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Abstract

Recent computer vision research has demonstrated that deep convolutional neural net-
works can be trained on real images to add context to object parts for simultaneous object
detection and affordance segmentation. However, generating such a dataset with expensive
hand annotations for pixel-wise labels presents a challenge for training deep convolutional
neural networks. In this thesis, a method to automate dataset generation of real and
synthetic images with ground truth annotations for affordance detection and object part
6-DoF pose is presented. A variant of Mask R-CNN is implemented and trained to perform
affordance detection and integrated within DenseFusion, a two-stage framework for 6-DoF
pose estimation. The primary contribution of this work is to experimentally evaluate 6-
DoF pose estimation with object segmentation and affordance detection, which was done
on the YCB-Video benchmark dataset and the ARL AffPose dataset. It was demonstrated
that 6-DoF pose estimation with object segmentation slightly outperforms pose estimation
with affordance detection, as the latter operates on a subset of RGB-D data. However, the
advantage of pose estimation with affordance detection is realized when the trained model
is deployed on a robotic platform to grasp complex objects, such that an 11% improvement
in terms of grasp success rate was experimentally demonstrated for a power drill.
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Chapter 1

Introduction

Perception and manipulation is trivial for many humans as prior experience can be lever-
aged to help one understand the contents of a scene (i.e. objects of interest) as well as the
functionalities of certain objects (i.e. affordances). However, autonomous agents are cur-
rently limited to simplified and structured environments to allow for successful completion
of pick and place tasks. To this end, methods for scene understanding applied to 6-DoF
pose estimation in the context of robotic grasping are reviewed in this thesis. Fast and
robust 6-DoF pose estimation is essential for any autonomous agent to physically interact
with its environment, which has been exemplified by the Amazon Picking Challenge [1].
Accurate pose estimation also has widespread applications in domains such as augmented
reality [2] and autonomous driving [3, 4].

Affordance detection [5] is highly useful for determining what actions can be performed
on which object(s) where in a given scene. Recent computer vision research has demon-
strated that deep Convolutional Neural Networks (CNN), such as AffordanceNet [6], can
be trained on real images to add context to object parts for simultaneous object detection
and affordance segmentation. As such, the different functionalities of an object should be
identified and localized through feature learning techniques (CNN-based models), which
then provides context to estimate the Six Degrees of Freedom (6-DoF) pose of an object
(Fig. 1.1). Note that the right hand coordinate (RHS) system is used throughout this
thesis with a consistent colour scheme such that the x-axis is in red, y-axis is in green and
z-axis is in blue.

One limitation of current state-of-the-art frameworks for 6-DoF pose estimation, such
as DenseFusion [7], is that 6-DoF pose is estimated to the centroid of the 3D bounding
volume that contains an object. In the context of robotic grasping, this information may
lead to a failed grasp attempt if the centroid of the 3D bounding volume does not lie on
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the object itself. Thus, performance for robotic grasping can be improved if 6-DoF pose is
estimated to object parts that are well suited for grasping, such as the handle of a mallet
(Fig. 1.1).

(a) Object Segmentation (b) Affordance Detection

Figure 1.1: Comparison of Object Segmentation and Affordance Detection. The colour of
the mask represents the affordance label. Grasp: purple; pound: light green.

However, deploying Deep Learning (DL) frameworks to applications of interest is chal-
lenging as data driven approaches require large datasets with a wide variety of high quality
images. Recent work [8] for detecting object affordances has focused efforts at a pixel-wise
level, which requires labor-intensive, manual annotations. Such an approach tends to in-
duce bias into a trained model(s) as one overfits to a tiny subset of objects in the real-world.
Generalization with DL remains as an issue, but one could supplement real images with
recent trends to generate synthetic images [9], which allows for environments that can be
easily altered in terms of background scenes, lighting conditions, etc.

In this thesis, real and synthetic images are leveraged to generate a large dataset to
evaluate performance for 6-DoF pose estimation with object segmentation and affordance
segmentation. The foundation of this work is based on Mask R-CNN [10] for object seg-
mentation, AffordanceNet [6] for affordance detection and DenseFusion [7] for 6-DoF pose
estimation. Lastly, a ROS node was developed and deployed to experimentally validate
two pipelines for pose estimation on a robotic platform using a 7-DoF Barrett WAM arm
and 8-DoF BarrettHand.
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1.1 Contributions

The primary contribution of this work is an experimental evaluation of performance for 6-
DoF pose estimation with object segmentation and affordance detection. In order to do so,
a post-processing technique was developed to generate desired ground truth annotations,
namely affordance labels and object part 6-DoF poses, from object 6-DoF poses. The
post-processing technique was first applied to the YCB-Video dataset [11], which is a
benchmark dataset for 6-DoF pose estimation. Similarly, the post-processing technique
was also applied to a dataset generated in this thesis, which contains over 100K real and
synthetic images with ground truth annotations for object segmentation and 6-DoF pose
estimation. Note that all annotations were auto-generated using 3D object mesh files. To
the best of our knowledge [8, 12], this is the first dataset with ground truth affordance labels
for robotic manipulation that was not generated from manual, pixel-wise annotations. The
contributions can be summarized as follows:

• Experimental evaluation of performance for 6-DoF pose estimation with object seg-
mentation and affordance detection.

• A post-processing technique to generate ground truth annotations for affordance
labels and object part 6-DoF poses from object 6-DoF poses.

• A dataset which contains over 100K real and synthetic images with 11 different
household objects and 9 different affordance labels.

1.2 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 provides insight to previous works for 6-DoF pose estimation, namely
classical methods and modern frameworks that leverage DL. The affordance detection
problem is later formulated and contrasted against object segmentation. This chapter
ends with a discussion on benchmark datasets for affordance detection or 6-DoF pose
estimation that leverage real, synthetic, or a mixture of real and synthetic images.

• Chapter 3 outlines a method for generating desired ground truth annotations, namely
affordance labels and object part 6-DoF poses, from object 6-DoF poses. A dataset
with real and synthetic images is also auto-generated, which contains ground truth
annotations for object segmentation and 6-DoF pose.
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• Next, in Chapter 4, performance for 6-DoF pose estimation with object segmentation
and affordance detection is evaluated on real, synthetic and a mixture of real and
synthetic images.

• Chapter 5 extends an experimental evaluation as trained models are deployed on a
robotic platform for grasping experiments.

• Lastly, Chapter 6 provides a summary of this work as well as a discussion of short-
comings and directions for future work.
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Chapter 2

Literature Review

This chapter outlines classical techniques for 6-DoF pose estimation, which lays the foun-
dation to better understand more modern techniques that leverage DL. The pinhole camera
model is described first as it outlines the mathematical relationship for projecting points
in 3D space to the image plane. Generally, classical techniques for 6-DoF pose estima-
tion obtain the estimated pose from a single image by computing a relationship between
coordinates in 3D space and the image plane. Approaches that use 3D point cloud data,
such as Iterative Closest Point (ICP), take advantage of a 3D model to compute a trans-
form between the scene (target) and the model (source) using registration algorithms. This
chapter ends with a discussion on DL frameworks for 6-DoF pose estimation and affordance
detection as well as real and synthetic datasets for training such networks.

2.1 Pinhole Camera Model

Image formation for the pinhole camera model requires a projection of 3D points in the
camera frame FC onto the image plane Fi (Fig. 2.1). The focal point is the point at which
all rays pass through the camera origin, the principal axis z extends from the camera origin
perpendicular to the image plane, and the principal point lies at the intersection of the
principal axis and the image plane. Horizon fu and vertical fy focal lengths are represented
as the horizontal and vertical distance in terms of image plane pixels between the camera
center and image plane.

If a ray is followed from the camera origin or focal point, similar triangles can be used
to show that a 3D point P = [X, Y, Z] in the camera coordinate frame can be projected
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Figure 2.1: The Pinhole Camera Model taken from [13]

onto a 2D point p = (u, v) on the image plane (Fig. 2.1). Horizontal u0 and vertical v0
offsets can be added if the image coordinate frame is not at the principal point:

p = [u, v] =

[
fu

X

Z
+ u0, fv

Y

Z
+ v0

]
(2.1)

It is convention to define the origin of non-negative pixel coordinates (u, v) at the top-
left hand corner of the image plane (Fig. 2.2). Thus, two translation vectors cx, cy can be
used to offset points on the image plane, which have their origin defined at the principal
point. Equation 2.1 can be rewritten as a projection matrix or camera calibration matrix
K using homogeneous coordinates:
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ph =

fu 0 cx
0 fv cy
0 0 1


︸ ︷︷ ︸

K

[I|0]Ph (2.2)

2.2 6-DoF Pose Estimation

The above discussion on the projection of an object 3D point cloud to the image plane
is only valid if the point cloud exists in the camera frame FC . The camera’s extrinsic
parameters, or 6-DoF pose T ∈ SE(3), which is composed of a rotation matrix (roll, pitch
and yaw) in R ∈ SO(3) and a translation vector t ∈ R3, is required to transform the object
point cloud from the world frame FW to the camera frame FC . Thus, given an object point
cloud in the world frame FW , the point cloud in the camera frame FC projected onto the
image plane can be computed as:

uv
1

 =

fx 0 cx
0 fy cy
0 0 1


︸ ︷︷ ︸
Intrinsics K


R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1


︸ ︷︷ ︸
Extrinsics T = [R|t]


X
Y
Z
1

 (2.3)

This thesis is focused on robust methods to estimate the object pose with respect to
the camera frame FC from a single image. The camera intrinsic matrix K can be computed
using existing camera calibration methods such as OpenCV’s checkerboard based method.
It is assumed that the 3D model of the object is available and that the canonical frame of
the object is defined in the world frame FW .

Issues with robust 6-DoF pose estimation arise from cluttered scenes, occlusion, and
varying lighting conditions [7, 11]. Objects that are rotationally symmetric about an
axis, such as a bowl, are also challenging as different orientations can generate identical
observations.
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Figure 2.2: Overview of 6-DoF Pose Estimation taken from [14]

2.3 Classical Pose Estimation

Classical methods for 6-DoF pose estimation can be broadly classified as template-based
methods [15, 16, 17] or feature-based methods [7, 11, 18, 19, 20].

2.3.1 Template Matching

For template-based methods, a template is first obtained by rendering a 3D model, which is
then used to compute correspondences between the scene (target) and the model (source)
point clouds. At each location in the image, correspondences are then scored using a
similarity function, such as gradient orientation [15] or surface normals [16], and the pose
hypothesis with the best score is selected. Template-based methods are useful in detecting
texture-less objects but sensitive to large changes in appearance, as the template will have
low similarity scores. Lastly, template-based methods are either sampling based or iterative
in nature, which hinders real-time applications.
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2.3.2 Perspective-n-Point

For feature-based methods, local features are extracted from keypoints. Classical methods
for pose estimation, which use feature extractors such as Scale Invariant Feature Transform
(SIFT) [21] or Speeded-Up Robust Features (SURF) [22], rely on detecting and matching
keypoints with known object models. Thus, the Perspective-n-Point (PnP) problem can
be formulated as given a set of 3D object points Oi in the world frame FW along with their
2D projection oi onto the image plane, the object pose [R|t] is estimated with respect to a
calibrated camera (Fig. 2.3).

PnP is a well studied problem in computer vision and is formulated as a non-linear least
squares minimization [14]. The classical solution outlined in [23] requires 3 corresponding
points (i.e. P3P), which is sensitive to noise. Accuracy for PnP can be improved by
including more than 3 correspondences (i.e. EPnP), which expresses multiple points as
a weighted sum of four virtual control points. Random Sample Consensus (RANSAC)
[24] is also commonly used for outlier rejection with EPnP, which repeats the algorithm
on different correspondences and selects the pose with the smallest square error. That
said, implementing EPnP with RANSAC would be too slow for real-time deployment. A
comprehensive review of PnP algorithms is outlined in [14].

In practice, a registration step is also required prior to deploying PnP, to determine n
correspondences between features on the image plane and points from an object 3D model
in the world frame FW . Registration can be done offline with a known ground truth pose
of the object, as outlined in OpenCV’s tutorial for real Time pose estimation of a textured
object.

PnP is still widely used in many deep learning frameworks for 6-DoF pose estimation
today [11, 18, 19] but feature extractors swap classical algorithms, such as SIFT [21] or
SURF [22], for more powerful and robust CNNs. PnP often fails to match noisy keypoints,
which leads to wrong data associations between 2D and 3D pairs, when the reference image
is different to the current frame.

2.3.3 Iterative Closest Point

Iterative Closest Point (ICP) is a registration algorithm often used to align two sets of point
clouds in a given sensor frame [25]. As such, ICP find correspondences between a scene
point cloud and a 3D model by first computing and later matching distinct features on the
two sets of point clouds (Fig. 2.4). Note that an initial pose estimate [R̂|t̂] is required to
compute the error distance for each sampled point in (2.4). The iterative process of finding
correspondences and computing the error distance is repeated until a criterion is satisfied.
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Figure 2.3: Illustration of the Perspective-n-Point Algorithm taken from [14]

d =
1

N

N∑
i=1

∥yi − (R̂xi + t̂)∥ (2.4)

To this end, ICP is often used with PnP to refine an initial pose estimate by incorporat-
ing depth information given by an infrared sensor (e.g. Microsoft Kinect) or stereo-vision
camera (e.g. Stereolab ZED) [11, 26]. ICP often fails if the initial pose estimation is poor
or if the two point clouds are dissimilar, such as trying to refine an object pose without
first segmenting the object from the scene (Fig. 2.4). Note that segmenting an object
of interest from the scene would increase the accuracy of feature matching. Thus, ICP is
typically used in learning-based methods for which segmentation masks are made available
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[11, 26]. However, implementing ICP is too slow for real-time deployment as it is iterative
in nature and operates on expensive 3D point clouds.

2.4 Learning-Based Pose Estimation

2.4.1 RGB Architectures

As previously mentioned in Section 2.3, classical methods rely on detecting and matching
keypoints with known object models. More recently, the trend has been to learn robust
keypoints, descriptors, and matching through a large number of sample images [11, 18, 19].
Frameworks such as Deep Object Pose Estimation (DOPE) [18] learn points of interest via
2D heatmaps of where a keypoint is located (i.e. belief maps). An alternative to learning
sparse keypoints is offered by dense methods in Pixel-wise Voting Network (PVNet) [19],
which predict unit vectors pointing to keypoints for each pixel. The latter has been more
effective in estimating pose under heavy occlusion [19]. Thus, the PnP algorithm is still
widely used in many deep learning frameworks for 6-DoF pose estimation today and such
frameworks can be deployed in real-time [18, 19].

Different to the above approaches, which leverage PnP, frameworks such as PoseCNN
[11] directly regress the 6-DoF pose of an object. The first stage of PoseCNN is object
segmentation. As such, segmentation masks provide us with rich information about an
object relative to spare keypoints, but can introduce additional errors if an object mask
contains pixels of another object or background [7, 27]. PoseCNN uses object labels from
a segmentation mask to predict a unit vector from each pixel to the center of each object.
Hough voting is then used to estimate the 2D pixel coordinates of an object centroid,
which is combined with a separate estimate of the depth to an object centroid, to recover
an object 3D translation vector t. Lastly, the 3D Rotation R is estimated by regressing
convolutional features inside an object bounding box to a quaternion representation of R.
However, as the authors of DOPE [18] highlight, directly regressing the pose can lead to
additional errors when deploying a trained model with a different camera as the network
can overfit to the camera intrinsics.

2.4.2 Heterogeneous RGB-D Architectures

One of the main issues with architectures, such as DOPE [18] or PVNet [19], that utilize
only 2D RGB images is that they can perform poorly in terms of accuracy, as errors that
are small on the image plane can be large in 3D space. Sources of error stem from the fact
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(a) Depth Image

(b) Segmentation Mask

(c) Mallets 3D Mesh

(d) Scene Point Cloud

(e) ICP-fitting of the Mallet

Figure 2.4: Human Assisted ICP-fitting of the Mallets 3D Mesh to a 3D Reconstructed
Scene
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that obtaining 2D-3D correspondences from local patches can be difficult and that different
keypoints in 3D space may overlap after projection onto the image plane [20]. To address
this problem, frameworks such as PoseCNN [11] use depth images and ICP to refine an
initial pose estimate. However, making full use of 3D input is an expensive post-processing
step as runtime for PoseCNN+ICP is reportedly 10.6 s per image [7], which is two orders
of magnitudes off from real-time implementation. However, it is clear from the literature
[7, 11, 20] that heterogeneous architectures that fuse 2D RGB features with 3D point cloud
features outperform architectures that only use 2D RGB features in terms of accuracy.

Figure 2.5 displays an overview of DenseFusion, which is a two-stage framework for
pose estimation that operates on 2D and 3D features. The first stage leverages instance
segmentation which produces region proposals and segmentation masks for objects of in-
terests. To this end, performance for DenseFusion is highly dependent on the accuracy
of the framework used for object segmentation. The authors of [27] highlight that object
boundaries are most susceptible to errors with segmentation as pixels can be incorrectly
classified as the background. As a result, detailed information about the structure of an
object is lost or smoothed. The second stage operates only on regions of interest and depth
images are masked, as the entire 3D point cloud of the scene does not need to be processed,
to reduce computational costs. Cropped RGB image data (i.e. colour embeddings) and
masked point cloud data (i.e. geometric embeddings) are later processed independently by
a CNN and a PointNet like architecture.

The authors of DenseFusion [7] highlight that blindly fusing 2D and 3D features could
degrade performance under heavy occlusion and/or segmentation errors as features may
contain pixels or points on other objects or parts of the background. Color and geometric
features are instead fused locally using a pixel-wise fusion network based on unsupervised
confidence scoring (Fig. 2.5). As a result, DenseFusion produces a per-pixel pose esti-
mate and the most confident prediction is used to generate the final pose. The authors
of DenseFusion [7] investigated the robustness of their model towards occlusion such that
performance does not degrade with significantly greater levels of occlusion. Note this is
not the case for PoseCNN [11] and PointFusion [28]. PointFusion is similar to DenseFusion
as colour and geometric embeddings are fused in a heterogeneous architecture, but Dense-
Fusion significantly outperforms PointFusion’s global fusion of 2D RGB and 3D depth
features [7]. DenseFusion can also further refine a pose estimate with an iterative refine-
ment module that does not significantly increase computational costs [7]. Note that the
authors of DenseFusion report a 200x improvement in terms of runtime (e.g. 0.06 s per
image), which is near real-time implementation, as compared to PoseCNN+ICP [7].

Of the different ways to fuse RGB and depth modalities [29, 30], using depth as an
additional channel to RGB input (i.e. early-fusion) is the most simplistic method. Previous
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Figure 2.5: Overview of the DenseFusion Framework taken from [7]

works [29] highlight that one encoder cannot simultaneously extract features from RGB
and depth images. To solve this, one can use two encoders, one for RGB features and one
for depth features, and concatenate features later in the network (i.e. late-fusion). This
effectively doubles the number of parameters for the backbone feature extractor and fusing
heterogeneous features may introduce deviating statistics into the network, which may not
lead to an improvement in preformance.

For 3D recognition tasks, such as 6-DoF pose estimation, point clouds are an important
geometric data structure [31]. However, different to processing regular input data such as
RGB features, effectively representing a point cloud is challenging as it is an unordered
set of vectors. PointNet [31] pioneered the use of max pooling to achieve permutation
invariance in processing sets of unordered 3D point clouds. PointNet has many desirable
properties, such as avoiding lossy operations by discretizing a point cloud into voxels, and
it scales linearly with the number of input points [31]. An overview of PointNet is outlined
in [31].
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2.4.3 Discussion

In selecting a 6-DoF pose estimation framework for robotic grasping, it is important to
consider the trade-off between runtime and accuracy. Note that it is not always possible
to deploy state-of-the-art computer vision research on constrained hardware. From the
literature [7, 11], incorporating depth information generally improves performance for 6-
DoF pose estimation but missing pixels on shiny surfaces or translucent objects can also
degrade performance. The advantages and disadvantages of learning based methods for
6-DoF pose estimation are summarized in Table 2.1.

Table 2.1: Pros and Cons of Several 6-DoF Pose Estimation Frameworks

Pros Cons
DOPE (RGB) [18] • Train only on synthetic

images
• Sparse keypoints can lead to
larger errors

PoseCNN • Dense RGB features • Slow ICP refinement of an
(RGB-D) [11] initial pose estimate
DenseFusion • High Accuracy • Incorporating depth could
(RGB-D) [7] • Fast Runtime degrade performance

Nonetheless, all previously mentioned frameworks for pose estimation predict the 3D
translation vector t to the centroid of the 3D bounding volume that contains an object.
This may be appropriate to grasp simple objects but not for more complex objects such as
a power drill (Fig. 2.5). A key issue is addressed in this thesis to improve pose estimation
in the context of robotic grasping with scene understanding. It is proposed that this
approach can be applied to any two-staged framework for 6-DoF pose estimation, such as
DenseFusion [7].

2.5 Visual Affordance for Robotic Manipulation

The concept of affordances was first introduced by the psychologist James Gibson in 1966
[5]. Affordance detection is highly useful for determining what actions can be performed
on which object(s) where in a given scene. Different to visual (e.g. color, texture or shape)
and/or physical (e.g. weight) properties, affordance detection allows an autonomous agent
to learn intelligent interactions with an object to assist humans in various tasks.

Of the different ways to model visual affordance [5], pixel-wise labels are considered,
similar to previous work [6], as state-of-the-art object segmentation networks can be lever-
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aged. However, affordance detection is a more challenging problem than object segmen-
tation as a single object can take on multiple labels, such as grasp and pound (Fig. 1.1),
which introduces problems such as ranking, correlation and dependency [32]. An object
affordances can also be dynamic and an autonomous agent should consider prior knowledge
(e.g. a hammer may be first ’graspable’ then ’poundable’).

Lastly, an affordance detection framework should run in real-time and generalize well
to objects in new environments and/or novel objects.

2.5.1 Object Segmentation vs Affordance Detection

The problem of understanding affordances at a pixel-wise level is referred to as “object
part labelling” by the computer vision community or “affordance detection” by robotic
researchers. Roboticists place emphasis on object parts that an agent can interact with
while the concept of affordances is not restricted solely to objects, such as a street, by the
computer vision community. A comprehensive review of visual affordance is outlined in
[5].

The rise of deep learning has vastly allowed for near real-time affordance detection
frameworks with encoder-decoder architectures such as AffordanceNet [6]. To this end,
the different functionalities of an object should be identified and localized through fea-
ture learning techniques (CNN-based models), which then provides context to estimate a
suitable grasp location (Fig. 1.1).

The task of task of object segmentation and affordance detection are formalized in
Table 2.2, such that they both leverage object detection frameworks. Mask R-CNN [10] is
an extension of prior works, such as Faster R-CNN [33], for region proposal based object
detectors. There are two main stages to Mask R-CNN, the first leverages a Region Proposal
Network (RPN) to propose candidate object bounding boxes. The latter operates on low
resolution feature maps to simultaneously predict three outputs:

1. Classify each object in an image, Lobject class

2. Regress bounding box offsets to localize 2D positions of each object, Lbounding box

3. Classify each pixel within each bounding box to its most probable object label, Lmask

The key difference between object segmentation and affordance detection lies within
the mask branch, such that the former segments a single object label whereas affordance
detection segments one or multiple affordance labels (Fig. 1.1). To classify each pixel
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within an object bounding box to its most probable affordance label, affordance detection
frameworks, such as AffordanceNet [6], leverage object segmentation networks, such as
Mask R-CNN [10].

Table 2.2: Learning Objectives for Object Segmentation and Affordance Detection

Object Segmentation Affordance Detection
Lobject class 1. Classify each object in the scene 1. Classify each object in the scene
Lbounding box 2. Localize each object in the scene 2. Localize each object in the scene
Lmask 3. Label pixels corresponding to

each object
3. Label pixels corresponding to
each affordance

2.6 Real and Synthetic Datasets for Learning-based

Methods

One key issue addressed in this study is how to generate effective datasets with ground
truth annotations for affordance labels and object part 6-DoF poses. Ultimately, trained
models should learn inherent features of objects robust to varying backgrounds and lighting
conditions. Previous work for generating real datasets investigated the effects of single vs
multi- object scenes, number of background environments and frame rate on performance
[34]. The authors of [35] also explored the effects of collecting a dataset with multiple
cameras, all with different camera intrinsic matrices. In this section, several benchmark
datasets are presented, which contain either ground truth annotations for affordance de-
tection [8, 12] or 6-DoF pose estimation [9, 11] but not both.

Affordance Detection

The authors of [6] applied AffordanceNet to the University of Maryland (UMD) dataset
[8], which consists of 105 kitchen, workshop and garden objects. The UMD dataset con-
tains approximately 30k RGB-depth-affordance mask trios, whereby each affordance mask
contains pixel-wise, hand annotations. However, as the authors of AffordanceNet [6] high-
light, the UMD dataset contains only one object in each image without clutter or occlusion,
which is a convenient way for researchers to frame the affordance detection problem. Many
real-world, robotic applications, such as the Amazon Picking Challenge [1], contain scenes
with heavy clutter and occlusion. The authors of [6] also deployed AffordanceNet to the
IIT-AFF dataset [12], but this dataset contains less than 10K images.
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It is well known that deep frameworks require large datasets with high quality images to
generalize well. Hand annotations for pixel-wise affordance labels limits the generation of
such datasets, as [36] reported 35 hours of work to hand annotate 800 images. Prior work
in affordance detection [5] have tried to overcome the issue of hand annotations through
semi-supervised learning or transfer tables to map object parts to affordance labels. The
first study required a human in each scene to represent context, while the second crafted a
custom lookup table to map object parts to affordance labels. As performance for CNNs
is typically tied to how representative the training data is of the true data, practitioners
should avoid generating a new dataset for every environment they wish to deploy a trained
model in. As trained models will normally be deployed in real settings, which follows a
different distribution from synthetic datasets, one typically observes a drop in performance,
or the reality gap [18], if the model is trained solely on synthetic images. Adversarial
learning frameworks such as [37, 38] may decrease the reality gap, but not to the same
extent as fine-tuning a network on real images [36]. For instance, [36] studied the use of
synthetic images on supervised training of a Mask R-CNN framework for category-agnostic
instance segmentation whereby the network was trained on 50K synthetic depth images.
However, 800 real images were required to fine-tune the network to bridge the drop in
performance, or reality gap, when exposing real images to models trained on synthetic
images.

6-DoF Pose

The authors of DOPE [18] developed NVIDIA’s Deep learning Dataset Synthesizer (NDDS)
plugin for NVIDIA’s Unreal Engine 4 (UE4), which auto-generates photorealistic (PR) or
domain randomized (DR) images. NDDS exports metadata throughout scene capturing,
namely RGB-depth-segmentation mask trios and 6-DoF pose, for each object in an image.
This work led to the creation of the Falling Things (FAT) dataset [9], which is a synthetic
dataset with ground truth annotations for object segmentation and 6-DoF pose estimation.
The aim of this work was to leverage synthetic images to train DOPE to demonstrate that
the reality gap can be bridged by a simple combination, such as a 50/50 split, of PR and DR
images. PR images were generated across 3 different domains with physical constraints and
DR images were generated with random distractors, textures, backgrounds, object poses,
and lighting conditions. The authors of DOPE [18] reported that their simple architecture,
which was trained solely on synthetic data, achieved similar results to PoseCNN, which
was trained on a mixture of real and synthetic images. However, DOPE operates solely
on RGB images and depth images can be more difficult to simulate as they can contain
missing pixels. It is proposed that similar results to DOPE may not be achieved with a
pose estimation framework that operates on RGB-D data, which will be verified later in
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Chapter 4.

PoseCNN was trained on the YCB-Video dataset [11], which contains 19,138 real and
80,000 synthetic images. Images were captured or simulated with an Asus Xtion Pro Live
at a cropped resolution of 640x480. Note, 92 videos were used to generate real images and
synthetic images were generated by randomly placing objects in an image with a black
background. Each scene contains 3 to 9 objects, selected from 21 different YCB objects
[39], with varying levels of occlusion or clutter. The authors of the YCB-Video dataset
auto-generate annotations by manually specifying the pose of each object using 3D mesh
files in the first frame of each video. Ground truth annotations suffer from errors such
as rolling shutter of the RGB sensor, inaccuracies in the object models, slight asynchrony
between RGB and depth sensors, and uncertainties in the intrinsic and extrinsic parameters
of the cameras [11]. However, this level of error is accepted in the literature [7, 27].

Leveraging Real and Synthetic Images

Traditionally, previous works have used real datasets for affordance detection [8, 12] and
6-DoF pose estimation [16]. However, real datasets can be limited in the number of high
quality images, such as IIT-AFF [12], or can only provide a limited range of object poses,
backgrounds and lighting conditions, such as the LINEMOD dataset [16]. Recent work for
object segmentation has reduced the annotation effort by pre-training on a large number
of synthetic images and later fine-tuning on a small number of real images [36]. More
ambitious work for affordance detection has attempted to train a model solely on synthetic
images [40], but there still exists a large drop in performance when exposing the model to
real images. For 6-DoF pose estimation, previous work for RGB frameworks have trained
solely on synthetic images [18]. However, it is more common for RGB-D frameworks to
train on a dataset with a mixture of real and synthetic images. The advantages and
disadvantages of real and synthetic images are summarized in Table 2.3.

In closing, it is proposed that synthetic datasets can supplement, and not replace, real
datasets. The gap between synthetic and real images will continue to decrease as rendering
techniques in simulators, such as UE4, improve. However, it remains extremely challenging
to evaluate the effectiveness of a synthetic dataset with quantitative measures. Work such
as the FAT dataset [9] has provided researchers with intuition and tools to generate more
effective synthetic datasets. However, model performance remains to be the best measure
for the effectiveness of a synthetic dataset.
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Table 2.3: Pros and Cons of Real and Synthetic Images

Pros Cons
Real • High utility • Computationally expensive to

manually label
Synthetic • Computationally inexpensive to

generate a wide variety of object
poses, background and lighting
conditions

• Domain Shift (i.e. reality gap)
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Chapter 3

Generating Real and Synthetic
RGB-D Datasets

From the literature, no existing dataset contains both ground truth annotations for affor-
dance labels and object part 6-DoF poses. It was also observed that no benchmark dataset
for affordance detection, such as UMD [8] or IIT-AFF [12], contains a large number of
annotated scenes with cutter as pixel-wise, hand annotations is labor-intensive.

The main contributions of this chapter is two-fold. A post-processing technique is
presented first, which generates desired ground truth annotations, namely affordance labels
and object part 6-DoF poses, from object 6-DoF poses. This method was applied to
the YCB-Video dataset [11], which natively contains ground truth annotations for object
segmentation and 6-DoF pose. Afterwards, methods to auto-generate real and synthetic
images were leveraged to generate a dataset, which contains over 100K real and synthetic
images with 11 different household objects and 9 different affordance labels. Both datasets
were used throughout Chapter 4 to evaluate performance for 6-DoF pose estimation with
object segmentation and affordance detection.

3.1 Overview

Following an approach similar to the YCB-Video dataset [11], a Stereolab ZED camera
was used to auto-generate a dataset with real and synthetic images, which contains ground
truth annotations for object segmentation and 6-DoF pose. A post-processing technique
was later applied to generate desired ground truth annotations, namely affordance labels
and object part 6-DoF poses.
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In this thesis, it was assumed that 6-DoF pose is estimated to known objects for which
3D mesh files are made available a priori. As such, 5 common household tools were selected,
as they can easily be grasped, along with 6 YCB objects from the YCB-Video dataset to
generate a dataset (Fig. 3.1). Mesh files for these 11 objects were either generated or
publicly available as it will be discussed in this chapter.

The canonical frame of object parts that were well suited for grasping are displayed
in Figure 3.1. Physical constraints of a three-finger gripper, such as a BarrettHand, were
considered in selecting which object part to grasp. For instance, it would be difficult for a
three-finger gripper to grasp the handle of the mug or pitcher.

Stereolab ZED Camera

A Stereolab ZED camera, or stereo vision, was used throughout dataset generation and
later to provide visual input to the robot. Infrared sensors are also commonly used in
the literature, such as an Asus Xtion RGB-D sensor [11], but they are limited to indoor
applications, whereas stereo vision can operate in both indoor and outdoor environments.

The ZED camera has a pair of RGB cameras fixed at a baseline distance from one
another (Fig. 3.2). Using the two viewpoints, or triangulation, an associated depth map
is computed from left and right RGB images. The depth map expresses distance as a 16
bit integer and the effective depth range is approximately 0.5 m to 20 m. In this thesis,
rectified RGB-D images are used as combining RGB and depth modalities can improve
performance for 6-DoF pose estimation [11]. However, depth images can contain missing
pixels from objects that are transparent or glossy and/or objects that are too close or too
distant.

Blender

As previously mentioned, the object 3D mesh file was required to auto-generate ground
truth annotations for object segmentation and 6-DoF pose estimation. The authors of
[18] highlight that the object mesh in a simulator, such as Blender, must be equal to the
object dimensions in reality. To this end, objects were limited to one instance in dataset
generation. It is possible for one to generate a dataset with 20 different instances of an
object, such as a mug, but one would also require the object mesh for each instance of that
object.

Mesh files for the 5 household objects in dataset generation were scanned based on a
miniaturized projection technique. Canonical frames for each object were defined to be
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(b) Affordance Masks with Centroids located at Object Part Center of Mass. The
colour of the mask represents the affordance label. Grasp: purple; screw: orange;
scoop: yellow; pound: light green; support: green; cut: teal; wrap-grasp: light blue;
contain: dark blue; clamp: red.

Figure 3.1: Display of the 11 Objects from the ARL AffPose Dataset
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Figure 3.2: Stereolab ZED Camera mounted on a 7-DoF Barrett WAM Arm used through-
out Dataset Generation (left) and Human Assisted ICP-fitting of the Power Drill (right)

the object center of mass, which was determined from the object volume in Blender (Fig.
3.1). Similarly, the remaining 6 YCB objects have publicly available mesh files, such that
the object centroids are also defined to be the object center of mass.

Object parts were then sectioned in Blender to contextualize different functionalities
(i.e. affordances). For instance, the mallet was sectioned into its handle for grasping and
head for pounding (Fig. 3.3). The canonical frame for an object part was also aligned to
the object part center of mass (Fig. 3.3).

Post-processing for an Object Part 6-DoF Pose

To generate desired ground truth annotations, which were affordance labels and object
part 6-DoF poses, from object 6-DoF poses, three mesh files were prepared in Blender:

1. Object mesh with the centroid aligned to the object center of mass (Fig. 3.3a)
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2. Object part mesh with the centroid aligned to the object center of mass (Fig. 3.3b)

3. Object part mesh with the centroid aligned to the object part center of mass (Fig.
3.3c)

Blender was then used to determine the exact translation from the object to the object
part coordinate frame (Fig. 3.3b and Fig. 3.3c). It is proposed that no additional sources
of error was introduced in generating an object part 6-DoF pose as Blender was leveraged
to determine the exact transformation.

Once an object part 6-DoF pose is known, an object part point cloud can be projected
onto the image plane, with known camera instrinsics, to generate an affordance mask. In
this thesis, each object part was assigned a single, static affordance label. It is assumed
that it would be easy to re-assign an affordance label based on an action primitive with an
object part 6-DoF pose relative to pixel-wise, hand annotations.

YCB-Video Dataset

Prior to dataset generation, 3D mesh files for the 21 YCB objects in the YCB-Video dataset
were post-processed to generate desired ground truth annotations (Fig. 3.4). Note that the
YCB-Video dataset, which natively contains ground truth annotations for object segmen-
tation and 6-DoF pose, and 3D mesh files were publicly available online. For the 21 YCB
objects in the YCB-video dataset, 14 YCB objects inherit a single affordance label, such
as wrap-grasp for the banana or soup can (Fig. 3.4). Thus, these simple objects were not
included throughout dataset generation as scene understanding with object segmentation
or affordance detection provides the same information to grasp such objects.

Ultimately, affordance detection provides a more suitable grasp location for complex
objects such as the power drill (Fig. 3.5). Note that the distribution of affordance labels,
such as the wrap-grasp in teal, is highly unbalanced relative to the distribution of object
labels in the YCB-Video dataset (Fig. 3.5).

3.2 Generating Real Images using LabelFusion

In this work, annotations for real images were auto-generated similar to previous work such
as the YCB-video dataset [11]. The authors of [34] developed LabelFusion, which leverages
ElasticFusion [41], a dense SLAM method to produce a 3D reconstruction of a scene from
a RGB-D video with multiple viewpoints (i.e. structure from motion). Human-assisted
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(a) Mallet Object

(b) Handle from Mallet Object in the Object Frame

(c) Handle from Mallet Object in the Object Part Frame

Figure 3.3: Display of the Canonical Frames for the Mallet in the ARL AffPose Dataset
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Figure 3.4: Display of the 21 YCB Objects from the YCB-Video Dataset taken from [11]

ICP-fitting was then used to align objects to the reconstructed scene to determine the final
6-DoF pose of the object (Fig. 3.5). With known camera intrinsics, labelled point clouds
can be back-projected to the image plane to generate object segmentation masks. The
entire annotation process took approximately 30 seconds per object in a simple scene and
up to 5 minutes per object in a cluttered scene per video. The authors of [34] reported
that it took only a few days to collect over 1,000,000 labelled images.

Objects, and not object parts, were aligned with ICP-fitting in 3D reconstructed scenes
and a post-processing technique was applied to generate affordance labels and object part
6-DoF poses (Fig. 3.2). This ultimately reduced the annotation effort in each scene and
avoided additional sources of error as ICP-fitting of object parts was extremely difficult.
It was observed that aligning object parts, which have smaller point clouds relative to an
object, led to larger errors with human assisted ICP-fitting in LabelFusion. For instance,
attempting to align object parts for screwdriver led to generated poses that were not
physically plausible, such that the x-axis (in red) of the screwdrivers handle and tool bit
were not aligned (Fig. 3.1).
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Figure 3.5: Display of Real Images from the YCB-Video dataset with Overlaid Masks and
6-DoF Pose. The colour of the mask represents the affordance label. Grasp: purple; screw:
orange; support: green; cut: teal; wrap-grasp: light blue; contain: dark blue; clamp: red.

Ultimately, the goal throughout dataset generation was to deploy a trained model(s) in
a lab environment with a ZED camera mounted on a robot. However, the objective was not
to produce an ad hoc dataset, which overfits a trained model(s) to a lab environment. Thus,
71 different videos were captured in household and lab environment to generate real images
(Fig. 3.6). Each of the 14 different scenes contains randomly selected foreground objects
and background clutter. Note that the dataset consists of 10 scenes from a household
environment, 3 scenes from a lab environment and only 1 scene in a lab environment with
a camera mounted on a manipulator (Fig. 3.6). Objects were also placed in random
orientations at random locations in each scene. Note that symmetrical objects, such as the
bowl, are difficult to align in 3D reconstructed scenes as an infinite number of poses can
lead to identical observation. Such objects are rotationally symmetric about an axis (e.g.
y-axis for the bowl) (Fig. 3.1).
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Figure 3.6: Display of Real (top) and Synthetic (bottom) Images from the ARL AffPose
dataset
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3.3 Generating Synthetic Images using NVIDIA’s Un-

real Engine

In this thesis, real images were supplemented with synthetic PR and DR images. Pro-
cedures from previous work, namely the FAT dataset [9], and resources from the online
GitHub community for NDDS and DOPE were used to generate synthetic images. Note
that the authors of DOPE [18] investigated performance with different mixtures of syn-
thetic images, for which performance was comparable as long as at least 40% of PR or DR
images were present. As such, a simple 50/50 split of PR and DR images was included
in this dataset (Fig. 3.6). 80 different videos were simulated throughout scene capturing
for synthetic images using a virtual camera with the same resolution and intrinsics as the
ZED camera used to capture real images. Objects were again placed randomly within 5
PR or 3 DR scenes with random orientations.

3.3.1 Photorealistic (PR) Images

Photorealistic images were auto-generated by placing randomly selected foreground objects
in each scene. The environments were custom-built in UE4 and modelled as standard
household environments or workspaces (Fig. 3.6). Lighting conditions from an indoor
spot light were constant in each scene but varied across each scene. Throughout scene
capturing the virtual camera was moved randomly with respect to a target volume, which
user-defined limits were set for the camera’s pitch and yaw angles and distance along the
camera’s z-axis.

3.3.2 Domain Randomized (DR) Images

Domain randomized images were auto-generated by placing randomly selected foreground
objects in a scene with a random background, which included solid colours, multi-colored
grid patterns or an image from the COCO dataset [42] (Fig. 3.6). Three random spot
lights were used to vary the lighting conditions throughout scene capturing. The virtual
camera for DR images also moved randomly throughout scene capturing similar to the
process outlined for PR images.
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3.4 ARL AffPose Dataset

Table 3.1 provides key statistics for the generated dataset, which was named the Advanced
Robotics Lab (ARL) Affordance Pose (AffPose) dataset.

The ARL AffPose dataset was generated by capturing 44,527 real RGB-D images across
14 different scenes and 79,661 synthetic RGB-D images across 5 PR scenes and 3 DR scenes.
Note, 8 out of 71 real videos were randomly held-out for testing images similar to previous
work [11]. All real or synthetic images were captured or simulated with a ZED camera
at a resolution of 1280 width × 720 height. Each scene contains 3 to 6 objects from 11
different objects (Fig. 3.1). Note that there exists a larger domain shift from synthetic to
real images, as compared to variation within real images from different scenes. Although
virtual environments were modeled to be similar to real scenes, the gap between synthetic
and real images will continue to decrease as rendering techniques in simulators, such as
UE4, improve.

For the annotation effort, approximately 15 hours were required to generate synthetic
images and 53 hours, or 45 minutes for each of the 71 videos, to generate real images. Note,
these time estimates do not account for time to become familiar with building custom envi-
ronments in UE4 or LabelFusion. It is proposed that the ability to generate a large number
of real images in a relatively short period of time, relative to pixel-wise, hand annotations
[8, 12], is crucial for deploying affordance detection frameworks in novel settings.

Table 3.1: Statistics from the ARL AffPose Dataset

Real Syn
Objects 11

Affordance Labels 9
Camera Stereolab ZED

Resolution 1280x720
Images 44,527 79,661
Scenes 14 8

Total Number of Videos 71 80
Held-out Videos for Testing 8 0

Min Object Count 3
Max Object Count 6
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3.5 Discussion

Accuracy of LabelFusion’s Ground Truth Annotations

As previously mentioned, generating ground truth annotations using methods such as La-
belFusion is widely accepted in the literature [11, 27]. For this reason, the accuracy of
ground truth annotations for 6-DoF pose was not evaluated. Future work could attempt
to do so using a Vicon motion capture system. However, to do so one must mount Vicon
markers on each object, which may introduce artificial features on each object (Fig. 3.7).
It is proposed that several tests could provide insight on the magnitude of error for Label-
Fusion, but this error would vary from scene to scene, as the ground truth 6-DoF pose is
dependent upon human-assisted ICP fitting of object meshes in 3D reconstructed scenes.

Figure 3.7: Mallet Object with Vicon Markers
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Chapter 4

Object Segmentation and Affordance
Detection Applied to 6-DoF Pose
Estimation

In this chapter, an affordance detection network is integrated within a 6-DoF pose esti-
mation network. That is, open source work for Mask R-CNN [10] written in PyTorch [43]
was modified to have a network similar to AffordanceNet [6].

The main contributions of this chapter is an experimental evaluation of object segmen-
tation and affordance detection applied to 6-DoF pose estimation. It is hypothesized that
performance for 6-DoF pose estimation with affordance detection may decrease on object
parts as one would operate on a subset of RGB-D data. With this in mind, the proposed
pipeline is evaluated on the YCB-Video dataset as well as on the ARL AffPose dataset
with different combinations of real, synthetic and a mixture of real and synthetic images.

All experiments were conducted on a workstation running Ubuntu 18.04 with an Intel
Core i7-9700K CPU @ 3.60G Hz and one Nvidia GeForce RTX 2080 Ti GPU. This work
was implemented using Python 3 and PyTorch.

4.1 Scene Understanding with Mask R-CNN

4.1.1 Overview

Figure 4.1 displays an overview of AffordanceNet [6], which outputs an object label, bound-
ing box and multi-class affordance masks. The end-to-end architecture is similar to Mask
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R-CNN [6], a widely used framework for object segmentation, such that a CNN backbone
first extracts image features from a RGB image. The Region Proposal Network (RPN),
which shares the same feature map as the backbone, proposes candidate bounding boxes
or regions of interest (RoI). RoIAlign extracts and pools each RoI to a fixed 7x7 feature
map as each RoI can vary in size and head branches for object classification and bounding
box regression use fully connected (FC) layers. Note that a FC layer requires a fixed input
size, whereas input size can vary with convolution layers. Lastly, two FC layers are used
to classify the object class and regress the object location and a series of convolution and
deconvolution layers are used to predict the multi-class affordance mask.

Figure 4.1: Overview of AffordanceNet taken from [6]

AffordanceNet was publicly released in 2017 and was implemented in Caffe with a
VGG16 backbone. PyTorch is used in this work for ease of implementation and open source
work was modified for Mask R-CNN, which was based on Torchvision’s implementation of
Mask R-CNN. Two key differences exist between AffordanceNet and this work. First, a
modified mask branch, which is discussed later in following subsection, and second, VGG16
is replaced for ResNet50 with a Feature Pyramid Network (FPN) [44]. Note that ResNet50
is a more modern, powerful feature extractor that has 27 million parameters relative to
138 million parameters for VGG16.

4.1.2 Mask Branch

For multi-class affordance mask predictions, the mask branch in Mask R-CNN was modified
such that RoIs are tiled, or duplicated, to equal the number of affordance labels for each
object (Fig. 4.2). That is, affordance labels are coupled to an object class as affordance
labels are static for each object based on a pre-defined action primitive. For instance, the
handle of a mallet can be grasped to pound a nail into a wall. Binary cross entropy (BCE)
loss can then be used to classify each pixel within each RoI as each mask contains only
one affordance label. A multi-class affordance mask is later constructed by concatenating
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each binary mask with its associated affordance label. Note that there may be overlap in
the final affordance mask with a poor prediction.

The approach in this work is different to AffordanceNet, which predicts multiple affor-
dance labels within each RoI. This work requires multiple resizing operations, which can be
time consuming for each object, but additional complexity is introduced in AffordanceNet
with masks that contain more than one affordance label. Note that a similar runtime is
achieved in this work as compared to AffordanceNet.

As RoIAlign resizes a feature map to low resolutions, such as 7x7 or 14x14, segmenting
multiple affordance labels is challenging, which increases in difficulty with a greater number
of affordance labels. AffordanceNet leverages three blocks of a convolution layer, Rectified
Linear Unit (ReLU) non-linear activation, and deconvolution layer to learn features in the
mask branch (Fig. 4.1). The three deconvolution layers upsample 7x7 low resolution masks
to 244x244 high resolution masks. However, deconvolutional layers are memory intensive,
which may limit a practitioner’s ability to implement AffordanceNet. For instance, it
was observed that due to a lack of memory with one Nvidia GeForce RTX 2080, three
deconvolutional layers for upsampling could not be used in this work. Instead, four blocks
of a convolution layer and ReLU non-linear activation and one deconvolutional layer were
implemented to learn features in a mask branch (Fig. 4.2).

4.1.3 Loss Functions

Similar to Mask R-CNN [10] and AffordanceNet [6], a multi-task loss was used to jointly
train the object class, object location and mask branch:

L = Lobject class + Lbounding box + Lmask (4.1)

A multinomial cross entropy (CE) loss was used to classify the Cobj + 1 object classes,
Lobject class, for each RoI. Losses for bounding box regression, Lbounding box, and segmenta-
tion, Lmask were then computed only for positive RoIs, which the network has classified as
having a foreground object. The smooth L1 loss was used for the bounding box regression
offsets [33]. Lastly, BCE was used for the mask loss with object or affordance labels.

4.1.4 Evaluation Metric

Performance on the UMD dataset was benchmarked using the weighted Fw
B -measure [45],

which is a widely used metric for affordance detection [6, 40, 46]. The weighted Fw
B -
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(a) Tiling RoIs for Segmenting Affordance Labels (b) Overview of the Mask Branch

Figure 4.2: Overview of the Mask Branch within Mask R-CNN for Object Segmentation
and Affordance Detection

measure captures the well-known trade off between precision and recall and applies a
weighting function to errors that incorporates a dependency between pixels and location
of errors in (4.2). Note that β is typically set to 1, which controls the trade-off between
complete-detection (i.e. high precision) and over-detection (i.e. high recall), see [45].

Fw
B = (1 + β2)

Precisionw +Recallw

β2 · Precisionw +Recallw
(4.2)

4.1.5 Implementation Details

Mask R-CNN for object segmentation and affordance detection was trained using stochastic
gradient descent with 0.9 momentum and 1e-4 weight decay for 20 epochs. The learning
rate was initially set to 1e-3 and decreased by a factor of 10 at epochs 3 and 5. All
input images were resized to a minimum and maximum size of 600 and 1000, respectively.
Images were also augmented with the same pipeline of affine flips (left/right and up/down),
cropping and Gaussian blurring. Similar to AffordanceNet, 15 anchors in the RPN were
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used and the top 2000 RoIs were selected for computing the mutli-task loss. Non-maximum
Suppression (NMS) was applied to RoI proposals with a threshold of 0.7 and RoIs must
have an Intersection over Union (IoU) of 0.5 to be considered a foreground object. The top
1000 RoIs were selected during inference and object classification scores were thresholded
at 0.9 and binary masks at 0.5. Lastly, COCO pre-trained weights provided by Torchvision
were leveraged to achieve state-of-the-art results.

4.1.6 UMD Dataset

Before presenting results on the ARL AffPose Dataset, the UMD dataset was first used to
validate Mask R-CNN for affordance detection. Results are presented in Table 4.1, such
that this work attributes the small gain in performance (0.6%) to a more powerful fea-
ture extractor, as VGG16 in AffordanceNet [6] was replaced with ResNet50 with a FPN.
Recent work [47] has investigated performance for affordance detection with several pow-
erful feature extractors. It is expected than using an even more powerful backbone feature
extractor, such as ResNet101, can further increase performance. That said, oftentimes gen-
eralization and false positives on novel objects are of greater concern than accuracy when
deploying trained models for object detection in the real world [48]. It can also be difficult
for a practitioner to deploy state-of-the-art DL frameworks that are memory intensive on
constrained hardware such as a robotic platform.

Runtime for the implementation of Mask R-CNN for affordance detection in this thesis
was 124 ms relative to 150 ms for AffordanceNet [6]. As the two networks were tested on
different hardware, it is difficult to say which is faster, but the implementation in this thesis
consumes less memory as masks are not upsampled to higher resolutions. Note that this
work did not observe any noticeable improvement in performance by upsampling binary
masks to higher resolutions such as 112x112.

As previously mentioned in Section 2.6, the UMD dataset contains pixel-wise hand
annotations. Such a process is not only extremely time consuming, but resulting masks
are of low quality relative to predictions using Mask R-CNN (Fig. 4.3). Further, the
UMD dataset only contains clutter-free scenes which is a convenient way for researchers to
frame the affordance detection problem. Many real-world robotic applications, such as the
Amazon Picking Challenge [1], contain scenes with heavy clutter and occlusion. This work
aims to address the lack of a large, annotated benchmark dataset with cluttered scenes for
affordance detection by generating the ARL AffPose dataset.
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Table 4.1: Comparison of Results with the Weighted Fw
B -measure on the UMD Dataset.

Two key differences exist between AffordanceNet and Mask R-CNN for affordance detec-
tion. First, a modified mask branch, and second, VGG16 is replaced with ResNet50 with
a FPN.

AffordanceNet [6] Mask R-CNN
grasp 73.1 75.0
cut 76.2 74.7

scoop 79.3 76.8
contain 83.3 84.0
pound 83.6 84.7
support 82.1 84.5

wrap-grasp 81.4 83.8
Mean 79.9 80.5
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Figure 4.3: Examples of Ground Truth Masks and Predicted Masks using Mask R-CNN
for Affordance Detection on the UMD Dataset. The colour of the mask represents the
affordance label. Grasp: purple; scoop: yellow; pound: light green; contain: dark blue.

38



4.1.7 ARL AffPose Dataset

Object Segmentation vs Affordance Detection

Results for object segmentation on the ARL AffPose Dataset are first presented in Table
4.2. Note that in general performance with the 6 YCB objects was greater than perfor-
mance with the 5 household objects. Mask R-CNN had difficulties detecting darker objects,
such as the screwdriver on the TV stand (Fig. 4.5), which has the lowest Fw

B score. It
is assumed that darker objects, such as the spatula, screwdriver, and garden shovel, have
lower Fw

B scores as they blended into darker backgrounds in the ARL AffPose dataset.

Table 4.2: Comparison of Results with the Weighted Fw
B -measure for Object Segmentation

on the ARL AffPose Dataset

Real Synthetic Synthetic + Real
Mallet 82.5 22.9 81.7
Spatula 74.8 39.9 73.6

Wooden Spoon 81.1 35.6 81.7
Screwdriver 64.3 26.8 66.5

Garden Shovel 75.8 38.6 77.6
Pitcher 81.4 54.9 82.2
Bowl 92.0 76.6 92.4
Mug 92.8 78.1 93.3

Power Drill 92.7 76.0 93.2
Scissors 90.9 80.8 91.1

Large Clamp 87.6 61.8 87.0
Mean 83.3 53.8 83.7

Similarly, results for affordance detection on the ARL AffPose Dataset are presented in
Table 4.3. Note that the distribution of object class labels in the ARL AffPose dataset is
evenly distributed while the distribution of affordance labels is not (Fig. 4.4). Note that 9
out of 11 objects inherit a grasp affordance while only 2 objects, such as the screwdriver and
power drill, inherit a screw and grasp affordance. Further, the screwdriver has poor object
segmentation performance, which correlates to a low Fw

B score for the screw affordance in
Table 4.3.
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(a) Object Class Labels (b) Affordance Labels

Figure 4.4: Distribution of Object Class Labels and Affordance Labels on the ARL AffPose
Test Set

Note that no noticeable improvement in performance was observed by incorporating
weights for the uneven distribution of affordance labels into BCE loss (Lmask). It it assumed
that low performance for the screw affordance is due to a large number of instances that
are hard to detect, such as the screwdriver that blends into the TV stand (Fig. 4.5). Note
that Mask R-CNN will not segment the screwdriver if it does not detect a RoI for the
object. Work such as RetinaNet [49] has investigated weighting easy and hard examples
for training object detectors with Focal Loss, which modulates CE to reduce the loss for
well classified examples. However, this mainly applies to single shot object detectors, such
as YOLO [50], which have a large number (e.g. 100K) of possible object locations. In two-
stage object detectors, such as Faster R-CNN or Mask R-CNN, the RPN filters candidate
bounding boxes to a few thousand (e.g. 2K). As such, no noticeable improvement was
observed in this work by replacing CE with Focal Loss for object classification Lobject class.
It is proposed that one could improve performance by implementing image processing
techniques to improve the brightness of darker pixels in the ARL AffPose Dataset.
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Object Seg. (Synthetic) Object Seg. (Real) Affordance Detection

Figure 4.5: Examples of Object Segmentation and Affordance Detection Results on the
ARL AffPose Dataset. Models were trained on synthetic or real images. The colour of the
mask represents the affordance label. Grasp: purple; screw: orange; scoop: yellow; pound:
light green; support: green; cut: teal; wrap-grasp: light blue; contain: dark blue; clamp:
red.
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Table 4.3: Weighted Fw
B -measure for Affordance Detection on the ARL AffPose Dataset

Synthetic + Real
grasp 76.5
screw 65.0
scoop 82.5
pound 82.9
support 81.7
cut 78.2

wrap-grasp 76.1
contain 85.5
clamp 83.9
Mean 79.1

Real and Synthetic Images for Object Segmentation

An ablation study for object segmentation on the ARL AffPose Dataset with real, synthetic
or a mixture of synthetic and real images is first presented in Table 4.2. The backbone
feature extractor was frozen when training on synthetic images, similar to previous work
[51], as COCO pre-trained weights were used. Note that synthetic images were normalized
to the intensity mean and standard deviation of images from the COCO dataset [42].

It was observed that performance drops by 29.5% when training on synthetic images
and testing on real images when the backbone feature extractor was frozen. For a fair
comparison of performance to the network trained on real images, the entire network was
trained on synthetic images, but preformance dropped by an additional 6.1%. Note, that
model performance was worse on certain objects, such as the mallet (∆ 59.6%), relative
to other objects, such as the scissors (∆ 10.1%). When exposing real images to the model
trained on synthetic images, the model failed to detect at least one target object and had
one false positive in each frame (Fig. 4.5). Previous work such as [40] have leveraged
domain adaptation to reduce the reality gap on the UMD dataset [40], but the authors still
report a 25.3% drop in performance when training on synthetic UMD images and testing
on the real UMD dataset.

With the above in mind, synthetic images can be leveraged for object detection in two
ways. First, the network can be pre-trained on synthetic images and later be re-trained
on real images, such that a small increase (0.4%) in performance is observed in Table
4.2. However, one could also fine-tune the network pre-trained on synthetic images with
significantly fewer real images to reduce the annotation effort while achieving a similar level
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of performance, which is similar to previous work [36]. For instance, Table 4.4 contains
results with the weighted Fw

B -measure for when only 500 randomly selected real images
are available for training. Note that a 19.7% increase in performance is reported when
pre-training on synthetic images.

Table 4.4: Ablation Study with Weighted Fw
B -measure for Object Segmentation on the

ARL AffPose Dataset with 500 Randomly Selected Real Images.

Real Synthetic + Real
Mallet 44.5 58.8
Spatula 42.1 68.2

Wooden Spoon 40.1 75.1
Screwdriver 25.5 63.0

Garden Shovel 37.1 69.8
Pitcher 51.7 80.2
Bowl 77.3 92.0
Mug 86.6 93.1

Power Drill 84.0 92.7
Scissors 85.1 91.3

Large Clamp 79.5 86.0
Mean 59.4 79.1

4.1.8 Discussion

Generalization

In real-world, robotic applications, trained models will encounter a wide variety of objects.
To this end, the task of generalizing affordance detection to novel or unseen objects is
challenging as this work coupled object detection with affordance labelling (Fig. 4.2).
Synthetic images can aid object segmentation networks generalize as a broader range of
objects, backgrounds, noise and lighting conditions can be incorporated into the training
data [36]. However, different to object segmentation, the concept of affordances is abstract
in nature as objects that are different in appearance may hold the same affordance labels
[5]. For instance, the handles of a mallet and mug can both inherit a grasp affordance
(Fig. 3.1). Object affordances are also dynamic such that they may change depending on
the task at hand. For instance, the head of a wooden spoon has a primary affordance of
scooping but could also inherit a secondary affordance of pounding (Fig. 3.1). The ARL
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AffPose dataset maps each object part to a primary affordance label, but it is assumed that
relatively little effort is required to assign secondary affordances and rankings to object
parts, as compared to pixel-wise, hand annotations [8, 12]. Work such as [32] has begun to
investigate affordance detection on novel objects by leveraging category-agnostic affordance
segmentation. Similar to the reality gap on the UMD dataset [40], there is a noticeable drop
in performance (15.9%) on the UMD dataset for category agnostic affordance segmentation.

4.2 6-DoF Pose Estimation with DenseFusion

4.2.1 Overview

The architecture for DenseFusion was publicly released in 2019 and implemented in Py-
Torch, which was left as is, as the objective of this work was to evaluate performance for
6-DoF pose estimation with object segmentation and affordance detection. In the Dense-
Fusion framework, the color embedding network is a ResNet-18 encoder followed by 4
upsampling layers as a decoder (Fig 2.5). The PointNet-like architecture is a MLP fol-
lowed by an average-pooling reduction function. Both the 2D and 3D feature embeddings
are of dimension 128. Similarly, the iterative pose refinement module consists of 4 fully
connected layers.

4.2.2 Loss Functions

The learning objective for DenseFusion is to minimize the distance between sampled points
from an object mesh transformed by the ground truth [R|t] and predicted [R̂|t̂] pose:

ADD =
1

N

∑
i

∥(Rxi + t)− (R̂xi + t̂)∥ (4.3)

where xi denotes the ith point of the N randomly selected 3D points from the object 3D
model. Equation (4.3) is commonly used in the literature for evaluating performance for
6-DoF pose estimation [7, 11, 15, 27], which is referred to as the Average Distance (ADD)
metric. However, (4.3) is only suitable for objects with a unique canonical frame, such as
a power drill (Fig. 3.2). Symmetric objects, which are rotationally symmetric about an
axis, can generate identical observations for more than one or possibly an infinite number
of canonical frames, such as a screwdriver (Fig. 3.2). The ADD-S metric is used instead
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for symmetric objects, which finds the distance between the closest point from an object
mesh transformed by the ground truth [R|t] and predicted [R̂|t̂] pose:

ADD-S =
1

N

∑
i

min
0<k<N

∥(Rxi + t)− (R̂xk + t̂)∥ (4.4)

As previously mentioned in Section 2.4, DenseFusion produces a pose estimation [R̂|t̂]
for each pixel. The per dense-pixel loss Lp

i becomes ADD for asymmetric objects in (4.3)
or ADD-S for symmetric objects in (4.4). The authors of DenseFusion also introduce a
confidence term c for the network to learn to balance the confidence among the per dense-
pixel predictions and add a second regularization term:

L =
1

N

∑
i

∥Lp
i + ci − w log ci∥ (4.5)

where N is the number of randomly selected dense-pixel features from P elements of the
segment and w is a balancing hyperparameter. In (4.5), a low confidence will result in low
per dense-pixel loss but high regularization, and vice versa. Note that the pose estimate
with the highest confidence is used as the final output.

4.2.3 Evaluation Metrics

For all experiments, ADD or ADD-S less than 2 cm (ADD<2 cm) is reported for asym-
metric (e.g. power drill) and symmetric (e.g. screwdriver) objects, respectively, as this is
the maximum error to grasp an object with a 2-finger gripper as observed by [18]. Note
that DenseFusion reports the ADD-S for all objects, which is an ambiguity-invariant pose
error metric that fails to provide insight to rotational errors for asymmetric objects. Area
Under the Curve with ADD or ADD-S thresholded at 10 cm (AUC<10 cm) is also reported
similar to previous work [7, 11]. Note that the authors of PoseCNN [11] plot an accuracy-
threshold curve as evaluating a pose at a fixed threshold (e.g. 2 cm) cannot reveal how a
method performs for an incorrect pose with respect to that threshold.

4.2.4 Implementation Details

Adam was used as the optimizer with the learning rate set to 1e-4 and the learning rate
decay set to 0.3 for 500 epochs, largely following the hyperparameters outlined in the
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original work [7]. Throughout training, RGB images were normalized and random noise
was added to object and object part point clouds. Lastly, w in (4.5) was selected to be to
be 0.017 and 2 refinement iterations were used.

Note that for a fair evaluation of DenseFusion with object segmentation and affordance
detection, 6-DoF pose was not estimated for all object parts on each object but rather to
one object part that was well suited for grasping. For instance, each of the 11 objects in
the ARL AffPose dataset maps to at least two object parts, with 25 object parts in total.
Training DenseFusion on each object part would ultimately double the number of classes
to 25 relative to the 11 classes for each object.

As previously mentioned, it is hypothesized that pose estimation for an object part is
more challenging than pose estimation for an object as the former operates on a subset
of RGB-D data. An object part can also be more occluded than the object itself. In this
section, performance is evaluated on the YCB-Video and ARL AffPose dataset.

4.2.5 YCB-Video Dataset

Results for 6-DoF pose estimation with object segmentation and affordance detection on
the YCB-video dataset are presented in in Table 4.5. Note that ground truth segmentation
and affordance masks on the YCB-video dataset are used to strictly evaluate performance
for 6-DoF pose estimation. It was observed that predicted masks with object segmentation
or affordance detection led to a different number of missed detections, or false negatives,
for certain objects. The authors of DenseFusion report results with predicted masks from
an object segmentation network to compare performance against PointFusion [11] and
PoseCNN [11]. It was observed that performance with AUC<10 cm drops by 1.9% when
using these predicted masks relative to ground truth masks.

In Table 4.5, the trained model on average has slightly lower performance with af-
fordance detection for objects that inherit more than one affordance label (e.g. pitcher).
These results supports a hypothesis that pose estimation with affordance detection is more
challenging than pose estimation with object segmentation. Note that the average number
of masked point clouds is smaller for object parts than objects in Table 4.5. It is proposed
that pose estimation with affordance detection should perform much worse than pose es-
timation with object segmentation when an object part is more occluded than the object
itself, which is illustrated in the last row of Figure 4.6.

It was observed that the trained model can also be more confident in certain objects,
such as the bowl and large clamp, which results in higher accuracy for these objects in
Table 4.5. Masked point clouds with affordance detection could have greater variability
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in terms of shapes and number of points, which allows DenseFusion to be more confident
in class predictions (i.e. improved class separability). For instance, pose estimation with
affordance detection predicts a more accurate estimate for the large clamp and bowl relative
to pose estimation with object segmentation in Figure 4.6.

Table 4.5: Comparison of Results with number of points for masked point clouds (PCD),
confidence of per-pixel predictions (c), AUC<10 cm and ADD<2 cm for 6-DoF Pose Esti-
mation with Object Segmentation and Affordance Detection on the YCB-Video Dataset.
Object names in bold are symmetric and object names in italic inherit a single affordance
label.

Object Segmentation Affordance Detection
PCD c AUC <2 cm PCD c AUC <2 cm

002 master chef can 15402 0.510 70.5 68.5 15384 0.617 71.2 70.4
003 cracker box 22918 0.532 94.2 96.3 22916 0.453 93.9 98.7
004 sugar box 18695 0.801 97.2 100.0 18655 0.832 97.7 100.0

005 tomato soup can 9857 0.858 88.1 84.7 9855 0.896 90.1 87.8
006 mustard bottle 18773 0.506 92.2 91.6 18772 0.609 94.3 94.4
007 tuna fish can 4700 0.619 84.6 72.2 4698 0.607 81.8 67.9

008 pudding box 16k 9831 0.629 96.8 100.0 9830 0.430 93.6 92.1
009 gelatin box 11162 0.993 98.7 100.0 11161 0.997 98.2 100.0

010 potted meat can 7909 0.704 86.8 84.7 7908 0.698 85.7 81.6
011 banana 8105 0.376 80.8 82.1 8104 0.449 76.7 79.7

019 pitcher base 46460 0.554 97.8 99.8 30468 0.523 91.6 88.8
021 bleach cleanser 21192 0.550 94.1 96.1 21191 0.608 94.7 96.9

024 bowl 15147 0.391 89.9 99.8 13546 0.918 95.3 98.3
025 mug 8425 0.655 95.4 98.9 6274 0.334 91.4 94.2

035 power drill 18250 0.695 96.7 99.8 3817 0.864 95.3 99.6
036 wood block 13440 0.380 95.0 100.0 13435 0.460 96.6 100.0

037 scissors 3466 0.310 86.4 86.2 3464 0.556 85.7 82.9
040 large marker 2561 0.659 93.5 99.9 2561 0.766 94.8 100.0
051 large clamp 6498 0.597 91.6 99.9 2295 0.933 97.5 100.0

052 extra large clamp 7507 0.376 92.1 97.4 2931 0.858 93.9 94.6
061 foam brick 6604 1.000 95.9 100.0 6603 1.000 92.9 100.0

Mean 13186 0.605 91.3 93.2 11137 0.686 91.1 91.8
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Object Segmentation Affordance Detection

Figure 4.6: Examples of 6-DoF Pose Estimation with Object Segmentation or Affordance
Detection on the YCB-Video Dataset

48



4.2.6 ARL AffPose Dataset

Similarly, for the ARL AffPose dataset it was observed that pose estimation with affordance
detection resulted in lower accuracy relative to pose estimation with object segmentation
in Table 4.6. Note that ground truth segmentation and affordance masks were used again
to evaluate the two methods for pose estimation.

Upon comparing values in Table 4.6 and Table 4.5, it was observed that performance
with the same 5 YCB objects was worse on the ARL AffPose dataset relative to results
on the YCB-Video dataset. Note that point clouds for these 5 YCB objects with the
ARL AffPose dataset contain fewer points in Table 4.6. In the DenseFusion framework,
masked point clouds are obtained using a depth image and a corresponding segmentation
mask. Note that the YCB-video dataset was generated with an Asus Xtion RGB-D sensor,
which is an infrared sensor, whereas a Stereolab ZED camera, or stereo-vision, was used
to generate the ARL AffPose dataset. The qualitative differences between depth images
with an infrared sensor and stereo-vision is displayed in Figure 4.7. To this end, the
drop in performance on the ARL AffPose dataset was attributed to smaller masked point
clouds. The mean translation error, which is the l2 norm of the ground truth and predicted
translation vector, was 0.701 cm on the YCB-video dataset (Fig. 4.6) and 2.148 cm on
the ARL AffPose dataset (Fig. 4.8) for pose estimation with object segmentation. Note
that there also exists a larger difference in the number of points for masked point clouds
with affordance detection on the ARL AffPose Dataset (47%) relative to the YCB-Video
dataset (16%), which led to a larger drop in performance.
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(a) Asus Xtion Depth Image (b) Predictions for 6-DoF Pose Estima-
tion on the YCB-Video Dataset

(c) Stereolab ZED Depth Image (d) Predictions for 6-DoF Pose Estima-
tion on the ARL AffPose Dataset

Figure 4.7: Examples of Depth Images and Predictions for 6-DoF Pose Estimation on the
YCB-Video and ARL AffPose Dataset

Real and Synthetic Images for 6-DoF Pose Estimation with Object Segmenta-
tion

An ablation study for pose estimation with object segmentation is also presented in Table
4.7. However, different to training Mask R-CNN, DenseFusion was trained on either real,
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Table 4.6: Comparison of Results with number of points for masked point clouds (PCD),
confidence of per-pixel predictions (c), AUC<10 cm and ADD<2 cm for 6-DoF Pose Esti-
mation with Object Segmentation and Affordance Detection on the ARL AffPose Dataset.
Object names in bold are symmetric.

Object Segmentation Affordance Detection
PCD c AUC <2 cm PCD c AUC <2 cm

Mallet 7472 0.470 83.6 66.5 3704 0.544 73.3 61.7
Spatula 3679 0.346 63.6 54.8 1701 0.261 28.5 7.8

Wooden Spoon 9393 0.257 60.6 38.6 4696 0.351 31.2 0.9
Screwdriver 1672 0.419 88.3 92.8 1518 0.327 88.3 90.4
Garden Shovel 12583 0.346 72.2 47.6 4313 0.476 50.1 31.7

Pitcher 21964 0.358 68.3 19.0 14176 0.382 76.4 31.2
Bowl 9044 0.654 91.2 98.3 7191 0.749 89.9 97.7
Mug 5671 0.324 72.2 16.7 2467 0.363 35.0 0.0

Power Drill 7789 0.468 81.5 66.2 1844 0.590 73.5 20.3
Scissors 5026 0.392 77.2 49.1 4313 0.510 74.4 49.1

Large Clamp 5566 0.654 87.8 97.9 2051 0.446 87.2 96.9
Mean 8169 0.426 76.9 58.9 4361 0.454 64.3 44.3

synthetic or a combined dataset of real and synthetic images without pre-training. It was
observed that training with a combined dataset of real and synthetic images resulted in
the best performance relative to training with either real or synthetic images in Table 4.7.
Note that performance for DenseFusion does not degrade to the same extend as Mask
R-CNN when training on synthetic images and testing on real images.
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Table 4.7: Ablation study for Pose Estimation with Object Segmentation on the ARL
AffPose Dataset with either Real, Synthetic or Real + Synthetic Images

Real Synthetic Real + Synthetic
AUC <2 cm AUC <2 cm AUC <2 cm

Mallet 76.2 63.7 75.9 56.3 83.6 66.5
Spatula 42.2 27.7 38.5 3.2 63.6 54.8

Wooden Spoon 45.3 18.4 42.3 18.9 60.6 38.6
Screwdriver 79.2 74.5 84.1 68.9 88.3 92.8
Garden Shovel 38.0 7.7 40.8 0.6 72.2 47.6

Pitcher 41.3 0.0 69.7 28.1 68.3 19.0
Bowl 75.4 8.1 93.2 96.6 91.2 98.3
Mug 77.1 52.9 62.1 3.1 72.2 16.7

Power Drill 56.7 18.9 81.9 62.8 81.5 66.2
Scissors 74.1 46.1 68.4 48.3 77.2 49.1

Large Clamp 85.0 81.5 86.2 97.3 87.8 97.9
Mean 67.5 44.0 62.8 36.3 76.9 58.9

4.2.7 Discussion

Pose Estimation with Object Segmentation and Affordance Detection

From the results presented in Tables 4.5 and 4.6, it is clear that pose estimation with
object segmentation outperforms pose estimation with affordance detection. As previously
mentioned, this is the expected result as pose estimation with affordance detection operates
on a subset of RGB-D data. Performance for DenseFusion with affordance detection can
also degrade if an object part is severely occluded (Fig. 4.6). It was also observed that
performance for DenseFusion is dependent upon the size of masked point clouds or quality
of an input depth image (Fig. 4.7). However, it is proposed that the true advantage of
pose estimation with affordance detection is realized when the trained model is deployed
on a robotic platform to grasp complex objects, which is outlined in the next chapter.
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Object Segmentation Affordance Detection

Figure 4.8: Examples of 6-DoF Pose Estimation with Object Segmentation or Affordance
Detection on the ARL AffPose Dataset
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Chapter 5

Experimental Evaluation

In this chapter, DenseFusion with object segmentation and affordance detection is deployed
on a robotic platform to experimentally validate performance. As such, experiments in this
chapter were designed to test the accuracy of pose estimation and see if it is sufficient for
robotic grasping.

Grasp success rate was used to quantitatively evaluate experiments such that a grasp
was considered successful if the robot can lift an object up 10 cm without dropping it. The
aim of these experiments was to demonstrate a similar grasp rate for pose estimation with
affordance detection relative to pose estimation with object segmentation. As previously
mentioned, pose estimation with affordance detection is a more challenging task than
pose estimation with object segmentation but it may improve performance for grasping of
complex objects.

5.1 Object Pose for Grasping

The different coordinate frames and transforms that are required to grasp an object are
discussed in this section. First, 6-DoF pose estimation frameworks, such as DenseFusion
[7], compute the object pose with respect to the camera frame TO

C . However, to grasp an
object, the 6-DoF pose of the object with respect to the base link frame of a manipulator
TO
B is required.

Figure 5.1 displays a 7-DoF Barrett WAM arm and 8-DoF BarrettHand that was used
throughout grasping experiments. Note that a BarrettHand is a three-finger gripper, which
allows for greater translation errors as compared to two-finger grippers in the literature
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[7, 18]. Note that [18] observed that the estimate of the object pose must be accurate
within +/- 2 cm to successfully grasp an object with a two-finger gripper. The distance
from the centroid of the Barretthand to the tip of each finger was measured to be 17.75
cm.

5.1.1 Coordinate Transforms

Four main coordinate frames were used to grasp an object (Fig. 5.1): 1) base link of the
manipulator FB, 2) camera frame FC , 3) object frame FO, and 4) end effector or target
frame FT . Coordinate frames for the Barrett WAM arm and BarrettHand are defined by
the manufacture in the Unified Robot Description Format (URDF) file. The camera frame
as defined by the manufacture was also used. However, how the camera was mounted was
left as a design exercise.

Figure 5.1: Illustration of Different Coordinate Frames for Grasping an Object

Camera Mount

In general, a camera for a robotic platform can be mounted in two ways: 1) fixed on a static
mount or 2) directly mounted on the manipulator. For a static mount, the transform from
the base link of the manipulator to the camera frame TC

B is static, but the manipulator
can block the camera’s line of sight. One can address this issue by mounting the camera
directly on the manipulator, but the transform from the base link to the camera frame
TC
B is no longer static. The dynamic transform can be computed by first measuring the
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static transform from the camera frame to the nearest joint on the manipulator TC
Ji
, which

was the forearm link in this work. Forward kinematics can then be used to compute the
transform from the base link to the forearm link T Ji

B given the current configuration of the
manipulator:

TO
B = T Ji

B · TC
Ji︸ ︷︷ ︸

TC
B

·TO
C = TC

B · TO
C (5.1)

In this work, the ZED camera was mounted on the forearm of the manipulator to
emulate training images during inference in terms of distance to object and angle of attack
for the camera (Fig. 5.1). Note that it was assumed that the robot dynamics did not
change significantly.

End Effector

Lastly, the end effector frame should be aligned with an object frame to grasp an object
in (5.2).

The steps that are required to grasp the mallet are outlined to better understand how
this may work (Fig. 5.1). Note that the canonical frame of the mallet was defined such that
the x-axis points forward, y-axis down, and z-axis to the left (Fig. 3.1). A top-down grasp
strategy would first align the normal vector of the end effector (i.e. z-axis) to the normal
vector of the mallet (i.e. y-axis). A rotation about the yaw axis can then be applied to
align the fingers of the BarrettHand (i.e. x-axis) with the perpendicular axis of the mallet
(i.e. z-axis). Note that all mesh files in this work were modified in Blender such that the
x-axis points forward, y-axis down, and z-axis to the left (Fig. 1.1).

Inverse Kinematics (IK) can then be used to determine the joint positions, velocities
or torques to achieve the desired state of the end effector once the desired transformation
for grasping an object T T

B has been computed. Note that the intelligent control and path
planning of the manipulator lies outside the scope of this work.

T T
B = TC

B · TO
C · T T

O (5.2)
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5.2 System Overview

The pipeline for pose estimation, which was developed in this work, was deployed using
Robot Operating System (ROS) Melodic on Ubuntu 18.04 (Fig. 5.2). Experiments began
by first mounting the Barrett WAM arm on the Robotnik Summit XL mobile base, which
was kept stationary. The Summit XL’s ethernet was used to setup a wireless ROS network
and the arm was controlled by connecting the workstation to the WAM via a Controller
Area Network (CAN) bus. Note that both the ZED camera and Barrett WAM arm were
calibrated using methods provided by each manufacture.

WAM Arm

barrett-ros-pkg was used to interface with the Barrett WAM arm, which is a ROS
wrapper for libbarrett, a real-time controls library written in C++. The WAM node
exposes functionality to control the arm via a suite of ROS topics and services. The stack
can be ran on the WAM’s on-board PC or on an external PC that is connected via CAN.

Transform Publisher

The ZED camera, which was mounted on the forearm of the Barrett WAM arm, was
deployed using the zed-ros-wrapper. To transform the object pose with respect to the
base link of the manipulator in (5.1), the static transform between the camera frame and
the forearm link was measured. Offsets in the x and y-axis were known as the camera mount
was designed in this work. However, it was difficult to measure the exact distance along
the z-axis from the camera frame to the forearm link when the arm was fully extended.
Several tests were conducted using an ArUco marker, which is a binary square fiducial
marker that is used in robust pose estimation [52], to fine-tune the static transform.

Pose Estimation

The ROS node for pose estimation subscribed to the ZED Camera and operated on RGB
and depth images in a synchronized callback. Once an estimate of the object pose TO

C was
known, it was transformed to the object pose with the with respect to the base link of
the manipulator TO

B and later published. Results for runtime performance of the deployed
pipeline are presented in Table 5.1. Note that the deployed pipeline with ROS melodic
required Python 2.7, which was different to Python 3.5+ used throughout training Mask
R-CNN and DenseFusion.
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Figure 5.2: Overview of the System Architecture used throughout Grasping Experiments
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Table 5.1: Runtime breakdown in ROS

Object Segmentation DenseFusion Combined
0.15 [s] 0.08 [s] 0.23 [s]

Trac IK

Lastly, a ROS node was developed to control the 7-DoF Barrett WAM arm using IK.
trac-ik was selected as a IK solver as it capable of controlling a redundant manipulator
such as the 7-DoF Barrett WAM [53]. In a callback subscribed to the Pose Estimation
node, an IK solver was used to compute joint positions that transforms the end effector
from a given state to a desired state, which are defined in Cartesian coordinates. However,
blindly commanding the robot to the desired end state can lead to unexpected errors in
cluttered scenes and simple path planning was required.

Two grasp strategies were executed throughout experiments: 1) top-down grasps and
2) forward grasps. A sequence of commands to execute a top-down grasp would be as
follows:

1. Move to a pre-defined capture position,

2. Identify the object 6-DoF pose in a single-frame,

3. Align the end effector frame to the object frame,

4. Compute joint positions using IK to achieve desired end state,

5. Move to a position defined to be 10 cm above the object,

6. Move directly downwards and grasp the object,

7. Move 10 cm directly upwards to test for a successful grasp.

5.3 Grasping Experiments

To quantitatively evaluate pose estimation in the context of robotic grasping, a scene was
created with 1 target object on a workbench along with 2 distractor objects (Fig. 5.3).
Each target object was placed at 4 different locations on the workbench and 3 orientations
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were used at each location, similar to previous work [7, 18]. As the chosen framework for
pose estimation operates on a single RGB-D frame, each grasp was repeated 3 times, for
a total of 36 grasps for each object. Note that a Kalman filter [54] could be implemented
to reduce noisy estimates of the object pose across several RGB-D frames as it is assumed
that objects remain static in the scene, similar to [27]. However, a Kalman filter was not
implemented in this work as the objective was to strictly evaluate pose estimation with
object segmentation and affordance detection.

The scene used throughout grasping experiments was similar to a low number (10 of
71) of real scenes in the ARL AffPose Dataset (Fig. 5.3). The workbench was covered with
white printer paper in an effort to mask the foam padding used to allow the manipulator
to physically grasp objects. The pre-defined capture position of the WAM was set such
that the scene during inference was similar to scenes during dataset generation in terms
of the distances to objects and the angle of attack for the camera. A qualitative drop in
performance was observed with drastic changes to the distance to each object and/or view-
point, was was expected. Additional scenes can be included throughout dataset generation
to improve such results.

A subset of 4 objects were selected from the 11 objects in the ARL AffPose dataset for
grasping experiments (Fig. 3.1). The mallet, spatula, garden shovel and power drill all
inherit noticeable differences between the centroids of the canonical frames for objects and
object parts. Note that the wooden spoon was not included as it has similar shape and size
to the mallet. Objects that are rotationally symmetric, such as the screwdriver, were also
not included in grasping experiments. Such objects are prone to large orientation errors
with pose estimation as they can generate identical observations from multiple viewpoints.
Note that with an assumption of planar grasping, the screwdriver can be grasped more
reliably by first aligning the normal vector of the end effector to be perpendicular to the
workbench. Afterwards, a pose estimate can be used to apply a rotation about the yaw
to align the fingers of the gripper to be perpendicular to the longitudinal axis of the
screwdriver (Fig. 3.1).

As previously mentioned, two grasping strategies were implemented: 1) top-down grasps
for the mallet, spatula and garden shovel and 2) forward grasps for the power drill. For
forward grasps, the robot was first commanded to a position defined to be 10 cm in front
of the object and later commanded to move directly forward to grasp an object. Note that
the IK solver failed to compute joint positions in all but one location for forward grasps of
the power drill as the object was positioned too close to the base of the manipulator. It
was decided that the position of the workbench should not change, to change the distance
from the camera to the power drill, as this could adversely affect accuracy for pose estima-
tion. Forward grasps ultimately require more intelligent path planning in cluttered scene
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Mallet Object Centroid Mallet Object-part Centroid

Spatula Object Centroid Spatula Object-part Centroid
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Garden Shovel Object Centroid Garden Shovel Object-part Centroid

Power Drill Object Centroid Power Drill Object-part Centroid

Figure 5.3: Grasping Four Objects from the ARL AffPose Dataset with Object Segmenta-
tion (left) and Affordance Detection (right)
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relative to top down grasps. Despite this, the power drill was included throughout grasping
experiments as it best exemplifies how affordance detection can lead to more intelligent
grasping of complex objects (Fig. 5.3).

Results from the grasping experiments are presented in Table 5.2. It is difficult to
say which is the exact cause of error for each failed grasp attempt, and sources of error
include error from pose estimation, error in the static transform of the camera frame, and
miscalibration of the relative encoders of the Barrett WAM arm. Note that home positions
for the seven relative encoders were set during calibration but the WAM arm enters an idle
phase between calibration and normal operation such that the home positions can easily
change. It is assumed that pose estimation was the largest source of error and several failure
modes for a failed grasp attempt include translation and/or orientation errors (Fig. 5.4).
It was observed that the BarrettHand allows for relatively large errors in the estimated
pose of an object and results in Table 5.2 could change if a different end effector were
used. As previously mentioned, the authors of DOPE [18] observed that the estimate of
the object pose must be accurate within +/- 2 cm to successfully grasp an object with a
two-finger gripper.

In closing, throughout grasping experiments a similar grasp success rate was demon-
strated for the two methods for pose estimation. However, it was only an experimental
validation of the two methods. It was observed that pose estimation with affordance de-
tection tends to be more noisy as it operates on a subset of RGB-D data in a single frame.
Future work could implement a Kalman Filter, similar to [27], to improve the robustness
of the proposed pipeline.

Table 5.2: Comparison of Results for Grasping Four Target Objects from the ARL AffPose
Dataset.

Mallet Spatula Garden Shovel Power Drill
Object 36/36 33/36 32/36 7/9

Affordance 34/36 33/36 31/36 8/9

5.4 Discussion

5.4.1 Scene Understanding for 6-DoF Pose Estimation

In the context of robotic grasping, a similar result for pose estimation with affordance
detection can be achieved with existing methods for pose estimation with object segmen-
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Translation Error Orientation Error

Figure 5.4: Examples of Different Failure Modes Throughout Grasping Experiments

tation and a post-processing step to transform the object pose to a more optimal grasp
location. Such an approach would use the same transformation, or a simple translation of
the object centroid to an object part centroid (Fig. 3.3), as outlined in dataset generation
in Section 3.1. It is assumed that performance for robotic grasping of complex objects
should improve while performance for pose estimation should not degrade, as one would
not operate on a subset of RGB-D data. If this is the case, one may question the need for
affordance detection.

It is proposed that the value of affordance detection lies in generalizing to novel objects
such that one would not need to apply a transformation to determine the most optimal
grasp location for each object. For affordance detection on novel objects, the network
produces an interesting result for the PlayStation 4 controller, which labels the handles
as a grasp affordance (Fig. 5.5). However, this serves as motivation to decouple object
detection from affordance segmentation, as the network would assign an object label from
the 11 objects in the ARL AffPose dataset to the PlayStation 4 controller. Note that
category-agnostic affordance segmentation [32] would be more appropriate in this instance.

That said, generalizing 6-DoF pose estimation frameworks to novel objects is more
challenging as it was assumed in this work that the specific instance of the object 3D
mesh is made available a priori. One could attempt to grasp novel objects on a planar
surface using 2D outputs from a category-agnostic affordance segmentation network and
a corresponding depth image, similar to [6, 32, 40]. Note that the centroid of the grasp
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frame would be the mean of the grasp pixels projected into 3D space and the orientation
of the longitudinal axis of the object could be determined by a line of best fit applied to
the grasp pixels. However, such a solution would be limited to top-down grasps of simple
objects.

Figure 5.5: Affordance Detection of Novel Objects. The colour of the mask represents the
affordance label. Grasp: purple; screw: orange; cut: teal; wrap-grasp: light blue; contain:
dark blue; clamp: red.

5.4.2 6-DoF Pose Estimation

With regards to the above discussion for deploying a simple solution for top-down grasps
of novel objects, one may also question the need for 6-DoF pose estimation.

The answer to this question depends on how one defines their objectives. If one is only
concerned with planar grasping of simple objects, one would only need to deploy an object
segmentation or affordance detection network using a infrared sensor or camera with stereo
vision. However, in this work, forward grasps of more complex object, such as the power
drill, were demonstrated using the outputs of a 6-DoF pose estimation framework (Fig.
5.3). Further, qualitative results are included for estimating 6-DoF pose of objects that
do not lie on flat surfaces (Fig. 5.6). Note that more intelligent path planning and control
may be required to grasp such objects in cluttered scenes.

Lastly, objects were constrained to lie flat on the workbench throughout grasping ex-
periments (i.e. planar grasping). It was observed that the predicted normal vector for
objects were noisy relative to the gravity vector, which led to failed grasp attempts in
some instances. Future work could encode a prior for gravity to improve performance for
6-DoF pose estimation.
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Figure 5.6: 6-DoF Pose Estimation for Non-planar Objects.
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Chapter 6

Conclusion

In this thesis, an experimental evaluation of 6-DoF pose estimation with object segmenta-
tion and affordance detection was conducted. Motivation stems from the belief that pose
estimation affordance detection can improve robotic grasping of complex objects.

Previous work for generating affordance labels was limited by expensive hand anno-
tations for pixel-wise labels, which presents a challenge for training deep CNNs. In this
work, real and synthetic images were auto-generated with ground truth annotations for ob-
ject segmentation and 6-DoF pose. A post-processing method was developed to generate
desired ground truth annotations, namely affordance labels and object part 6-DoF poses.

Mask R-CNN was implemented and trained for object segmentation and affordance
detection on the UMD dataset and the ARL AffPose dataset. Performance in terms of
accuracy and runtime was on par with state-of-the-art results for affordance detection.
Afterwards, DenseFusion was trained on the YCB-Video dataset and the ARL AffPose
dataset, such that pose estimation with object segmentation slightly outperformed pose
estimation with affordance detection. It was observed that synthetic images can supple-
ment real images to boost performance for object segmentation, affordance detection, and
pose estimation, as a wide variety of object poses and a broader range of backgrounds, noise
and lighting conditions can be incorporated into the training data. However, the drop in
performance when training deep CNNs on synthetic images and deploying on real images
will continue to decrease as rendering techniques in simulators, such as UE4, improve.
Lastly, in experimentally validating this work on a robotic platform, it was demonstrated
that pose estimation with affordance detection can improve robotic grasping of complex
objects.
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6.1 Future Work

In experimentally validating this work, it was observed that trained models are limited to
objects within the ARL AffPose dataset. Generalization remains an open issue within deep
learning. However, it is proposed that one could attempt to grasp novel objects on a planar
surface using 2D outputs from a category-agnostic affordance segmentation network and
a corresponding depth image. To this end, future work should decouple object detection
and affordance segmentation, similar to [32], as objects that are different in appearance
may hold the same affordance label and vice-versa.

As synthetic images are computationally inexpensive to generate, future work could
incorporate techniques from adversarial learning frameworks, such as [40], to conduct
grasping experiments with trained models on synthetic images. This could aid general-
ization for trained models, which has widespread applications for robotics in unstructured
environments [1].

Additionally, future work could demonstrate how affordance detection could improve
the manipubility of an object such as a mallet. For instance, if a manipulator’s goal is to
pound a nail into a piece of wood, it is crucial that the agent first grasps the handle of the
mallet to optimally complete this task. It is assumed that more intelligent path planning
would be required for such a demonstration and that affordance detection would play a
vital role.
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