original ShuffleNet, having 69.4% and 88.9% 

top-1 and top-5 score respectively in ImageNet classification challenge using 2.3×106 free 

parameters. The largest ShuffleNet-v2 variation consists of 6.7×106 free parameters and scores 

77.1% and 93.3% top-1 and top-5 score, respectively. Although the network has higher 
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classification performance with lower number of free parameters when compared to MobileNets, 

the model is not optimized for GPU usage and as a result, MobileNets are more widely adopted.  

 

Figure 2.45 The basic building block of the ShuffleNet-v2 (Ma et al. 2018) architecture.  

Similar approach with the ShuffleNet-v1 architecture was followed by CondenceNet-v1  (Huang 

et al. 2018) and the newer CondenceNet-v2 architectures (Yang et al. 2021), which used the 

DenceNet architecture as a starting point and included grouped convolutions with channel 

shuffling layers along with an alternation to the residual connection where feature map 

concatenation was used instead of algebraic sum.  The lightweight version of CondenceNet-v1 

architecture, which consists of 8 building blocks and can be compared with ShuffleNet-v1, scores 

71% and 90% top-1 and top-5 accuracy in ImageNet classification challenge and requires 2.9×106 

free parameters.  

2.4.2.7.6 Other Computationally Efficient CNN Architectures  

Nowadays the need for computationally efficient CNN architectures is becoming more apparent, 

especially by the increased use of ML in mobile devices. In the previous sections a variety of 

mobile oriented architecture was presented, covering the most notable architectures and their 

contributions. There is a plethora of other architectures that aim towards CNNs with lower 

computational footprint. Such architectures include, the ESPNet-v1 (Mehta et al. 2018) and a 

lighter version of it, ESPNet-v2 (Mehta et al. 2019), which focused on decomposing the standard 

convolution layer into pointwise convolutions. These are followed by spatial pyramids of dilated 

convolutions. The lighter version of ESPNet-v2 consists of 3.49×106 free parameters and achieves 

72.1% and 90.4% on top-1 and top-5 accuracy respectively in ImageNet classification challenge. 

The DiCENet (Mehta et al. 2020) architecture in an effort to reduce the computational complexity 

replaces the regular convolutions with dimension-wise convolution and fusion. The light version 

of the network consists of only 1.81×106 free parameters scoring 66.5% and 86.6% top-1 and top-

5 accuracy, yet heavier version has 3.98×106 free parameters and has similar classification 

accuracy with ESPNet architecture. FBNet (Wu et al. 2019) and ChamNet (Dai et al. 2019) 

architectures, similarly to (Tan et al. 2019) focused on improving the NAS algorithm, yet in the 

context of not having to train and evaluate each potential architecture separately. The lighter 

versions of the proposed networks, named FBNet-A and ChamNet-C have 4.3×106 and 3.4×106 

free parameters, respectively. GhostNet (Han et al. 2020) which focused on reduction of  number 

of feature maps and lower elementwise operations. Furthermore, the authors focused on the 
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creation of extra feature maps using linear, cheap operations and more specifically depthwise 

convolutions. The lightest version of GhostNet scores 66.2% and 86.6% top-1 and top-5 accuracy 

in ImageNet classification, and consists of 2.6×106 free parameters. The MixNet (Tan & Q. V. Le 

2019) architecture introduced mixed convolutions which use multiple filter sizes in a single 

convolution layer. The idea behind it is that the filter size matters, when it comes to classification 

performance, so instead of deciding a single size, the authors used filter sizes of 3×3, 5×5 and 7×7. 

The light version of the MixNet architecture consists of 4.1×106 free parameters and 75.8% and 

92.8% top-1 and top-5 accuracy in ImageNet classification. EfficientNet (Tan & Q. Le 2019) is a 

widely used mobile oriented architecture that includes three different hyper-parameters that control 

the computational efficiency and classification performance of the architecture. This enables the 

network to be used in a variety of different applications, including conventional GPU enabled 

deployments and mobile or embedded usages. The first hyper-parameter controls the width of the 

network, and it controls the number of filters used per convolutional layer. The second controls 

the depth of the network by controlling the number of convolution layers used in its blocks. The 

last parameter controls the input resolution, which conventionally is 224×224 but can be scaled up 

to increase the accuracy. The light version of EfficientNet features 4.7×106 free parameters and 

scores 74.8% and 92.2% top-1 and top-5 accuracy in ImageNet classification task, while one of 

the largest versions, requires 13×106 free parameters and scores 81.5% and 95.7% top-1 and top-

5 accuracy in the same task. LB-FCN light (Diamantis et al. 2019) architecture, which will be 

discussed in the next sections use similar filter sizes with the MixNet (Tan & Q. V. Le 2019) 

architecture, yet operates in principle of multi-scale feature extraction using parallel convolutions 

to increase the classification performance and maintain low number of free parameters. The light 

version of the architecture consists of only 0.3×106 free-parameters making it one among the 

smallest in the mobile-oriented CNN architecture list. Concluding, there is a large variety of 

computationally efficient CNN architectures that have been proposed in literature, deciding the 

“best” is a question of finding the one that performs better in based on the available hardware and 

operating system.  

2.4.3 Generative Adversarial Networks 

The performance of discriminative models such as CNNs were revolutionary in the field of CV. 

Deep generative models were less impactful since they require to estimate complex probability 

distributions of high dimensionality, which in the past was often considered impossible. GANs, 

introduced by (Goodfellow et al. 2014), overcome this issue by combining two deep models, from 

which one is acting as a generative model (Generator) and another acting as a discriminative model 

(Discriminator). While training, the two networks act as opponents in game were the generator 

tries to fool the discriminator by producing real-like fake samples. The introduction of GANs was 

relatively successful in the context of data generation and with the most profound effect in the field 

of CV, mainly because of their remarkable performance in generating real-like images. Their 
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applications include, image generation (Goodfellow et al. 2014; Diamantis et al. 2019), image-to-

image translation such as style transfer (Karras et al. 2019) and super resolution (Ledig et al. 2017), 

image generation from text (Reed et al. 2016) and even music generation (Gui et al. 2020).   

GANs belong to a broad range of algorithms called generative models. The basics of a generative 

model is to map a simple probability distribution, such as a uniform distribution, to a more complex 

one. The complex probability distribution is named model distribution. In effect a generative 

model tries to map a probability distribution to a high-dimensional space distribution. To 

understand that, let us consider the process of generating images that resemble cats using random 

pixels. In that brute-force approach, not all images would resemble cats. In fact, some pixels can 

be considered to have lower probability than others when it comes to their contribution in the cat 

generation. The result of this process is that the cat image follows a high-dimensional probability 

distribution over the input space. Therefore, the problem of generating a new image of a cat is 

equivalent to the problem of generating a new vector that follows the “cat probability distribution” 

over the N dimensional vector space. The problem can be considered as generating a random 

variable with respect to a specific true dimensional distribution. The true data distribution is 

relatively hard or impossible to be defined. For this reason, an empirical approach is employed 

which approximates the true data distribution through training using samples from the same 

distribution that we try to approximate. There are many generative models that aim to approximate 

true data distributions. They can be classified into two main categories: explicit and implicit. 

Explicit generative models have access to the model likelihood function and are typically trained 

by maximizing the likelihood. They are commonly used in probabilistic modeling as training 

procedure optimizes a well-defined quantity and the likelihood can be used for model comparison 

and selection. Such models include Restricted Boltzmann Machines (RBMs) (Hinton 2012), Deep 

Boltzmann Machines (DBMs) (Salakhutdinov & Hinton 2009) and Variational Autoencoders 

(VAEs)  (Kingma & Welling 2019). GANs (Goodfellow et al. 2014) belong in the implicit model 

classification and  provide a sampling mechanism for generating data, but do not require to 

explicitly define a likelihood function, which in many cases, such as photo-realistic image 

synthesis is relatively hard to find. This section focuses on the advancements of GANs, mainly 

due to their profound contribution in the field of CV and the broad range of applications in which 

they can be used. 

The GAN framework was originally proposed in the work of (Goodfellow et al. 2014). That work 

defined a process of training simultaneously two opponent networks; the generator 𝐺 and the 

discriminator 𝐷. Both networks can be expressed as differentiable functions, so that the generator 

receives an input from a simple probability distribution 𝑧, such as random noise, and outputs a 

sample 𝑥, 𝐺(𝑧; 𝜃𝐺), and the discriminator receives the output of the generator 𝐷(𝑥; 𝜃𝐷) and 

predicts if the input came from the probability distribution of the generator (fake) or from the true 

data distribution (real). The generator and discriminator, with 𝜃𝐺  and 𝜃𝐷 representing the free 
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parameters of the networks respectively, are usually deep neural networks, such as CNNs, which 

are able to cope with the complex nature of the true probability distributions. The GAN framework 

is illustrated in (Figure 2.46). 

 

Figure 2.46 A visual illustration of the GAN framework (Goodfellow et al. 2014).  

The GAN framework (Goodfellow et al. 2014) was introduced with two loss functions; the first is 

known as the minimax GAN loss and the second is known as non-saturating GAN loss. In both 

cases the discriminator loss function is the same as it seeks to minimize the probability assigned 

to real and fake samples. Mathematically the discriminator loss aims to maximize the average of 

the log probability for real samples and the average log of the inverted probabilities of fake samples 

Eq. (2.75). As this is a maximization problem, if Eq. (2.75) is applied directly, it would require 

stochastic gradient ascent weight change instead of the conventional stochastic gradient descent. 

𝐶 = 𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) (2.75) 

For this reason, Eq. (2.75) is usually implemented as a binary classification problem with class 

labels 0 and 1 for fake and real samples, respectively. Based on that, the model fitting process aims 

to minimize the average binary cross entropy, which is also known as log loss:  

  

𝐶 = 𝑦 ∙  −𝑙𝑜𝑔(𝑦′) + 𝑙𝑜𝑔(1 − 𝑦) ∙ − log(1 − 𝑦′) (2.76) 

where 𝑦 corresponds to the expected output and 𝑦′ the prediction. 

The minimax GAN loss refers to the simultaneous minimax optimization of the generator and the 

discriminator models. Minimax is an optimization strategy in a two-player turn-based game for 

minimizing the loss for the worst case of the player. In the case of GANs the discriminator and the 

generator are the players of the game in which upon each turn their weights of their model are 

getting updated. The min and max from the minimax loss refer to the minimization and the 

maximization of the generator and discriminator loss, respectively. This is expressed as the 

maximization of Eq. (2.75) and minimization of (2.77):  
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𝐶𝐺 = log (1 − 𝐷(𝐺(𝑧))) (2.77) 

Although the use of minimax methodology served in the mathematical analysis of the GAN 

framework, in practice this loss does not provide sufficient gradient for the generator to learn well. 

The saturating gradient becomes apparent especially in the early stages of learning, as the 

discriminator can easily identify the forged generated samples of the untrained generator.  

To overcome the gradient saturation of minimax, the non-saturating GAN loss was proposed. The 

generator loss is modified so that it maximizes the log discriminator probabilities for the generated 

samples instead of minimizing the inverted probabilities:  

𝐶𝐺 = log (𝐷(𝐺(𝑧))) (2.78) 

This also changes the framing of the problem. In fact, using the minimax loss the generator tries 

to minimize the probability of the samples predicted as fake, while in the non-saturating loss, the 

generator tries to maximize the probabilities of samples predicted as real. (Goodfellow et al. 2014) 

found that this loss prevents gradient saturation and in general promotes stable learning.  Similarly, 

to the discriminator the implementation of the non-saturating loss is done by expressing the 

problem as binary classification. This is done by flipping the labels of real and fake samples and 

minimizing the cross-entropy.  

Many loss functions have been proposed over the years (Pan et al. 2020). Two widely used losses 

are the Least squares GAN loss (Mao et al. 2017) and the Wasserstein GAN loss (Arjovsky et al. 

2017). Least squares GAN loss was proposed aiming to solve the limitations of using binary cross-

entropy loss when generated images. The authors observed that when binary cross-entropy is used, 

the generated images are relatively different that the real, which can lead to small or vanishing 

gradients, resulting from little to no weight updates for the model. The least square GAN loss aims 

for the discriminator to minimize the sum squared difference between the predicted and the real 

values (2.86) and for the generator to minimize the sum squared difference between the predicted 

and expected values as though the predicted images were real Eq. (2.80). The main benefit of this 

loss is that it penalizes more the large errors, which results in larger corrections and thus, battles 

the problem of vanishing gradient. 

𝐶𝐷 = (𝐷(𝑥) − 1)2 + 𝐷(𝐺(𝑧))
2
 (2.79) 

𝐶𝐺 = (𝐷(𝐺(𝑧)) − 1)
2
 (2.80) 

The Wasserstein GAN loss (Arjovsky et al. 2017), was motivated by the fact that conventional 

GANs aim to minimize the distance between the predicted and actual probability distributions of 

real and the generated samples. The authors proposed an alternative methodology in which the the 
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problem instead of following the conventional Kullback-Leibler divergence (KLD) modeling, 

follows the Earth-Mover’s distance (EMD), which is also called Wasserstein-1 distance. EMD 

calculates the distance between two probabilities in terms of the cost of turning one distribution 

into another.  Wasserstein GAN loss changes the notion of discriminator as a critic, that updates 

more frequently than the generator. The critic receives as an input a sample, which instead of 

predicting a probability of been real or fake, predicts a real value which can be considered a score. 

The score is calculated so that the distance between real and generated samples are maximally 

separated. This is achieved by calculating the average predicted score across the real and generated 

samples and multiplying the average score by 1 and -1, respectively. The main benefit of 

Wasserstein GAN loss is that it produces strong gradient in almost every case, which enables the 

continuation of training. Another benefit of this loss is that it directly correlates with the generator 

generating power as the lower the loss, the better the generated samples. The result of this is that 

the methodology, gives the loss of the GAN convergence properties as it explicitly seeks for the 

minimization of the generator loss. 

Training a GAN is a complicated task as it involves the training of two different networks. In 

general, training the discriminator involves the optimization of two loss functions: the generator 

loss and the discriminator loss. The first is ignored upon the discrimination phase while the second 

is used when training the generator.  

During the discriminator training, the network classifies real samples coming from the training 

dataset and fake samples coming from the generator. The discriminator loss penalizes the 

discriminator for errors involving sample misclassifications of been real while is fake and visa-

versa. The error backpropagation is typically used to update the weights of the discriminator. In 

the generator training phase, the network is trained through the discriminator network. To perform, 

input is provided through the generator, whose output is connected directly to the discriminator 

network and using the output of the discriminator the generator loss, penalizes the generator for 

producing samples that are classified correctly by the discriminator. The error backpropagation 

passes the error backward, through the entire network stack, including the discriminator, yet on 

the update phase, only the weights of the generator are updated.  

In the training process of a GAN, the generator and discriminator training are performed in two 

alternating steps. The first involves the training of the discriminator, for one or more epochs and 

the second trains the generator for one or more epochs depending on the GAN architecture. On 

each turn of this process, the weights of the network that waits its turn, do not update, which is 

also called weight freezing. This give a “fair chance” of the network that is being trained to 

recognize the “flows” of the “opponent” network. Accessing the convergence of a GAN is a 

relatively hard. This is because as the generator training progress, the discriminator becomes more 

and more inaccurate on trying to access the validity of the input data. A perfectly trained generator 
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should degrade the discriminator accuracy to 50% which would be equal of flipping a coin to guess 

if a sample is real or fake. The disadvantage of this is that as the training progress, the discriminator 

feedback is becoming less meaningful, which if when continues at some point the discriminator 

starts providing random feedback. This random feedback can lead to generator performance 

degradation which is also known as “generator collapse”.   

A common problem other than the vanishing gradient, in which GANs may run into while training 

is called “mode collapse”. This problem arises when a generator, instead of producing a variety of 

samples, it learns to generate a single sample, that “tricks” the discriminator. The result of this is 

that if the generator starts to produce the same sample repeatedly, that can lead the discriminator 

training to optimize for this edge case.  If the discriminator gets stuck into a local minimum and it 

does not find the best strategy to reject the generated sample, it is easy for the generator in the next 

training iteration to find another output that tricks the discriminator. By repeating this process 

several times, the generator is overoptimized for the discriminator of that training iteration. To 

mitigate this problem, Wasserstein GAN loss (Arjovsky et al. 2017) can be used, which enables 

the discriminator to train optimally without the problem of vanishing gradient. Unrolled GANs 

(Metz et al. 2016) are also commonly used because of their generator loss function as it 

incorporates the possible outputs of future discriminators, 𝑘 steps in the future, along with the 

current discriminator output, leading to a generator that does not overfit to a single discriminator. 

Another common problem in GAN training, is that it is relatively common to simple not converge. 

This can be due to the limited amount of training samples or poorly constructed training strategy, 

such as not allowing the discriminator to train on enough iterations. Regularization techniques are 

commonly employed in an effort to mitigate this problem. Such methods include to introduction 

of noise in the input of the discriminator (Arjovsky & Bottou 2017), or penalizing the weights 

(Roth et al. 2017) of the  discriminator. 

2.4.4 Advancements in Generative Adversarial Networks 

Many variations of the original GAN framework (Goodfellow et al. 2014),  have been proposed 

over the years (Gonog & Zhou 2019). The variations can be classified into two different 

taxonomies: loss variations and architectural variations. In the first taxonomy, the main focus of 

the change is on the loss function of the generator and/or the discriminator while on the second the 

focus is shifted on the neural network(s) used for the generator and the discriminator. A summary 

of these architectures along with their taxonomy (Wang et al. 2019) is included in Table 2.2.  
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Table 2.2 Summary of recent GAN models.  

Taxonomy Year Name Summary 

Architecture – Latent space 2014 

Conditional GAN 

(CGAN)  

(Mirza & Osindero 2014) 

Info of labels into the 

discrimination and the 

generator 

Architecture – Latent space 2016 

Bidirectional GAN 

(BiGAN) 

(Donahue et al. 2016) 

Learning inverse 

mapping using an 

encoder 

Architecture – Latent space 2016 
SGAN 

(Odena 2016) 

Multi-headed 

discriminator   

Architecture – Latent space 2016 
InfoGAN 

(Chen et al. 2016) 
Label classification 

Architecture – Latent space 2017 

Auxiliary Classifier GAN 

(AC-GAN) 

(Odena et al. 2017) 

Auxiliary classifier  

Architecture – Application specific 2016 
SRGAN 

(Ledig et al. 2017) 

Image super-

resolution  

Architecture – Application specific 2017 
CycleGAN 

(Zhu et al. 2017) 
Image style-transfer 

Architecture – Application specific 2017 
DiscoGAN 

(Kim et al. 2017) 
Image style-transfer 

Architecture – Application specific 2017 
DualGAN 

(Yi et al. 2017) 
Image style-transfer 

Architecture – Application specific 2017 
Pix2Pix 

(Isola et al. 2017) 
Image style-transfer 

Architecture – Application specific 2017 
Face Completion GAN 

(Li et al. 2017)  
Face completion 

Architecture – Application specific 2018 
AlphaGAN 

(Lutz et al. 2018) 
Image matting 

Architecture – Application specific 2018 
Moco-GAN  

(Tulyakov et al. 2018) 
Video generation 

Architecture – Application specific 2019 
DVD-GAN 

(Clark et al. 2019) 
Video generation 

Architecture – Application specific 2019 
SinGAN 

(Shaham et al. 2019) 

Manipulations of 

image when trained on 

single image 

Architecture – Application specific 2019 
StyleGAN 

(Karras et al. 2019) 
Face generation  

Architecture – Application specific 2020 
StyleGAN2 

(Karras et al. 2020) 
Face generation 

Architecture – Network change 2015 
LAPGAN 

(Denton et al. 2015) 

Laplacian pyramid 

coding 

Architecture – Network change 2016 
DCGAN 

(Radford et al. 2015) 

Generator with 

transposed 

convolutions  

Architecture – Network change 2017 
BEGAN 

(Berthelot et al. 2017) 

Discriminator using an 

autoencoder 
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Taxonomy Year Name Summary 

Architecture – Network change 2017 

Progressive GAN 

(PROGAN) 

(Karras et al. 2017) 

Progressive training  

Architecture – Network change 2018 

Self-attention GAN 

(SAGAN) 

(H. Zhang et al. 2019) 

Usage of a self-

attention module  

Architecture – Network change 2018 

Non-stationary texture 

synthesis  

(NSTS-GAN)  

(Zhou et al. 2018) 

Texture Synthesis 

from image patches  

Architecture – Network change 2019 
AutoGAN 

(Gong et al. 2019) 

Automatic searching 

for multi-level 

architectures 

Architecture – Network change 2019 
BigGAN 

(Brock et al. 2018) 

Self-attention module 

with deeper networks 

and larger batch size 

Architecture – Network change 2020 

Your Local GAN  

(YLG) 

(Daras et al. 2020) 

Local sparse attention 

layer  

Loss function – Type 2014 

Fully Connected GAN 

(FCGAN) 

(Goodfellow et al. 2014) 

Jensen–Shannon 

divergence 

Loss function – Type 2016 

Least Square GAN  

(LS-GAN) 

(Mao et al. 2017) 

Pearson divergence 

Loss function – Type 2016 
f-GAN 

(Nowozin et al. 2016) 
f-divergence 

Loss function – Type 2016 

Unrolled GAN 

(UGAN) 

(Metz et al. 2016) 

Gradient loss with 

second order 

derivatives  

Loss function – Type 2017 
LS-GAN 

(Mao et al. 2017) 

Designated margin 

difference between 

real and generated 

samples 

Loss function – Type 2017 
Geometric GAN 

(Lim & Ye 2017) 
Hinge loss 

Loss function – Type 2017 
WGAN 

(Arjovsky et al. 2017) 
Wasserstein distance 

Loss function – Type 2018 

Relativistic GAN  

(RGAN) 

(Jolicoeur-Martineau 2018) 

Integral probability 

metric 

Loss function – Type 2019 
Sphere GAN 

(Park & Kwon 2019) 
Riemannian manifolds  

Loss function – Regularization  2016 

Mode Regularized 

(MRGAN) 

(Che et al. 2016) 

Missing mode 

penalization 
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Taxonomy Year Name Summary 

Loss function – Regularization  2017 
WGAN-GP 

(Gulrajani et al. 2017) 

WGAN based with 

gradient penalty  

Loss function – Regularization  2017 
WGAN-LP 

(Petzka et al. 2017) 

WGAN based with 

Lipschitz penalty 

Loss function – Regularization  2018 

Spectral normalization GAN  

(SN-GAN)  

(Miyato et al. 2018) 

Spectral 

Normalization 

Loss function – Regularization  2019 

Self-supervised GAN  

(SS-GAN) 

(T. Chen et al. 2019) 

Self-supervision to 

avoid discrimination 

forgetting previous 

generations 

 

A detailed review of all the methodologies included in Table 2.2, is out of the scope of this thesis, 

yet a selection of those is worth examining due to their contribution in the field of GANs.  

Figure 2.47 A visual comparison between (a) the original GAN architecture (Goodfellow et al. 2014) and 

(b) the CGAN architecture (Mirza & Osindero 2014).  

2.4.4.1 The Conditional GAN  

The conventional GAN framework (Goodfellow et al. 2014), was originally designed to take as an 

input a random noise vector a produce an image. Although this is effective, the random noise input 

 
(a) 

 
(b) 
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allows no control over the type of the generated image. Conditional GANs (CGANs) (Mirza & 

Osindero 2014) aim to improve that by incorporating class label information in the GAN model.  

The introduction of additional information as an input not only enables targeted output, it also 

improves the GAN performance, as it promotes more stable training and quicker convergence. 

CGAN authors validated conditional GANs on the MNIST (Deng 2012) dataset, from which the 

class labels were used as additional information when training the generator and the discriminator 

of the model. An illustration of the CGAN architecture is illustrated in (Figure 2.47b).  

2.4.4.2 The InfoGAN  

InfoGAN (Chen et al. 2016) is an extension of the CGAN architecture (Mirza & Osindero 2014) 

and aims to incorporate interpretable representations in an unsupervised manner by maximizing 

the mutual information between the conditional variables, i.e. class labels, and the generated data. 

To achieve that, InfoGAN, incorporates a classifier (𝑄) which predicts the conditional variable (𝑦) 

given by the generator  𝐺(𝑧|𝑦). This closely resembles an autoencoder which aims to encode the 

𝐺(𝑧|𝑦) by minimizing the cross entropy between the actual conditional variable 𝑦 and the 

predicted variable 𝑦′. Another change compared to CGAN is that the discriminator of InfoGAN 

does not take as an input the conditional variable and instead operates the same as the original 

discriminator of (Goodfellow et al. 2014).  

 

Figure 2.48 An illustration of InfoGAN architecture (Chen et al. 2016). The shared network block 

illustrates a single network with two output layers; one for discrimination and one for the classification. 

To reduce the computational resources required by the introduction of the classifier, both the 

discriminator and the classifier use the same network with different two output layers. The first 

output layer is considered the discriminator and predicts if a sample is real or fake and the second 

the classifier for the conditional variable. The architecture is illustrated in (Figure 2.48). A 

relatively similar architecture is AC-GAN (Odena et al. 2017), which share the same principles 

with InfoGAN, yet the discriminator and the classifier are combined using an auxiliary classifier. 

It should be noted that while in CGAN and InfoGAN case, the conditional variable can be from 
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different domains, the AC-GAN architecture limits the variable to be a class label from the same 

domain.   

2.4.4.3 The Deep Convolutional GAN  

Deep Convolutional GAN (Radford et al. 2015), also known as DCGAN, is the first GAN 

architecture that incorporates deconvolutional layers in the generator architecture. The use of 

deconvolutional layers in CNNs was firstly introduced in ZFNet (Zeiler & Fergus 2014) for feature 

visualization. DCGAN makes use of the spatial up-sampling ability of the deconvolution layer, to 

generate images with similar statistics with the real image, but in higher resolution. Compared to 

the original GAN architecture DCGAN introduced changes that benefit the high-resolution 

generation and stabilize training. More specifically, pooling layers were replaced by convolution 

layers with a stride of 2 for the discriminator and fractional-strides for the generator. Batch 

normalization was used in both generator and discriminator. For the generator ReLU activations 

were used across all layers of the network with the exception of the output layer in which tanh was 

used. To prevent the discriminator to saturate, LeakyReLU activations were used across the 

discriminator layers. LeakyReLU is a variation of the conventional ReLU activation which allows 

for a relatively small negative number to “leak” from the activation.  

2.4.4.4 Image to Image Translation GANs  

The object in an image-to-image translation problem is to learn the mapping between an output 

and an input image using a training set of aligned image pairs. An example is illustrated visually 

in the (Figure 2.49). A variety of GAN models have been proposed for this process, with the first 

 

Figure 2.49 An example of image-to-image translation in which a translation model is used to 

map/translate edges to a real image. 

been the Pix2Pix (Isola et al. 2017) architecture which re-purposed the CGAN (Mirza & Osindero 

2014) architecture to translate images when paired input and output samples are available. Such 

samples include image edges used as an input and output the actual image. As an example, Pix2Pix 

used canny filters to create the training image pairs.  
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While this approach works relatively well, Pix2Pix was not able to translate images from 

unmapped pairs. Aiming towards this direction, CycleGAN (Zhu et al. 2017) was introduced 

which uses a cycle consistency loss to enforce the mapping between the two domains. In effect 

this is achieved by transforming the source distribution to target and then back to the source 

distribution leading to get samples from the source distribution (Figure 2.50). As an input, 

CycleGAN takes an image from a domain 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 which is then given to a generator 𝐺𝐴→𝐵. The 

role of 𝐺𝐴→𝐵 is to translate the image from the  𝐷𝑜𝑚𝑎𝑖𝑛𝐴 to the target 𝐷𝑜𝑚𝑎𝑖𝑛𝐵. The generated 

image is then given to a second generator 𝐺𝐵→𝐴 which converts it back to the original 𝐷𝑜𝑚𝑎𝑖𝑛𝐴. 

The output of this process is an image that is close to the original input space, which in return 

creates a meaningful mapping between the two pairs. Two inputs are used in both discriminators, 

one been the original image and the other the generated sample. The goal of the discriminator is 

to distinguish them, so that the discriminator defies the adversary and reject the generated samples. 

The result of this, while training, is that the generator tries to trick the discriminator by creating 

samples as close to the original image 𝐷𝑜𝑚𝑎𝑖𝑛𝐵.  

 
(a) 

 
(b) 

Figure 2.50 A visual illustration of CycleGAN (Zhu et al. 2017) image translation framework. 

DiscoGAN (Kim et al. 2017), is a relatively similar architecture with CycleGAN, as they both aim 

to learn two transformation functions, from a 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 → 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 and 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 → 𝐷𝑜𝑚𝑎𝑖𝑛𝐴. 

Furthermore, both follow the same principle of transforming an image from one domain to another 
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and then back to the original domain the output should match the original image. The primary 

difference between the two models is that in the case of DiscoGAN (Figure 2.51), two 

reconstruction losses are used, one for each domain, while CycleGAN uses a single cycle-

consistency loss. 

 

Figure 2.51 A visual illustration of DiscoGAN (Kim et al. 2017) image translation framework. 
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CHAPTER 3 

FUZZY POOLING 

Convolutional neural networks are artificial learning systems typically based on two operations: 

convolution, which implements feature extraction through filtering, and pooling, which 

implements dimensionality reduction. The impact of pooling in the classification performance of 

the CNNs has been highlighted in several previous works, and a variety of alternative pooling 

operators have been proposed. However, only a few of them tackle with the uncertainty that is 

naturally propagated from the input layer to the feature maps of the hidden layers through 

convolutions. In chapter a novel pooling operation based on (type-1) fuzzy sets is presented that 

aims to cope with the local imprecision of the feature maps. An investigation of its performance 

in the context of image classification is also included. Fuzzy pooling is performed by fuzzification, 

aggregation and defuzzification of feature map neighborhoods. It is used for the construction of a 

fuzzy pooling layer that can be applied as a drop-in replacement of the current, crisp, pooling 

layers of CNN architectures. Several experiments using publicly available datasets show that the 

proposed approach can enhance the classification performance of a CNN. A comparative 

evaluation shows that it outperforms state-of-the-art pooling approaches.  

3.1 Introduction 

CNNs (Krizhevsky et al. 2012; LeCun et al. 1989) have revolutionized CV and image analysis. At 

the core of every CNN architecture there is a special type of neural layer called convolutional 

layer. This bioinspired layer has a neuron arrangement that mimics the connections of the visual 

cortex. The number of connections of each neuron in a convolutional layer is called receptive field. 

This is a key element of the layer as it determines the size of the filter applied throughout the input 

volume of the layer. The weights between the same type of filters in a convolutional layer are 

shared, forming a feature map. A single convolutional layer can produce multiple feature maps. 

One or more convolutional layers are usually connected to each other through a pooling layer for 

spatial dimensionality reduction (Simonyan & Zisserman 2014). 

The progress in CNN-based ML research is rapidly evolving (Jiao & Zhao 2019). Advances 

include novel architectures (Diamantis et al. 2019), methodologies for training (Ioffe & Szegedy 

2015), activation functions (He et al. 2015a; Maas et al. 2013), and convolutional layer 

optimizations (Chollet 2017), whereas reported classification performance enhancements are 

usually associated with increase in the complexity of the networks (Szegedy et al. 2017; He et al. 

2016). The role of pooling in classification performance has been highlighted in previous studies 

(Malinowski & Fritz 2013; Zeiler & Fergus 2013; Yu et al. 2014; Graham 2014; Yildirim & 

Baloglu 2019) however, only a few approaches have been reported tackling the problem of 
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uncertainty (Sharma et al. 2019). 

A pooling layer, typically, performs a down-sampling operation to reduce the spatial size of an 

input volume using a sliding window of 𝑘 × 𝑘 features per feature map, with a stride 𝜎. Pooling is 

performed on each window, reducing the size of the respective patches from 𝑘 × 𝑘, to a single 

feature. This results in a reduction of the number of free-parameters of the CNN, and thus in a 

reduction of the overall network complexity. Contemporary CNN architectures use the maximum 

(max-pooling) or the average pooling operations (Boureau et al. 2010), mainly due to their 

implementation simplicity. In the case of max-pooling, the majority of features are discarded, 

favoring only the highest neuron responses, whereas in the case of average pooling the features 

are mixed. As a result, the information represented by the features of the respective feature maps 

is distorted and possible uncertainties, e.g., due to input noise, are propagated to subsequent layers 

and dispersed throughout the network.  

In this chapter we propose a novel fuzzy pooling operation used for the construction of a fuzzy 

CNN pooling layer, tackling with uncertainties in the feature values. This is achieved by 

transforming the crisp input volume space into a fuzzy feature space, generated by the 

memberships of the original feature values, to fuzzy sets, facilitating linguistic representation of 

different value intervals. Fuzzy pooling is implemented by fuzzy aggregation and defuzzification 

of the fuzzified input features. This is performed aiming to a better preservation of the information 

of the original feature maps.  

3.2 Related work 

Fuzzy set theory has been proved effective in modeling uncertainty in the context of robust image 

processing and analysis applications. Such uncertainties may originate from various sources, 

including greylevel ambiguity, vagueness of image features, noise introduced by the image sensor 

(Chacón M 2006). Relevant recent applications include image segmentation based on multiple-

kernel fuzzy c-means clustering (Chen et al. 2011), and segmentation by thresholding, based on 

type-2 fuzzy sets (Yüksel & Borlu 2009). In the context of pedestrian segmentation in infrared 

images, symmetry information based fuzzy clustering has been exploited. In (Lee et al. 2005) a 

genetic-based fuzzy image filter was proposed to remove additive identical independent 

distribution impulse noise from highly corrupted images with very promising results. In (Kumar 

et al. 2015) an alternative to conventional histogram-based image descriptors is presented, where 

fuzzy membership functions are used. In the same study a novel methodology is presented, named 

“gamma mixture fuzzy model”, which enables the detection of geometrically consistent 

correspondence between two images.  

In the field of ML, and more specifically of ANNs, fuzzy set theory has been employed to model 
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data uncertainties. In (Juang & Ku 2005) a recurrent fuzzy network was presented. The network 

was capable of performing temporal sequence recognition and it was applied in the challenging 

problem of gesture recognition. In the subject of dynamic-system modeling,  a locally recurrent 

fuzzy neural network with support vector regression was proposed (Juang & Hsieh 2010). More 

specifically a five-layered network was considered in which the recurrent capabilities come from 

locally feeding the activations of each fuzzy rule back to itself. Recently in (Kebria et al. 2019) an 

adaptive interval type-2 fuzzy neural network control scheme was proposed in the context of 

teleoperation systems with time-varying delays and uncertainties.  

Pooling alternatives for CNNs include trainable pooling approaches such as (Malinowski & Fritz 

2013), which jointly optimizes both the classifier and the pooling regions, instead of relying on 

fixed, spatial pooling regions. A CNN-specific stochastic pooling operation was proposed in 

(Zeiler & Fergus 2013), aiming to be used as an effective regularization method in deep networks 

in combination with other regularization methods such as data augmentation and dropout 

(Srivastava et al. 2014) layers. The method relies on a non-deterministic approach of randomly 

picking an activation from the pooling region according to a multinomial distribution, which is 

given by the activities in the pooling region. Similarly another pooling operation named mixed 

pooling was proposed in (Yu et al. 2014) which also aims to be used as a regularization method in 

CNN training. The approach randomly selects between average and max pooling operations in a 

non-deterministic way, following similar principles applied in typical dropout layer. Another 

promising stochastic pooling operation, named Fractional Max-Pooling, was proposed in (Graham 

2014), as a variation of max-pooling in which the pooling regions can output more than one values 

at a time. A recent pooling algorithm, called RegP (Yildirim & Baloglu 2019), follows a different, 

deterministic approach. The algorithm analyzes each activation value in the pooling region by 

examining the values of the surrounding activations and computes a score that represents the 

number of same or similar values around them. The activation with the maximum similarity value 

is selected as the output. In ambiguous cases, were multiple activations have the same score, the 

average value is selected as the output of the pooling region.  

Only a few works have considered fuzzy set theory with respect to pooling. Recently in (Sharma 

et al. 2019) a type-2 fuzzy based pooling was proposed, as a solution to the value selection 

uncertainty that is present in conventional pooling operations, such as max and average pooling. 

The methodology reduces the spatial input size in two steps. Initially the dominant values of the 

pooling window are identified using type-2 fuzzy logic. Spatial size reduction is performed using 

type-1 fuzzy logic with weighted average of the dominant values found in the first step. To identify 

the importance of each value, the values are compared to a threshold computed using the average 

of the minimum and maximum values of Gaussian membership functions applied on the input 

space. The algorithm requires a minimum set of important values to be present in order to apply 

the fuzzy pooling operation; if this criterion is not met, the algorithm falls back to the conventional 
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crisp pooling. In that sense, that approach can be considered as hybrid. The authors evaluated their 

type-2 fuzzy based pooling on the standard LeNet (LeCun et al. 1989) CNN architecture, using 

two standard datasets showing promising results compared to max and average pooling.  

Ιn this chapter we propose an effective fuzzy pooling methodology that can be used as a drop-in 

replacement of the pooling layer used in any of the current CNN architectures. The proposed 

methodology considers the CNN feature maps as locally imprecise, due to the uncertainty 

propagated from the previous layers, and it uses fuzzy sets as a means to model this imprecision 

and implement pooling through fuzzy aggregation and defuzzification. The importance of each 

value in a pooling window is characterized by a score obtained from its membership value in type-

1 fuzzy sets which are determined by the activation function used by the previous layer. Comparing 

to (Sharma et al. 2019), no value-specific thresholds are used, which enables the proposed fuzzy 

pooling methodology to be applied uniformly on all the pooling areas of the input space; thus not 

leaving any uncertainties to be propagated to the following layers of the network.  

3.3 Type-1 Fuzzy Pooling 

Fuzzy pooling is defined in the context of a CNN architecture. It constitutes the basis of a novel 

pooling layer for uncertainty-aware dimensionality reduction. Considering that the pixel values of 

the input images of a CNN are prone to uncertainty (e.g., noise, color, and geometrical ambiguity), 

and that the information is forwardly propagated from the input to the subsequent hidden layers, 

the uncertainty, which is part of this information, is also propagated through the different network 

layers; thus, affecting the values of their feature maps. Convolution is a local operation; therefore, 

the uncertainty is expected to be also local in the output space of a convolutional layer. 

Given a feature map extracted from a convolutional layer, the uncertainty in its values can be 

modeled by fuzzy sets: 

�̃�𝑣 = {〈𝑥, 𝜇𝑣(𝑥)〉 | 𝑥 ∈ 𝐸}, 𝑣 = 1, … , 𝑉 (3.1) 

representing overlapping value intervals that can be linguistically expressed, e.g., as small, 

medium and large values.  The universe E is selected upon the output value ranges representing 

overlapping value intervals that can be linguistically expressed, e.g., as small, medium and large 

values.  The universe E is selected upon the output value ranges of the neural activation functions 

of the convolutional layer. To illustrate this, the Rectified Linear Unit (ReLU) (Nair & Hinton 

2010) activation function is considered as a representative example. ReLU is defined as: 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (3.2) 
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Figure 3.1 Schematic representation of the proposed fuzzy pooling operation applied on a single volume 

patch extracted from a set of z feature maps. 

Where 𝑥 ∈ ℝ, and it is usually preferred to conventional sigmoid activations, because it is 

computationally simpler, and it reduces the possibility of vanishing gradients from which, deep 

neural networks suffer (Hochreiter 1998). Also, empirical studies have shown that a network with 

ReLU activation functions tend to converge faster than sigmoid (Krizhevsky et al. 2012). Recent 

studies (Howard et al. 2017) suggest that ReLU is capped by a maximum value  𝑟𝑚𝑎𝑥:  

 𝑅𝑒𝐿𝑈(𝑥, 𝑟𝑚𝑎𝑥) = min(max(𝑥, 0) , 𝑟𝑚𝑎𝑥) (3.3) 

where typically 𝑟𝑚𝑎𝑥 = 6, as it has been shown that it helps the network learn sparse features 

earlier. Therefore, in this case 𝐸 = [0, 𝑟𝑚𝑎𝑥].   

Let 𝛽 stand for a volume 𝑤 × ℎ × 𝑧, representing a set of 𝑧  feature maps 𝛽𝑛 with a size of 𝑤 × ℎ, 

i.e., 𝛽 = {𝛽𝑛 |  𝑛 = 1,2, … , 𝑧}. The first step of the proposed methodology is sampling the input 

volume with a pooling window of size 𝑘 × 𝑘. Commonly used values for these hyperparameters 

include 𝑘 = 3 and 𝜎 = 2, which result in a reduction of the width and the height of the input 

volume in half. With this process a set of volume patches is obtained from the input volume 𝛽 with 

stride 𝜎.  Each volume patch, consists of spatial patches 𝑝𝑛 extracted from feature maps 𝛽𝑛, i.e., 

𝑝 = {𝑝𝑛 |  𝑛 = 1,2, … , 𝑧}. The number of patches 𝑐 that can be extracted from an input volume 𝛽 

can be calculated by: 

 𝑐 =
(𝑤 − 𝑘 + 2𝑡𝑤)(ℎ − 𝑘 + 2𝑡ℎ)

2𝜎 + 2
 (3.4) 

where 𝑡𝑤 =
(𝜎−1)(𝑤−𝜎+𝑘)

2
  and 𝑡ℎ =

(𝜎−1)(ℎ−𝜎+𝑘)

2
  is the zero-padding used in the patch extraction 

process on the width and height axis of the input volume 𝑥 respectively. 
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Let 𝑝𝑖,𝑗
𝑛  stand for an element of a volume patch 𝑝 at depth 𝑛 and position 𝑖, 𝑗 where 𝑖 = 1,… , 𝑘,  

𝑗 = 1,… , 𝑘 and 𝑛 = 1,… , 𝑧. Without loss of generality, let us consider a set of three fuzzy sets 

defined by (1) for V=3. These �̃�1, �̃�2 and �̃�3 fuzzy sets with membership functions 𝜇1,  𝜇2 and 𝜇3, 

are used to represent small, medium and large values of  𝑝𝑖,𝑗
𝑛 , respectively. The membership 

functions of these sets are used for the fuzzification of the patches. For example, in the case of 

triangular membership functions 𝜇𝑖, 𝑖 = 1,2,3, using (1), this can be expressed as follows:  

 𝜇1(𝑝𝑖,𝑗
𝑛 ) =

{
 
 

 
 0 𝑝𝑖,𝑗

𝑛 > 𝑑

𝑑 − 𝑝𝑖,𝑗
𝑛

𝑑 − 𝑐
𝑐 ≤ 𝑝𝑖,𝑗

𝑛 ≤ 𝑑

1 𝑝𝑖,𝑗
𝑛 < 𝑐

 (3.5) 

where 𝑑 =
𝑟𝑚𝑎𝑥

2
 and 𝑐 =

𝑑

3
, 

 𝜇2(𝑝𝑖,𝑗
𝑛 ) =

{
  
 

  
 
0 𝑝𝑖,𝑗

𝑛 ≤ 𝑎

𝑝𝑖,𝑗
𝑛 − 𝑎

𝑚 − 𝑎
𝑎 ≤ 𝑝𝑖,𝑗

𝑛 ≤ 𝑚

𝑏 − 𝑝𝑖,𝑗
𝑛

𝑏 − 𝑚
𝑚 < 𝑝𝑖,𝑗

𝑛 < 𝑏

0 𝑝𝑖,𝑗
𝑛 ≥ 𝑏

 (3.6) 

where 𝑎 =
𝑟𝑚𝑎𝑥

4
 , 𝑚 =

𝑟𝑚𝑎𝑥

2
 and 𝑏 = 𝑚 + 𝑎, 

 𝜇3(𝑝𝑖,𝑗
𝑛 ) =

{
 
 

 
 
0 𝑝𝑖,𝑗

𝑛 < 𝑟

𝑝𝑖,𝑗
𝑛 − 𝑟

𝑞 − 𝑟
𝑟 ≤ 𝑝𝑖,𝑗

𝑛 ≤ 𝑞

1 𝑝𝑖,𝑗
𝑛 > 𝑞

 (3.7) 

where 𝑟 =
𝑟𝑚𝑎𝑥

2
 and 𝑞 = 𝑟 +

𝑟𝑚𝑎𝑥

4
.  

For each patch 𝑝𝑛, 𝑛 = 1,… , 𝑧, a fuzzy patch 𝜋𝑣
𝑛  is defined as  

 

 
𝜋𝑣
𝑛 = 𝜇𝑣(𝑝

𝑛) = (
𝜇𝑣(𝑝1,1

𝑛 ) … 𝜇𝑣(𝑝1,𝑘
𝑛 )

… ⋱ …
𝜇𝑣(𝑝1,𝑘

𝑛 ) … 𝜇𝑣(𝑝𝑘,𝑘
𝑛 )

) (3.8) 

Pooling begins with the spatial aggregation of the values of the fuzzy patch, using the fuzzy 

algebraic sum operator (�̇�) (Zimmermann 2011), as follows:  
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 𝑠𝜋𝑣
𝑛 = ∑∑𝜋𝑣𝑖,𝑗

𝑛

𝑘.

𝑗=1

𝑘.

𝑖=1

, 𝑛 = 1,… , 𝑧. (3.9) 

This operator was selected as a standard s-norm considering all the neighboring values of the fuzzy 

patch. It has a relatively low computational complexity, and it can be easily vectorized to be 

efficiently performed on a GPU. The value of each 𝑠𝜋𝑣
𝑛  is considered as a score quantifying the 

overall membership of 𝑝𝑛 to �̃�𝑣. Based on these scores, for each volume patch 𝑝 a new fuzzy 

volume patch 𝜋′ is created by selecting the spatial fuzzy patches 𝜋𝑣
𝑛 , 𝑣 = 1,… , 𝑉 that have the 

largest scores 𝑠𝜋𝑣
𝑛 , i.e.,  

 𝜋′ = {𝜋𝑣
′𝑛 = 𝜋𝑣

𝑛|  𝑣 = argmax(𝑠𝜋𝑣
𝑛 ), 𝑛 = 1,2, … , 𝑧}     (3.10) 

This way patches of higher certainty are selected. The dimensionality of each patch is then reduced 

by defuzzification using the Center of Gravity (CoG): 

 𝑝′
𝑛
=
∑ ∑ (𝜋′𝑖,𝑗

𝑛
∙  𝑝𝑖,𝑗

𝑛 )𝑘
𝑗=1

𝑘
𝑖=1

∑ ∑ 𝜋′𝑖,𝑗
𝑛𝑘

𝑗=1
𝑘
𝑖=1

, 𝑛 = 1…  𝑧 (3.11) 

where 𝑝′ = {𝑝′
𝑛
 |  𝑛 = 1,2, … , 𝑧}. 

Algorithm 3.1 Proposed Fuzzy Pooling.  

Algorithm  

Input: Input Volume 𝛽 

1: 𝑃 = Extract patches from 𝛽 

2: foreach (𝑝 in patches 𝑃) do  

3:       for (v = 1…𝑉) do 

4:             for (𝑛 = 1…𝑧) do 

5:                  Calculate 𝜋𝑣
𝑛 using Eq. (3.8)  

6:             end for 

7:       end for 

8:       for (v = 1…𝑉) do 

9:             for (𝑛 = 1…𝑧) do 

10:                  Calculate the scores 𝑠𝜋𝑣
𝑛  using Eq. (3.9)  

11:             end for 

12:      end for 

13:      Calculate 𝜋′ using Eq. (3.10) 

14:      Calculate 𝑝′ using Eq. (3.11) 

15: end for 

Output: return  𝑝′  
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3.4 Evaluation Methodology 

To evaluate the performance of the proposed methodology we conducted experiments on widely 

used, publicly available datasets. The experimental investigation is divided in two parts. The first 

part compares the proposed, over current pooling approaches with respect to classification 

performance. The second part performs a qualitative assessment of the proposed fuzzy pooling, 

aiming to investigate why it favors the classification performance.  

3.4.1 Classification Results 

Classification performance was assessed using  MNIST (Deng 2012), Fashion-MNIST (Xiao et 

al. 2017)  and CIFAR-10 (Krizhevsky et al. 2009) datasets. MNIST dataset (Figure 3.2) consists 

of 70.000 grayscale 28×28 pixels in size images of handwritten digits split into two subsets from 

which 60.000 are used for training and 10.000 for testing. Fashion-MNIST (Figure 3.3) includes 

images having the same size with the original MNIST dataset, but instead of classes of handwritten 

digits it includes classes of clothes. This renders the classification problem more challenging, 

especially on swallower networks, such as the one used in this chapter. CIFAR-10 dataset (Figure 

3.4) can be considered as the equivalent of MNIST dataset in natural images. It consists of 60.000 

natural RGB images of 32×32 pixels in size from 10 different classes from which, 50.000 are used 

for training and 10.000 for testing. The dataset contains 6.000 images per class. We have selected 

these datasets as they are relatively simpler compared to other, larger datasets such as ImageNet 

(Deng et al. 2009), which would require complicated CNN architectures to be used in order to 

yield any meaningful results. 

In an effort to minimize the performance bias introduced by the high number of hyper-parameters 

required by deep CNN architectures, such as EfficientNet (Tan & Q. Le 2019), ResNet (He et al. 

2016), VGGNet (Simonyan & Zisserman 2014), we choose to evaluate the classification 

performance of the proposed pooling methodology using the LeNet (LeCun et al. 1989) baseline 

CNN architecture (Figure 3.5). Although the classification performance of such a baseline 

architecture is significantly lower compared to state-of-the-art architectures, it offers a relatively 

low number of hyper and free-parameters (weights) which highlights the performance impact of 

pooling.   

In the convolutional layer, the capped ReLU activation (3) is used. The proposed pooling layer 

performs fuzzy pooling using the fuzzy membership functions defined in (5-7), with 𝑟𝑚𝑎𝑥 = 6, as 

suggested in (Howard et al. 2017). Thus, the parameters of the membership functions are 𝑑 = 3, 

𝑐 = 1, 𝑎 = 1.5, 𝑚 = 3, 𝑟 = 3, and 𝑞 = 4.5. 
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Figure 3.2 Sample images of the 10 classes from MNIST (Deng 2012) dataset 

 

Figure 3.3 Sample images from the 10 classes of Fashion-MNIST (Xiao et al. 2017) dataset. 

 

Figure 3.4 Standard CNN LeNet (LeCun et al. 1989) architecture  
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Figure 3.5 Sample images from the 10 classes of CIFAR-10 (Krizhevsky et al. 2009) dataset. 

For the baseline architecture training we used the Stochastic Gradient Descent (SGD) (Kiefer et 

al. 1952) with a batch-size of 32 images. We did not perform any type of data-preprocessing or 

data-augmentation, in an effort to keep the experiments focused solely on the impact of the 

selection of the pooling layer on the overall classification performance of the network. All 

experiments were conducted using the same software and hardware equipment. More specifically, 

the proposed pooling was implemented using the Tensorflow (Abadi et al. 2016) framework in 

Python, which is a popular framework for deep learning applications, enabling training and 

inference of the model to be conducted on Graphical Processing Units (GPUs). All the experiments 

were conducted using the training and testing subsets provided by the datasets, which are class-

balanced. For this reason, to assess the classification performance of the proposed pooling, 

classification accuracy was used as a sufficient measure. Comparative evaluations were conducted 

using the same, baseline architecture described above, switching only the pooling layer of the 

baseline architecture. The methods considered for comparison include the max-pooling, the 

average pooling, the state-of-the-art RegP (Yildirim & Baloglu 2019) and the type-2 fuzzy pooling 

(Sharma et al. 2019). The results obtained per dataset are presented in Tables 3.1, 3.2 and 3.3, 

respectively.   

It can be noticed that the proposed methodology outperforms the existing state-of-the-art and 

conventional pooling approaches. This can be attributed to the value selection approach that it 

follows, which is based entirely on fuzzy logic. The results show that the classification 

performance improvement is independent from the dataset used. On the contrary, the type-2 fuzzy 

pooling approach (Sharma et al. 2019), does not perform well on the more complex CIFAR-10 

dataset. 
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Table 3.1 Comparative Accuracy Results of the Type-1 Fuzzy Pooling Methodology on MINST  Dataset  

(Deng 2012) 

Methodology Classification Accuracy 

Max Pooling 88.48% 

Average Pooling 94.06% 

RegP (Yildirim & Baloglu 2019) 95.46% 

Type-2 Fuzzy Pooling (Sharma et al. 2019) 94.40% 

Fuzzy Pooling (Diamantis & Iakovidis 2020)  98.56% 

Table 3.2 Comparative Accuracy Results of the Type-1 Fuzzy Pooling Methodology on CIFAR-10  

Dataset (Krizhevsky et al. 2009) 

Methodology Classification Accuracy 

Max Pooling 70.73% 

Average Pooling 74.83% 

RegP (Yildirim & Baloglu 2019) 75.44% 

Type-2 Fuzzy Pooling (Sharma et al. 2019) 27.92% 

Fuzzy Pooling (Diamantis & Iakovidis 2020) 78.35% 

Table 3.3 Comparative Accuracy Results of the Type-1 Fuzzy Pooling Methodology on Fashion-MNIST 

Dataset (Xiao et al. 2017) 

Methodology Classification Accuracy 

Max Pooling 84.28%  

Average Pooling 85.90%  

RegP (Yildirim & Baloglu 2019) 86.41%  

Type-2 Fuzzy Pooling (Sharma et al. 2019) N/A 

Fuzzy Pooling (Diamantis & Iakovidis 2020)  88.57% 

 

3.4.2 Qualitative Assessment  

As noted in the previous subsection, the performance advantage of the proposed pooling approach 

relies on the feature selection strategy it applies. However, to obtain a deeper understanding of 

how it affects the feature maps of the CNN, a qualitative assessment of its effects has been 

performed. Considering that the feature maps are 2D image representations, to obtain visually 

meaningful results we performed comparisons on a collection of standard images obtained from 

the USC Image Database – Miscellaneous dataset (Anon n.d.). The dataset consists of 44 images 

from which 16 are RGB images and 28 grayscale.  The aspect ratio of the images is 1:1 while the 
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spatial size is 256×256, 512×512 or 1024×1024 pixels. To conduct the experiments uniformly 

across the images, as a pre-processing step, the images were downscaled to 256×256 pixels in size 

and converted to grayscale. To assess the effect of pooling on these images, different quality 

metrics were estimated after the pooling operations. These include the Root Mean Square (RMS) 

contrast (Peli 1990),  Peak Signal-to-Noise Ratio (PSNR) (Instruments 2013) and the Structural 

Similarity Index (SSIM) (Wang et al. 2004) between the original image and the resulting image 

after pooling using max, average and the proposed fuzzy pooling. RMS contrast is defined as the 

standard deviation of the pixel intensities; therefore, a larger value of RMS contrast indicates a 

better contrast. PSNR measures image quality with respect to distortions, in decibels (dB); with 

the higher quality images to have higher PSNR values. SSIM is an index that considers image 

degradation as perceived change in structural information; with the SSIM for non-degraded images 

to be equal to 1. The average results are summarized in Table 3.3, with a standard deviation of 

approximately 2.3% with respect to the estimated values. The results indicate that the output 

images obtained with the proposed approach have a higher contrast and lower noise levels  

 

     

     

     

     

(a) (b) (c) (d) (e) 

Figure 3.6 Visual comparison of pooling results on standard images found in (Anon n.d.) and (Gonzalez 

& Woods 2018) datasets. The images of “House”, “Fishing Boat”, “Baboon” and “Cameraman” are 

presented on rows 1 to 4 respectively. (a) Original images, (b) Max-pooling, (c) Average pooling, (d) RegP 

pooling (e) Proposed type-1 fuzzy pooling. 
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compared to the other pooling approaches. The SSIM is a measure of the perceptual similarity of 

the images before and after processing. Therefore, in these terms the results indicate that the 

proposed approach has an obvious advantage over max-pooling, whereas it provides a visually 

compatible result with average pooling. However, at this point it should be noted that pooling is 

performed on feature maps and not directly on images, which are assessed by artificial neuron 

arrangements and not humans. Considering the classification results presented in the previous 

subsection, it can be derived that the perceptual similarity is insufficient to justify the observed 

performance advantage (Table 3.1, 3.2 and 3.3). 

Figure 5 illustrates the results of the different pooling operations tested on representative images 

from the USC dataset. It can be noticed that the output of the average pooling operation looks 

smoother and therefore, more satisfactory for the human observer, which justifies the results in 

terms of SSIM. In most cases the max-pooling operator cause human-perceivable distortions, e.g., 

it destroys the face of the cameraman, and it inverts the eyes of the baboon. On the contrary, the 

output of the proposed fuzzy pooling is both perceptually compatible and it better preserves the 

information of the original images, while enhancing their contrast. Also, it is worth noting that the 

boundaries of some objects, e.g., the tripod of the camera and the region over the wheel of the car 

in the “house” image, look more ‘digital’, as compared with the original image. This effect is due 

to the minimization or absence of greylevel diffusion on the object boundaries in the output images. 

Such a diffusion observed in the original and the outputs of the compared pooling approaches can 

be considered as an indication of greylevel uncertainty on the object boundaries, which may be 

positive for human perception; however, it can limit the spatial discrimination of the features in a 

feature map. 

Table 3.4 Comparative Results of the Proposed Type-1 Fuzzy Pooling Methodology on USC (USC, 

2018) Dataset 

Metric 
Max 

 Pooling 

Average  

Pooling 

RegP  

Pooling 

Fuzzy  

Pooling 

RMS Contrast (Peli 1990)  44.28  47.98 46.88 48.19  

PSNR (Instruments 2013) (dB) 5.29 5.29 5.28 5.42  

SSIM (Wang et al. 2004)  0.72 0.78 0.73 0.77  

To make these observations clearer to the reader, we have included magnifications of 

representative samples from the images of (Figure 3.6). These samples are illustrated in (Figure 

3.7) showing that that the proposed methodology preserves the important details of the image 

better than max and average pooling. It is important to note that in the second row of (Figure 3.7) 

the “mast” from the original fishing boat image, has disappeared in the case of the widely used 

max pooling. 
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(a) (b) (c) (d) (e) 

Figure 3.7 Visual comparison of details on the images illustrated in (Figure 3.6). (a) Original images, (b) 

Max-pooling, (c) Average pooling, (d) RegP pooling (e) Fuzzy pooling.  

To provide further insights on the way the proposed fuzzy pooling copes with uncertainty 

propagation to the feature maps of a CNN, indicative feature map visualizations are provided in 

(Figure 3.8). These feature maps were extracted from the network described in Section IV.A 

(Figure 3.5), using the same input images, as the ones used to produce the results of (Figure 3.6). 

More specifically, we selected the network that was pre-trained on CIFAR-10 (Krizhevsky et al. 

2009) dataset, as this includes more general classes of objects, resembling those illustrated in the 

input images. To increase the uncertainty levels of the input images, Gaussian noise was added 

with variance 0.01, resulting in images with a PSNR of 20 dB. The various pooling methods 

compared, were applied on the feature maps resulting from the convolutional layer. The pooling 

results in (Figure 3.8) show that the visualizations of the different methods have significant 

differences with respect to their capability to preserve as many as possible from the details of the 

convolutional layer. It can be noticed that the proposed fuzzy pooling approach looks more similar 

with the output of the convolutional layer. As this may not be obvious to all readers, it can also be 

noticed by the average PSNR estimated per pooling methodology on these images, as a 

representative metric. In the case of the proposed fuzzy pooling this is 23.38 dB, whereas the 

respective values for max, average and RegP pooling it is 19.25 dB, 21.64 dB, and 21.51 dB, with 

a standard deviation of ± 0.3 dB in all cases.   
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(d) 

 
(e) 

Figure 3.8 Visual comparison of pooling results on a subset of 10 feature maps obtained by the 

convolutional layer of the CNN (Figure 3.5). In each figure, the first row contains the original feature maps, 

and the rest of them the results of max-pooling, average pooling, RegP, and Fuzzy Pooling, respectively. 

(a) Images with Gaussian noise (b) “House”, (c) “Fishing Boat”, (d) “Baboon” and (e) “Cameraman”. 
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3.5 Conclusions  

In this chapter we presented a novel fuzzy pooling operation for CNN architectures, coping with 

the uncertainty of feature values. Experiments performed on publicly available datasets, show that 

the proposed methodology significantly increases the classification performance of CNNs, as 

compared to other state-of-the-art pooling approaches. We show that fuzzy pooling can be used as 

a drop-in replacement of existing pooling layers, in CNN architectures, increasing the 

generalization performance. Furthermore, experiments conducted on standard image datasets  

(Anon n.d.)(Gonzalez & Woods 2018), show that the proposed methodology is able to preserve 

better the important features of the pooling areas. This was validated both visually and statistically 

by the higher classification performance obtained using the fuzzy pooling approach.  

Future work includes optimization of the current implementation of fuzzy pooling to fully exploit 

GPU-level parallelism. This will enable us to perform larger-scale experimentation with very large 

datasets, such as ImageNet (Deng et al. 2009), using deeper CNN architectures, such as (Simonyan 

& Zisserman 2014). Other interesting research perspectives include the extension of the learnable 

set of network parameters to include the parameters for the fuzzy rules, and the extension of the 

proposed approach using generalized fuzzy sets, such as intuitionistic fuzzy sets.  
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CHAPTER 4 

MACHINE LEARNING FOR COMPUTER-AIDED ENDOSCOPY  

Gastrointestinal (GI) diseases are becoming more and more common (Foundation 2017). Each 

year in the United States 130,000 patients are diagnosed with colon cancer, making it the second 

most common form of cancer in the country. Recent studies show that the modern way of life, 

especially in the developed countries, has increased the number of cases with GI lesions. In this 

chapter we aim to provide a computer-aided approach for abnormality detection addressing variety 

of diseases, such as polyps, vascular bleeding, and inflammatory conditions. 

The GI tract can be broken down into four sections, namely the esophagus, the stomach, the small 

intestine, and the colon. A typical examination method of the GI tract is Flexible Endoscopy (FE) 

(Muller & Sonnenberg 1995) and its variations (Yao 2013; Kiesslich et al. 2005; Gono et al. 2004). 

Wireless Capsule Endoscopy (WCE) (Swain 2008) is becoming increasingly popular as a method 

of capturing images from the entire GI tract due to its non-invasiveness. This method uses a 

swallowable camera to capture low-resolution images throughout the entire GI tract which are 

afterwards examined by a clinician. A lot of manual human effort is required, which is typically 

interpreted into 45-90 minutes work, demanding undisrupted concentration. Thus, the review of 

an entire WCE video is prone to human errors since the video reviewers can become tired over the 

time. This raises the need for a computer-aided diagnosis methodology that could increase the 

overall diagnostic accuracy, and reduce the required examination time. 

Computer-aided abnormality detection in endoscopic images of the GI tract has been an active 

research subject over the last 18 years (Iakovidis & Koulaouzidis 2015; Liedlgruber & Uhl 2011; 

Karkanis et al. 2003). Abnormality detection refers to the ability of discriminating abnormal tissues 

from normal image contents. Normal image contents include non-pathologic tissues and intestinal 

content, such as debris and bubbles. First approaches were aiming to the detection of abnormalities 

in FE (Liedlgruber & Uhl 2011; Karkanis et al. 2003). In that context, abnormality detection 

systems contribute to the early detection of life-threatening conditions such as cancer. Their use 

can contribute in speeding up the FE procedures, which are generally uncomfortable for the 

patients. An added benefit is that cost reduction can be achieved by the use of such systems, as 

they could enable less experienced personnel to perform the examination. 

The abnormality detection methodologies that have been proposed in the context of GI FE (Vemuri 

2019; Liedlgruber & Uhl 2011) and WCE (Dray et al. 2021; Iakovidis & Koulaouzidis 2015) can 

be grouped into two main categories, according to the type of features used to describe the images. 

The methodologies of the first category are based on hand-crafted features for the representation 

of image properties, including color, texture and shape (Iakovidis & Koulaouzidis 2015; 
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Koulaouzidis et al. 2017; Vasilakakis et al. 2016; Sommen et al. 2016; Mamonov et al. 2014; D.-

Y. Liu et al. 2016; Liedlgruber & Uhl 2011; Iakovidis et al. 2015; Hegenbart et al. 2013; Häfner 

et al. 2015; Cong et al. 2015; Cong et al. 2016). However, such features are usually selected based 

on considerations about the modality used to acquire the images or about the abnormalities to be 

detected. In the second category, which comprises more recent methodologies, the feature 

extraction process is automatic. This is usually implemented through adaptation on the annotated 

dataset used for training of the overall system. State-of-the-art approaches of this kind are based 

on CNNs (Tajbakhsh et al. 2015; Sekuboyina et al. 2017; Ribeiro et al. 2016; He et al. 2018; 

Wimmer et al. 2016). 

Recently, supervised methodologies based on weakly annotated images have shown promising 

results for the classification of endoscopy images. The so-called weak labels are essentially 

keywords, only semantically describing image content. Therefore, weak labeling constitutes a 

time-efficient approach to obtain image annotations from the experts (Wang et al. 2015; Wang et 

al. 2016). In this context we proposed a MIL-based approach following the Bag of visual Words 

(BoW) model, for classification of GI endoscopy images (Vasilakakis et al. 2016). More recently, 

we proposed a methodology for weakly supervised detection and localization of abnormalities in 

GI endoscopy images (Iakovidis et al. 2018). This includes Weakly supervised CNN-based 

(WCNN) classification of the endoscopic images, followed by the detection of salient points, 

which were subsequently filtered by a clustering process to enable within-frame localization of the 

abnormalities. Specifically for bleeding detection and segmentation, a two stage approach has been 

proposed by (Jia & Meng 2017). Initially the images obtained from WCE, are classified as active 

or in-active subgroups based on handcrafted statistically derived color probability features. Then 

the segmentation is done using a deep FCN architecture (Springenberg et al., 2014), i.e., an 

architecture composed of only convolutional layers. 

Other CNN architectures for classification of weakly labeled images, proposed in the context of GI 

endoscopy, include a CNN that receives RGB images along with their Hessian and Laplacian 

transformations as input (Segu𝚤 et al. 2016); a cascaded CNN architecture for the recognition of the 

different organs of the GI tract and normal intestinal content (Chen et al. 2017); and, a CNN 

architecture for blood detection, using an SVM instead of the fully-connected layer of the 

conventional CNNs (Jia & Meng 2016). A recent, generic CNN-based approach to abnormality 

detection in GI endoscopy has been proposed in (Zhang et al. 2016) . It utilizes a pre-trained CNN 

architecture, and more specifically the CaffeNet (Jia et al. 2014), as a feature extractor. The 

features are extracted from the intermediate layers of the network. The extracted feature-maps are 

then used to train an SVM classifier. A remarkable aspect of that approach is that it was trained 

solely on ImageNet (Russakovsky et al. 2015), which is a large dataset of natural images that does 

not include any endoscopic or other relevant images. 
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While the usage of CNNs, including FCNs, has provided superior results compared to other 

conventional approaches, they generally require large training datasets. A drawback of current 

CNN approaches is that the use of smaller training datasets limits their generalization capacity. 

This derives from the fact that, as the number of the free parameters of the network increases, the 

need for more training examples also increases, in order to avoid overfitting (Du & Swamy 2006). 

However, the availability of such large training datasets in the medical domain is usually limited; 

thus, CNN training can become challenging. The challenge is to develop an architecture that 

generalizes well, even with smaller datasets.  Furthermore, the increase of free parameters, 

increases the needs for computational resources, with a consequent deterioration of the time-

performance of the system for both training and testing (Krizhevsky et al. 2012; Simonyan & 

Zisserman 2014). Considering that the access to high-end Graphical Processing Units (GPUs) can 

become costly, the development of a less resource-demanding architecture is a challenge that needs 

to be addressed. 

To address these challenges we have proposed the Look-Behind Fully Convolutional Neural 

Network (LB-FCN) (Diamantis et al. 2019), which is a CNN architecture that focuses on 

minimizing the number of free parameters along, which enables it to generalize well even when 

the number of training data are limited. LB-FCN architecture is a result of two novel studies; In 

the first, a cross-dataset experimental study (Diamantis et al. 2018) that investigates the 

generalization performance of an earlier version of architecture on various publicly available 

datasets. The second study (Vasilakakis et al. 2018) investigated the generalization performance 

of a similar, multi-scale feature extraction enabled architecture, named MM-CNN, in the context 

of weakly-supervised multi-label endoscopy video frames classification.  

In some cases, obtaining even small number of images for training is relatively hard, mainly due 

to the annotations that are required to be added to the images by a skilled physician. Aiming to 

address this problem, we recently proposed a novel GAN methodology in which GI tract images 

are generated automatically (Diamantis et al. 2019). The normal (healthy) and abnormal 

(unhealthy) generated images were used as training dataset to train the LB-FCN architecture with 

promising results when tested on real images.  

4.1 The Look-Behind Fully Convolutional Neural Network Architecture 

The design of the proposed architecture follows the FCN approach (Springenberg et al. 2014), 

where the fully-connected layers, typically used in the conventional CNN architectures 

(Krizhevsky et al. 2012; Simonyan & Zisserman 2014), are replaced by fully-convolutional layers. 

It is based on two fundamental elements, which differentiate it from other FCN architectures. 

These are: a) the Multi-scale Convolutional Block (MCB), which enables multi-scale feature 

extraction from its input, and b) the LB connection, which aims to preserve the input volume, along  
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Figure 4.1 A comparison between the core components of ResNet (He et al. 2016), ResNeXt (Xie et al. 

2017), Inception-v4 (Szegedy et al. 2017)  and the proposed LB-FCN (Diamantis et al. 2019)architectures. 

The term “volume” represents either a set of feature maps (in case of hidden network components) or a 

single image (in the case of network’s input). 

with the extracted features per MCB. Both the MCB and the LB connection form the basic, 

complete structural component (module) of the LB-FCN, illustrated in (Figure 4.1). The input 

volume, in the case of the first LB-MCB module of the LB-FCN, is an RGB endoscopic image, 
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and in the case of subsequent layers it is the output of the previous LB-MCB modules. Overall, 

LB connections contribute in enhanced classification performance; however, in some cases where 

the performance is not significantly affected, they can be pruned for reduced computational 

complexity. 

 

Figure 4.2 Schematic representation of the LB-FCN (Diamantis et al. 2019) architecture proposed in this 

study.  

The MCB is a small CNN composed of five convolutional layers (Figure 4.1). The first 

convolutional layer performs a convolution operation with a filter size 1×1 on the input volume. 

The output of this layer is used as input to a parallel arrangement of three convolutional layers, 

with the same number of filters, performing 8×8, 4×4 and 2×2 convolution operations, 

respectively. This way, larger, medium, and smaller features of the input space can be captured. 

The choice of these filters has been driven by preliminary experimentation using various numbers 

of filters (1 to 5) with different sizes (from 2×2 to 12×12) on the available datasets. We observed 

that by using less than 3 filters the classification performance was deteriorating, whereas by using 

more than 3 filters the classification performance was not improving. The output feature maps of 

these parallel layers are concatenated and subsequently entered to the fifth convolutional layer of 

the MCB, with 1×1 filter size. Each MCB has a respective LB connection in parallel, forward 

passing its input through a 1×1 convolutional layer. 

An addition operator is used to aggregate the outputs of the MCB and the LB connection. The 

resulting feature maps pass through a convolutional layer with 1×1 filter size. Multiple MCBs 

along with or without LB connections can be sequentially arranged and connected to each other. 

After the aggregation of the output of the MCB with the output volume of the LB connection, a 

pooling operation is performed. Pooling is performed by a convolution layer of filter size 2×2 and 

stride 2. The usage of a convolution layer instead of a conventional max-pooling layer, was 

employed to introduce another level of non-linearity to the network architecture, and to unify and 

logically simplify the overall network architecture. The max pooling layer can be replaced by a 

convolution layer of appropriate size and stride without affecting the overall classification 
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performance of the model (Springenberg et al. 2014). The 1×1 convolution operations that are used 

across the MCB serve two purposes. Firstly, they are helping to keep the overall number of free 

parameters of the network manageable and secondly, they allow the addition operation of the LB 

connection to the output of MCB to be valid. 

An illustration of the LB-FCN architecture is included in (Figure 4.2). It is composed of five 

modules, four of which are complete, including both MCB and LB connections as in (Figure 4.1). 

One of them is incomplete, in the sense that it includes an MCB module without an LB connection 

(which was pruned as it did not contribute to an increase in the classification performance). Each 

MCB receives 192 feature maps as input, while for each large, medium, and small convolutional 

blocks, 64 feature maps are extracted. Experimentally, we have observed that by using less 

structural components the classification performance was deteriorating, whereas the use of more 

than five modules did not result in any classification performance increase either. The last layer of 

the network is composed of two neurons with Softmax activations, which are used as the output 

of the model. 

All the convolutional layers have PReLU activations followed by batch normalization. 

Normalization is performed so that the values are centered on a zero mean with a unit standard 

deviation. It was empirically confirmed that this choice can contribute in a faster convergence by 

using higher learning rates, and also in limiting overfitting phenomena without using a dropout 

layer (Srivastava et al. 2014). The PReLU was chosen over the conventional non-parametric ReLU 

activation function, because its use has proven to be beneficial in overcoming saturation problems 

that have been observed with the latter during training (He et al. 2016). 

4.1.2 Experiments and Evaluation of LB-FCN architecture  

4.1.2.1 The Datasets 

Extensive experimentation was performed to investigate the classification performance of LB-

FCN on two representative datasets of different GI endoscopy modalities that include a variety of 

abnormalities. The first dataset (D1) was made publicly available from Endovis challenge, held in 

MICCAI 2015 (Navab et al. 2015). We used the data from the sub-challenge referring to the 

detection of abnormalities in gastroscopic images (Abnormal 2015) . The selection of this dataset 

over others in that challenge was driven by the diversity of the abnormalities that it included, and 

the fact that it also included normal images. The gastroscopy challenge dataset was derived from 

a total of 10,000 images obtained from 544 healthy volunteers and 519 volunteers having various 

abnormalities, such as cancer, bleeding, and gastritis. 
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Figure 4.3 Schematic representation of the LB-FCN (Diamantis et al. 2019) architecture proposed in this 

study.  

    

    

Figure 4.4 Sample images from KID Dataset. The first row contains normal images, whereas the second 

row contains images with abnormalities.  

The images had originally a resolution of 768×576 pixels and they were cropped by the data 

providers down to 489×409 pixels in order to be anonymized (Cong et al. 2015). For the purposes 

of the challenge a subset of 698 images from 137 volunteers was released (Figure 4.3). The dataset 

then was split into two approximately balanced subsets; one for training with 465 images (205 

normal and 260 abnormal) and one for test containing 233 images (104 normal and 129 abnormal) 

(Abnormal 2015)(“EndoVisSub - Abnormal,” 2015). This dataset will be referred to as D1B. 

The second dataset (D2), originates from our database called KID (Koulaouzidis et al. 2017). This 

is a public, open access database of both semantically and graphically annotated WCE images and 
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videos (Figure 4.4). Dataset 2 consists of a total of 2,352 images with a resolution of  360×360 

pixels. It contains 1,778 normal images from the whole GI tract, including 282 esophagus images, 

599 stomach images, 728 small bowel images, and 169 images from the colon. It also contains a 

total of 574 images of various abnormalities found along the entire gastrointestinal tract, including 

vascular (303 images), polypoid (44 images) and inflammatory (227 images) conditions. It should 

be noted that in order to keep the dataset as realistic as possible, images with artifacts naturally 

occurring during a WCE procedure were not excluded. These include blurry frames, bubbles, 

intestinal juices, stool, and other debris. 

4.1.2.2 Evaluation Methodology 

To evaluate the classification performance of LB-FCN architecture a comparison to state-of-the-

art abnormality detection systems for GI endoscopy, a 10-fold cross-validation (CV) procedure 

was followed to limit the bias, i.e., the dataset was randomly partitioned into 10 equally sized 

disjoint subsets, a single subset was retained as the validation data for testing the model, and the 

remaining 9 subsets was used as training data. This was repeated until all subsets are used for 

testing. Therefore, per CV fold, in the case of D1 a total of 628 images were used for training and 

70 images were used for testing, and in the case of D2 a total of 2117 images were used for training 

and 235 images were used for testing. The distribution of the normal and abnormal images, as well 

as the distribution of the abnormal frame categories, were held approximately constant in the 

training and testing sets per fold, i.e., 76% normal to 24% abnormal, out of which 53% were 

vascular, 8% were polypoid and 40% inflammatory conditions. 

The metrics used to assess the classification performance include accuracy (ACC), specificity 

(SPC) and sensitivity (TPR), as estimated from Eq. (4.1,4.2,4.3). 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.1) 

𝑆𝑃𝐶 =
𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 (4.2) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.3) 

𝐹𝑃𝑅 = 1 − 𝑆𝑃𝐶 (4.4) 

where the number of true negatives are denoted as TN, true positives as TP, false positives FP and 

false negatives FN. 
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The Receiver Operating Characteristic (ROC) curves were considered to visualize the tradeoff 

between TPR and FPR at different decision thresholds. The Area Under ROC (AUC) is used as a 

more reliable and intuitive classification performance measure, that is insensitive to class 

imbalance (Fawcett 2006), which characterizes most medical datasets, as the ones used in this 

study. 

4.1.2.3 Results 

The proposed LB-FCN architecture was evaluated using all images of datasets D1 and D2. Since 

the proposed architecture uses weakly labeled images, the available graphic annotations were not 

used. Only semantic annotations of the images, indicating whether they contain an abnormality or 

not, were used as ground truth. The semantics “abnormal” and “normal” are represented as vectors 

(1,0) and (0,1), respectively, at the output of the network. 

The network was trained using Root Mean Square Propagation (RMSProp) (Hinton et al. 2012) 

optimizer with an initial learning rate n=0.01 and fuzz factor 81 −= e . The network was 

implemented utilizing the Python Keras (Gulli & Pal 2017) library on top of the TensorFlow 

(Abadi et al. 2016) graph framework trained for 2000 epochs with mini-batch of size 32 samples 

on an NVIDIA GTX-960 GPU, with 1024 CUDA (Nickolls et al. 2008) cores, 2GB of RAM and 

clock speed of 1127MHz. 

In the following, LB-FCN is compared with state-of-the-art architectures, both in terms of 

effectiveness and efficiency. 

4.1.2.3.1 Effectiveness Assessment  

The evaluation of the network using CV yielded a mean Area Under Curve (AUC) of 99.72% 

(Figure 5.5). The entire training process of each fold took 2 hours as the network had only 9 

million parameters to be trained (while conventional CNN architectures used in this context, such 

as CaffeNet (Zhang et al. 2016) and VGG-16 (Simonyan & Zisserman 2014), have between 60-

130 million parameters).  

For completeness and further promote reproducibility of the results, we evaluated the classification 

performance of the proposed architecture on dataset D1B. This resulted in an AUC of 99.82%, 

which is comparable to that obtained with CV (Figure 4.6). 

For generality, the experiments on dataset D2 were performed using the same LB-FCN 

configuration with the experiments on datasets D1 and D1B. The average Receiver Operation 

Characteristic (ROC) curve obtained by the evaluation of the model using CV had an AUC of 

93.5% (Figure 4.7). 
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Table 4.1 Comparative abnormality detection results using 10-fold cross-validation on datasets D1, D1b 

And D2, as they were obtained for an optimum selection of the meta-parameters of the compared nets and 

methods.  

 

 

Figure 4.5 Mean ROC obtained by 10-fold CV on dataset D1, using LB-FCN. The grey area around the 

curve the represents the respective confidence band.  

To compare the performance of LB-FCN for abnormality detection in endoscopic images we 

implemented the most relevant state-of-the-art CNN architectures, including Transfer Learning 

(Zhang et al., 2017), FCN (Springenberg et al. 2014), ResNet (He et al. 2016), (Xie et al. 2017) 

ResNeXt  and Inception-v4 (Szegedy et al. 2017). The results obtained on the same datasets, using 

10-fold cross validation, are summarized in Table 4.1. In the same table provide the results of 

  

 LB-FCN 
(Diamantis et al. 2019) 

BoW 
(Vasilakakis et al. 2016) 

Transfer Learning 
(Zhang et al. 2016) 

WCNN 
(Iakovidis et al. 2018) 

 D1 D2 D1B D1 D2 D1B D1 D2 D1B D1 D2 D1B 

Accuracy (%) 97.84 88.29 97.42 89.20 76.80 90.56 89.90 80.01 90.98 89.90 77.50 90.90 

Sensitivity (%) 98.05 92.11 97.11 91.10 45.40 90.70 90.70 86.22 91.40 90.70 36.20 93.00 

Specificity (%) 97.67 76.49 97.67 87.20 88.60 90.38 88.20 60.78 90.38 88.20 91.30 88.50 

AUC (%) 99.72 93.50 99.82 94.60 80.20 95.44 96.30 81.62 96.34 96.30 81.40 96.84 

 FCN 
(Springenberg et al. 2014) 

ResNet 
(He et al. 2016) 

ResNeXt 
 (Xie et al. 2017) 

Inception-v4 
(Szegedy et al. 2017) 

 D1 D2 D1B D1 D2 D1B D1 D2 D1B D1 D2 D1B 

Accuracy (%) 97.13 87.60 96.13 96.27 87.22 95.99 95.98 86.93 96.56 95.98 87.92 96.99 

Sensitivity (%) 96.66 77.87 95.34 97.94 83.26 95.12 95.63 80.13 96.89 94.60 82.17 96.89 

Specificity (%) 97.53 85.97 97.11 96.04 90.42 98.07 96.44 89.13 96.15 97.53 90.71 97.11 

AUC (%) 97.19 81.92 96.23 97.19 86.84 97.10 96.03 84.63 96.52 96.16 86.44 97.03 
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BoW (Vasilakakis et al. 2016) and WCNN (Iakovidis et al. 2018) as they were recently reported 

on the same datasets using the same evaluation procedure. 

 

Figure 4.6 ROC obtained on dataset D1B, using LB-FCN.  

 

Figure 4.7 Mean ROC obtained by 10-fold CV on dataset D1, using LB-FCN. The grey area around the 

curve the represents the respective confidence band.  

To validate the significance of the results obtained by the proposed architecture in comparison to 

the results obtained with the state-of-the-art architectures and methods we performed two 

statistical significance tests; a non-parametric Friedman test and a two-sided Wilcoxon rank sum 

test (Wilcoxon 1947),  In both tests the null hypothesis (i.e., that the samples are derived by 

identical continuous distribution with equal means and are independent) was rejected (p-value < 

0.05), which indicates that there are differences between the examined methods at a 5% 

significance level. 
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Table 4.2 Comparison of the computational complexity of the top-ranked state-of-the-art architectures of 

Table 4.1. 

Architecture FLOPs 
Convolution  

Layers 

Trainable  

Free Parameters 

LB-FCN 
(Diamantis et al. 2019) 

1.36 × 107 32 8.26 × 106 

ResNet 
(He et al. 2016) 

4.74 × 107 53 2.35 × 107 

ResNeXt 
(Xie et al. 2017) 

2.83 × 107 94 5.63 × 106 

Inception-v4 
(Szegedy et al. 2017) 

2.05 × 108 149 4.11 × 107 

 

4.1.2.3.2 Efficiency Assessment  

The total time-complexity of all convolution layers in a CNN is given by (He & Sun 2015):  

𝑂 (∑𝑛𝑙−1 ∙

𝑑

𝑙=1

𝑠𝑙
2 ∙ 𝑛𝑙 ∙ 𝑚𝑙

2) (4.5) 

where 𝑙 is the index of convolution layer, 𝑑 is the number of all convolution layers;  𝑛𝑙 is the width 

of the 𝑙-th layer, 𝑛𝑙−1is the input channels of the 𝑙-th layer; 𝑠𝑙 and 𝑚𝑙are the spatial size of the 

filter and the output feature map, respectively. Therefore, for a given dataset with a specific size, 

the number of computations are proportional to the sum of products described in (5). The same 

time-complexity applies to both training and testing time, although on different scale; as training 

time involves one forward and two backward passes because of the error back propagation training 

algorithm. As a result, the training time of an image is roughly three times the testing time of an 

image. 

The top-ranked architectures of Table 4.1 are compared in terms of computational complexity in 

Table 4.2. It includes the number of Floating-Point Operations (FLOPs), the number of 

convolution layers and the number of trainable free parameters. It can be noticed that LB-FCN has 

a comparable number of trainable parameters (and consequently similar memory requirements) 

with the rest of the architectures. However, the number of FLOPs of LB-FCN is smaller; more 

specifically, it is approximately 3.5 times smaller than ResNet, 2 times smaller than ResNeXt, and 

an order of magnitude smaller than Inception-v4. 

It is worth noting that the LB-FCN architecture tends to converge faster. For example, the average 

number of epochs for the convergence of the LB-FCN architecture on dataset D2 was 

approximately 2000 as compared to 2400, 2900, 3100 epochs for ResNeXt, ResNet and Inception-

v4 respectively. Also, for the same dataset, the average training time of the proposed architecture, 
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is significantly smaller, compared to the rest of tested networks, averaging to 2 hours. ResNeXt 

required on average 3.4 hours, ResNet 4.2 hours, and Inveption-v4 6 hours. 

4.1.2.3.1 Findings  

The results obtained from the application of LB-FCN architecture on datasets D1, D1B and D2, 

show that it outperforms the state-of-the-art architectures and methods in terms of AUC. The 

difference in AUC of LB-FCN in D1 and D1B datasets from the ResNet, which is the second-best 

performing methodology, are 2.53% and 2.72% respectively. On the larger and even more diverse 

dataset D2, the classification performance of LB-FCN is significantly higher, reaching a difference 

in AUC of 6.66% from the same methodology. We believe that this is due to the multiscale feature 

extraction capabilities of the architecture. It is important to note here that the methodologies that 

follow handcrafted feature classification technique (Vasilakakis et al. 2016), are significantly 

lower than the CNN based approaches. 

The multi-scale design of LB-FCN is inspired by GoogLeNet (Szegedy et al. 2015) and its 

variation Inception-v4 architecture (Szegedy et al. 2017), were features of different abstraction 

levels are combined to produce a richer representation of the input volume. The LB connections 

are inspired by the work of Gers and Schmidhuber (Gers and Schmidhuber, 2000) where, the so-

called peephole connections, were introduced in Long-Short-Term Memory (LSTM) networks to 

provide their gates with the ability to maintain information from previous states of the network. 

The multiscale feature extraction approach used in MCB is similar but not the same with that of 

the Inception module of GoogLeNet architecture. While both modules aim to the same goal 

(multiscale feature extraction), MCB does not use pooling to perform downsampling of the input 

volume. This enables the LB connection to be aggregated as is, to the output volume of the MCB.  

Furthermore, the MCB extracts the same number of feature maps, across the entire network, on 

three different scales (convolution with 2×2, 4×4 and 8×8 filters and stride 1) instead of two 

(convolution with 3×3 and 5×5 filters and stride 2), extracted by the Inception module. This aims 

to provide more diverse feature representation of the input volume. In the case of GoogLeNet the 

number of feature maps extracted by each inception module is doubled, whenever the input volume 

size is downscaled by two. In the case of LB-FCN architecture, doubling the number of feature 

maps of the LB-MCB module after every convolutional pooling, did not yield any better results, 

yet it increased the number of the overall free parameters of the network. Also, it is important to 

note that unlike the proposed LB-FCN architecture, GoogLeNet neither has any peephole-like 

connections nor any addition operator (Figure 5.1). Also, unlike GoogLeNet, LB-FCN does not 

utilize any fully-connected and dropout layers. Other differences of LB-FCN with GoogLeNet 

include the use of PReLU activations and batch normalization. 
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Peephole-like connections, known as “identity shortcut connections”, have been adopted in the 

Residual Blocks (RBs) of  ResNet (He et al. 2016). The RBs do not have MCB-like, parallel layers; 

instead, it is composed of sequentially arranged convolutional layers. In each RB the shortcut 

connection transfers its input volume unaltered for addition with the output of its last convolutional 

layer. The role of the shortcut connection is similar to that of LB. A variant of ResNet architecture, 

called ResNeXt (Xie et al. 2017) utilizes parallel but not multiscale convolutional layers, as the 

LB-FCN does. In the case of ResNeXt the outputs of the parallel layers are first summed up 

together and the resulting feature maps are subsequently aggregated with the output of the shortcut 

connection using an addition operator. In LB-FCN the outputs of the parallel layers of the MCB 

are not summed up, instead they are concatenated to form a richer output volume. Similarly to 

ResNeXt, the output of the MCB is aggregated by addition with the output of the LB connection. 

This allows the next MCB module to have an aggregated view of the initial input volume with the 

MCB output volume, which helps the overall classification performance of the network. A notable 

difference between ResNext and LB-FCN is not only that the MCB extracts feature maps of 

different filter sizes but that after each convolution operation the output is passed to a 1×1 

convolution operation with batch output normalization. We found that the addition of this step 

increased the classification performance of the network approximately by 1.3% and reduced the 

training time by 5.6%. 

Similarly to our recent WCNN architecture (Iakovidis et al. 2018), and unlike most relevant 

abnormality detection methodologies (Iakovidis & Koulaouzidis 2015), LB-FCN aims to the 

detection (not the identification) of various types of abnormalities, and not just a single pathologic 

condition. From the results we observe a significant advantage of the LB-FCN over WCNN. The 

differences are 12.1%, 3.42% and 2.98% on D2, D1 and D1B datasets, respectively). We believe 

that this advantage is due to the introduction of multiscale feature extraction combined with look-

behind connections and the overall deeper architecture. The results of ResNet, ResNeXt and 

Inception-v4 architectures, confirm that the depth of the network plays an essential role on the 

overall classification performance. This can be observed on the more complex and diverse datasets 

such as D2, on which all three architectures outperform the classification performance of the 

shallower WCNN architecture. 

The comparative study shows that the hand-crafted feature extraction approach used in 

(Vasilakakis et al. 2016) results in a significantly lower classification performance compared to 

LB-FCN architecture. The AUC differences observed are 13.3% and 5.12% on D2 and D1 datasets 

respectively. It also shows that the LB-FCN outperforms WCNN (Zhang et al. 2016); consequently 

it outperforms other state-of-the-art CNN-based methodologies, such as (Sekuboyina et al. 2017). 

It is also worth noting that D1B dataset was introduced in the work of (Cong et al. 2015), in which 

DSSVM approach was presented achieving an AUC of 89.83%. It is worth mentioning that the 

AUC difference between DSSVM and LB-FCN on D1B dataset is 9.99%. 
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4.2 Cross-Dataset Abnormality Detection  

The multi-scale feature extraction CNN (MFCNN) (Diamantis et al. 2018)  architecture on which 

LB-FCN architecture is based on, was inspired by our work on the problem of cross-dataset 

abnormality detection in GI tract images. MFCNN. The study aims to investigate the 

generalization performance of architecture, compared with conventional, hand-crafted feature 

techniques on various publicly available GI tract image datasets. The results validate that the 

MFCNN architecture outperforms state-of-the-art approaches, with results reaching up to 90.66% 

in terms of the area under the receiver operating characteristic.  

4.2.1 Evaluation Methodology  

In order to evaluate the classification performance of the MFCNN architecture we performed two 

different sets of experiments. The first set assessed its performance on a single dataset, as a 

reference, whereas the second set, assessed its ability to generalize using various different datasets 

for training and testing. The Area under the Receiver Operating Characteristic (AUC) was used as 

a reliable classification measure, that is not affected by the fact that the class distributions of the 

datasets used were generally imbalanced (Fawcett 2006). The overall implementation was based 

on the Keras (Gulli & Pal 2017) library backed by TensorFlow (Abadi et al. 2016) graph 

framework.  For the training we used RMSProp (Hinton et al. 2012) optimizer with learning rate 

n=0.001, a fuzz factor ε=1e-8, and a batch size of 32 images. 

The single-dataset evaluation was based on the largest and most diverse publicly available dataset 

of gastrointestinal images, which is “Dataset 2” of KID database (Koulaouzidis et al. 2017). The 

evaluation was performed by 10-fold cross validation obtaining an average AUC of 93.5%. For 

comparison purposes we implemented and tested the transfer-learning approach proposed by  

(Zhang et al. 2016), which resulted in an AUC of 81.62%.  

4.2.1.1 The Datasets 

Cross-dataset evaluation was based on four datasets: KID (Koulaouzidis et al. 2017), Gastroscopy 

(GASTRO) (Cong et al. 2015) , CVC-ClinicDB (CVC) (Bernal et al. 2015), ETIS-Larib Polyp DB 

(ETIS) (Silva et al. 2014) dataset. The last three datasets were made publicly available as part of 

the Endovis Grand Challenge which was held in MICCAI 2015 conference (Navab et al. 2015). 

The Gastroscopy dataset contains a total of 698 gastroscopic images of size 489×409 pixels from 

which 389 contain various pathologic conditions. The rest are normal images. CVC-ClinicDB and 

ETIS-Larib Polyp DB contain only abnormal images with polyps that were obtained from 

colonoscopy videos. The former contains 612 images with a size of 384×288 pixels, and the latter 

contains 196 high resolution images with a size of 1225×966 pixels. The lack of normal images in 
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these datasets makes them unsuitable for weakly-supervised training of the proposed architecture, 

because both normal and abnormal images are required for this purpose. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.8 Sample images from (a) GLAB, (b) GATLAS, (c) CVC, (d) ETIS, (e) KID and (f) GASTRO 

datasets.  

In order to be able to use the CVC-ClinicDB and ETIS-Larib Polyp DB for training, we enriched 

them with 302 images from 10 normal colonoscopic videos from the publicly available 

GASTROLAB (GLAB) (GASTROLAB 2018) and El Salvador Atlas of Gastrointestinal 

Endoscopy (GATLAS) (Atlas 2018) video databases. GLAB dataset consists of images from the 

videos with filenames: vid132, vid146, vid148, vid149, vid176 and vid177, and GATLAS consists 

of images from videos: colonoscopy, colonoscopy2, videocolonoscopy2, and videocolonoscopy3. 

The images were sampled with a period of 1 sec. GLAB dataset was combined with CVC dataset 

(CVC+GLAB) and GATLAS was combined with ETIS dataset (ETIS+GATLAS). All images 

were linearly downscaled to 64×64 pixels before entering the CNN. A sample image from each 

dataset that was used in this study is presented in (Figure 4.8). 

4.2.1.2 Results 

The results obtained from the evaluation of the proposed architecture in comparison to the results 

obtained by the architecture used in (Zhang et al. 2016) trained and tested on the respective datasets 

are presented in Table 4.3. Training with ETIS+GATLAS dataset and testing on CVC+GLAB 

yield the best results (90.66%), which we believe is due to the similarity of the two datasets, as 
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they are both colonoscopic datasets with polyp lesions. The lowest score (57.83%) was obtained 

upon training the architecture with ETIS+GATLAS dataset and testing it on KID dataset. This can 

be explained by the fact that KID is a very diverse dataset, containing images from the entire GI 

tract, not only from the colon. The fact that ETIS is smaller than CVC dataset can explain the 

lower performance of the network trained with ETIS+GATLAS for the classification of KID 

images, as compared with CVC+GLAB. Comparing the results of the MFCNN architecture with 

the ones  obtained using (Zhang et al. 2016) approach we notice the former yields significantly 

higher classification performance. We believe that this is due to the training image relevancy, as 

(Zhang et al. 2016) features are obtained from a pre-trained network which was trained on non-

medical images. It is also important to note that (Zhang et al. 2016) approach utilizes a network of 

approximately 60 million parameters while the proposed architecture has only 9 million. 

Furthermore, the image classification performed with the MFCNN methodology is handled by the 

network itself, whereas (Zhang et al. 2016) employs an SVM binary classifier for the classification 

of the extracted features. 

Table 4.3 Comparative abnormality detection results on cross-dataset evaluation. 

Train Test MFCNN (Zhang et al. 2016) 

KID GASTRO 82.85% 58.41% 

KID CVC+GLAB 61.40% 50.32% 

KID ETIS+GATLAS 62.99% 50.93% 

GASTRO KID 62.37% 53.84% 

GASTRO CVC+GLAB  71.32% 50.40% 

GASTRO ETIS+GATLAS 80.17% 50.18% 

CVC+GLAB KID 64.12% 50.39% 

CVC+GLAB GASTRO 67.87% 50.28% 

CVC+GLAB ETIS+GATLAS 76.28% 65.80% 

ETIS+GATLAS KID 57.83% 50.19% 

ETIS+GATLAS GASTRO 57.91% 62.68% 

ETIS+GATLAS CVC+GLAB 90.66% 50.30% 

 

4.3 Weakly Supervised Multilabel classification for Semantic Interpretation of 

Endoscopy Video Frames 

A variety of studies address the problem of abnormality detection in medical images using 

computer-based systems. Most of these systems are based on binary classification algorithms that 

rely on fully annotated data in order to operate. In image classification problems such annotations 

require pixel-level selection within the image that indicate the location of these abnormalities. 
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Such annotations are relatively hard, and time consuming to obtain. Furthermore, they do not take 

into consideration the diversity of the image content, which may include a variety of structures 

and artifacts. In the context of GI video-endoscopy, the semantics of the normal contents of the 

endoscopic images include mucosal tissues, bubbles, debris, and the hole of the lumen. The 

abnormal frames might include additional semantics corresponding to lesions or blood. Based on 

this observation, in (Vasilakakis et al. 2018) we investigated various multi-label classification 

methods, aiming to a richer semantic interpretation of the endoscopic images. Two novel 

methodologies were presented, which include an image-saliency enabled bag-of-words approach 

and a multilabel CNN architecture enabling multi-scale feature extraction (MM-CNN). The 

weakly-supervised learning is achieved by using only semantically labeled data, i.e., meaningful 

keywords describing the image, which greatly reduce the time spent on the demanding pixelwise 

annotation of the training images. The experiments conducted on the publicly available KID 

(Koulaouzidis et al. 2017) WCE image dataset, show that the weakly-supervised multi-label 

classification can provide enhanced discrimination of the GI tract abnormalities, with MM-CNN 

method to provide the best performance. 

The MM-CNN architecture is considered a pre-accessor of LB-FCN (Diamantis et al. 2019) 

architecture, as it employees multi-scale feature extraction in order to obtain a feature rich 

representation of the weakly annotated data. The network architecture is illustrated in (Figure 4.9). 

Instead of the convention softmax output layer, MM-CNN uses sigmoid neurons which enables 

multi-label image classification.   
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(a) 

 

 
(b) 

Figure 4.9 The proposed MM-CNN architecture, composed of LMSCBs. (a) The architecture of an 

LMSCB. The input volume is forwarded to the multi-scale feature extraction component and then to the 

addition operator. The final feature maps are then forwarded to the pooling component which results in a 

50% dimensionality reduction. (b) The overall MM-CNN architecture composed of 5 LMSCB modules and 

4 sigmoid output neurons, which are used for the multi-label classification. 

4.3.1 Experiments and Results   

Experiments were conducted to evaluate the effectivity of multi-label classification in the context 

of semantic interpretation of endoscopy video frames. The performance of both presented 

methodologies, MM-CNN and saliency-enabled BoW, were compared with state-of-the-art 

approaches.  
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In the case of the saliency-enabled BoW methodology, for each video frame, features have been 

extracted using the proposed Difference of Maxima (DoM) salient point detection method and the 

“naive” approach of dense feature extraction. For the proposed DoM salient point detection 

method we used image samples of 24×24 pixels. The BoW model was constructed with a visual 

vocabulary with sizes in the range from 500 to 2000 words using the k-means clustering algorithm 

(Drake & Hamerly 2012). The classification of the feature vectors obtained using the BoW 

method, was implemented by an SVM classifier. We have tested linear, polynomial and Radial 

Basis Function (RBF) kernels, and followed the grid search approach (Chang 2011) to determine 

its optimal parameters. The RBF kernel provided the best results, for a minimum cost parameter 

c=10 and γ=2−8. 

In the case of the MM-CNN the training of the network was performed using the back-propagation 

algorithm with a batch size of 32 images and the root mean square propagation (RMSProp) (Hinton 

et al. 2012) optimizer with learning rate l = 0.0001 and fuzz factor ε = 1e − 8. Furthermore, video 

frames from the KID dataset 2 have been cropped to 320 × 320 pixels by removing the excess 

surrounding black border. Then, they were downsized to a resolution of 256 × 256 pixels. The 

network has been implemented the Keras (Gulli & Pal 2017) Python library backed by TensorFlow 

(Abadi et al. 2016) graph framework. It was trained using an NVIDIA GTX-960 enabled graphical 

processing unit (GPU) with 1024 CUDA (Nickolls et al. 2008) cores having 2 GB of RAM and 

clock frequency of 1127 MHz. It is worth mentioning that the entire training of the network for 

each fold took approximately 8 h. The early stopping technique was adopted to optimize the 

network’s generalization performance, using 15% of the data as validation subset. The number of 

training epochs required per fold was approximately 2000. This could be considered as being 

relatively low when compared to other networks, e.g., the one of (Simonyan & Zisserman 2014). 

Yet, it happens due to the low number of free-parameters of the overall architecture (Figure 4.9). 

To compare the classification performance of MM-CNN with the transfer learning approach in 

multi-label classification of WCE gastrointestinal tract images, we implemented the methodology 

followed by (Zhang et al. 2016). More specifically, for the feature extraction we followed the same 

procedure as presented by the authors, while for the classification of the extracted features, we 

followed multilabel “one-vs-all” SVM with c = 2−9 and polynomial kernel. The parameters of the 

SVM were selected after a series of experiments in order to determine the optimal values for the 

domain. 

The classification performance was thoroughly investigated using receiver operating characteristic 

(ROC) analysis (Fawcett 2006). Experiments were performed using the 10-fold cross validation 

evaluation scheme, using SVMs as a binary classifier. Multi-label classification was implemented 

using a derivative of WEKA library (Garner & others 1995) called MEKA (Read et al. 2016). 
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Initially, we examined the case of binary classification of the video frames into normal and 

abnormal classes. We investigate the performance of BoW method using the proposed DoM for 

salient point detection in comparison with the state-of-the-art methodologies, (Yuan et al. 2015) 

in which SIFT algorithm (Lowe 2004) was used for the detection of interest points and a 

concatenated feature vector of SIFT and LBP, or SIFT and CLBP (Yuan et al. 2015), for the 

description of video frame regions. The comparison also includes the method proposed in 

(Vasilakakis et al. 2016), which use the SURF (Bay et al. 2006) algorithm for salient point 

detection in the a-channel (SURF(a)) of CIE-Lab and the dense BoW approach and the CNN 

(Zhang et al. 2016). The results with regards to lesion detection are presented in Table 4.3. It can 

be noticed that the use of the proposed DoM algorithm increases the binary classification 

performance to an AUC of 0.81%. All methods provide a low sensitivity. This indicates the 

difficulty of the lesion detection problem. The BoW method using DoM provided significantly 

higher specificity (less false positives) than all other methods. The higher sensitivity was obtained 

by CNN, at the cost of a higher false positive rate. 

Table 4.4 Comparative binary classification results, using various weakly supervised BoW methods with 

SVM classifier and CNN method. The sensitivity, specificity, AUC and the confusion matrix (True 

Positives – TP, False Negatives – FN, False Positives – FP, and True Negatives – TN) of each method is 

included.  

Methods TP FN FP TN Sensitivity Specificity AUC 

BoW+SURF(a) 23 34 22 156 0.40 0.87 0.78 

BoW+SIFT+LBP 17 40 21 157 0.30 0.88 0.72 

BoW+SIFT+CLBP 21 36 20 158 0.36 0.88 0.78 

BoW+Dense 24 33 18 160 0.42 0.89 0.8 

CNN 30 27 27 151 0.52 0.85 0.78 

BoW+DoM 25 32 17 161 0.44 0.91 0.81 

 

Multi-label classification was performed using the following labels: abnormal, debris, bubbles, 

and lumen hole. Indicative images from the KID dataset for each label are included in (Figure 

4.10). The use of DoM for multi-label classification, results in an even higher classification 

performance than the conventional binary classification scheme. Best results were obtained using 

the multi-layer perceptron (MLP) multi-label classification method with 100 hidden layer neurons, 

a learning rate of 0.1, trained with the features extracted from BoW model. The obtained AUC 

reached up to 0.83% using a vocabulary of 800 visual words. The results for all weakly methods 

using BoW features are presented in (Figure 4.11). The basic methods for multi-label 

classification, which used, were binary relevance (BR), label combination (LC), ranking and 

thresholding (RT) and pairwise classification (PC). For all multi label methods we used the same 

SVM with radial basis function kernel (RBF) with c=10. As in the binary classification 
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experiments, these parameters were determined using the afore-mentioned kernels and grid-search 

approach. Also, (Figure 4.11) includes the results of CNN (Zhang et al. 2016) for multi-label 

classification in order to compare our proposed MM-CNN. It can be noticed that MM-CNN 

provided the highest performance compared to all the other approaches and achieved an AUC 

equal to 0.90%.  

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4.10 Sample images from the KID dataset. (a) Debris, (b) Bubbles, (c) Lumen hole, (d) 

Inflammation, (e) Polypoid and (f) Angiectasia.  

The classification results per semantic category are presented in (Figure 4.12). It can be noticed 

that the result for debris are significantly higher than the results of bubbles and lumen hole. The 

reason is that the most video frames in KID dataset had debris as content compared to the number 

of video frames that had bubbles and/or lumen hole. 

It can also be noticed that the classification performance of the CNN is not always better than the 

BoW-based approaches, although it has been proved effective in the context of endoscopy (Zhang 

et al. 2016). This could be explained by the diversity of the KID dataset, which includes several 

different kinds of lesions, whereas the dataset used in (Zhang et al. 2016) included only colorectal 

polyps.  
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Figure 4.11 Comparative multi-label lesion detection results for each multi-label method tested. 

 

Figure 4.12 Comparative classification performance results for each semantic label in the KID dataset, 

for each multi-label method. 

 

4.4 Substitution of Real with Artificially Generated Endoscopic Images for 

CNN Training 

Over the years, the frequency of Gastrointestinal (GI) tract diseases is increasing (Anon 2018). 

This is even more apparent in developed countries. A typical examination of the GI tract is Flexible 

Endoscopy (Muller & Sonnenberg 1995) and its variations. A non-invasive screening technique, 

called Wireless Capsule Endoscopy (Swain 2008) (WCE) is becoming increasingly popular, as the 

examination is performed using an ingestible capsule camera, which can capture images 

throughout the GI tract of the patient. The retrieved images are then examined by a clinician, in a 

labor-intense process which typically requires 45-90 minutes of video reading. As a result, 

computer-aided GI tract lesion detection can be employed to simplify the diagnosis process, thus 

minimizing the possibility of human-error linked clinician weariness. 

One of prime indications for performing WCE is the diagnosis or topographic mapping of GI 

lesions in known and/or suspected Inflammatory Bowel Disease (IBD) (Koulaouzidis et al. 2013). 
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The most common inflammatory lesions are ulcers, aphthae, mucosal breaks with surrounding 

erythema, cobblestone mucosa, stenoses and/or fibrotic strictures, and significant mucosal/villous 

oedema. State-of-the-art CNNs have been developed and applied for abnormality detection 

(including inflammatory lesions) in WCE achieving a remarkable performance (Iakovidis et al. 

2018)(Diamantis et al. 2019). Earlier approaches specifically for inflammatory lesion detection 

include methods based on handcrafted color features and Bag-of-visual-Words (BoW) with 

Support Vector Machine (SVM) classifiers (Vasilakakis et al. 2016). 

It is known  that the generalization performance of neural networks is linked with the number and 

variations of samples available for their training (Neyshabur et al. 2017). This is more apparent in 

CNN architectures mainly due to the large number of free parameters that need to be trained. To 

cope with this problem, data augmentation techniques such as, scaling and rotation, is typically 

employed in order to artificially increase the number of samples found in a dataset. While this can 

enhance the generalization performance of a CNN, the enhancement is limited as the augmented 

samples are similar to each other. In most applications this can be tolerated as data availability is 

not a problem. On the other hand, in the medical domain, mainly due to the data privacy 

regulations, e.g., the General Data Protection Regulation (GDPR) (Voigt & Bussche 2017), 

obtaining real medical images as training samples, is becoming harder over the years. In addition, 

existing accessible datasets are often inadequate for use in the training of deep learning 

applications, mainly due to their limited size and lack of expert annotations (Guibas et al. 2017). 

The aforementioned issues could be sidestepped with the usage of synthetic data, since those 

cannot be traced back to patients and can also be produced in abundance. For these reasons, data 

generation and more specifically image synthesis has been extensively researched. 

To cope with the problem of data availability in the medical domain a novel approach is presented. 

More specifically our methodology employs a combination of a state-of-the-art LB-FCN 

(Diamantis et al. 2019), as it has been recently evolved into a lightweight, more efficient, classifier 

(LB-FCN light) (Diamantis et al. 2019), which will be discussed in detail in Section 5 of this thesis, 

and a Generational Adversarial Network (GAN) (Goodfellow et al. 2014) for training data 

generation. The GAN was trained to perform non-stationary texture synthesis (Zhou et al. 2018), 

to generate small bowel WCE images, with and without inflammatory lesions. The artificially 

generated images were then used to train the LB-FCN light architecture. LB-FCN light architecture 

was selected as it combines multi-scale feature extraction and significantly low number of free 

parameters. We then evaluated the performance of the trained model on real images from the KID  

WCE image (Koulaouzidis et al. 2017) dataset in the context of inflammatory lesion detection. 
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4.4.1 Medical Image Generation  

The goal of texture synthesis is the generation of new samples perceptually similar to an input 

texture. Conventional approaches to texture synthesis fall into two categories. Non-parametric 

methods include pixel-based methods (Efros & Leung 1999), which synthesize a new image pixel 

by pixel. The value of each pixel in the output is being determined by its neighborhood. Pixel-

based methods can be improved by replacing pixels with patches as the synthesis unit (Wei et al. 

2009).   Until recently (Barnes & Zhang 2017), patch-based methods were widely used. Non-

parametric techniques for texture synthesis offer the ability to produce high quality results. 

However, they cannot learn the underlying model of the data since they essentially rearrange the 

input image based on local similarity criteria (Jetchev et al. 2016). Thus, they are unable to 

reproduce large-scale structures, including those found in medical images. Another texture 

synthesis approach is based on the extraction of statistical descriptors to model a texture. A new 

texture is synthesized by finding an image with matching descriptors such as by optimizing a 

Gaussian white noise image (Portilla & Simoncelli 2000). While it yields good results on some 

texture types, in most cases fails to cope with highly inhomogeneous textures. 

In recent years, deep learning-based texture synthesis approaches have gained popularity. As 

opposed to conventional approaches, deep learning methods are capable of discovering models 

that describe the complex natural world, without the need of hand-crafted features (LeCun et al. 

2015). The method presented in (Gatys et al. 2015) is the first to use a deep neural network for 

texture synthesis. It utilizes a CNN to capture an input texture’s spatial statistics by taking 

advantage of the CNN’s powerful feature space. Follow-up works (Ulyanov et al. 2016; Johnson 

et al. 2016) improve the approach of (Gatys et al. 2015) in terms of speed.  

Since the conception of GANs, several variations have been developed (Mirza & Osindero 2014; 

Odena et al. 2017; Odena 2016; Denton et al. 2015; Radford et al. 2015) able to produce high-

quality, natural looking images that can be mistaken for real ones when assessed by human 

observers. In (Isola et al. 2017) the effectiveness of GANs for image-to-image translation tasks is 

demonstrated. In the field of medical image generation, GANs have been successfully employed 

for a variety of tasks, such as the generation of computer tomography (CT) images from their 

corresponding magnetic resonance (MR) images (Nie et al. 2016), the transformation between 

different MR image modalities (Nie et al. 2018) and the prediction of PET images from abdominal 

CT scans for highlighting liver tumors (Ben-Cohen et al. 2017). Similarly a GAN was used in 

(Calimeri et al. 2017) to generate MR slices of the human brain. To assess the effectiveness, the 

authors used quantitative and human-based human-based evaluations of generated images. In the 

context of Cardiac Magnetic Resonance (CMR) image generation, (Zhang et al. 2017) proposed a 

GAN named Semi-Coupled GAN (SCGAN). The authors proposed a semi-supervised framework 

to identify CMR images with incomplete Left Ventricle (LV), aiming to ease the process of 
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manual, identification process which is a relatively time-consuming task. The two-stage 

framework consists of the SCGAN which, generates samples used to extract high-level features 

from the CMR images. The features are then used to detect missing basal and apical slices.  

Realistic brain MR image generation using a DCGAN (Radford et al. 2015), was also proposed in 

the work of (Bermudez et al. 2018). (Beers et al. 2018) used PGGANs (Karras et al. 2017)  to 

synthesize high resolution medical images. The authors evaluated the performance in two domains; 

fundus photographs exhibiting vascular pathology associated with retinopathy of prematurity 

(ROP), and multi-modal MR images of glioma. A PGGAN was also used in the work of (Bowles 

et al. 2018), yet the generated images were used a data augmentation technique, in an effort to 

mitigate the medical image data scarcity problem. Similarly, recently, (Kaur et al. 2021) used a 

DCGAN to generate brain MR images that were later used to increase the training data and thus 

the classification performance of a CNN architecture. 

Image-to-image translation has also been used to map binary retinal vessel trees, reconstructed 

with an adversarial autoencoder (Makhzani et al. 2015), to photorealistic RGB retina fundi images 

(Costa et al. 2018). In (Guibas et al. 2017), a two-stage pipeline is presented, in which a GAN 

produces the segmentation masks for retina fundi images, while a second GAN learns the 

transformation between the binary masks and the fully-colored images. In the work of (Shin et al. 

2018), a conditional GAN is presented, able generate colon polyp images to improve polyp 

detection performance. GANs have also been used for synthetic segmentation images of the lungs 

and heart in chest X-ray scans (Dai et al. 2017). The work of (C. Han et al. 2018) adopts the 

DCGAN and WGAN (Arjovsky et al. 2017) variations to create realistic brain MR images.  In 

(Frid-Adar et al. 2018), a DCGAN and an ACGAN (Odena et al. 2017) are trained to produce 

synthetic liver lesions, which are then used for data augmentation in order to improve the 

performance of a CNN trained on liver lesion classification. Recently, (Marzullo et al. 2021), used 

a Pix2Pix GAN(Isola et al. 2017) to perform image-domain translations in order to synthesize 

realistic laparoscopic images.   

While GANs have been used to increase the available samples in the training datasets as a method 

to increase the generalization performance of CNNs, to the best of our knowledge, no work has 

been done to investigate their generalization performance when the training dataset consists of 

only generated images. In this work we investigate the generalization capabilities of state-of-the-

art CNN (Diamantis et al. 2019) architecture when trained solely with generated WCE GI tract 

images on the problem  of inflammatory conditions detection in real images, the results of which 

are promising. 
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4.4.2 Proposed Methodology  

The proposed methodology is based on two components; the classifier and the data generator. The 

first component is a state-of-the-art lightweight CNN architecture, named LB-FCN light 

(Diamantis et al. 2019) which is discussed in detail in Section 5. The second component of our 

methodology uses a GAN, which performs non-stationary texture synthesis (Zhou et al. 2018). Its 

architecture is illustrated in (Figure 4.13). As input, it uses sample patches from the available 

images and artificially generates new images that follow the input textural pattern. Non-stationary 

texture synthesis was selected because the generated images mimic well, the non-stationary 

patterns that appear in GI tract images. More specifically (Zhou et al. 2018), generalizes the 

original GAN architecture (Goodfellow et al. 2014) by having a fully convolutional generator to 

learn common patterns from a k × k block, randomly sampled from the input image,  and produce 

a  2k × 2k image, instead of learning the mapping from a simple uniform distribution to the image 

space. The resulting image is perceptually similar to a target block of the same size, also cropped 

from the input image. The output of the generator, along with the real 2k × 2k image, are then 

provided as input to the discriminator which learns to recognize whether a 2k × 2k image is real 

or fake. Once trained, the generator can be applied to an image of arbitrary size, effectively 

synthesizing a new image. The GAN uses a linear combination of adversarial  loss Ladv 

(Goodfellow et al. 2014),  L1 loss (Janocha & Czarnecki 2017) and style loss Lstyle (Gatys et al. 

2015) to optimize the generator Eq. (4.6).  

 

Figure 4.13 Non-stationary texture synthesis (Zhou et al. 2018) GAN architecture. The generator receives 

an input of k×k×3 size and expands it to 2k×2k ×3. The discriminator receives an input 2k×2k×3 and tries 

to identify the validity of it. 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑎𝑑𝑣 + 𝜆1 + 𝐿1 + 𝜆2 + 𝐿2 (4.6) 
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where λ1 are λ2 are constants with  values 100 and 1 respectively,  as recommended by the authors 

(Zhou et al. 2018). The output is primarily affected by the adversarial loss, while L1 and style loss 

help reduce artifacts. 

4.4.3 Evaluation Methodology and Results  

The performance of the proposed methodology was evaluated in the context of WCE image 

inflammatory condition detection in the small bowel of the GI tract. For this reason we used the 

publicly available KID (Koulaouzidis et al. 2017) Database 2. In total, the database contains 1778 

normal images and 574 images containing various abnormalities such as, polypoids, vascular and 

inflammatory conditions. The size and variations of images that appear in the database, made it an 

appropriate choice to serve as a baseline for our experiments. For the purpose of our experiment, 

we selected a subset of the KID dataset which contains normal images from the small bowel (728 

images) of the GI tract along with images that contain inflammatory lesions (227 images). 

In order to diversify the output from a single input, during testing 6 random image patches are 

selected from the original input, which are then used as the input for the generator. Output from 

the trained generator is illustrated in (Figures 4.15, 4.16). For our experiments, we trained the 

adversarial expansion GAN on 728 non-pathologic images from the small bowel and 227 images 

with GI tract inflammatory conditions. We then randomly chose one of the 6 alternative results to 

be used in the training of LB-FCN light. 

To investigate the effect of training with fake images, artificially generated by the GAN, we 

evaluated the classification performance of LB-FCN light architecture in two experiments. In the 

first experiment we trained the model with fake images, and evaluated its performance on real 

images, while on the second experiment, we trained and tested the model with real images. To 

limit the bias, in both experiments stratified 10-fold cross-validation technique was employed. In 

this procedure the dataset is split into 10 disjoined subsets from which 9 are used for training and 

1 is kept for testing. The process is then repeated 10 times, each time keeping a different subset 

for testing. To assure that both of our experiments are comparable, the same image subsets were 

used upon testing.  To assess and visualize the results of our experiments we used the Receiver 

Operating Characteristic (ROC) curves, which represent the tradeoff between True Positive (TPR) 

and False Positive (FPR) Rates under different decision thresholds. To measure the classification 

performance of both of our experiments, we choose to use the Area Under ROC (AUC) (Fawcett 

2006), as it is insensitive to the class imbalance that was present to our dataset. 
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Figure 4.14 Sample images from the KID Database. The first row contains healthy small bowel images. 

The second row contains images of various inflammatory conditions. 

     

     

Figure 4.15 Sample generated small bowel images using the non- stationary texture synthesis GAN (Zhou 

et al. 2018). 

     

     

Figure 4.16 Sample generated images with inflammatory conditions using the non-stationary texture 

synthesis GAN (Zhou et al. 2018). 
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The LB-FCN light architecture was implemented using the popular open source Python library 

Keras (Gulli & Pal 2017) with TensorFlow (Abadi et al. 2016) framework backend. The training 

was conducted using two high-end GPUs (GTX-1080 TI) with each one having  3584 CUDA 

(Nickolls et al. 2008) cores. To prevent the network from overfitting, the early stopping technique 

was employed. The training of (Zhou et al. 2018) GAN, was also conducted using the same 

equipment and implemented using the open source python framework  Pytorch (Paszke et al. 

2019). 

 

  
(a) (b) 

 

Figure 4. 17 ROC obtained by 10-fold Cross-Validation on LB-FCN light architecture trained using (a) 

artificially generated images and (b) real images. 

Training the LB-FCN light architecture using generated images and evaluating on real images 

resulted into a 79.1% AUC (Figure 4.17a) while training and testing using real images resulted 

into 90.9% AUC (Figure 4.17b). It is clear that the classification performance of the LB-FCN in 

the first case is lower. However, by comparing it to the results of other recent approaches on the 

same dataset, it can be considered comparable. In (Vasilakakis et al. 2016) the BoW-based 

methodology using features extracted from the CIE-Lab color space, resulted in a performance 

ranging from 77% to 81%. Therefore, the results obtained can be considered as promising, since 

the proposed approach is only a first attempt to tackle the presented problem. 

We believe that the lower AUC of LB-FCN light trained using generated images can be attributed 

to the lower quality of the generated images with inflammatory conditions (Figure 4.16). More 

specifically we notice that although the non-stationary texture synthesis GAN (Zhou et al. 2018) 

was able to capture the small bowel texture and produce high quality real-like images (Figure 
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4.15), when inflammatory conditions were present, the generated images were of lower quality. 

From a medical viewpoint, the main problem affecting their quality is the clarity of pathology; 

although the fake images with normal content are generally satisfactory, the fake images including 

pathologies look like taken from a procedure with either unclear/semiopaque luminal content or at 

least non-translucent. We believe that this is due to the nature of the inflammatory conditions, as 

in some cases, the conditions are so severe that can harm the uniformity of the overall small bowel 

texture and thus affecting the overall performance of the generator. 
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CHAPTER 5 

MACHINE LEARNING FOR COMPUTER ASSISTED 

NAVIGATION  

This chapter presents the novel contributions of this study towards the use of ML in the context of 

assistive navigation systems. In the first section it illustrates the Lightweight Look-Behind Fully 

Convolutional Neural etwork (LB-FCN light) which is an extension of the LB-FCN architecture, 

designed to work in applications that require high inference speeds running on low-end devices, 

such as mobile devices and embedded systems. Applications of the LB-FCN light architecture 

include staircase detection in outdoor environments (Diamantis et al. 2019) and obstacle 

recognition in the context of obstacle avoidance for the navigation of visually impaired individuals 

(Dimas et al. 2020). The second section of this chapter includes a novel digital twin framework for 

the simulation and evaluation of assistive navigation systems, and its application in the context of 

a camera-based wearable system for visually impaired individuals in an outdoor cultural space.  

5.1 Introduction 

Today, visual impairment (of any form) affects approximately 16% of the world’s population 

(WHO 2018). The affected individuals deal with various daily challenges, struggling to fit in the 

modern society. To address this problem, researchers in the fields of medicine, smart electronics 

and computer science are joining forces to create assistive systems for visually impaired 

individuals. To date, several designs and components of wearable, camera-enabled systems have 

been proposed. Recently, we presented a novel solution to this problem that can evolve into an 

everyday visual aid for people with limited sight or total blindness (Iakovidis et al. 2020). This 

dissertation has contributed in that investigation, and the solution is now integrated into a first 

prototype of a wearable smart-glasses system for the visually impaired. The system is equipped 

with RGB-D cameras, it incorporates efficient deep learning and uncertainty-aware decision-

making algorithms, interprets the video scenes, translates them into speech, and describes them to 

the user through audio.    

One of the key components of any assistive navigation system is the detection and recognition of 

objects and scenes. Due to the advancements of CNNs in the field of CV (Section 2), most modern 

navigation assistive systems include a deep learning based intelligent module.  Αn integrated 

CNN-based framework for object detection was presented in (Sermanet et al. 2013). That 

framework combined a CNN architecture for feature extraction based on AlexNet (Krizhevsky et 

al. 2012), named OverFeat, and a regression network to detect multiple bounding boxes around 

objects in images. A Region-based CNN architecture for object detection was presented in 

(Girshick et al. 2014) with the name R-CNN. The methodology uses selective search (Uijlings et 
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al. 2013) to extract 2.000 class-agnostic region proposals from each image, which are then resized 

and feed-forwarded into a pre-trained CNN model to extract features. The extracted features are 

then used to train a linear Support Vector Machine (SVM) classifier (Theodoridis & Koutroumbas 

2009) which classifies the extracted feature representations. Although R-CNN outperformed the 

OverFeat approach (Sermanet et al. 2013) for object detection, it requires more computational 

resources. To reduce its computational complexity, the Fast R-CNN (Girshick 2015) was 

proposed, in which feature maps are extracted from the entire input image. From these feature 

maps, region proposals are extracted and reshaped into a fixed size, by a technique called Region 

of Interest (RoI) pooling, so that they can be processed by a fully connected layer. The Softmax 

function is used to predict the class of the RoI vector while in parallel it computes the offset values 

for the bounding box of the object.  

Another architecture, called Spatial Pyramid Pooling Network (SPPNet) (He et al. 2015b) aimed 

to cope with the problem of the fixed-size input required by the CNNs which may impact the 

detection accuracy of the overall model. This was done by implementing a novel spatial pyramid 

pooling which enabled the network to generate fixed-length image representation regardless of the 

image size. Compared with R-CNN, SPPNet relies on the same principles, yet it does not have to 

process 2.000 region proposals per image, as R-CNN does. Εach bounding box is classified by an 

SVM and bounding box regressor. A Faster R-CNN (Ren et al. 2015) achieved real-time object 

detection capabilities, by removing the selective search used by the previous methodologies.  

A methodology for object detection that is fundamentally different from the previous ones was 

presented in (Redmon et al. 2016). It is called You Only Look Once (YOLO) and it relies solely 

on a single forward pass of an input image. The image is subdivided using a fixed-size grid, and 

entered to a CNN that predicts bounding boxes and class probabilities for each box. A saliency-

inspired neural network model for object detection was proposed in (Erhan et al. 2014). It predicts 

a set of class-agnostic bounding boxes along with a single score for each box, corresponding to its 

likelihood of containing any object of interest. In (W. Liu et al. 2016) an object detector with name 

Single Shot multibox Detector (SSD) which achieved good balance between computational 

performance and prediction accuracy. A region-based, Fully Convolutional Network (FCN: a CNN 

without fully-connected layers) was proposed in (Dai et al. 2016). It relies on the generation of 

position-sensitive score maps to cope with the dilemma between translation-invariance in image 

classification and translation-variance in object detection. In (Lin et al. 2017) an object detector 

for multi-scale object detection was proposed. That detector relies on a feature extractor, named 

Feature Pyramid Network (FPN), which was designed to improve detection accuracy and speed. 

In (Redmon & Farhadi 2017) YOLO9000, an extension of the YOLO approach (Redmon et al. 

2016), was introduced for real-time object detection, considering 9000 object categories. Newer 

incremental improvements of the original YOLO architecture include YOLO-v3 (Redmon & 

Farhadi 2018) and recently YOLO-v4 (Bochkovskiy et al. 2020).  A single-shot object detector, 
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named Deconvolutional SSD (DSSD), was presented in (Fu et al. 2017). It extended SSD by 

replacing the original VGGNet with a Residual Network (ResNet) (He et al. 2016) for feature 

extraction. RetinaNet, proposed in (T.-Y. Lin et al. 2018), is a single, unified network composed 

of a backbone network and two task-specific sub-networks. The backbone network is implemented 

by a ResNet architecture, used for feature extraction. The first sub-network, performs the 

classification and the second one, performs bounding box regression. A multi-scale extension of 

the DSSD network, called Multi-Scale Deconvolutional SSD (MDSSD), has been proposed in 

(Cui 2018), specifically for small object detection. 

The backbone network of single shot detectors heavily affects their computational and 

classification performance. This is expected, since both the detection and classification steps are 

based on the quality of the features being extracted from the backbone network. Towards this 

direction, we presented LB-FCN light (Diamantis et al. 2019) which aims to create features of 

various scales, using multi-scale feature extraction and, reduce the computational complexity, 

speeding up detector performance, using depthwise separable convolutions. In Section 5.2 the 

network architecture is presented along with use-cases, benchmarking the network over state-of-

the-art.  

5.2 The Lightweight Look-Behind Fully Convolutional Neural Network 

Architecture 

The Lightweight Look-Behind Fully Convolutional neural network (LB-FCN light) (Diamantis et 

al. 2019) was originally proposed in the context of staircase detection in outdoor environments. 

The aim of the architecture is to reduce the computational complexity that is typically found in 

conventional deep CNNs, such as (Simonyan & Zisserman 2014), which suffer from high 

computational complexity mainly due to their large number of free parameters. As a result, high-

end computational equipment such as Graphical Processing Units (GPUs) is needed for both 

training and testing time, limiting their use in indoor workstations.  

Studies such as (Iandola et al. 2016),(Howard et al. 2017; Sandler et al. 2018; Howard et al. 2019) 

focus their interest in computational complexity reduction of CNN architectures, aiming to enable 

their usage in mobile and embedded devices. In this context, the tradeoff between computational 

efficiency and detection performance has been investigated by (Sandler et al. 2018), resulting in a 

state-of-the-art architecture called MobileNet-v2, extending the original MobileNet-v1 proposed 

in (Howard et al. 2017). More specifically this architecture keeps the basic principles of depthwise 

convolutions for the original design enhances it by adding linear bottleneck layers and shortcut 

connections between each bottleneck. Linear bottleneck layers were utilized as experimental 

evidence that the non-linear ones were damaging the extracted features between the bottlenecks. 

As a result of these changes the architecture contains 30% less parameters than MobileNet-v1 
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while providing a higher accuracy. Recently, we presented LB-FCN (Diamantis et al. 2019) 

architecture in the context of abnormality detection in medical images. The architecture featured 

multi-scale feature extraction modules composed of conventional convolutional layers, to better 

represent the different scales of abnormalities. In addition, look-behind connections were used, 

which connect the input features to the output of each multi-scale feature extraction module. This 

was required, so that the high-level features will propagate throughout the network, allowing the 

network to converge faster and increasing the overall detection accuracy. 

The core of LB-FCN light architecture is inspired by LB-FCN (Diamantis et al. 2019) and includes 

modification to enable efficient computations on mobile and embedded devices, while providing 

a sufficient staircase detection accuracy. More specifically, LB-FCN light extends the original LB-

FCN design by replacing the multi-scale conventional convolutional layers with depthwise 

convolutional layers (Chollet 2017). Key features of this architecture include the utilization of 

multi-scale depthwise separable convolution layers (Chollet 2017) and residual learning (He et al. 

2016) connections which help to maintain relatively low number of free parameters, without 

sacrificing the detection accuracy. 

5.2.2 The Network Architecture 

The design of the LB-FCN light architecture follows the FCN (Springenberg et al. 2014) network 

design, where only convolutional layers are utilized throughout the network. By replacing the fully 

connected layers, usually found in the classification layer of conventional CNN architectures such 

as (Krizhevsky et al. 2012; Simonyan & Zisserman 2014), a significant reduction of the number 

free parameters of the architecture can be achieved. Inspired by the Mobilenet architecture, 

proposed in (Howard et al. 2017), depthwise separable convolutions (Chollet 2017) are 

implemented throughout the network to further reduce the complexity of the overall architecture. 

While in conventional convolution the filters are connected on the entire depth of the input 

channels, in depthwise separable convolution the filter is applied separately on each channel. To 

connect the separate filters, the layers are followed by a 1×1 conventional convolution. 

The main component of LB-FCN light is the Multi-Scale Depthwise Convolution module (Figure 

5.1) which follows the principles established in (Diamantis et al. 2019). This module is capable of 

extracting features from parallel depthwise separable convolution layers, each one with a different 

filter size. More specifically the layers extract features at three different scales: 3×3, 5×5 and 7×7 

respectively. The feature maps from each layer are then concatenated forming a multi-scale feature 

representation of the input which is then followed by 1×1 convolution layer. The architecture 

features residual connections, which connect the input volume of the multi-scale module using 

adding operator aggregation with the output of it. This is done in order to preserve the higher-level 

features extracted from the previous multi-scale blocks throughout the network. 
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Following the FCN (Springenberg et al. 2014) approach which shows that conventional max 

pooling operation can be replaced with a convolutional based, we utilized convolutional pooling 

with filter size 3×3 and stride 2. This introduces another level of non-linearity to the network while 

keeping the overall architecture logically unified. After each pooling operation the number of 

extracted filters of each convolutional layer is doubled. In total four multi-scale depthwise 

convolution modules are utilized in the network with three residual connections as illustrated in 

(Figure 5.2). For the staircase detection, a softmax layer of two neurons is used as the output of 

the network. 

 

Figure 5.1 The main building block of LB-FCN light architecture. 

Throughout the architecture all convolution layers use ReLU activations followed by output batch 

normalization. The normalization is used so that the output of the convolution layers are centered 

on zero mean with the unit standard deviation. It has been empirically confirmed that output 

normalization can contribute to a faster network converge while reducing overfitting phenomenon. 

As a result of the above no Dropout layer (Srivastava et al. 2014) was used. 
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Figure 5.2 The complete LB-FCN light architecture composed of four multi-scale blocks and three 

residual connections. 

While we maintained the multi-scale feature extraction characteristics established in the original 

LB-FCN (Diamantis et al. 2019) architecture, the change in original filter size selection block 

increased the overall accuracy of the network. Furthermore, we used conventional ReLU activation 

functions throughout the network instead of Parametric ReLU that were used in original LB- FCN 

architecture, which resulted in lower computational complexity without any significant detection 

performance overhead. The overall improvements made in original LB-FCN architecture, resulted 

in a significant increase in computational efficiency. As a result, LB-FCN light architecture is 

capable to efficiently run on mobile and embedded devices. 

5.2.3 Staircase Detection 

Staircase detection in natural images has several applications in the context of robotics and 

navigation of visually impaired individuals. Previous works are mainly based on handcrafted 

feature extraction and supervised learning using fully annotated images. In this work we address 

the problem of staircase detection in weakly labeled natural images, using a novel Fully 

Convolutional neural Network (FCN), named LB-FCN light.  

Staircases can be found almost everywhere in different colors, shapes and sizes in both indoor and 

outdoor environments. Staircases are useful in everyday life; however, they can be seen also as an 

obstacle for the navigation of humans with disabilities, as well as the navigation of artificial, 

robotic, agents. The detection of a staircase can be even more difficult in unknown environments, 

especially for the visually impaired, where there is no previous knowledge about the surroundings, 

and they can become hazardous. Therefore, staircase detection can be considered as an important 

component of any system aiming to provide navigational assistance in either indoor or outdoor 

environments. In controlled, indoor environments, markers, such as augmented reality markers can 

be used to provide high success rate of staircase detection (Yu et al. 2018). The detection problem 

usually becomes much harder in outdoor, uncontrolled environments, where different types of 
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staircases of various sizes can be found under various illumination conditions, and can be observed 

from different viewpoints. 

In this chapter we address image-based staircase detection as a pattern recognition problem in the 

context of embedded and mobile devices. The main challenge is to be able to provide sufficient 

detection accuracy by utilizing the limited computational resources of such devices, especially in 

outdoor environments with low latency and limited network accessibility. To address this 

challenge, we propose a novel lightweight Fully Convolutional neural Network (FCN) architecture 

as a modification of our recent Look-Behind FCN (LB-FCN) architecture (Diamantis et al. 2019). 

This novel architecture, named LB-FCN light, has significantly fewer free parameters and requires 

fewer Floating-Point Operations (FLOPs) compared to the previous LB-FCN and state-of-the-art 

architectures for mobile devices. This was achieved by implementing depthwise separable 

convolutions throughout the convolutional layers of the network. Also, it enables multi-scale 

feature extraction and residual learning, making it suitable for multi-scale staircase detection in 

both indoor and outdoor environments. To evaluate the performance of LB-FCN light we created 

a weakly labeled image dataset, with staircases found in natural images collected from publicly 

available datasets, i.e., a dataset with semantically labeled images as containing or not containing 

staircases. 

5.2.3.1 Related Work 

Staircase detection has been an active research topic in CV and robotics, with an increasing interest 

nowadays as we are going through the era of ubiquitous computing and pervasive intelligence. 

One of the first relevant works (Se & Brady 2000) was based on Gabor filters and concurrent line 

grouping for distant and close staircase detection respectively. In the context of autonomous 

vehicle navigation, an outdoor descending staircase detection algorithm was presented by (Hesch 

et al. 2010), based on texture energy, optical flow, and scene geometry features. In the context of 

computer aided navigation of visually impaired in outdoor environments using a wearable stereo 

camera, (Lee et al. 2012) utilized Haar features and Adaboost learning providing real-time 

detection performance. A similar approach that utilizes Haar-like features and an improved 

staircase specific Viola-Jones (Viola et al. 2001) detector was proposed in (Maohai et al. 2014). 

Frequency domain features obtained by ultrasonic sensors were investigated in (Bouhamed et al. 

2013), to detect and recognize floor and staircases in electronic white cane. A wearable RGB-D 

camera mounted on the chest of a visually impaired individual, was used in (Pérez-Yus et al. 2014), 

where an indoor environment for staircase detection and modeling was proposed. Their approach 

is capable of providing information for the presence and location along with the number of steps 

of staircases. Recently an indoor staircase detection framework was proposed in (Ciobanu et al. 

2017), utilizing depth images, capable of running on mobile devices. The approach is based on the 
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detection and clustering of image patches that have the surface vectors pointing to the top direction. 

In addition, information from the Inertial Measurement Unit (IMU) sensor of the device is used to 

calibrate the surface vectors with the camera orientation. Most of the current staircase detection 

approaches are supervised, requiring fully annotated training images from controlled 

environments, i.e., images indicating the location of the staircases within the images. Furthermore, 

to the best of our knowledge the staircase detection has not been previously investigated to a 

sufficiently generic extent. 

Although deep learning and more specifically CNNs (LeCun et al. 1989) have demonstrated 

impressive performance in CV applications, especially in natural image classification (Krizhevsky 

et al. 2012), staircase detection approaches have not been previously reported. 

5.2.3.2 The Dataset and Evaluation Methodology 

To evaluate the performance of the proposed architecture in the context of natural image staircase 

detection we have considered two publicly available datasets. The first dataset, named LM+Sun 

(Tighe & Lazebnik 2010), is a fully annotated natural image dataset obtained from the combination 

of LabelMe Database (Russell et al. 2008) and SUN dataset (Xiao et al. 2010). The dataset consists 

of 45,676 images from 232 categories, found in indoor and outdoor environment under various 

conditions and sizes. For the purpose of our experiment, we used a subset of LM+Sun dataset 

which includes natural images found in urban and street areas. While the full LM+Sun dataset 

contains 314 staircase labeled images, most of them are found in indoor environments. Images 

containing staircases were also found in the urban and street subsets of this dataset, e.g., staircases 

of buildings that can be directly recognized by a human observer, considering: a) staircases that 

have at least two steps, and b) staircases covering >15% of the image (in staircases of smaller 

coverage the steps are not distinguishable; therefore, they cannot be perceived directly as such, 

without contextual information). To minimize the possibility of a human error in the annotation 

process, two reviewers separately reviewed and annotated the dataset, and found in total 245 

images that include outdoor staircases. To further increase the number of outdoor staircase images, 

we have created a second dataset named “StairFlickr” which extends LM+Sun staircases with a 

total of 524 outdoor staircase images. StairFlickr dataset images were obtained from the popular 

photo management and sharing web application Flickr (Flickr Inc. 2019). 

For the purposes of our research, we omitted the fully annotated metadata provided about the 

staircases in the original LM+Sun dataset. This was performed as our architecture aims for 

staircase detection on solely weakly-labeled natural images. In total the described dataset includes 

5,539 images from which 1,083 images contain staircases2. Indicative images from this dataset are 

 
2 http://enorasi.dib.uth.gr/database/index.html. 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13



131 
 

illustrated in (Figure 5.3). As it can be observed, the dataset includes various types of staircases 

found in various positions, sizes, capture from different viewpoints. 

   

 (a)  

   

 (b)  

   

(c) 

Figure 5.3 Top: staircases found in StairFlickr dataset. Middle: staircases found in LM+Sun dataset. 

Bottom: non-staircases images from LM+Sun dataset. 

To evaluate the detection performance of the proposed architecture we followed the stratified 10-

fold cross-validation (CV) procedure. The dataset was partitioned into 10 stratified subsets from 

which 9 were used for training and 1 for testing. This was repeated 10 times, each time selecting 

a different subset, until all folds have been tested. For each evaluation we calculated the accuracy 

(ACC), specificity (SPC), and sensitivity (TPR) of the trained model.   

To better evaluate the classification performance of the trained network, we utilized the Area 

Under ROC (AUC) measure. AUC measure is a reliable classification performance measure that 

is insensitive to imbalanced class distributions (Fawcett 2006). This was chosen as the total number 

of images containing staircases was significantly fewer than the rest of the rest natural images in 

the dataset. 

5.2.3.3 Results 

We trained the LB-FCN light architecture using the images from both Flickr and LM+Sun datasets. 

As the images differ from each other in both size and aspect ratio we rescaled the dataset to the 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13



132 
 

standardized input size of the network which is 224×224 pixels. To maintain the original aspect 

ratio of the images, they were padded with zeros to match the network’s input dimensions. It is 

worth mentioning that no further pre-processing step was applied to the images. As the proposed 

architecture focuses on weakly labeled images, the detailed annotations for the staircases provided 

by LM+Sun (Tighe & Lazebnik 2010) dataset were ignored. We utilized only the semantic 

annotations of the images which indicate the presence or absence of staircases. 

For the training of the network we utilized the Adam (Kingma & Ba 2014) optimizer with initial 

learning rate alpha = 0.001 and first and second moment estimates exponential decay rate beta1 = 

0.9 and beta2 = 0.999 respectively. For the implementation of the architecture we utilized the 

Python Keras (Chollet & others 2015) library and the Tensorflow (Abadi et al. 2016) tensor graph 

framework. The network was trained with mini-batch size of 32 samples on NVIDIA TITAN X 

GPU, equipped with 3584 CUDA (Sanders & Kandrot 2010) cores, 12 GB of RAM and base clock 

speed of  1417 MHz. On each fold we utilized the early-stopping technique where a small subset 

of the training fold was utilized as a validation dataset. 

To evaluate the effectiveness in both detection accuracy and computational complexity reduction 

of LB-FCN light architecture we used the MobileNet-v2 (Sandler et al. 2018) as a state-of-the-art 

architecture for comparison. The results obtained by the two architectures are illustrated in Table 

5.1. 

While the detection performance is slightly higher in case on LB-FCN light, the noticeable 

difference between the two architectures is the computational complexity requirements. Table 5.2 

includes a comparison between the architectures in terms of both the number of trainable free 

parameters and the total number of required FLOPs. The improvements made on the original LB-

FCN design, resulted in a significant reduction of the overall number of FLOPs, from 1.3×107 

down to 0.6×106, and reduction of the free parameters of the network, from 8.2×106 down to 

0.3×106 respectively. 

Table 5.1 Detection performance comparison, using 10-fold cross-validation, between state-of-the-art 

MobileNet-v2 (Sandler et al. 2018) and LB-FCN light (Diamantis et al. 2019) 

Architecture AUC (%) Accuracy (%) Specificity (%) Sensitivity (%) 

LB-FCN light  88.93 ± 1.86 91.89 ± 2.12 93.80 ± 2.61 84.05 ± 3.51 

MobileNet-v2  87.86 ± 2.11 89.99 ± 2.37 93.58 ± 2.45 83.78 ± 3.22 
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Table 5.2 Computation complexity comparison between state-of-the- MobileNet-v2 (Sandler et al. 2018) 

and LB-FCN light (Diamantis et al. 2019) 

Architecture FLOPs (×106) Trainable Free Parameters (×106) 

LB-FCN light  0.6 0.3 

MobileNet-v2  4.7 2.2 

Table 5.3 Confusion matrix of LB-FCN light (Diamantis et al. 2019) 

 Staircase actual Non-Staircases actual  

Staircases predicted  910 276 

Non-Staircases predicted  173 4180 

 

5.2.4 Obstacle Recognition in the Context of Uncertainty-Aware Visual 

Perception System for Outdoor Navigation of the Visually Challenged 

In the context of Visual Challenged People (VCP) navigation, a novel Visual Perception System 

(VPS) (Dimas et al. 2020) was proposed for outdoor navigation that can be evolved into an 

everyday visual aid for VCP. The methodology incorporates deep learning, object recognition 

models, along with an obstacle detection methodology based on human eye fixation prediction 

using GANs (Pan et al. 2017) and fuzzy-based risk assessment. The system is integrated in 

wearable visual perception system and incorporates system architecture for remote task execution 

for the computationally expensive components of the system.  

5.2.4.1 The System Architecture 

As the stereoscopic depth aware RGB camera, namely the Intel® RealSenseTM D435 was chosen, 

since it provides all the functionalities needed by the proposed system in a single unit. This 

component is connected via a USB cable to a BCU of the wearable system. The barebone computer 

unit (BCU) used in the system was a Raspberry Pi Zero. The BCU orchestrates the communication 

between the user and the external services that handle the computationally expensive deep learning 

requirements of the system on a remote cloud computing infrastructure. Another role of the BCU 

is to handle the linguistic interpretation of the detected objects in the scenery and communicate 

with the Bluetooth component of the system, which handles the playback operation. For the 

communication of the BCU component with the cloud computing component, we choose to use a 

low-end mobile phone that connects to the internet using 4G or Wi-Fi when available, effectively 

acting as a hotspot device.  
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For the communication between the BCU and the cloud computing component of the system, we 

choose to use the Hyper Text Transfer Protocol version 2.0 (HTTP/2), which provides a simple 

communication protocol, since the messages between the peers are fully encrypted using the 

SSL/TLS v1.3 protocol. As the entry point of the cloud computing component, we use a load 

balancer HTTP microservice, which implements a REpresentational State Transfer (RESTful) 

Application Programming Interface (API) that handles the requests coming from the BCU, placing 

them in a message queue for processing. The queue follows the Advanced Message Queuing 

Protocol (AMQP), which enables a platform agnostic message distribution. A set of message 

consumers, equipped with Graphical Processing Units (GPUs), are processing the messages that 

are placed in the queue and, based on the result, communicate back to the MPUs using the HTTP 

protocol. This architecture enables the system to be extensible both in terms of infrastructure, since 

new works can be added on demand, and in terms of functionality, depending on future needs of 

the platform.  

The VPS component communication is shown in (Figure 5.4). More specifically, the BCU 

component of the system, receives RGB-D images from the stereoscopic camera at a real-time 

interval. Each image is then analyzed using fuzzy logic by the object detection component of the 

system on the BCU itself, performing risk assessment. In parallel, the BCU communicates with 

the cloud computing component by sending a binary representation of the image to the load 

balancer, using the VPS RESTful API. A worker then receives the message placed in the queue 

from the load balancer and performs the object detection task, which involves the computation of 

the image saliency map from the received images using a GAN. When an object is detected and 

its boundaries determined, the worker performs the object recognition task using a CNN, the result 

of which is a class label for each detected object in the image. The worker, using HTTP, informs 

the MPU about the presence and location of the object in the image along with the detected labels. 

As a last step, the MPU linguistically translates the object position along with the detected labels 

provided from the proposed methodology, using the build-in text to speech synthesizer of the BCU. 

In detail, as an initialization step of the user-system interaction, the system detects and recognizes 

immediate obstacles found in the scenery, which are communicated to the user. Upon the next 

iteration, in case of absence of new high-risk obstacles, new notifications are not provided to the 

user. In the event of detection of a new high-risk obstacle or change with respect to the risk factor 

of an already detected obstacle, the user is provided with a “stop” notification from the speech 

module. Additionally, the user is provided with the updated obstacle statuses, i.e. spatial location, 

category and distance. The text-to-speech result is communicated via Bluetooth with the speaker 

attached to the ear of the user for playback. It is important to mention here that, in case of repeated 

object detections, the BCU component avoids the playback of the same detected object based on 

the change of the scenery, which enables the system to prevent unnecessary playbacks. 
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Furthermore, the functionalities of pause, start and stop of the system are accessible to the user 

through button click gestures available on the Bluetooth headset of the BCU.    

 

 

Figure 5.4 VPS architecture overview illustrating the components of the system along with their 

interconnectivity. 

5.2.4.2 The Object Recognition module 

Although object detection has a critical role in the safety assurance of VCP, the VPS aims to 

provide an effective object and scene recognition module, which enables the user to make 

decisions based on the visual context of the environment. More specifically, object recognition 

provides the capability to the user to identify what type of object has been detected by the object 

detection module. Object recognition can be considered as a more complex module compared to 

object detection, since it requires an intelligent system that can incorporate the additional free 

parameters required to distinguish between the different detected object.  

CNNs have also been used for object and scene recognition tasks in the context of assisting VCP. 

In the work of (Poggi & Mattoccia 2016), a mobility aid solution was proposed that uses a LeNet 

architecture for object categorization in 8 classes. An architecture named “KrNet” was proposed 

in (S. Lin et al. 2018), which relies on a CNN architecture to provide real-time road barrier 

recognition in the context of navigational assistance of VCP. A terrain awareness framework was 

proposed in (K. Yang et al. 2018) that uses CNN architectures, such as SegNet (Vijay 

Badrinarayanan et al. 2017), to provide semantic image segmentation. In the proposed VSP the 

LB-FCN light (Diamantis et al. 2019) was used to classify the bounding boxes of the object 

detection component, as it offers high classification performance with relatively low 

computational requirements compared to other mobile oriented architectures, such as (Sandler et 

al. 2018).  
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The original LB-FCN light architecture was trained on the binary classification problem of 

staircase detection in outdoor environments. In order to train the network on obstacles that can be 

found by the VPS, a new dataset named “Flickr Obstacle Recognition” dataset was created (Figure 

5.5) with images found on the popular social media platform “Flickr” (Flickr Inc. 2019). The 

dataset contains 1646 RGB images of various sizes that contain common obstacles which can be 

found in the open space. More specifically, the images are weakly annotated based on their content 

in 5 obstacle categories; “benches” (427 images), “columns” (229 images), “crowd” (265 images), 

“stones” (224 images), and “trees” (501 images). It is worth mentioning that the dataset is 

considered relatively challenging, since the images were obtained by different modalities, under 

various lighting conditions and different landscapes.  

     

     
(a) (b) (c) (d) (e) 

Figure 5.5 Sample images from the five obstacle categories, (a) “benches”, (b) “columns”, (c) “crowd”, (d) 

“stones”, and (e) “trees” from the “Flickr Obstacle Recognition” dataset. 

For the implementation of the LB-FCN light architecture, the popular Keras (Chollet & others 

2015) python library with the Tensorflow (Abadi et al. 2016) was used as the backend tensor graph 

framework. To train the network, the images were downscaled to a size of 224×224 pixels and 

zero-padded where needed to maintain the original aspect ratio. No further pre-processing was 

applied to the images. For the network training, the Adam (Kingma & Ba 2014) optimizer was 

used with an initial learning rate of alpha = 0.001 and first and second moment estimates 

exponential decay as rate beta1 = 0.9 and beta2 = 0.999, respectively. The network was trained 

using a high-end NVIDIA 1080TI GPU equipped with 3584 CUDA cores (Sanders & Kandrot 

2010), 11 GB of GDDR5X RAM, and base clock speed of 1480 MHz.  

To evaluate the recognition performance of the trained model, the testing images were composed 

by the detected objects found by the object detection component of the system. More specifically, 

212 obstacles of various sizes were detected. The pre-processing of the validation images was 

similar to that described above for the training set. 

For comparison, the state-of-the-art mobile-oriented architecture named “MobileNet-v2” (Sandler 

et al. 2018) was trained and tested using the same training and testing data. The comparative 
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results, presented in Table 3, demonstrate that the LB-FCN light architecture is able to achieve 

higher recognition performance, while requiring lower computational complexity, compared to the 

MobileNet-v2 architecture (Table 5.4). 

Table 5.4 Comparative classification performance results between the LB-FCN light (Diamantis et al. 

2019) architecture and the MobileNet-v2  (Sandler et al. 2018) architecture. 

Metrics LB-FCN light MobileNet-v2 

Accuracy 93.8% 91.4% 

Sensitivity 92.4% 90.5% 

Specificity 91.3% 91.1% 

 

5.3 Digital Twin for Simulation and Evaluation of Assistive Navigation 

Systems  

The assistive navigation of visually impaired individuals requires the development of different 

algorithms for obstacle detection, recognition, and avoidance, as well as path planning. The 

assessment and optimization of such algorithms in the real world is a painstaking process that 

requires repetitive measurements under stable conditions, which is usually difficult to achieve, as 

well as costly. To this end, digital twin environments can be used to replicate relevant real-life 

situations, enabling the evaluation and optimization of algorithms through adjustable and cost-

effective simulations. This section presents a digital twin framework for the simulation and 

evaluation of assistive navigation systems, and its application in the context of a camera-based 

wearable system for visually impaired individuals in an outdoor cultural space. The system 

incorporates an obstacle avoidance algorithm based on fuzzy logic. The utility and the 

effectiveness of this framework are demonstrated with an indicative simulation study. 

Currently, the rapid development of computer visualization tools and techniques has enabled some 

advanced visual applications based on virtual reality (VR), which have been used in a wide variety 

of scientific and industrial fields. VR is a contemporary visualization tool through which realistic 

virtual environments can be produced to help researchers simplify their workflow. Mainstream VR 

technologies used in engineering fields, such as architecture or civil engineering, can provide 

virtual environments with high rendering quality that resemble closely the real environment. More 

advanced VR tools enable the simulation of human actions or real conditions. Contrary to 

augmented reality, VR is a completely simulated environment, which does not link with the real 

world, and it provides an interactive computer-generated environment that enables users to 

perform several tasks. VR has been successfully used in flight and driving simulators, robot 

simulators, training in medicine, and production line simulations. Many VR platforms are available 
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nowadays, which are either commercial or open source, and are commonly used to simulate and 

optimize the navigation of robots or avatars. 

Several research groups have been working on systems and devices that are used to assist 

individuals with different kinds of disabilities, such as visually impaired (VI) individuals (Dimas 

et al. 2020). VR simulations can be employed to assess the performance of such systems, 

facilitating their optimization. One of the main aspects related with the assisted navigation of VI 

individuals is obstacle avoidance. VR simulations can be used to evaluate, in a highly-adjustable 

and cost-effective environment, different methodologies that can help VI individuals avoid the 

collision with obstacles. Over the years, several studies with respect to obstacle avoidance have 

been proposed. Although these systems are effective, when it comes to detecting and avoiding 

obstacles, they are typically based on methodologies that have been designed for robotic systems 

(Mohanan & Salgoankar 2018). While in theory such systems can be directly applied to human 

guidance, they are usually uncomfortable or alien to the individual, rendering them unusable in a 

day-to-day basis since they fail to address human specific requirements (Ntakolia, Dimas, et al. 

2020). 

Considering the state-of-the-art developments and to deal with the issue of assistive navigation 

testing, in this chapter, a novel simulation framework, i.e., a “Digital Twin” (DT), is proposed. 

The proposed DT combines a simulation environment capable of converting real-world 

environments into a 3D simulation with a general-purpose obstacle avoidance framework, which 

enables rapid and reliable prototyping and testing of navigation pipelines. The proposed 

framework is characterized by its generality since all the components of both the simulation and 

the obstacle avoidance framework can be changed, facilitating the testing of new algorithms. 

Furthermore, the implementation of the DT framework was conducted using the Python 

programming language, which is commonly used by researchers. The source code of the 

framework and the 3D assets used in the simulations have been released as open source. 

5.3.1 State-of-the-Art Simulation Environments  

Virtual environments implementing the DT concept for navigation have been proposed mainly in 

the context of robotics, whereas fewer have been proposed in the context of assistive systems for 

people with disabilities. In both contexts obstacle avoidance comprises an integral component of 

the respective navigation systems.  

5.3.1.1 Robot Navigation  

There are several available commercial or open-source VR simulation platforms, including 

Gazebo, Unity, USARSim, V-REP, Choreonoid, Open-HRP, AI2THOR, VirtualHome, Webots, 
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and SIGVerse (Inamura & Mizuchi 2020; Inamura & Mizuchi 2017). These platforms are 

commonly used to simulate and optimize the navigation of robots or avatars. For example, (S. 

Zhang et al. 2019) used a simulated environment in Webots to evaluate an algorithm for on-line 

terrain complexity evaluation according to the touchdown times of swing feet in order to make a 

quadruped robot obtain the terrain information without using any machine vision system. (Li et al. 

2019) proposed a VR environment in Unity to improve the navigation of a mecanum wheel mobile 

robot. (Y.-J. Han et al. 2018) proposed a humanoid robot navigation algorithm consisting of an 

image processing and optimization algorithm, which realizes navigation with less computational 

time than conventional navigation algorithms using map building and path planning processes. 

They used a VR environment to assess if their algorithm could cope with an environment that 

changes in real‐time. In another study (Pang et al. 2019), analyzed the characteristics of swarm 

robotic exploration and introduced an improved random walk method, where each robot adjusts 

its step size adaptively to decrease the number of repeated searches by estimating the density of 

robots in a virtual environment. In (Inamura & Mizuchi 2020; Inamura & Mizuchi 2017) combined 

cloud computing and an immersive VR system to perform and measure cognitive and social 

human-robot interaction in a VR environment. In (Hungerford et al. 2016) proposed an algorithm 

that allows the coordination of robots in order to fully cover inaccessible portions of Voronoi cells 

with complete, non-overlapping coverage. The performance of their algorithm was quantified in 

the Webots simulator using e-puck robots in different environments with obstacles with different 

characteristics. 

For indoor robot navigation, (Guldenring et al. 2020) developed frameworks build on the 

separation between global and local planners and presented a system to train neural networks for 

such a local planner component, explicitly accounting for humans navigating the space. More 

specifically, deep reinforcement learning (DRL)-agents were trained in randomized virtual 2D 

environments with simulated human interaction. In another research, (Fraichard & Levesy 2020) 

investigated to what extent the results obtained in a crowd simulation domain could be used to 

control a mobile robot navigating among people. Their results revealed that all the investigated 

techniques entailed safety problems, i.e., they would cause collisions in the real world. Finally, 

(Asiain & Godoy 2020) reviewed navigation approaches for multi-robot systems in VR 

environments. 

5.3.1.2 Assistive Systems  

Several studies have been focused on the development of systems and devices that can be used to 

assist individuals with different types of disabilities, such as VI individuals (Dimas et al. 2020). 

The performance of such systems and devices can be assessed and optimized through VR 

simulations. For instance, (Kreimeier & Götzelmann 2019) presented a user study where 

individuals with visual impairments explored a virtual environment by walking in a VR treadmill 

and reported the first results from their feasibility study investigating this walk-in-place 
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interaction. In another study, (Moldoveanu et al. 2017) focused on the challenges faced by VI 

individuals in order to become familiar with the functionalities of electronical devices. Their study 

demonstrated the importance of training VI individuals for an advanced sensory substitution 

device. A series of 3D virtual scenes were developed using the advantages of VR in order to ease 

the training process for the device. In Unity (Tao et al. 2017) developed a validation framework of 

an indoor navigation system for blind and VI users as a step toward the development of cost-

effective indoor way-finding solutions for VI users who require detailed landmark-based 

navigation instructions that can help them arrive at the chosen destination. 

In a different study, (Zhao et al. 2018) created Canetroller, which is a haptic cane controller that 

simulates white cane interactions, enabling VI individuals to navigate a virtual environment by 

transferring their cane skills into the virtual world. Indoor and outdoor VR scenes were designed 

to assess the effectiveness of their controller. VI individuals typically have difficulties in 

identifying people in crowded environments, and the difficulties may differ depending on the 

origin of the visual impairment. To examine the potential differences in visual search performance, 

(Bennett et al. 2018) developed a first-person perspective VR environment integrated with eye-

tracking, designed to simulate the dynamic movement of humans in a hallway. The participants 

were tasked with locating a specific target individual walking among a crowd of people moving in 

various directions in the hallway. To assess the effect of task difficulty, factors of crowd density 

and presence of object disorder within the hallway were altered. In general, VI individuals perceive 

their surroundings differently than those with healthy vision and it is difficult to realize how they 

perceive their surroundings. To this end, (Stock et al. 2018) introduced a VR platform capable of 

simulating the effects of common visual impairments, through which a realistic VR representation 

of actual visual fields obtained from a medical perimeter can be created. From a similar point of 

view, (McIntosh et al. 2020) investigated whether the experience of an impairment can be usefully 

simulated for empathetic design, which is of particular importance for the comprehension of 

proposed designs during the early planning and design phases, without costly and time-consuming 

use of full participatory processes. They concluded that there is significant potential for the use of 

VR as an approach to simulate the experiences of certain spaces by VI individuals, enabling 

empathetic design. 

5.3.1.3 Obstacle Avoidance  

Together with obstacle detection and recognition, obstacle avoidance is a significant factor 

regarding the assisted navigation of VI individuals. Through VR, real environments can be 

simulated for the assessment and optimization of different algorithms that can assist VI individuals 

avoid collisions with obstacles. For example, (Zapf et al. 2016) used the CRYENGINE 

development engine (v3.5.6, Crytek, Frankfurt, Germany) to design a virtual pedestrian scenario. 

In particular, they employed simulated prosthetic vision to evaluate the prospective efficacy of 
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peripheral retinal prostheses for guiding orientation and mobility in the absence of residual vision 

in comparison to an implant for the central visual field. CRYENGINE modifications included 

tracking of head movement and orientation through an integrated gyroscope on the head-mounted 

display, acquiring angular data and tallying of collisions. In another study, (Katz et al. 2012) 

developed NAVIG to increase the autonomy of VI individuals through a virtual augmented reality 

system, which assists in route selection and guidance for complex routes through integrating a 

geographic information system with different classes of objects. While its precision rate is high, it 

requires an internet connection in real-time. The concept of a virtual environment that allows 

experiencing unknown locations by real walking while remaining in a controlled environment was 

introduced in (Kunz et al. 2018). Since the complexity of this virtual environment is controllable, 

it can be adjusted from abstract training scenarios to real-life situations, such as train stations or 

airports. 

The available literature with respect to obstacle avoidance is primarily focused on the navigation 

of autonomous systems, such as robots (Xu et al. 2017; Wyrkabkiewicz et al. 2020) and UAVs 

(Iacono & Sgorbissa 2018; Wang et al. 2020) in known (Pratama et al. 2016; Shi et al. 2010) or 

unknown environments (Chai et al. 2017; Kumar et al. 2017). These studies have mainly relied on 

multiple sensors to map the surrounding environment, detect obstacles, and find and plan routes 

to avoid them, using common and well-tested methods, such as BUG-based algorithms (Ng & 

Bräunl 2007) and SLAM (Saeedi et al. 2016). 

Obstacle avoidance has also been an essential component of systems that aim to assist individuals 

with vision and kinetic disabilities (Dakopoulos & Bourbakis 2009; Manjari et al. 2020; Tapu et 

al. 2018). However, these systems are usually based on approaches that have been designed for 

robotic systems (Mohanan & Salgoankar 2018), which makes them inadequate to meet specific 

human-based requirements (Ntakolia, Dimas, et al. 2020). For instance, such systems usually 

require fine control over the movements of the subject, and sometimes require directional and 

speed changes to be applied in a very short time span, which are unnatural to humans. Trying to 

bridge the gap between robotics and human guidance systems, in the case of VI individuals,  

(Weiss et al. 2020) proposed an interesting approach, which is based on reinforcement learning to 

create navigation agents that mimic the real guidance dogs to which VI individuals are already 

familiar with, and promising results were reported. Deep learning-based object detectors are 

commonly used in obstacle avoidance applications. We recently proposed an uncertainty-aware 

obstacle detection approach (Dimas et al. 2020) (Section 5.2.4). A smartphone-based outdoor 

obstacle avoidance method using a Single Shot Detector (SSD)  (W. Liu et al. 2016) was proposed 

in (Q. Chen et al. 2019). The authors used the lightweight MobileNetV2 (Sandler et al. 2018) CNN 

feature extractor as the backbone of the SSD, which was fine-tuned to detect typical road obstacles, 

such as cars, motorcycles, and pedestrians. Similarly, (Vaishnav et al. 2021) proposed a wearable 

device in a form of a hat. The device is based on a portable Raspberry PI Zero W platform which 
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is attached to the hat and performs object detection and recognition using the You Only Look Once 

(YOLO) SSD detector (Redmon et al. 2016). The advantage of the system is its ability to perform 

detection and recognition tasks both online and offline. This is important especially in outdoor 

environments where the network availability can be a problem. While these systems can detect 

objects and obstacles at high framerates, they typically rely on voice commands to inform the user 

about the presence and the type of the obstacle along with its location with respect to the input 

sensors. This can be confusing since the user may have to perform multiple direction changes until 

the obstacle disappears from their field of view. The validation of obstacle avoidance algorithms 

and the comparison of their performance are crucial requirements for human-centric assistive 

systems. In theory, real-world experiments would be the preferred choice. In practice, it is 

relatively hard to maintain an unbiased environment, since the environment in which the 

algorithms need to be tested must remain unchanged, along with the participants with whom the 

experiments are conducted. In addition, as the environment remains the same, after a few 

experiments, the participants will develop memory of their surroundings, introducing positive bias 

to the results. 

5.3.2 The Digital Twin Navigation Framework  

For the development of the DT assistive navigation framework in this study, the open-source robot 

simulator Webots was chosen. Webots is a commercial robot simulator developed by Cyberbotics 

Ltd., which is used in more than 800 universities and research centers worldwide. It supports a 

wide range of hardware, including GPU rendering acceleration. In addition, it uses the open 

dynamics engine (ODE) for the detection of collisions and the dynamic simulation of rigid bodies. 

The ODE library allows the physics of the objects to be simulated. Moreover, in Webots, a large 

collection of sensors is incorporated, including distance sensors, light sensors, cameras, LiDARs, 

GPS, accelerometer, and force-sensors (Rosique et al. 2019). The proposed DT simulation 

framework can be divided into two logical components; the Graphical Simulator and the Obstacle 

Avoidance Framework. 

5.3.2.1 The Graphical Simulator  

The graphical simulation framework of the DT aims to create a real-life environment based on 

data obtained from the real world. More specifically, the simulator is capable of transferring 

existing marked and unmarked terrains found in maps into the Webots environment, creating a 

realistic environment on which navigation algorithms can be tested, assessed, and optimized. The 

components of the DT simulation framework are illustrated in (Figure 5.6). 
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Figure 5.6 The graphical simulation framework of the Digital Twin. 

The framework provides the capability to import pathways and existing terrains from both Open 

Street Maps (OSM) and Google Earth, using different sets of importers. In particular, the 

framework makes use of the OpenStreetMap importer module of Webots to import data from Open 

Street Maps. Although this module was designed for automobile simulations, it can be used to 

import arbitrary mapped pathways from any location of the world. Various configuration options 

are available, including the ability to include roads, lakes, parking spots, trees, etc., effectively 

enabling fine control of the resulting simulation. Unfortunately, pathways from unmapped or semi-

mapped terrains, such as the Historical Triangle of Athens, cannot be imported in the module. To 

enter such pathways in the proposed simulation framework, the user can parse Keyhole Markup 

Language (KML) files, which can be obtained from Google Earth. KML files are in XML format, 

which is a standard developed by Google to express geographic annotations of two- and three-

dimensional maps. KML files can be easily obtained from Google Earth by drawing paths and 

adding annotations to the map. An example pathway is illustrated in (Figure 5.7) 

The DT simulation framework using a parser is capable of parsing both OSM and KML file 

formats, translating them into an internal DT simulation file format. This ensures the extensibility 

of the framework, since, if needed, more file formats can be added in the future. In some cases, 
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such as when arbitrary random paths need to be generated for path planning algorithm testing, 

OSM and KML files are impractical.  For this reason, the DT parser is capable of parsing files in 

DOT file format, which is a widely used text file format for arbitrary graph representations. 

 

Figure 5.7 Example path from the Historical Triangle of Athens, outlined in Google Earth. 

To setup the simulation, the framework parses the DT simulation file and, using the World 

Generator (WG) component of the framework, creates dynamically a simulation environment. The 

WG component controls various parameters of the simulation, including the GPS coordinate 

system translation, the scale of the simulated area, and the assets and obstacles that can be included. 

In real-life environments obstacles are not always present. Although obstacles can be added as 

markers in the KML or OSM files, this is can be a rather tedious and time-consuming process, 

since the size, location, and obstacle type need to be manually defined. For this reason, the WG 

component enables the user to dynamically insert obstacles and landmarks in the simulated 

environment, and control the scale, location, orientation, and type of the objects. This is 

particularly useful in scenarios where obstacle avoidance algorithms are tested, as it creates an 

unbiased simulation environment. The WG component of the framework is also capable of 

including moving obstacles, such as crowds, simulating their movement through a specified 

algorithm. A variety of crowd movement simulation algorithms have been proposed over the years 

(Curtis et al. 2016; Kim et al. 2016). For this reason, the WG component uses an abstraction that 

enables algorithm-independent crowd movement simulation. This is achieved by giving access to 

both the simulated surrounding and the movement controls of each simulated person individually. 

To simulate crowd movement, the open-source CROMOSIM Python library is integrated, which 

includes implementations of a variety of moving simulation algorithms found in (Maury & Faure 

2018). 
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Although Webots includes a variety of built-in graphics, such as trees, benches, roads, stairs, rocks, 

and houses, in some cases custom objects need to be included in the simulation. For example, to 

replicate an archaeological site, such as the Historical Triangle of Athens, objects including ancient 

columns and temples are needed. To achieve this, the WG component is capable of automatically 

including in the simulated environment objects from external sources that are in WebBot (WBT) 

file format. Such objects can be designed in computer-aided design (CAD) software or obtained 

directly from existing CAD libraries and converted in WBT format.   

Since designing 3D objects is a relative complex and time-consuming task, an environment in 

which such assets can be freely shared is highly desirable. For this reason, the presented DT 

framework includes a publicly available asset repository3 in which peers can use and share custom 

3D models. The asset repository of the framework aims to include both existing simulation files 

in the Webots “World” file format (WBT) and 3D models in VRML format. An important 

contribution of the asset repository is that it enables arbitrary simulations to be shared among peers. 

This allows fast prototyping, but most importantly, testing of different algorithms under the exact 

same conditions. The WD component of the simulation framework integrates directly with the 

report asset repository, enabling the framework to fetch and use the files, without requiring manual 

action. As files can be large, local asset caching and versioning are also included. In some cases, 

the public sharing of simulation files or custom 3D objects might be not feasible due to license and 

copyright. To this end, the WD component can use files located in the local hard drive or a private 

remote repository located in intranet, as long as the files are available through the HTTP protocol. 

5.3.2.2 The Obstacle Avoidance Framework  

The obstacle avoidance framework is an important component of the DT simulation. Although not 

simulation-specific, since it can be used in real-world scenarios, it can provide, in an abstract and 

unified way, all the components required for the problem of obstacle avoidance. More specifically, 

the framework comprises seven individual components which are illustrated in (Figure 5.8) 

The first component of the framework is the Image Streamer (IS). The component provides a 

stream of images to the core framework as an object named ImageStreamItem. Along with the 

image, the object can incorporate metadata, such as a depth map, when the camera allows it, and 

the GPS location of the image. The framework provides multiple implementations of the IS 

component, including capturing images from a web camera, i.e., Intel RealSense D435i, capturing 

images from an RTMP stream and an H264 encoded video. Finally, for the purpose of integration 

 
3 https://digital-twin.innoisys.com 
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in the DT simulation environment, an implementation of the IS that uses the RGB and depth 

cameras of Webots is also included. 

 

Figure 5.8 The DT obstacle avoidance framework. 

The Object Detector (OD) component of the framework aims to abstract the implementation details 

of the object detection and recognition algorithm. The component takes as an input one or more 

ImageStreamItems from the IS component and performs the detection and recognition processes. 

When one or more objects are detected in the input, the component creates objects that include the 

bounding box of the object within the image, the label of the recognized object, and the distance 

and location of the object with respect to the camera. Implementations of the OD component 

include the YOLOv4  object detector (Bochkovskiy et al. 2020), which is a lightweight deep 

learning-based object detection and recognition network and the object detection and recognition 

framework proposed by (Dimas et al. 2020). The latter is a complex two-stage object detection 

framework specifically designed to be used to assist visually challenged individuals to navigate in 

unknown environments. Although the OD component can be used directly in the Webots 

simulation environment, the performance of the object detection and recognition component 

cannot be validated directly on 3D models. To this end, the DT framework can associate 3D models 

with real images, which are automatically presented to the component as soon as the 3D model 

appears on the camera. A limitation of such a use-case is that the depth map component of the 

ImageStreamItem would not be associated with the corresponding RGB image. 

The third component of the framework is the Object Tracking (OT) component, which receives as 

input the detected objects from the OD component and tracks them. The DT framework includes 

an implementation of tracking-by-detection algorithm proposed by (Bochinski et al. 2017) and an 

integration with the DT Webots simulation environment, in which the objects have an 

automatically generated unique identifier. It is worth mentioning that this component can be 

enabled or disabled dynamically, depending on the use-case scenario.   
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Path planning is an essential part in the obstacle avoidance framework, since its role is to estimate 

if a detected object is an obstacle that must be avoided and to find the optimal alternative path. For 

this reason, the path planning component of the framework is divided into two sub-modules; the 

path planning algorithm and the risk assessment module. When an object is detected, the path 

planning component initially identifies the collision risk of the individual and, based on that, the 

path planning algorithm handles the navigation. 

When a new path is selected from the path planning component, it needs to be translated into the 

local coordinate system of the framework. To abstract this process, the Path to Coordinates (PtC) 

component has been introduced into the framework. The abstraction here is required since this 

component translates the new path into coordinates of the DT Webots simulation framework, and 

it is used as the output integration point of the obstacle avoidance framework of the DT system. 

The last component of the framework is the Path to Speech (PtS) component, which acts as the 

integration point between users and the avoidance system output. It aims to abstract the algorithm 

used to translate the path into a form that humans can understand and interact with the surrounding 

environment. 

Finally, the framework is able to capture all the details of the obstacle avoidance process into an 

output video along with the details in a log format that can be examined after the simulation has 

been completed. This enables the DT user to run parallel simulations and test different algorithms 

and environments, the results and behavior of which can be examined subsequently. 

5.3.3 Simulation Studies 

Vision-based navigation and accessibility for VI individuals in indoor places of cultural interest, 

such as museums, has been extensively investigated (Alkhafaji et al. 2016; Shah & Ghazali 2018) 

(Alkhafaji et al. 2016; Shah and Ghazali 2018). On the other hand, the accessibility of outdoor 

sites of cultural interest has been less explored despite the significance of such a venture. In the 

ENORASI project (Iakovidis et al. 2020; Dimas et al. 2020), a pre-commercial digital system has 

been investigated to assist the VI individuals navigate safely in outdoor environments of cultural 

interest, e.g., archeological sites. While providing information concerning the sights in a 

descriptive way, the system supports the user with audible guidance and instructions for obstacle 

avoidance. The system comprises mainly a stereoscopic CV system for depth assessment through 

visual sensors incorporated in a wearable device, emotion-aware speech interaction through a 

microphone and earphones, and communication with a customized GPS-enabled mobile 

processing unit (MPU), such as a smart-phone or a tablet. The core advantage of the system is its 

robust performance based solely on visual sensors, without augmentation from additional sensors, 

such as ultrasound, LiDAR, and IMU sensors. 
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More specifically, the proposed system is based on image, video, and audio processing and 

analysis methods, which include CV algorithms for automatic object recognition and estimation 

of their distance from the user, as well as decision-making algorithms. The processing and analysis 

of the acquired data is conducted in the MPU and in a remote server through a computational cloud 

environment. The tasks performed in the MPU include obstacle detection, which is the most 

critical task associated with user safety, critical speech-based communication with the user, and 

object or scene recognition. On the other hand, more complex computational processes, such as 

decision making with respect to route planning and obstacle avoidance, are performed on remote 

servers accessible through the cloud. Assessing such methodologies in real word scenarios, is a 

challenging task, since it requires repetitive on-site measurements under changing conditions (e.g., 

weather, lighting, crowds) which can be non-deterministic, as well as costly, since it may involve 

a considerable human effort and hardware adaptations. 

To evaluate the proposed DT simulation framework, a series of simulations of vision-based 

navigation of VI individuals in the outdoor environment of the Historical Triangle of Athens were 

conducted. This geolocation was selected since it includes a variety of complex pathways that are 

not fully mapped in neither Google Earth nor Open Street Maps, making the navigation of VI 

individuals challenging.   

5.3.3.1 The Simulation Environment   

To demonstrate the simulation capabilities of the proposed DT framework an unmapped area of the 

Historical Triangle of Athens was chosen. The Triangle is composed of multiple routes and small pathways 

of historical significance. The selected pathway is illustrated in (Figure 5.7), in which the yellow lines 

correspond to the route that was manually drawn in the Google Earth web application. Subsequently, the 

selected route was downloaded as a KML file, which was then imported using the DT simulation framework 

in the Webots platform. An obstacle-free route reconstructed using the route obtained from the KML file is 

illustrated in (Figure 5.9)  

In unmapped regions, such as the one presented in (Figure 5.10a), obstacles are not included in 

the map. In such cases, random obstacles of any form can be added to the simulation. In (Figure 

5.10b), an example route with randomly set obstacles is presented. Although the position, the size, 

and the type of the obstacles included are randomly selected, a universal random seed can be used, 

which guarantees the same simulation properties in multiple experiments. Another important 

characteristic of the DT simulation is the scale in which the environment will be created. For 

example, in (Figure 5.10), it can be noticed that the selected scale of the simulated route is much 

smaller than the actual one obtained from Google Earth. When simulating large-scale 

environments, this can help to reduce the runtime resources required by the simulation and help 

the researcher to identify problems of the testing algorithm faster.   
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Figure 5.9 A DT route reconstruction of a route obtained from Google Earth, as illustrated in (Figure 5.7) 

  

(a) (b) 

Figure 5.10 (a) Simple route selected from Google Earth; (b) Reconstructed route in smaller scale with 

randomly positioned obstacles along the route. 

5.3.3.2 The Obstacle Avoidance Algorithm 

To demonstrate the capabilities of the obstacle avoidance framework, an experiment using the 

route illustrated in (Figure 5.10) was conducted, to assess a simple local path planning algorithm 
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for VI human navigation. The Webots environment provides an RGB camera along with a depth 

camera that can be used as an input for the image streamer of the obstacle avoidance framework. 

Using the depth information obtained from the image streamer along with the name of the object, 

which is provided as meta-data information along with the image stream item, an object detector 

was created. Using the track-by-detection approach (Bochinski et al. 2017), the object tracker of 

the framework tracks the obstacles throughout the simulation. This is done to avoid multiple path 

changes from the local path planning algorithm, since the same obstacle is visible in multiple 

frames. Subsequently, the detected obstacles are passed to the path planning algorithm for risk 

assessment. The path planning algorithm navigates the individual considering the following 

criteria: 

• the distance from the obstacle;  

• the location of the obstacle with respect to the individual;  

• the angle required to by-pass the obstacle 

More specifically, the risk assessment algorithm uses the bounding boxes of the detected obstacles 

to calculate the distance from the individual. The distance is measured by averaging the depth map 

of the bounding box. In some cases, noisy depth points might exist in the depth map, which can 

affect the measurement performance. To compensate for this, before the distance calculation, the 

standard deviation of the depth map is computed, and outliers are removed. Thus, the distance 𝑠𝑜 

from an obstacle 𝑜 enclosed by a bounding box 𝐵 of size 𝑤 × ℎ, where  𝑤 is the width and ℎ the 

height of the bounding box, can be expressed as: 

𝑠𝑜 =

(∑ ∑ {
𝜇   , 𝜇 −  𝜎 > 𝐵𝑖𝑗 > 𝜇 + 𝜎

𝐵𝑖,𝑗 , 𝜇 −  𝜎 ≤ 𝐵𝑖𝑗 ≤ 𝜇 + 𝜎
ℎ
𝑗=1  𝑤

𝑖=1 )

(𝑤 ∙ ℎ)
 

(5.1) 

where 𝜇 is the mean depth of the elements of 𝐵 and 𝜎 is the standard deviation. It has been found 

that, when the outliers are considered, the average distance error is reduced from ±0.7 m to ±0.2 

m. 

To calculate the angle under which the individual can avoid the obstacle, the algorithm determines 

the angles from the left and right sides of the bounding box with respect to the individual. Since 

the horizontal and vertical field of view (FoV) of the camera is known for the simulated camera 

(Intel RealSense D435i), i.e., 86 and 57, respectively, the horizontal angle ℎ𝜑 and vertical angle 

𝑣𝜑  of a pixel 𝑝 can be calculated as follows:  

ℎ𝜑
𝑝 = (

(𝑝𝑥−
𝑊

2
)

(
𝑊

2
)
)(

𝐻𝐹𝑜𝑉

2
)  (5.2) 
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𝑣𝜑
𝑝 = (

(𝑝𝑦 −
𝐻
2)

(
𝐻
2)

)(
𝑉𝐹𝑜𝑉
2
) 

(5.3) 

where 𝐼 denotes an image with width 𝑊 and height 𝐻, and  𝑝𝑥 and 𝑝𝑦 are the positions of the pixel 

𝑝 in the image. 

Using the outermost pixel of each side of the bounding box, the algorithm calculates the angle of 

the left and right side of the obstacle according to Eq. (5.2), as we are only interested in the 

horizontal angle. Similarly, the location of the obstacle with respect to the target GPS coordinates 

is determined by calculating the location of the obstacle, which is calculated by translating the 

coordinates of the individual using the angle and distance of the previous step. This process is 

repeated for all detected obstacles that are within a specific distance 𝑐. This threshold is a hyper-

parameter of the algorithm and is selected based on the application needs. In the case of VI 

individuals, according to (Ntakolia, Dimas, et al. 2020), this is defined as any object within the 

distance of 2.5 m. 

In contrast to robots, humans usually interpret the surrounding environment in verbal, vague terms; 

that is, instead of expressing turns using degrees, they use verbal terms, such as “small”, “large”, 

or “medium” turn. Furthermore, in unknown, outdoor environments, obstacle detection and depth 

estimation contain uncertainty, which is introduced by sources such as greylevel ambiguity, noise 

introduced by the sensor, and vagueness of image features (Chacón M 2006). For these reasons, 

the path planning algorithm uses fuzzy logic to determine the optimal path for navigating the 

individual around the obstacle. This process involves the fuzzification of the crisp values, the 

number of obstacles  𝑛 , the distance 𝑠 from the obstacle, and the turn angle 𝑎 of the individual 

into the fuzzy domain as �̃�𝑣, �̃�𝑣 and �̃�𝑣, respectively. Given each crisp value, the uncertainty can 

be modeled by fuzzy sets: 

�̃�𝑣 = {〈𝑥, 𝜇𝑛𝑣 ,
(𝑥)〉 | 𝑥 ∈ 𝑈𝑛}, 𝑣 = {𝑓𝑒𝑤,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒,𝑚𝑎𝑛𝑦} 

(5.4) 

�̃�𝑣 = {〈𝑥, 𝜇𝑠𝑣,(𝑥)〉 | 𝑥 ∈ 𝑈𝑠}, 𝑣 = {𝑠ℎ𝑜𝑟𝑡,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝑙𝑜𝑛𝑔} (5.5) 

�̃�𝑣 = {〈𝑥, 𝜇𝑎𝑣,(𝑥)〉 | 𝑥 ∈ 𝑈𝑎}, 𝑣 = {𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑎𝑟𝑔𝑒} (5.6) 

The representing overlapping value intervals can be expressed linguistically, e.g., “small”, 

“medium”, or “large” in the case of the angle, “short”, “moderate”, or “long” in the case of the 

distance, and “few”, “moderate”, or “many” in the case of the number of obstacles. 𝑈𝑛, 𝑈𝑠, and 𝑈𝑎 

represent the universes of discourse for the fuzzy sets defined for the number of obstacles Eq. 

(5.4), the distance Eq. (5.5), and the angle Eq. (5.6), respectively. The quality of a path 𝑝 is also  
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Number of obstacles Turn angle (degrees) 

  
Distance from the obstacle (meters) Path quality 

Figure 5. 11 Visual representation of the membership functions of the four fuzzy sets. 

represented by fuzzy sets, which can be linguistically expressed as “very low”, “low”, “medium”, 

“high”, “very high” in the fuzzy domain 𝑝𝑣. 

𝑝𝑣 = {〈𝑥, 𝜇𝑝𝑣 ,(𝑥)
〉 | 𝑥 ∈ 𝑈𝑝}, 𝑣 = {𝑣𝑒𝑟𝑦 𝑙𝑜𝑤, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ, 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ} 

(5.7) 

where 𝑈𝑝 is the respective universe.  The membership functions, illustrated in (Figure 5.11), were 

selected based on the possible values of each variable, such that 𝑈𝑛 = [0,5], 𝑈𝑠 = [0,5], 𝑈𝑎 =

[0,45], and 𝑈𝑝 = [0,1]. The quality of the path is a real number ranging from very low (0) to very 

high (1). The turn angle (𝑈𝑎) and distance from the obstacle (𝑈𝑝) are measured in degrees and 

meters, respectively. To determine the best path for avoiding the obstacle, for each side, the 

algorithm translates the crisp numerical values of the number of obstacles, distance of the 

individual, and turn angle that the individual must perform, into the fuzzy domain.   
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Table 5.5 Fuzzy rules of local path planning algorithm  

Rules Obstacles  Turn  Distance  Quality path 

Rule 1 Few AND Small AND Short → Very high 

Rule 2 Few AND Small AND Moderate → High 

Rule 3 Few AND Medium AND Short → High 

Rule 4 Moderate AND Small AND Short → High 

Role 5 Moderate AND Small AND Moderate → High 

Rule 6 Few AND Small AND Long → Medium 

Rule 7 Few AND Medium AND Moderate → Medium 

Role 8 Moderate AND Small AND Long → Medium 

Rule 9 Moderate AND Medium AND Short → Medium 

Rule 10 Moderate AND Medium AND Moderate → Medium 

Rule 11 Many AND Small AND Short → Medium 

Rule 12 Many AND Small AND Moderate → Medium 

Rule 13 Many AND Small AND Long → Medium 

Rule 14 Many AND Medium AND Short → Medium 

Rule 15 Few AND Medium AND Long → Low 

Rule 17 Few AND Large AND Moderate → Low 

Rule 18 Few AND Large AND Long → Low 

Rule 19 Moderate AND Medium AND Long → Low 

Rule 20 Moderate AND Large AND Short → Low 

Rule 21 Many AND Medium AND Moderate → Low 

Rule 22 Many AND Large AND Short → Low 

Rule 23 Moderate AND Large AND Moderate → Very Low 

Rule 24 Moderate AND Large AND Long → Very Low 

Rule 25 Many AND Medium AND Long → Very Low 

Rule 26 Many AND Large AND Moderate → Very Low 

Rule 27 Many AND Large AND Long → Very Low 

The quality of the path is determined using the fuzzy rules defined in (Table 5.5) and the Mamdani 

inference methodology (Gopal 2019). The quality of each path 𝑝 is then defuzzyfied into a crisp 

value by calculating the Center of Gravity (CoG) as follows: 

𝑝𝑡𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
∑ 𝑝𝑡𝑖 ∙ 𝜇𝑝𝑣(𝑝𝑡𝑖)
𝑘
𝑖=1

∑ (𝜇𝑝𝑣(𝑝𝑡𝑖))
𝑘
𝑖=1

  
(5.8) 
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where 𝑡 represents the side (left or right), 𝑘 the number of subareas obtained by the rule inference, 

and 𝑝𝑡𝑖 the value of 𝑝𝑡 in the center of the area 𝑖. 

Subsequently, the path with the highest quality is selected. To navigate the individual to the new 

location, (5.1) and (5.2) are calculated again, taking into consideration the minimum distance 𝑐 at 

which the individual can safely bypass the obstacle. Then, the new location is translated into verbal 

instructions, informing the individual about the angle and the distance. When the obstacle 

disappears from the image, the algorithm re-calculates the path according to the coordinates of the 

individual and the target location, informing the individual about the angle change. This process 

is repeated until target location is reached. 

5.3.3.3 Indicative Results 

Simulations were performed for different unmapped pathways from the environment of the 

Historical Triangle of Athens, with a random number obstacles introduced per simulation. The 

obstacle avoidance algorithm described in the previous paragraph was tested. In each simulation 

the obstacles were detected by the DT of the ENORASI system and based on the obstacle 

avoidance algorithm, the agent representing the VI individual was navigated. In every simulation, 

the agent was safely navigated to its target destination, verifying that the obstacle avoidance 

algorithm is effective. A visualization of the trajectory followed by the agent in one of the 

simulated pathways of the Historical Triangle of Athens is illustrated in (Figure 5.12). The blue 

line indicates the trajectory that would have been followed if the pathway did not contain any 

obstacles, whereas the red line indicates the actual trajectory of the agent obtained after the obstacle 

avoidance simulation. This is a representative result, since similar results were obtained in all 

simulations. Therefore, the simulation results indicate that this algorithm can be used for the safe 

navigation of VI individuals. 

To integrate the path planning algorithm into the simulation, the generated path is translated into 

the coordinate system of the DT simulation. In parallel, the resulting path is converted to speech 

using the PtS component of the obstacle avoidance framework. The translation is handled by the 

Python pyttsx3 library (Natesh 2021), which is a cross platform text synthesis library. Although 

the simulation is executed in the Webots environment, it is important to be able to view the 

navigation from the individual’s perspective. For this reason, the obstacle avoidance framework 

records the entire 3D simulation, including the audio, as perceived by the individual, into an MP4 

file for further examination.  
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Figure 5.12 Visual representation of the trajectory followed by the VI individual using the proposed 

algorithm. The red and blue lines denote the trajectory followed with and without obstacles, respectively. 

5.3.3.4 Discussion 

The VR technology enables researchers to perform multiple experiments in environments that 

closely resemble the real world. The capability to simulate scenarios free of unpredictable factors, 

such as weather conditions, allows the re-producibility of experiments, which is difficult and 

sometimes impossible to be achieved in the real world. The proposed DT framework, which is 

based on the Webots simulation environment, includes a generalized approach for VR simulations 

in the context of computer-aided navigation, and aims to provide a general and extensible 

framework that enables the assessment of algorithms in a standardized and unbiased environment. 

The experiments conducted in this study demonstrated that the proposed DT can automatically 

generate VR environments based on real-world environments, such as the ones found in Google 

Earth and Open Street Maps. When the characteristics of the environment to be simulated are 

known, the DT framework can introduce 3D objects with a size that is proportional to the real 

ones, which is especially important for the evaluation of algorithms that take into consideration 

the spatial size of objects. Although a variety of 3D assets are available, their use in a simulation 
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environment is not always straightforward, mainly due to incompatibility with the platform or 

licensing issues. Since these assets are essential for the simulation of realistic environments, the 

above problem is addressed by the DT publicly-available asset repository, in which researchers 

can share their 3D models, thereby accelerating the process of performing realistic simulations 

using the DT framework. It should be mentioned that the significance and usefulness of such DT 

frameworks has been augmented during the COVID-19 pandemic, since outdoor measurements 

and algorithm verification studies were impossible to be conducted under the social distancing 

rules and the quarantine measures taken all over the world. 

The DT obstacle avoidance framework was developed due to the necessity of evaluating assistive 

navigation systems for VI individuals. It is composed of abstract interchangeable components that 

can be used in the context of computer vision-based navigation. Moreover, it can be used by 

researchers to evaluate different aspects of the navigation pipeline, including obstacle detection, 

recognition, tracking, and avoidance, in a simulated environment. To enable independent 

algorithm testing, all components of the pipeline provide simulated equivalents, which can be used 

in the DT simulation environment. The conducted experiments based on our obstacle avoidance 

framework illustrate how the DT can be used to develop and assess a simple local path planning 

algorithm in the context of VI human navigation. The algorithm was developed to address specific 

human requirements (Ntakolia et al. 2020), and to enable easy navigation around obstacles, 

without requiring frequent direction changes that are typically met in navigation methodologies 

made for robotic systems, such as BUG-based algorithms (Ng and Bräunl 2007). Using the DT 

framework, the algorithm was tested in multiple scenarios of unmapped regions of the Historical 

Triangle of Athens. The scenarios included the random placement of obstacles along the 

automatically generated pathways. A major advantage of the proposed DT is that the obstacle 

avoidance framework is independent, i.e., it can be integrated with the DT simulation environment 

and can be used without any significant modifications in real-world environments, enabling quick 

prototyping and testing. 
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CHAPTER 6 

ASML: Algorithm-Agnostic Architecture for Scalable Machine 

Learning  

ML applications are growing in an unprecedented scale. The development of easy-to-use machine-

learning application frameworks has enabled the development of advanced artificial intelligence 

(AI) applications with only a few lines of self-explanatory code. As a result, ML-based AI is 

becoming approachable by mainstream developers and small businesses. However, the 

deployment of ML algorithms for remote high throughput ML task execution, involving complex 

data-processing pipelines can still be challenging, especially with respect to production ML use 

cases. This chapter presents a novel system architecture (Diamantis & Iakovidis 2021) that enables 

Algorithm-agnostic, Scalable ML (ASML) task execution for high throughput applications. It aims 

to provide an answer to the research question of how to design and implement an abstraction 

framework, suitable for the deployment of end-to-end ML pipelines in a generic and standard way. 

The ASML architecture manages horizontal scaling, task scheduling, reporting, monitoring and 

execution of multi-client ML tasks using modular, extensible components that abstract the 

execution details of the underlying algorithms. Experiments in the context of obstacle detection 

and recognition, as well as in the context of abnormality detection in medical image streams, 

demonstrate its capacity for parallel, mission critical, task execution. 

6.1 Introduction  

Deep learning growth has triggered the appearance of frameworks for easy development of ML-

enabled applications. Many of these frameworks are supported by tech industry leaders, such as 

Google, Facebook and Microsoft, which usually provide deep learning Platforms as a Service 

(PaaS) (Beimborn et al. 2011) or Software as a Service (SaaS) (Waters 2005) on their Cloud 

Computing infrastructures, specialized in executing deep learning frameworks. For instance, 

Google, which supports the Tensorflow framework, provides Google Cloud. This is a general 

purpose cloud computing service, enabled by Tensor Processing Units (TPUs) (Jouppi et al. 2017), 

offering better performance for deep learning applications that use that framework. 

While pre-configured virtual machines and containerized ML solutions exist, they still require a 

technical understanding of the underlying platform; thus, they are not directly applicable to any 

production environment. For this reason, SaaS providers, such as Amazon and Google offer in 

their platforms pre-trained deep learning models for specific use cases, typically through a 

representational state transfer (RESTful) HTTP (Richardson & Ruby 2008) application 

programming interface (API). In most cases, it is also possible to deploy pre-trained models such 

as (V. Badrinarayanan et al. 2017) and (Gao et al. 2021), as long as they are implemented in a 
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supported framework. The flexibility of such services is limited, as while it is relatively easy to 

get started, it is difficult to efficiently incorporate ML models based on novel components, such 

as the fuzzy pooling layer proposed in (Diamantis & Iakovidis 2020), or complex ML-based data-

processing pipelines, such as pipelines that include image preprocessing, integration of multiple 

heterogeneous ML algorithms with bidirectional data communication. Such pipelines are 

frequently met in state-of-the-art pattern analysis applications spanning a variety of domains e.g., 

web content perception  (Tian et al. 2018), obstacle detection and navigation for robotics (Zhou et 

al. 2017) and assistive technologies (Dimas et al. 2020), realtime analysis of medical image 

sequences during brain surgery (Fabelo et al. 2016) and gastrointestinal (GI) endoscopy (Iakovidis 

et al. 2018). However, their deployment in a SaaS context, using current ML frameworks, is far 

from straightforward, especially when high-throughput capacity is required. Today, to deal with 

this shortcoming, the implementation of such pipelines usually requires from the client to handle 

the communication and monitor the status of the ML components and implement preprocessing. 

However, this is not always possible, e.g., in the case of wearable devices and other low-powered 

embedded systems. 

There has been work towards the development of system architectures and frameworks that aim 

to encapsulate and abstract the usage of complex business logic for different purposes in various 

domains. A framework for algorithm agnostic video analysis was proposed in (Iakovidis & 

Diamantis 2014). In (Wang et al. 2013) a system architecture and platform, called Public-oriented 

Health care Information Service Platform (PHISP) was presented for personalized healthcare 

services and support remote health care. A system architecture and a framework for discovering 

content from the web using a  RESTful architecture design was presented in (Fernández-Villamor 

et al. 2013). For managing big semantic data in real-time an architecture, called SOLID, was 

proposed in (Mart𝚤nez-Prieto et al. 2015). This architecture is characterized by its layered design 

which isolate the real-time and big data specific responsibilities. In the context of time-

complemented and event-driven control models, an architecture offering modularity and flexibility 

of automation software was presented in (Pang et al. 2014). That architecture unifies the two 

models, aiming to preserve the expressiveness of event-driven programming along with the 

determinism of time-driven logic. In the context of Enterprise Internet of Things (EIoT), a multi-

device, multi-task management and orchestration reference architecture was proposed in (Ahmad 

& Kim 2020). The architecture focuses the orchestration on the task-level focusing on the business 

process modeling of enterprise systems.  Similarly for task offloading in IoT applications, an 

architecture named “EdgeABC” was proposed in (Xiao et al. 2020). The architecture splits the 

tasks into multiple subtasks based on the application workflow and then uses blockchain algorithm 

to ensure the integrity of resource transaction data and the profits of the resource provider. In 

(Kraska et al. 2013) a scalable system for ML task declaration and learning, called “MLBase”, was 

proposed. That system aims to make ML accessible to broad audience of users, by simplifying the 
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declaration of ML models in a Pig Latin-like (Olston et al. 2008) declarative language and  

automatic ML algorithm selection. In the context of remote Machine Learning as a Service 

(MLaaS) (Ribeiro et al. 2015), the “PredictionIO” (Chan et al. 2013) framework, integrated a 

variety of ML models into a prediction service, access to which is provided using an API and a 

graphical user interface. In (García et al. 2020) a framework that aims to provide assistance 

throughout ML task lifecycle, such as training, validation and testing, was proposed with the name 

“DEEP-Hybrid-DataCloud”. That framework uses a standardized API that enables the 

functionality of the ML models to be exposed based on known semantics. In (Habiba et al. 2018) 

a unified component based architecture was proposed primarily focused on utility service 

deployment in cloud environments. The architecture focused on maximizing the availability of the 

deployed service with minimum configuration overhead. In (Zhou et al. 2017) a distributed 

architecture was proposed for motion planning of multi-robotics systems in real-time. Although 

such architectures can be flexible and sometimes extensible, they are tailored on domain-specific 

problems, limiting their scope. 

ASML architecture addresses the problem of remote high throughput ML task execution involving 

complex data-processing pipelines. It aims to cope with well-recognized challenges (Schelter et 

al. 2018; Baier et al. 2019) that include the deployment of ML applications in a generic and 

standard way through a framework that provides the necessary level of abstraction. This 

framework is independent from the application domain and implementation details, such as the 

ML algorithms and the different programming languages used for the implementation of different 

components within these pipelines. To implement this framework, we propose a novel Algorithm-

agnostic Scalable architecture for ML applications (ASML) that combines: 

• Algorithm-agnostic architecture design, that enable arbitrary ML applications to be modeled. 

• Modular design and extensible components that allow extensibility both in terms of the 

supported tasks and the input and output of the architecture. 

• Highly scalable architecture multi-client and parallel execution task support, enabling SaaS 

deployment scenarios Synchronous and asynchronous task execution. 

No such ML-oriented system architecture has ever been proposed, despite the emerging needs for 

remote artificial intelligence (AI) services in different application domains. The main contributions 

of the architecture include: 

• It provides an answer to the open research question of how to design and implement an 

abstraction framework, suitable for the deployment of end-to-end ML pipelines in a generic and 

standard way.  

• It provides technical details and application scenarios that can be used as examples for 

implementation of other ML application pipelines. 

• It provides a performance evaluation indicating its efficiency. 
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To evaluate the performance and the flexibility of the proposed system architecture, we conducted 

 

Figure 6.1 Diagram of the ASML architecture. The monitoring module is connected to all the components 

of the system architecture. For readability purposes its connections are omitted. 

experiments for two SaaS use case scenarios, where pattern recognition is provided as a cloud 

service. The first use case addresses the complex task of multi-user obstacle avoidance in the 

context of navigation of visually impaired individuals, using a state-of-the-art obstacle avoidance 

framework (Dimas et al. 2020). The second use case includes synchronous and asynchronous task 

execution in the context of abnormality detection in gastrointestinal endoscopy images (Iakovidis 

et al. 2018). It should be noted that ASML is applied for the first time for the SaaS implementation 

of these use case scenarios. 

6.2 The ASML architecture 

The proposed system architecture is task-oriented. A task is defined as a self-contained series of 

actions that is required to be completed to achieve a goal. A goal can be thought as the output of a 

procedure such as, image classification, object detection, object tracking etc. A task can contain 

multiple actions that can be executed in parallel or sequentially, depending on the goal needs. 

When actions are executed sequentially, the execution of the next actions is postponed until the 

previous ones are completed. Each action defined in the series is receiving the output of all 

previously completed actions, enabling complex use case scenarios to be defined.  When an action 

in the series results into multiple outputs which are required to be processed separately by the next 

actions in the series, the task can create multiple tasks to parallelize the process. This is important, 
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especially on high throughput use cases, where a significant performance improvement can be 

achieved by process parallelization. The input and the output of a task, including data transport, is 

implemented by data source handlers, and the actions are implemented by processors. Both data 

source handlers and processors are instantiations of reusable, abstractly defined, software 

components. The data of all input and output data source handlers are tagged by unique identifiers, 

which enable dynamic routing of the data to processors. The routing of both data source handlers 

and processors, is facilitated by a specialized, reusable software component, called interceptor. 

Overall, the ASML architecture (Figure 6.1) consists of four logical components: 

• The RESTful API, which acts as the entry point of the overall architecture. 

• The worker, which handles the task execution. 

• The task scheduler. 

• The data storage and system monitoring module. 

To ensure redundancy, all the components of the ASML architecture can be deployed in a cluster 

configuration (Bader & Pennington 2001), which considers multiple instances  per component, as 

illustrated in (Figure 6.1). Assuming that a client has the required access rights to access and 

dispatch tasks to the proposed system architecture, a typical task flow can be summarized as 

follows. Initially the client obtains an access token using the API of the architecture. Using this 

token, the client can make calls to the API to create, cancel, or obtain information about a task. 

Historical data, such as the output of previous tasks can be obtained using the same API. When a 

new task is submitted by a client to the API, a record is created in the database of the system 

containing the task information along with meta data such as, the status of the task, the user who 

created it etc. In parallel, a record is created in a key-value pair data store, which is used to track 

the progress and other temporal data about the task lifecycle. This data store offers high throughput 

read/write operations and is used internally by the system as a temporal meta data storage medium 

instead of a conventional Relational Database Management System (RDBMS). This design 

decision was made because temporal data, such as the progress of a task, usually requires frequent 

updates (can be thousand times per second), which can degrade the time-performance of the system 

and increase the resource requirements, such as CPU and memory use, of a conventional RDBMS 

store (Li & Manoharan 2013). The task is then registered to a message queue to be delivered to a 

worker. At this point a response is issued to the client by the API, containing identification 

information about the newly created task, which can be used by the client as a reference for future 

requests, such as tracking the task progress etc. When the task is enqueued, a worker which 

monitors the message queues, consumes the task and initializes the execution. Depending on the 

input data source handlers, the processors and the output data source handlers, the worker unravels 

the task, pulls the appropriate modules and starts the execution of the task. Depending on the task 

configuration, the worker can communicate directly with the client, receiving and dispatching 

information or asynchronously inform the client about the progress and the output of the task. 
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When the task execution is completed the API receives a request from the worker informing about 

the outcome. At this stage, all temporal data are deleted and the meta data stored in the key-value 

pair store are permanently written to the RDBMS store. 

A more detailed description of the architecture components and their interaction for the 

implementation of a complex data processing task is provided in the following sections. 

6.2.1 The Restful API 

The API component facilitates the communication with the clients and is the entry point of the 

ASML architecture. To maintain high compatibility and easy integration with most clients, the 

API is implemented as a RESTful HTTP service (Richardson & Ruby 2008). To enable ASML 

architecture to be used in a SaaS deployment, the authentication and authorization of the clients is 

handled by following the OAuth 2.0 (Hardt & others 2012) protocol. As a result, clients using 

existing OAuth 2.0 service providers can make use of the architecture without the need of 

providing their private credentials. Depending on the use case scenario new service providers can 

be added or disabled dynamically. To ensure high service availability, multiple instances of the 

API can run simultaneously in an HTTP load balanced environment.  

The API exposes four endpoints. The first endpoint is responsible for the creation of a task. The 

request must contain a payload, which describe the task by identifying the processors, input and 

output data source handlers that will be used. Along with the payload, the request can contain other 

parameters, such as the desired priority of the task, the remote callback endpoints that the system 

will request when the status of the task changes, and flags indicating if a task should be re-

processed in case of a failure. 

When a task is created, a unique identifier is generated and returned to the client along with two 

endpoints; one that can be used to track the status of the task and one that can be used for task 

cancelation. The fourth endpoint can be used by a client to track asynchronously the history of all 

the tasks that have been created along with their output. While the protocol for the creation of the 

task depends on the architecture, the requests can be encoded using JavaScript Object Notation 

(JSON) or Extensible Markup Language (XML), depending on the content type of the HTTP 

request. This is done to maximize the client compatibility. 

As many client applications are nowadays executed on web browsers, the API implements cross-

origin resource sharing (CORS) (Van Kesteren & others 2010). Depending on the use case 

scenario, the API can be equipped with request quote thresholds that can be enforced on per user 

basis. Such thresholds can be applied on the number of requests that a user can issue within specific 
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time period, resources allocated per user etc. This capability can be used as a pricing schema or to 

ensure a fair use of the system and prevent denial of service (DOS) (Garber 2000) attacks. 

6.2.2 The Worker 

A worker is an extensible component that can be thought as a handler, subscribed to one or many 

queues, and it consumes tasks. It is equipped with one or more input and output data source 

handlers and it can have multiple processors, which are responsible for the execution of several 

actions (Figure 6.2). As a result, the capabilities of a worker and the information about the queues 

to which it will subscribe, are derived from the types of actions that it can process. This enables 

the worker to process pipelines that otherwise would be incompatible to each other, based on their 

software and hardware dependencies, e.g., a worker could execute a pipeline with two ML 

processors, one capable of executing models implemented in PyTorch models and the other in 

Tensorflow. This battles the limitations of “MLBase”-like (Kraska et al. 2013) models, where a 

single framework must be used. Furthermore, the parallel processor design, enables the 

implementation of complex use-cases, where more than one models are used in parallel to produce 

results for the next processor in the pipeline, which is not possible by systems such as (Chan et al. 

2013) and (García et al. 2020).   

When a task is consumed, a worker initially loads the input data source handlers along with the 

processors and their output data source handlers and instantiates them using the parameters found 

in the payload of the task. An example payload with multiple input data source handlers, sequential 

and parallel processors is illustrated in (Figure 6.2). Upon initialization, it executes the input data 

source handlers found in the task and passes their output to the processors identified in the payload. 

A processor may or may not have one or more output data source handlers, which are executed 

when the processor execution step finishes. In the special case where the output of one processor 

is needed as an input for the execution of the next one, the processor execution is delayed until all 

previous processors finish their execution. The output of all processors along with the initial input 

data source output handler is then piped to the processor as input. In the case where an action can 

be parallelized, the processor can create new tasks using the API component of the architecture 

and wait for their output. This enables the worker to use the available resources of the system, 

when available, and increase its throughput. The scheduling of these tasks is handled by the task 

scheduling component of the architecture. Considering that processors are re-usable components, 

not all the outputs of all previous processors are always needed. For this reason, interceptors can 

be used to select the input of the processors. Finally, when all processors finish their execution, 

the worker informs the API about the completion of the task. 

In all steps of the process, the worker is updating the progress of each processor in a key-value 

pair database. This is used by the API when a request about the status of the task is received by a 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13



164 
 

client. In some cases, a client might require intermediate information about the execution of some 

processors; for this reason, the worker can inform the client using remote endpoints after the 

execution or the failure of a processor. 

 

Figure 6.2 Diagram of a worker with two input data source handlers, parallel and sequential processors 

with multiple output data source handlers. 

While a worker can be extended to support any type of processors and data source handlers, the 

architecture already contains a series of predefined modules that cover most use case scenarios. 

The default input and output data source handlers include, HTTP, FTP, SCP, S3, Swift (Sefraoui 

et al. 2012) protocols along with Web Real-Time Communication (WebRTC) (Bergkvist et al. 

2012) and Real-time Streaming Protocol (RTSP) (Schulzrinne et al. 1998) for real-time input and 

video streaming. ASML architecture is equipped with general purpose processors that enable 

image, audio and video processing along with ML. For example, in the case of the scenarios 

described in Section III, the image processor is implemented as a wrapper around the widely used 

ImageMagick library API. Similarly, the audio and video processor act as wrappers around the 

FFmpeg library API.  The ML processor can be used for inference (not for training) on pre-trained 

ML models coming from a variety of ML libraries, including Pytorch and Tensorflow frameworks. 

The later supports the majority of the popular deep learning frameworks such as Tensorflow, 

Pytorch, CNTK and Darknet and provide variable configuration depending on the use case. The 
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trained models can be provided to the processor using an input data source handler. For 

extensibility purposes the worker exposes a well-defined API and documentation that can be used 

for the development of new modules. 

Nowadays web applications, i.e., applications that run solely on web browsers, are becoming more 

and more common. While they offer the flexibility of running on web browsers, which most 

devices are equipped with, they are limited by the APIs exposed by the browser. For this, common 

real-time protocols such as the Real-time Messaging Protocol (RTMP) (Parmar & Thornburgh 

2012) and the RTSP (Schulzrinne et al. 1998) cannot be used. Recently, web browsers adopted the 

WebRTC (Bergkvist et al. 2012) standard for real-time audio and video communication. 

The ASML architecture supports WebRTC peer-to-peer communication between the workers and 

the client by using a Traversal Using Relay NAT (TURN) (Mahy et al. 2010) server, since 

typically, workers and clients are behind a Network Address Translation (NAT) service. Signaling 

between workers and the WebRTC clients is handled via WebSockets (Fette & Melnikov 2016), 

which is an open standard for real-time messaging. WebSockets can also be used by the workers 

to communicate messages to the client in real-time. Authentication and authorization to the TURN 

server and the WebSockets is handled by the API component of the architecture using OAuth 2.0 

Bearer Tokens (Jones & Hardt 2012). 

The worker module is designed so that it allows the implementation of any ML application 

pipeline, as new processors and new input and output data source handlers can be added. In ASML 

architecture, an ML pipeline implementation can be summarized into four steps: 

1) Deploy the pre-trained ML model in the storage module of the architecture 

2) Define which input data source handler(s) are going to provide input to the pipeline 

3) Configure the ML processor to use the pre-trained model 

4) Define one or many output data source handlers which are going to be used as the output of the 

processor. 

Given an ML model created using a common ML framework, such as Tensorflow or PyTorch, the 

system can automatically load it and use it. Otherwise, a new ML processor should be implemented 

to enable support of less popular frameworks. In Section 6.3, two complex use-case scenarios are 

examined along with the steps followed to implement them as ASML pipelines. 

6.2.3 The Task Scheduler 

When a client creates a task using the API component, the tasks are placed in a queue and recorded 

in a database. The task scheduler acts as an intermediate between the task queue and the API, 

handling the priority in which the task will be executed. Depending on the priority and the 

requirements of the task, it will be placed in the appropriate queue. For queuing, the architecture 
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uses Advanced Message Queuing Protocol (AMQP) (Vinoski 2006) compliant servers in cluster 

mode to ensure redundancy. The requirements of the task are derived from hardware and software 

dependencies of the task actions. Such requirements can be e.g., the need for a GPU or for a 

specific software, such as FFmpeg (FFmpeg 2016). Upon the registration of a new worker, its 

capabilities are announced to the system through the monitoring component. The queues from 

which the worker consumes messages are then marked as capable of executing tasks with these 

requirements. Although software dependencies can be included in the list of the worker 

requirements, we consider that for a given ASML deployment, a subset of libraries or utilities will 

be available as common resources to all workers. 

The priority of a task is determined by the client, upon the creation of a task, and it can be one of 

the following types: low, normal, high and critical. This flag indicates the urgency of execution of 

the task and it is used as a method to weight the task priority in the corresponding queue. In case 

of a critical task, the scheduler guarantees that the task will be executed immediately, whereas for 

the other types, the task will be executed in a first-in-first-out (FIFO) order. The scheduler 

performs a series of steps in order to guarantee the execution of critical tasks. Initially the scheduler 

tries to find an empty queue. If that fails, it communicates with the monitoring component to create 

and register a new worker. When the resources are saturated, the scheduler checks if a worker with 

proper capabilities is busy executing a lower priority task. In that case the scheduler places the task 

in the appropriate queue and signals the worker to halt the execution of the task which is then 

placed back in the queue. Only tasks with priority marked as low or normal are eligible for halting. 

In the unlikely event that the scheduler is unable to allocate resources for a new critical task, the 

task creation will fail, and an error is returned to the client. 

Scheduling tasks derived from parallelized actions are considered a special case for the scheduler. 

These tasks are queued only when workers with the action requirements are idle, otherwise they 

fail before creation. This enables the workers to continue processing without waiting parallelized 

actions to be picked by a worker. It can also be used to create scenarios were resources become 

available after the parallelization, the parent worker can retry to parallelize the action at specific 

time intervals, this option is only available to tasks with high and critical priorities. To avoid 

resource stagnation, all tasks that derive from task parallelization are marked with low or medium 

priority depending on their parent task priority. 

6.2.4 The Data Storage and System Monitoring Module  

The architecture uses two types of data storage; one for heavy Input/Output (I/O) load use cases 

and one for file storage.  For heavy I/O  load use cases, Ceph (Weil et al. 2006) is  used  as a 

network file system mounted on all components of the architecture. For client file storage, such as 

pre-trained neural networks, image masks and the output of the workers, an object-store storage is 
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used. The object-store storage enables meta-data to be saved along with the actual files. This 

property is used by ASML architecture to deal with the problem of  model versioning (Baier et al. 

2019), by saving the model version along with the pre-trained models. The redundancy of the 

network file system is achieved using ZFS (Rodeh & Teperman 2003) filesystem format in RAID-

Z2 (the ZFS version of RAID-6) configuration, while the object-store redundancy is handled by 

software. 

Monitoring is integrated at the core of the proposed system architecture and it can be broken down 

into two categories: one specific to system load monitoring, and one for general events such as 

hardware failure. In both cases of monitoring, all events are stored and are accessible by the system 

administrator. The information gathered by the monitoring component include, CPU, memory and 

GPU. As all components of the architecture are deployed as containers (Rosen 2014), the load 

monitoring system offers the ability to activate workers or API instances on-demand, depending 

on the hardware available to the architecture. 

The monitoring component monitors the utilization of the system resources in combination with 

the number of tasks queued for processing and when this number exceeds a configurable threshold, 

it instantiates a new worker. As tasks are prioritized based on their urgency, the monitoring 

component is capable of reserving hardware for the execution of critical tasks. High and normal 

priority tasks are eligible for additional hardware allocation when available, while tasks that are 

marked as low priority are not. Similarly, tasks that are created by other tasks, typically derived 

from the parallelization of actions, are also not considered eligible for additional resource 

allocation in order to avoid resource saturation. This also ensures that parallelized tasks will not 

get affected by the latency imposed by the hardware resource allocation, such as the virtual 

machine or container startup. To increase the reliability of the system, the monitoring component 

takes into consideration worker failures and the corresponding tasks that are processed by these 

workers. In the case of a failure due to hardware or network issues, the monitoring component will 

try to allocate new hardware resources to recover. Tasks with critical, high or normal priority and 

failed due to this error, are automatically prioritized to be assigned on the new allocated hardware. 

This is important for critical tasks with high-throughput requirements, as their service is not 

interrupted, while tasks with high and normal priority, experience only the initial latency of the 

hardware initialization. 

In commercial cases, where a cloud provider is used, this feature enables cost-effective 

deployment, where the resources are allocated according to the real-time needs of the system. As 

each cloud service provider offer different access to its cloud infrastructure, the load monitoring 

component generates events in a form of HTTP requests to a configurable endpoint. 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13



168 
 

The object-store storage of the architecture is accessible by the clients through the API component 

of the architecture. Upon initial authorization for each client is created, an object container (user 

space) to which only the authorized client has access to.  A common use case scenario for this 

storage, is its use as a primary data-store in which a client stores trained ML component, such as 

trained neural networks, with meta-data information for the trained models. These are used 

primarily for version control and backward compatibility, which are important and still open issues 

with respect to the deployment of ML applications (Schelter et al. 2018). For this reason, the 

object-store component allows the client to issue signed URLs to these resources, granting access 

to the internal components of the architecture, with the ability to set expiration date for them (TTL). 

The monitoring component, records access to the object- store storage and all requests, enabling 

limiting access or bandwidth use of the store configurable on a client base manner. 

The described ASML architecture is generic, suitable for the time-efficient SaaS deployment of 

ML-based data processing applications. In the following section, its capabilities are experimentally 

demonstrated with two contemporary use cases, where its capacity for real-time video processing 

is evaluated. 

6.3 Example Use Cases and Evaluation  

To demonstrate the effectiveness of the ASML system architecture, we conducted experiments on 

two different ML-based data processing use cases.  The first use case considers the problem of 

obstacle detection and recognition in the context of an assistive system for navigation of Visually 

Challenged (VC) individuals. Considering that such a system is meant to be used by people with 

disabilities, it must be accurate, fast, and reliable. The second use case considers the problem of 

abnormality detection in gastrointestinal (GI) tract videos, in an effort to provide a solution for 

real-time assistance to the physicians during GI endoscopy. When the endoscopic modality used 

does not require real-time streaming capabilities, such as in the case of WCE (Iakovidis & 

Koulaouzidis 2015), we demonstrate how the same processor can be used to process the videos 

asynchronously. 

6.3.1 Realtime Obstacle Detection, Recognition and Tracking  

Recently we presented a methodology for the detection and recognition of obstacles, and evaluated 

its effectiveness (Dimas et al. 2020). We consider this as an indicative scenario to show how such 

a methodology can be implemented using the generic ASML architecture described in Section 6.2, 

how the ASML-based implementation can be extended by incorporating an obstacle tracking 

algorithm, and we assess its efficiency and scalability. 
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6.3.1.1 Obstacle Detection and Recognition   

The methodology presented in (Dimas et al. 2020), considers that color RGB-Depth (RGB-D) 

image streams are captured using a stereoscopic camera. Each image is processed by two parallel 

components and their results are aggregated to determine image regions where high-risk obstacles 

are located. The first component uses a GAN (Pan et al. 2017) to generate human eye fixations 

that highlight salient image regions. The second component uses the depth channel of the RGB-D 

image, to compute three risk maps, representing high, medium and low risk obstacles, based on 

fuzzy logic. Following the fuzzy aggregation of the outputs of these components, the resulting sub-

images corresponding to obstacle regions are provided to a CNN, called Look Behind Fully 

Convolutional Neural Network (LB-FCN) light (Diamantis et al. 2019), to perform the obstacle 

recognition step. The processing steps required by the methodology (Dimas et al. 2020), are 

illustrated in (Figure 6.3). 

 

Figure 6.3 Illustration of the processing steps followed in (Dimas et al. 2020) for obstacle detection and 

recognition. 

The two deep learning inference steps described, are performed on a GPU-enabled server, remotely 

accessible for the navigation of the VC individuals. Each individual, carries a mobile phone-based 

wearable system, running a lightweight client application that performs image acquisition and 

communication with the server. Considering that not all users use the same mobile phones and that 

native applications are platform-dependent, as a client we considered a conventional web browser. 

To enable real-time streaming between the client and the system, we used WebRTC capabilities 

of the architecture, as it is natively supported by all major web browsers. Similarly, for real-time 

messaging, we used WebSockets to communicate the output of the obstacle detection and 

recognition back to the client. For the implementation of the obstacle avoidance schema, initially 

a new processor is required that splits the original RGB-D image into two parts; one with the RGB 

channels, and one with only the depth information. For the salient region detection and obstacle 

recognition, the ML processor of the proposed architecture can be used directly; thus, only the pre-

trained networks need to be deployed on the object-store storage of the system. For the high-risk 
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map generation, a new processor is required that takes as an input the depth channel of the RGB-

D image and computes the high-risk map. For the detection of obstacle subimages, a processor 

was added following the methodology proposed (Dimas et al. 2020), which takes as input the 

output of the second the third processor and performs the aggregation (Figure 6.4, step 4). Finally, 

the obstacle regions along with the RGB image is piped to the ML processor which performs the 

obstacle recognition (Figure 6.4, step 5). The worker configuration with the corresponding 

processors, input and output data source handlers is illustrated in (Figure 6.4). Interceptors are 

used to select the RGB and depth channels for the ML and high-risk map processors. The pre-

trained ML models are provided to the worker as input data source handlers from the object-share 

storage of the architecture, the selection of which is performed using interceptors. 

 

Figure 6.4 Diagram of a worker implementing the steps required by the obstacle detection and recognition 

framework (Dimas et al. 2020). 

In this use case scenario, the performance of the worker is highly dependent on the number of 

obstacle regions found by the aggregation processor. As a result, in images where multiple obstacle 

regions are identified in a single image, the performance of the worker drops exponentially (Figure 

6.5). For this reason, we considered parallelization of the object recognition component (Figure 

6.4, step 5). To achieve this, the obstacle region processor creates a new task for each detected 

obstacle region and submits it to the API component for processing, effectively performing the 

same operation as a client would do.  The output of each object recognition task is received by the 

worker directly, using an HTTP request, produced by the output data source handler of each object 

recognition task. Each request contains the label of the recognized object along with an 
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identification number which is used by the processor to identify the obstacle region to which the 

label belongs to. Accounting for the latency that is introduced by the network, this enables higher 

frame rate compared to the conventional approach where all the information is processed on a 

single instance. 

 

Figure 6.5 Comparison of frame rate achieved by the proposed architecture using different number of 

workers and number of obstacle regions. The dotted line illustrates the real-time performance threshold of 

30 frames per second (fps). 

To perform our experiments and evaluate the performance of the proposed architecture, we used a 

typical smartphone device with 4 ARM based CPUs and 2 GB of RAM each one paired with Intel 

RealSense (Keselman et al. 2017) D435i RGB-D camera. To maximize mobile cross-platform 

compatibility, our experiments were conducted using Google Chrome web browser as the client. 

For the deployment of the architecture, we used virtualization and more specifically containers 

through Docker (Merkel 2014). For the HTTP load balancing we used NGINX (Reese 2008) to 

distribute the incoming requests on multiple instances of API components deployed on lightweight 

containers. As RDBMS we used master-master deployment of MariaDB. Caching and message 

queueing was implemented using Redis and RabbitMQ (Dossot 2014) running in cluster mode 

respectively. The API and monitoring components, the TURN server and the workers are 

implemented in Go programming language. 
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Figure 6.6 Classification example of 8 obstacle regions using the proposed architecture with 5 workers. 

Each color corresponds to a different worker. 

To demonstrate the performance improvement that the proposed system architecture offers 

compared to conventional synchronous approaches, we conducted four experiments using 

different number of workers. In all experiments the workers infrastructure was equipped with an 

NVIDIA GTX-1080 TI GPU. The implementation of (Dimas et al. 2020) deep learning algorithms 

was performed using the TensorFlow framework, which enables the ML algorithms to be executed 

on GPUs, significantly increasing the performance. The results of the frame rate achieved by the 

proposed architecture using different number of workers are illustrated in (Figure 6.5). The single 

worker experiment demonstrates the performance of a conventional deployment without the use 

of the proposed architecture. On average, 3.2ms are required for the obstacle detection task while 

the obstacle recognition requires 2.1ms for each obstacle region. We found that in a typical 

scenario, the obstacle region processor detects 12 objects on average per image. Any increase in 

that number can significantly decrease the performance of a single instance deployment. A visual 

representation of the parallelized obstacle region classification procedure is illustrated in (Figure 

6.6). The performance improvements that the proposed ASML architecture offers become even 

more apparent when multiple clients are required to be processed in parallel. In this case, a single 

instance deployment would have been insufficient and would require scaling, which the proposed 

architectures offer. Communication between multiple workers introduce network latency which 

can degrade the overall performance. In our experiments, using intranet connections, the network 

latency was on average 1.3ms. Using the ASML architecture, (Figure 6.5) shows that when more 

than 3 obstacle regions are required to be recognized, the overall performance improvement 

overcome the network latency. 
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6.3.1.2 Obstacle Tracking 

In the context of an obstacle avoidance application, tracking of the objects found in previous 

frames is important as it can be used to avoid re-informing the user multiple times for the same 

obstacle, or compute the trajectory of a moving object, such as a vehicle.  The methodology 

presented in (Dimas et al. 2020) does not include tracking; however, several single (Fu & Xu 2019) 

and multiple (Ciaparrone et al. 2020) object tracking methodologies have been proposed over the 

years, which can be introduced to the system as an additional processing step. These approaches 

usually rely on conventional handcrafted features (such as color, shape and texture), deep learning 

(Fiaz et al. 2019), or follow the tracking-by-detection (Bochinski et al. 2017) approach. In 

tracking-by-detection methodologies, the state of the algorithm, which contains the history of the 

detected objects from previous frames need to be preserved in order to be compared with the 

detected objects of the current frame. This can be challenging when this state must be shared across 

multiple workers.  

 

Figure 6.7 Diagram of a worker extending the obstacle detection and recognition framework (Dimas et al. 

2020) methodology with and object tracking (Bochinski et al. 2017). 

To overcome this, ASML architecture uses the key-value pair store to share the state across 

multiple workers. To demonstrate that, we enhanced the obstacle detection methodology proposed 

in (Dimas et al. 2020) to include obstacle tracking by following the approach proposed in 

(Bochinski et al. 2017). We followed this approach as it has minimal computational footprint and 

it relies on detection algorithms with high frame rates, such as the one used in (Dimas et al. 2020).  

The algorithm of (Bochinski et al. 2017) relies on the fact, that in high frame rate scenarios 

consecutive frames have significantly overlapping detections. When the intersection-over-union 
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(IOU) of the consecutive detections is lower than a certain threshold, the detection belongs to the 

same object. 

 

Figure 6.8 Comparison of frame rate achieved with object tracking by the proposed architecture using 

different number of workers and number of obstacle regions. The dotted line illustrates the real-time 

performance threshold of 30 frames per second (fps). 

To include the method proposed in (Bochinski et al. 2017) in the obstacle detection pipeline, a new 

processor was created (Figure 6.7, step 6). This processor accepts as input the detected obstacles 

and their corresponding classes and outputs their tracking information. This is illustrated in 

(Figure 6.7). As processors are stateless, the previously computed tracking information, are stored 

in the key-value pair store. The overhead of this is minimal (on average 4.7ms per frame). This 

includes the data transmission time, deserialization and post processing data serialization. (Figure 

6.8) demonstrates how the performance (FPS) is affected when a different set of workers is used 

in comparison to the number of bounding boxes that need to be tracked.  

6.3.2 Realtime Multi-User Endoscopic Video Analysis  

In the context of computer-aided detection of abnormalities in GI endoscopy, we used the state-

of-the-art LB-FCN deep CNN architecture, pre-trained to detect abnormalities in flexible 

endoscopy (colonoscopy) videos and Wireless Capsule Endoscopy (WCE) (Diamantis et al. 2019; 

Diamantis et al. 2018). To use this model in the proposed architecture the ML processor of ASML 

was utilized. Considering that the CNN architecture requires an input with spatial dimensions 

224×224 pixels, the video frames received as input, have to be resized accordingly. For this reason, 
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an image processor was used to resize the video frames to the required size using zero-padding to 

prevent the aspect ratio as suggested in (Diamantis et al. 2019). 

 

Figure 6.9 Diagram of a worker implementing the steps required for the flexible endoscopy and WCE 

abnormality detection. In flexible endoscopy, the RTSP input data source handler is used while in WCE, 

the HTTP input data source handler is used to provide the video from the object-store storage. 

The same CNN architecture can be used in both flexible endoscopy and WCE abnormality 

detection applications. In the latter case the videos are not usually streamed in real-time; instead 

they are obtained only after the capsules are excreted from the GI tract. For this reason, in the case 

of flexible endoscopy RTSP input data source handler is used, while in the case of WCE the video 

is stored in the object-store storage and provided to the worker via the HTTP input data source 

handler. In both cases, when an abnormality is detected by the ML processor, an HTTP request is 

sent, informing the client about the detection and the frame at which the abnormality was detected. 

As multiple medical instates can be benefited by such a service, in both cases we considered a 

SaaS cloud deployment of the ASML, where multiple physicians can access it simultaneously 

(Figure 6.9) illustrates the worker configuration. (Figure 6.10) includes samples of WCE image 

classification results, from the KID (Koulaouzidis et al. 2017) dataset, obtained using the proposed 

ASML architecture. 

To evaluate the real-time performance of the proposed ASML architecture, multi-user experiments 

were conducted using different number of workers on the problem of flexible endoscopy 

abnormality detection. In our experiments, on average 2.8ms were required for frame classification 

using a single worker. (Figure 6.11), shows that when more than 12 endoscopes are streaming in 

parallel, such a singular deployment becomes insufficient. ASML is capable of scaling 

horizontally by increasing the number of workers according to the required number of streams and 

the resources available to the architecture. This can be proven particularly useful in the case of a  
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(a) (b) (c) (d) 

Figure 6.10 WCE frame classification using the proposed architecture. (a) Normal, (b) Polypoid, (c) Blood, 

(d) Inflammatory condition. 

 

Figure 6.11 Comparison of frame rate achieved by the proposed architecture using different number of 

workers and number parallel endoscopes. The dotted line illustrates the real-time performance threshold of 

30 fps. 

SaaS deployment, where abnormality detection is offered as a service to multiple clients, e.g., 

several clinics with one or more endoscopy units using the abnormality detection service. 

6.3.3 User Case Response Time Analysis  

To demonstrate the performance of the proposed architecture design we conducted two 

experiments based on the presented use cases. In both experiments three workers were used to 

measure the system’s response times over a period of time. In the case of obstacle detection, 

recognition and tracking (Figure 6.12), the experiment recorded the average response time of the 

workers and the number of bounding boxes found at a 15 second sampling interval, over a period 

of 30 minutes. To show the behavior of the system in the case of a worker failure, different workers 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:21:17 EEST - 137.108.70.13



177 
 

were shortly removed from the system, at different times. (Figure 6.12) shows that upon a worker 

failure, one of the running workers is successfully compensating for the loss, with the expected 

expense of higher average response time, due to the extra computation overhead. In total the 

average response time of the system was 28.1ms, and the maximum and minimum response times 

48.2ms and 22.1ms respectively. 

 

Figure 6.12 Comparison of worker response times detecting and tracking different number of bounding 

boxes corresponding to obstacles, sampled over a period of 30 minutes. The graph illustrates how the 

system behaves when a worker is removed or added back to the system. The sampling points are linearly 

interpolated for visualization purposes. 

A similar system behavior can also be observed in the second use case scenario. For the 

abnormality detection in GI tract images, the experiment measured the average response time of 

the workers when used by different number of users with a sampling interval of 1 minute for 2 

hours. The average response time of the workers was 3.6ms, and the maximum and minimum 

response times were 6.1ms and 2.4ms, respectively. When each of the two workers was removed 

from the system for a short period of time, the system had the same behavior as in the first use 

case. The response time fluctuations that are observed in both use cases (Figures 6.12, 6.13), can 

be attributed to the network latency, whereas the higher response times are due to worker 

initialization. 
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Figure 6.13 Comparison of worker response times for abnormality detection in GI tract images, when used 

by different number of users, sampled over a period of 2 hours. The graph illustrates how the system 

behaves when a worker is removed or added back to the system. The sampling points are linearly 

interpolated for visualization purposes. 

6.4 Discussion  

There has been work towards scalable system architectures and application frameworks that aim 

to provide scalable task execution. When it comes to ML, the deployment of such systems tends 

to be complicated and usually coupled to specific domains and use cases. The lack of an abstraction 

framework for the whole ML pipeline and need for a generic and standard deployment approach 

has been highlighted in the recent literature (Schelter et al. 2018)(Baier et al. 2019). Architectures 

such as (Wang et al. 2013) and (Fernández-Villamor et al. 2013), although scalable, are domain 

specific and thus they do not allow arbitrary ML task declaration and execution. The needs of ML 

task execution are also not satisfied by the generic architecture proposed in (Ahmad & Kim 2020) 

as it focuses on task orchestration in EIoT applications which limits the scope to periodic or event-

driven task modeling and it does not include an abstraction framework that can be used as a 

standard solution for ML pipeline task modeling. Although the declarative ML task execution 

system “MLBase” (Kraska et al. 2013) has the advantage of automatic  scaling, the platform is 

coupled with a specific ML framework and language (Nguyen et al. 2019), which is a limitation 

for use in production environments. The “DEEP-Hybrid-DataCloud” framework proposed in 

(García et al. 2020), although it satisfies the needs for a generic ML task deployment and execution 

environment, it does not offer flexibility in terms of generic ML pipeline modeling, as models with 

non-standard functionality exposure semantics are not compatible. Furthermore, the architecture 

presented in (García et al. 2020) does not include any standard ML task input and output handling. 
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To cope with these issues in the context of remote, high throughput ML task execution, involving 

complex data-processing pipelines, we proposed ASML as a novel algorithm-agnostic and 

platform-independent system architecture. The architecture achieves that by:  

• Providing a standardized, extensible and unified algorithm-agnostic task-oriented pipeline 

framework, with interchangeable platform independent processing units;  

• Handling the pipeline execution in a highly scalable system architecture; 

• Task scheduling for task parallelization. 

Access to the architecture is provided through a RESTful API, enabling platform independence. 

This in combination with the use of open technologies, such as WebRTC, enables thin clients, such 

as a web browser, to use the system without special software requirements.  

The results obtained from the deployment of two state-of-the-art SaaS ML application scenarios 

indicated that the ASML architecture is suitable for high throughput applications in different 

domains. The extensibility of ASML architecture was also investigated, where in the first use case 

the obstacle detection pipeline was extended to include obstacle tracking by the addition of an 

object tracking processor. There are several other domains where ASML architecture is applicable, 

including robotics, transportation, and security, e.g., for SaaS deployment of ML-assisted 

navigation of autonomous robots and vehicles, and recognition of suspicious patterns from 

multiple surveillance cameras. 

As a limitation of the proposed architecture, one could consider its inability to automatically 

identify the software requirements of each task, which can result into dependency issues. To solve 

this problem, the tasks are required to include labels to indicate which software dependencies are 

required by the task. Another limitation of the architecture is that processors are considered as 

black boxes and only the workers are informed about what input and output can be accepted. As a 

result, the API has no way of knowing if an input or output data source handler is compatible with 

a declared processor. This can result into situations where invalid tasks are successfully created 

and queued to the system, failing later, when they are picked by a worker. Although this can be 

resolved by including documentation for each processor, we plan to include automation validation 

prior task execution. 

The ASML architecture can utilize platforms specifically designed for parallel process execution 

in a multi-host environment, such as Spark (Zaharia et al. 2010); however, configuring these 

platforms still requires advanced technical knowledge and skills. To cope with this issue, within 

our future research prospects is to extend the proposed system architecture to include automated 

host clustering, enabling parallel task execution without special configuration. An open access 

implementation of the proposed system architecture is planned for distribution to the wider 

research community.  
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CHAPTER 7 

Conclusions and Future Research Directions  

This doctoral dissertation investigated and developed novel DNN architectures and DNN-based 

image analysis and synthesis methodologies, in the context of intelligent systems and services with 

applications in biomedicine and assisted living. The presented work included extensive 

experimentation for benchmarking and validation on large datasets, most of which are publicly 

available. This chapter summarizes the conclusions of this research, and indicates directions for 

future research.  

7.1 Concluding Remarks per Chapter 

Chapter 2 provided the theoretical knowledge that was the basic background for the understanding 

of the methods that were described in the rest of this thesis’ chapters along with detailed and 

literature review of most impactful deep learning models, including the CNNs and GANs. 

Chapter 3 introduced a novel fuzzy pooling (Diamantis & Iakovidis 2020) operation for CNN 

architectures, coping with the uncertainty of feature values. Experiments performed on publicly 

available datasets, show that the proposed methodology significantly increases the classification 

performance of CNNs, as compared to other state of-the-art pooling approaches. We showed that 

fuzzy pooling can be used as a drop-in replacement of existing pooling layers, in CNN 

architectures, increasing the generalization performance. Furthermore, experiments conducted on 

standard image datasets (Anon n.d.; Gonzalez & Woods 2018), showed that the proposed 

methodology is able to preserve better the important features of the pooling areas. This was 

validated both visually and statistically by the higher classification performance obtained using 

the fuzzy pooling approach. 

Chapter 4 presented the novel contributions of this thesis in the context of computer-aided 

endoscopy. More specifically, 

Section 4.1 presented a novel CNN architecture (Diamantis et al. 2019), named Look-Behind Fully 

Convolutional Neural Network (LB-FCN), to deal with the problem of computer-aided human GI 

tract image classification. To the best of our knowledge none of the existing deep neural network 

architectures combined in the same way multi-scale feature extraction along with look-behind 

connections. The overall conclusions that can be derived about LB-FCN architecture can be 

summarized as follows:   
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• It has a simplified design following the FCN (Springenberg et al. 2014) architecture 

approach. 

• Its relatively low number of free parameters along with its multi-scale feature extraction 

capability enables efficient training with either smaller or larger datasets. 

• It outperforms state-of-the-art architectures and methods in the detection of different types 

of abnormalities in images obtained from different endoscopic modalities, including 

gastroscopy and WCE.  

Section 4.2 presented an investigation in the context of cross-dataset abnormality detection in 

endoscopy images using a novel CNN architecture named Multi-scale Feature extraction CNN 

(MFCNN) (Diamantis et al. 2018) which was a predecessor of LB-FCN architecture. The 

generalization capabilities of MFCNN architecture was evaluated on multiple publicly available 

gastrointestinal image datasets validating that it is able to generalize well even when the training 

and testing datasets are significantly different.  

Section 4.3 investigated multi-label classification methods for a richer semantic interpretation of 

endoscopy video frames (Vasilakakis et al. 2018). The rationale behind this was that the 

classification of the video frame contents into multiple semantic categories, could simplify the 

detection of contents corresponding to abnormalities especially since the presence of intestinal 

content, such as debris and bubbles, is dominant in parts of the GI tract (Iakovidis & Koulaouzidis 

2015). In this context a novel CNN architecture was presented, named “MM-CNN”, for multi-

label WCE image classification. The results validate that the effect of using multiple labels can 

enhance abnormality detection, with MM-CNN achieving higher classification accuracy when 

compared to state-of-the-art.  

Section 4.4 presented a novel approach (Diamantis et al. 2019) to cope with the problem of small 

number of training data availability in the medical domain. We showed that data generation using 

non-stationary texture synthesis technique can be used effectively to generate small bowel wireless 

capsule endoscopy images with and without inflammatory conditions. Furthermore, we explored 

the generalization performance of the state-of-the-art LB-FCN light (Diamantis et al. 2019) 

architecture trained on fake, artificially generated, images and evaluated its performance on real 

WCE small bowel images. One could argue that training on synthetic images may create fault 

detections on real cases. This is likely to happen; however, classifiers create fault detections even 

when they are trained with real data. Our experiments assessed the capacity of the state-of-the-art 

LB-FCN light classifier to create such fault detections. We have trained the classifier separately 

using synthetic and real images, and assessed its classification performance on real images. The 

results showed that the training of the LB-FCN light with real images yields better classification 

performance, than training with artificially generated images. However, using fake images for 

training the classification performance obtained was comparable with the performance of state-of-
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the-art approaches based on 522 handcrafted features. To date there is no classifier creating zero 

false detections on the dataset used in this study. The most important conclusion that can be derived 

from this study is that it is feasible to substitute real medical images with fake ones and obtain 

useful, medically relevant, results. Therefore, the medical data providers could use the proposed 

medical image generation methodology to provide realistic datasets to the information technology 

scientists without ethical and legal constraints. Today, it is well-known that such constraints are 

responsible for delays of relevant projects, e.g., by waiting for approvals from ethical committees. 

This situation is also responsible for the limited public data availability, which, as it has been 

already pinpointed in the past (Iakovidis & Koulaouzidis 2015), it is also limiting for the essential 

progress in the research for computer-aided medical decision support system. 

Chapter 5 presented the novel contributions of this thesis in the context of assistive navigation of 

visually impaired. Section 5.1 presented a novel lightweight CNN architecture (Diamantis et al. 

2019) , named Look-Behind Fully Convolutional Neural Network light (LB-FCN light), and 

examine the generalization capabilities of the network in the context of staircase detection in 

natural images (Section 5.3). To evaluate the performance of the architecture we extended the 

LM+Sun (Tighe & Lazebnik 2010) natural image dataset with staircase images obtained from 

Flickr (Flickr Inc. 2019) social network. To the best of our knowledge there has been no existing 

work in this field that utilize solely weakly-labeled images to detect staircases in the natural 

images. The key features of the proposed LB-FCN light architecture can be summarized as 

follows:  

• It has a relatively low number of free parameters requiring an also low number of FLOPs, 

which makes it suitable to be used on mobile and embedded devices. 

• It features multi-scale feature extraction design allowing the architecture to detect 

staircases of various sizes and under difficult conditions, such as natural images. 

• Following the FCN (Springenberg et al. 2014) architecture approach it offers a lightweight 

and logically unified design. 

• Compared to MobileNet-v2 (Sandler et al. 2018) network, the proposed architecture offers 

a relatively lower number of FLOPs and free parameters and a slightly higher detection 

performance. This makes it attractive for lower-end mobile and embedded devices. 

Section 5.2.4 presented an application of LB-FCN light architecture in which the model was used 

as the object recognition component of a two-stage object detector in the context of navigation of 

visually impaired individuals (Dimas et al. 2020). To train the network, a new dataset was created, 

named “Flickr Obstacle Recognition” dataset, containing RGB outdoor images from five common 

obstacle categories (benches, columns, crowd, stones, and trees). A novel system architecture was 

also presented which enables the computationally intensive object detection and recognition 
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components of the assistive navigation system to be executed on the cloud, in an effort to achieve 

high inference throughput.  

Navigation assistive systems consist of complex pipelines that include object detection, 

recognition, and tracking, along with path planning and risk assessment algorithms. Assessing and 

optimizing the performance of such pipelines is a relatively complex and time-consuming task, 

especially when it is performed in real-world environments, where parameters such as the weather 

and lighting conditions may vary. The recent COVID-19 pandemic has raised an additional 

problem, since it has been impossible to assess algorithms that require real-world outdoor 

measurements, mainly due to the social distancing rules and quarantine measures. Aiming to 

address this problem Section 5.3 presented a novel Digital Twin simulation and evaluation 

framework for assistive navigation systems. More specifically, it presented a novel framework that 

enables the assessment and optimization of navigation assistive systems for visually impaired 

individuals in a controlled virtual reality environment.  The proposed framework is able to simulate 

real-world environments obtained using Google Earth or Open Street Maps from both mapped and 

unmapped regions of the world. The DT framework is integrated with a VR repository in which 

assets, such as 3D objects and existing simulated worlds, can be stored and shared with peers, 

facilitating the virtualization process. The integrated obstacle avoidance framework is specifically 

designed for complex, algorithm-agnostic, navigation pipeline assessment. It enables algorithms 

to be evaluated in both simulated and real-world environment since it is implemented using the 

Python programming language.   

Chapter 6 presented a novel algorithm-agnostic and platform-independent architecture for scalable 

ML named “ASML” (Diamantis & Iakovidis 2021). While there has been work towards scalable 

system architectures and application frameworks that aim to provide scalable task execution, when 

it comes to ML, the deployment of such systems tends to be complicated and usually coupled to 

specific domains and use cases. The lack of an abstraction framework for the whole ML pipeline 

and need for a generic and standard deployment approach has been highlighted in the recent 

literature (Schelter et al. 2018; Baier et al. 2019). ASML architecture aims to cope with these issues 

in the context of remote, high throughput ML task execution, involving complex data-processing 

pipelines. The architecture achieves that by:  

• Providing a standardized, extensible, and unified algorithm-agnostic task-oriented pipeline 

framework, with interchangeable platform independent processing units. 

• Handling the pipeline execution in a highly scalable system architecture. 

• Task scheduling for task parallelization. 

Access to the architecture is provided through a RESTful API, enabling platform independence. 

This in combination with the use of open technologies, such as WebRTC, enables thin clients, such 
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as a web browser, to use the system without special software requirements. The results obtained 

from the deployment of two state-of-the-art SaaS ML application scenarios indicated that the 

ASML architecture is suitable for high throughput applications in different domains. The 

extensibility of ASML architecture was also investigated, where in the first use case the obstacle 

detection pipeline was extended to include obstacle tracking by the addition of an object tracking 

processor. There are several other domains where ASML architecture is applicable, including 

robotics, transportation, and security, e.g., for SaaS deployment of ML-assisted navigation of 

autonomous robots and vehicles, and recognition of suspicious patterns from multiple surveillance 

cameras. 

7.2 Overall Conclusions  

The work presented in this dissertation has identified several research challenges, and it provided 

solutions on related open issues. The overall conclusions derived from the presented DNN 

architectures, methodologies and applications can be summarized as follows:   

• Fuzzy pooling can be used to tackle the uncertainty that is naturally propagated from the 

input layer to the feature maps of the hidden layers through convolutions. Tackling with 

such uncertainty improves the quality of features selected by the CNN pooling layers, and 

contributes to the overall improvement of the generalization performance of the trained 

network. 

• The LB-FCN light paradigm indicates that CNNs with a low number of free parameters 

combined with multi-scale feature extraction and residual learning, can generalize well, 

even when the training samples are limited.  

• It is feasible to use GANs to substitute real medical images with synthetic ones, which can 

be used for CNN training, especially when real data are limited, and obtain useful, 

medically relevant, results.  

• Remote intelligent image and video analysis services have become possible with ASML, 

in a generic and standardized way, even with a near-real time performance. 

• Using digital twins for system testing can be an effective tool, especially when real-world 

experimentation is difficult or costly.  

 

7.3 Future Plans and Research Directions  

Considering the advancements in the context of deep learning, the proposed methods can be further 

evolved and extended in respect to both their efficiency and effectiveness.   
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In respect to the Fuzzy Pooling methodology presented in (Diamantis & Iakovidis 2020), future 

work includes optimization of the current implementation to fully exploit GPU-level parallelism. 

This will enable us to perform larger-scale experimentation with very large datasets, such as 

ImageNet (Deng et al. 2009) using deeper CNN architectures, such as (Simonyan & Zisserman 

2014). Other interesting research perspectives include the extension of the learnable set of network 

parameters to include the parameters for the fuzzy rules, and the extension of the proposed 

approach using generalized fuzzy sets, such as intuitionistic fuzzy sets. 

The methodologies presented in Chapter 4, although they have been evaluated in the context of 

biomedical applications and more specifically in the context of computer-aided endoscopy, can be 

used in wide range of applications such as natural image analysis. Topics such as coping with the 

large number of free parameters and overfitting are still open in deep learning applications. 

Towards these issues, we plan to apply systematic experiments on architecture variations of LB-

FCN while applying it to larger, even more diverse datasets of human GI tract images. 

Furthermore, the future research directions is to extend the proposed architecture to enable 

localization of the abnormalities through supervised learning using weakly labeled images, and the 

identification of the different types and subtypes of abnormalities. Similarly, we plan to extend 

LB-FCN light architecture to enable weakly-labeled localization of the staircases and other object 

classes within the natural images. Although LB-FCN light is primarily designed for outdoor 

mobile use,  is has also been used in medical domain applications, such as in bone metastasis image 

classification (Ntakolia, Diamantis et al. 2020), with promising results. Towards object 

localization, the first steps have already been done, as LB-FCN light architecture has been used as 

the feature extractor for the YOLO-v3 (Redmon & Farhadi 2018) architecture with promising 

results.  

In the context of artificially generated endoscopic images, the presented methodology was only a 

first, preliminary, approach to cope with the problem of artificial medical image generation for 

effective training of classifiers without real data. The results obtained from this study are 

promising, and can be improved. To this direction we are planning to enhance the GAN, to better 

represent the abnormalities. Due to the advancements in GAN architectures, we consider using 

different variations of GANs, such as (Karras et al. 2020). Furthermore, we plan apply this 

technique to a larger variety of GI tract lesions, such as polypoids and vascular conditions.  

The Digital Twin simulation framework future work includes the expansion of the VR asset 

repository since the design of new 3D models using CAD or equivalent software is a relatively 

time-consuming task. Although it is possible to evaluate detection and recognition algorithms 

using real-world images, the simulation capabilities in the 3D space are still limited. To this end, 

we aim to extend the framework to automatically translate the spatial information found in objects 

obtained from RGB-D images in the 3D space of the virtual environment. 
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Finally, in the context of the ASML architecture, limitation of the architecture, one could consider 

its inability to automatically identify the software requirements of each task, which can result into 

dependency issues. To solve this problem, the tasks are required to include labels to indicate which 

software dependencies are required by the task. Another limitation of the architecture is that 

processors are considered as black boxes and only the workers are informed about what input and 

output can be accepted. As a result, the API has no way of knowing if an input or output data source 

handler is compatible with a declared processor. This can result into situations where invalid tasks 

are successfully created and queued to the system, failing later, when they are picked by a worker. 

Although this can be resolved by including documentation for each processor, we plan to include 

automation validation prior task execution. The architecture can utilize platforms specifically 

designed for parallel process execution in a multi-host environment, such as Spark (Zaharia et al. 

2010); however, configuring these platforms still requires advanced technical knowledge and skills. 

To cope with this issue, within our future research prospects is to extend the proposed system 

architecture to include automated host clustering, enabling parallel task execution without special 

configuration. An open access implementation of the proposed system architecture is planned for 

distribution to the wider research community. 

Deep learning continues to evolve at a rapid pace. Future research directions include:  

• Methodologies that improve the generalization performance of DNNs with minimal training 

samples. Such methods include advanced data-augmentation techniques, such as the use of 

GANs to synthesize images for training data expansion.  

• DNNs with minimal computational footprint, which is important for applications in low-

powered embedded devices, such as the ones powering the upcoming Internet of Things 

(IoT). The first step towards that was the minimization of the number of free parameters of 

the network. While effective, such methods can degrade the overall generalization 

performance. Methods such as automated DNN architecture search and post-training neuron 

ablation based on their contribution are promising as they can enable networks to grow 

deeper.  

• The use of fuzzy logic in deep learning can be an effective tool to increase classification 

performance of existing networks. An interesting direction is to use fuzzy logic in other 

components of CNN architectures, such as the convolution layer and input pre-processing.  

• Although the photo-realistic image synthesis performance of GANs is remarkable, they are 

still relatively hard to train. Problems such as, convergence detection and model collapsing 

are still open. Towards coping with such problems, more advanced loss functions need to be 

investigated.  
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