
Geodesic Convex Analysis of Group
Scaling for the Paulsen Problem and

the Tensor Normal Model

by

Akshay Ramachandran

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Akshay Ramachandran 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Ankur Moitra, Professor
Department of Mathematics
Massachusetts Institute of Technology

Supervisor(s): Lap Chi Lau, Professor
Cheriton School of Computer Science
University of Waterloo

Internal Member: Rafael Oliveira, Assistant Professor
Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Vern Paulsen, Professor
Department of Pure Mathematics and
Institute for Quantum Computing,
University of Waterloo

Internal Member: John Watrous, Professor
Cheriton School of Computer Science and
Institute for Quantum Computing,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The main results of this thesis are based on the following papers that I have coauthored.

1. [62]: The Paulsen Problem, Continuous Operator Scaling, and Smoothed Analysis.
Joint work with Tsz Chiu Kwok, Lap Chi Lau, and Yin Tat Lee. 49th Symposium
on Theory of Computing (STOC 2018).

2. [63]: Spectral Analysis of Matrix Scaling and Operator Scaling. Joint work with Tsz
Chiu Kwok and Lap Chi Lau. SIAM Journal on Computing (2021). Preliminary
Conference version in 60th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2019).

3. [36]: Logarithmic sample complexity for dense matrix and tensor normal models.
Joint work with Cole Franks, Rafael Oliveira, and Michael Walter. arXiv preprint
arXiv:2110.07583.

I understand that my thesis may be made electronically available to the public.

iv

Abstract

The framework of scaling problems has recently had much interest in the theoretical
computer science community due to its variety of applications, from algebraic complexity
to machine learning. In this thesis, our main motivation will be two new applications: the
Paulsen problem from frame theory, and the tensor normal model in statistical estimation.
In order to give new results for these problems, we provide novel convergence analyses for
matrix scaling and tensor scaling. Specifically, we will use the framework of geodesic convex
optimization presented in Bürgisser et al. [20] and analyze two sufficient conditions (called
strong convexity and pseudorandomness) for fast convergence of the natural gradient flow
algorithm in this setting. This allows us to unify and improve many previous results [62],
[63], [36] for special cases of tensor scaling.

In the first half of the thesis, we focus on the Paulsen problem where we are given
a set of n vectors in d dimensions that ε-approximately satisfy two balance conditions,
and asked whether there is a nearby set of vectors that exactly satisfy those balance
conditions. This is an important question from frame theory [24] for which very little was
known despite considerable attention. We are able to give optimal distance bounds for the
Paulsen problem in both the worst-case and the average-case by improving the smoothed
analysis approach of Kwok et al. [62]. Specifically, we analyze certain strong convergence
conditions for frame scaling, and then show that a random perturbation of the input frame
satisfies these conditions and can be scaled to a nearby solution.

In the second half of the thesis, we study the matrix and tensor normal models, which
are a family of Gaussian distributions on tensor data where the covariance matrix respects
this tensor product structure. We are able to generalize our scaling results to higher-
order tensors and give error bounds for the maximum likelihood estimator (MLE) of the
tensor normal model with a number of samples only a single dimension factor above the
existence threshold. This result relies on some spectral properties of random Gaussian
tensors shown by Pisier [80]. We also give the first rigorous analysis of the Flip-Flop
algorithm, showing that it converges exponentially to the MLE with high probability. This
explains the empirical success of this well-studied heuristic for computing the MLE.

v

Acknowledgements

I would like to express my sincere gratitude to my advisor Lap Chi Lau for a wonderful
graduate school experience. His clear-thinking and meticulous nature have had a strong
influence on my research. But most of all, I would like to thank him for showing that I
was cared for as a person, not just as a researcher.

I would also like to thank Ankur Moitra, Rafael Oliveira, Vern Paulsen, and John
Watrous for agreeing to read this thesis and serve on the examining committee.

The research in this thesis was completed in collaboration with: Tsz Chiu Kwok, Lap
Chi Lau, Yin Tat Lee, Cole Franks, Rafael Oliveira, and Michael Walter. I would also
like to once again thank Cole Franks, Rafael Oliveira, and Michael Walter for the zoom
meetings we had over this past year, which were great fun.

I would like to take this opportunity to thank Daniel Dadush, Sasho Nikolov, and Nikhil
Bansal for being so generous with their time and helping me learn discrepancy theory.

A great big thank you to all my friends and office mates in spirit: Hong, Vedat, Chiu,
Alan, Nathan, Amit, Cedric, Sharat, Justin, Madison, Logan, Harry, William, Sifat, Claire,
Lily, Leanne, Nolan, and Ryan.

To Amma, Appa, and Patti, thank you for always supporting me and making me feel
loved.

And to Dahlia, thank you for filling this past year with support and joy, and helping
me keep this all in perspective.

vi

Dedication

Dedicated to my family.

vii

Table of Contents

1 Introduction 1

1.1 The Paulsen Problem . 1

1.2 Tensor Normal Model in Statistics . 4

1.3 Scaling Framework . 6

1.4 Applications of Scaling . 8

1.4.1 Solution to the Paulsen problem . 8

1.4.2 Error bounds for the Tensor Normal Model 10

1.5 Organization . 11

2 Preliminaries 13

2.1 Linear Algebra . 13

2.1.1 Vector Spaces . 14

2.1.2 Linear Operators . 15

2.1.3 The Spectral Theorem . 17

2.1.4 Trace and Determinant . 18

2.1.5 Positive Operators . 19

2.1.6 Isometries . 20

2.1.7 Projections . 21

2.1.8 The Polar Decomposition . 21

2.1.9 Norms and Inequalities . 22

viii

2.2 Linear Algebraic Groups and Structure . 25

2.2.1 Classical Groups . 25

2.2.2 Torus Groups . 26

2.2.3 Lie Groups and Lie Algebras (Primer) 27

2.2.4 Calculus for Positive Definite Operators 29

2.3 Convex Analysis . 31

2.3.1 Univariate Convex Functions . 31

2.3.2 Convex Functions on Vector Spaces 34

2.4 Quantum Information . 35

2.4.1 Tensor Products and Quantum Marginals 36

2.4.2 Quantum States and Quantum Maps 36

2.4.3 Representations of Quantum States and Maps 37

2.5 Concentration Inequalities . 39

2.5.1 Independent and Sub-Exponential Distributions 40

2.5.2 Gaussian and Chi-square Distributions 42

2.5.3 Hanson-Wright Inequality . 43

2.6 Nets and Approximation Arguments . 47

3 Matrix Scaling Improvement 51

3.1 Matrix Scaling and Convexity . 52

3.1.1 Matrix Scaling . 52

3.1.2 Convex Formulation/Kempf-Ness Function 54

3.1.3 Gradient Flow . 57

3.2 Strongly Convex Setting . 60

3.2.1 Strong Convexity . 60

3.2.2 Maintaining Strong Convexity . 62

3.2.3 Monotonicity and Improved Analysis 66

3.3 Pseudorandom Setting . 77

3.4 Pseudorandom property and Convexity . 87

3.5 Lift to Frame and Operator Scaling . 98

ix

4 Paulsen Problem Revisited 100

4.1 Introduction . 101

4.1.1 Frame Theory Background . 101

4.1.2 Previous Work . 104

4.1.3 The Dynamical System Approach 106

4.2 Improved Scaling Approach . 108

4.2.1 The Frame Scaling Problem . 108

4.2.2 Previous Approach by Frame Scaling 111

4.2.3 Reduction to Matrix Scaling . 113

4.3 Distance Analysis for Matrix Scaling . 117

4.3.1 Kempf-Ness Equivalence . 118

4.3.2 Strong Convexity Analysis . 121

4.3.3 Pseudorandom Analysis . 122

4.4 Average Case Analysis . 124

4.5 Solution to the Paulsen Problem . 128

5 Smoothed Analysis of the Paulsen Problem 131

5.1 Random Frames . 131

5.2 Perturbation Argument for small n . 138

5.2.1 Perturbation Process . 139

5.2.2 Error . 143

5.2.3 Pseudorandom Condition . 150

5.2.4 Putting it Together . 157

5.3 Perturbation Argument for Large n . 157

5.3.1 Perturbation Process . 159

5.3.2 Error . 160

5.3.3 Pseudorandom Condition . 171

5.3.4 Putting it Together . 172

x

6 Geodesic Convexity and Scaling 174

6.1 Background on Scaling . 174

6.1.1 The Moment Map . 175

6.1.2 Geometric Invariant Theory . 176

6.1.3 Kempf-Ness Equivalence . 178

6.1.4 Optimization for Scaling . 180

6.2 Tensor Scaling and Geodesic Convex Formulation 183

6.2.1 Tensor Scaling Problem . 183

6.2.2 Kempf-Ness Function . 190

6.2.3 Calculus for Positive Definite Operators 192

6.2.4 Geodesic Convex Formulation for Tensor Scaling 194

6.3 General Scaling Reductions . 196

7 Tensor Scaling 200

7.1 First Analysis of Strongly Convex Tensor Scaling 201

7.1.1 Geodesic Gradient . 201

7.1.2 Geodesic Gradient Flow . 205

7.1.3 Strong Convexity . 208

7.1.4 Strong Convergence Bound . 213

7.2 Improvement through Commutative Gradient Flow 217

7.2.1 Simplified Setup for Commutative Tensors 217

7.2.2 Strongly Convex Analysis . 223

7.2.3 Pseudorandom Analysis . 233

7.3 Non-Commutative Robustness . 242

7.3.1 Robustness of Frame Pseudorandomness 242

7.3.2 Tensor Pseudorandomness . 245

7.3.3 Strong Convexity for Operators . 247

7.3.4 Strong Convexity for Tensors . 257

7.4 Relation between Strong Convexity and Pseudorandomness 266

xi

8 Algorithms for Geodesic Convex Optimization and Scaling 275

8.1 Previous Work . 276

8.2 Sinkhorn’s Algorithm for Matrix Scaling 278

8.3 Algorithms for Strongly Convex Matrix Scaling 282

8.4 Algorithms for Geodesic Strongly Convex Optimization and Tensor Scaling 284

8.5 Algorithms for the Paulsen Problem and Frame Scaling 293

9 Maximum Likelihood Estimator for the Tensor Normal Model 301

9.1 Statistical Background . 302

9.1.1 Statistical Inference . 302

9.1.2 Maximum Likelihood Estimation 303

9.1.3 Quality of Gaussian Covariance Estimator 305

9.1.4 Analysis of the MLE . 306

9.2 Matrix and Tensor Normal Model . 308

9.2.1 Setup . 309

9.2.2 Previous Work . 312

9.2.3 Main Results . 313

9.2.4 Reduction to Tensor Scaling . 315

9.2.5 Bounding the Gradient . 317

9.2.6 Strong Convergence Properties . 319

9.2.7 Improved Results and Proofs . 321

9.3 Expansion of Random Tensors . 328

9.3.1 Spectral Condition via Pisier’s Theorem 328

9.3.2 Net proof of ∞-Expansion . 334

10 Conclusions and Future Work 338

References 342

xii

APPENDICES 350

A Supplementary Proofs 351

A.1 Lower Bound Example for the Paulsen Problem 351

A.2 Tightness of Commutative Robustness . 353

A.3 Alternate Scaling Algorithm . 355

A.4 Robustness of Strong Convexity . 357

A.5 Strong Convexity and Size . 358

xiii

Chapter 1

Introduction

A key preliminary step in many fundamental linear algebraic problems is to place the given
input into an appropriate “normal form” so that downstream algorithms can be applied
with better performance. The complexity of finding these preliminary transformations
ranges from the very basic (e.g. matrix diagonalization) to intractable (e.g. tensor decom-
position). In this thesis, we study two fundamental balance properties of linear algebraic
objects and the sets of transformations required to achieve them. Specifically, we are mo-
tivated by the Paulsen problem in frame theory, which will be the focus of the first half of
the thesis (Chapters 3-5), and the tensor normal model in statistics, which will be the focus
of the second half (Chapters 6-9). Our main analytic tool involves the scaling framework
of [20], and specifically, a geodesically convex optimization formulation for these problems.
Using this perspective, we are able to use ideas from convex optimization to analyze the
solution to the Paulsen problem and the maximum likelihood estimator for the tensor nor-
mal model. In the following two sections, we discuss known results for these two problems.
Then we present the ideas from the scaling framework that are used to prove the main
results in this thesis.

1.1 The Paulsen Problem

The first half of this thesis is motivated by the Paulsen problem in frame theory [24].

1

Question 1.1.1. Let U = {u1, ..., un} ⊆ Cd be a spanning set of vectors satisfying

1− ε
d

Id �
n∑
j=1

uju
∗
j �

1 + ε

d
Id, ∀j ∈ [n] :

1− ε
n
≤ ‖uj‖2

2 ≤
1 + ε

n
. (1.1)

Bound the minimum of
∑n

j=1 ‖vj − uj‖2
2 over V = {v1, ..., vn} satisfying Eq. (1.1) exactly:∑

j

vjv
∗
j =

1

d
Id, ∀j ∈ [n] : ‖vj‖2

2 =
1

n
.

We point out that this is a different normalization, by a factor d, than normally given
in the literature. We choose this normalization in order to make clearer the dependence of
the optimal distance bound on the parameters d, n, and ε.

This questions arises from Frame Theory [24], which can be thought of as the study
of redundant representations of vector spaces. Doubly balanced frames, those satisfying
Eq. (1.1) with ε = 0, are used in coding theory and signal processing for their stability
properties. Many of these applications also require frames that satisfy further constraints,
such as large pairwise angles or sparsity. Constructions of these frames are difficult and
often rely on complicated algebraic structures. On the other hand, there are many simple
algorithms to construct frames that approximately satisfy the requirements. For example,
by standard matrix concentration results (see [94]), a large enough set of random unit
vectors will satisfy Eq. (1.1) for some small ε with high probability. The Paulsen problem
asks, for a given ε-doubly balanced frame, whether the conditions in Eq. (1.1) can be
corrected without moving too much. And as many of the approximate constructions come
from randomly generated frames, understanding the distance bound in the average case is
also of interest.

In [49], Holmes and Paulsen studied frames from the perspective of coding theory, and
showed that doubly balanced frames were optimally robust with respect to a single erasure.
They also showed that Grassmannian frames, doubly balanced frames with large pairwise
angles, were optimal for two erasures.

To address the difficulty of constructing these structured frames, the authors of [49]
suggested a simple numerical approach: first generate random frames, which approximately
satisfy Eq. (1.1), and then correct the conditions. Random frames are good candidates for
both of these settings because they are approximately doubly balanced and have large pair-
wise angles with high probability. One goal of the Paulsen problem is then to validate this
numerical algorithm as a simple method of constructing structured frames. The problem
is formalized below.

2

Conjecture 1.1.2 (Paulsen Problem [22]). Let p(d, n, ε) be the minimum value such that
for every ε-doubly balanced frame U ∈ Mat(d, n), there exists a doubly balanced V ∈
Mat(d, n) with s(V) = 1 such that

‖V − U‖2
F ≤ p(d, n, ε).

Then p can be bounded by a polynomial function in d and ε. In particular, this function
can be taken to be independent of n.

The optimal bounds for p have been unknown for almost twenty years, despite con-
siderable attention in the frame theory literature. Prior to our work in [62], there were
two known partial results on the function p [23] and [16], which showed the bound p ≤
poly(d, n, ε) when d, n are relatively prime and ε is small enough. These results left open
Conjecture 1.1.2, which we positively resolved in [62].

Theorem 1.1.3 (Theorem 1.3.1 in [62]). The distance function can be bounded by p(d, n, ε) .
d11/2ε, which is independent of n.

Our new idea was to use scaling algorithms similar to those studied recently in the
work of Gurvits, Garg, Oliveira, and Wigderson [38]. In order to carry out this approach,
we defined a dynamical system which corrected the balance condition for nearly doubly
balanced frames. This dynamical system could then be analyzed using tools from the
operator scaling framework studied in [38]. The full proof of [62] required a smoothed
analysis argument coupled with an involved convergence analysis of the dynamical system.

Subsequently, in the aptly titled “Paulsen Problem made Simple” [46], Hamilton and
Moitra improved the distance bound to p(d, n, ε) . dε, using a totally different and much
simpler method. This almost matches the known lower bound p & ε, which is shown by
simple examples in [23] (see Example A.1.1 in the Appendix).

In this thesis, we give two new results for the Paulsen problem by revisiting the scaling
approach. In our first result, we extend the arguments of [62] in order to prove an optimal
distance bound for the Paulsen problem.

Theorem 1.1.4. For any d with n & d large enough and ε . 1
d

small enough, the distance
function in Conjecture 1.1.2 can be bounded by

p(d, n, ε) . ε.

This matches the known lower bound up to constants wherever it applies. The full
result is presented in Theorem 4.5.3 and covers a slightly larger range of parameters.

3

We achieve this improvement by a deeper understanding of the scaling framework, along
with refinements of many technical arguments in [62]. An important contribution of this
thesis is to connect the approach of [62] for the Paulsen problem to the long line of work
on scaling and the Kempf-Ness function in geometric invariant theory [58]. This allows
us to re-derive the dynamical system approach in a principled manner, as well as to use
powerful tools from convex analysis and algebraic geometry for the analysis.

Our second result is a beyond worst-case distance analysis in the case of random frames.
This allows us to prove an optimal distance bound for the case of random frames, which
answers the original motivation of the Paulsen problem, and gives a tight improvement of
similar results in Theorem 1.12 in [63] and Franks and Moitra [35].

Theorem 1.1.5. For any n & d large enough, if U = {u1, ..., un} ⊆ Rd is generated such
that each uj is independent and uniformly distributed on 1√

n
Sd−1, then with high probability

U is ε-doubly balanced for ε .
√

d
n

, and there exists doubly balanced V such that

‖V − U‖2
F . ε2.

This result validates the numerical approach suggested in [49] to generate doubly bal-
anced frames, and therefore gives a satisfactory answer to the original motivation for Ques-
tion 1.1.1. As further validation, we follow the approach of [63] and use our distance analysis
to give new simple constructions of nearly optimal Grassmannian frames in Theorem 4.4.5.
In the final section, we will discuss how scaling is used to show these bounds.

1.2 Tensor Normal Model in Statistics

Covariance matrix estimation is an important task in statistics, machine learning, and the
empirical sciences. We consider covariance estimation for matrix-variate and tensor-variate
Gaussian data, that is, when individual data points are matrices or tensors. Matrix-variate
data arises naturally in numerous applications like gene microarrays, spatio-temporal data,
and brain imaging. One significant challenge is that the the dimension of these objects
grows as the product of the dimension of the factors, whereas the number of samples
available may be much fewer. To get around this issue, we can add a structural assumption
to the (unknown) covariance matrix. One natural assumption is known as the tensor
normal model ([31]; [99]), and has applications in signal processing and data analysis.
Here, we assume X ∈ Rd1 ⊗ ...⊗Rdm is distributed as a centered Gaussian with covariance
Θ := Θ1 ⊗ ... ⊗ Θm, where each Θa ∈ Mat(da) is a positive definite matrix on Rda . By

4

adding this structural assumption, the unknown covariance can now be described by fewer
parameters, and so we could hope to estimate the covariance matrix with fewer samples.

These are quite natural assumptions for tensor data, and therefore there are many
heuristics and algorithms used in practice. One natural solution to this task is known as
maximum likelihood estimation. Given a set of samples X1, ..., Xn ∈ RD, the likelihood
of estimator Θ is defined as the probability of getting these samples if the true covariance
was Θ. The maximum likelihood estimator (MLE) is defined as the parameter Θ̂ which
maximizes the likelihood function over all feasible Θ. The quality of the MLE depends on
the measure of error that is relevant to the application, and in fact, the MLE does not even
have to exist in general. For the tensor normal model, there are known results showing that
the MLE converges to the true distribution in the asymptotic setting where the number
of samples n goes to infinity [99]. Dutilleul [31] proposed the natural Flip-Flop algorithm
to compute the MLE an estimator. This algorithm iteratively updates one tensor factor
at a time using the natural Gaussian estimator for that marginal. It has been observed in
practice that this algorithm converges to the MLE with high probability, but before our
work in [36], there was no known rigorous convergence analysis for this procedure. In this
work, we are able to use our analysis of tensor scaling given in Chapter 7 to give high
probability error bounds for the MLE as well as a rigorous convergence analysis of the
Flip-Flop algorithm for finite samples.

The optimization problem defining the MLE of the tensor normal model is non-convex,
so we cannot approach it using standard algorithms. But as we will describe in the following
section on the scaling framework, this function is geodesically convex over the set of possible
covariance matrices. Further, by some powerful results from the work of Pisier on operator
theory [80], the function is geodesically strongly convex with high probability. When there
are enough samples for this strong convexity to hold, we are able to bound the error of the
MLE.

Theorem 1.2.1. For samples X1, ..., Xn ∈ RD from the tensor normal model with unknown

covariance Θ := Θ1 ⊗ ... ⊗ Θm, if nD & d2
max

ε2
for any ε . 1

poly(m)
√
dmax

, then with high

probability, the MLE Θ̂ satisfies

dF (Θ̂,Θ)2 . Dmε2,

for dF (A,B) := ‖I −B−1/2AB−1/2‖F in Definition 9.1.6. Further, in this event, the Flip-
Flop algorithm has linear convergence (in dF) to the optimizer.

This result should be compared to the known error bounds for general Gaussian co-
variance estimation for which n & d samples are known to be necessary even to estimate

5

the covariance up to constant error. In Section 9.2.7, we show two improved results: first,
we are able to reduce the constraint on ε by a factor of d

Ω(1/m)
max which allows us to improve

the sample complexity by a similar factor; and second, we are able to prove refined error
bounds in the operator norm for each individual factor. We believe that these error bounds
should hold as soon as nD & poly(m)d2

max, which would match the standard Gaussian re-
sult up to poly(m) factors. In the final section, we discuss in more detail the connection
to scaling and our proof techniques.

1.3 Scaling Framework

In recent years, there has been much interest in problems from the scaling framework [38],
[39], [19], [20]. These problems originate in the field of geometric invariant theory, which
studies the algebraic structure of group actions on vector spaces. Below, we present some
concrete examples of scaling that will be relevant to our main applications discussed in the
previous two sections.

One of the simplest problems in this framework is matrix scaling. The goal here is,
given a non-negative matrix A ∈ Mat(n), to find positive diagonal scalings L,R ∈ diag(n)
such that B := LAR is doubly stochastic:

B1n = BT1n = 1n.

This problem has been re-discovered many times throughout mathematics and has been
used as a subroutine for a variety of applications in statistics [83], approximation of the per-
manent [66], and optimal transport [27]. Recently, faster algorithms have been developed
for matrix scaling [2], [26] using techniques from convex optimization and fast Laplacian
solvers. In fact, in this simple setting, it has long been known that matrix scaling can be
solved using a convex formulation.

The next problem we study is frame scaling, which is more directly related to Ques-
tion 1.1.1. Here, we are given a set of vectors {u1, ..., un} ∈ Rd, and the goal is to find a
transformation L ∈ Mat(d) and scalars c1, ..., cn such that

n∑
j=1

(Lujcj)(Lujcj)
∗ =

n

d
Id.

The frame scaling problem also has a long history in theoretical computer science and
mathematics [34], [50], and has been referred to by other names such as the radial isotropic

6

position of vectors [47], and the geometric condition for Brascamp-Lieb inequalities [10].
This is in a sense the next simplest scaling problem after matrix scaling, and this also has
known convex formulations [47], though they are slightly less obvious. In the following
section, we will show how this problem relates to our solution of the Paulsen problem.

The operator scaling problem is a generalization of both the matrix and frame versions.
In this setting, we are given a tuple of matrices {A1, ..., AK} ∈ Mat(n)K , and we want to
find L,R ∈ Mat(n) such that {Bk := LAkR}Kk=1 is doubly balanced:

K∑
k=1

BkB
∗
k =

K∑
k=1

B∗kBk = In.

The operator scaling problem was defined in the work of Gurvits [45] in the context of
the polynomial identity testing question in algebraic complexity, and a simple iterative
algorithm was proposed to solve it. Garg, Gurvits, Oliveira, and Wigderson [38] show
that this algorithm converges in polynomial time. As a consequence, this gave the first
polynomial time algorithm for a variety of problems in algebraic complexity, including
a non-commutative version of polynomial identity testing. There are simple reductions
showing that both matrix scaling and frame scaling are special cases of operator scaling
problems. In the following section, we will briefly describe a generalization of operator
scaling to higher order tensors and show how it is applied to our statistical application.

The above examples, as well as the tensor scaling generalization discussed later, are
all fundamental linear algebraic problems that have had a wide variety of applications in
many areas of mathematics [45], [39], [10]. They also share two important common features
that are not immediately visible: the domain is a group of symmetries, and there is an
underlying optimization formulation.

These two features motivate the following framework of [20], which gives a unified
approach to many scaling problems. It can be shown that the required balance conditions
in the scaling problems above can be written as first order optimality conditions for a
certain natural function from geometric invariant theory called the Kempf-Ness function
(Definition 3.1.6 and Definition 6.2.7). Further, it can be shown that the set of scalings in
the problems above can be restricted to subsets of positive definite matrices. Finally, by
viewing the domain of positive definite matrices from a particular (geodesic) geometry, we
can reveal the underlying convexity of the Kempf-Ness function.

This suggests that we can lift ideas from classical convex optimization to this geodesic
setting in order to solve scaling problems. This perspective was a major contribution of
[20] and allowed them to give a principled analysis for a variety of known algorithms for

7

the scaling framework. In many instances, they were able to propose new algorithms for
previously intractable problems. We discuss these algorithmic results in more detail in
Chapter 8.

But these results are given for worst case instances, and do not imply strong enough
bounds for our applications (Paulsen problem and tensor normal model). Therefore, an
important technical contribution of this thesis is to provide new stronger analyses of matrix
and tensor scaling when the inputs satisfy certain special conditions. By using techniques
from geodesic convex optimization, we are able to unify and refine the results of [62], [63],
[36] to give nearly optimal bounds for scaling in beyond worst-case settings.

Specifically, we will analyze instances when the convex formulation satisfies a certain
strong convexity property, or a combinatorial pseudorandom condition, and we show that
in these cases, the natural gradient flow algorithm for scaling converges quickly. These
analyses allow us to prove much stronger bounds on many parameters of the scaling prob-
lem, including distance and condition number bounds on the solution. The special strong
convexity and pseudorandom conditions are satisfied by random inputs, as well as in our
smoothed analysis setting. These stronger analyses are used to show our main results for
the Paulsen problem and tensor normal model, as discussed in the following section.

1.4 Applications of Scaling

In this section, we discuss how frame scaling and tensor scaling arise naturally in our
context of the Paulsen problem and tensor normal model, respectively. Then we outline
our approaches to use the scaling framework to give strong bounds for these problems.

1.4.1 Solution to the Paulsen problem

In this subsection, we outline the smoothed analysis and scaling approach first used in
[62] to give a polynomial distance bound for the Paulsen problem. We then discuss our
particular improvements to the approach that lead to optimal distance bounds.

Recall that in Question 1.1.1, we are given a frame that nearly satisfies two balance
conditions and would like to transform it into an exactly doubly balanced one. It turns
out that it is easy to fix each balance condition individually, and for this simpler problem,
optimal distance bounds are well-known in the literature (see Fact A.3.1). This suggests
the following natural procedure: alternatively fix each balance condition until both are

8

satsifed. Unfortunately, fixing one condition might destroy the other, and there are exam-
ples showing that the above algorithm does not converge to a doubly balanced frame or
even converge at all [24]. This procedure also does not come with any meaningful distance
guarantees, as the later iterations could take very large steps.

In [62], we thought that the alternating procedure may be taking large steps while
moving the frame very little. So we defined a dynamical system on frames that can be
viewed as an infinitesimal version of this simple alternating algorithm.

Definition 1.4.1. Consider the following vector field, defined for each V ∈ Mat(d, n) as

∇V :=

{(
d

n∑
j=1

vjv
∗
j − s(V)Id

)
vj + vj

(
n‖vj‖2

2 − s(V)
)}n

j=1

. (1.2)

where s(V) := ‖V ‖2
F . Then for input U , dynamical system {U(t)}t≥0 is defined as the

solution to the differential equation ∂tU(t) = −∇U(t) with initial condition U(0) = U .

Observe that doubly balanced U is a fixed point of the dynamical system in Eq. (1.2).
Therefore, we can try to give a distance bound for the Paulsen problem by considering the
path length of the flow U(t) until convergence. It turns out that this gradient flow can be
profitably understood using the scaling framework. Specifically, by the powerful Kempf-
Ness equivalence theorem [58], the dynamical system in Eq. (1.2) is actually a natural
gradient flow for the geodesically convex formulation for frame scaling. In [62], we gave a
bound on the distance travelled in terms of the convergence of the dynamical system. It
turns out that the potential function we used in this analysis can be formally derived from
the geodesic convex formulation, though we did not know this at the time. Therefore, in
order to give a strong distance bound for the Paulsen problem, it was sufficient to show
fast convergence of the potential function for all time.

Unfortunately, this dynamical system does not always converge to a doubly balanced
frame. In [62], our solution was to use smoothed analysis, by randomly perturbing input
U ∈ Mat(d, n) to V := U +E, and then applying the dynamical system to this perturbed
input. This gave the following distance analysis:

‖V (∞)− U‖2
F . ‖V (∞)− V ‖2

F + ‖V − U‖2
F . (1.3)

In [62], we used a complicated probabilistic analysis to exhibit a perturbation V := U +E
such that ‖V − U‖2

F . poly(d) · ε, and V satisfied a certain combinatorial pseudorandom
condition. Then, under this pseudorandom assumption, we were able to prove ‖V (∞) −
V ‖F . ε. Theorem 1.1.3 follows by combining both of these arguments.

9

In this thesis, we will simultaneously improve and simplify both of these steps using
our new understanding of the scaling framework. An important contribution of this thesis
is to formalize the connection of the dynamical system approach of [62] to the scaling
framework of [20], which allows us to derive much of the distance analysis in a principled
way. As our first improvement, we are able to give a new convergence analysis of scaling
inputs that satisfy certain strong convexity or pseudorandom conditions. This clarifies
and improves our work in [62] and [63], where we proved fast convergence for operator
scaling by ad-hoc methods. A key component of our improved analysis is a reduction from
frame scaling to the simpler matrix scaling problem, where the optimization formulation is
actually convex in the standard Euclidean sense by a simple change of variables. Therefore,
we are able to lift tools from standard convex optimization in order to give strong analyses
of frame scaling when the input satisfies strong convexity and pseudorandom conditions.
This analysis implies our optimal result for the Paulsen problem in the average case, as
random frames satisfy these conditions with high probability.

To prove our worst-case result in Theorem 1.1.4, we need to find a perturbation of
ε-doubly balanced input U ∈ Mat(d, n) so that it satisfies the pseudorandom condition, so
that we can apply our improved analysis. Following the smoothed analysis strategy of [62],
we take E to be a random Gaussian from a specially chosen subspace, and by choosing the
correct parameters, we are able to prove tight distance bounds for both terms in Eq. (1.3).

1.4.2 Error bounds for the Tensor Normal Model

Our results for the tensor normal model follow more directly from the scaling framework. In
Section 9.2.4, we reduce the analysis of the optimization problem for the matrix and tensor
normal model to the analysis of tensor scaling for standard Gaussian inputs X1, ..., Xn ∼
N(0, ID). Then we are able to show, using powerful Gaussian concentration results, that
these random inputs have very small initial error and satisfy certain strong convexity and
pseudorandom conditions.

In Chapter 7, we take a geodesically convex optimization approach to prove strong
bounds on the tensor scaling solution for such inputs. With the framework of Chapter 8,
we can further view the Flip-Flop algorithm as a natural descent method for geodesic
convex optimization, which then implies linear convergence to the MLE via standard results
on strongly convex optimization. This gives the first rigorous analysis for the Flip-Flop
algorithm and gives an explanation for the empirical success of this algorithm in practice.

The fast convergence results on Chapter 7 can be thought of as a generalization of
the results of Chapter 3 on matrix scaling to higher order tensors. In fact, many parts

10

of the analysis are similar in spirit, though they require new ideas to apply to the tensor
setting. We believe that this similarity is a useful contribution of this thesis, as we are
able to unify and improve the results of [62], [63], and [36]. We point out that many
of the known results for operator scaling break down when lifted to higher-order tensors,
and in particular even for 3-tensor scaling, there is no known polynomial time algorithm
in the worst case. Therefore, the work in this thesis suggests that a preliminary step in
understanding the complexity of scaling problems is to find special classes of inputs where
the problem is tractable.

1.5 Organization

In Chapter 2, we introduce the necessary preliminary concepts that will be used in this the-
sis, including basic linear algebra, convex analysis, and concentration inequalities. Then,
the first half of the thesis will be devoted to our solution of the Paulsen problem. Specif-
ically, in Chapter 3, we analyze matrix scaling for inputs satisfying strong convexity or
pseudorandom convexity. In these cases, we are able to give much stronger bounds on the
scaling solution. This will be used in Chapter 4 to give optimal distance bounds for the
Paulsen problem in both the worst-case and average-case settings. The proof of the core
smoothed analysis argument for the Paulsen problem is deferred to Chapter 5, and will
mostly rely on tools from random matrix theory.

The second half of the thesis will build towards our results for the tensor normal model in
statistics. In Chapter 6, we will present the scaling framework of [20], especially focusing on
the geodesic convex optimization formulation for tensor scaling. Then, Chapter 7 parallels
Chapter 3 by giving strong analyses of the tensor scaling problem for strongly convex or
pseudorandom tensor inputs. In Chapter 8, we use tools from standard convex analysis
to present and analyze natural iterative algorithms for the geodesic tensor scaling setting.
Finally, Chapter 9 contains our main results for this application by showing that the
random inputs for the tensor normal model satisfy the fast convergence conditions studied
in Chapter 7. Therefore, we are able to show sample complexity and error bounds for a
natural estimator that are close to optimal, as well as give a rigorous analysis of linear
convergence for a natural iterative method to this high-quality estimator.

We conclude this thesis in Chapter 10 with a brief summary and discussion of future
directions.

Roadmap: For the Paulsen problem, we suggest reading Chapter 4 to see the promised
new results, and then reading the scaling analysis in Chapter 3 followed by the smoothed

11

analysis argument in Chapter 5. For the tensor normal model, we suggest reading Chapter 9
to see the reduction and main results, followed by Chapters 6-8 for our tensor scaling
arguments. The reader already familiar with the scaling framework and geodesic convex
optimization can skip Chapter 6 and read Chapter 3 and Chapter 7 directly for our new
analyses of matrix and tensor scaling, respectively. Chapter 6 contains some interesting
background from geometric invariant theory that underlies our geodesic convex formulation
and points to many open problems in the scaling framework. The reader interested in
geodesic convex optimization can see Chapter 8, which contains the main algorithmic
results for tensor scaling.

12

Chapter 2

Preliminaries

We will write R for the real numbers and C for the complex numbers. Given positive
integer n, we use [n] to denote the set {1, ..., n}. We use

(
n
k

)
for the binomial coefficient,

and
(

[n]
k

)
for the set of all k-subsets {S ⊆ [n] | |S| = k}. We use Pr[·] for the probability of

an event, and E[·] for the expectation of a random variable. For functions f, g : N→ R+,
f(n) ≤ O(g(n)) is used to mean that there is a pair of universal constants n0, C > 0
such that ∀n ≥ n0 : f(n) ≤ Cg(n), and f(n) ≥ Ω(g(n)) is equivalent to g(n) ≤ O(f(n)).
Similarly, a . b means that there is an unspecified universal constant C such that a ≤ Cb,
and a & b is the same as b . a. A group is a set G with an associative pairwise operation
(·), along with identity and inverse elements. The action of group G on set X is defined by
a map σ : G×X → X such that the elements {σg}g∈G under composition are compatible
with the group operation (·) on G.

2.1 Linear Algebra

In this section, we present some important concepts from linear algebra: the Spectral
Theorem in Section 2.1.3, the Polar decomposition in Section 2.1.8, and some matrix
inequalities in Section 2.1.9. The first part of the thesis leading up to the solution of
the Paulsen problem (Chapters 3-5) will only use these concepts along with some convex
optimization for vector spaces. The more abstract group and algebra perspective covered
in the following section will only be used in the second part of the thesis.

13

2.1.1 Vector Spaces

In this subsection, we formally define vector spaces and inner product spaces. We follow
the presentation of Axler [7].

Definition 2.1.1 (Vector Space). A vector space V over field F is a set of vectors V along
with vector addition + : V ×V → V , and scalar multiplication · : F×V → V satisfying the
following compatibility conditions: commutativity, associativity, additive identity, additive
inverse, multiplicative identity, distributive property. We omit the formal definition of
these natural properties and refer the reader to Chapter 1 of [7].

For vector space V , a subset of vectors {v1, ..., vk} ⊆ V are linearly dependent if there
exists a1, ..., ak ∈ F such that

a1v1 + ...+ akvk = 0,

and they are linearly independent otherwise. A basis of V is a maximal subset of linearly
independent vectors {v1, ..., vd}. It can be shown that all bases of V have the same number
of elements, known as the dimension of the vector space dim(V).

For F ∈ {R,C}, Fd is the canonical Euclidean space of dimension d with standard basis
{e1, ..., ed} ⊆ Fd where ei∈[d] is 1 in the i-th entry and 0 elsewhere. An arbitrary vector
space over F is always isomorphic to Fd for some d ∈ N.

Fact 2.1.2. For vector space V over field F of dimension dim(V) = d, any choice of basis
{v1, .., vd} induces an isomorphism V ' Fd by the following bijection:

(a1, .., ad) ∈ Fd ←→
d∑
i=1

aivi ∈ V.

This is injective due to the linear independence of {v1, ..., vd}, and surjective by the fact
that it is a basis for V .

Fd is also equipped with the standard Euclidean inner product

〈x, y〉 :=
d∑
i=1

xiyi,

where · denotes the complex conjugate (if F = C). This induces the standard Euclidean
norm ‖x‖2 :=

√
〈x, x〉 on Fd, which measures the length of x ∈ Fd. By convention, vector

x ∈ Cd is a column vector, and we use x∗ to denote its conjugate transpose row vector

14

(x∗)i = xi. Similarly, for x ∈ Rd, we use either of x∗, xT to denote its transpose row vector
(as complex conjugation is trivial on R). Therefore the standard Euclidean inner product
between x, y ∈ Fd can equivalently be written as

〈x, y〉 = x∗y.

In general, an inner product is used to define lengths and angles in a vector space. An
inner product space is a vector space with a Hermitian inner product as defined below.

Definition 2.1.3 (Inner Product). A Hermitian inner product 〈·, ·〉 on complex vector
space V satisfies

1. Linearity: 〈au+ bv, ·〉 = a〈u, ·〉+ b〈v, ·〉 for any a, b ∈ C and u, v ∈ V ;

2. Conjugate symmetry: 〈u, v〉 = 〈v, u〉 for any u, v ∈ V , where · denotes complex
conjugation;

3. Positive definite: 〈u, u〉 > 0 for any 0 6= u ∈ V .

If V is a real vector space, then the conjugate symmetry property reduces to symmetry. The
induced norm is ‖v‖2

2 := 〈v, v〉.

A set of vectors {v1, ..., vk} ⊆ V is orthogonal if 〈vi, vj〉 = 0 for every pair i 6= j ∈ [k],
and orthonormal if further 〈vi, vi〉 = 1 for every i ∈ [k]. We will often use orthonormal
bases of vector spaces to give especially nice ismorphisms between V and Fdim(V).

2.1.2 Linear Operators

Now that we have defined vector spaces, we can consider the maps between them.

Definition 2.1.4 (Linear Operators). For vector spaces V,W over F, linear map/ opera-
tor/ transformation A : V → W preserves vector addition and scalar multiplication:

∀a, b ∈ F, u, v ∈ V : A(au+ bv) = a(Au) + b(Av).

L(V,W) denotes the set of linear operators A : V → W , and L(V) is used f V = W .

15

If V = Fn and W = Fd are the canonical Euclidean vector spaces, then L(V,W) can be
identified with MatF(d, n), the set of d×n matrices over field F. In this case, composition of
linear operators is identified naturally with matrix multiplication, inversion is the standard
matrix inverse, and the adjoint is the conjugate transpose (M∗)ij = Mji.

For general vector space V , the identity operator on V is denoted by IV . For A ∈
L(V,W) and B ∈ L(U, V), we have AB ∈ L(U,W), where we use AB or A ◦ B to denote
the composition of linear operators.

Linear operator A ∈ L(V) is called invertible if there is a solution to the equation
BA = AB = IV for some B ∈ L(V). In this case, B = A−1 is known as the inverse of A. It
can be shown that A is invertible iff A is injective (Au = Av ⇐⇒ u = v) iff A is surjective
A(V) = V . The set of invertible linear operators is known as the General Linear group,
and is denoted by GL(V). We will discuss the group structure further in Section 2.2.1.

If U, V are inner product spaces with Hermitian inner products 〈·, ·〉, the adjoint of
operator A ∈ L(U, V) is the unique operator A∗ ∈ L(V, U) satisfying

〈Au, v〉 = 〈u,A∗v〉

∀u ∈ U, v ∈ V . We will sometimes use AT to denote the adjoint if the vector spaces in
question are real.

Similar to Fact 2.1.2, we can connect abstract linear operators to the familiar matrix
multiplication setting.

Definition 2.1.5 (Correspondence between Linear Transformations and Matrices). Let
V,W be vector spaces of dimension dim(V) = n and dim(W) = d, and consider linear
operator A ∈ L(V,W). Then any choice of bases {ψ1, ..., ψn} ⊆ V and {ξ1, ..., ξd} ⊆ W
induces an isomorphism L(V,W) ' Mat(d, n). Namely, for A ∈ L(V,W) and j ∈ [n],
let Aψj =

∑d
i=1Mijξi be the unique representation in the basis {ξ1, ..., ξd}. Then M :=

{Mij}i∈[d],j∈[n] ∈ Mat(d, n) is the matrix representation of A with respect to these bases.

Writing Ξ := {ξ1, ..., ξd} and Ψ := {ψ1, ..., ψn} as the concatenation of vectors gives the
following convenient notation for matrix representations:

M = Ξ−1AΨ. (2.1)

Matrix representations also allow us to show that the algebra of linear operators (with
composition) is isomorphic to that of matrix multiplication as follows: let A ∈ L(U, V), B ∈
L(V,W) for vector spaces U, V,W , and consider choice of bases Ξ ⊆ U,Ψ ⊆ V,Φ ⊆ W .
Then if we MA is the matrix representation of A with respect to (Ψ,Ξ) and MB is the

16

matrix representation of B with respect to (Ξ,Φ), then MC the matrix representation of
C = BA with respect to (Ψ,Φ) is defined as

MC = MBA = Φ−1(B ◦ A)Ψ = (Φ−1BΞ)(Ξ−1AΨ) = MBMA. (2.2)

MatF(d, n) is also naturally isomorphic to Fd×n, and we use A ∈ MatF(d, n)→ vec(A) ∈
Fd×n to refer to this isomorphism and (a ∈ Fd×n)→ mat(a) ∈ MatF(d, n) for its inverse.

We will use MatF(d) for square matrices and diagF(d) for the subspace of diagonal
matrices in MatF(d).

2.1.3 The Spectral Theorem

The simplest linear operator is scalar multiplication applied to the vector space F = F1.
We can better understand general linear operators by attempting to decompose the action
on a given vector space into these simple scalar actions.

To this end, given linear operator A ∈ L(V) for some vector space V over field F, a
non-zero vector v ∈ V is an eigenvector of A if there is some element λ ∈ F such that
Av = λv. In this case, λ is the associated eigenvalue of v, and (v, λ) are an eigen-pair of
A. The spectrum of A is the (multi-)set of eigenvalues of A.

The following definition captures those operators which we can understand as a direct
sum of simple scalar actions.

Definition 2.1.6 (Diagonalizable Matrix). Let V be a vector space over field F. Then
A ∈ L(V) is diagonalizable over F iff V is spanned by a basis of eigenvectors of A.

If Ξ := {ξ1, ..., ξd} ⊆ V is the basis of eigenvectors of operator A ∈ L(V), then we say
A is diagonalized by Ξ. According to Definition 2.1.5, the matrix representation of A in
the Ξ basis is M := Ξ−1AΞ, and it can be shown that in this case, M is a diagonal matrix
with the spectrum of A on the diagonal.

For any A ∈ L(V), Ak∈N is well-defined as the repeated application of A k times. For
diagonalizable operators, this can be lifted to define arbitrary functions of an operator.

Definition 2.1.7. Consider scalar function f : D → F on domain D ⊆ F and F ∈ {R,C}.
Let V be a vector space of dimension dim(V) = d and A ∈ L(V). f can be applied to A if
A is diagonalizable with eigen-pairs {(λi, vi)}i∈d such that ∀i ∈ [d] : λi ∈ D. In this case,
f(A) ∈ L(V) is the unique operator with eigenpairs {(f(λi), vi)}di=1.

17

Not every operator is diagonalizable (consider A ∈ L(R2) defined by Ae1 = 0, Ae2 = e1).
Below, we further discuss special classes of diagonalizable operators for which more can be
said about the eigenvalues and eigenvectors.

Let V be an inner product space, and consider linear transformation A ∈ L(V). A is
called normal if it satisfies AA∗ = A∗A, and is called self-adjoint if it satisfies A∗ = A.
We distinguish between the real and complex cases, so A is called Hermitian if V is a
complex vector space, and A is called symmetric if V is a real vector space. In these
cases, we use H(V) to denote the set of Hermitian operators and S(V) to denote the set
of symmetric operators. If V = Fd, then this corresponds to the set of Hermitian and
symmetric matrices, respectively.

The eigenvectors of these classes of operators have some additional structure.

Theorem 2.1.8 (Spectral Theorem 7.9 and 7.13 in [7]). Let V be a complex vector space
with Hermitian inner product 〈·, ·〉. Then linear transformation A ∈ L(V) is diagonalized
by an orthonormal basis of eigenvectors over C iff A is normal (AA∗ = A∗A).

If V is a real vector space with symmetric inner product 〈·, ·〉, then A ∈ L(V) is diago-
nalized by an orthogonal basis of eigenvectors over R iff A ∈ S(V), i.e. AT = A.

In both cases, the spectrum of A is real iff A is self-adjoint.

Theorem 2.1.8 extends to normal operators that are not symmetric in a real inner
product space, but we do not need this more complicated block decomposition.

2.1.4 Trace and Determinant

The trace of a matrix M ∈ Mat(d), denoted by Tr(M), is defined as the sum of the diagonal
entries of M . It can be verified that the trace satisfies cyclic property: Tr(AB) = Tr(BA)
for A and B with appropriate sizes. The trace of a linear operator A ∈ L(V) is defined as
the trace of the matrix representation of A with respect to any basis {ξ1, ..., ξd} ⊆ V . It
can be shown (using the cyclic property) that the trace does not depend on the choice of
basis, so this is well-defined. Therefore, if A is diagonalizable, choosing Ξ = {ξ1, ..., ξd} to
be the basis of eigenvectors with {λ1, ..., λd} the corresponding eigenvalues, we have

Tr[A] = Tr[Ξ−1AΞ] =
d∑
i=1

λi.

18

The determinant of M ∈ Mat(d) is the following polynomial function of its entries:

det(M) :=
∑
σ∈Sd

(−1)|σ|
d∏
i=1

Mi,σ(i),

where Sd is the set of all permutations on [d], and |σ| denotes the parity or signature
of a permutation. It can be shown that the determinant is multiplicative det(AB) =
det(A) det(B), and this allows us to define the determinant of linear operator A ∈ L(V) as
the determinant of the matrix representation of A with respect to any basis Ξ. For diago-
nalizable A with Ξ = {ξ1, ..., ξd} the basis of eigenvectors and {λ1, ..., λd} the corresponding
eigenvalues, we have

det(A) = det(Ξ−1AΞ) =
d∏
i=1

λi

as the terms corresponding to any other permutation vanishes.

In general, A ∈ L(V) may be diagonalizable over C even if it is not diagonalizable over
R. In this case, the formulas for trace and determinant continue to hold with respect to
these complex eigenvalues.

2.1.5 Positive Operators

In this subsection, we consider certain special subsets of Hermitian operators which will
be the core of our optimization framework in Chapter 6.

Definition 2.1.9 (Positive Operators). For inner product space V , transformation A ∈
L(V) is positive semi-definite if it is self-adjoint and

∀x ∈ V : 〈x,Ax〉 ≥ 0.

It is positive definite if the inequality is strict for all x 6= 0.

The set of all positive definite operators is denoted by PD(V). We use A � 0 to mean
that A is positive semi-definite, and A � 0 to mean that A is positive definite. This
definition also defines a partial order on self-adjoint operators as follows: A � B and
A � B means A−B is positive semi-definite or positive definite respectively.

Our optimization framework in Chapter 6 will involve the following subsets of PD(V).

19

Definition 2.1.10. For inner product space V over F ∈ {R,C}, SPD(V) denotes the
subset of PD(V) with unit determinant. Its corresponding algebra (discussed further in
Section 2.2.3) is defined as spd(V) := log SPD(V), or explicitly as

spdC(V) := {X ∈ H(V) | Tr[X] = 0} spdR(V) := {X ∈ S(V) | Tr[X] = 0}.

2.1.6 Isometries

In a general metric space, an isometry is a transformation that preserves the metric. In
our setting involving linear operators on inner product spaces, the metric we consider is
the Euclidean metric derived from the inner product ‖u− v‖2 :=

√
〈u− v, u− v〉.

Definition 2.1.11. For inner product space V , Ξ ∈ L(V) is an isometry if it preserves
the inner product:

∀x, y ∈ V : 〈Ξx,Ξy〉 = 〈x, y〉.

Equivalently, this can be defined by the equation

ΞΞ∗ = Ξ∗Ξ = IV .

Complex isometries are called unitary transformations and are denoted by U(V), and
real isometries are called orthogonal transformations and are denoted by O(V).

If V = Fd, we will use U(d) and O(d) as shorthand. Note that the equation Ξ∗Ξ = Id
implies that the columns of Ξ form an orthonormal basis. This implies that isometries
capture length-preserving change of basis operations. Further, with this notation, Theo-
rem 2.1.8 characterizes normal and self-adjoint operators as those with real spectrum which
can be diagonalized by isometries:

H(V) = {Ξ diagR(d)Ξ∗ | Ξ ∈ U(V)}, S(d) = {Ξ diagR(d)Ξ∗ | Ξ ∈ O(V)}.

Since isometries are clearly normal (as ΞΞ∗ = Ξ∗Ξ = IV), Theorem 2.1.8 implies that
they have an orthonormal basis of eigenvectors. It can further be shown that the spectrum
of an isometry is contained in S1 := {λ ∈ C | |λ| = 1}. Note that in this case, both the
real and complex isometries are diagonalizable over the complex field.

20

2.1.7 Projections

In Chapter 5, we will need to define noise distributions satisfying certain linear constraints.
This is accomplished by using the following notion of orthogonal projections, which are a
special class of positive semi-definite operators.

Definition 2.1.12 (Projection). A projection on vector space V is a transformation P ∈
L(V) such that P 2 = P . An orthogonal projection on inner product space V is a projection
that is also self-adjoint (P ∗ = P).

By the Spectral Theorem (Theorem 2.1.8), any self-adjoint orthogonal projection P
has an orthonormal basis of eigenvectors. Further, the equation P 2 = P can be used to
show that its spectrum is contained in {0, 1}. Therefore, if Ξ := {ξ1, ..., ξk} ⊆ V is any
orthonormal basis of the range of P , then the projection can be written as P = ΞΞ∗.

Given arbitrary A ∈ Mat(d, n), the unique orthogonal projection onto the column space
of A is defined by

A(A∗A)−1A∗. (2.3)

If A∗A is not invertible, then we use the pseudoinverse, which is the inverse on the image
of AA∗ and 0 on the null space. We will mostly deal with the invertible case, so by abuse
of notation, we use ()−1 for both.

2.1.8 The Polar Decomposition

The goal of this subsection is to present the polar decomposition from matrix analysis.
This will be useful for our group optimization framework in Chapter 6.

Theorem 2.1.13. For complex inner product space V , any A ∈ GLC(V) can be uniquely
written A = UP for unitary U ∈ U(V) and positive definite P ∈ PD(V). If V is a
real inner product space, then any A ∈ GLR(V) can be written uniquely as A = OP for
orthogonal O ∈ O(V) and positive definite P ∈ PD(V). Further, P = |A| =

√
A∗A is the

unique positive definite square root.

This statement is the simplest case of the Cartan decomposition [97] from Lie group
theory that we discuss further in Section 2.2.3, though we will not need this level of
generality for our applications. In Chapter 6, we will lift this polar decomposition to direct
sums of certain matrix groups.

21

2.1.9 Norms and Inequalities

In this subsection, we present some standard norms on vector spaces and matrices, as well
as certain inequalities between these norms.

Definition 2.1.14. For x ∈ Fd with F ∈ {R,C}, then p-norm of x for p ≥ 1 is defined as

‖x‖p :=
(d∑
i=1

|xi|p
)1/p

.

Note that ‖·‖2 is the standard Euclidean norm, i.e. ‖x‖2
2 = 〈x, x〉 for the standard Euclidean

inner product defined above. Further we denote ‖x‖∞ := maxi∈[d] |xi|.

We will use Bd
2 := {x ∈ Rd | ‖x‖2 ≤ 1} to denote the Euclidean ball, and Sd−1 := {x ∈

Rd | ‖x‖2 = 1} for the Euclidean sphere in d-dimensions.

The following well-known result gives duality relations between Lp norms.

Proposition 2.1.15. Hölder’s inequality [48] states that for x, y ∈ Fd for F ∈ {R,C} and
any p ≥ 1,

〈x, y〉 ≤ ‖x‖p‖y‖q,
where q is the Hölder conjugate exponent satisfying 1

p
+ 1

q
= 1. Note that this generalizes

the Cauchy-Schwarz inequality by taking p = q = 2.

As a consequence, the p-norms can also be described as (Chapter 2 of [17]).

‖x‖p = sup
‖y‖q≤1

〈y, x〉.

Similarly, we can define the analogous notion of p-norms for operators. We first present
some well-motivated special cases that will be used throughout.

The Frobenius inner product on Mat(d, n) can be seen as the standard Euclidean inner
product on Mat(d, n): for A,B ∈ Mat(d, n),

〈A,B〉 :=
d∑
i=1

n∑
j=1

AijBij = 〈vec(A), vec(B)〉

where in the first term we are defining the Frobenius inner product, and in the last term
we are using the standard Euclidean inner product on Fdn. For inner product spaces V,W ,
the Frobenius inner product on abitrary operators A,B ∈ L(V,W) is defined as

〈A,B〉 = Tr[A∗B].

22

It can be shown that this specializes to the definition above by considering an arbitrary
matrix representation of A and B. This inner product naturally induces the Frobenius
norm ‖A‖2

F := 〈A,A〉.
Another important norm on L(V,W) is the operator norm

‖A‖op := sup
v∈V

‖Av‖2

‖v‖2

, (2.4)

where the norms in the numerator and denominator denote the norms induced by the inner
products on W and V respectively. More generally, any choice of norms ‖ · ‖V and ‖ · ‖W
on vector spaces V and W produce the induced operator norm defined on L(V,W) as

‖A‖V→W := sup
v∈V

‖Av‖W
‖v‖V

.

Note that ‖ · ‖op is therefore the operator norm induced by the standard Euclidean norm
‖ · ‖2. By Proposition 2.1.15, we can rewrite this as

‖A‖op := sup
w∈W

sup
v∈V

〈w,Av〉
‖w‖2‖v‖2

.

Further, it can be shown that if A ∈ H(V) or A ∈ S(V), then we can restrict the above
variational formula to

‖A‖op := sup
v∈V

〈v, Av〉
‖v‖2

2

. (2.5)

The following definition generalizes ‖ · ‖F and ‖ · ‖op, just as the Lp norms on Fd
generalize ‖ · ‖2 and ‖ · ‖∞.

Definition 2.1.16. For inner product spaces V,W and p ∈ N, the p-Schatten norm on
A ∈ L(V,W) is defined

‖A‖Sp = ‖A‖p := (Tr(A∗A)p/2)1/p.

This can be extended to to arbitrary p ≥ 1 by considering the eigendecomposition A∗A =∑dim(V)
i=1 λiviv

∗
i according to Theorem 2.1.8 and defining

‖A‖Sp = ‖A‖p :=

dim(V)∑
i=1

λ
p/2
i

1/p

.

23

It can be shown that the Frobenius norm ‖·‖S2 = ‖·‖F and the operator norm ‖·‖S∞ =
‖ · ‖op are special cases. This leads to the following operator version of Proposition 2.1.15.

Proposition 2.1.17. For inner product spaces V,W and p ∈ N, the p-Schatten norm on
A ∈ L(V,W) is equivalently defined

‖A‖Sp = sup
‖B‖Sq≤1

〈A,B〉,

where q is the Holder conjugate 1
p

+ 1
q

= 1.

As a consequence, the following generalizes the Cauchy-Schwarz inequality to operators:

〈A,B〉 ≤ ‖A‖Sp‖B‖Sq .

In Section 9.3.1, we will need the following multi-argument generalization of the above
inequality for our trace method argument.

Theorem 2.1.18 (Section 1.2 in [90]). For inner product space V and p ∈ N with p ≥ 1,
if A1, ..., Ap ∈ L(V), then ∣∣∣∣Tr

[p∏
i=1

Ai

]∣∣∣∣ ≤ p∏
i=1

‖Ai‖Sp .

We point out that the above inequality applies only when the number of arguments
coincides with the choice of Schatten norm p.

Finally, we present the following extension of the Riesz-Thorin theorem from functional
analysis [102] which allows us to interpolate between Schatten norms.

Theorem 2.1.19 (Corollary 3.1 of [61]). Let Φ : H(m) → H(n) or Φ : S(m) → S(n) be
a linear operator between two spaces of finite dimensional operators such that, for given
p, q ∈ [1,∞], the operator norms ‖Φ‖p→p and ‖Φ‖q→q induced by the Schatten norms
Sp and Sq (Definition 2.1.16) are bounded. For any θ ∈ [0, 1] and pθ defined to satisfy
1
pθ

:= 1−θ
p

+ θ
q
, the linear operator Φ satisfies

‖Φ‖pθ→pθ ≤ ‖Φ‖1−θ
p→p‖Φ‖θq→q.

This gives us a way to reduce the computation of an entire interval of induced operator
norms to just the endpoints of that interval.

24

2.2 Linear Algebraic Groups and Structure

In this section, we revisit the linear algebraic concepts presented in Section 2.1 from the
perspective of Lie group theory. This provides the foundation for our geodesic convex
optimization framework for tensor scaling presented in Chapter 6.

2.2.1 Classical Groups

In this subsection, we define some important subsets of operators and consider their group
structure. This will be expanded upon in Section 2.2.3, where we will describe Lie groups
and their properties.

Recall that A ∈ L(V) is invertible iff there exists A−1 ∈ L(V) satisfying A−1A =
AA−1 = IV . The set of invertible operators on vector space V forms a group under
composition as shown below.

Definition 2.2.1 (General Linear Group/ Special Linear Group). The subset of invert-
ible linear operators on V , along with composition as the group operation, is known as
the General Linear Group and is denoted by GL(V) ⊆ L(V). The Special Linear Group
SL(V) ⊆ GL(V) is the subgroup of unit determinant operators.

The prefix S for “special” will henceforth stand for the unit determinant constraint.

For dim(V) = d, GL(V) is isomorphic to the group of invertible matrices GLF(d) with
matrix multiplication. The isomorphism is given by Eq. (2.2) using the matrix representa-
tions in any choice of basis {ξ1, ..., ξd} ⊆ V . If V = Fd, then we use shorthand GL(d) and
SL(d) to refer to the above groups.

We can also verify that the isometries described in Definition 2.1.11 are also groups
under compositions as, for any Ξ,Ψ ∈ U(V),

(ΞΨ)∗(ΞΨ) = Ξ∗(Ψ∗Ψ)Ξ = Ξ∗Ξ = IV ,

so that Ξ◦Ψ ∈ U(V) as well. Similar calculations show that O(V) is also a group. Further,
we will often consider the unit determinant subgroups SU(V) and SO(V), which are known
as the special unitary and special orthogonal groups respectively. These are examples of
compact Lie groups, and we discuss this more formally in Section 2.2.3.

While there is not a well-defined group structure for positive definite operators (e.g.
A,B ∈ PD(V) does not imply AB ∈ PD(V)), the polar decomposition in Theorem 2.1.13

25

shows that we can view PD(V) as the set of equivalence classes of GL(V) under the action
of U(V). This induced structure motivates the geometry we define in Section 2.2.4, which
is very useful for our optimization perspective in Chapter 6.

2.2.2 Torus Groups

In this subsection, we consider some very simple (diagonal) subgroups of GL(V). These
are known as torus subgroups, and are the simplest setting in which we can present some
of the ideas of Lie theory that we further elaborate in Section 2.2.3.

Definition 2.2.2 (Torus Groups). For vector space V and basis Ξ := {ξ1, ..., ξd} ⊆ V ,
the set of invertible operators diagonal in the Ξ basis is denoted by TΞ(V) and forms a
commutative group under composition. STΞ(V) ⊆ TΞ(V) is the unit determinant subgroup.

Note we can simply verify commutativity as follows: for every A ∈ TΞ(V), the matrix
representations Ξ−1AΞ is diagonal as discussed in Definition 2.1.6. In fact, this subgroup
is isomorphic to Cd

×, the direct product of the multiplicative group of complex numbers
via the map A→ {λ1, ..., λd} for eigen-pairs {(λi, ξi)}i∈[d] of A.

To better understand TΞ(V), we consider the simplest setting of dim(V) = 1. In this
case, TΞ(V) ' C×, and we decompose any z ∈ C× into the magnitude and phase z = λx
where x > 0 and |λ| = 1. This induces the group decomposition TΞ(V) = TΞ

c (V)× TΞ
+(V)

for general torus groups by applying this component-wise. Note that both of these pieces
also have a group structure with the same operation. Further, TΞ

c (V) is an example of a
compact group, which will be discussed further in Section 2.2.3. We note that the name
“torus group” comes from the special case (S1)2, the geometric torus.

This decomposition TΞ(V) = TΞ
c (V)×TΞ

+(V) is reminiscent of the Polar decomposition
in Theorem 2.1.13, where we decomposed GL(V) = U(V) × PD(V) into a rotation and a
positive component. In fact, when Ξ is an orthonormal basis, this is exactly the restriction
of the polar decomposition to the commutative subgroup TΞ(V). The following change of
variable allows us to further clarify the algebraic structure of TΞ(V). Consider the vector
space tΞ+ := log TΞ

+(V), which is isomorphic to the additive group Rdim(V). Similarly, we
consider log TΞ

c (V) =
√
−1tΞ+, which is known as the Lie algebra of the torus group TΞ

c (V).
This gives the decomposition log TΞ(V) =

√
−1tΞ+(V) ⊕ tΞ+(V), and by commutativity,

the exponential mapping gives an isomorphism between TΞ(V) and the additive group√
−1tΞ+(V) ⊕ tΞ+(V). We will also often consider the unit determinant subsets of these

groups, which are denoted by STΞ
C, STΞ, STΞ

+. Their corresponding algebras are denoted

26

by stΞ, stΞc , st
Ξ
+, where we have added a trace constraint, e.g.

stΞ+ = {ΞΛΞ∗ | Λ ∈ diagR(V),Tr[Λ] = 0}.

As we will show in Section 2.2.3, the exponential mapping is also useful in understanding
the polar decomposition for general operators. But in this case the group structure will be
slightly more complicated.

2.2.3 Lie Groups and Lie Algebras (Primer)

In this subsection, reconsider the various groups and decompositions discussed above using
(a bit of) Lie theory. The results in this subsection are not necessary to understand the
work in this thesis, and we present this as background to give some intuition for the
geometry discussed in Section 2.2.4. We suggest the reader consult the books [97], [82],
[53] (and many others) for a more thorough treatment.

The various optimization problems we study in this thesis concern optimization over
Lie groups. These are continuous groups of symmetries which, at every point, locally look
like a vector space. The groups of matrices and operators studied above (GL, SL,U, ...) are
classical examples of Lie groups, and the corresponding local vector spaces are called Lie
algebras (gl, sl, u = H, ...).

Definition 2.2.3. A Lie group is a group that is also a smooth manifold. The Lie algebra
g := Lie(G) of Lie group G is the tangent space at the identity TeG.

We will not formally explain all of the terms in the above definition, instead choosing
to focus on some intuitive examples. A smooth manifold is a topological space that, at
every point, can be locally and smoothly transformed to a vector space. The vector space
associated with the point is called the tangent space, and describes the directions that are
“tangent” to the manifold. For concreteness, consider that the Earth we walk on is the
surface of a sphere in three dimensional space, where at every point the local neighborhood
looks like the Euclidean plane.

Now consider the concrete example G = U(d). The tangent space at the identity is
the vector space of matrices X ∈ Mat(d) such that Id + tX is still unitary for some small
(infinitesimal) t. Since the unitary group is characterized by the equation UU∗ = U∗U = Id
according to Definition 2.1.11, we can differentiate this to find

0 = ∂t=0(Id + tX)(Id + tX)∗ = X +X∗.

27

This is exactly the set of skew-Hermitian operators, and is known as the Lie algebra of
the unitary group, denoted u(d). Note that differentiating the constraint U∗U = I at the
identity also gives the same equation. We point out that u(d) is equivalent to

√
−1 times

the set of Hermitian operators H(d), and we will use this correspondence later to formally
describe the polar decomposition.

Lie groups are manifolds such that the group structure is compatible with the set of
tangent spaces. Explicitly, if TUG denotes the tangent space of the unitary group at element
U , then we have the following bijection between TUG and TIdG = u:

X ∈ u ⇐⇒ ∂t=0(U + tUX)(U + tUX)∗ = ∂t=0U(I + tX)(I + tX)∗U∗ = 0.

In other words, the tangent spaces are all compatible with the group operation.

In this way, if we consider all of the tangent vectors indexed by a fixed X ∈ u, these can
be stitched together into a left invariant vector field on the group. This invariance makes
the setting of Lie groups especially suited to optimization, as the local structure at every
point always looks like the canonical local structure at the identity, and further there is a
change of variable operation that reduces this local structure to a vector space.

The flow induced by these left-invariant vector fields is captured by what is known
as the exponential map. For our unitary group example, this gives a mapping from the
algebra to the group. Any U ∈ U(V) is normal and has spectrum contained in S1 as
shown in Section 2.1.6. This means that we can write U = e

√
−1Y where Y ∈ H(V). By

this calculation, we have shown that U(V) = exp(u(V)) = exp(
√
−1 H(V)), and similarly,

O(V) = exp(o(V)) = exp(
√
−1 S(V)).

This global structure is only defined for compact Lie groups, of which U(d) is an ex-
ample. On the other hand, for non-compact Lie groups such as GL(d), there does not
always exist a global exponential map which can travel all throughout the group. But in
this case, we can use the polar decomposition to describe GL(d) as the complexification
of U(d). Explicitly, the valid directions at the identity that remain in GL, i.e. the Lie
algebra gl, are exactly u ⊕

√
−1u. This can be likened to the very simple example of the

polar decomposition of the multiplicative group of complex numbers C∗, which can be seen
as exp(R ⊕

√
−1R), or the equally simple polar decomposition of torus groups given in

Section 2.2.2.

We can also combine the polar decomposition with the exponential map to lift this
vector space complexification to the group setting. According to Definition 2.1.9, any
P ∈ PD(V) is Hermitian, so by Theorem 2.1.8 it can be diagonalized by some isometry
Ξ according to Definition 2.1.11. Further, it has strictly positive eigenvalues, so we can

28

write P = eX for some X ∈ H(d) (explicitly, X := logP by Definition 2.1.7). In fact, the
log function is a bijection on strictly positive real numbers, so this shows that PDC(V) =
exp(H(V)) and PDR(V) = exp(S(V)).

Using these transformations, we can view the Polar decomposition in Theorem 2.1.13 as
a way to write any invertible A ∈ GL(V) as the product of two exponentials A = e

√
−1·Y eX

where X, Y ∈ H(V). Earlier, we showed that U(V) = exp(u(V)), for Lie algebra u(V). The
polar decomposition allows us to lift this to the non-compact group GL(V) = exp(u(V)) ·
exp(
√
−1 · u(V)), where the Lie algebra is gl(V) = u(V)⊕

√
−1 · u(V).

This Lie algebra and exponential map structure will be key to the tractability of the
group optimization problems studied in Chapter 6. We will use concepts from geometric
invariant theory in order to give geodesically convex formulations for the scaling problems
we study in this thesis. For background, see the foundational book by Mumford et al. [73],
and for a slightly more concrete perspective, see the book of Wallach [97].

Before concluding, we use this perspective of Lie algebras to decompose

SPDC(V) = ∪Ξ∈U(V) STΞ
+(V), SPDR(V) = ∪Ξ∈O(V) STΞ

+(V), (2.6)

as well as a similar statement for associated vector spaces as

spdC(V) := {X ∈ H(V) | Tr[X] = 0} = ∪Ξ∈SU(V)st
Ξ
+(V),

spdR(V) := {X ∈ S(V) | Tr[X] = 0} = ∪Ξ∈SO(V)st
Ξ
+(V),

(2.7)

where SPD and spd are given in Definition 2.1.10. It will be quite easy to optimize over any
single torus group stΞ+(V), since it is just a vector space of diagonal matrices. Therefore,
the above decomposition allows us to reduce optimization on positive definite operators, to
vector space optimization. This will be key to the appropriate notion of geodesic convexity
that we exploit in Chapter 6 and Chapter 7 in order to analyze tensor scaling problems,
which can be thought of as search problems over non-commutative groups.

2.2.4 Calculus for Positive Definite Operators

This subsection will introduce the notion of geodesics on positive definite operators. These
geodesics induce a natural geometry on PD(d) that reveals the underlying convexity of our
group optimization problem in Section 6.2.4.

Definition 2.2.4 (Geodesics on Positive Definite operators). For any two elements p, q ∈
PD(V), the curve γp,q : [0, 1]→ PD(V) is defined as

γp,q(t) := p1/2(p−1/2qp−1/2)tp1/2 = p1/2 exp(t log(p−1/2qp−1/2))p1/2.

29

Similary, for p ∈ PD(V) and X ∈ H(V), the map γp : H→ PD(V) is defined as

γp(X) := p1/2eXp1/2.

We will also need the following well-known symmetry properties of these curves.

Fact 2.2.5. For any two elements p, q ∈ PD(V), the curves γp,q and γq,p are related by
γp,q(t) = γq,p(1− t) for any t ∈ [0, 1].

Further, ‖ log p−1/2qp−1/2‖ = ‖ log q−1/2pq−1/2‖ for any unitarily invariant norm ‖ · ‖.

Proof. The first statement is a well-known fact relating to the so-called weighted geometric
means of matrices, and is stated in Lemma 2 of [33].

To show the second statement, we observe that p−1/2qp−1/2 = (p−1/2q1/2)(q1/2p−1/2)
is cospectral with (q−1/2pq−1/2)−1 = q1/2p−1q1/2 = (q1/2p−1/2)(p−1/2q1/2), and therefore,
so are their matrix logarithms. Since any unitarily invariant norm depends only on the
eigenvalues of the input, this implies that ‖ · ‖ takes the same value on log(p−1/2qp−1/2)
and − log(q−1/2pq−1/2).

These curves can be formally derived as geodesics, or shortest path curves, on the
Riemannian manifold of positive definite matrices. For a wonderful introduction to the
subject see the book by Bhatia [13]. The important thing to note for our purposes is that
there is a curve connecting any p ∈ PD(V) to any other q ∈ PD(V). Further, for any
starting point p ∈ PD(V), we can parametrize the non-Euclidean set of positive definite
matrices by the vector space H(V) using the exponential curves γp.

Another simple derivation of these curves comes from the Lie group structure given in
Section 2.2.3. Recall that the Lie algebra of GL(V) was the vector space

√
−1 H(V)⊕H(V),

and Theorem 2.1.13 gave a way to write GL(V) = U(V) · PD(V) = exp(
√
−1 H(V)) ·

exp(H(V)). Also, the polar part of g ∈ GL(V) is exactly
√
g∗g. Therefore, for any

X ∈ H(V), the geodesic curve from p := g∗g ∈ PD(V) in the X direction is related to the
induced curve from g ∈ GL(V) in the tangent direction X:

(eηX/2g)∗(eηX/2g) = g∗eηXg. (2.8)

Note the factor of 2 since the polar part is really the square root of g∗g. This is not exactly
γp(ηX) = p1/2eηXp1/2 as p = g∗g does not imply p1/2 = g. But if we consider PD(V) as
the set of equivalence classes of operators in GL(V) parametrized by their polar part, then
this relation becomes more natural.

In Chapter 6 and Chapter 7, we will lift these geodesics to products of simple groups.
This will allow us to give an geodesically convex optimization formulation for certain group
scaling problems.

30

2.3 Convex Analysis

In this section, we review some basic definitions and results from convex analysis. We first
present the univariate setting, and then discuss its extension to vector spaces. We follow
the presentation in [17] and [75]. In Section 6.2.3, we will lift these ideas to the notion of
geodesic convexity on positive definite matrices. This will be the key to our analysis of
tensor scaling in Chapter 6.

2.3.1 Univariate Convex Functions

Convexity is a natural and very useful property of functions used throughout mathematics.

Definition 2.3.1. Function h : R→ R is convex if any of the following conditions hold:

1. (0-th order): ∀s, t ∈ R and λ ∈ [0, 1]: h(λs+ (1− λ)t) ≤ λh(s) + (1− λ)h(t);

2. (1-st order): if h is differentiable, then ∀s, t ∈ R : h(t)− h(s) ≥ h′(s)(t− s);

3. (2-nd order): if h is twice-differentiable, then ∀t ∈ R : h′′(t) ≥ 0.

We will also often use the following notions of strong convexity at a point.

Definition 2.3.2. (Twice-differentiable) function h : R→ R is α-strongly convex at s ∈ R
if h′′(s) ≥ α. Equivalently, h is α-strongly convex on the interval [a, b] iff

∀s, t ∈ [a, b] : h(t)− h(s) ≥ h′(s)(t− s) +
α

2
(t− s)2.

h is called strictly convex at s ∈ R if it is α-strongly convex at s for some α > 0.

Most of the functions studied in this thesis are sufficiently differentiable that we can ap-
ply any of the above equivalent conditions. Some of the proofs below will use second or third
derivatives, and so in the sequel we assume that the input function is thrice-differentiable.
The differentiability assumption can often be removed by different arguments, but we
choose this presentation as it lifts more naturally to our geodesic setting in Chapter 6.

The following shows the value of convexity, especially for optimization.

Definition 2.3.3. For function h : R→ R, t ∈ R is a critical point of h if h′(t) = 0.

31

Lemma 2.3.4. For convex function h : R → R, if h∗ := inft∈R h(t), then h∗ = h(s) iff
s ∈ R is a critical point of h.

Proof. If h∗ = h(s), then clearly s is a critical point, as otherwise we could decrease the
function by moving to s− δh′(s) for some small δ > 0.

The other direction follows simply from the 1-st order condition in Definition 2.3.1, as
for any t ∈ R we can lower bound

h(t) ≥ h(s) + h′(s)(t− s) = h(s).

In fact, if the function is strongly convex, the optimizer is unique as shown below.

Lemma 2.3.5. Let h : R → R be a convex function that is α > 0-strongly convex at the
optimizer t∗ = arg inft∈R h(t). Then t∗ is the unique optimizer of h.

Proof. By Lemma 2.3.4, h′(t∗) = 0 by optimality. Further, by continuity of the second
derivative, there is some non-zero radius r > 0 such that h′′(t) ≥ α

2
> 0 for all |t− t∗| ≤ r.

Now for contradiction, assume that h(t) = h(t∗) for some t 6= t∗. By strong convexity, we
can bound

h(t)− h(t∗) =

∫ t

t∗

h′(s1) =

∫ t

t∗

(
h′(t∗) +

∫ s1

t∗

h′′(s2)ds2

)
ds1

≥
∫ t

t∗

(
0 +

∫ min{r,s1}

t∗

h′′(s2)ds2

)
ds1 ≥

∫ t

t∗

α

2
min{r, s1} > 0,

where the first two steps were by the fundamental theorem of calculus, in the third step we
used h′(t∗) = 0 by Lemma 2.3.4 and the fact that h′′(s) ≥ 0 by Definition 2.3.1 of convexity
for the inequality, in the fourth step we applied h′′(t) ≥ α

2
for |t− t∗| ≤ r as derived above

using strong convexity, and the final step was by the assumptions α > 0 and r > 0. This
is our desired contradiction, so t∗ is the unique optimizer.

We can also derive the following approximate version of Lemma 2.3.4.

Lemma 2.3.6. For α-strongly convex h : R → R and any s ∈ R, the optimum can be
lower bounded by

h∗ := inf
t∈R

h(t) ≥ h(s)− |h
′(s)|2

2α
,

and the optimizer t∗ satisfies |t∗ − s| ≤ |h′(s)|
α

.

32

Proof. We first use strong convexity near s to show the bound |t∗ − s| ≤ |h′(s)|
α

for the
optimizer. Recall that Lemma 2.3.4 shows that any critical point of h is a global minimum.
Therefore we will show that if |h′(s)| is small, then strong convexity implies that there is a
critical point h′(t) = 0 nearby. We can assume h′(s) ≤ 0 by considering the function h(−t)
if necessary. Then for arbitrary t ∈ R:

h′(t) = h′(s) +

∫ t

s

h′′(r) ≥ h′(s) + α(t− s),

where the first step was by the fundamental theorem of calculus, and in the final step we
used h′′(r) ≥ α by α-strong convexity according to Definition 2.3.2. By continuity of h′,

this implies that there is some s ≤ t ≤ s− h′(s)
α

such that h′(t) = 0, which by Lemma 2.3.4
means that the optimizer of h is within this range.

To show the lower bound, we use α-strong convexity and calculate, for any s, t ∈ R,

h(t)− h(s) =

∫ t

t1=s

h′(t1) =

∫ t

t1=s

(
h′(s) +

∫ t1

t2=s

h′′(t2)
)
≥ h′(s)(t− s) +

α

2
(t− s)2,

where the first two steps were by the fundamental theorem of calculus, and in the final
step we used that h′′(t) ≥ α by Definition 2.3.2 of α-strong convexity and integrated. Now
the result follows by optimizing the quadratic lower bound shown above:

h(t∗) = inf
t∈R

h(t) ≥ inf
t∈R

h(s) + h′(s)(t− s) +
α

2
(t− s)2 = h(s)− (h′(s))2

2α
,

where the second step was by the lower bound shown above, and in the last step we chose
infimizer t = s− h′(s)

α
.

Note that in the above proof, we only used strong convexity at points t ∈ [s, t∗]. For
our applications, we will study convex functions that are strongly convex only in some
neighborhood. Therefore, we rewrite the above statement with these weaker assumptions.

Lemma 2.3.7. For convex function h : R → R with optimizer t∗ := arg mint∈R h(t) and
any fixed s ∈ R, if h is α-strongly convex for all t ∈ [s, t∗], then

h∗ := inf
t∈R

h(t) ≥ h(s)− |h
′(s)|2

2α
,

If the optimizer is not known, a sufficient condition is α-strong convexity for [s± |h
′(s)|
α

].

33

2.3.2 Convex Functions on Vector Spaces

All of these properties lift to convex functions on vector spaces.

Definition 2.3.8. For vector space V , function f : V → R is convex if for every x, y ∈ V ,
the univariate restriction t→ f(x+ ty) is convex.

f is α-strongly convex in norm ‖ · ‖ at point x ∈ V if, for every v ∈ V , the univariate
restriction t→ f(x+ tv) is α‖v‖2-strongly convex at t = 0 according to Definition 2.3.2.

Convex functions on vector spaces are also optimized at their critical points.

Definition 2.3.9. For vector space V and function f : V → R, x ∈ V is a critical point
of f iff

∀v ∈ V : ∂t=0f(x+ tv) = 0.

Equivalently, x ∈ V is a critical point of f if for every v ∈ V , the univariate restriction
t→ f(x+ tv) has critical point t = 0.

Lemma 2.3.10. For vector space V and convex function f : V → R, f ∗ := infv∈V f(v) =
f(x) iff x is a critical point of f .

Proof. If x ∈ V is a global minimizer of f , then in particular it is the minimizer of every
univariate restriction h(t) := f(x+ tv). Therefore by Lemma 2.3.4 we must have

0 = ∂t=0h(t) = ∂t=0f(x+ tv)

for every v ∈ V , which is exactly Definition 2.3.9 of critical points.

Conversely, if x ∈ V is a critical point, then for any y ∈ V , we have that t = 0 is a
critical point for the univariate restriction h(t) := f(x+ t(y−x)). Therefore the statement
follows from Lemma 2.3.4.

And strongly convex functions on vector spaces also have unique optimizers.

Lemma 2.3.11. For vector space V and convex function f : V → R, if f is α > 0-strongly
convex at x∗ := arg infx∈V f(x), then x∗ is the unique optimizer of f .

Proof. Assume for contradiction that y 6= x∗ is also an optimizer. Then the univariate
function h(t) := f(x∗ + t(y − x∗)) is strictly convex at t = 0, so Lemma 2.3.5 gives the
contradiction.

34

The above suggests that a natural algorithm to find the minimizer of a convex function
is to follow the direction of steepest descent. To formalize this idea, we will need a choice
of inner product.

Definition 2.3.12. If V has inner product 〈·, ·〉, and f is differentiable, then the gradient
of f at point x is the unique element of V satisfying

∀v ∈ V : 〈∇f(x), v〉 = ∂δ=0f(x+ δv).

Therefore, in this case the convexity condition can be written equivalently as

∀x, y ∈ V : f(x)− f(y) ≥ 〈∇f(x), y − x〉.

This suggests a family of minimization algorithms known as gradient methods or first-
order methods [75]. Convex functions give a wide class of optimization problems that arise
in many applications. The value of convexity, and specifically the first order convexity
condition in Definition 2.3.12, is that the gradient at any point defines a halfspace contain-
ing the optimizer. Therefore, in order to minimize the function, we can always follow the
negative gradient direction and this will intuitively lead us in the direction of the optimizer.

From this perspective, strong convexity means that the function curves strictly away
from any tangent hyperplane. This intuitively implies that the negative gradient direction
not only makes progress by decreasing the function, but also decreases the size of the gra-
dient. These kind of implications will be helpful for our analysis of the geodesically convex
problems in Chapter 6. For further details and formal analyses of various minimization
methods, we refer the reader to Section 1.2 of [75].

Finally, we present a standard result on projections in convex analysis that we will use
for our distance bounds in Chapter 4.

Lemma 2.3.13 (Lemma 3.1.5 in [75]). Consider vector space V with Euclidean norm ‖·‖2.
Then for any convex body K ⊆ V and any point x 6∈ K, if x∗ := arg minz∈K ‖z − x‖2

2 is
the Euclidean projection, then

∀y ∈ K : ‖x∗ − y‖2
2 ≤ ‖x− y‖2

2.

2.4 Quantum Information

In this section, we present some basic definitions from Quantum Information Theory. The
tensor scaling problem that we study in Chapter 6 has an equivalent formulation in terms
of marginals of quantum states, and so this perspective will give many useful inequalities
for our tensor setting. We will follow the presentation of Watrous in [98].

35

2.4.1 Tensor Products and Quantum Marginals

The tensor product of vector spaces U and V is defined as the the set of linear combinations
of formal pairs u ⊗ v where u ∈ U and v ∈ V . If U has basis {u1, ..., ud} and V has
basis {v1, ..., vd′}, the tensor product U ⊗ V has basis {ui ⊗ vj}i∈[d],j∈[d′]. This shows
dim(U ⊗ V) = dim(U) dim(V).

The vector space U ⊗ V has operators L(U, V) acting linearly upon it, just as we
discussed in Section 2.1.1. By the definition of the tensor product space, any pair A ∈ L(U)
and B ∈ L(V) has a natural action on u⊗ v with u ∈ U and v ∈ V as (A⊗ B)(u⊗ v) =
(Au) ⊗ (Bv), and this can be extended linearly to the whole space. We emphasize that
L(U, V) is not contained in the set of linear combinations of (A ∈ L(U)) ⊗ (B ∈ L(V)).
This is in fact some part of the reason for the phenomenon of quantum entanglement.

Below, we collect some simple facts about the tensor product of linear operators.

Fact 2.4.1. For X ∈ H(U), Y ∈ H(V) the spectrum of X⊗Y ∈ H(U⊗V) is {xiyj}i∈[d],j∈[d′],
where {xi}i∈[d] and {yj}j∈[d′] are the spectra of X and Y , respectively. Consequently,
det(X ⊗ Y) = det(X)d

′
det(Y)d

Given a tensor x ∈ Rd ⊗ Rd′ , we will often consider the “flattening” X := Mat(x) ∈
Mat(d, d′). The j-th column of X corresponds to the entries {xij}i∈[d]. More generally,
given x ∈ Rd1 ⊗ Rd2 ⊗ Rd3 , we can view this as a tuple of tensors X1, ..., Xd3 ∈ Rd1 ⊗ Rd2

defined entry-wise as (Xj3)j1,j2 = xj1,j2,j3 . In the following subsections, we will use this
correspondence to translate between tensors and quantum states and marginals.

2.4.2 Quantum States and Quantum Maps

We begin with the basic objects of study in Quantum Information.

Definition 2.4.2. For vector space V , an element ρ ∈ L(V) is a quantum state if ρ � 0
and Tr[ρ] = 1.

We will often be informal about this definition and call arbitrary ρ � 0 a “state” even
if it does not satisfy the Tr condition.

Now we consider maps between these objects.

Definition 2.4.3. For inner product spaces U, V , a quantum map Φ : L(V) → L(U) is a
linear map that preserves self-adjoint operators. The dual of quantum map Φ is the adjoint
map Φ∗ : L(U)→ L(V) under the natural Euclidean inner product:

〈Φ∗ρ(X), Y 〉 = 〈X,Φρ(Y)〉.

36

In Quantum Information theory, the appropriate notion of mappings is defined by
quantum channels, which satisfy some additional properties (completely positive, trace-
preserving). We do not define these, as we will only use the linear operator interpretation.

2.4.3 Representations of Quantum States and Maps

There are many ways to represent states and channels, each of which emphasize different
properties. The following definitions and equivalences are from Prop 2.20 of [98].

Definition 2.4.4. For vector spaces U, V and tuple of linear operators A1, ..., AK ∈ L(U, V),
the associated state representation ρA ∈ L(U ⊗ V) is defined as

ρA :=
K∑
k=1

vec(Ak) vec(Ak)
∗.

The associated quantum maps ΦA : L(V)→ L(U) and Φ∗A : L(U)→ L(V) are defined by

ΦA(Y) :=
K∑
k=1

AkY A
∗
k Φ∗A(X) :=

K∑
k=1

A∗kXAk.

In this case, {A1, ..., AK} is a Kraus representation of ΦA.

Proposition 2.4.5. Given inner product spaces U, V , for ρ ∈ L(U, V) and Φ : L(V) →
L(U), (ρ,Φ) is an associated pair iff for every X ∈ L(U), Y ∈ L(V):

〈X,Φ(Y)〉 = 〈ρ,X ⊗ Y 〉.

This gives a bijection between quantum states and quantum maps. If Φ is a quantum
channel, then ρ is known as the Choi representation of Φ.

Another helpful perspective is to view quantum operators as matrices acting on vectors
vec(L(V)). This allows us to use spectral theory to analyze quantum maps. The following
equation provides the translation and can be verified entry-wise:

vec(AXB∗) = (A⊗B) vec(X).

Definition 2.4.6 (Natural Representation). For vector spaces U, V and tuple of linear
operators A1, ..., AK ∈ L(U, V) given as Kraus operators, the natural representation of the
channel ΦA given in Definition 2.4.4 is the matrix

MA :=
K∑
k=1

Ak ⊗ Ak,

37

where Ak denotes complex conjugation if F = C. Note that this is a map MA : L(V) →
L(U) by the bijection Y ∈ L(V) → vec(Y) ∈ V ⊗ V and X ∈ L(U) → vec(X) ∈ U ⊗ U .
Further note the following relations between ρA,ΦA,MA:

MA(vec(Y)) =
(K∑
k=1

Ak ⊗ Ak
)

vec(Y) =
K∑
k=1

vec(AkY A
∗
k) = vec(ΦA(Y))

∀X ∈ L(U), Y ∈ L(V) : 〈vec(X),MA vec(Y)〉 = 〈X,ΦA(Y)〉 = 〈ρA, X ⊗ Y 〉

As shown above, quantum maps can be viewed as bipartite quantum states. In the
following, we discuss how to generalize this to multipartite states.

Definition 2.4.7. Given inner product spaces V,W , the partial trace is the map TrW :
L(V ⊗W)→ L(V) defined uniquely by

∀X ∈ L(V), Y ∈ L(W) : TrV [X ⊗ Y] = X(Tr[Y]).

For ρ ∈ L(V ⊗W), the V -marginal is then defined

ρV := TrW [ρ].

Equivalently, the V marginal is the unique operator in L(V) satisfying

∀X ∈ L(V) : 〈ρV , X〉 = 〈ρ,X ⊗ IW 〉.

In our setting, we will have ρ ∈ L(V) for tensor space V = ⊗a∈[m]Va. Then for
any S ⊆ [m], VS := ⊗a∈SVa and the S-marginal ρS ∈ L(VS) is the S-partial trace of
ρ ∈ L(V) = L(VS ⊗ VS).

If Va = Fda is given explicitly, then ρSx ∈ Mat(dS) where dS =
∏

a∈S da.

This property uniquely determines ρ(S). If ρ is positive definite then so is ρS. Moreover,
(ρS)T for T ⊆ S, and Tr[ρS] = Tr[ρT].

With this perspective for tensors, we can discuss how the flattenings described in Sec-
tion 2.4.1 relate to marginals. First note that for Kraus operators {A1, ..., AK} ∈ L(U, V),
the marginals of ρA correspond to the operators

ρUA =
K∑
k=1

AkA
∗
k and ρVA =

K∑
k=1

A∗kAk

38

as shown in Definition 2.4.4. More generally, let state ρ ∈ L(Cd1⊗Cd2⊗Cd3) be represented
by the tuple of tensors x1, ..., xK ∈ Cd1 ⊗Cd2 ⊗Cd3 as ρ =

∑K
k=1 xkx

∗
k. In order to express

e.g. the d3 partial trace of ρ, we first view each xk as a tuple yk,1, ..., yk,d3 ∈ Cd1 ⊗Cd2 with
entry-wise correspondence (xk)j1,j2,j3 = (yk,j3)j1,j2 . This allows us to write

ρ(12) = Tr3[ρ] =
K∑
k=1

d3∑
j=1

yk,jy
∗
k,j. (2.9)

Further, by Definition 2.4.4, this gives {Mat(yk,j)}k∈[K],j∈[d3] as the Kraus operators of ρ(12).

These translations will be useful in Chapter 7 in order to emphasize different perspec-
tives for tensor scaling inputs.

2.5 Concentration Inequalities

In probability theory, concentration inequalities are used to bound the deviation of random
variables from their means. We will heavily rely on such bounds in order to analyze various
properties of random inputs to the scaling problems studied in Chapter 5 and Chapter 9.

The simplest such inequality holds for arbitrary non-negative random variables.

Fact 2.5.1 (Markov). For random variable X ≥ 0 and any θ > 0

Pr[X ≥ θ] ≤ EX
θ
.

Note that this is trivial for any θ ≤ EX.

The above fact is quite elementary, but can be leveraged to prove much stronger in-
equalities for special classes of random variables. The exponential moment method is one
particular approach to stronger concentration, and proceeds

Pr[X ≥ θ] = Pr[etX ≥ etθ] ≤ e−tθEetX

for any t > 0, where we applied Markov’s inequality in the last step. Therefore, if we have
control over the exponential moment, this allows us to optimize over t to give a family of
strong inequalities. In the following, we will study several classes of random variables for
which we can control the exponential moment and give strong concentration bounds.

39

2.5.1 Independent and Sub-Exponential Distributions

The standard Chernoff bound is one such consequence involving a sum of independent
random variables. We state result for the specialized setting of Bernoulli random variables,
as this is all that we require for our analysis in Section 5.1.

Theorem 2.5.2 (Chernoff Bound, Theorem 2.3.1 in [95]). Let X1, ..., XN be independent
Bernoulli random variables with EXi = pi, and denote µ = E

∑N
i=1 Xi =

∑N
i=1 pi. Then

for any t > µ, we have

Pr
[N∑
i=1

Xi ≥ t
]
≤ e−µ

(eµ
t

)t
.

Sub-exponential random variables are another subclass that enjoy strong concentration
bounds. The following are standard results from [94], [96].

Definition 2.5.3. Random variable X with mean EX = 0 is (ν2, b)-sub-exponential

∀t ≤ 1

b
: logE exp tX ≤ t2ν2

2

The definition of sub-exponential distributions allows us to prove strong concentration
bounds via the exponential moment method.

Lemma 2.5.4 (Bernstein). If X is (ν2, b)-subexponential, then for all θ ≥ 0

P[X ≥ θ] ≤

{
exp

(
− θ2

2ν2

)
∀θ < ν2

b

exp
(
− θ

2b

)
∀θ ≥ ν2

b

Proof. We first proceed by the exponential moment method,

Pr[X ≥ θ] = inf
t>0

Pr[etX ≥ etθ] ≤ inf
t>0

EetX

etθ
,

where the last step was by Markov’s inequality. Now we can use Definition 2.5.3 on sub-
exponential variables

inf
t>0

log
EetX

etθ
≤ inf

0<t<b−1

t2ν2

2
− tθ.

The two cases then follow by choosing t = θ/ν2 if it is feasible, i.e. θ < ν2/b

t2ν2

2
− tθ =

θ2

2ν2
− θ2

ν2
= − θ2

2ν2

40

and the boundary t = b−1 if θ ≥ ν2/b otherwise

t2ν2

2
− tθ =

ν2

2b2
− θ

b
=

1

b

(
ν2

2b
− θ
)
≤ − θ

2b
.

We can also control the finite moments of a sub-exponential distribution.

Lemma 2.5.5 (Proposition 2.7.1 in [95]). If both X,−X are (ν2, b)-subexponential (Defi-
nition 2.5.3), then ∀p ≥ 1 : E|X|p ≤ ν2

b2
(bp)p.

Proof. By Definition 2.5.3, ∀|t| ≤ 1
b

we have

logE exp tX ≤ t2ν2

2
.

We will use the following simple inequality to prove a bound on moments.

Claim 2.5.6. For all x ∈ R and p ≥ 1: |x|p ≤ pp(ex + e−x)

Proof. Since ex + e−x ≥ 1 always, the statement is clearly true for |x| ≤ p. Otherwise,
divide both sides by pp and let u = x/p. Then we can show

∀u ≥ 1 :
xp

pp
= up ≤ (eu)p = ex,

where the inequality u ≤ eu is due to our assumption u ≥ 1. The claim follows by a
symmetric argument showing u ≤ −1 =⇒ |u| ≤ e−u.

Now we bound the p-th moment using the claim to give

E|X|p = bpE|X/b|p ≤ (bp)pE(eX/b + e−X/b) ≤ (bp)p
ν2

b2
,

where the second step was by the claim above, and the final step was by the subexponential
bound on the MGF by Definition 2.5.3.

In the following subsections, we will apply these general bounds to Gaussian and chi-
square random variables.

41

2.5.2 Gaussian and Chi-square Distributions

Gaussian and Chi-square distributions are some of the most well-studied in probability
theory. In this subsection, we will define and give strong concentration bounds for these
distributions. We follow the exposition in [96].

Definition 2.5.7. The probability density function (pdf) of the standard Gaussian distri-
bution g ∼ N(0, 1) on R is

f(x ∈ R) =
1√
2π

exp

(
−x

2

2

)
.

It has mean Eg = 0 and variance Eg2 = 1.

The multivariate centered Gaussian distribution with covariance matrix C ∈ PD(k) is
denoted g ∼ N(0, C) and has pdf

f(x ∈ Rk) =
1√

det(2πC)
exp

(
−〈x,C

−1x〉
2

)
.

g ∼ N(0, C) can be equivalently written g =
∑k

i=1

√
λigiui where the gi ∼ N(0, 1) are i.i.d.

standard Gaussians and {λi, ui} are the eigen-pairs of C according to Theorem 2.1.8. As
a consequence, Eg = 0 and Egg∗ = C.

This distribution satisfies the following linear invariance property.

Proposition 2.5.8. Consider Gaussian random variable g ∼ N(0, C) for C ∈ PD0(k).
Then for any A ∈ Mat(d, k), Ag is also a Gaussian random variable, and in particular,
Ag ∼ N(0, ACA∗). As a consequence, if u, v ∈ Rk are orthogonal (〈u, v〉 = 0), then 〈g, u〉
and 〈g, v〉 are mutually independent.

We will often need to bound the norm of a random Gaussian vector. Therefore, we
introduce the following standard distribution.

Definition 2.5.9. Let X =
∑k

i=1 g
2
i where gi ∼ N(0, 1) are independent standard Gaussian

variables. Then X is a chi-squared random with k degrees of freedom and is denoted χ(k).
By linearity, the mean is EX =

∑k
i=1 Eg2

i = k.

The following is a well known explicit formula for the MGF of chi-square variables.

42

Fact 2.5.10. For any t < 1
2
, the moment generating function (MGF) of X ∼ χ(k) is

E exp(tX) = (1− 2t)−k/2.

If 4t ≤ 1, then the MGF of X − k can be bounded by

logE exp(t(X − k)) ≤ 2kt2,

which implies that both ±(X − k) are (4k, 4)-subexponential according to Definition 2.5.3.

The last statement in the fact above can be combined with Lemma 2.5.4 to give con-
centration bounds on chi-square variables. But for this explicit distribution, we can rely
on the following stronger result.

Theorem 2.5.11 (Laurent, Massart [64]). For X ∼ χ(k) we have tail bounds

Pr[X − k ≥ 2θ
√
k + 2θ2] ≤ exp(−θ2), and Pr[X − k ≤ −2θ

√
k] ≤ exp(−θ2).

Before moving onto more complicated distributions in the following subsection, we state
an important result showing concentration for the spectrum of Gaussian random matrices.
This can be viewed as simultaneous concentration of ‖Gx‖2

2 for all directions x, and is
proved in using a net argument that is standard in the random matrix literature [94].

Theorem 2.5.12 (Corollary 5.35 of [94]). For d ≤ n, let G ∈ Mat(d, n) be a random
matrix with standard Gaussian entries Gij ∼ N(0, 1) for i ∈ [d], j ∈ [n]. Then for any
t > 0, √

n−
√
d− t ≤ σmin(G) ≤ σmax(G) ≤

√
n+
√
d+ t

with probability at least 1− 2e−t
2/2.

Much of the work of Chapter 5 on the Paulsen problem will be to prove similar spectral
results for more complicated Gaussian distributions that arise from our smoothed analysis
argument. The key technical results necessary to prove concentration are described in the
following subsection.

2.5.3 Hanson-Wright Inequality

We can generalize the results in Section 2.5.2 to more general quadratic forms of Gaussians.
We will use standard MGF bounds and the theory of sub-exponential random variables as
described in Section 2.5.1.

43

Theorem 2.5.13 (Hanson-Wright Inequality [81]). For fixed A ∈ Rm×n and g ∼ N(0, In),
consider random variable ‖Ag‖2

2. The mean is E‖Ag‖2
2 = E〈gg∗, A∗A〉 = Tr[A∗A] = ‖A‖2

F

and we have the following concentration:

P[|‖Ag‖2
2 − ‖A‖2

F | ≥ θ] ≤

2 exp
(
− θ2

8‖A∗A‖2F

)
∀θ ≤ ‖A∗A‖2F

‖A∗A‖op

2 exp
(
− θ

8‖A∗A‖op

)
∀θ > ‖A∗A‖2F

‖A∗A‖op

Proof. By the Spectral Theorem in 2.1.8, we can diagonalize A∗A =
∑n

i=1 λiuiu
∗
i with λ ≥

0. This allows us to write ‖Ag‖2
2 =

∑n
i=1 λi〈g, ui〉2. By orthogonality of the eigenvectors,

the random variables {〈g, ui〉2} are i.i.d. chi-squared variables with one degree of freedom,
so E‖Ag‖2

2 =
∑n

i=1 λi = Tr[A∗A]. Further by independence we can separate the MGF as

logE exp(t‖Ag‖2
2) = logE exp(t

n∑
i=1

λi〈ui, g〉2) =
n∑
i=1

logE exp(t〈ui, g〉2).

Now we can use Fact 2.5.10 for maxi 4|tλi| ≤ 1 to show

logE exp(t(‖Ag‖2
2 − Tr[A∗A])) =

n∑
i=1

logE exp(tλi(〈g, ui〉2 − 1)) ≤
n∑
i=1

2t2λ2
i ,

which shows ‖Ag‖2
2 is (4

∑
i λ

2
i , 4 maxi |λi|) = (4‖A∗A‖2

F , 4‖A∗A‖op)-subexponential ac-
cording to Definition 2.5.3. The theorem follows from the two-sided Bernstien bounds in
Lemma 2.5.4.

In some of our applications, we may not be able to calculate second moments ‖A∗A‖2
F .

So below, we produce a simple corollary using only first moment information.

Corollary 2.5.14 (Theorem 2.1 in [81]). For fixed A ∈ Rm×n and g ∼ N(0, In), consider
random variable ‖Ag‖2

2 = 〈gg∗, A∗A〉. The mean is Tr[A∗A] and we have the following
concentration:

P[|〈gg∗, A∗A〉 − Tr[A∗A]| ≥ θ] ≤ 2 exp

(
−min

{
θ2

8 Tr[A∗A]‖A∗A‖op

,
θ

8‖A∗A‖op

})
.

P[|〈gg∗, A∗A〉 − Tr[A∗A]| ≥ ηTr[A∗A]] ≤ 2 exp

(
−min{η2, η} Tr[A∗A]

8‖A∗A‖2
op

)
.

Further, the lower and upper tails can be bounded separately by the same term without the
leading factor 2.

44

Proof. The exponents in the two cases of Theorem 2.5.13 match at the boundary:

θ2

8‖A∗A‖2
F

=
‖A∗A‖2

F

8‖A∗A‖2
op

=
θ

8‖A∗A‖op

.

Therefore we can rewrite the bound as

Pr
[
|〈A∗A, gg∗〉 − Tr[A∗A]| ≥ θ

]
≤ 2 exp

(
−min

{
θ2

8‖A∗A‖2
F

,
θ

8‖A∗A‖op

})
so the probability is always upper bounded by the larger of the two. Continuing with the
crude bounds ‖A∗A‖2

F ≤ ‖A∗A‖op Tr[A∗A], we get

P[|〈gg∗, A∗A〉 − Tr[A∗A]| ≥ θ] ≤ 2 exp

(
−min

{
θ2

8 Tr[A∗A]‖A∗A‖op

,
θ

8‖A∗A‖op

})
.

Now choosing θ := ηTr[A∗A] gives the second result.

Since we know that ‖Ag‖2
2 ≥ 0 always, the lower tail bound becomes trivial for θ >

E‖Ag‖2
2. In order to get higher probability statements we can use the following bound

from [62]. We repeat the proof for completeness.

Lemma 2.5.15 (Fact 4.5.7(3) in [62]). For fixed 0 � A � In and standard Gaussian
g ∼ N(0, In), if c ≥ 5 then the quadratic form concentrates as

Prg∼N(0,In)[〈g, Ag〉 ≤ e−c Tr[A]] ≤ exp

(
−2

5
cTr[A]

)
.

Proof. Note that E〈g, Ag〉 = 〈A,Egg∗〉 = Tr[A], so the following holds for any θ > 0 and
t > 0:

Pr[〈g, Ag〉 ≤ θTr[A]] = Pr[e−t〈g,Ag〉 ≥ e−tθTr[A]] ≤ etθTr[A]E exp(−t〈g, Ag〉),

where the last step was by Markov’s bound applied to e−t〈g,Ag〉.

By the Spectral Theorem (2.1.8), we can diagonalize A =
∑n

i=1 λiuiu
∗
i . This allows us

to bound the MGF by a similar calculation as in the proof of Theorem 2.5.13.

tθTr[A] + logE exp(−t〈g, Ag〉) = tθ
n∑
i=1

λi + logE exp(−t
n∑
i=1

λi〈g, ui〉2)

=
n∑
i=1

(
θλi + logE exp(−tλi〈g, ui〉2)

)
,

45

where the first step was by the definition of Tr, and the last step was by independence of
{〈g, ui〉}i∈[n] since {ui}ni=1 are orthonormal eigenvectors. Now we assume maxi∈[n](−2t)λi <
1 so that the moment generating function is defined and use Fact 2.5.10 to compute
logE exp(−tλi〈g, ui〉2) = −1

2
log(1+2tλi). The main observation is that λ→ −1

2

∑d
i=1 log(1+

2tλi) is convex and therefore the maximizer over the convex set {λ ∈ [0, 1]n,
∑n

i=1 λi =
Tr[A]} occurs at the boundary where bTr[A]c entries are 1 and one entry is the remaining
fractional part. Therefore we can bound the above quantity

tθTr[A]+logE exp(−t〈g, Ag〉) = tθ
n∑
i=1

λi−
1

2

n∑
i=1

log(1+2tλi) ≤
d∑
i=1

λi

(
tθ − 1

2
log(1 + 2t)

)
.

Now we want to choose −2t = 1 − θ−1 ≥ 0 for some 0 < θ ≤ 1, for which the moment
generating function is well defined as maxi∈[n]−2tλi ≤ −2t < 1 by our constraint 0 � A �
In. Plugging this into the previous probability bound gives

logPr[〈g, Ag〉 ≤ θTr[A]] ≤ −Tr[A]

2
(log(1 + 2t)− 2tθ) = −Tr[A]

2
(log θ−1 − 1 + θ).

Rewriting θ = e−c, the term in the parentheses becomes 1
2
(c− 1 + e−c) ≥ 2

5
c for c ≥ 5.

This also gives the following simple corollary for the lower tail of chi-square variables.

Corollary 2.5.16. X ∼ χ(k) can be equivalently written as X = 〈gg∗, Ik〉 for standard
Gaussian g ∼ N(0, Ik). By Lemma 2.5.15, for any c ≥ 5, X can be lower bounded as

Pr[X ≤ e−ck] ≤ exp

(
−2

5
ck

)
The final result in this subsection will be a bound on the moments of quadratic forms

of Gaussians. This is a specialization of Lemma 2.5.5 and will be used in Chapter 5.

Corollary 2.5.17. For fixed A ∈ Mat(m,n) and g ∼ N(0, In), for random variable ‖Ag‖2
2

we have the following moment bounds for all p ≥ 1:

E‖Ag‖2p
2 ≤

‖A∗A‖2
F

‖A∗A‖2
op

(8p‖A∗A‖op)p + (2 Tr[A∗A])p.

Further, by the simple bound ‖A∗A‖2
F ≤ ‖A∗A‖op Tr[A∗A], we have the corollary

E‖Ag‖2p
2 ≤

Tr[A∗A]

‖A∗A‖op

(8p‖A∗A‖op)p + (2 Tr[A∗A])p.

46

Proof. Recall in the proof of Theorem 2.5.13 we showed that E‖Ag‖2
2 = Tr[A∗A] and

both ±(‖Ag‖2
2−Tr[A∗A]) are (4‖A∗A‖2

F , 4‖A∗A‖op)-subexponential. Therefore we can use
Lemma 2.5.5 to prove our moment bound.

E‖Ag‖2p
2 ≤ 2p(E|‖Ag‖2

2 − Tr[A∗A]|p + Tr[A∗A]p) ≤ ‖A
∗A‖2

F

‖A∗A‖2
op

(8p‖A∗A‖op)p + (2 Tr[A∗A])p,

where the second step was by the inequality (x+ y)p ≤ (2 max{|x|, |y|})p ≤ 2p(|x|p + |y|p),
and the final step was using Lemma 2.5.5.

2.6 Nets and Approximation Arguments

Throughout Chapter 5 and Chapter 9, we will use standard arguments in order to control
the supremum of a set of random variables. This will allow us to generalize the spectral
bounds of Theorem 2.5.12 to more complicated distributions. For this purpose, we will
need the following standard bounds.

In order to perform a union bound over sets, we need the following standard cardinality
bound (see e.g. [90]).

Fact 2.6.1. For β ∈ [0, 1
2
] we can bound the binomial coefficient:

log2

(
k

βk

)
≤ βk(1− log2 β)

In order to control various operator norms of random matrices, we will perform a
standard net argument. As an illustration, say we have a set of random variables {Xξ}ξ∈B
and we want to control supξ∈BXξ. If the set S is finite and we have concentration bounds
for each Xξ, then the result would follow by a simple union bound. But this argument no
longer works for infinite B. In this case, in order to show strong bounds for every ξ ∈ S,
we first discretize the set to N ⊆ B and perform the union bound over every ξ ∈ N . Then
we show that supξ∈N Xξ approximates supξ∈BXξ to give the result.

We use the following standard notions to discretize a unit ball B for such an argument.

Definition 2.6.2. Let ‖ · ‖ be a norm on Rd. Then given subset B ⊆ Rd, N ⊆ Rd is called
an η-net for B if for every element v ∈ B, there exists a nearby u ∈ N such that

‖u− v‖ ≤ η.

N ⊆ B is called an η-packing of B if ‖u− v‖ ≥ η for every pair u, v ∈ N .

47

The following results will help with union bound arguments over nets and packings.

Fact 2.6.3. [Lemma 4.10 in [78]] Let ‖ · ‖ define a norm on Rd with unit ball and sphere

B := {v ∈ Rd | ‖v‖ ≤ 1} and S := {v ∈ Rd | ‖v‖ = 1}.

For any η > 0, let Np ⊆ S be a maximal η-packing of S and Nc ⊆ S be a minimum η-net
for S according to Definition 2.6.2. Then

|Nc| ≤ |Np| ≤
(

1 +
2

η

)d
.

For the specific case of the unit ball of ‖ · ‖∞ or ‖ · ‖op, we can use the following refined
characterization for our discretization.

Fact 2.6.4. The vertices of the polytope

H := 1⊥n ∩B∞ = {y ∈ Rn |
∑
j∈[n]

yj = 0,−1n ≤ y ≤ 1n}

are of the form 1S−1T for disjoint sets S, T ⊆ [n] with S∩T = ∅. In particular, S, T ∈
(
n
bn

2
c

)
if n is odd, and T ∈

(
n
n/2

)
and S = [n]− T if n is even. Note that for the even case, these

vertices can be rewritten 1n − 21T = 21S − 1n.

This lifts naturally to the matrix setting as the vertices of

I⊥n ∩Bop = {Y ∈ H(n) | Tr[Y] = 0, ‖Y ‖op ≤ 1}

are of the form P − Q for disjoint orthogonal projections P,Q ∈ H(n) with PQ = 0, i.e.
Im(P) ∩ Im(Q) = ∅. In particular, Q = In − P for some rk(P) = n

2
projection if n is

even, both P,Q are projections with rk(P) = rk(Q) = bn
2
c n is odd. Note that for the even

case, these vertices can be rewritten 2P − In = In − 2Q.

The final part of this subsection deals with the approximation part of the argument.
Specifically, it shows how to translate bounds on supξ∈N Xξ, where N ⊆ S is some appro-
priate discretization of the Euclidean sphere, into a bound on supξ∈S Xξ.

Lemma 2.6.5. For M ∈ Mat(n, d), if N is an η-net of Sd−1, then

‖M‖op ≤ (1− η)−1 sup
ξ∈N
‖Mξ‖2.

48

Note this can be rewritten as ‖M∗M‖op ≤ (1 − η)−2 supξ∈N〈ξξ∗,M∗M〉 for positive semi-
definite M∗M .

This can be generalized to non-definite X ∈ H(d) matrices as follows:

‖X‖op ≤ (1− 2η − η2)−1 sup
ξ∈N
|〈ξξ∗, X〉|.

Proof. We follow the standard approximation argument given in [95].

First consider arbitrary M ∈ Mat(d, n), and let ξ∗ := arg supξ∈Sd−1 ‖Mξ‖2 so that
‖Mξ∗‖2 = ‖M‖op by definition of the operator norm as discussed in Section 2.1.9. For
shorthand let µ := supξ∈N ‖Mξ‖2. N is an η-net, so by Definition 2.6.2 we can decompose
ξ∗ = ξ + ξ′ for some ξ ∈ N, ξ′ ∈ ηBn

2 . This allows us to bound

‖M‖op = ‖Mξ∗‖2 ≤ ‖Mξ‖2 + ‖Mξ′‖2 ≤ µ+ η‖M‖op,

where the first step was by definition of ξ∗, the second step was by the triangle inequality,
and in the final step the first term is bounded by definition of µ as ξ ∈ N , and second term
is bounded by the definition of the operator norm and ξ′ ∈ ηBn

2 . The statement follows by
rearranging:

‖M‖op ≤ (1− η)−1µ = (1− η)−1 sup
ξ∈N
‖Mξ‖2.

The second statement follows by a similar calculation except that the triangle inequality
has more terms. For any Hermitian matrix X ∈ Mat(d), let ξ∗ := arg supξ∈Sd−1 |〈ξξ∗, X〉| so
that ‖X‖op = |〈ξ∗ξ∗∗ , X〉| by Definition 2.1.16. Further, for shorthand let µ := supξ∈N |〈ξξ∗, X〉|.
N is an η-net, so by Definition 2.6.2 we can decompose ξ∗ = ξ+ξ′ for some ξ ∈ N, ξ′ ∈ ηBn

2 .
This allows us to bound

‖X‖op = |〈ξ∗ξ∗∗ , X〉| ≤ |〈ξξ∗, X〉|+2|〈ξ′ξ∗, X〉|+|〈ξ′ξ′∗, X〉| ≤ µ+(2‖ξ′‖2‖ξ‖2+‖ξ′‖2
2)‖X‖op,

where the first step was by definition of ξ∗, the second step was by the triangle inequality,
and in the final step the first term is bounded due to ξ ∈ N , and the next terms are by
the dual definition of the operator norm as discussed in Section 2.1.9. Therefore, using
‖ξ′‖2 ≤ η and rearranging gives the lemma:

‖X‖op ≤ µ+ (2η + η2)‖X‖op =⇒ (1− 2η − η2)−1‖X‖op ≤ µ = sup
ξ∈N
|〈ξξ∗, X〉|.

49

We will also want to bound the smallest singular values of random matrices with a
similar strategy. Therefore, we will discretize Sd−1 and perform a similar approximation
argument below for infξ∈Sd−1 Xξ. The following lemma is helpful to bound well-conditioned
matrices.

Lemma 2.6.6. For X ∈ Mat(n, d), if N is an η-net of Sd−1, then

inf
ξ∈Sd−1

‖Xξ‖2
2 ≥ inf

ξ∈N
‖Xξ‖2 − η‖X‖op.

Proof. Let ξ∗ := arg infξ∈Sd−1 ‖Xξ‖2 be the optimizer. N being an η-net, so by Defini-
tion 2.6.2 we can decompose ξ∗ = ξ + ξ′ for ξ ∈ N, ξ′ ∈ ηBn

2 . Letting σ := infξ∈N ‖Xξ‖2

for shorthand, we can bound the above as

inf
ξ∈Sd−1

‖Xξ‖2 = ‖X(ξ + ξ′)‖2 ≥ ‖Xξ‖2 − ‖Xξ′‖2 ≥ σ − η‖X‖op,

where the first step was by definition of ξ∗ = ξ + ξ′, the second step was by the triangle
inequality, and in the final step we bounded the first term by definition of σ as ξ ∈ N and
the second term by definition of the operator norm.

Note that ‖Xξ‖2 ≥ 0 always, so the above bound is only non-trivial when η <
infξ∈N ‖Xξ‖2
‖X‖op

. This will be useful for random matrices that have small condition number.

50

Chapter 3

Matrix Scaling Improvement

In this chapter we will study the matrix scaling problem.

Definition 3.0.1. For matrix A ∈ Mat(d, n), output diagonal matrices L ∈ diag(d), R ∈
diag(n) such that B := LAR is doubly balanced, i.e.

∀i ∈ [d] :
n∑
j=1

|Bij|2 =
‖B‖2

F

d
, and ∀j ∈ [n] :

d∑
i=1

|Bij|2 =
‖B‖2

F

n
,

or prove that no such scaling exists.

Matrix scaling is an important subroutine in many fields of pure and applied mathe-
matics, and has been rediscovered from a variety of perspectives. Our main motivation is
to give an optimal analysis for the Paulsen problem in Chapter 4. We will also generalize
the results in this chapter to the tensor scaling setting in Chapter 6 and Chapter 7 using
the geodesic convex optimization framework developed in [20]. In Chapter 8, we present
some background on algorithms for the matrix scaling problem. In this chapter, we focus
on proving strong bounds on the solution for certain classes of inputs.

Overview: In Section 3.1, we formally introduce the matrix scaling problem. We
then present a well-known convex formulation for this problem, along with the natural
gradient flow algorithm used to solve it. We then give an analysis of the gradient flow
algorithm using tools from convex optimization. In Section 3.2, we prove strong bounds
on the solution to matrix scaling when the input satisfies a strong convexity assumption.
In Section 3.3, we prove even stronger bounds when the input satisfies a combinatorial
pseudorandom condition. In Section 3.4, we discuss the quantitative relationship between

51

the above two conditions, and in particular show that the pseudorandom condition implies
strong convexity. This is a new result in spectral graph theory which we believe to be
of independent interest. Finally, in Section 3.5, we describe the ideas necessary to lift
this analysis to the more general frame and operator scaling problems, where the set of
scalings come from a non-commutative group. These ideas will be explained in more detail
in Chapter 6, where we will fully present the geodesic convex optimization framework for
more general scaling problems. The main application of the improved analyses of matrix
scaling will be given in Chapter 4 for the Paulsen problem.

3.1 Matrix Scaling and Convexity

In this section, we formally define the specific version of matrix scaling that we study. The
main goals of this section are to describe the convex formulation and the gradient flow
algorithm used to find the solution.

3.1.1 Matrix Scaling

The original matrix scaling problem concerns non-negative square matrices and has an
exceedingly long and varied history (see the survey of Idel’s for a detailed exposition [54]).
We will study a generalization of this problem, where the input is a tuple of rectangular
matrices with arbitrary elements from characteristic zero fields F = R or F = C. We choose
this tuple version so that our results can be lifted to the more general frame and operator
settings as discussed in Section 6.3 of Chapter 6.

We first define the quantities of interest for matrix scaling.

Definition 3.1.1. For tuple A = {A1, ..., AK} ∈ Mat(d, n)K, the size is defined as

s(A) :=
K∑
k=1

‖Ak‖2
F .

For i ∈ [d] and j ∈ [n], the row and column sums are defined respectively as

ri(A) := 〈Eii,
K∑
k=1

AkA
∗
k〉 =

K∑
k=1

n∑
j=1

|(Ak)ij|2, cj(A) := 〈Ejj,
K∑
k=1

A∗kAk〉 =
K∑
k=1

d∑
i=1

|(Ak)ij|2.

52

In the original matrix scaling problem, the goal is to output a non-negative doubly-
stochastic matrix (all row and column sums equal to 1). Below, we define a similar condition
for our setting.

Definition 3.1.2. Tuple A = {A1, ..., AK} ∈ MatC(d, n)K is called ε-doubly balanced if

s(A)(1− ε)
d

≤ ri(A) ≤ s(A)(1 + ε)

d
, and

s(A)(1− ε)
n

≤ cj(A) ≤ s(A)(1 + ε)

n
,

for all i ∈ [d], j ∈ [n]. A is called doubly balanced if the above holds with ε = 0.

We can now rephrase the matrix scaling problem in this language.

Definition 3.1.3 (Matrix Scaling Problem). Given input matrix tuple A := {A1, ..., AK} ∈
Mat(d, n)K, find non-zero scalings (L,R) ∈ diag(d)⊕ diag(n) such that

LAR := {LA1R, ..., LAKR}

is doubly balanced according to Definition 3.1.2.

Remark 3.1.4. The original matrix scaling problem of Linial et al. [66] has as input a
nonnegative matrix B ∈ Rn×n

+ and requires positive diagonal matrices L,R ∈ Rn×n
++ such

that the scaled matrix LBR is doubly stochastic, i.e. that (LBR)1n = (LBR)T1n = 1n.
This is equivalent to the K = 1 case of Definition 3.1.3 on input Aij :=

√
Bij, with the

added requirement that the ouptut must have size n.

In some cases, the only solution to the matrix scaling problem is the trivial scaling
(0, 0). For a discussion of this failure case, and its combinatorial consequences, see the
work of Linial, Samorodnitsky, and Wigderson [66]). For further context on the 0 solution
to scaling problems, see the discussion on the Null Cone in Section 6.1.2.

If the input is already close to doubly balanced, we can hope to give a refined analysis
of the matrix scaling problem in Definition 3.1.3. The goal of Section 3.2 and Section 3.3
is to define and analyze sufficient conditions for nearly doubly balanced inputs to have
scaling solutions that are close to the identity.

Our strategy will be to analyze the natural gradient flow algorithm for a convex formula-
tion of matrix scaling. These concepts will be formally defined in the next two subsections.

53

3.1.2 Convex Formulation/Kempf-Ness Function

In this section, we will present the convex formulation for matrix scaling. The formulation
comes from the work of Kempf and Ness [58] in the context of geometric invariant theory,
and we discuss this connection in more detail in Section 6.1.3.

We first simplify the domain of scalings. We can perform a change of variable (L,R)→
(eX , eY) for X ∈ diag(d), Y ∈ diag(n). Note that the trivial solution (L,R) = (0, 0) is no
longer feasible (see Remark 3.1.4), but our focus in this chapter is on sufficient conditions
for scaling solutions, so this failure case will not be of concern to us. Next, we observe
that the row and column sums in Definition 3.1.2 depend only on the magnitude of entries,
so we can ignore the sign and complex phase of scalings and restrict our attention to
(X, Y) ∈ diagR(d)⊕diagR(n). (This is an instance of the polar decomposition C = R⊕ iR
as discussed in Theorem 2.1.13, and we will revisit this for more general scaling problems
in Chapter 6.) Finally, we can assume the normalization

∑d
i=1Xi =

∑n
j=1 Yj = 0 without

loss, as the doubly balanced condition is homogeneous. Note that this is equivalent to
restricting to unit determinant scalings as det(eX) = exp(Tr[X]). Therefore we can restrict
the domain of the matrix scaling problem as follows.

Definition 3.1.5. The scalings in Definition 3.1.3 can be restricted to subspace

t := {(X, Y) ∈ diagR(d)⊕ diagR(n) | Tr[X] = Tr[Y] = 0}.

We will sometimes use X to refer to its embedding (X, 0) ∈ t by abuse of notation (and
similarly for Y → (0, Y) ∈ t).

This vector space can be derived more formally using the perspective of Lie groups and
Lie algebras as discussed in Section 2.2.3, and these ideas lift to the more general tensor
scaling setting as shown in Chapter 6 and Chapter 7. At this point, we can introduce the
Kempf-Ness function which gives an optimization formulation for matrix scaling.

Definition 3.1.6. For matrix tuple {A1, ..., AK} ∈ Mat(d, n)K, the Kempf-Ness function
fA : t→ R is defined as

fA(X, Y) := s(eX/2AeY/2) =
K∑
k=1

‖eX/2AkeY/2‖2
F =

K∑
k=1

d∑
i=1

n∑
j=1

eXi|Ak|2ijeYj ,

where size is given in Definition 3.1.1. The factor 2 is just to remove leading constants for
future calculations.

54

Below, we prove that the Kempf-Ness function gives a convex formulation for matrix
scaling by showing (1) the set of doubly balanced scalings are exactly the critical points
of fA, and (2) fA is convex on its domain. This is actually a general phenomena in the
setting of geometric invariant theory, and we discuss this connection to the work of Kempf
and Ness [58] in Section 6.1.3. Therefore, in order to analyze the solution of the matrix
scaling problem, we can rely on tools from convex optimization. Properties (1) and (2) are
verified by the simple derivative calculations below.

We will repeatedly use the following property of the Kempf-Ness function to reduce all
calculations to the origin.

Fact 3.1.7 (Equivariance). The family of Kempf-Ness functions {fA | A ∈ Mat(d, n)K}
given in Definition 3.1.6 satisfies the following equivariance relation:

fA(X, Y) = s(eX/2AeY/2) = feX/2AeY/2(0, 0).

We can therefore characterize critical points of the Kempf-Ness function by a straight-
forward first-order calculation at the origin.

Lemma 3.1.8. For input A ∈ Mat(d, n)K, the (X, Y)-directional derivative of fA is

∂δ=0fA(δX, δY) =
d∑
i=1

Xiri(A) +
n∑
j=1

Yjcj(A).

Therefore, doubly balanced scalings of A correspond to critical points of fA.

Proof. We first expand fA to calculate the first derivative:

∂δ=0fA(δX, δY) = ∂δ=0

d∑
i=1

n∑
j=1

eδ(Xi+Yj)
K∑
k=1

|〈Eij, Ak〉|2 =
d∑
i=1

n∑
j=1

(Xi + Yj)
K∑
k=1

|〈Eij, Ak〉|2

=
d∑
i=1

Xi

K∑
k=1

n∑
j=1

|〈Eij, Ak〉|2 +
n∑
j=1

Yj

K∑
k=1

n∑
j=1

|〈Eij, Ak〉|2.

The first statement in the lemma then follows by Definition 3.1.1 of row/column sums.

For the second statement, note that by the equivariance property in Fact 3.1.7, (X, Y)
is a critical point of fA iff the origin (0, 0) is a critical point for feX/2AeY/2 . Therefore it is
enough to show that A ∈ Mat(d, n)K is doubly balanced iff (0, 0) is a critical point of fA.

55

We first show that if A is doubly balanced, then the derivative vanishes for every
direction in t, which gives the forward implication by Definition 2.3.9 of a critical point.
So considering (X, Y) ∈ t,

∂δ=0fA(δX, δY) =
d∑
i=1

Xiri(A) +
n∑
j=1

Yjcj(A) =
d∑
i=1

Xi
s(A)

d
+

n∑
j=1

Yj
s(A)

n
= 0,

where the first equality is by the first order calculation above, the second equality is because
A is doubly balanced (Definition 3.1.2), and the final equality is because (X, Y) ∈ t so∑d

i=1 Xi =
∑n

j=1 Yj = 0.

To show the converse implication, assume A is not doubly balanced so (X, Y) :=

(r(A)− s(A)
d
, c(A)− s(A)

n
) 6= 0. Note that this vector is in t, as

d∑
i=1

ri =
K∑
k=1

d∑
i=1

n∑
j=1

|(Ak)ij|2 =
K∑
k=1

‖Ak‖2
F = s(A),

by definition of the Frobenius norm on Mat(d, n). The same calculation shows that∑n
j=1 cj = s(A), so (X, Y) ∈ t by Definition 3.1.5. We will show that the derivative

in the (X, Y) direction does not vanish, which shows that the origin is not a critical point
by Definition 2.3.9. By the derivative calculation above,

∂δ=0fA(δX, δY) =
d∑
i=1

(
ri −

s

d

)
ri +

n∑
j=1

(
cj −

s

n

)
cj =

d∑
i=1

(
ri −

s

d

)2

+
n∑
j=1

(
cj −

s

n

)2

,

where in the first step we substituted (X, Y) := (r(A) − s(A)
d
, c(A) − s(A)

n
), and the last

equality is because s
d

∑d
i=1

(
ri − s

d

)
= s

n

∑n
j=1

(
cj − s

n

)
= 0. The above is strictly positive

since (X, Y) 6= 0, so the origin is not a critical point for fA.

We next calculate the second derivative to verify that the Kempf-Ness function is convex
according to Definition 2.3.8.

Lemma 3.1.9. For A ∈ Mat(d, n)K and direction (X, Y) ∈ t, the second derivative of fA
at the origin is:

∂2
δ=0fA(δX, δY) =

d∑
i=1

n∑
j=1

K∑
k=1

|〈Eij, Ak〉|2(Xi + Yj)
2.

As a consequence, fA is convex on domain t for every input A.

56

Proof. The first statement follows by expanding fA as

∂2
δ=0fA(δX, δY) = ∂2

δ=0

d∑
i=1

n∑
j=1

eδ(Xi+Yj)
K∑
k=1

|〈Eij, Ak〉|2 =
d∑
i=1

n∑
j=1

(Xi+Yj)
2

K∑
k=1

|〈Eij, Ak〉|2.

For the second statement, the equivariance property in Fact 3.1.7 shows that fA is
convex at (X, Y) ∈ t iff feX/2AeY/2 is convex at the origin. The first statement in this
lemma shows that the second order derivative is always non-negative at the origin for
every direction in t, so f is convex by Definition 2.3.8.

We can therefore collect the above facts into the following proposition, which shows
that the Kempf-Ness function is the desired convex formulation for matrix scaling.

Proposition 3.1.10. For every input A ∈ Mat(d, n)K,

1. fA is convex on domain t.

2. eX/2AeY/2 is a doubly balanced scaling of A iff (X, Y) is a critical point for fA.

3. eX/2AeY/2 is a doubly balanced scaling of A iff (X, Y) is a global minimizer of fA.

Proof. (1) and (2) are exactly the content of Lemma 3.1.9 and Lemma 3.1.8 respectively.
The final item also follows from Lemma 2.3.10, which shows critical points of convex
functions are always global minima.

3.1.3 Gradient Flow

The formulation in Proposition 3.1.10 shows that the matrix scaling solution is an optimizer
of the convex Kempf-Ness function given in Definition 3.1.6. Therefore in this subsection
we formally define a natural gradient flow which converges to the optimizer of f .

Definition 2.3.12 specifies that for inner product space (V, 〈·, ·〉), the gradient ∇h of
differentiable function h : V → R at point x ∈ V satisfies

∀v ∈ V : 〈∇h(x), v〉 = ∂δ=0h(x+ δv).

Any choice of (positive-definite) inner product on t will induce a unique gradient vector
at each point, and will therefore induce a different gradient flow. We will choose an inner
product that corresponds with the scaling properties of t. This defines a gradient vector
field of fA on t, and the gradient flow is then defined as the solution to the differential
equation produced by this vector field.

57

Definition 3.1.11 (t Inner Product). For elements (X, Y), (X ′, Y ′) in vector space t (Def-
inition 3.1.5), we define their inner product as

〈(X, Y), (X ′, Y ′)〉t :=
1

d

d∑
i=1

XiX
′
i +

1

n

n∑
j=1

YjY
′
j .

The induced norm is ‖(X, Y)‖t =
√
〈(X, Y), (X, Y)〉t.

Similar to Definition 3.1.5, the above inner product is natural from the appropriate
scaling perspective. We give further explanation after Definition 7.1.2, where this inner
product is lifted to the tensor scaling setting.

With this choice of t-inner product, we can define the gradient vector at each point.

Proposition 3.1.12. For input A ∈ Mat(d, n)K, and (X, Y) ∈ t, the gradient is

∇fA(X, Y) =
{
d·ri(eX/2AeY/2)−s(eX/2AeY/2)

}d
i=1
⊕
{
n·cj(eX/2AeY/2)−s(eX/2AeY/2)

}n
j=1
.

We will often use shorthand ∇A := ∇fA(0, 0) and ∇L
A,∇R

A for the left and right parts of
∇A, respectively.

Proof. First note that ∇fA(X, Y) is in fact an element of t, as d
∑d

i=1 ri = s = n
∑n

j=1 cj
by the calculation in Lemma 3.1.8 . To verify the formula above, we first reduce our
calculation to the origin by noting

∂δ=0fA(X + δX ′, Y + δY ′) = ∂δ=0feX/2AeY/2(δX ′, δY ′)

by the equivariance property in Fact 3.1.7. This induces the relation ∇fA(X, Y) =
∇feX/2AeY/2(0, 0), so it is enough to verify the formula for the gradient at the origin for
every A ∈ Mat(d, n)K . For arbitrary (X, Y) ∈ t, Lemma 3.1.8 gives

∂δ=0fA(δX, δY) =
d∑
i=1

Xiri(A)+
n∑
j=1

Yjcj(A) =
1

d

d∑
i=1

Xi(d·ri(A)−s(A))+
1

n

n∑
j=1

Yj(n·cj(A)−s(A)),

where the last equality was because (X, Y) ∈ t so
∑d

i=1Xi · s(A) =
∑n

j=1 Yj · s(A) = 0.
Matching this last expression to the definition ∂δ=0fA(δX, δY) = 〈∇fA(0, 0), (X, Y)〉t gives
the statement.

58

This choice of inner product and gradient is well suited to analyze matrix scaling as
shown by the following approximate version of Lemma 3.1.8.

Fact 3.1.13. For ε-doubly balanced A ∈ Mat(d, n)K, the gradient satisfies the norm bound

‖∇A‖2
t =

1

d

d∑
i=1

(dri − s)2 +
1

n

n∑
j=1

(ncj − s)2 ≤ 1

d

d∑
i=1

(sε)2 +
1

n

n∑
j=1

(sε)2 = 2s2ε2,

and ‖∇A‖2
t = 0 iff A is doubly balanced.

Therefore, our goal will be to find sufficient conditions for the optimizer of an approx-
imate critical point to be close to the origin. To show a distance bound on the optimizer,
we will follow gradient flow of fA. Informally, at each time t we would like to move our
scalings (Xt, Yt) infinitesimally in the direction of steepest descent.

Definition 3.1.14 (Gradient Flow). For input A ∈ Mat(d, n)K, the gradient flow of the
Kempf-Ness function fA is the dynamical system {(Xt, Yt) ∈ t | t ≥ 0} satisfying

(X0, Y0) := (0, 0), ∂t(Xt, Yt) = −∇fA(Xt, Yt).

This induces a dynamical system on matrices by At := eXt/2AeYt/2 with A0 = A. By
the equivariance property of Fact 3.1.7, we equivalently have ∂t(Xt, Yt) = −∇fAt(0, 0).

In this chapter, we reserve t and ∂t exclusively for time variables, and we use Greek
letters for directional derivatives on the vector space (e.g. ∂tAt vs ∂δfA(δX, δY)), so as not
to confuse the domains.

One advantage of using this simple gradient flow algorithm is that certain quantities
controlling convergence to the optimum can be analyzed simply. The proposition below
gives a principled derivation of Lemma 3.4.2 in [62] while (slightly) simplifying the proof.

Proposition 3.1.15. For matrix input A ∈ Mat(d, n)K and gradient flow (Xt, Yt) as in
Definition 3.1.14,

∂ts(At) = ∂tfA(Xt, Yt) = −‖∇At‖2
t .

Proof. The first equality follows since s(At) = fA(Xt, Yt) for all time by Definition 3.1.14
of At = eXt/2AeYt/2. To show the second equality, we calculate

∂tfA(Xt, Yt) = 〈∇fA(Xt, Yt), ∂t(Xt, Yt)〉t = 〈∇fA(Xt, Yt),−∇fA(Xt, Yt)〉t = −‖∇At‖2
t ,

where the first step is by the chain rule, in the second step we used Definition 3.1.14
of gradient flow on (Xt, Yt), and in the last equality we again used At = eXt/2AeYt/2 so
∇At = ∇fA(Xt, Yt).

59

Our analyses in the next two sections will proceed by showing ‖∇At‖t decreases ex-
ponentially under special assumptions on the input. By Definition 3.1.14 of ∂t(Xt, Yt) =
−∇At , this allows us to bound the path length of gradient flow, showing (Xt, Yt) stays close
to the origin. Further, Proposition 3.1.15 will be useful in showing strong lower bounds on
the objective function fA in this case.

3.2 Strongly Convex Setting

In the previous Section 3.1, we showed that there is a convex formulation for matrix
scaling. In this section, we will analyze the gradient flow given in Definition 3.1.14 when
the input satisfies a strong convexity condition. There are many well known techniques
which show fast convergence of various descent methods (see e.g. [75]), but these tend to
apply to functions that are strongly convex on their whole domain. In Section 3.2.1, we
define a notion of strong convexity for matrix inputs. Then, in Section 3.2.2 we show that
strong convexity is maintained if all entries of the scaling (X, Y) are small. This leads to a
preliminary convergence analysis of gradient flow for matrix inputs A which are sufficiently
strongly convex as compared to their initial error ‖∇A‖t. Finally, in Section 3.2.3, we
make an important structural observation about matrix scaling which allows us to directly
analyze the convergence of the worst error ‖∇At‖∞ over time. This allows us to show the
same fast convergence guarantee with a much weaker requirement on strong convexity. The
improvement from Section 3.2.2 to Section 3.2.3 is done by going beyond standard strong
convexity analyses and directly considering the ∞-norm of the gradient, which is better
suited for analyzing convergence.

In Section 3.3, we will further improve the convergence analysis when the input satisfies
a certain pseudorandom condition. In Section 3.5, we will discuss how to lift both of these
results to the more general frame and operator scaling problems.

3.2.1 Strong Convexity

In this subsection, we will define strong convexity for matrix scaling and show some pre-
liminary convergence results that follow from standard convex analysis.

Definition 3.2.1. Matrix tuple A ∈ Mat(d, n)K is α-strongly convex iff fA is α strongly
convex at the origin:

∀(X, Y) ∈ t : ∂2
δ=0fA(δX, δY) ≥ α‖(X, Y)‖2

t = α

(
1

d

d∑
i=1

X2
i +

1

n

n∑
j=1

Y 2
j

)
.

60

Notice that unlike Definition 3.1.2 of doubly balanced matrices, this concept is not
homogeneous. Therefore, in general the amount of strong convexity should be compared
to the size. A simple motivating example is the all-ones matrix 1

dn
J , which has size 1 and

satisfies α = 1 strong convexity. In Appendix A.2, we show that this is in fact an extremal
example with maximum α/s.

From a graph-theoretic perspective, strong convexity of a matrix tuple A can be related
to the graph expansion of the bipartite graph with edge weights wij :=

∑K
k=1 |Aij|2. We

will use this connection to graphs in Section 3.4, where we compare strong convexity and
the pseudorandom condition of Section 3.3.

This strong convexity assumption is immediately useful in analyzing gradient flow. The
following is a standard result from convex analysis.

Proposition 3.2.2. If A is α-strongly convex then −∂t=0‖∇At‖2
t ≥ α‖∇A‖2

t . In particular
∂t=0‖∇At‖2

t ≤ 0 always for matrix gradient flow according to Definition 3.1.14. As a
corollary, if At is α-strongly convex for all t ∈ [0, T], then

‖∇AT ‖2
t ≤ e−2αT‖∇A‖2

t , and ‖(XT , YT)‖t ≤
‖∇A‖t
α

,

where (Xt, Yt) is the solution to gradient flow given in Definition 3.1.14.

Proof. We first show −∂t=0‖∇At‖2
t = 2∂2

δ=0fA(−δ∇A). This will imply the first statement
by strong convexity. Starting from the left hand side, we calculate

−∂t=0‖∇At‖2
t

2
= 〈∂t=0∇At ,−∇A〉t = lim

t→0
t−1〈∇At −∇A,−∇A〉t

= lim
t→0

t−1
(
∂δ=0fAt(−δ∇A)− ∂δ=0fA(−δ∇A)

)
= lim

t→0
t−1
(
∂δ=0fA((Xt, Yt)− δ∇A)− ∂δ=0fA(−δ∇A)

)
= ∂t=0∂δ=0fA

(
(Xt, Yt)− δ∇A

)
,

where the first two steps are by calculus, in the third step we used Definition 2.3.12 of the
gradient of f so that 〈∇fAt(0, 0),−∇A〉t = ∂δ=0fAt(−δ∇A), the fourth equality was by the
equivariance property of Fact 3.1.7 as At := eXt/2AeYt/2 and (X0, Y0) = (0, 0), and the final
step is again by calculus. To show this is equal to the right hand side, we calculate

∂2
δ=0fA(−δ∇A) = ∂δ

(
∂δfA(−δ∇A)

)
|δ=0 = ∂δ=0〈∇fA(−δ∇A),−∇A〉t

= ∂δ=0〈∇fA(−δ∇A), ∂t=0(Xt, Yt)〉t = ∂δ=0∂t=0fA

(
(Xt, Yt)− δ∇A

)
,

61

where the second step used Definition 2.3.12 of the gradient of fA at point −δ∇A, the third
step was by Definition 3.1.14 of gradient flow, and the final step was by Definition 2.3.12
of the gradient as well as the chain rule.

Therefore, we can show the first statement, −∂t=0‖∇At‖2
t = 2∂2

δ=0fA(−δ∇A) ≥ 2α‖∇A‖2
t

by Definition 3.2.1 of strong convexity.

Equivalently, −∂t=0 log ‖∇At‖2
t ≥ 2α by the chain rule. This implies the second state-

ment, as

log ‖∇AT ‖2
t − log ‖∇A‖2

t =

∫ T

t=0

∂t log ‖∇At‖2
t ≤ −2αT,

where the first step was by the fundamental theorem of calculus, and the second was by
fast convergence. Therefore, exponentiating both sides gives the result.

The final statement on scaling (XT , YT) is also a consequence of the fundamental the-
orem of calculus.

‖(XT , YT)‖t =

∥∥∥∥∫ T

0

−∇At

∥∥∥∥
t

≤
∫ T

0

‖∇At‖t ≤ ‖∇A‖t
∫ T

0

e−αt ≤ ‖∇A‖t
α

,

where in the first step we used (X0, Y0) = 0 and ∂t(Xt, Yt) = −∇At as given in Defini-
tion 3.1.14 of gradient flow, the second step is by the triangle inequality on ‖ · ‖t, the
third step was by using ‖∇At‖2

t ≤ e−2αt‖∇A‖2
t as shown above, and the final step was by

integration.

We have shown in Proposition 3.2.2 that if A maintains strong convexity according
to Definition 3.2.1 throughout the trajectory of gradient flow, then we have exponential
convergence of ‖∇At‖t, which implies a strong bound on the scaling ‖(Xt, Yt)‖t. The work
of the next Section 3.2.2 is to study how the strong convexity property changes over time.

3.2.2 Maintaining Strong Convexity

It will be difficult to have control over the entire trajectory of gradient flow, so the main
work in this subsection will be to prove that if strong convexity is sufficiently large at time
t = 0, then it remains large throughout gradient flow.

To this end, we observe that small scalings will preserve strong convexity. We define
the following measurement of scalings under which convexity is quantitatively robust.

62

Definition 3.2.3. For vector space t, the infinity norm is defined as

‖(X, Y)‖∞ := max
i∈[d]
|Xi|+ max

j∈[n]
|Yj|.

Similar to Definition 3.1.11, the above norm is related to the natural operator norm of
scaling (X, Y) ∈ t. We further explanation this choice after Definition 7.1.12, where this
norm is lifted to the tensor scaling setting.

This norm gives a way to bound the change in convexity caused by scalings.

Lemma 3.2.4 (Robustness). If A ∈ Mat(d, n)K is α-strongly convex, then for any (X ′, Y ′) ∈
t, the scaling B = eX

′/2AeY
′/2 is at least α · e−‖(X′,Y ′)‖∞-strongly convex.

Proof. We can lower bound each entry of the scaling, i.e. for any i ∈ [d], j ∈ [n], k ∈ K:

|(Bk)ij|2 = eX
′
i |(Ak)ij|2eY

′
j ≥ e−‖(X

′,Y ′)‖∞|(Ak)ij|2,

where we substituted in B = eX
′/2AeY

′/2 in the first step, and the last step was by Def-
inition 3.2.3 of the infinity norm ‖ · ‖∞. Therefore we can lower bound the second-order
derivative for arbitrary direction (X, Y) ∈ t.

∂2
η=0fB(ηX, ηY) =

d∑
i=1

n∑
j=1

K∑
k=1

|(Bk)ij|2(Xi + Yj)
2

≥
d∑
i=1

n∑
j=1

K∑
k=1

e−‖(X
′,Y ′)‖∞|(Ak)ij|2(Xi + Yj)

2

= e−‖(X
′,Y ′)‖∞ · ∂2

η=0fA(ηX, ηY) ≥ e−‖(X
′,Y ′)‖∞ · α‖(X, Y)‖2

t ,

where the first and third steps were by the formula in Lemma 3.1.9 for second order
derivatives, the second step was by the entry-wise bound derived above, and the lower
bound in the last step was by α-strong convexity of A. Since the direction (X, Y) ∈ t was
arbitrary, this verifies Definition 3.2.1 showing B is e−‖(X

′,Y ′)‖∞ · α-strongly convex.

Remark 3.2.5. We show in Appendix A.2 that the factor e−‖δ‖∞ is in fact optimal. In
Lemma 7.3.11, following Section 3.6 of [63], we prove a weaker robustness statement
(α → α − O(δ)) for the more general frame and operator scaling problems. The differ-
ence between these two kinds of robustness, additive vs multiplicative, is discussed further
in Section 7.3. While it looks like a small change, this difference was an important impetus
for the improvements to the Paulsen problem given in this thesis. This is discussed further
at the end of Section 4.2.2.

63

Remark 3.2.6. By a similar calculation, we can in fact show the stronger statement

e−‖δ‖∞∂2
η=0fA(ηX, ηY) ≤ ∂2

η=0fB(ηX, ηY) ≤ e‖δ‖∞∂2
η=0fA(ηX, ηY)

for any (X, Y) ∈ t. This result was derived in [26] under the name of second-order ro-
bustness with respect to ‖ · ‖∞, and was used to give a nearly-linear time algorithm for the
K = 1 matrix scaling case.

In the next lemma, we give a two-sided relation between ‖ · ‖t and ‖ · ‖∞. This allows
us to combine the bound on ‖(Xt, Yt)‖t given by Proposition 3.2.2, with the robustness
property of Lemma 3.2.4 with respect to ‖(X, Y)‖∞.

Lemma 3.2.7. For vector space t, the two norms ‖ · ‖t and ‖ · ‖∞ are related by

‖(X, Y)‖2
t ≤ ‖X‖2

∞ + ‖Y ‖2
∞ ≤ ‖(X, Y)‖2

∞ ≤
(√

d‖X‖t +
√
n‖Y ‖t

)2

≤ (d+ n)‖(X, Y)‖2
t .

Proof. To show that the first inequality, we calculate

‖(X, Y)‖2
t =

1

d

d∑
i=1

X2
i +

1

n

n∑
j=1

Y 2
j ≤

d

d
max
i
X2
i +

n

n
max
j
Y 2
j = ‖X‖2

∞+‖Y ‖2
∞ ≤ ‖(X, Y)‖2

∞,

where the first step is by Definition 3.1.11 of the inner product, the third step is by
Definition 3.2.3, and the final step is by a2 + b2 ≤ (a+ b)2 for a, b ≥ 0. To show the other
inequality, we calculate

‖(X, Y)‖2
∞ = (max

i∈[d]
|Xi|+ max

j∈[n]
|Yj|)2 ≤


√√√√d

d

d∑
i=1

X2
i +

√√√√n

n

n∑
j=1

Y 2
j

2

≤ (d+ n)

(
1

d

d∑
i=1

X2
i +

1

n

n∑
j=1

Y 2
j

)
= (d+ n)‖(X, Y)‖2

t ,

where the first step was by Definition 3.2.3, the third step was by Cauchy-Schwarz, and
the final step was by Definition 3.1.11 of the t-norm.

At this point we can show a weak form of our main convergence theorem. The stronger
version is given in Theorem 3.2.19, and will follow by a refined analysis that avoids the
translation in Lemma 3.2.7 and directly controls convergence of ‖(Xt, Yt)‖∞.

64

Theorem 3.2.8. If A is α ≥ 6
√
d+ n‖∇A‖∞-strongly convex, then (X∞, Y∞) := limt→∞(Xt, Yt)

exists and gives a solution to the matrix scaling problem in Definition 3.1.3 on input A.

Proof. We claim that At is α
e
-strongly convex for all time. So for contradiction, let T be

the first time AT is ≤ α
e
-strongly convex. Since A is α-strongly convex, Lemma 3.2.4 in the

contrapositive shows that ‖(XT , YT)‖∞ ≥ 1. By definition of T , At is at least α
e
-strongly

convex for all t ∈ [0, T]. Therefore, we can bound

‖(XT , YT)‖∞ ≤
√
d+ n‖(XT , YT)‖t ≤

√
d+ n‖∇A‖t

α/e
≤ e

6
< 1,

where the first step is by Lemma 3.2.7, the second is by the strong convexity analysis in
Proposition 3.2.2, and the third step is by the assumption α ≥ 6

√
d+ n‖∇A‖∞. This is a

contradiction, so the claim is shown.

To show that the limit exists, we can use strong convexity for all time to bound

lim
T→∞

∫
t≥T
‖∂t(Xt, Yt)‖t = lim

T→∞

∫
t≥T
‖∇At‖t ≤ lim

T→∞
‖∇A‖t

∫
t≥T

e−αt/e = 0,

where the first step was by Definition 3.1.14 of gradient flow, and the second was by Propo-
sition 3.2.2 with α

e
-strong convexity. This implies that limt→∞(Xt, Yt) = (X∞, Y∞) ∈ t

exists, and ∇A∞ = 0 for A∞ = eX∞/2AeY∞/2, so A∞ is doubly balanced by Proposi-
tion 3.1.10(2).

In the remainder of this chapter, we make two kinds of improvements to the above
theorem. First, we weaken the assumptions by reducing the ratio α

ε
needed to deduce fast

convergence; here α represents strong convexity (or pseudorandomness in Section 3.3) and
ε represents the initial error of A. This will be useful for our application to the Paulsen
problem in Chapter 4. At a high level, given nearly doubly balanced A, we want to bound
the distance to an exactly doubly balanced input B. Our plan will be to perturb A and
then apply the fast convergence of matrix scaling. Therefore, the smaller the requirement
for α

ε
, the less we have to move to find B. Theorem 3.3.10 is our strongest result in this

direction and is used to give an optimal bound for the Paulsen problem in Chapter 4.

Our second improvement gives a strengthening of the conclusions of Theorem 3.2.8 by
proving bounds on various scaling parameters, e.g. size, ‖(X∞, Y∞)‖t, ‖(X∞, Y∞)‖∞. This
will be useful for our statistics application in [36]. In this setting, we are given samples
from some unknown distribution, and the distance from the scaling solution to the origin
represents the error of a particular estimator. For this purpose, we give a strong result in
Theorem 3.2.19, and then generalize it to the tensor setting in Chapter 7.

65

We present a high-level description of the techniques used to improve Theorem 3.2.8.
Note that any ε-doubly balanced input A ∈ Mat(d, n)K with size s(A) = 1 satisfies
‖∇A‖∞ ≤ 2ε by definition, and ‖∇A‖2

t ≤ 2ε2 by Fact 3.1.13. In the proof of Theo-
rem 3.2.8, we only used the condition on ‖ · ‖t and translated to ‖ · ‖∞. In the following
Section 3.2.3, we will directly use the fact that A is ε-doubly balanced initially and analyze
the change in ‖∇At‖∞ through gradient flow. This will allow us to replace the

√
d+ n fac-

tor loss by a log d factor, which in turn allows us to weaken the assumption to α
ε
& log d.

To weaken this assumption further so that it is dimension independent, in Section 3.3, we
will go beyond strong convexity and analyze a combinatorial pseudorandom condition. We
show in Section 3.4 that this is in fact a strictly stronger condition than strong convexity.
We will apply these results to give optimal bounds for the Paulsen problem in Chapter 4.

3.2.3 Monotonicity and Improved Analysis

In the proof of Theorem 3.2.8, we used Proposition 3.2.2 to show a strong bound on
‖(Xt, Yt)‖t. We then translated this to a bound on ‖(Xt, Yt)‖∞ in order to show that strong
convexity is maintained by Lemma 3.2.4. The inequality ‖(X, Y)‖∞ ≤

√
d+ n‖(X, Y)‖t in

this translation cannot be improved for general (X, Y) ∈ t. In this section, we will consider
ε-doubly balanced inputs, where we also have a bound on the infinity norm ‖∇A‖∞ ≤
s(A)ε. Therefore in this subsection, we are able to directly bound ‖(Xt, Yt)‖∞ and prove
fast convergence throughout for α

ε
& log d.

We accomplish this by a refined analysis of the individual row and column sums through
gradient flow. Recall by Definition 3.2.3 that

‖∇A‖∞ = max
i∈[d]

∣∣∣d · ri − s∣∣∣+ max
j∈[n]

∣∣∣n · cj − s∣∣∣.
We explicitly calculate the change in these quantities under gradient flow.

Fact 3.2.9. If At follows gradient flow according to Definition 3.1.14, then for any i ∈
[d], j ∈ [n], the following formula gives the change in the row and column sums:

∂t=0ri(At) =
n∑
j=1

K∑
k=1

|(Ak)ij|2
(

(s− d · ri) + (s− n · cj)
)
,

∂t=0cj(At) =
d∑
i=1

K∑
k=1

|(Ak)ij|2
(

(s− n · cj) + (s− d · ri)
)
,

where we use s = s(A), ri = ri(A), and cj = cj(A) as shorthand.

66

Proof. We expand Definition 3.1.1 of row sums and calculate

∂t=0ri(At) = ∂t=0

n∑
j=1

K∑
k=1

e(Xt)ii |(Ak)ij|2e(Yt)jj =
n∑
j=1

K∑
k=1

|(Ak)ij|2(−(∇L
A)ii − (∇R

A)jj)

=
n∑
j=1

K∑
k=1

|(Ak)ij|2
(

(s− d · ri) + (s− n · cj)
)
,

where the first step is by At = eXt/2AeYt/2 according to Definition 3.1.14, in the second
step we used that (X0, Y0) = (0, 0) and ∂t(Xt, Yt) = −∇At again by Definition 3.1.14, and
the last step is by the formula for gradient given in Proposition 3.1.12. The calculation for
the columns is the similar.

Our plan is to use the above formulas in order to directly analyze ‖∇At‖∞ instead of
resorting to the fast convergence of ‖∇At‖t shown in Proposition 3.2.2. We will give two
different arguments for the left and right errors, respectively, as the matrix scaling problem
is asymmetric with d ≤ n. This will allow us to prove a stronger bound on ‖(Xt, Yt)‖∞,
which then implies that strong convexity is maintained longer by the robustness result in
Lemma 3.2.4.

We first show that the worst row or column error grows very slowly under gradient
flow. This was observed in Prop 3.2 of [63] for the more general operator scaling setting.

Lemma 3.2.10 (Monotonicity). If At follows gradient flow, then

∂t max{‖∇L
At‖∞, ‖∇

R
At‖∞} ≤ −∂ts(At) = ‖∇At‖2

t .

Proof. We prove the statement at time t = 0, from which the lemma follows by considering
A = At. We will show that the row or column with the worst error is being pushed towards
the average by gradient flow.

First, consider the case when ‖∇L
A‖∞ ≥ ‖∇R

A‖∞. The proof below is entirely symmetric
in rows and columns, and so the other case ‖∇R

A‖∞ ≥ ‖∇L
A‖∞ follows by the same argument.

Let i ∈ arg maxi′∈[d] |d ·ri′(A)−s(A)| be the row with the worst error. We will separate into
two cases depending on the sign of the error, so consider the case ‖∇L

A‖∞ = d ·ri(A)−s(A),

67

meaning ri(A) is larger than average, and we want to show it is decreasing.

∂t=0ri(At) =
n∑
j=1

K∑
k=1

|(Ak)ij|2
(

(s− d · ri) + (s− n · cj)
)

≤
n∑
j=1

K∑
k=1

d|(Ak)ij|2(−‖∇L
A‖∞ + ‖∇R

A‖∞) ≤ 0,

where the first step was by Fact 3.2.9, the second step was by the assumption that i had
the worst row error, and the final step was by the assumption ‖∇L

A‖∞ ≥ ‖∇R
A‖∞. In the

other case when ‖∇L
A‖∞ = s(A) − d · ri(A), ri(A) is smaller than average so we want to

show that it is increasing. By a similar calculation,

∂t=0ri(At) ≥
n∑
j=1

K∑
k=1

d|(Ak)ij|2(‖∇L
A‖∞ − ‖∇R

A‖∞) ≥ 0.

Therefore, in both cases (see Remark 3.2.11 for differentiability of max),

∂t=0‖∇L
At‖∞ = ∂t=0 max

i∈[d]
|d · ri(At)− s(At)| ≤ 0 + |∂t=0s(At)| = ‖∇A‖2

t ,

where in the last step we used the fact that s(At) = fAt(0, 0) and Proposition 3.1.15 on
the change in s.

The other case ‖∇R
A‖∞ ≥ ‖∇L

A‖∞ follows symmetrically, so the statement is shown.

Remark 3.2.11. The previous lemma bounded ‖∇At‖∞ by bounding its derivative. Tech-
nically, the infinity norm is not always differentiable, but this can easily be made rigorous
by following the proof of Prop 3.2 in [63], which used the generalized envelope theorem of
Milgrom and Segal (Corollary 4 of [70]) to bound the error. We omit this analytic detail
in this thesis, as the core of these proofs has to do with structural properties of scalings.

Lemma 3.2.10 shows that for small t ≈ 0, ‖∇At‖∞ ≈ ‖∇A‖∞. Note that this lemma
did not use strong convexity at all. Below, we show that for strongly convex inputs, when
t is large, we can use the exponential convergence of ‖∇At‖t derived in Proposition 3.2.2.

Corollary 3.2.12. If At is α-strongly convex for all t ∈ [0, T], then

‖∇L
AT
‖∞ ≤

√
d‖∇A‖t · e−αT .

68

Proof. We simply translate the exponential convergence to the infinity norm:

‖∇L
AT
‖∞ ≤

√
d‖∇L

AT
‖t ≤

√
d‖∇AT ‖t ≤

√
d‖∇A‖te−αT ,

where the first step was by Lemma 3.2.7 since the Y part is 0, and the third step is by
Proposition 3.2.2.

Note that for T & log d
α

, the above Corollary 3.2.12 gives a bound on ‖∇L
AT
‖∞ .

‖∇L
A‖∞ as the leading d factor is canceled by the exponential convergence for T time.

By combining the above two bounds, we can give an improved analysis of the left scaling
under the strong convexity assumption. Specifically, we improve the bound on ‖(Xt, Yt)‖∞
by directly using the bound on ‖∇At‖∞ for all time instead of resorting to the inequality
‖∇At‖∞ ≤

√
d+ n‖∇At‖t. This allows us to replace the leading

√
d+ n factor by log d for

the left scaling. Following this proposition, we prove a similar bound on the right scaling
by a slightly technical comparison argument.

Proposition 3.2.13. Consider ε-doubly balanced matrix tuple A ∈ Mat(d, n)K of size
s(A) = 1, and assume At is α-strongly convex for all t ∈ [0, T]. Then

‖XT‖∞ ≤
ε log d

2α
+
ε2 log d

2α2
+

√
2ε

α
.

Proof. We break the evolution into two stages using cutoff κ := log d
2α

. In the first stage,
we use the slow growth shown in Lemma 3.2.10 to bound ‖∇L

At
‖∞ ≈ ε, and in the second

stage we resort to the exponential convergence of Proposition 3.2.2. The cutoff is chosen
so as to balance the bounds coming from both stages. In the rest of this proof, we will use
the shorthand ∇t := ∇At in order to avoid too many subscripts.

By the fundamental theorem of calculus, we have

‖XT‖∞ =

∥∥∥∥∫ T

0

−∇L
t

∥∥∥∥
∞
≤
∫ T

0

‖∇L
t ‖∞ =

∫ κ

0

‖∇L
t ‖∞ +

∫ T

κ

‖∇L
t ‖∞,

where in the first step we used X0 = 0 and ∂tXt = −∇L
At

by Definition 3.1.14 of gradient
flow, and the second was by triangle inequality on ‖ · ‖∞. To bound the first stage, we use
monotonicity:∫ κ

0

‖∇L
t ‖∞ ≤

∫ κ

0

max{‖∇L
t ‖∞, ‖∇R

t ‖∞} ≤
∫ κ

0

(
max{‖∇L

A‖∞, ‖∇R
A‖∞}+

∫ t

0

‖∇t̃‖2
t

)
≤
∫ κ

0

(
ε+ ‖∇A‖2

t

∫ t

0

e−2αt̃

)
≤ κ

(
ε+

2ε2

2α

)
,

(3.1)

69

where the second step was by the fundamental theorem of calculus applied to ‖∇L
t ‖∞ and

‖∇R
t ‖∞ along with the bound from Lemma 3.2.10, in the third step we used the ε-doubly

balanced condition on A to bound the first term and Proposition 3.2.2 to bound the second,
and in the final step we used Fact 3.1.13 to bound ‖∇A‖2

t ≤ 2ε2. Note that this actually
give a bound for both the left and right errors.

For the second stage, we use the fast convergence in Corollary 3.2.12.∫ T

κ

‖∇L
At‖∞ ≤

∫ T

κ

√
de−αt‖∇A‖t =

√
de−ακ‖∇A‖t

∫ T−κ

0

e−αt ≤
√

2ε

α
,

where the first step was by Corollary 3.2.12, the second step was by a simple change of
variable in the integral t→ t−κ, and in the final step we used the definition of κ = log d

2α
to

cancel the leading term and Fact 3.1.13 to bound ‖∇A‖2
t ≤ 2ε2. This argument explains our

choice of κ, as this cancels the leading
√
d factor coming from the translation ‖ ·‖∞ → ‖·‖t

and makes the bounds on the two stages comparable.

Combining the bounds for both stages, we conclude that

‖XT‖∞ ≤ κ

(
ε+

ε2

α

)
+

√
2ε

α
=
ε log d

2α

(
1 +

ε

α

)
+

√
2ε

α
.

Repeating the proof of Proposition 3.2.13 for the right error Yt would give the same
bound with log n instead of log d. For the Paulsen problem in Chapter 4, we are interested
in the case n� d, so we would like to remove the dependency on n. To do so, we compare
‖∇L

At
‖∞ and ‖∇R

At
‖∞ at any given time, and use the fact that ‖∇L

At
‖∞ is converging

exponentially to argue that ‖∇R
At
‖∞ cannot be large for too long.

Definition 3.2.14. For matrix gradient flow At ∈ Mat(d, n)K, let δt satisfy

‖∇R
At‖∞ = (1 + δt)‖∇L

At‖∞.

A simple argument shows that large imbalance δt implies decrease of the right error.

Lemma 3.2.15. For At following gradient flow and δt according to Definition 3.2.14,

−∂t log ‖∇R
At‖∞ ≥ min

{
s(At)δt − ‖∇At‖∞

1 + δt
,
(s(At)− ‖∇R

At
‖∞)δt

1 + δt

}
.

70

Proof. We prove the statement at time t = 0, from which the lemma follows by considering
A = At. Let δ := δ0 for shorthand, and let j ∈ arg maxj′∈[n] |n · cj′ − s|. We will separate
into two cases depending on sign, and show the lower bound in the first and second term,
respectively. First consider the case ‖∇R

A‖∞ = n · cj − s, so that cj is larger than average
and we want to show that this it is decreasing.

−∂t=0(n · cj(At)− s(At)) =
d∑
i=1

K∑
k=1

n|(Ak)ij|2
(

(n · cj − s) + (d · ri − s)
)
− ‖∇A‖2

t

≥ n · cj
(
‖∇R

A‖∞ − ‖∇L
A‖∞

)
− ‖∇A‖2

t

≥ (s(A) + ‖∇R
A‖∞)

(
‖∇R

A‖∞ − ‖∇L
A‖∞

)
−
(
‖∇R

A‖2
∞ + ‖∇L

A‖2
∞

)
= s(A)‖∇R

A‖∞ −
(
s(A) + ‖∇R

A‖∞ + ‖∇L
A‖∞

)
‖∇L

A‖∞,

where in the first step we calculated ∂tcj(At) using Fact 3.2.9 and ∂ts(At) by Proposi-
tion 3.1.15, the second step was by the case assumption ‖∇R

A‖ = n · cj − s, and in the
third step we again used the case assumption that cj is the largest column sum, as well as
Lemma 3.2.7 to bound ‖∇‖2

t . For the log derivative (see Remark 3.2.11 for differentiability
considerations), we continue

−∂t=0 log ‖∇R
At‖∞ =

−∂t=0(n · cj(At)− s(At))
‖∇R

A‖∞
≥ s(A)− s(A) + ‖∇A‖∞

1 + δ
=
s(A)δ − ‖∇A‖∞

1 + δ
,

where we used that δ := δ0 satisfies ‖∇R
A‖∞ = (1 + δ)‖∇L

A‖∞ by Definition 3.2.14. This
gives the lower bound in the first term.

Now we consider the case ‖∇R
A‖ = s−n · cj, i.e. cj is smaller than average and we want

to show that this it is increasing. The calculations are almost the same in this case, so we
skip some steps.

∂t=0(n · cj(At)− s(At)) =
d∑
i=1

K∑
k=1

n|(Ak)ij|2
(

(s− n · cj) + (s− d · ri)
)

+ ‖∇A‖2
t

≥ n · cj(‖∇R
A‖∞ − ‖∇L

A‖∞) + ‖∇A‖2
t

≥ (s(A)− ‖∇R
A‖∞)(‖∇R

A‖∞ − ‖∇L
A‖∞),

where in the first step we calculated ∂tcj(At) using Fact 3.2.9 and ∂ts(At) by Proposi-
tion 3.1.15, the second step was by the case assumption ‖∇R

A‖ = s−n · cj, and in the third

71

step we again used the case assumption that cj is the smallest column sum, as well as the
simple fact ‖∇‖2

t ≥ 0. To bound the log derivative, we continue

−∂t=0 log ‖∇R
At‖∞ =

∂t=0(n · cj(At)− s(At))
‖∇R

A‖∞
≥ (s(A)− ‖∇R

A‖∞)

(
1− 1

1 + δ

)
,

where we used the definition ‖∇R
A‖∞ = (1+δ)‖∇L

A‖∞. This proves the bound in the second
term, and show the lemma by considering the minimum of both cases.

Note that this lemma also does not use strong convexity. We state the following simple
corollary which gives fast convergence when δ is large. This will be used in conjunction
with Corollary 3.2.12 for strongly convex inputs to show fast convergence for all time.

Corollary 3.2.16. Let At ∈ Mat(d, n)K be the solution to gradient flow, and assume
s(At) ≥ 0.95. Then for any 1

5
≥ α ≥ 3‖∇At‖∞,

δt ≥ 2α =⇒ −∂t log ‖∇R
At‖∞ ≥ α.

Proof. By Lemma 3.2.15, we have the lower bound

−∂t log ‖∇R
At‖∞ ≥ min

{
s(At)δt − ‖∇At‖∞

1 + δt
,
(s(At)− ‖∇R

At
‖∞)δt

1 + δt

}
≥ 0.75

δt
1 + δt

,

where we used the conditions s ≥ 0.95, δt ≥ 2α ≥ 6‖∇A‖∞t . The statement follows by
monotonicity of x

1+x
for x ≥ 0:

−∂t log ‖∇R
At‖∞ ≥ 0.75

δt
1 + δt

≥ 1.5
α

1 + 2α
≥ α,

where the second step was by our assumption δt ≥ 2α, and the last step was by the
assumption α ≤ 1

5
.

For the other case, when δt is small, Corollary 3.2.12 gives fast convergence of ‖∇L
At
‖∞

after time t ≥ κ = log d
2α

. In the following lemma, we combine the above two arguments to
show exponential convergence of ‖∇R

At
‖∞.

Lemma 3.2.17. Consider ε-doubly balanced matrix tuple A ∈ Mat(d, n)K of size s(A) = 1,
and assume At is α-strongly convex for all t ∈ [0, T] with 1

5
≥ α ≥ 7ε. Then, for any

T ≥ κ = log d
2α

,

‖∇R
AT
‖∞ ≤

√
2(1 + 2α)εe−α(T−κ).

72

Proof. Our plan is to leverage the exponential convergence of ‖∇L
At
‖∞ from Corollary 3.2.12

to show that either ‖∇R
At
‖∞ is also decreasing exponentially, or δt will become large and

we can apply fast convergence from Corollary 3.2.16. To this end, we verify that both the
conditions of Corollary 3.2.16 (size and error) are satisfied for all t ∈ [κ, T]. First note that
At is strongly convex for t ∈ [0, T], so the size can be lower bounded by

s(AT) = s(A0) +

∫ T

0

∂ts(At) = 1−
∫ T

0

‖∇At‖2
t ≥ 1− ‖∇A‖2

t

∫ T

0

e−2αt ≥ 1− 2ε2

2α
,

where the first step was by the fundamental theorem of calculus, in the second step we
used Proposition 3.1.15 to calculate ∂ts(At), in the third step we used the exponential
convergence of ‖∇At‖2

t derived in Proposition 3.2.2, and the final step was by the bound
‖∇A‖2

t ≤ 2ε2 given in Fact 3.1.13 for ε-doubly balanced input. By the assumptions ε ≤ α
7
≤

1
35

, this gives lower bound s(AT) ≥ 0.95. Since ∂ts(At) ≤ 0 always by Proposition 3.1.15,
the lower bound s(At) ≥ s(AT) ≥ 0.95 follows for all t ∈ [0, T].

In order to show that α is large as compared to the error for all time, we use the
monotonicity lemma to bound

max{‖∇L
AT
‖∞, ‖∇R

AT
‖∞} ≤ ε−

∫ T

0

∂ts(At) ≤ ε+ s(A0)− s(AT) ≤ ε+
ε2

α
, (3.2)

where the first step was by Lemma 3.2.10, the second step was by the fundamental theorem
of calculus, and the final step was by the lower bound s(AT) ≥ s(A0)− ε2

α
calculated above.

In fact the above bound holds for any t ∈ [0, T], so we have

‖∇At‖∞ ≤ 2
(
ε+

ε2

α

)
≤ 16ε

7
≤ α

3
,

where the first step was by Definition 3.2.3 and the bounds on the left and right part
calculated above, and in the final two steps we use the assumption ε

α
≤ 1

7
. This verifies

both conditions of Corollary 3.2.16 for all t ∈ [0, T].

To show fast convergence of ‖∇At‖∞ for all time, we partition [κ, T] into two pieces
depending on which of ∇L,∇R are converging quickly.

TR := {t ∈ [κ, T] | δt ≥ 2α}, and TL := {t ∈ [κ, T] | δt ≤ 2α}.

Since all quantities are continuous, this gives the decomposition

[κ, T] = {[t0 = κ, t1], [t1, t2], ...},

73

where [tm, tm+1] are maximal intervals fully contained in either TL or TR. For the remainder
of this proof, we will use ∇t := ∇At as shorthand to avoid triple subscripts. We show
exponential convergence of ‖∇R

At
‖∞ for t ∈ [κ, tm], and induct on m. For the base case, we

have already shown in Eq. (3.2) that

‖∇R
κ ‖∞ ≤ ε+

ε2

α
≤ 8

7
ε ≤ ε(

√
2(1 + 2α)e0),

where in the second step we used the assumption ε ≤ α
7
, and the third step only uses

α ≥ 0. This satisfies the requirement at t0 = κ, so we assume by induction that the lemma
is shown for t ∈ [κ, tm].

To show the induction step, first consider the case [tm, tm+1] ⊆ TR. Then for any
t ∈ [tm, tm+1] we have

log ‖∇R
t ‖∞ − log ‖∇R

tm‖∞ =

∫ t

tm

∂t̃ log ‖∇R
t̃ ‖∞ ≤ −α(tm+1 − t),

where the last step was by Corollary 3.2.16. Therefore

‖∇R
t ‖∞ ≤ ‖∇R

tm‖∞e
−α(t−tm) ≤

√
2(1 + 2α)εe−α(t−κ),

where we used the induction hypothesis on tm for the last step.

In the other case [tm, tm+1] ⊆ TL, for any t ∈ [tm, tm+1] we have

‖∇R
t ‖∞ = (1+δt)‖∇L

t ‖∞ ≤ (1+δt)
√
de−αt‖∇A‖t ≤ (1+δt)e

−α(t−κ)
√

2ε2 ≤ ε(1+2α)
√

2e−α(t−κ),

where the first step was by Definition 3.2.14 of δt, the second step was by Corollary 3.2.12,
in the third step we canceled the

√
d term by our choice of κ = log d

2α
and used Fact 3.1.13

to bound ‖∇A‖2
t ≤ 2ε2 for ε-doubly balanced input, and the final step was by the case

assumption δt ≤ 2α as t ∈ TL. Since t ∈ [tm, tm+1] was arbitrary, the induction is shown
and the lemma follows for all t ∈ [κ, T].

As discussed earlier, applying the same argument as Proposition 3.2.13 to the right
scaling Yt would give a log n term. We can avoid this by applying Lemma 3.2.17, which
shows ‖∇R

At
‖∞ converges quickly after κ = log d

2α
time. Therefore, we can give the following

bound for the right scaling.

Proposition 3.2.18. Consider ε-doubly balanced A ∈ Mat(d, n)K of size s(A) = 1, and
assume At is α-strongly convex for all t ∈ [0, T] with 1

5
≥ α ≥ 7ε. Then

‖YT‖∞ ≤
ε log d

2α
+
ε2 log d

2α2
+

2ε

α
.

74

Proof. We can follow the proof of Proposition 3.2.13 by choosing cutoff κ = log d
2α

and
bounding the first stage by the calculation in Eq. (3.1):

‖YT‖∞ ≤
∫ κ

0

‖∇R
At‖∞ +

∫ T

κ

‖∇R
At‖∞ ≤

ε log d

2α

(
1 +

ε

α

)
+

∫ T

κ

‖∇R
At‖∞.

For the second stage, we apply Lemma 3.2.17 for all t ≥ κ to bound∫ T

κ

‖∇R
At‖∞ ≤

√
2(1 + 2α)ε

∫ T−κ

0

e−αt ≤
√

2(1 + 2α)ε

α
≤ 2ε

α
,

where the last step was by the assumption α ≤ 1
5
. Therefore, we can combine the two

stages to bound

‖YT‖∞ ≤
∫ κ

0

‖∇R
At‖∞ +

∫ T

κ

‖∇R
At‖∞ ≤

ε log d

2α

(
1 +

ε

α

)
+

2ε

α
.

We now follow the proof strategy of Theorem 3.2.8 with improved control on ‖(Xt, Yt)‖∞.
The theorem below weakens the assumption of fast convergence to α

ε
& log d instead of

α
ε
&
√
d+ n as in Theorem 3.2.8.

Theorem 3.2.19. If matrix tuple A ∈ Mat(d, n)K of size s(A) = 1 is ε-doubly balanced
and α-strongly convex with 1

5
≥ α ≥ ε(4 log d+ 20), then

1. For all time t ≥ 0, the scaling solution satisfies

‖(Xt, Yt)‖t ≤
4ε

α
and max{‖Xt‖∞, ‖Yt‖∞} ≤

ε(2 log d+ 6)

α
;

2. The limit (X∞, Y∞) := limt→∞(Xt, YT) exists and A∞ := eX∞/2AeY∞/2 gives a solu-
tion to the matrix scaling problem in Definition 3.1.3 on input A;

3. The size of the solution can be lower bounded by

s(A∞) = fA(X∞, Y∞) ≥ 1− e · ε2

α
.

75

Proof. We claim that At is α
e
-strongly convex for all time. For contradiction, let T be

the first time AT is ≤ α
e
-strongly convex. Since A is α-strongly convex, by the robustness

property of Lemma 3.2.4 in the contrapositive, we must have ‖(XT , YT)‖∞ ≥ 1. To show
a contradiction, we will use Proposition 3.2.13 and Proposition 3.2.18 to upper bound
‖(XT , YT)‖∞. First verify the conditions: At is α

e
-strongly convex for all t ∈ [0, T], s(A) =

1, and A is ε-doubly balanced with

α

e
≥ ε(4 log d+ 20)

e
≥ 7ε,

where we used our assumption ε(4 log d+ 20) ≤ α. Therefore we can bound

‖(XT , YT)‖∞ ≤ 2 max{‖XT‖∞, ‖YT‖∞} ≤
2ε log d

2α/e

(
1 +

ε

α/e

)
+

4ε

α/e
<
ε(4 log d+ 11)

α
< 1,

where we use α
e
-strong convexity to bound ‖XT‖∞, ‖YT‖∞ by Proposition 3.2.13 and

Proposition 3.2.18 respectively, and the next two steps use are by our assumption α ≥
ε(4 log d + 20). This is the desired contradiction, so At must be α

e
-strongly convex for all

time and the above calculation shows the infinity norm bound in item (1) for all time t ≥ 0.
The t-norm bound follows simply as

‖(Xt, Yt)‖t ≤
‖∇A‖t
α/e

≤ e
√

2 · ε
α

,

where the first step was by applying Proposition 3.2.2 with α
e
-strong convexity, and in the

second step we use Fact 3.1.13 to bound ‖∇A‖2
t ≤ 2ε2.

The proof of item (2) now follows the same steps as in the proof of Theorem 3.2.8, as
we can show

lim
T→∞

∫
t≥T
‖∂t(Xt, Yt)‖t = lim

T→∞

∫
t≥T
‖∇At‖t ≤ lim

T→∞
‖∇A‖t

∫
t≥T

e−αt/e = 0,

where the first step was by Definition 3.1.14 of gradient flow, and the last step was by
the fast convergence in Proposition 3.2.2. Therefore the limit (X∞, Y∞) exists, and further
∇A∞ = 0 so A∞ = eX∞/2AeY∞/2 is doubly balanced by Proposition 3.1.10(2).

To show (3), consider the univariate restriction h(η) := fA(ηX∞, ηY∞). We want to
apply Lemma 2.3.7 to show the lower bound on fA(X∞, Y∞) = s(A∞). First, we bound
the derivative.

|h′(0)| = |〈∇A, (X∞, Y∞)〉| ≤ ‖∇A‖t‖(X∞, Y∞)‖t,

76

where the first step was by Definition 2.3.12 of the gradient, and the final step was by
Cauchy-Schwarz. Now we show h is sufficiently strongly convex. We know the optimizer
η∗ := arg minη∈R h(η) is at η∗ = 1, since h is a restriction of fA, which has (X∞, Y∞) =
arg inf(X,Y)∈t fA(X, Y) by Proposition 3.1.10(3). Further, by Lemma 3.2.4 and the bound
‖(X∞, Y∞)‖∞ < 1 shown in item (1), we have fA is α

e
-strongly convex at (ηX∞, ηY∞) for

all |η| ≤ 1. Therefore, the restriction h is α′-strongly convex with α′ ≥ α
e
‖(X∞, Y∞)‖2

t for
all η ∈ [0, η∗]. This verifies the requirement in Lemma 2.3.7, so we can bound the size by

s(A∞) = inf
η∈R

h(η) ≥ h(0)− |h
′(0)|2

2α′
≥ fA(0, 0)− ‖∇A‖2

t ‖(X∞, Y∞)‖2
t

2α‖(X∞, Y∞)‖2
t /e

≥ 1− e · ε2

α
,

where the second step was by Lemma 2.3.7, the third step were by our two calculations
above showing |h′(0)| ≤ ‖∇A‖t‖(X∞, Y∞)‖t and that h is α

e
‖(X∞, Y∞)‖2

t -strongly convex,
and in the final step we used the assumption fA(0, 0) = s(A) = 1 as well as Fact 3.1.13 for
ε-doubly balanced A to bound the gradient ‖∇A‖2

t ≤ 2ε2.

Note that the strong convexity assumption in Theorem 3.2.19 is weaker by a factor of
O(d/ log d) as compared to Theorem 3.2.8. In the following Section 3.3, we will further
weaken this assumption by analyzing gradient flow on inputs satisfying a combinatorial
pseudorandom condition.

This result should be compared to Theorem 1.5 of [63], which showed the same conver-
gence for the more general operator scaling problem with a stronger assumption α2 & ε log d
(the result of [63] actually used a related spectral gap condition, and we discuss this dis-
tinction in more detail in Section 7.1). Subsequent to its publication, Franks and Moitra
[35] applied the fast convergence result of [63] for frame scaling to give near-optimal sample
complexity results for an important estimation problem in statistics. Our pseudorandom
analysis in Section 3.3 can be used to improve the sample complexity bound from [35],
as we show in Section 4.4 and Section 8.5. We discuss the α vs α2 requirement in more
detail in Section 4.2.2 as well as in Section 7.3, as it is a make-or-break distinction for our
application to the Paulsen problem in Chapter 4.

3.3 Pseudorandom Setting

The main improvement between Theorem 3.2.19 and Theorem 3.2.8 came from our im-
proved analysis of ‖(Xt, Yt)‖∞ under gradient flow. Specifically, our two-stage analysis
of ‖∇At‖Lt in Proposition 3.2.13 allowed us to effectively use the fact that the input was
nearly doubly balanced. But there is still a log d

α
loss from the first stage while we wait

77

for the exponential convergence of ‖∇At‖t to kick in from Proposition 3.2.2. It would be
interesting to pin down whether or not this loss is necessary for any analysis of strongly
convex inputs.

To give optimal bounds in our application to the Paulsen problem in Chapter 4, we
would like to further decrease the requirement on α

ε
, and in particular to make it dimension

independent. We therefore revisit the combinatorial pseudorandom condition that was first
defined in Kwok et al. [62]. This new condition allows us to immediately show convergence
of ‖∇At‖∞ for all t ≥ 0, which in turn allows us to improve the bound on ‖(X∞, Y∞)‖∞
and decrease the ratio α

ε
for pseudorandom inputs.

We first define the pseudorandom condition and then show how it implies fast conver-
gence of error. The rest of the analysis follows a similar strategy to Proposition 3.2.18.

Definition 3.3.1. Matrix tuple A ∈ Mat(d, n)K is (α, β)-pseudorandom if for every S ⊆ [d]
and T ⊆ [n] with |T | ≥ βn: ∑

i∈S

∑
j∈T

K∑
k=1

|(Ak)ij|2 ≥ α
|S|
d

|T |
n
.

We note that the pseudorandom condition, like Definition 3.2.1 of strong convexity, is
not homogeneous. Therefore, α in this condition should be compared to the size, with 1

dn
J

again being an extremal example (see Appendix A.2). From a graph-theoretic perspective,
the pseudorandom property is reminiscent of the expander mixing lemma for bipartite
graph wij :=

∑K
k=1 |Aij|2. We will use the connection to graphs in Section 3.4, where we

compare strong convexity and pseudorandomness.

Remark 3.3.2. Definition 3.3.1 is slightly different from the pseudorandom condition in
Definition 4.3.2 in [62]. We believe the definition in this thesis is slightly more natural, both
its implication for fast convergence, as well as for our smoothed analysis result in Chapter 5
showing random inputs are pseudorandom. For more details on the explicit difference, see
Remark 3.4.4.

The next lemma reduces the pseudorandom condition to a much fewer number of sets.
This will not be used in this chapter to analyze pseudorandom matrices, but will be helpful
in Chapter 5 where we will use a union bound to show pseudorandomness for random
inputs.

Lemma 3.3.3. Matrix tuple A ∈ Mat(d, n)K is (α, β)-pseudorandom iff

min
i∈[d]

min
T∈([n]

βn)

∑
j∈T

K∑
k=1

|(Ak)ij|2 ≥ α
β

d
.

78

Proof. We will prove the following stronger statement: given arbitrary weight function
w : [d]× [n]→ R+, if w(S, T) :=

∑
i∈S
∑

j∈T wij ≥ |S||T | for every S ∈
(

[d]
a

)
and T ∈

(
[n]
b

)
,

then in fact we have w(S, T) ≥ |S||T | for all larger sets |S| ≥ a, |T | ≥ b. The lemma
follows by considering wij := 1

α

∑K
k=1 |(Ak)ij|2 and choosing a = 1, b = βn.

The proof is by a simple induction, so assume we have w(S, T) ≥ |S||T | for all |S| =
k, |T | = `. Then for any |S| = k, |T | = `+ 1,

` · w(S, T) =
∑
j∈T

w(S, T − j) ≥
∑
j∈T

|S||T − j| = (`+ 1)|S|`,

where in first step, every entry of w(S, T) is counted exactly ` times in
∑

j∈T w(S, T − j),
and the second step is by the inductive hypothesis. Canceling ` from both sides and using
|T | = `+1 by definition, we have w(S, T) ≥ |S||T |. By a symmetric argument, we can show
the required lower bound for |S| = k + 1, |T | = `, so the lemma follows by induction.

Next we show that the pseudorandom condition is preserved under scalings. This ro-
bustness result is similar to Lemma 3.2.4 and will be important in proving our convergence
result in Theorem 3.3.10.

Lemma 3.3.4 (Robustness). If A ∈ Mat(d, n) is (α, β)-pseudorandom, then for any
(X ′, Y ′) ∈ t, the scaling B = eX

′/2AeY
′/2 is at least (α · e−‖(X′,Y ′)‖∞ , β)-pseudorandom.

Proof. The proof of Lemma 3.2.4 showed |(Bk)ij|2 ≥ e−‖(X
′,Y ′)‖∞|(Ak)ij|2 for each entry,

which implies this robustness lemma by Definition 3.3.1 of pseudorandomness.

Recall that in Section 3.2 we gave two different arguments for exponential convergence
depending on whether the left or right error was larger. In this section we will use the
pseudorandom condition to improve the argument in the case when δt small, i.e. when
‖∇R

At
‖∞ ≈ ‖∇L

At
‖∞ according to Definition 3.2.14. We handle the other case, when the

‖∇R
At
‖∞ is larger, similarly to Corollary 3.2.16, and then combine the two to show exponen-

tial convergence for all time (instead of just after time κ = log d
2α

) using a similar argument
to Proposition 3.2.18 on strongly convex inputs.

Lemma 3.3.5. Consider matrix tuple A ∈ Mat(d, n)K with s(A) ≤ 1 that is (α, β)-
pseudorandom for β ≤ 1

2
. If 1

5
≥ α ≥ 14‖∇L

A‖∞, then

δ ≤ α

2
=⇒ −∂t=0 log ‖∇L

At‖∞ ≥
α

3
,

where δ := δ0 is given in Definition 3.2.14.

79

Proof. We will use pseudorandomness to show that the worst row error is pushed towards
the average due to gradient flow. So let i ∈ arg maxi′∈[d] |d · ri′(A) − s(A)| and recall by
Fact 3.2.9 that

∂t=0ri(At) =
n∑
j=1

K∑
k=1

|(Ak)ij|2
(

(s− d · ri) + (s− n · cj)
)
. (3.3)

Our plan is to show that the row term always pushes ri towards the average, by bounding
the contribution from the column terms using pseudorandomness and the condition δ ≤ α

2
.

First, for n even, we bound∣∣∣∣∣
n∑
j=1

K∑
k=1

|(Ak)ij|2(n · cj − s)

∣∣∣∣∣ ≤ ‖∇R
A‖∞ sup

y∈H

n∑
j=1

K∑
k=1

|(Ak)ij|2yj

= ‖∇R
A‖∞

(
ri − 2 min

T∈(n
n/2)

∑
j∈T

K∑
k=1

|(Ak)ij|2
)

≤ ‖∇R
A‖∞

(
ri − 2α

|T |
dn

)
= ‖∇R

A‖∞
(
ri −

α

d

)
,

(3.4)

where the first step was by y := {n · cj − s}j∈[n] ∈ ‖∇R
A‖∞ · H where H := {y ∈ Rn |

〈y, 1n〉 = 0, ‖y‖∞ ≤ 1}, the second step used Fact 2.6.4 which shows the maximizers of any
linear function over H are of the form 1n − 21T for some T ∈

(
[n]
n/2

)
, and in the third step

we used the pseudorandom property for |T | ≥ βn and β ≤ 1
2
. The calculation for odd n is

similar using βn ≤ bn
2
c pseudorandomness (see the following Remark 3.3.6).

Now that we have bounded the contribution from the columns, we separate into two
cases depending on the sign of the row error. So first consider the case ‖∇L

A‖ = d · ri − s,
meaning we want to show ri is decreasing.

−∂t=0ri(At) ≥ ri‖∇L
A‖∞ −

∣∣∣∣∣
n∑
j=1

K∑
k=1

|(Ak)ij|2(n · cj − s)

∣∣∣∣∣ ≥ ri‖∇L
A‖∞ − ‖∇R

A‖∞
(
ri −

α

d

)
,

where the first step follows from Eq. (3.3) and the case assumption ‖∇L
A‖ = d · ri − s, and

the second step was by our bound in Eq. (3.4).

80

To show exponential convergence, we combine with the change in s.

−∂t=0 log ‖∇L
At‖∞ =

−∂t=0(d · ri − s)
‖∇L

At
‖∞

≥ ‖∇
L
A‖∞(d · ri)− ‖∇R

A‖∞(d · ri − α)− ‖∇A‖2
t

‖∇L
A‖∞

≥ α
‖∇R

A‖∞
‖∇L

A‖∞
+ (d · ri)

‖∇L
A‖∞ − ‖∇R

A‖∞
‖∇L

A‖∞
− ‖∇

L
A‖2
∞ + ‖∇R

A‖2
∞

‖∇L
A‖∞

= α(1 + δ)− δ
(
s+ ‖∇L

A‖∞
)
− (1 + (1 + δ)2)‖∇L

A‖∞

≥ α− δ
(
s+ ‖∇L

A‖∞ − α
)
− 2.5‖∇L

A‖∞ ≥
α

3
,

where the first step was by our case assumption ‖∇L
A‖ = s − d · ri (for the question of

differentiability, see Remark 3.2.11), in the second step we substituted the lower bound for
−∂t=0ri(At) just calculated along with Proposition 3.1.15 to calculate ∂ts(At), in the third
step we rearranged terms and used Lemma 3.2.7 to bound ‖∇A‖2

t ≤ ‖∇L
A‖2
∞ + ‖∇R

A‖2
∞,

in the fourth step we used ‖∇R
A‖∞ = (1 + δ)‖∇L

A‖∞ by Definition 3.2.14 and our case
assumption d · ri = s + ‖∇L

A‖, and the final steps were by our assumptions s(A) ≤ 1,
δ ≤ α

2
≤ 1

10
, and ‖∇L

A‖∞ ≤ α
14

. This verifies the lower bound for this case

In the other case ‖∇L
A‖∞ = s− d · ri, we want to show ri is increasing:

∂t=0ri(At) ≥ ri‖∇L
A‖∞ −

∣∣∣∣∣
n∑
j=1

K∑
k=1

|(Ak)ij|2(n · cj − s)

∣∣∣∣∣ = ri‖∇L
A‖∞ − ‖∇R

A‖∞
(
ri −

α

d

)
,

where the first step was by Eq. (3.3) and the case assumption ‖∇L
A‖ = s − d · ri, and the

second step was by our bound in Eq. (3.4).

Once again, we combine with the change in s to show exponential convergence:

−∂t=0 log ‖∇L
At‖∞ ≥

d · ri‖∇L
A‖∞ − ‖∇R

A‖∞(d · ri − α) + ‖∇A‖2
t

‖∇L
A‖∞

≥ α(1 + δ)− δ(d · ri) = α− δ(s− ‖∇L
A‖∞ − α) ≥ α

2
,

where we follow the same steps as the other case and use ‖∇A‖t ≥ 0 and the case assump-
tion d · ri = s− ‖∇L

A‖∞. Therefore the lemma holds in both cases.

Remark 3.3.6. Note that Fact 2.6.4 for odd n actually requires βn ≤ bn
2
c < n

2
. We

will ignore detail and always require β ≤ 1
2

for simplicity, as the difference is negligible
(O(n−1)) for all our results.

81

Remark 3.3.7. Equation 3.4 is the main consequence of pseudorandomness that we use
in our analysis, and we could as well have used it as our sufficient condition for fast con-
vergence, instead of pseudorandomness. But pseudorandomness enjoy strong multiplicative
robustness as shown in Lemma 3.3.4, whereas the robustness we can establish for Eq. (3.4)
is weaker and more difficult to prove. In Section 7.2.3, we generalize this analysis to the
tensor scaling setting.

To show that the error is decreasing exponentially when δ is large, we apply Lemma 3.2.15.
This is exactly the same argument as Corollary 3.2.16, just with different parameters, so
we omit the proof.

Corollary 3.3.8. Let At ∈ Mat(d, n)K be the solution to gradient flow, and assume
s(At) ≥ 0.95. Then for any 1

5
≥ α ≥ 3‖∇At‖∞,

δt ≥
α

2
=⇒ −∂t log ‖∇R

At‖∞ ≥
α

3
.

Note that Corollary 3.3.8 requires the lower bound s ≥ 0.95, whereas Lemma 3.3.5
requires an upper bound s ≤ 1. We will eventually use properties of fast convergence to
show these are both satisfied for all time.

We emphasize that the two convergence arguments in Lemma 3.3.5 and Corollary 3.3.8
only require α

ε
& 1, which is the reason for our improvement over the requirement α

ε
& log d

in Theorem 3.2.19. This will be used in Chapter 4 to give optimal bounds for the Paulsen
problem.

We can combine the above two lemmas to show that the error converges exponentially
for all time. The following argument is elementary, but slightly more technical than the
proof of Proposition 3.2.18.

Proposition 3.3.9. Consider ε-doubly balanced A ∈ Mat(d, n), and let At be the solution
to gradient flow according to Definition 3.1.14. If for all t ∈ [0, T], the following assump-
tions are satisfied: (1) 0.95 ≤ s(At) ≤ 1; (2) At is (α, β)-pseudorandom with 1

5
≥ α and

β ≤ 1
2
; (3) α ≥ 16ε; (4) max{‖∇L

At
‖∞, ‖∇R

At
‖∞} ≤ 1.1ε; then

max{‖∇R
T ‖∞, ‖∇L

T‖∞} ≤ ε(1 + α/2)e−αT/3 and max{‖XT‖∞, ‖YT‖∞} ≤
3(1 + α/2)ε

α
.

Proof. The conditions (1)-(4) are defined so that we can use the previous fast convergence
analysis. Explicitly, the conditions of Lemma 3.3.5 are satisfied for all t ∈ [0, T] as (1)
implies s(A) ≤ 1, (2) implies β ≤ 1

2
, and (3), (4) together imply 1

5
≥ α ≥ 16ε ≥ 14‖∇L

At
‖∞.

82

Similarly, the conditions of Corollary 3.3.8 are satisfied for all t ∈ [0, T] as (1) implies
s(A) ≥ 0.95, (2) implies β ≤ 1

2
, and (3), (4) together imply 1

5
≥ α ≥ 16ε ≥ 3 · 2.2ε ≥

3‖∇At‖∞. Therefore, in the sequel, we apply Lemma 3.3.5 and Corollary 3.3.8 freely
without checking conditions.

The proof plan is similar to Proposition 3.2.18, so partition [0, T] into two pieces de-
pending on which of ∇L,∇R is converging quickly.

TR := {t ∈ [0, T] | δt ≥ α/2}, and TL := {t ∈ [0, T] | δt ≤ α/2}.

Since all quantities are continuous, this gives the decomposition

[0, T] = {[0, t1], [t1, t2], ...},

where [tm, tm+1] are maximal intervals fully contained in either TL or TR. In the remainder
of this proof, we assume A is fixed and use ∇t := ∇At as shorthand to avoid triple sub-
scripts. We show exponential convergence for both ‖∇L

t ‖∞ and ‖∇R
t ‖∞ for t ∈ [0, tm] and

induct on m. The argument for the base case is slightly different as we use the fact that
A is ε-doubly balanced.

First consider the case [0, t1] ⊆ TR, and let t ∈ [0, t1] be arbitrary. Then we can apply
Corollary 3.3.8 to bound

log ‖∇R
t ‖∞ = log ‖∇R

A‖∞ +

∫ t

0

∂t̃ log ‖∇R
t̃ ‖∞ ≤ log ε− αt

3
,

where the first step was by the fundamental theorem of calculus, and the last step was by
Corollary 3.3.8 applied with δ ≥ α

2
. Therefore, the statement is true at time t for ∇R. To

transfer this to the left side, we continue to use Definition 3.2.14 of δ to show

‖∇L
t ‖∞ =

‖∇R
t ‖∞

1 + δt
≤ εe−αt/3

1 + α/2
,

where the first step was by Definition 3.2.14 of δ, and in the last step we used the case
assumption δt ≥ α/2 as t ∈ TR. Since the choice of t ∈ [0, t1] was arbitrary, both the left
and right error satisfy the convergence bound for [0, t1] ⊆ TR.

For the other case [0, t1] ⊆ TL, consider any t ∈ [0, t1]. Then we can apply Lemma 3.3.5
to bound

log ‖∇L
t ‖∞ = log ‖∇L

A‖∞ +

∫ t

0

∂t̃ log ‖∇L
t̃ ‖∞ ≤ log ε− αt

3
,

83

where again the first step was by the fundamental theorem of calculus, and in the last step
we substituted ‖∇L

A‖∞ ≤ ε by the ε-doubly balanced condition and applied Lemma 3.3.5
with δ ≤ α

2
. To transfer this to the right side, we continue

‖∇R
t ‖∞ = (1 + δt)‖∇L

t ‖∞ ≤ (1 + α/2)εe−αt/3,

where in the last step we used δt ≤ α/2 by definition of TL. Since the choice of t ∈ [0, t1]
was arbitrary, the statement holds for the first segment.

For the induction, assume we have proved the convergence for [0, tm] so

max{‖∇L
At‖∞, ‖∇

R
At‖∞} ≤ ε(1 + α/2)e−αt/3

for all t ∈ [0, tm] with m ≥ 1. Consider the case [tm, tm+1] ⊆ TR and let t ∈ [tm, tm+1]
be arbitrary. We will show ‖∇R

At
‖∞ is small enough by Corollary 3.3.8, and then use

Definition 3.2.14 of δt to transfer this conclusion to ‖∇L
At
‖∞. So we calculate

log ‖∇R
t ‖∞ − log ‖∇R

tm‖∞ =

∫ t

tm

∂t̃ log ‖∇R
t̃ ‖∞ ≤ −

α

3
(t− tm),

where the first step was by the fundamental theorem of calculus, and the inequality was
by Corollary 3.3.8. Exponentiating both sides and using the induction hypothesis gives

‖∇R
t ‖∞ ≤ ‖∇R

tm‖∞e
−α(t−tm)/3 ≤ (1 + α/2)εe−αt/3.

Now we transfer this bound to ∇L. We will use that t ∈ [tm, tm+1] ⊆ TR and tm is the
endpoint of the interval, so δtm = α

2
≤ δt.

‖∇L
t ‖∞ =

1

1 + δt
‖∇R

t ‖∞ ≤
1 + α/2

1 + δt
εe−αt/3 ≤ εe−αt/3,

where we used Definition 3.2.14 of δt in the first step, the second step was by the bound
on ‖∇R

t ‖∞ calculated above, and the final inequality uses the fact that 0 ≤ α
2
≤ δt since

t ∈ [tm, tm+1] ⊆ TR.

In the other case, if [tm, tm+1] ⊆ TL, then Lemma 3.3.5 shows for any t ∈ [tm, tm+1]

log ‖∇L
t ‖∞ − log ‖∇L

tm‖∞ =

∫ t

tm

∂t̃ log ‖∇L
t̃ ‖∞ ≤ −

α

3
(t− tm).

Exponentiating both sides and using the induction hypothesis gives

‖∇L
t ‖∞ ≤ ‖∇L

tm‖∞e
−α(t−tm)/3 ≤ (1 + α/2)εe−αt/3.

84

Now we can transfer this convergence to∇R. We again want to use that t ∈ [tm, tm+1] ⊆
TL and tm is the endpoint of the interval, so δt ≤ α

2
= δtm . This allows us to bound

‖∇R
t ‖∞ = (1 + δt)‖∇L

t ‖∞ ≤ (1 + δt)‖∇L
tm‖∞e

−α(t−tm)/3

=
1 + δt

1 + δtm
‖∇R

tm‖∞e
−α(t−tm)/3 ≤ (1 + α/2)εe−αt/3

where we used Definition 3.2.14 of δt in the first and third step, in the second step we
used the convergence of ∇L

t derived above, and in the final step we used the induction
hypothesis on ∇R

tm as well as the fact that δt ≤ α
2

= δtm since t ∈ [tm, tm+1] ⊆ TL.

Therefore, we have shown the exponential convergence on max{‖∇L
At
‖∞, ‖∇R

At
‖∞} ≤

ε(1 + α/2)e−αt/3 for all t ∈ [0, T].

To bound the scalings, we calculate

‖XT‖∞ =

∥∥∥∥∫ T

0

−∇L
t

∥∥∥∥
∞
≤
∫ T

0

‖∇L
t ‖∞ ≤ ε(1 + α/2)

∫ T

0

e−αt/3 ≤ 3(1 + α/2)ε

α
,

where the first step was by the fundamental theorem of calculus as X0 = 0 and ∂tXt =
−∇L

At
by Definition 3.1.14 of gradient flow, the second step was by triangle inequality of

‖ · ‖∞, and the third step was due to bound on ∇L derived above. The calculation for
‖YT‖∞ is exactly the same except that we use the bound on ‖∇R‖∞.

Finally, we can use the robustness from Lemma 3.3.4 to show that fast convergence
follows when the input is sufficiently pseudorandom.

Theorem 3.3.10. If matrix tuple A ∈ Mat(d, n)K of size s(A) = 1 is ε-doubly balanced
and (α, β)-pseudorandom for 1

5
≥ α ≥ 16e · ε and β ≤ 1

2
, then

1. For all time t ≥ 0,

max{‖∇R
At‖∞, ‖∇

L
At‖∞} ≤ (1 + α/2)εe−

αt
3e and max{‖Xt‖∞, ‖Yt‖∞} ≤

9ε

α
.

2. The limit (X∞, Y∞) := limt→∞(Xt, YT) exists and A∞ := eX∞/2AeY∞/2 gives a solu-
tion to the matrix scaling problem in Definition 3.1.3 on input A.

3. The size of the scaling solution can be lower bounded

s(A∞) = fA(X∞, Y∞) ≥ 1− 10ε2

α
.

85

Proof. We claim that the assumptions of Proposition 3.3.9 always hold, and in fact we
can impose the stronger requirement At is (α

e
, β)-pseudorandom for all time. This satisfies

assumption (3) of Proposition 3.3.9 as α
e
≥ 16e

e
· ε ≥ 16ε by our assumption α ≥ 16e · ε.

From this claim, the conclusions of this theorem will follow. So for contradiction, let T be
the first time one of the conditions fail. Then the assumptions (1)-(4) hold simultaneously
for all t ∈ [0, T] and we can apply Proposition 3.3.9 freely up till this time. We will show
that in fact all the assumptions are strictly satisfied at time T , which will give the desired
contradiction.

Note that (4) cannot fail first, as Proposition 3.3.9 shows

max{‖∇L
AT
‖∞, ‖∇R

AT
‖∞} ≤ ε(1 + α/2e)e−αT/3e ≤ 1.1ε,

where in the last step we substituted T ≥ 0 and α ≤ 1
5
.

Next, we show that (1) cannot fail first. The upper bound is clear as s(A) = 1 and
∂ts(At) ≤ 0 by Proposition 3.1.15. For the lower bound, we calculate

1− s(AT) =

∫ T

0

‖∇At‖2
t ≤

∫ T

0

(‖∇L
At‖

2
∞+ ‖∇R

At‖
2
∞) ≤

∫ T

0

2ε2(1.1)2e−2αt/3e ≤ 10ε2

α
<

1

100
,

where the first step was by the fundamental theorem of calculus as well as Proposition 3.1.15
with the assumption s(A0) = 1, in the second step we used Lemma 3.2.7, the third step
was by the convergence derived above, and the final steps were by the assumptions α ≤ 1

5

and ε ≤ α
16e

< 1
100

. Therefore the size condition (1) could not have failed at time T .

Clearly (2) cannot fail as we can always decrease α to satisfy the upper bound.

Finally, assume that our stronger pseudorandom requirement fails at time T so AT is
not (α

e
, β)-pseudorandom. Since A is (α, β)-pseudorandom, Lemma 3.3.4 in contrapositive

implies that ‖(XT , YT)‖∞ ≥ 1. But then we simply apply Proposition 3.3.9 with (α
e
, β)-

pseudorandomness until time T to bound

max{‖XT‖∞, ‖YT‖∞} ≤ 3
(1 + α/2e)ε

α/e
≤ 9ε

α
≤ 9

16e
<

1

2
,

where the first step was by the bounds on max{‖XT‖∞, ‖YT‖∞} given in Proposition 3.3.9,
the second was by the assumption α ≤ 1

5
, and the third is by our assumption α ≥ 16e · ε.

This is the desired contradiction, so Proposition 3.3.9 applies for all time. Therefore,
items (1) and (3) in this theorem follows by the calculations above with T ∈ [0,∞].

To show item (2), note that we already have shown

lim
t→∞
‖∂t(Xt, Yt)‖∞ = lim

t→∞
‖∇At‖∞ = 0,

86

where the first step was by Definition 3.1.14 of gradient flow and the last step is by item
(1). Therefore the limit (X∞, Y∞) exists. Further, ∇A∞ = 0, so A∞ is doubly balanced by
Proposition 3.1.10(2).

This dimension-independent requirement on α
ε

will be the key to our optimal distance
bound for the Paulsen problem in Chapter 4. We will also see a generalization of this
argument to tensor scaling in Chapter 7.

3.4 Pseudorandom property and Convexity

In this section, we will study the relation between the pseudorandom property given in
Definition 3.3.1 and the strong convexity property given in Definition 3.2.1. The main
technical result of this section is given in Theorem 3.4.7, where we show that if A is ε-
doubly balanced and (α, β)-pseudorandom for small enough constants ε and β, then A is
Ω(α)-strongly convex. This will be useful in Section 8.5, where we will use strong convexity
to give algorithmic guarantees for pseudorandom inputs.

We first associate a bipartite graph to each matrix tuple. This will allow us to use ideas
from spectral graph theory.

Definition 3.4.1 (Associated Graph). Let H = (V,E,w) be an undirected graph with
vertex set V , edge set E ⊆

(
V
2

)
, and edge weights w : E → R+. The adjacency matrix

W ∈ RV×V is defined Wuv := w(u, v) for vertices u, v ∈ V ; The degree of vertex v is
d(v) :=

∑
u∈V wuv and the diagonal degree matrix is (D)vv := d(v); the Laplacian of H is

the matrix L ∈ RV×V defined as

L :=
∑

(u,v)∈E

wuv(eu − ev)(eu − ev)∗

where {ev}v∈V is the standard basis in RV . Note that this can be written L = D − A.

For matrix tuple A ∈ Mat(d, n)K, we associate bipartite graph HA = ([d] ∪ [n], w) with

wij :=
K∑
k=1

|(Ak)ij|2

for i ∈ [d], j ∈ [n]. We will often use w(S, T) :=
∑

i∈S
∑

j∈T wij as shorthand for S ⊆
[d], T ⊆ [n]. The Laplacian of A ∈ Mat(d, n)K is the graph Laplacian of HA:

LA :=
d∑
i=1

n∑
j=1

wij(ei − ej)(ei − ej)∗,

87

where {ei}i∈[d] is the standard basis for Rd ⊆ Rd ⊕ Rn and {ej}j∈[n] is the standard basis
for Rn ⊆ Rd ⊕ Rn. We may drop the subscript L = LA if the input tuple is understood.

This allows us to extend the definitions of the previous sections to graphs; in particular
the definitions of balanced, pseudorandom and strongly convex inputs.

Definition 3.4.2. Bipartite graph H = ([d]∪[n], w) is normalized if w([d], [n]) = w(E) = 1.
It is called ε-bi-regular if

∀i ∈ [d] :
∑
j∈[n]

wij ∈
1± ε
d

, ∀j ∈ [n] :
∑
i∈[d]

wij ∈
1± ε
n

,

and it is called bi-regular if ε = 0.

Note if H = HA for matrix tuple A ∈ Mat(d, n)K , then the normalization condition
exactly corresponds to the size condition s(A) = 1, and ε-bi-regularity exactly corresponds
to A being ε-doubly balanced according to Definition 3.1.2.

We also translate the definitions of pseudorandom and strong convexity to graphs.

Definition 3.4.3. Weighted bipartite graph H = ([d] ∪ [n], w) is (α, β)-pseudorandom if
for every S ⊆ [d] and T ⊆ [n] such that |T | ≥ βn we have

w(S, T) =
∑
i∈S

∑
j∈T

wij ≥ α
|S|
d

|T |
n

= αst,

where we used shorthand |S|
d

= s, |T |
n

= t.

If HA is the associated graph for matrix tuple A ∈ Mat(d, n)K , then this corresponds
to (α, β)-pseudorandomness of A according to Definition 3.3.1.

Remark 3.4.4. [62] gave a slightly different condition named pseudorandomness in Def-
inition 4.3.2: ∀i ∈ [d] denote the bad elements Bi := {j ∈ [n] | wij < α

dn
}; then W is

pseudorandom if ∀i : |Bi| ≤ βn. This is a strictly stronger condition:∑
i∈S,j∈T

wij ≥
∑
i∈S

∑
j∈T−Bi

wij ≥
α

dn

∑
i∈S

|T −Bi| ≥ α
|S|
d

|T | − βn
n

.

For all |T | ≥ 2βn the last term is at least |T |/2n so a graph satisfying their pseudorandom
condition is (α/2, 2β)-pseudorandom in our definition.

In our proof of Theorem 3.4.7, we show improved strong convexity results using the
weaker notion of pseudorandomness given in Definition 3.4.3.

88

Definition 3.4.5. Weighted bipartite graph H = ([d] ∪ [n], w) is α-strongly convex iff for
all (x, y) ∈ Rd ⊕ Rn such that

∑d
i=1 xi =

∑n
j=1 yj = 0:

(x, y)∗LH(x, y) =
∑
i∈[d]

∑
j∈[n]

wij(xi − yj)2 ≥ α

(
1

d

d∑
i=1

x2
i +

1

n

n∑
j=1

y2
j

)
.

The fact below shows the connection between the Laplacian of HA and convexity of A.

Lemma 3.4.6. Let H = HA be the associated graph for matrix tuple A ∈ Mat(d, n)K

according to Definition 3.4.1. For any (x, y) ∈ Rd ⊕ Rn such that
∑d

i=1 xi =
∑n

j=1 yj = 0,
letting X := diag(x) ∈ diag(d), Y := diag(y) ∈ diag(n) gives the relation

∂2
η=0fA(ηX,−ηY) =

d∑
i=1

n∑
j=1

K∑
k=1

|(Ak)ij|2(Xi−Yj)2 =
d∑
i=1

n∑
j=1

wij(xi−yj)2 = (x, y)∗LA(x, y).

As a consequence, HA is an α-strongly convex graph according to Definition 3.4.5 iff A is
an α-strongly convex matrix tuple according to Definition 3.2.1.

Proof. The first statement follows by Lemma 3.1.9 and Definition 3.4.1 of the Laplacian.
Strong convexity follows by considering the infimum over all (X, Y) ∈ t as described in
Definition 3.2.1.

We now present the main technical result of this section, showing (α, β)-pseudorandomness
implies Ω(α)-strong convexity. For this purpose we will need some mild conditions on reg-
ularity and that β is small enough.

Theorem 3.4.7. Consider matrix tuple A ∈ Mat(d, n)K of size s(A) = 1 that is ε-doubly
balanced with ε ≤ 1

16
. If A is (α, β)-pseudorandom according to Definition 3.3.1 for α ≤ 1

16

and β ≤ 1
16

, then A is e−11α-strongly convex according to Definition 3.2.1.

Equivalently, for a normalized ε-bi-regular bipartite graph H that satisfies the (α, β)-
pseudorandom condition according to Definition 3.4.3, if ε, α, β are all at most 1

16
, then H

is e−12α-strongly convex according to Definition 3.4.5.

Remark 3.4.8. A weaker version of this theorem was given in Prop 4.3.3 of [62], specif-
ically showing (α, β)-pseudorandomness implies Ω(α

d
)-strong convexity. Though the lan-

guage of that work was different, the purpose was to show pseudorandomness for perturbed
frames and then use fast convergence derived from strong convexity to show a nearby doubly
balanced frame.

89

The improvement we make in our proof requires the assumption that A is nearly doubly
balanced. This allows us to slightly simplify the case analysis as well as give a quantitatively
stronger result in one of the cases.

Recall that our goal is to show, given (α, β)-pseudorandom graph (H, [d] ∪ [n], w) that
for any x ∈ Rd, y ∈ Rn such that 〈x,1d〉 = 〈y,1n〉 = 0. We want to show

(x, y)∗LH(x, y) =
d∑
i=1

n∑
j=1

wij(xi − yj)2

is large as compared to 1
d

∑d
i=1 x

2
i + 1

n

∑n
j=1 y

2
j .

From this point on, fix x ∈ Rd, y ∈ Rn with
∑

i∈[d] xi =
∑

j∈[n] yj = 0. Therefore we are

more interested in lower bounding the terms w(i, j)(xi − yj)2 for those rows and columns

with large
x2
i

d
,
y2
j

n
respectively.

Informally, we want to show H concentrates a significant amount of weight in edges
(i, j) for which |xi−yj| is large. Our plan is to separate the rows and columns into buckets
depending on the value xi, yj. Then we will find a large subset of rows and columns from
different buckets, and use pseudorandomness to show H has large weight in these edges.

Definition 3.4.9. For fixed (x, y) ∈ Rd ⊕ Rn, parameter γ ∈ (0, 1) chosen later, and
k, ` ∈ N we define:

Rk± := {i ∈ [d] | γ2k+1 ≤ x2
i ≤ γ2k−1, sgn(xi) = ±},

C`± := {j ∈ [n] | γ2`+1 ≤ y2
j ≤ γ2`−1, sgn(yj) = ±}.

We will often use the shorthand Rk±1 := Rk−1 ∪Rk ∪Rk+1 or C`±1 = C`−1 ∪ C` ∪ C`+1.

Note that smaller γ implies better lower bounds for different buckets by Fact 3.4.10,
but larger γ means that the values in a single bucket are closer together. Note also that
(α, β)-pseudorandomness implies (α, β′)-pseudorandom for every β′ ≥ β. Therefore, we
will choose both β and γ at the end of the proof to optimize the lower bound.

Fact 3.4.10. For buckets of the same sign, consider i ∈ Rk, j ∈ C` with |k− `| > 1. Then

(xi − yj)2 ≥ (1− γ)2 max{x2
i , y

2
j}.

90

Proof. Assume without loss that i ∈ Rk, j ∈ C` for some ` ≥ k + 2 and the signs are both
positive. Then

y2
j ≤ γ2`−1 = γ2(`−k−1)γ2k+1 ≤ γ2x2

i ,

where we used Definition 3.4.9 of buckets and the fact that ` ≥ k + 2. This implies

(xi − yj)2 ≥ (1− γ)2x2
i = (1− γ)2 max{x2

i , y
2
j},

as i ∈ Rk and j ∈ C` for ` > k. The other case y2
j ≥ x2

i follows from a similar calculation.

The above fact is our main tool for lower bounding contributions in the quadratic form

(x, y)∗LH(x, y) =
∑
i∈[d]

∑
j∈[n]

wij(xi − yj)2.

We will mostly refer to pairs of buckets Rk, C` which have the same sign and drop the
superscript. If we can show the weights w(Rk, Ck±1) and w(R`±1, C`) are large, these
buckets provides a strong lower bound. This may not be possible for every row/column
bucket, so our plan is to use pseudorandomness and regularity to find a large subset with

significant contribution. Our proof will divide into two cases, depending on which of
‖x‖22
d

or
‖y‖22
n

is larger, and lower bound the quadratic form by rows/columns, respectively.

To this end, we first define the set of good rows as those whose contribution can be
lower bounded using pseudorandomness.

Definition 3.4.11. For fixed x, y and constant β chosen later, we define

KB := {k | |Ck±1| > (1− β)n}

to be the indices of bad row buckets, and we define good and bad rows as

RB := ∪k∈KBRk, RG := [d]−RB.

Recall that Definition 3.4.3 of pseudorandomness implies that every row has significant
weight going to every large enough subset of columns. Therefore, the above definition of
good rows simply implies the following lower bound on the quadratic form.

Lemma 3.4.12. Let H be a normalized ε-bi-regular graph that is (α, β)-pseudorandom.
For fixed (x, y) ∈ Rd ⊕ Rn, the Laplacian quadratic form can be lower bounded by

(x, y)∗L(x, y) ≥
∑
i∈RG

n∑
j=1

wij(xi + yj)
2 ≥ αβ(1− γ)2

∑
i∈RG

x2
i

d
,

where RG are the good row buckets with respect to (x, y) given in Definition 3.4.11.

91

Proof. Consider any good row i ∈ Rk with k ∈ KG according to Definition 3.4.11.
This means |Ck±1| ≥ βn, so we can apply the pseudorandom condition to lower bound

w(i, Ck±1) ≥ α |Ck±1|
dn
≥ αβ

d
. For any such i ∈ Rk ⊆ RG, this gives the lower bound

n∑
j=1

wij(xi − yj)2 ≥
∑

j 6∈Ck±1

wij(xi − yj)2 ≥ (1− γ)2x2
iw(i, Ck±1) ≥ α(1− γ)2β

x2
i

d
,

where the second step was by Fact 3.4.10 applied to i ∈ Rk, j 6∈ Ck±1, and the third was
by the bound w(i, Ck±1) ≥ αβ

d
derived above using pseudorandomness. The lemma then

follows by combining the contributions of these good rows.

At this point, we would be done if RG was a large portion of the total, i.e.∑
i∈RG

x2
i

d
&
‖x‖2

2

d
+
‖y‖2

2

n
.

We will show below that for small enough β, the bad rows RB are concentrated in a specific
way and have all their weight concentrated in a few columns. With this structure, in the

case when
‖x‖22
d
� ‖y‖22

n
, we will be able to show

∑
i∈RB

x2
i

d
.
‖y‖2

2

n
� ‖x‖

2
2

d
,

and we will be done by Lemma 3.4.12.

To upper bound the bad row buckets, we will also use the pseudorandom condition. We
first show that all the bad rows are close together and that they have weight concentrated
in a specific subset of columns.

Lemma 3.4.13. If RB 6= ∅, there is a subset of columns C ⊆ [n] such that |C| > (1−β)n,
and further for every i ∈ RB, j ∈ C, it holds that

γ6y2
j ≤ x2

i ≤ γ−6y2
j .

Proof. For k ∈ KB, by Definition 3.4.11 we have |Ck±1| > (1 − β)n. We first show
that all bad row buckets are close together. If k, k′ ∈ KB such that |k − k′| ≥ 3, then
Ck±1 ∩ Ck′±1 = ∅ and

n ≥ |Ck±1|+ |Ck′±1| > 2(1− β)n,

92

which is a contradiction for β < 1
2
. Similarly if RB contains buckets of different signs, this

will produce the same contradiction.

Therefore, without loss of generality let k be such that Rk ⊆ RB ⊆ Rk±1. Then
we choose C := Ck±1 and note |C| = |Ck±1| > (1 − β)n by Definition 3.4.11. Further,
i ∈ RB, j ∈ C implies

x2
i ≤ γ2(k−1)−1 = γ−6γ2(k+1)+1 ≤ γ−6y2

j ,

where the first and last steps were by Definition 3.4.9 of bucketing. The lower bound
follows by an analogous calculation, so the lemma follows.

We will use the structure on RB and C shown in Lemma 3.4.13 to upper bound the
contribution of the bad rows in terms of the columns. Specifically, we will use the fact that∑

j∈[n] yj = 0 along with the small size |C| < βn to show

∑
i∈RB

x2
i

d
≤ c

∑
j 6∈C

y2
j

n
≤ c
‖y‖2

2

n
.

Importantly, we will be able to tune the constant c to be as small as desired by requiring
smaller β. We emphasize that this is the only place the assumption

∑
j∈[n] yj = 0 is used.

Lemma 3.4.14. For RB, C defined according to Definition 3.4.11 and 3.4.13 respectively:∑
i∈RB

x2
i

d
≤ β

γ6(1− β)2

‖y‖2
2

n
.

Proof. We will prove the following sequence of inequalities to show the lemma:

∑
i∈RB

x2
i

d
≤
∑
i∈RB

x2
i

|RB|
≤ β

γ6(1− β)2

∑
j∈C

y2
j

n
≤ β

γ6(1− β)2

‖y‖2
2

n
.

The first and last inequalities are clear as RB ⊆ [d] and C ⊆ [n]. To show the middle
inequality, we will use the fact that all rows of RB are close together, and charge them to
the columns of C.

∑
i∈RB

x2
i

|RB|
≤ min

j∈C

(yj
γ3

)2

≤
(∑

j∈C yj

γ3|C|

)2

=

(∑
j∈C yj

)2

γ6|C|2
≤
|C|
∑

j∈C y
2
j

γ6|C|2
≤ β

γ6(1− β)2

∑
j∈C

y2
j

n
,

93

where the first step was by the approximation ratio x2
i∈RB ≤ γ−6y2

j∈C shown in Lemma 3.4.13,
in the second step we simply bounded the min by the average, in the third step we used
the assumption

∑
j∈[n] yj = 0, the fourth step was by Cauchy-Schwarz, and the final step

was by Lemma 3.4.13 giving |C| > (1− β)n.

Remark 3.4.15. While Definition 3.4.5 includes the condition
∑

i∈[d] xi = 0, we do not use

this condition anywhere in our proof. We can use this condition to bound |RB| in a manner
similar to the proof of Lemma 3.4.14. But this argument does not give an improvement in
the final constant in the proof of Theorem 3.4.7, so we choose to omit it.

Remark 3.4.16. Up till this point, the argument is very similar to section 4.4 of [62], and
in that work we were also able to give a strong lower bound (Ω(α) vs Ω(α/d)) for the case
‖x‖22
d
� ‖y‖22

n
discussed above. Our improvement comes from a different case analysis and

the use of regularity to bound the other case.

We emphasize that the ratio β
(1−β)2 can be made arbitrarily small by decreasing β. Since

the pseudorandom property of Definition 3.4.3 is an asymmetric condition, we will not be
able to use the same argument to lower bound (x, y)∗L(x, y) in terms of the columns. The
fact that we can tune β will allow us to effectively join these two cases and give an Ω(α)
lower bound on strong convexity.

It remains to handle the other case, when
‖y‖22
n
≥ 1

c

‖x‖22
d

for appropriate chosen (small)
constant c. In this case, we use more elementary arguments based on regularity. We first
define the notion of good and bad columns.

Definition 3.4.17. For fixed x, y, ` ∈ N is a bad column bucket index if∑
j∈C`

∑
i∈[d]

w(i, j)(xi − yj)2 < αγ2(1− γ)2
∑
j∈C`

y2
j

n
.

We define bad columns to be CB = ∪`C` where the union is over bad column bucket indices,
and good columns to be CG = [n]− CB.

As an immediate consequence, the quadratic form can be lower bounded by

(x, y)∗L(x, y) ≥ αγ2(1− γ)2
∑
j∈CG

y2
j

n
.

The good columns are defined just so that our proof plan goes through. Specifically,
we will be able to use regularity to show that bad columns have their weight concentrated
in nearby rows. This will then allow a similar charging argument to Lemma 3.4.14 in order
to bound the bad rows.

94

Lemma 3.4.18. For normalized ε-bi-regular graph H, if C` ⊆ CB is a bad column bucket
according to Definition 3.4.17, then

(1− ε− α)
∑
j∈C`

y2
j

n
≤ 1 + ε

γ4

∑
i∈R`±1

x2
i

d
.

As a corollary, ∑
j∈CB

y2
j

n
≤ 3

γ4

1 + ε

1− ε− α
‖x‖2

2

d
.

Proof. The second statement follows from the first by summing over all bad column indices
C` ⊆ CB and noting each Rk appears at most three times on the right hand side (for each
` ∈ {k − 1, k, k + 1}).

We first show that for C` ⊆ CB, the weight from columns j ∈ C` are concentrated in

w(R`±1, C`) >
|C`|
n

(1− ε− α).

By Definition 3.4.17, we can upper bound the contribution of bad column bucket C` by

∑
j∈C`

∑
i∈[d]

wij(xi − yj)2 < αγ2(1− γ)2
∑
j∈C`

y2
j

n
≤ αγ2(1− γ)2 |C`|

n
· γ2`−1,

where in the last step we used maxj∈C` y
2
j ≤ γ2`−1 by Definition 3.4.9. We can also lower

bound the contribution of C` as∑
j∈C`

∑
i∈[d]

wij(xi − yj)2 ≥
∑
j∈C`

∑
i 6∈R`±1

wij(1− γ)2y2
j ≥ (1− γ)2w(R`±1, C`)γ

2`+1,

where in the first step we considered just the terms from R`±1 and used Fact 3.4.10 to
lower bound (xi − yj)

2 ≥ (1 − γ)2y2
j for i 6∈ R`±1, j ∈ C`, and in the last step we used

minj∈C` y
2
j ≥ γ2`+1 by Definition 3.4.9.

These two inequalities can be rearranged to show

w(R`±1, C`) < α
γ2(1− γ)2γ2`−1

(1− γ)2γ2`+1

|C`|
n
≤ α
|C`|
n
.

95

Finally, we can use column regularity to show

w(R`±1, C`) = w([d], C`)− w(R`±1, C`) > (1− ε) |C`|
n
− α |C`|

n
,

where in the last step we used that each column satisfies w([d], j) ≥ 1−ε
n

by ε-bi-regularity.

We can use the above and row-regularity to show that R`±1 cannot be too small as
compared to C`:

(1 + ε)
|R`±1|
d
≥ w(R`±1, [n]) ≥ w(R`±1, C`) > (1− ε− α)

|C`|
n
,

where the first step was because each row satisfies w(i, [n]) ≤ 1+ε
d

by ε-bi-regularity, and
the last step was by the lower bound derived above.

The first statement in the lemma now follows as

(1− ε−α)
∑
j∈C`

y2
j

n
≤ (1− ε−α)

|C`|
n
· γ2`−1 ≤ (1 + ε)

|R`±1|
d
· γ−4γ2(`+1)+1 ≤ 1 + ε

γ4

∑
i∈R`±1

x2
i

d
,

where the first step (y2
j∈C` ≤ γ2`−1) and third step (x2

i∈R`±1
≥ γ2(`+1)+1) were both due

to Definition 3.4.9, and the second step was by the bound (1 + ε) |R`±1|
d

> (1 − ε − α) |C`|
n

derived above.

The purpose of Lemma 3.4.18 is to show that the good columns outweigh the bad

columns. In order for this to be true, we need
‖x‖22
d
≤ 4

γ4

‖y‖22
n

. Note that this constant 4
γ4 is

strictly bounded away from 1 as γ < 1. This is why we need the other case in Lemma 3.4.14
to be able to handle arbitrarily large constant, so that we can combine with Lemma 3.4.18.

We are now ready to prove strong convexity. We will separate into two cases, depending
on whether we can bound the contribution from bad rows or columns respectively.

Proof of Theorem 3.4.7. By Definition 3.4.11 and Definition 3.4.17 of good rows and columns,
we can lower bound

(x, y)∗L(x, y) ≥ max

{
αβ(1− γ)2

∑
i∈RG

x2
i

d
, αγ2(1− γ)2

∑
j∈CG

y2
j

n

}
,

where the first term is by Lemma 3.4.12 and the second is by the corollary at the end of
Definition 3.4.17. For the remainder of the proof, we separate into two cases, depending

96

on whether we want to lower bound the quadratic form in terms of the first term (good
rows) or the second term (good columns).

Case 1:
‖x‖22
d
≤ γ4

4

‖y‖22
n

. We use the lower bound on columns and show that the bad
columns contribute only a constant fraction of the total:∑

j∈CB

y2
j

n
≤ 3(1 + ε)

γ4(1− ε− α)

‖x‖2
2

d
≤ 3(1 + ε)

4(1− ε− α)

‖y‖2
2

n
,

where the first step is by Lemma 3.4.18, and the second step was by the case assumption
‖x‖22
d
≤ γ4

4

‖y‖22
n

. By the assumptions ε ≤ 1
16
, α < 1

16
, the above constant is at most 3

4
17/16
14/16

≤ 11
12

and we can finish the lower bound on the first term

(x, y)∗L(x, y) ≥ αγ2(1− γ)2
∑
j∈CG

y2
j

n
≥
(

1− 11

12

)
αγ2(1− γ)2‖y‖2

n

≥ αγ2(1− γ)2

12

(
4

4 + γ4

)(
‖x‖2

2

d
+
‖y‖2

2

n

)
,

where again the last step was by the case assumption
‖x‖22
d
≤ γ4

4

‖y‖22
n

.

Case 2:
‖y‖22
n
≤ 4

γ4

‖x‖22
d

. We use the lower bound on rows and show the bad rows
contribute only a constant fraction.∑

i∈RB

x2
i

d
≤ β

γ6(1− β)2

‖y‖2
2

n
≤ 4β

γ10(1− β)2

‖x‖2
2

d
,

where the first step was by Lemma 3.4.14, and the last step is by the case assumption
‖y‖22
n
≤ 4

γ4

‖x‖22
d

. For β ≤ 1
16

we choose γ10 = 8β
(1−β)2 < 1 so that 4β

γ10(1−β)2 ≤ 1
2
. So we can

finish the lower bound on the second term in the max:

(x, y)∗L(x, y) ≥ αβ(1− γ)2
∑
i∈RG

x2
i

d
≥
(

1− 1

2

)
αβ(1− γ)2‖x‖2

2

d

≥ αβ(1− γ)2

2

(
γ4

4 + γ4

)(
‖x‖2

2

d
+
‖y‖2

2

n

)
,

where the last step was by the case assumption
‖y‖22
n
≤ 4

γ4

‖x‖22
d

.

Combining both cases gives the lower bound

(x, y)∗L(x, y) ≥ min

{
γ2(1− γ)2

15
,
βγ4(1− γ)2

10

}
· α
(
‖x‖2

2

d
+
‖y‖2

2

n

)
.

Substituting γ10 = 8β
(1−β)2 and choosing β = 1

16
gives leading constant at least e−11.

97

Remark 3.4.19. We never used the assumption
∑

i∈[d] xi = 0. This would give a separate
argument bounding bad columns in terms of rows, analogous to Lemma 3.4.14. But this
does not improve the final constant, and only complicates the case anaysis, so we omit it.

3.5 Lift to Frame and Operator Scaling

In this short section, we briefly discuss how the matrix scaling problem studied in this
chapter can be generalized to the frame setting considered in Chapter 4. This will be
covered more formally in Chapter 6, where we will discuss scaling problems from the
perspective of Lie group optimization.

In all of the previous sections of this chapter, we assumed that we are explicitly given a
tuple of matrices A = {A1, ..., AK} ∈ Mat(d, n)K with a specified standard basis for Fd and
Fn. But none of the above ideas depended on the choice of standard basis. Therefore, all the
results carry over verbatim to an arbitrary choice of orthonormal bases Ξ = {ξ1, ..., ξd} ⊆
Fd,Ψ = {ψ1, ..., ψn} ⊆ Fn.

Specifically, we can perform the change of basis operation Mk = Ξ∗AkΨ as in Eq. (2.1)
to find the matrix representation of A with respect to (Ξ,Ψ). This gives a family of matrix
scaling problems on A, one for each choice of bases (Ξ,Ψ), which are just the standard
matrix scaling problem in Definition 3.1.3 applied to M := Ξ∗AΨ.

We can ask what operation corresponds to performing matrix scaling on M := Ξ∗AΨ.
Consider L ∈ diag(d) which gives scaling LM = L(Ξ∗AΨ). Then, we can invert the change
of basis to find A is scaled by

Ξ(LM)Ψ∗ = (ΞLΞ∗)A, (3.5)

where we used the fact that Ξ and Ψ are orthonormal bases (i.e. Ξ ∈ U(d) or Ξ ∈ O(d)
depending on the field).

Now consider the set of matrix inputs {MΞ := Ξ∗A} where Ξ is an arbitrary orthonormal
basis, and restrict the scalings to the form (X, Y) ∈ t as discussed in Definition 3.1.5. Then
by considering all the induced scalings together, we find

∪Ξ{eXMΞe
Y | (X, Y) ∈ t} → ∪Ξ{(ΞeXΞ∗)AeY | (X, Y) ∈ t}

= {eXAeY | X ∈ H(d), Y ∈ diag(n),Tr[X] = Tr[Y] = 0},

where the first step was by the induced scaling as described in Eq. (3.5), and the final
step was by the discussion in Theorem 2.1.13 showing that the Spectral Theorem gives a
decomposition of Hermitian matrices H(d) = ∪ΞΞ diag(d)Ξ∗.

98

It turns out that this set above is exactly the domain of frame scaling. In fact, frame
scaling can be viewed as a simultaneous matrix scaling problem on all the inputs {MΞ :=
Ξ∗A | Ξ ∈ U(d)}. We will discuss this relation more formally in Section 4.2. Similarly, if
we consider all possible right bases as well, then this gives the domain of operator scaling.
This problem was first defined by Gurvits [45] in the context of the polynomial identity
testing problem in algebraic complexity. Recently, Gurvits, Garg, Oliveira, and Wigderson
[38] showed that a simple alternating scaling algorithm for operator scaling converges in
polynomial time, implying polynomial time algorithms for a variety of problems in algebraic
complexity. This work is in fact what drew our attention to the scaling framework, and
parts of their results were key to our work in [62] on the Paulsen problem. In Section 6.3,
we will show how the results in this chapter on strongly convex matrix scaling can be lifted
to the operator setting. This will be applied in Chapter 9 in order to give near-optimal
sample complexity results for the matrix normal model in statistics.

The main take-away for this section is that the results of this chapter can be applied in
a basis independent way. In fact, in Chapter 6, we will show that these results hold even in
the setting of abstract inner product spaces U, V with tuples of abstract linear operators
A ∈ L(U, V)K as input. By the discussion above, we see that any choice of orthonormal
bases (Ξ,Ψ) induces a concrete matrix scaling problem on the matrix tuple Ξ∗AΨ. We
will not need this level of generality for our applications in Chapter 4 or Chapter 9, but
we note that scaling problems are well-defined in this abstract setting as well.

99

Chapter 4

Paulsen Problem Revisited

This chapter is devoted to the Paulsen problem in frame theory.

Question 4.0.1. Let U = {u1, ..., un} ⊆ Cd be a spanning set of vectors satisfying

1− ε
d

Id �
n∑
j=1

uju
∗
j �

1 + ε

d
Id, ∀j ∈ [n] :

1− ε
n
≤ ‖uj‖2

2 ≤
1 + ε

n
. (4.1)

What is the minimum distance
∑n

j=1 ‖vj − uj‖2
2 over all V = {v1, ..., vn} satisfying these

conditions exactly:
n∑
j=1

vjv
∗
j =

1

d
Id, ∀j ∈ [n] : ‖vj‖2

2 =
1

n
?

This was listed as a major open problem in frame theory ([24], [22]), for which little
was known despite considerable effort. Frames satisfying the conditions of Eq. (4.1) with
ε = 0 are called unit norm tight frames, and these give optimal constructions for certain
applications in signal processing and coding theory [49]. In this chapter, we are able to give
optimal distance bounds for Question 4.0.1 in both the average case and the worst case, im-
proving on the polynomial distance bounds of Kwok et al. [62], [63] and the previously best
known bound from Hamilton and Moitra [46]. We accomplish this by a similar approach to
that of [62], while simultaneously simplifying the procedure and quantitatively improving
many parts of the proof. Our key tool is the optimization framework for scaling, discussed
in more detail in Chapter 6, which allows us to leverage the work of Chapter 3 on fast
convergence for matrix scaling. Our main technical contribution for the Paulsen problem
is the smoothed analysis performed in Chapter 5. In this chapter, we mainly combine the

100

matrix scaling analysis of Chapter 3 and the probabilistic analysis of Chapter 5 to prove a
distance bound for the worst-case and average-case settings of the Paulsen problem.

Overview: In Section 4.1 we give the relevant background from frame theory and
previous approaches to the Paulsen problem. We then discuss the approach of Kwok et
al. [62], which combined ideas from frame scaling with smoothed analysis. In Section 4.2,
we explicitly connect the work of [62] to the optimization framework for scaling. Then,
we present a reduction to the matrix scaling problem. The proof of this reduction relies
on the concept of geodesic convexity and is deferred to Chapter 6. In Section 4.3, we
leverage the results of Chapter 3 to prove strong distance bounds for matrices satisfying
certain fast convergence conditions (strong convexity and pseudorandomness). By the
reduction presented in Section 4.2, this implies strong distance bounds for special classes
of frames. In Section 4.4, we show that random frames satisfy the sufficient conditions for
fast convergence, implying optimal distance bounds for the average case and improving
on the work of [63] and [35]. Finally, in Section 4.5, we combine these fast convergence
results with a perturbation argument to give our optimal distance bound for the Paulsen
problem. This settles the question (up to constant factors) for nearly all parameter regimes
(see Remark 4.5.4 for the remaining cases). We defer the smoothed analysis component
of the proof to Chapter 5, where we use techniques from random matrix theory [94] to
show that the random frames and perturbations discussed above satisfy conditions of fast
convergence.

4.1 Introduction

In this section, we will formally define the Paulsen problem. Section 4.1.1 also contains
some background from frame theory which motivated the question. Then, in Section 4.1.2
we will discuss the known partial results given by previous approaches to the Paulsen
problem. The final Section 4.1.3 contains a description of the dynamical system and
smoothed analysis approach of [62]. We follow a similar approach, with some refinements,
in order to give our optimal distance bounds.

4.1.1 Frame Theory Background

The Paulsen problem had been listed as a central problem in frame theory [25], and prior
to the work of Kwok et al. [62], had been open for over fifteen years despite receiving quite
a bit of attention [22], [16], [23]. It concerns frames, which are natural generalizations of

101

orthonormal bases. Finite frames can be thought of as overcomplete bases, and they are
used in applications that may require flexibility or robustness in representations of vector
data. In this subsection, we will discuss some desirable properties of frames, especially
those investigated by Holmes and Paulsen [49] in the context of coding theory. For a much
more comprehensive look at the history and applications of finite frames, see the book [24].

Below, we define properties of frames which are relevant to the Paulsen problem.

Definition 4.1.1. A frame is a spanning set U := {u1, ..., un} ∈ Mat(d, n) for F ∈ {R,C}.
The size of frame U is defined as

s(U) := ‖U‖2
F =

n∑
j=1

‖uj‖2
2.

Doubly-balanced and Grassmannian frames are two well-studied classes of structured
frames that we study in this chapter.

Definition 4.1.2. Frame U ∈ Mat(d, n) is called ε-doubly balanced if it satisfies

(1−ε)s(U)

d
Id �

∑
j

uju
∗
j � (1+ε)

s(U)

d
Id, ∀j ∈ [n] : (1−ε)s(U)

n
≤ ‖uj‖2

2 ≤ (1+ε)
s(U)

n
.

In the literature, frames satisfying the first condition are called ε-Parseval, and frames
satisfying the second are called ε-equal norm. U is called doubly balanced if ε = 0.

The above condition on frames can be viewed as a basis-independent version of the
doubly balanced matrix condition in Definition 3.1.2, and we discuss this connection further
in Section 4.2.

Another well-studied property of a frame is its pairwise correlation.

Definition 4.1.3. The correlation of frame U ∈ Mat(d, n) is measured by

Θ(U) := max
j 6=j′∈[n]

|〈uj, uj′〉|2.

Doubly-balanced frames with minimal Θ(U) are called Grassmannian frames. If in addition,
|〈uj, uj′〉|2 are equal for all j 6= j′, then these are called Equiangular frames.

In [49], various classes of frames were studied for their robustness properties in the
context of linear algebraic codes. Specifically, it was shown that doubly-balanced frames are

102

optimally robust with respect to a single erasure, and Grassmannian frames are optimally
robust with respect to two erasures. Therefore, an understanding of the optimal behavior
of the correlation Θ would be of interest to many communities.

Equiangular frames in particular have an extensive literature and have been studied
from a variety of perspectives. Still, it is not known whether equiangular tight frames exist
for all choices of d, n (see Chapter 5 of [24]). In the quantum information theory literature,
equiangular frames are known as SICPOVM’s, and are information-theoretically optimal
quantum measurements.

Doubly balanced frames are known to exist for any d ≤ n, and there are even elemen-
tary algorithms that can explicitly construct them (Chapter 2 of [24]). But often, frames
are used in applications that require additional properties, e.g. small pairwise angles or
sparsity, which are not always satisfied by these generic constructions. In some of these in-
stances, the required frames can be produced via complicated algebraic constructions (see
e.g. [5]). These may not be robust to numerical error, and are often expensive to produce
algorithmically. It is known that the set of doubly balanced frames contains a manifold
of nontrivial dimension [32], and recently Needham and Shonkwiler [74] have shown that
this set is even (topologically) connected. Therefore the known algorithmic constructions
of doubly balanced frames are far from comprehensive.

On the other hand, there are many simple procedures which can construct ε-doubly
balanced frames, as a set of random equal-norm vectors is nearly Parseval with high prob-
ability. Tropp et al. [91] proposed alternating projection algorithms to construct doubly
balanced frames from these nearly doubly balanced ones. They show positive experimen-
tal results and some partial convergence analysis. Holmes and Paulsen [49] studied the
optimal parameters for Grassmannian frames which are even harder to construct. They
construct some nearly equal norm Parseval frames with small maximal inner product, and
ask whether they are close to the optimal parameters for Grassmannian frames. This work
led Paulsen to ask a number of people whether a nearly doubly balanced frame is always
close to a doubly balanced one, and eventually this became known as the Paulsen problem
first formally stated in [16].

Conjecture 4.1.4 (Paulsen Problem). Let p(d, n, ε) be the minimum value such that for
every ε-doubly balanced frame U ∈ Mat(d, n) with s(U) = 1, there exists a doubly balanced
V ∈ Mat(d, n) with s(V) = 1 such that

‖V − U‖2
F ≤ p(d, n, ε).

Then p can be bounded by a polynomial function in d and ε. In particular, this function
can be taken to be independent of n.

103

Proving a good upper bound for the Paulsen problem would give us a firm foundation
to work with nearly doubly balanced frames, both in theory and in applications. Indeed,
our method can be seen as a continuous version of the alternating projection algorithm of
Tropp et al. [91], and our results can be viewed as a rigorous justification of the numerical
approach for constructing equal norm Parseval frames. We are also able to give an im-
proved randomized construction of nearly optimal Grassmannian frames in Theorem 4.4.5.
We hope that our techniques will be useful to the difficult open question of constructing
equiangular frames, as Tropp et al. [91] also proposed an alternating projection algorithm
for constructing them.

In [62], we were able to resolve the conjecture affirmatively and show the bound
p(d, n, ε) . d11/2ε. That work relied on techniques from the scaling framework, and we
discuss the approach in more detail at the end of this section.

Even in the case of random inputs, very little was known about the distance bound
in Conjecture 4.1.4. In fact, many of the known constructions of nearly doubly balanced
frames are random frames. The numerical approach suggested in [49] was to generate
random frames and then fix the doubly balanced constraints. As random frames have
small Θ with high probability, this approach was also suggested in [49] as a procedure to
construct Grassmannian frames. In [63], we were able to use the scaling framework to
prove beyond worst-case distance bounds for random inputs (on the order of ε2 instead
of ε), and we were able to use this approach to give simple constructions of near-optimal
Grassmannian frames. These results will be discussed further in Section 4.1.3.

In this thesis, we refine the scaling approach of [62] and [63] in order to give optimal
distance bounds for the Paulsen problem in both worst-case (Section 4.5) and average case
(Section 4.4) settings.

4.1.2 Previous Work

In this subsection we discuss the historical developement of both the upper and lower
bounds on the distance function p(d, n, ε) in Conjecture 4.1.4.

A first compactness argument of Hadwin (see [16]) showed that the p(d, n, ε) is finite
for every ε > 0, but this argument did not give any quantitative result. On the other hand,
it is easy to correct the Parseval or equal-norm condition individually, as shown by the
following transformations.

104

Fact 4.1.5. For any input frame U ∈ Mat(d, n) with s(U) = 1, the two transformations

uLj :=
uj√
n‖uj‖2

, uRj :=

(
d

n∑
j=1

uju
∗
j

)− 1
2

uj (4.2)

produce equal-norm and Parseval frames, respectively. UL is the nearest Parseval frame to
U , and UR is the nearest equal-norm frame to U .

If U is ε-doubly balanced for ε ≤ 1
3
, then both UL and UR are 3ε-doubly balanced and

satisfy the distance bound

‖UL − U‖2
F ≤ ε2 and ‖UR − U‖2

F ≤ ε2.

The above results, as well as the simple examples showing this distance bound is tight,
are well-known in the literature (see [24], [16], [23]). We reproduce the proof in Fact A.3.1
for completeness.

This suggests the following natural algorithm to find a nearby doubly balanced frame:
alternate the transformations in Eq. (4.2) until both conditions are satisfied simultaneously.
This alternating procedure is a natural generalization of Sinkhorn’s algorithm [83] for ma-
trix scaling, and in Chapter 8 we will formally discuss this algorithm from the perspective
of tensor scaling.

If this sequence of transformations {U(t)}t≥0 eventually converges to some doubly bal-
anced U(T), then we can attempt to give a distance bound for the Paulsen problem by
bounding each step individually

‖U(T)− U‖F ≤
T∑
t=1

‖U(t)− U(t− 1)‖F .

Unfortunately, this alternate scaling procedure does not always reach a doubly balanced
frame. Further, Example 11.1 in [24] shows a frame for which this procedure does not even
converge to a fixed point. We believe this is the reason the alternating scaling approach
to the Paulsen problem was not pursued further in the literature.

According to [24], the main difficulty of the Paulsen problem was the lack of tools avail-
able to control both the Parseval and equal-norm conditions simultaneously. Therefore the
work of Bodmann and Casazza [16] and Casazza, Fickus, and Mixon [23] used certain
constrained procedures to give partial results for the distance function. Specifically, [23]

105

used a gradient descent algorithm which maintained the equal norm property and itera-
tively improved the nearly-Parseval condition. Similarly, [16] defined a dynamical system
on Parseval frames that improved the nearly-equal norm condition. Both of these works
were able to show p(d, n, ε) . poly(d, n) · ε2 in the case when d, n are relatively prime and
ε is small enough.

The best known lower bound p(d, n, ε) & ε comes from from simple examples presented
in [16]. We repeat the example and give a detailed proof in Appendix A.1 for completeness.
Note importantly that the dependence on ε is linear, and so the poly(d, n) · ε2 results in
[16], [23] cannot hold in general for arbitrary d, n.

In fact, both of these approaches can be fruitfully analyzed from the perspective of
scaling, and we will elaborate on this in a future work (see Chapter 10). We emphasize
that our dynamical system approach in [62] was not the first, though there are a few key
differences to [16] and [23] which allow us to rely on tools from convex analysis.

In the following subsection, we discuss the approach of [62], which gave the first proof
that the distance function p could be bounded by a function that is independent of n. A
key component of this approach will be the framework of operator scaling, which provides
tools to design and analyze a procedure that improves both the Parseval and equal-norm
condition simultaneously. Another key component is to apply smoothed analysis to the
input to derive better distance bounds. We will follow almost the same approach with
some refinements in order to prove our optimal results.

Subsequently, this result was improved by Hamilton and Moitra [46] to p . dε. We
discuss this result in more detail in the following Section 4.1.3. Therefore, prior to the work
in this thesis, the best known lower and upper bounds for the Paulsen problem differed by
a single O(d) factor.

4.1.3 The Dynamical System Approach

In our first attempt, we tried to control the distance of each step in the alternate scaling
algorithm described in Eq. (4.2). As discussed, this does not give meaningful results for
a variety of reasons. In [62], our intuition was that the alternate scaling algorithm may
be taking large steps but moving the frame very little. So we defined a dynamical system
on frames that can be viewed as an infinitesimal and continuous version of the discrete
alternate scaling algorithm.

Definition 4.1.6. For frame U ∈ Mat(d, n), the dynamical system Ut = {u1(t), ..., un(t)}

106

has initial condition U0 = U and is the solution to differential equation

∂tuj(t) =
(
d

n∑
j=1

uj(t)uj(t)
∗ − s(Ut)Id

)
uj(t) + uj

(
n‖uj(t)‖2

2 − s(Ut)
)
. (4.3)

Note that if U is doubly balanced, then it is a fixed point of Definition 4.1.6. Further,
the two terms in the differential equation correspond to the error in the Parseval and equal-
norm conditions respectively, and serve to pull the frame to satisfy these conditions. To
bound the distance of input U to a doubly balanced frame, our plan is to bound the path
length of Definition 4.1.6.

Unfortunately, this dynamical system does not always converge to a doubly balanced
frame. In [62], our solution was to use smoothed analysis: by adding noise to the input
V := U + E, we were able to show that the dynamical system converges quickly on this
perturbed input. This led to the following result.

Theorem 4.1.7 (Theorem 1.3.1 in [62]). For any ε-doubly balanced frame U ∈ Mat(d, n)
of size s(U) = 1, there is a doubly balanced V ∈ Mat(d, n) of size s(V) = 1 such that

‖V − U‖2
F . d11/2ε.

In particular, the function in Conjecture 4.1.4 can be taken to be independent of n.

The proof of [62] involved a combination of tools from the operator scaling framework
of [38] as well as an involved probabilistic analysis of the perturbation argument.

Subsequently, this was improved to p . dε by the work of Hamilton and Moitra [46].
Their proof is by frame scaling, under the name of radial isotropic position [47], [10], along
with a cleverly defined distance function related to the Wasserstein metric. It should be
noted that this result is requires no assumptions on d, n, ε, whereas both the argument
of [62] and the refinement in this thesis have various corner cases that are solved with
different arguments. Also the proof is dramatically shorter and simpler due to the slick
distance analysis that argues directly about the frame scaling solution.

In this thesis, we also use the two-stage dynamical system and smoothed analysis
approach of [62]. Key to our results will be a refined use of the scaling framework shown
in Section 4.2. These improvements imply optimal distance bounds for Conjecture 4.1.4 in
Section 4.5, as well as an optimal analysis of the average case in Section 4.4.

107

4.2 Improved Scaling Approach

The key result in this section is a reduction from frame scaling to the simpler matrix scaling
setting. In Section 4.2.1, we formally define the frame scaling problem and discuss some
applications in theoretical computer science. Then in Section 4.2.2, we show the connection
between the dynamical system approach in Definition 4.1.6 and frame scaling. This was a
key contribution of [62] which allowed us to use tools from the scaling framework to prove
a distance bound for the Paulsen problem. At the end of this subsection, we will briefly
discuss why the approach of [62], as well as the spectral analysis in [63], is not sufficient to
prove optimal distance bounds for the Paulsen problem. Then in Section 4.2.3, we present
a reduction from frame scaling to matrix scaling. This is the new key ingredient which
allows us to use the fast convergence properties of matrix scaling studied in Chapter 3 to
prove optimal distance bounds for the Paulsen problem.

4.2.1 The Frame Scaling Problem

We will show in the next subsection that both the alternating algorithm of Eq. (4.2)
and the dynamical system in Definition 4.1.6 output frames of the form LUR for some
L ∈ Mat(d), R ∈ diag(n) for input U ∈ Mat(d, n). As discussed in Section 4.1, both of
these algorithms do not always converge to a doubly balanced frame, and therefore they
cannot immediately be used to solve the Paulsen problem. To understand convergence of
these algorithms, we are led naturally to the following problem.

Definition 4.2.1 (Frame Scaling Problem). Given frame U ∈ Mat(d, n), find scalings
L ∈ Mat(d), R ∈ diag(n) such that V := LUR is a doubly balanced frame according to
Definition 4.1.2.

Remark 4.2.2. The above definitions hold in the more abstract setting where u1, ..., un are
elements of a d-dimensional inner product space U over either R or C. In this chapter,
we assume without loss that U ' Fd where F = R or F = C and the frame U ∈ Mat(d, n)
is given according to the standard basis. The generalization to abstract vector spaces is
discussed further in Chapter 6.

Note the similarity to the matrix scaling problem in Definition 3.1.3. In fact, the frame
scaling problem can be viewed as performing matrix scaling simultaneously in all bases.
We formalize this by defining the appropriate generalizations of row and column sums.

108

Definition 4.2.3. Given frame U = {u1, ..., un} ∈ Mat(d, n), the row and column sums
are given with respect to ξ ∈ Sd−1 and j ∈ [n], respectively, and are defined as

rξ(U) := 〈ξξ∗, UU∗〉 =
n∑
j=1

|〈ξ, uj〉|2, and cj(U) := 〈Ejj, U∗U〉 = ‖uj‖2
2.

The left and right error of a frame are ∇U := (∇L
U ∈ Mat(d),∇R

U ∈ diag(n)), and are
defined by

∇L
U := d · UU∗ − s(U)Id, ∇R

U = diag{n · cj(U)− s(U)}nj=1.

We show that the above definitions generalize matrix row and column sums according to
Definition 3.1.1, as well as the gradient in Proposition 3.1.12. The column sums cj(U) are
defined in exactly the same way as in Definition 3.1.1 for the matrix setting, and therefore
the right error ∇R

U is exactly the same as the right part of the matrix gradient defined in
Proposition 3.1.12. For the row sums, consider ei ∈ Fd an element of the standard basis.
Then the frame row sum rei(U) is exactly the same as the i-th row sum of matrix U as
given in Definition 3.1.1. Similarly, for arbitrary ξ ∈ Sd−1, let Ξ be an orthonormal basis
of Fd with ξ1 = ξ; then the frame row sum rξ(U) is exactly the 1-st row sum r1(M) of the
matrix representation M := Ξ∗U , where we performed a change of basis. The fact below
formally connects the doubly balanced condition for frames and matrices.

Lemma 4.2.4. Frame U ∈ Mat(d, n) is ε-doubly balanced iff the matrix representation
(Ξ∗U)ij := 〈ξi, uj〉 is an ε-doubly balanced matrix according to Definition 3.1.2 for every
orthonormal basis Ξ ∈ Mat(d).

Proof. As both definitions are homogenous, we can assume without loss that s(U) = 1.
Definition 4.1.2 of the ε-doubly balanced frame condition can be written equivalently as

‖dUU∗ − Id‖op ≤ ε, and max
j∈[n]
|n · cj(U)− 1| ≤ ε,

where we used the condition s(U) = 1. The condition on columns is clearly the same as
the matrix version. We can show the row condition by the following sequence of equalities:

‖dUU∗−Id‖op = sup
ξ∈Sd−1

|〈ξξ∗, dUU∗−Id〉| = sup
Ξ

sup
i∈[d]

|d‖ξ∗U‖2
2−1| = sup

Ξ
sup
i∈[d]

|d·ri(Ξ∗U)−1|,

where the first step was by the dual description of ‖ · ‖op given in Eq. (2.5) for Hermitian
input, in the second step we used the fact that ∪Ξ{ξ1, ..., ξd} = Sd−1 where the union is

109

over all orthonormal bases, and the final step was by Definition 3.1.1 of the row sum. Note
that by the discussion above

ri(Ξ
∗U) =

n∑
j=1

|〈ξi, uj〉|2 = rξi(U),

so the right hand side characterizes the balance condition for each matrix Ξ∗U .

This lemma suggests that the matrix scaling results in Chapter 3 can be applied to
analyze frame scaling problem if we consider all bases simultaneously. This is in fact the
approach we will take, and in Definition 4.2.11 we define the frame versions of strong
convexity and pseudorandomness in order to apply the analyses from Chapter 3.

We now place the frame scaling problem in a wider context by discussing some past
work and related problems. The frame scaling problem has appeared previously in many
fields in computer science, including radial isotropic positions in machine learning [47], [50],
and geometric conditions in Brascamp-Lieb inequalities [39], [10]. An early application was
discovered by Forster [34], who solved a special case of the frame scaling problem in order
to derive a lower bound on the sign rank of the Hadamard matrix. This was applied to
a breakthrough result in communication complexity. We note that Forster’s scaling result
was proved earlier in a more general setting by Gurvits and Samorodnitsky [44] in their
work on mixed discriminants, and is also implicit in the work of Barthe [10] on Brascamp-
Lieb inequalities. Two recent applications of frame scaling in machine learning are found
in the work of Hardt and Moitra [47] in robust subspace discovery, as well as Hopkins et
al. [50] in point location. The notion of radial isotropic position was key to the work of
Hamilton and Moitra [46] which gave the previously best known distance bound for the
Paulsen problem. We discuss their approach in more detail in Remark 4.2.6.

Operator scaling is a generalization of frame scaling that was introduced by Gurvits
[45] in an attempt to design a deterministic polynomial time algorithm for the important
polynomial identity testing problem in algebraic complexity. Continuing this approach,
Garg, Gurvits, Oliveira, and Wigderson [38] improved Gurvits’ analysis to prove that the
alternating algorithm for operator scaling can be used to compute the non-commutative
rank of a symbolic matrix in polynomial time. This line of work was what drew our
attention to the scaling framework in [62]. We discuss this problem in the context of the
general scaling framework in Chapter 7 and Chapter 8.

Many of the scaling and distance results established in this chapter apply to the operator
scaling setting as well. But currently, our strongest smoothed analysis results are restricted
to the frame setting. We believe that they can be extended to more general problems. For
preliminary results for distance bounds in the operator setting, see Theorem 3.7.3 in [62].

110

4.2.2 Previous Approach by Frame Scaling

A key component of [62] was to connect the Paulsen problem to the scaling framework
of [38]. In this subsection, we will discuss how frame scaling arises naturally from the
dynamical system in Definition 4.1.6. At the end, we point out some key differences between
frame and matrix gradient flow and especially the difference between the convergence
analysis of [62] and the results in this thesis.

Since the alternate scaling algorithm always performs steps of the form U ← LU or
U ← UR (see Eq. (4.2)), it is clear that for U ∈ Mat(d, n), the output will always be of
the form LUR for some scaling matrices L ∈ Mat(d), R ∈ diag(n).

It turns out that this is also the case for the dynamical system in Definition 4.1.6. To
prove this, we rewrite the dynamical system of [62] in terms of scalings.

Proposition 4.2.5. For frame U ∈ Mat(d, n), the dynamical system in Definition 4.1.6
can be equivalently written as a dynamical system on scalings: Ut := LtURt for Lt ∈
SL(d), Rt ∈ SL(n) ∩ diag(n) satisfying the differential equation

(L0, R0) = (Id, In), ∂tLt = −∇L
Ut · Lt, ∂tRt = −Rt · ∇R

Ut ,

where the gradient ∇L/R
U is given in Definition 4.2.3.

Proof. Using the notation in Definition 4.2.3, the differential equation in Definition 4.1.6
can be rewritten as

U0 = U, ∂tUt = −(∇L
Ut · Ut + Ut · ∇R

Ut).

We verify that this is equivalent to the differential equation on scalings given in this propo-
sition. Clearly the initial conditions are the same as U0 = U = L0UR0. To show that the
solutions are the same, it is enough to show that for all frames, the differential equations
are equivalent at time t = 0.

∂t=0(LtURt) = (∂t=0Lt)UIn + IdU(∂t=0Rt) = −(∇L
U · U + U · ∇R

U),

where we used the initial conditions L0 = Id, R0 = In. Comparing this to the previous
equation at t = 0, we see that the two differential equation are equivalent for every input
frame, and therefore they induces the same dynamical system.

Now we prove the determinant condition, i.e. Lt ∈ SL(d), Rt ∈ SL(n). Note that
det(L0) = det(Id) = 1 by the initial conditions. We show that it is invariant:

∂t log det(Lt) = Tr[L−1
t ∂tLt] = −Tr[∇L

Ut] = s(Ut) Tr[Id]− d · Tr[UtU
∗
t] = 0,

111

where the first step is by standard matrix calculus (see e.g. [90]), and the last step was by
Definition 4.1.1 of size s(V) := ‖V ‖2

F . By a similar calculation, det(R0) = det(In) = 1 and
∂t log det(Rt) = −Tr[∇R

Ut
] = 0. Therefore, for all time det(Lt) = det(Rt) = 1.

Recall that in Definition 3.1.14, we gave a similar dynamical system for matrix scaling
as the gradient flow of a particular convex function. This convexity in fact comes from a
general phenomenon that captures the frame dynamical system as well (see Section 6.1.3).
In Definition 7.1.5, we discuss the geodesic convex formulation for tensor scaling which
will allow us to formally define the geodesic gradient flow for tensor scaling, of which this
frame scaling dynamical system is a special case. We will also heavily use this connection
to gradient flows in order to give our distance analysis in Section 4.3.1.

To close out this subsection, we elaborate on some technical details of [62] and [63]
in order to motivate the reduction to matrix scaling in Section 4.2.3. Note that a cru-
cial part of the analysis in Chapter 3 relied on the multiplicative robustness properties
of strong convexity (Lemma 3.2.4) and pseudorandomness (Lemma 3.3.4). It turns out
that this multiplicative robustness is not true for strongly convex frames (as shown in Ap-
pendix A.4). The work of [63] was able to give a sufficient condition for fast convergence
in the more general operator scaling case, but with a requirement that was quadratically
worse (compare α2 & ε log d in Theorem 1.5 of [63] to α & ε log d in Theorem 3.2.19).
This means that in order to apply this fast convergence analysis to an ε-doubly balanced
frame, we would need to perturb the frame by distance Ω(

√
ε), which is the wrong order for

the Paulsen conjecture in Conjecture 4.1.4. Similarly, in [62], the analysis proceeded by a
slightly different pseudorandom condition on matrices. In that case, we were able to prove
multiplicative robustness, but only for the matrix dynamical system in Definition 3.1.14.
This meant that in order to guarantee that fast convergence was maintained throughout
the frame dynamical system (Definition 4.1.6), we had to follow a much more convoluted
path by repeatedly perturbing the frame. In the following subsection, we describe a re-
duction to matrix scaling which allows us to bypass both of these issues. This will allow
us to use a simpler perturbation argument in order to guarantee fast convergence for the
perturbed frame.

Remark 4.2.6. In [46], Hamilton and Moitra avoided all of these convergence issues of
the dynamical system by a far simpler argument. They were able to use the simple fact that
the set of non-scalable frames, those inputs for which there is no non-zero doubly balanced
frame scaling, is of measure 0. Therefore, even an infinitesimal perturbation suffices for
their result. The core of their proof is then a very clever way to bound the distance to the
doubly balanced scaling by the initial error of the frame. The smoothed analysis strategy
of [62] can be thought of as a robust version of this argument, as there the input frame

112

is perturbed by some finite amount, and this guarantees fast convergence to the scaling
solution and a strong bound on the path length of the dynamical system.

4.2.3 Reduction to Matrix Scaling

In this subsection, we will present a reduction from the distance analysis for the Paulsen
problem to the much simpler matrix scaling setting. We defer its proof to Chapter 6, where
we will formally define and use the notion of geodesic convexity. This sets up the following
Section 4.3, in which we will be able to use fast convergence properties of matrix scaling
derived in Chapter 3 in order to prove strong distance bounds for these matrix inputs. This
will immediately imply the same distance bounds for the frame setting by the reduction.

We first show some invariance properties of frames. This will allow us to simplify the
domain of frame scalings, paralleling the development in Section 3.1.2. First note that
Definition 4.1.2 is homogenous so we can normalize scalings to have unit determinant
without loss. Below, we show a much larger set of transformations which does not affect
the doubly balanced conditions for frames (Definition 4.1.2).

Fact 4.2.7. The ε-doubly balanced condition for frames given in Definition 4.1.2 is in-
variant under the group U(d) × (S1)n if F = C and O(d) × {±1}n if F = R. Here
S1 = {λ ∈ C | |λ| = 1} is the unit circle in the complex plane.

Proof. Explicitly, we will show that U ∈ Mat(d, n) is an ε-doubly balanced frame iff V :=
ΞUeY is ε-doubly balanced for any (Ξ, eY) ∈ U(d) × (S1)n or (Ξ, eY) ∈ O(d) × {±1}n
depending on the field. We will focus on the case F = C. The simpler F = R case follows
by an analogous calculation.

First note that the size does not change as

s(V) = ‖V ‖2
F = ‖ΞUeY ‖2

F = ‖U‖2
F = s(U),

where we used invariance of ‖ · ‖F under unitaries Ξ ∈ U(d), eY ∈ U(n). We can similarly
bound the left error

‖dV V ∗ − s(V)Id‖op = ‖dΞUeY e−YU∗Ξ∗ − s(U)Id‖op = ‖dUU∗ − s(U)Id‖op,

where in the first step we used s(V) = s(U) as calculated above and eY = e−Y as eYjj ∈ S1,
and in the last step we used unitary invariance of ‖ · ‖op as Ξ ∈ U(d). For the right error,
we similarly calculate

|n · cj(V)− s(V)| = |n‖ΞujeYjj‖2
2 − s(U)| = |n‖uj‖2

2 − s(U)| = |n · cj(U)− s(U)|,

113

where in the first and the last steps we used Definition 4.2.3 of the column sum, and in
the second step we used unitary invariance of ‖ · ‖2 to remove Ξ ∈ U(d) and eYjj ∈ S1.

The above calculations verify Definition 4.1.2 showing V is ε-doubly balanced. Since
(Ξ, eY) ∈ Gi were arbitrary, the statement is shown.

Remark 4.2.8. This unitary invariance is a key component of the Kempf-Ness theory
described in Section 6.1.3 for the general scaling framework. In fact, one of the main
reasons that many of these scaling problems are tractable is due to the underlying convexity
which is revealed after we reduce from general scalings to positive definite ones using this
unitary invariance.

With this fact in hand, we can restrict the domain of the frame scaling problem to the
following subset. This is another instance of the polar decomposition in Theorem 2.1.13,
which will be used extensively in Chapter 6 in order to give an optimization problem for
all tensor scaling problems.

Definition 4.2.9. For the purpose of the frame scaling problem on input U ∈ MatC(d, n)
as given in Definition 4.2.1, we can restrict to scalings of the form eXUeY where (X, Y)
are elements of the following vector space:

p := {(X ∈ H(d), Y ∈ diagR(n)) | Tr[X] = Tr[Y] = 0}.

If U ∈ MatR(d, n) is a real frame, then we replace the Hermitian matrices H(d) by the
symmetric matrices S(d) (as defined in Section 2.1.3).

Recalling the discussion in Section 3.5, this is exactly the set of scalings induced by the
family of matrix scaling problem applied to the various representations Ξ∗U where Ξ runs
over all orthonormal bases. Explicitly, by the discussion in Theorem 2.1.13, we can rewrite

p = ∪Ξ{(ΞXΞ∗, Y) | (X, Y) ∈ t},

where the index of the union runs over all orthonormal bases. This decomposition will be
an important component in our proof of the reduction from frame to matrix scaling.

We can also lift the norms ‖ · ‖t and ‖ · ‖∞ to the frame scaling setting.

Definition 4.2.10. For vector space p given in Definition 4.2.9 and element (X, Y) ∈ p,
the p-norm and operator norm are defined as

‖(X, Y)‖2
p :=

‖X‖2
F

d
+
‖Y ‖2

F

n
, ‖(X, Y)‖op := ‖X‖op + ‖Y ‖op.

114

We emphasize the difference between ‖ · ‖p on the vector space p and the Lp-norm ‖ · ‖p
given in Definition 2.1.14.

Note that Y ∈ diag(n), so ‖Y ‖op = maxj∈[n] |Yjj|, matching the matrix case. Further,
note that ‖ · ‖p reduces to ‖ · ‖t and ‖ · ‖op reduces to ‖ · ‖∞ when the domain is restricted
to t ⊆ p. Since Y is always diagonal, we will use ‖Y ‖op = ‖Y ‖∞ interchangeably.

As shown in Lemma 4.2.4, the doubly balanced frame condition can be seen as a basis-
independent version of the doubly balanced matrix condition in Definition 3.1.2. In the
next definition, we give frame versions of strong convexity and pseudorandomness. These
will be used as sufficient conditions for fast convergence in an analogous way to the analyses
in Chapter 3.

Definition 4.2.11 (Frame Strong Convexity and Pseudorandomness). For frame U =
{u1, ..., un} ∈ MatF(d, n), U is an α-strongly convex frame iff the matrix representation
Ξ∗U is α-strongly convex according to Definition 3.2.1 for every choice of orthonormal
basis Ξ ∈ U(d) if F = C and Ξ ∈ O(d) if F = R.

Similarly, U is an (α, β)-pseudorandom frame iff M := Ξ∗U is an (α, β)-pseudorandom
matrix according to Definition 3.3.1 for every orthonormal basis Ξ.

This definition already allows us to simply lift the result of Theorem 3.4.7 to frames.

Corollary 4.2.12. Consider frame V ∈ Mat(d, n) of size s(V) = 1 that is ε ≤ 1
16

-doubly
balanced according to Definition 4.1.2. If V is an (α, β)-pseudorandom frame for α ≤ 1

16

and β ≤ 1
16

, then V is e−11α-strongly convex according to Definition 4.2.11.

Proof. According to Definition 4.2.11, V is an (α, β)-pseudorandom frame iff the matrix
representation MΞ := Ξ∗V is an (α, β)-pseudorandom matrix according to Definition 3.3.1
for every orthonormal basis Ξ ⊆ Fd. Therefore, since max{α, β, ε} ≤ 1

16
, we can apply

Theorem 3.4.7 to show that each MΞ is e−11α-strongly convex as a matrix according to
Definition 3.2.1. Since this applies to every matrix representation MΞ, this is equivalent
to e−11α-strong convexity of the frame V according to Definition 4.2.11.

We have shown that frame scaling can be seen as a simultaneous version of matrix
scaling for all basis representations. There are simple examples, like the all-ones matrix J ∈
Mat(d, n), which show that the doubly balanced frame condition is much more restrictive
than the doubly balanced matrix condition. But intuitively, if we could find the basis in
which the solution to the frame scaling problem lies, then we could just analyze matrix
scaling in this basis. This is formalized in our reduction below.

115

Theorem 4.2.13. Consider frame U = {u1, ..., un} ∈ Mat(d, n). Assume that for ev-
ery choice of orthonormal basis Ξ, the matrix scaling problem in Definition 3.1.3 on
input MΞ := Ξ∗U has a doubly balanced solution eXΞ/2MΞe

YΞ/2 with (XΞ, YΞ) ∈ t and
‖(XΞ, YΞ)‖t ≤ R for some R <∞. Then there exists a choice of orthonormal basis Ξ such
that the frame scaling

U∗ := (ΞeXΞ/2Ξ∗)UeYΞ/2

is a doubly balanced frame.

We defer the proof of this theorem to Chapter 6 after we have defined the notion of
geodesic convexity. As a consequence, we get the following strong convergence analysis of
frame scaling.

Theorem 4.2.14. If frame U ∈ Mat(d, n) of size s(U) = 1 is ε-doubly balanced according
to Definition 4.1.2 and (α, β)-pseudorandom according to Definition 4.2.11 for 1

5
≥ α ≥

16e · ε and β ≤ 1
2
, then there is a scaling U∗ = eX∗/2UeY∗/2 with (X∗, Y∗) ∈ p satisfying:

1. U∗ := eX∗/2UeY∗/2 is a doubly balanced frame;

2. max{‖X∗‖op, ‖Y∗‖op} ≤ 9ε
α

;

3. The size of the scaling solution is lower bounded by s(U∗) ≥ 1− 10ε2

α
.

4. The distance to the scaling solution is bounded by ‖U∗ − U‖2
F ≤ 8ε2

α
.

Proof. For every orthonormal basis Ξ, the matrix representation MΞ := Ξ∗U is an ε-
doubly balanced matrix by Lemma 4.2.4, and is an (α, β)-pseudorandom matrix by Def-
inition 4.2.11. Therefore, we can apply Theorem 3.3.10 to each such matrix MΞ to find
scalings (XΞ, YΞ) ∈ t such that eXΞ/2MΞeYΞ/2 is a doubly balanced matrix.

Since this holds for every basis, Theorem 4.2.13 implies that there is some choice of
orthonormal basis Ξ such that the induced frame scaling (X∗, Y∗) = (ΞXΞΞ∗, YΞ) produces
doubly balanced frame

U∗ := eX∗/2UeY∗/2.

The conclusions of (2) and (3) now follow exactly from the definitions MΞ := Ξ∗U and
(X∗, Y∗) = (ΞXΞΞ∗, YΞ) by the corresponding conclusions of Theorem 3.3.10, as

s(U∗) = ‖eX∗/2UeY∗/2‖2
F = ‖ΞeXΞ/2Ξ∗UeYΞ/2‖2

F = ‖eXΞ/2MΞe
YΞ/2‖2

F ,

‖X∗‖op = ‖ΞXΞΞ∗‖op = ‖XΞ‖∞, ‖Y∗‖op = ‖YΞ‖∞,

116

where we used unitary invariance of ‖ · ‖F , ‖ · ‖op. The distance bound in item (4) follows
similarly from the distance bound for the matrix Paulsen problem given in Proposition 4.3.1
in the following section, as

‖U∗−U‖F = ‖(ΞeXΞ/2Ξ∗)UeYΞ/2−U‖F = ‖eXΞ/2(Ξ∗U)eYΞ/2−Ξ∗U‖F = ‖eXΞ/2MΞeYΞ/2−MΞ‖F ,

where we repeatedly used invariance of ‖ · ‖F under orthonormal Ξ.

The same proof strategy can be used to give frame and operator versions of the strong
convexity analysis in Theorem 3.2.19. We give this argument in Section 7.3.3 after we have
defined geodesic convexity, as the remainder of this chapter only uses the pseudorandom
distance analysis for frames.

The distance bound in Theorem 4.2.14 will be applied to give optimal bounds for the
Paulsen problem Conjecture 4.1.4. Specifically, we will show optimal average case bounds
in Section 4.4, and we will use a perturbation argument to show optimal worst case bounds
in Section 4.5. In Section 8.5, we are able to use the scaling bound in Theorem 4.2.14(2)
to give a tight sample complexity and algorithmic convergence guarantee for Tyler’s M-
estimator in statistics, improving the results in [35].

4.3 Distance Analysis for Matrix Scaling

The goal of this section is to prove the following strong distance bounds on matrix instances
satisfying the pseudorandom condition as in Theorem 3.3.10.

Proposition 4.3.1. Let A ∈ Mat(d, n) be a matrix of size s(A) = 1 that is ε-doubly
balanced and (α, β)-pseudorandom for 1

5
≥ α ≥ 16e · ε and β ≤ 1

2
, and consider the scaling

A∞ := limt→∞At where At is defined according to gradient flow in Definition 3.1.14. Then
this limit exists and A∞ satisfies the distance bound

‖A∞ − A‖2
F ≤

64ε2

α
.

We also give a distance bound for strongly convex inputs in Proposition 4.3.6. This
will be applied, in Chapter 8, in order to make the results in this chapter algorithmic. The
remainder of this chapter only uses the pseudorandom distance analysis as this gives better
(dimension independent) bounds for the Paulsen problem.

As discussed in the previous Section 4.2.3, the above two propositions imply the same
distance bounds for frames satisfying strong convexity or pseudorandom conditions via the

117

reduction given in Theorem 4.2.13. We will use the pseudorandom analysis to give optimal
average case bounds for the Paulsen problem in Section 4.4 and optimal worst case bounds
in Section 4.5.

In Section 4.3.1, we present the Kempf-Ness equivalence [58] from algebraic geometry,
specialized to the matrix scaling setting. This allows us to bound the path length of the
gradient flow given in Definition 3.1.14 using a natural potential function analysis. Then
in Section 4.3.2 and Section 4.3.3, we use the strong convergence properties derived in
Section 3.2 and Section 3.3, respectively, in order to give distance bounds for the scaling
solutions of strongly convex and pseudorandom inputs.

4.3.1 Kempf-Ness Equivalence

The dynamical system on matrices that is induced by Definition 3.1.14 can be written as

∂tAt = −(∇L
AtAt + At∇R

At),

where the left and right errors ∇ given in Proposition 3.1.12 act by diagonal scaling
(∇L

AA∇R
A)ij = (∇L

A)iiAij(∇R
A)jj. Our approach will be to bound the magnitude of this

infinitesimal movement in terms of the following potential function.

Definition 4.3.2. For A ∈ Mat(d, n), we measure the error to doubly balanced by

∆(A) := ‖∇A‖2
t =

1

d

d∑
i=1

(d · ri(A)− s(A))2 +
1

n

n∑
j=1

(n · cj(A)− s(A))2 .

We give this quantity a new name to emphasize that it is a function on Mat(d, n),
whereas the Kempf-Ness function fA in Definition 3.1.6 is a function on t. In the rest of
this subsection, we are essentially following the distance analysis of [62]. We reproduce
these results as we believe the Kempf-Ness theory and scaling perspective give a principled
approach to the various useful equalities proved in Section 3.4 of [62].

By Definition 3.1.11 of ‖ · ‖t, we can simply bound this error measure for nearly doubly
balanced matrices.

Fact 4.3.3. For A ∈ Mat(d, n) that is ε-doubly balanced according to Definition 3.1.2, the
error can bounded by

∆(A) = ‖∇A‖2
t ≤ ‖∇L

A‖2
∞ + ‖∇R

A‖2
∞ ≤ 2s(A)2ε2.

118

Proof. The first step is by Definition 4.3.2 of ∆, and the rest is exactly Fact 3.1.13.

A simple consequence is that ∆(A) = 0 iff A is doubly balanced. Therefore, we can
follow the approach laid out in [62] to solve the Paulsen problem: follow the gradient
flow of ∆ and bound the distance using ∆ as a potential function. The following shows
that this approach is exactly equivalent to the dynamical system on scalings given in
Definition 3.1.14. This is a special case of a general phenomenon coming from the work of
Kempf and Ness [58] in geometric invariant theory.

Theorem 4.3.4 (Kempf-Ness Equivalence). For any matrix A ∈ Mat(d, n), the Euclidean
gradient flow of ∆ is (up to constants) equivalent to the dynamical system on matri-
ces induced by Definition 3.1.14. Explicitly, the gradient flow on scalings ∂t(Xt, Yt) =
−∇fA(Xt, Yt) induces the matrix dynamical system At = eXt/2AeYt/2 which is equivalently
the solution to the following differential equation:

A0 = A, ∂t(At)ij = −1

8
∂ij∆(At).

Proof. The initial conditions are clearly equivalent as A0 = A = eX0/2AeY0/2. We show
that for all A ∈ Mat(d, n), the direction induced by the gradient of ∆ is the same as the
direction induced by gradient flow of scalings in Definition 3.1.14 at time t = 0.

We check the statement for each entry a ∈ [d], b ∈ [n]. We can write out ∂ab∆ according
to Definition 4.3.2 as

∂ab∆(A) = d
d∑
i=1

∂ab

(
〈Eii, AA∗〉 −

s(A)

d

)2

+ n
n∑
j=1

∂ab

(
〈Ejj, A∗A〉 −

s(A)

n

)2

.

Note that the row sum 〈Eii, AA∗〉 =
∑n

j=1 |Aij|2 depends on Aab iff a = i, and similarly

the column sum 〈Ejj, A∗A〉 =
∑d

i=1 |Aij|2 depends on Aab iff b = j. Also, the size depends
on every element as ∂abs(A) = ∂ab

∑
ij |Aij|2 = 2Aab. We calculate the first term as

d

d∑
i=1

∂ab

(
〈Eii, AA∗〉 −

s

d

)2

= d
d∑
i=1

2
(
〈Eii, AA∗〉 −

s

d

)(
∂ab〈Eii, AA∗〉 − ∂ab

s

d

)
= 2d

(
〈Eaa, AA∗〉 −

s

d

)
(2Aab)− 2d

d∑
i=1

(
〈Eii, AA∗〉 −

s

d

)
(2Aab).

119

Note that the second term in the equation above vanishes because
∑d

i=1〈Eii, AA∗〉 =
‖A‖2

F = s(A). The other term involving column error from ∆ can be calculated similarly
as

n
n∑
j=1

∂ab

(
〈Ejj, A∗A〉 −

s

n

)2

= n

n∑
j=1

2
(
〈Ejj, A∗A〉 −

s

n

)(
∂ab〈Ejj, A∗A〉 − ∂ab

s

n

)
= 2n

(
〈Ebb, A∗A〉 −

s

n

)
(2Aab)− 2n

n∑
j=1

(
〈Ejj, A∗A〉 −

s

n

)
(2Aab),

and again the second term vanishes because
∑n

j=1〈Ejj, A∗A〉 = ‖A‖2
F = s. Therefore, we

can combine the two terms to show

1

4
∂ab∆(A) =

(
d〈Eaa, AA∗〉 − s

)
Aab + Aab

(
n〈Ebb, A∗A〉 − s

)
=
(
d · ra(A)− s(A)

)
Aab + Aab

(
n · cb(A)− s(A)

)
,

where in the last line we used Definition 3.1.1 on rows and columns.

We next calculate the direction induced by Definition 3.1.14 of matrix gradient flow
(note the leading factor 2):

2∂t=0(eXt/2AeYt/2) = (∂t=0Xt)A+ A(∂t=0Yt) = −(∇L
AA+ A∇R

A),

where the first step was by the product rule and initial conditions (X0, Y0) = (0, 0), and
the final step was by Definition 3.1.14. We can write the (a, b) entry of this equation as[

2∂t=0(eXt/2AeYt/2)
]
ab

=
(
s(A)− d · ra(A)

)
Aab + Aab

(
s(A)− n · cb(A)

)
,

where the final equality follows by Proposition 3.1.12. Since this is equivalent to the
equation derived for −1

4
∂ab∆, the theorem is shown.

This equivalence allows us to more directly analyze the path length of the dynamical
system, as it is defined in terms of the frame instead of the scalings.

Lemma 4.3.5. For A ∈ Mat(d, n) and dynamical system At according to Definition 3.1.14,

∂t∆(At) = −8‖∂tAt‖2
F .

Further, the distance traveled can be bounded by

‖AT − A0‖F ≤
1√
8

∫ T

0

√
−∂t∆(At).

120

Proof. The first statement can be shown by the following calculation:

∂t∆(At) =
d∑
i=1

n∑
j=1

(∂ij∆(At))(∂tAt)ij = −8
∑
ij

|(∂tAt)ij|2 = −8‖∂tAt‖2
F ,

where the first step was by the chain rule, and in the final step we used Theorem 4.3.4 to
relate ∂t(At)ij = −1

8
∂ij∆(At), and the last step is by definition of the Frobenius norm.

Next, we show the distance bound:

‖AT − A0‖F =

∥∥∥∥∫ T

0

∂tAt

∥∥∥∥
F

≤
∫ T

0

‖∂tAt‖F =
1√
8

∫ T

0

√
−∂t∆(At),

where the first step is the fundamental theorem of calculus, the second is by the triangle
inequality, and the final step is by the equality just derived.

Following this approach, we have reduced the Paulsen problem for matrices to a con-
vergence analysis on ∆(A) = ‖∇A‖2

t . In the next section, we will use the fast convergence
properties of strongly convex and pseudorandom inputs to give strong distance bounds.

4.3.2 Strong Convexity Analysis

Assuming strong convexity according to Definition 3.2.1, the distance bound now follows
by a simple calculation on the change in ∆. This is the same analysis as in Lemma 4.16
of [63] which was used to bound the distance for operator scaling.

Proposition 4.3.6. Consider A ∈ Mat(d, n) with At the solution of gradient flow according
to Definition 3.1.14 (or equivalently Theorem 4.3.4). If At is α-strongly convex for all
t ∈ [0, T], then the distance of the dynamical system is bounded by

‖AT − A‖2
F ≤

∆(A)

4α
.

Proof. Lemma 4.3.5 bounds the distance travelled by

‖AT − A0‖F ≤
1√
8

∫ T

0

√
−∂t∆(At).

Below, we will show that α-strong convexity implies
√
−∂t∆(At) ≤ −∂t

√
2∆(At)
α

, from

which the proposition will follow by integration.

121

The assumption that At is α-strongly convex is equivalent to

−∂t∆(At) = −∂t‖∇At‖2
t ≥ 2α‖∇At‖2

t = 2α ·∆(At),

where the first and last equalities are by Definition 4.3.2 of ∆, and the inequality is due to
the exponential convergence shown in Proposition 3.2.2. Therefore, we can continue

√
2α ≤

√
−∂t∆(At)

∆(At)
⇐⇒

√
−∂t∆(At) ≤

−∂t∆(At)√
2α∆(At)

= −
√

2

α
· ∂t
√

∆(At), (4.4)

where the last step was by the chain rule. Therefore, we can bound the distance by

‖AT − A0‖F ≤
1√
8

∫ T

0

√
−∂t∆(At) ≤

−1√
4α

∫ T

0

∂t
√

∆(At) =

√
∆(A0)−

√
∆(AT)√

4α
,

where the first step is by Lemma 4.3.5, and the second is by Eq. (4.4). Recalling that
A = A0 and ∆(AT) ≥ 0, the proposition follows by squaring both sides.

Remark 4.3.7. Eq. (4.4) is an instance of the Lojaseiwicz gradient inequality from analysis
(see Prop 6.8 in [14]). This inequality is used in the result of Lerman [65] to show properties
of this same gradient flow in the much more general setting of Hamiltonian manifolds.

This result can be combined with the fast convergence analysis in Theorem 3.2.19
to replace the strong convexity assumption throughout gradient flow by sufficient strong
convexity at the initial input. We omit this proof, as well as its lift to the frame setting,
as will only use the pseudorandom analysis of the following subsection for our results on
the Paulsen problem. This strongly convex distance bound will be applied in Section 8.5
to show algorithmic convergence of the distance to a doubly balanced frame.

4.3.3 Pseudorandom Analysis

When the input matrix satisfies the pseudorandom condition given in Definition 3.3.1,
Theorem 3.3.10 shows exponential convergence of ‖∇‖∞ instead of ‖∇‖2

t = ∆. In this
section, we use this condition to directly prove a strong distance bound.

We first show an elementary result on the distance traveled that requires no conditions.

Lemma 4.3.8. For At the solution to gradient flow according to Definition 3.1.14 and
interval 0 ≤ t1 ≤ t2 ≤ ∞:

‖At2 − At1‖F ≤
√

∆(At1)(t2 − t1)

8
.

122

Proof. The proof is by a simple Cauchy-Schwarz as

√
8‖At2−At1‖F ≤

∫ t2

t1

√
−∂t∆(At) ≤

√∫ t2

t1

−∂t∆(At)

√∫ t2

t1

1 =
√

(∆(At1)−∆(At2))(t2 − t1),

where the first step is by Lemma 4.3.5, the second is by the Cauchy-Schwarz inequality,
and the last step is by the fundamental theorem of calculus. Note that ∆(At2) ≤ ∆(At1)
by Theorem 4.3.4 as we are following the gradient flow of ∆, so the term in the square root
is non-negative. The lemma follows as ∆(At2) ≥ 0.

Combining this with the exponential convergence of ‖∇At‖∞ for pseudorandom inputs
gives the strong distance bound.

Proof of Proposition 4.3.1. Since A satisfies the conditions of Theorem 3.3.10, we can
bound ∆ for all time:

∆(At) = ‖∇At‖2
t ≤ ‖∇L

At‖
2
∞ + ‖∇R

At‖
2
∞ ≤ 2(1 + α/2)2ε2e−

2αt
3e ,

where the first step was by Definition 4.3.2 of ∆, the second was by Lemma 3.2.7, and the
final step was by the convergence guarantee of Theorem 3.3.10(1).

To bound the distance travelled, we break the convergence into intervals tk := k 3e
2α

and
bound the distance of each interval:

‖A∞−A‖F ≤
∑
k≥0

‖Atk+1
−Atk‖F ≤

∑
k≥0

√
∆(Atk)

8
· 3e

2α
≤
∑
k≥0

√
3e(1 + α/2)2ε2e−k

8α
≤
√

8ε2

α
,

where the second step was by Lemma 4.3.8 and our choice of tk+1− tk = 3e
2α

, the third was
by substituting tk = k 3e

2α
into the bound on ∆(At) derived above, and the final step was

by a geometric sum and the assumption α ≤ 1
5
.

This result implies item (4) of Theorem 4.2.14, which will be used in the remainder
of this chapter to give optimal bounds for the Paulsen problem. Specifically, we show
optimal distance bounds for average case inputs in Section 4.4, and for worst case inputs
in Section 4.5.

123

4.4 Average Case Analysis

In this section, we show that random frames satisfy the conditions of Theorem 4.2.14.
As a consequence we get an optimal average case analysis for the Paulsen problem. As
another consequence of this strong convergence result on random frames, we are also able
to give very simple constructions of near-optimal Grassmannian frames, which was one of
the original motivations of [49] for the Paulsen problem.

In [63], we used fast convergence properties of Definition 4.1.6 to give strong distance
bounds for the Paulsen problem when the input satisfied a certain “spectral gap” condition.
In fact, [63] was already able to give beyond worst-case bounds by showing random frames
satisfied this condition with high probability. Franks and Moitra subsequently improved
this result in [35] and used it to show near-optimal sample complexity bounds for an
important statistical estimation problem. In Section 8.5, we use the pseudorandom analysis
in Theorem 4.2.14 to improve this result and give tight sample complexity results for the
statistical problem studied in [35].

The next theorem is a standard result in random matrix theory that was used in [35]
to show that random frames are nearly doubly balanced with high probability. Note that
each vector in the frame is a random unit vector, so the frame is equal-norm by definition.
Otherwise, if we had used random Gaussians, then the frame becomes less and less balanced
as n grows, which would make it difficult to apply any of our convergence results, and also
would defeat the purpose of generating these random frames.

Theorem 4.4.1 (Theorem 5.39 in [94], Theorem 5.14 in [35]). Let U ∈ Mat(d, n) be
a random matrix where the columns are independent and uniformly distributed as uj ∼
n−1/2Sd−1. Then there exists a universal constant C such that, for any ε ≤ 1

C
with n ≥ d

ε2
,∥∥∥∥∥

n∑
j=1

uju
∗
j −

1

d
Id

∥∥∥∥∥
op

.
ε

d
,

with probability at least 1− 2 exp(−Ω(ε2n)).

The next theorem states that random frames are pseudorandom with high probability.
This allows us to use Theorem 4.2.14 in order to give tight bounds for the Paulsen problem
in the average case.

Theorem 4.4.2. Let U ∈ Mat(d, n) be a random matrix where the columns are independent
and uniformly distributed as uj ∼ n−1/2Sd−1. For any 20e−d/9 ≤ β ≤ 1

2
, if n ≥ 15 d

β
, then U

is an (e−(6−3 log2 β), β)-pseudorandom frame according to Definition 4.2.11 with probability
at least 1− 2 exp(−βn

10
).

124

Remark 4.4.3. In both [63] and [35], the authors used a “spectral gap” strategy in order to
show fast convergence of random frames. We discuss the relationship between this spectral
condition and our strong convexity condition in Section 7.1.3.

This is the main result of the probabilistic analysis in Section 5.1. This probabilistic
analysis combined with the fast convergence from Theorem 4.2.14 implies a near-optimal
distance bound for the Paulsen problem on random inputs.

Theorem 4.4.4. Let U ∈ Mat(d, n) be a random frame where the columns are independent
and uniformly distributed as uj ∼ n−1/2Sd−1. Then there exists a universal constant C
such that if n ≥ Cd, the following results holds simultaneously with probability at least
1− exp(−Ω(n)):

1. U has size s(U) = 1 and is an ε-doubly balanced frame with ε2 . d
n

;

2. U is an (α ≥ Ω(1), 1
2
)-pseudorandom frame;

3. The solution to the frame scaling problem in Definition 4.2.1 on input U is a doubly
balanced frame V ∈ Mat(d, n) with

‖U − V ‖2
F . ε2.

Proof. Item (1) is by Theorem 4.4.1 and item (2) is by Theorem 4.4.2 applied for β = 1
2
.

By the union bound, both hold simultaneously with probability at least 1 − exp(−Ω(n)).
Therefore we have

α ≥ Ω(1) ≥ 16e · ε,

where the last step was by our assumption ε ≤ 1
C

, so we can apply Theorem 4.2.14 to show
the frame scaling solution on input U satisfies the distance bound in item (3).

Theorem 5.1 in [63] gave the same conclusion as Theorem 4.4.4 but required the stronger
conditions n & d4/3. This was improved to the condition n & d log2 d in [35] though the
authors did not require a distance bound in that work. Both of these works used a variant
of the strong convexity analysis in Section 3.2 in order to show fast convergence. The key
to our improvement is the pseudorandom analysis in Section 3.3, which has an optimal
requirement α

ε
& 1, instead of α

ε
& log d for strong convexity.

Note that by Example A.1.1, the distance function for the Paulsen problem must in
general grow linearly with ε. Therefore, the above theorem provides a beyond-worst case
analysis for random inputs. Further, it can be shown that these random frames are typically

125

ε-Parseval for ε2 & d
n
, so by Fact 4.1.5 this gives a lower bound for the distance that matches

Theorem 1.1.5 up to constants.

Random frames can also be shown to satisfy strong pairwise correlation properties
according to Definition 4.1.3. Therefore, this scaling approach gives a simple procedure to
construct near-optimal Grassmannian frames.

Theorem 4.4.5. Let U ∈ Mat(d, n) be a random matrix where the columns are independent
and uniformly distributed as uj ∼ n−1/2Sd−1. For any n & d large enough, with probability
at least 1 − 1

poly(n)
, if U∗ is the solution to the frame scaling problem on input U , then

V := U∗
‖U∗‖F

is doubly balanced and

Θ(V) .
1

n2

(
log n

d
+
d

n

)
where Θ is the correlation parameter given in Definition 4.1.3.

Proof. We follow the proof of Theorem 4.20 in [63] but supply our own pseudorandom
convergence analysis using Theorem 4.2.14. The result is trivial for log n & d as

Θ(V) = max
j 6=j′∈[n]

〈vj, vj′〉2 ≤ max
j
‖vj‖4

2 =
1

n2
,

where the first step was by Definition 4.1.3 of Θ, the second step was by the Cauchy-
Schwarz inequality, and the final step was by the fact that V is equal-norm of size s(V) = 1.
Therefore, for the following, we assume log n . d.

The random frame U has size s(U) = 1 by construction, and the condition n & d implies

that U is ε .
√

d
n
-doubly balanced by Theorem 4.4.1, and is (α = Ω(1), 1

2
)-pseudorandom

frame by Theorem 4.4.2 simultaneously with probability at least 1−exp(−Ω(n)). Our plan
is to bound Θ(U) with high probability, and then show that Θ(V) ≈ Θ(U) by the strong
scaling bounds of Theorem 4.2.14(2).

First note that by independence and orthogonal invariance, the random variable Xjj′ :=
n2〈uj, uj′〉2 for j 6= j′ has the same distribution as X := 〈v, e1〉2 with EX = 1

d
. Further,

Lemma 5.9 in [35] shows that X − 1
d

is (O(d−2), O(d−1))-subexponential according to Def-
inition 2.5.3. Therefore we can apply the Bernstein bound in Lemma 2.5.4 to show

Pr[X − EX ≥ θ] ≤ exp

(
−min

{
θ2

O(d−2)
,

θ

O(d−1)

})
.

126

Since Xjj′ has the same distribution as X for each pair j 6= j′, we can apply the union
bound with θ = C logn

d
for some large enough constant C to show

Pr
[
Θ(U) &

log n

dn2

]
≤ n2Pr[X −EX ≥ θ] ≤ n2 exp

(
−Ω(1) min

{
log2 n, log n

})
≤ n−Ω(1),

where the first step was by our choice of θ = C logn
d

and the union bound over all pair
j 6= j′ ∈ [n], the second step was by the concentration bound on X derived above, and the
final step was again by our choice of θ = C logn

d
for large enough leading constant C.

Now we apply fast convergence via scaling to show Θ(V) ≈ Θ(U). For n & d large
enough, U satisfies the conditions of Theorem 4.2.14, so we can lower bound the size by

s(U∗) ≥ s(U)−O
(ε2

α

)
≥ 1−O(ε2) = 1−O

(d
n

)
,

where the first step was by Theorem 4.2.14(3), the second step was because U is (α =
Ω(1), 1

2
)-pseudorandom, and in the final step substituted ε2 . d

n
by the doubly balanced

condition on U . Similarly, the scaling U∗ := eX∗/2UeY∗/2 satisfies

max{‖X∗‖op, ‖Y∗‖op} .
ε

α
.

√
d

n
,

where the first step was by the bound in Theorem 4.2.14(2) and the final step was by the
bounds shown above: α & 1 by pseudorandomness and ε2 . d

n
by the doubly balanced

condition on U .

We can use the above facts to bound the change in the correlation of V := U∗
‖U∗‖F

=
U∗√
s(U∗)

. We first rewrite the correlations of V in terms of U :

〈vj, vj′〉 =
1

s(U∗)
〈eX∗/2uje(Y∗)jj/2, eX∗/2uje

(Y∗)j′j′/2〉 =
e(Y∗)jj/2e(Y∗)j′j′/2

s(U∗)
〈uj, eX∗uj′〉.

Now we use the fact that (X∗, Y∗) are close to the origin, so we can bound

|〈vj, vj′〉| ≤
e((Y∗)jj+(Y∗)j′j′)/2

s(U∗)

(
|〈uj, uj′〉|+ |〈uj, (eX∗ − Id)uj′〉|

)
. |〈uj, uj′〉|+ |〈uj, (eX∗ − Id)uj′〉| . |〈uj, uj′〉|+ ‖uj‖2‖uj′‖2‖X∗‖op,

where in the first step we separated eX∗ = Id + (eX∗ − Id), in the second step we used
maxj∈[n] |Yjj| = ‖Y∗‖op . ε

α
. 1 and the lower bound s(U∗) ≥ 1−O(ε2) to bound the first

127

term by a constant, and in the third step we used the definition of the operator norm and
the Taylor approximation |ex − 1| . |x| for |x| . 1 to bound the second term.

By the correlation bound on Θ(U) derived above, this implies

Θ(V) = max
j 6=j′∈[n]

|〈vj, vj′〉|2 . max
j 6=j′

(
|〈uj, uj′〉|+ ‖uj‖2‖uj′‖2‖X∗‖op

)2

≤
(√

Θ(U) +
O(ε)

αn

)2

.
1

n2

(
log n

d
+
d

n

)
,

where the first step was by Definition 4.1.3 of correlation, in the second step we applied the
perturbation bound derived above to rewrite |〈vj, vj′〉| in terms of U and the scaling X∗,
in the third step we used uj ∈ n1/2Sd−1 by definition as well as the bound ‖X∗‖op . ε

α
. ε

derived from Theorem 4.2.14(2), and in the final step we used the simple fact (a + b)2 ≤
2(a2 + b2) and substituted in the value Θ(U) . logn

dn2 , α & 1, and ε2 . d
n

derived above.

4.5 Solution to the Paulsen Problem

This section collects together the results necessary to show our optimal distance bound for
the Paulsen problem. The perturbation argument and its proof are given in Section 5.2
and Section 5.3.

We follow the same strategy as [62], by showing that for any ε-doubly balanced input
U ∈ Mat(d, n) to the Paulsen problem, there is a nearby perturbation V := U + E such
that V satisfies the conditions of Theorem 4.2.14. Combining these two steps gives a strong
distance bound for Conjecture 4.1.4. The next two theorems contain the main perturbation
step requirements.

We separate the perturbation argument into two cases for the following technical rea-
sons. To show existence of the frame satisfying the properties above, we will add random
noise to the input; in the asymptotic case of n→∞, with high probability there will exist
some j ∈ [n] such that the random noise in this column will make the perturbation V have
large error ∇R

V . To combat this, we re-normalize all the columns in this large n case, and so
we must argue that this different process still satisfies our requirements. These arguments
are proven in full detail in Section 5.2 and Section 5.3 respectively.

Theorem 4.5.1. Let frame U ∈ Mat(d, n) have size s(U) = 1 and be ε-doubly balanced.
Then, for any β ≤ 1

2
, there is a universal constant C = Cβ depending only on β such that

if d ≥ C,Cd ≤ n ≤ ed/C , ε ≤ 1/C, then there exists a frame V satisfying

128

1. V has size s(V) = 1 and is 2ε-doubly balanced;

2. V is (α, β)-pseudorandom as a frame with α ≥ 16e(2ε);

3. ‖V − U‖2
F ≤ Oβ(ε).

Theorem 4.5.2. Let frame U ∈ Mat(d, n) have size s(U) = 1 and be ε-doubly balanced.
Then, for any β ≤ 1

2
, there is a universal constant C = Cβ depending only on β such that

if d ≥ C, n ≥ Cd, ε ≤ 1
Cd

, then there exists a frame V satisfying

1. V has size s(V) = 1 and is 4ε-doubly balanced;

2. V is (α, β)-pseudorandom as a frame with α ≥ 16e(4ε);

3. ‖V − U‖2
F ≤ Oβ(ε).

Note that the first theorem has a two-sided condition Ω(d) ≤ n ≤ eO(d), whereas the
goal of the Paulsen problem is to develop bounds that are independent of n. Therefore,
we supplement with the second theorem, which only has a lower bound condition n & d,
but requires much smaller initial error ε . 1

d
.

Given these perturbation theorems, we complete the distance analysis for the Paulsen
problem in almost the entire parameter regime.

Theorem 4.5.3. There exists a universal constant C such if n ≥ Cd and

n ≤ ed/C or ε ≤ 1

Cd
,

then for any ε-doubly balanced frame U ∈ Mat(d, n) of size s(U) = 1, there exists a doubly
balanced V ∈ Mat(d, n) with size s(V) = 1 such that

‖U − V ‖2
F . ε.

In the language of Conjecture 4.1.4, p(d, n, ε) . ε when the above conditions are satisfied.

Proof. We first deal with some corner cases. If d ≤ C, then the main results of [46] (or
even its weaker form in [62]) give

p(d, n, ε) . dε . ε.

129

Similarly, if ε ≥ 1
C

then choosing V as an arbitrary doubly balanced frame gives

n∑
j=1

‖vj − uj‖2
2 ≤

n∑
j=1

(‖vj‖2 + ‖uj‖2)2 . 1 . ε,

where the first step was by triangle inequality, the second was because ‖uj‖2 ≈ ‖vj‖2 = 1
n
,

and in the last step we used the assumption ε ≥ 1
C

.

In the remaining cases, we apply Theorem 4.5.1 for d ≥ C,Cd ≤ n ≤ ecd, ε ≤ 1
C

, and
Theorem 4.5.2 for d ≥ C, n ≥ Cd, ε ≤ 1

Cd
, both for β = 1

2
and C = Cβ large enough. So

let V be the output of those theorems. Then V satisfies the pseudorandom condition in
Theorem 4.2.14, which implies V∞ is a doubly balanced frame. To satisfy the size condition,
we normalize Ṽ := V∞√

s(V∞)
and bound the distance:

‖Ṽ − U‖F ≤ ‖Ṽ − V∞‖F + ‖V∞ − V ‖F + ‖V − U‖F

. |(1−O(ε))−1/2 − 1|+
√
ε2

ε
+
√
ε .
√
ε,

where the first step was by triangle inequality, in the second step we bounded the first term
using the definition Ṽ := V∞√

s(V∞)
and the bound s(V∞) ≥ s(V)−O(ε2/α) = 1−O(ε) from

item (3) of Theorem 4.2.14 since α & ε, the second term by the distance bound in item
(4) of Theorem 4.2.14, and the third term by the perturbation bound in Theorem 4.5.1(3)
and Theorem 4.5.2(3) respectively, and the final inequality is by Taylor approximation
|
√

1− x− 1| . |x| for |x| . 1.

Remark 4.5.4. In view of the lower bound in Example A.1.1, the above theorem gives a
tight distance bound for all cases except: (1) d ≥ C, n ≤ Cd, ε ≤ 1

C
, and (2) d ≥ C, n ≥

ecd, 1
C
≥ ε ≥ 1

Cd
. For these remaining cases, we resort to the O(dε) bound of Hamilton

and Moitra [46]. We once again remark that their result is entirely unconditional and
the procedure is quite a bit simpler. We believe that our perturbation approach can be
improved to cover all cases, but some new ideas are required to give a unified argument for
all parameter settings.

In the following Chapter 5, we will prove that Theorem 5.1.6 showing random frames
are pseudorandom, as well as the perturbation statements in Theorem 4.5.1 and Theo-
rem 4.5.2.

130

Chapter 5

Smoothed Analysis of the Paulsen
Problem

In this chapter we prove strong error and pseudorandom properties for certain random
distributions of frames. In Section 5.1 we consider the setting of random unit vectors, which
will be used to prove optimal average-case bounds for the Paulsen problem in Section 4.4.
Then in Section 5.2 and Section 5.3 we show that a random perturbation of a nearly
doubly balanced frames satisfies the pseudorandom property of Theorem 4.2.14 with high
probability. This smoothed analysis approach allows us to prove an optimal distance bound
for the Paulsen problem in Section 4.5.

All of the results in this chapter will deal with real vectors and vector spaces. This is
not without loss of generality, but the real case is easier to understand (for the author).
We will mention how each definition and result can be simply lifted to the complex case
as we go along.

5.1 Random Frames

In this section, we will study the random frame V = {v1, ..., vn}, where each vj is drawn
independently and uniformly from 1√

n
Sd−1. Note that V is equal norm and of size s(V) =

1 by construction. It is also nearly Parseval for n large enough with high probability
according to Theorem 4.4.1. Here we will show that for every β ≤ 1

2
and n large enough

(as a function of d, β), V is an (Ω(1), β)-pseudorandom frame with high probability.

131

We first show that Definition 4.2.11 of (·, β)-pseudorandom frames is equivalent to a
spectral lower bound on all subsets {vj}j∈T for |T | = βn.

Lemma 5.1.1. Frame V ∈ Mat(d, n) is (α, β)-pseudorandom according to Definition 4.2.11
iff

min
T∈([n]

βn)
λd

(∑
j∈T

vjv
∗
j

)
= min

T∈([n]
βn)

inf
ξ∈Sd−1

∑
j∈T

|〈ξ, vj〉|2 ≥ α
β

d
,

where λd denotes the d-th largest eigenvalue.

Proof. Recall that frame V is pseudorandom according to Definition 4.2.11 iff Ξ∗V is a
pseudorandom matrix according to Definition 3.3.1 for every orthonormal basis Ξ. By
Lemma 3.3.3, the pseudorandom matrix condition reduces to a lower bound on each row
i ∈ [d] and column subsets T ∈

(
[n]
βn

)
. We lift this to the frame setting by taking an infimum

over all orthonormal bases (U(d) if F = C and O(d) if F = R). So for fixed T ∈
(

[n]
βn

)
,

inf
Ξ

min
i∈[d]

∑
j∈T

|〈ξi, vj〉|2 = inf
ξ∈Sd−1

∑
j∈T

|〈ξ, vj〉|2,

where we used (Ξ∗V)ij = 〈ξi, vj〉 by Eq. (2.1), and the equality follows as ∪Ξ{ξ1, ..., ξd} =
Sd−1 where the union is over all orthonormal bases (by a similar reasoning to the proof
of Lemma 4.2.4). The lemma follows by requiring this condition for every T ∈

(
[n]
βn

)
as in

Definition 4.2.11 of pseudorandomness.

Our plan is to show this spectral lower bound for a single subset with high probability,
and then show the pseudorandom condition by a union bound over subsets. Unfortunately,
the standard concentration properties of unit vectors, i.e. the ones used in Theorem 4.4.1,
can only give exp(−βn/4) as an upper bound on the failure probability for each subset,
which is slightly weaker than necessary for a union bound over

(
n
βn

)
≈ 2βn(1−log2 β) subsets.

Therefore, in the next lemma, we show that the normalization vj =
gj√
n‖gj‖2 for random

Gaussian vectors {gj ∼ N(0, 1
n
Id)}j∈[n] only decreases the pseudorandom condition by a

small amount with high probability. This allows us to use the stronger lower tail bounds
in Corollary 2.5.16 for Gaussian random vectors to give a tighter failure probability for the
sets. We emphasize that this reduction is only for the analysis of pseudorandomness, and
the frame we construct still comprises of random unit vectors.

Lemma 5.1.2. Let U ∈ Mat(d, n) be an (α, β)-pseudorandom frame according to Defini-
tion 4.2.11, and V = UR a right-scaling with R ∈ diag(n). If the subset

TB := {j ∈ [n] | |Rj|2 ≤ τ}

132

satisfies |TB| ≤ β′n, then V is a (τα β
β+β′

, β + β′)-pseudorandom frame.

Proof. We expand the condition of Lemma 5.1.1 for V : for T ∈
(

[n]
(β+β′)n

)
and ξ ∈ Sd−1,∑

j∈T

|〈ξ, vj〉|2 =
∑
j∈T

|Rj|2|〈ξ, uj〉|2 ≥
∑

j∈T−TB

τ |〈ξ, uj〉|2 ≥ τα
|T − TB|

dn
≥ τα

β

β + β′
|T |
dn

,

where in the second step we used |Rj|2 ≥ τ for j ∈ TB by definition, the third step is by
the pseudorandom property of U applied to |T | − |TB| ≥ βn, and the final step is again by
|T | − |TB| ≥ βn and |T | = (β + β′)n.

Below, we show that the normalization vj =
gj√
n‖gj‖2 does not affect the vectors by too

much, so that we can use the lemma above to reduce our analysis to showing the random
Gaussian frame is pseudorandom.

Lemma 5.1.3. Let G ∈ Mat(d, n) be a random frame where each column is generated
independently as gj ∼ N(0, 1

dn
Id), and let V be the normalization, defined as vj :=

gj√
n‖gj‖2 .

Then for any β′ ≥ 20e−d/9, the random variable TB := {j ∈ [n] | n‖gj‖2
2 ≥ 2} satisfies

Pr[|TB| ≥ β′n] ≤ exp(−Ω(β′n)).

Proof. Note nd‖gj‖2
2 ∼ χ(d) is distributed as a chi-squared variable with d degrees of

freedom by Definition 2.5.9, so letting Xj be the indicator variable for the event j ∈ TB,
we can bound the mean by

EXj = Pr[n‖gj‖2
2 ≥ 2] ≤ Pr

[
χ(d) ≥ d(1 +

2√
9

+
2

9
)
]
≤ exp

(
− d

9

)
,

where we used the bound in Theorem 2.5.11 for χ(d) with θ =
√

d
9
.

Therefore E|TB| =
∑

j∈[n] EXj ≤ ne−d/9. To show a high probability bound on |TB|, we

can use the fact that {Xj} are mutually independent since the vectors {gj} are mutually
independent. Now we can apply the Chernoff bound to show

Pr
[
|TB| ≥ β′n

]
= Pr

[n∑
j=1

Xj ≥ β′n
]
≤ e−E|TB |

(eE|TB|
β′n

)β′n
≤ exp(−Ω(β′n)),

where the first step was by definition |TB| =
∑

j∈[n] EXj, the second step was by Theo-

rem 2.5.2 applied to Bernoulli random variables {Xj}j∈[n], and in the final step we used
the bound β′n ≥ 20E|TB|.

133

At this point, we can show pseudorandomness of V by lower bounding eigenvalues of
random Gaussian matrices. In the next two lemmas, we use standard Gaussian concen-
tration and net arguments to prove stronger lower tail bounds for eigenvalues of Gaussian
random matrices. We first show that for each ξ the quantity we want to lower bound is
very well concentrated.

Lemma 5.1.4. For fixed ξ ∈ Sd−1, T ∈
(

[n]
βn

)
and independent random Gaussian vectors

g1, ..., gN ∼ N(0, Id), the random variable

rξ := 〈ξξ∗,
N∑
j=1

gjg
∗
j 〉 =

N∑
j=1

|〈ξ, gj〉|2

is distributed as χ(N), a chi-squared variable with N degrees of freedom. This implies that
E[rξ] = N and for any c ≥ 5,

Pr
[
rξ ≥ N(1 + c)

]
≤ exp

(
−cN

4

)
, and Pr

[
rξ ≤ e−cN

]
≤ exp

(
−2

5
cN

)
.

Proof. The distribution and mean statements follow from Definition 2.5.9 of chi-squared
variables. The concentration of the upper bound follows from Theorem 2.5.11 by choosing
θ2 = c

4
≥ 1, and the concentration for the lower bound is exactly Corollary 2.5.16.

Note that we only need a lower bound for
∑

j∈T |〈ξ, gj〉|2 by Lemma 5.1.1. We use the
upper bound from Lemma 5.1.4 in the following proof so that we can bound the operator
norm and give a more precise net argument for the lower bound using Lemma 2.6.6.

Lemma 5.1.5. For random Gaussian matrix G = [g1, ..., gN] where gj ∼ N(0, Id) and any
c ≥ 5, if N & 10d then

λmin(GG∗) = inf
ξ∈Sd−1

‖ξ∗G‖2
2 ≥

4

9
e−cN

with probability at least 1− 2 exp(− cN
3

).

Proof. Our plan is to use Lemma 5.1.4 to bound each direction ξ in an appropriate netNL ⊆
Sd−1. Since random Gaussian matrices are well-conditioned with very high probability, we
can decrease the size of the net required for our union bound if we first bound the largest
eigenvalue (according to Lemma 2.6.6).

134

So let NU ⊆ Sd−1 be an ηU = 1
3
-net according to Definition 2.6.2. Then

Pr
[

sup
ξ∈NU

‖ξ∗G‖2 ≥
√
N(1 + 2c)

]
≤
∑
ξ∈NU

Pr
[
‖ξ∗G‖2 ≥

√
N(1 + 2c)

]
≤ exp

(
2d− cN

2

)
≤ exp

(
− cN

3

)
,

where the first step was by union bound over NU , in the second step we applied Fact 2.6.3
to bound |NU | ≤ (1+2η−1

U)d ≤ 7d ≤ e2d and Lemma 5.1.4 with 2c to bound the probability
for rξ(G) = ‖ξ∗G‖2

2, and the last step was by the assumption N ≥ 10d, c ≥ 5 so d ≤ cN
50

.

Assuming this event occurs, Lemma 2.6.5 shows

sup
ξ∈Sd−1

‖ξ∗G‖2 ≤
3

2
sup
ξ∈NU

‖ξ∗G‖2 ≤
3

2

√
N(1 + 2c).

Now we perform a similar argument for the lower bound, so let NL ⊆ Sd−1 be an ηL-net

with ηL = 1
3

√
e−c

(3
2

)2(1+2c)
. Then Fact 2.6.3 gives a bound on the size of the net

|NL| ≤ (1 + 2η−1
L)d ≤ (1 + 9

√
ec(1 + 2c))d ≤ e2cd,

where the final inequality was by the assumption c ≥ 5. Therefore, we can lower bound

Pr
[

inf
ξ∈NL

‖ξ∗G‖2
2 ≤ e−cN

]
≤ exp

(
2cd− 2

5
cN

)
≤ exp

(
−cN

3

)
,

where we used the union bound, the derived bound on |NL|, and Lemma 5.1.4 to bound
the probability, and the final step was by the assumption c ≥ 5 so that N ≥ 30d.

Now assume that both events occurred:

inf
ξ∈NL

‖ξ∗G‖2 ≥
√
e−cN, and sup

ξ∈Sd−1

‖ξ∗G‖2 ≤
3

2

√
N(1 + 2c),

which by the union bound happens with probability at least 1 − 2 exp(− cN
3

). Then by
Lemma 2.6.6,

inf
ξ∈Sd−1

‖ξ∗G‖2 ≥ inf
ξ∈NL

‖ξ∗G‖2 − ηL sup
ξ∈Sd−1

‖ξ∗G‖2 ≥
√
e−cN

(
1− 1

3

)
,

where the last step was by our choice of ηL. Squaring both sides gives the result.

135

By taking a union bound over all sets of size βn, we can show pseudorandomness of G.
And combining this with our reduction gives pseudorandomness of V .

Theorem 5.1.6. Let G ∈ Mat(d, n) be a random frame where each column is generated in-
dependently as gj ∼ N(0, 1

dn
Id), and let V be the right normalization given by vj :=

gj√
n‖gj‖2 .

Then for any 20e−d/9 ≤ β ≤ 1
2
, if n ≥ 15 d

β
, then G is (4

9
e−(4−3 log2 β), 4

5
β)-pseudorandom

with probability at least 1 − exp(−βn/10), and V is (e−(6−3 log2 β), β)-pseudorandom with
probability at least 1− 2 exp(−βn/10).

Note that the second statement in this theorem on random unit vectors is exactly a
restatement of Theorem 4.4.2.

Proof. By Lemma 5.1.1, to show pseudorandomness of G it is enough to lower bound the
smallest eigenvalue of every 4

5
βn subset of vectors. Note that each subset GT = {gj}j∈T

with T ∈
([n]

4
5
βn

)
is a random Gaussian matrix where each entry is from N(0, 1

dn
) (not the

standard Gaussian), and further that |T | = 4
5
βn ≥ 10d by our assumption n ≥ 15 d

β
.

Therefore, we apply Lemma 5.1.5 to each T ∈
([n]

4
5
βn

)
with c = 3(1− log2(4

5
β)) ≤ 4−3 log2 β

to show

Pr

 min
T∈([n]

4
5βn

)
λmin(GTG

∗
T) ≤ 4

9

e−c

d
· 4

5
β

 ≤ (2

e

) 4
5
βn(1−log2(4

5
β))

≤ exp(−βn/10),

where GT = {gj}j∈T , the bound
(
n
β′n

)
≤ 2

4
5
βn(1−log2(4

5
β)) is by Fact 2.6.1, and the bound on

the failure probability of each subset comes from Lemma 5.1.5 with c = 3(1 − log2(4
5
β)).

This shows G is (α := 4
9
e−(4−3 log2 β), 4

5
β)-pseudorandom with probability at least 1 −

exp(−βn/10).

Next we show that this implies pseudorandomness for V . Lemma 5.1.3 shows that if
TB := {j ∈ [n] | ‖gj‖2

2 ≥ 2}, then

Pr
[
|TB| ≥

1

5
βn
]
≤ exp

(
−βn

10

)
.

Since vj =
gj√
n‖gj‖2 , this is equivalent to considering V = GR with Rj = 1√

n‖gj‖2 so that

TB := {j ∈ [n] | |Rj|2 ≤ τ = 1
2
} satisfies |TB| ≤ 1

5
βn. Then assuming that we are in the

event where G is (α := 4
9
e−(4−3 log2 β), 4

5
β)-pseudorandom, we can apply Lemma 5.1.2 with

136

R and τ defined above to show that, with additional failure probability at most e−βn/10, V
is (α′, 4

5
β + 1

5
β)-pseudorandom for

α′ ≥ τα
4
5
β

4
5
β + 1

5
β
≥ 1

2
· 4

9
e−(4−3 log2 β) · 4

5
≥ e−(6−3 log2 β),

where we substituted τ = 1
2

and the pseudorandomness of G shown above.

Theorem 5.1.6 is used along with the error bound in Theorem 4.4.1 to give an opti-
mal average-case analysis for the Paulsen problem in Section 4.4. Below we discuss the
relationship of this result to the previous works of [63] and [35] on random frames.

In [63], we first studied random frames in the setting of the Paulsen problem. In
that work, we used a slightly different spectral gap condition to show fast convergence of
the scaling dynamical system of Definition 4.1.6. The relation between the spectral gap
condition of [63] and strong convexity will be discussed in more detail in Chapter 7. We
were able to show, using a trace method, that n & d4/3 vectors suffice in order for the
random frame to satisfy the spectral gap condition of [63]. This implied strong distance
bounds for the Paulsen problem as well as strong bounds on the scaling solution for random
frames with n & d4/3.

In [35], Franks and Moitra improved this analysis by showing n & d log d vectors suffice
in order for random frames to satisfy the spectral gap condition. Their result went through
an intermediate step of defining the Cheeger constant of a frame and then borrowing from
spectral graph theory to show that a large Cheeger constant implied the spectral gap
assumption of [63].

In our analysis, we are able to use the pseudorandom analysis of Section 3.3. Therefore,
we show in Theorem 5.1.6 that n & d vectors suffice for a random frame to satisfy the
pseudorandom condition in Definition 4.2.11, which then implies strong distance bounds
and strong bounds on the scaling solution of random frames. This gives a strictly stronger
result than the random frame analysis of [63]. Further, the main application in [35] was
to show that bounds on the scaling solution of a random frame implied strong accuracy
bounds on Tyler’s M-estimator for a problem in high-dimensional statistics. They were
also able to prove that when n & d log2 d, this M-estimator could be computed by fast
algorithm. In Section 8.5, we will be able to improve their result to show n & d vectors
suffice for both of these results.

137

5.2 Perturbation Argument for small n

In this section, we will use smoothed analysis to prove the following generalization of
Theorem 4.5.1.

Theorem 5.2.1. For ε-doubly balanced frame U ∈ MatR(d, n) of size s(U) = 1 and ε ≤ 1
4
,

let 1
4
≥ δ > 0 be the magnitude of noise added in the perturbation process V = U + δG in

Definition 5.2.2. Then for any β ≤ 1
2
, θ ≤ 1

4
, if d ≥ 100

min{β,θ2} and 100 d
min{β,θ2} ≤ n ≤ e

θ2d
100 ,

then the output of the perturbation process V = U + δG satisfies:

1. (Distance): ‖V − U‖2
F = δ2s(G) and s(V) = 1 + δ2s(G) with s(G) ∈ 1± θ;

2. (Error): max{‖∇L
V ‖op, ‖∇R

V ‖op} ≤ (1 + δ2)ε+ 6θδ2;

3. (Pseudorandom): V is an (e−(4−3 log2 β)δ2, β)-pseudorandom frame;

simultaneously with probability at least 1− 6 exp(− θ2d
10

).

Before we give the formal details of the perturbation argument, let us see how this
smoothed analysis argument implies the existence of perturbation given in Theorem 4.5.1
in the F = R case. This can be simply lifted to C by the discussion in Remark 5.2.4.

Proof of Theorem 4.5.1. We will show that there is an appropriate choice of parameters
such that, for V the output of Theorem 5.2.1, the normalization V ′ := V

‖V ‖F
satisfies the

three requirements of Theorem 4.5.1 with non-zero probability.

To this end, let δ2 = e9−3 log2 βε and θ = e−(11−3 log2 β). Clearly θ ≤ 1
2

by the assumption
that β ≤ 1

2
, and we can take Cβ large enough in Theorem 4.5.1 so that

d ≥ 100

min{θ2, β}
and

100d

min{β, θ2}
≤ n ≤ eθ

2d/40,

and we can apply Theorem 5.2.1. Therefore, its three conclusions hold simultaneously with
failure probability at most

6 exp
(
− θ2d

10

)
< 1,

where the last inequality was by the assumption that d ≥ 100
θ2 . Below, we verify the

distance, error, and pseudorandom conditions of V ′.

138

1. (Distance): By item (1) of Theorem 5.2.1, s(V) = s(U) + δ2s(G) > s(U) = s(V ′).
Note that V ′ is the projection of V onto the Euclidean ball in Mat(d, n), so by
Lemma 2.3.13, this projection only shrinks the distance to U :

‖V ′ − U‖2
F ≤ ‖V − U‖2

F = δ2s(G) ≤ (1 + θ)δ2 ≤ 1.1 · e9−3 log2 βε,

where the last inequality was by the distance bound in Theorem 5.2.1(1) and the
choice of parameters δ2 = e9−3 log2 βε and θ = e−(11−3 log2 β). This proves item (3) of
Theorem 4.5.1.

2. (Error): We can apply item (2) of Theorem 5.2.1 to show

max{‖∇L
V ‖op, ‖∇R

V ‖op} ≤ ε(1 + δ2) + 6θδ2 ≤ ε
(

1 +
1

16
+

6

e2

)
≤ 2ε,

where the second step was by our choice of parameters θδ2 = e−(11−3 log2 β)e9−3 log2 βε =
e−2ε. Since s(V) > s(U) = 1 by the calculation above, the normalization V ′ is 2ε-
doubly balanced. This proves item (1) of Theorem 4.5.1.

3. (Pseudorandom): By item (3) of Theorem 5.2.1, V ′ is (α, β)-pseudorandom with

α ≥ e−(4−3 log2 β)δ2

s(V)
≥ e5ε

1 + δ2(1 + θ)
≥ 16e(2ε),

where in the second step we used our choice of δ2 = e9−3 log2 βε for the numerator
and the size bound s(V) ≤ 1 + δ2(1 + θ) from item (1) for the denominator, and the
final inequality was by δ2(1 + θ) ≤ 1

8
by our choice of θ = e−(11−3 log2 β) ≤ 1 and the

assumption δ2 ≤ 1
16

. This proves item (2) of Theorem 4.5.1.

Therefore the goal of this section will be to establish the more general Theorem 5.2.1.
We will describe the exact construction of noise G in Section 5.2.1, and then prove the
error and pseudorandom properties in Section 5.2.2 and Section 5.2.3 respectively.

5.2.1 Perturbation Process

The work of Section 5.1 intuitively shows that adding random Gaussian noise V = U + δG
will improve the pseudorandom property of V by Ω(δ2). But if U is nearly doubly balanced,
this noise may cause the error of V to blow up. Specifically, consider for any ξ ∈ Sd−1:

rξ(V)− rξ(U) = 〈ξξ∗, (U + δG)(U + δG)∗〉 − 〈ξξ∗, UU∗〉 = 2δ〈Uξ,Gξ〉+ δ2〈ξξ∗, GG∗〉,

139

so that ‖∇L
V ‖op = supξ∈Sd−1 |d · rξ(V) − s(V)| could grow by Ω(δ) due to the cross-term

2δ〈Uξ,Gξ〉. For small δ � 1, this means that adding δG random noise will cause error to
grow much faster than pseudorandomness, which only grows at rate O(δ2), and so we will
not be able to apply Theorem 4.2.14 for fast convergence.

To maintain small error of the perturbation and satisfy the α & ε condition required for
our pseudorandom analysis, we add linear constraints to the noise so that the first order
term vanishes for both marginals. Explicitly, for fixed input U ∈ Mat(d, n), we add two
sets of constraints to the noise G ∈ Mat(d, n): UG∗ = GU∗ = 0 so that the row error does
not blow up; and diag(G∗U) = {〈Gej, Uej〉}nj=1 = 0 so that the column error does not
blow up. This is formalized below by choosing the appropriate covariance matrix for our
random noise.

Definition 5.2.2 (Perturbation Process). For input frame U ∈ Mat(d, n) we define two
subspaces of Rd ⊗ Rn:

L := {vec(X) | UX∗ = XU∗ = 0}, R := {vec(X) | diag(X∗U) = 0}.

Then the orthogonal projections onto these subspaces are denoted Idn − PL and Idn − PR
respectively. Further, PU : Rd⊗Rn → Rd⊗Rn is defined as the orthogonal projection onto
the intersection L ∩ R. To reduce clutter, we may drop the subscript P = PU if the input
frame U is understood.

For any δ ≥ 0, the input is δ-perturbed to V := U + δG where vec(G) ∼ N(0, 1
dn
PU).

We can show that adding this random noise will increase the error by O(δ2) and increase
the pseudorandom property by Ω(δ2) with high probability. We need the conditions on
d, n, β, θ to apply Gaussian concentration, as we require various random variables to have
sufficient degrees of freedom. In the next proposition, we collect properties which will be
helpful to analyze the noise, since Definition 5.2.2 does not give an explicit formula for the
projection PU .

Proposition 5.2.3. For input frame U ∈ Mat(d, n) and PL, PR, PU from Definition 5.2.2:

1. PL, PR can be explicitly defined as

PL := Id ⊗ U∗(UU∗)−1U, PR :=
n∑
j=1

uju
∗
j

‖uj‖2
2

⊗ Ejj,

and we can implicitly define PU such that ker(PU) = Im(PL) + Im(PR).

140

2. The following relations hold for any vec(X) ∈ L ∩R and for any ξ ∈ Rd, j ∈ [n]:

rξ(U +X) = 〈ξξ∗, (U +X)(U +X)∗〉 = 〈ξξ∗, UU∗ +XX∗〉 = rξ(U) + rξ(X),

cj(U +X) = ‖(U +X)ej‖2
2 = ‖Uej‖2

2 + ‖Xej‖2
2 = cj(U) + cj(X).

As a corollary s(U +X) = s(U) + s(X).

3. PU satisfies the spectral bounds

max{0, Idn − PL − PR} � PU � Idn −max{PL, PR}.

Here max is used to denote that PU � Idn − PL and PU � Idn − PR.

4. If vec(G) ∼ N(0, 1
dn
PU) then the size s(G) is distributed as 1

dn
χ(k) where χ(k) has

k = Tr[PU] = rk(PU) degrees of freedom and nd−d2−n ≤ k ≤ min{(d−1)n, d(n−d)}.

Proof. 1. By Definition 5.2.2, we have that for any vec(X) ∈ R, each column of X is
orthogonal to the corresponding column of U . This means that the image of PR is
exactly the span of the vectors {uj ⊗ ej}j∈[n]. Note that these are all orthogonal
(since 〈ej, ej′〉 = 0 for j 6= j′) so we can explicitly define

PR =
n∑
j=1

uju
∗
j

‖uj‖2
2

⊗ Ejj.

Similarly, Definition 5.2.2 shows that for any vec(X) ∈ L, each row of X is orthogonal
to the row span of U . The projection onto the row span of U is given by Eq. (2.3)
as U∗(UU∗)−1U . Since the constraint on every row is the same, item (1) follows.

2. Assume vec(X) ∈ Im(PU) and calculate

(U +X)(U +X)∗ = UU∗ + UX∗ +XU∗ +XX∗ = UU∗ +XX∗,

‖(U +X)ej‖2
2 = ‖Uej‖2

2 + 2〈Uej, Xej〉+ ‖Xej‖2
2 = ‖Uej‖2

2 + ‖Xej‖2
2,

where the cross terms in both lines vanish by definition of subspace vec(X) ∈ L and
vec(X) ∈ R respectively. The corollary follows simply as

s(U +X) = Tr[(U +X)(U +X)∗] = Tr[UU∗ +XX∗] = s(U) + s(X),

where the first step and the last step were by Definition 4.1.1 of size, and the second
step was by the previous calculation to showing the cross terms vanish.

141

3. In this proof, we will use the various properties of orthogonal projections described
in Section 2.1.7. By part (1), Im(PU) ⊆ L so PU � I − PL. Similarly Im(PU) ⊆
R =⇒ PU � I − PR.

For the lower bound, we have that PU � 0 since it is an orthogonal projection.
Then, note that Idn − PL − PR has eigenvalue 1 on L ∩ R and eigenvalue 0 or −1
on the complement. This is dominated by PU , which has eigenvalue 1 on L ∩R and
eigenvalue 0 on the complement.

4. rk(PU) = Tr[PU] because PU is an orthogonal projection. Now we perform dimension
counting to bound the ranks:

dim(L) = rk(PL) = rk(Id) rk(U∗(UU∗)−1U) = d2,

where we used the property of tensor products in the second step and the fact that
U is full rank in the final step; dim(R) = rk(PR) = n since there are n orthogonal
terms. Therefore, the bounds follow by taking the trace of the spectral bounds in
item (3).

Also, s(G) = 1
dn
〈vec(G), PU vec(G)〉, and the eigenvalues of PU are in {0, 1}, so the

statement follows by Definition 2.5.9 of chi-square variables with k = rk(PU).

We will use these properties to bound the error of V in Section 5.2.2 and show V is a
pseudorandom frame in Section 5.2.3 with high probability.

Remark 5.2.4. We could have chosen the weaker constraint UG∗+GU∗ = 0, which would
decrease the number of constraints by a constant factor. This would improve some of the
results below as the noise would have more degrees of freedom. We chose this model for
simplicity, as it is easier (for this author) to reason about row spaces.

Also, here we focus on the case F = R. The extension to C is quite simple: We can
replace the real Gaussian distribution with the complex one, and the orthogonality relations
are with respect to the complex inner product on the vector space. Again this could improve
the number of degrees of freedom by a constant factor.

We sacrifice these small constant factors for the sake of clarity. Of course, our approach
gives a real perturbation if the original vector space is real, and the scaling algorithm also
remains within this real vector space, which may be desirable for applications.

142

5.2.2 Error

In this subsection, we bound the error of V = U + δG after the perturbation process in
Definition 5.3.2. Recall that according to Definition 4.2.3 and Definition 4.2.10, the error
can be written as

‖∇L
V ‖op = sup

ξ∈Sd−1

∣∣∣d · rξ(V)− s(V)
∣∣∣ and ‖∇R

V ‖∞ = max
j∈[n]

∣∣∣n · cj(V)− s(V)
∣∣∣.

We use the orthogonality properties in Proposition 5.2.3 to decompose this error into
two terms, one depending on U and the other on the noise G. This allows us to use the
fact that U is ε-doubly balanced to bound the error of perturbation V .

Lemma 5.2.5. For ε-doubly balanced U ∈ Mat(d, n) of size s(U) = 1, and perturbation
V = U + δG according to Definition 5.2.2,

‖∇L
V ‖op ≤ ε+ δ2 sup

ξ∈Sd−1

|〈ξξ∗, dGG∗ − s(G)Id〉| , ‖∇R
V ‖∞ ≤ ε+ δ2 max

j∈[n]

∣∣∣n‖Gej‖2
2 − s(G)

∣∣∣.
Proof. Item (2) of Proposition 5.2.3 shows

rξ(V) = rξ(U) + δ2rξ(G), cj(V) = cj(U) + δ2cj(G), s(V) = s(U) + δ2s(G).

So by the the triangle inequality, we can bound

‖∇L
V ‖op = sup

ξ∈Sd−1

∣∣∣(d · rξ(U)− s(U)) + δ2(d · rξ(G)− s(G))
∣∣∣ ≤ ε+ δ2‖∇L

G‖op,

where the first step is by item (2) of Proposition 5.2.3 and the definition of ‖ · ‖op, and in
the last step we used that U is ε-Parseval. By the same calculation, we have

‖∇R
V ‖∞ = max

j∈[n]

∣∣∣(n · cj(U)− s(U)) + δ2(n · cj(G)− s(G))
∣∣∣ ≤ ε+ δ2‖∇R

G‖∞,

where the first step is by item (2) of Proposition 5.2.3 and the definition of ‖ · ‖∞, and the
final inequality is due to U being ε-nearly equal norm.

To show these errors are small, we first give mean and concentration inequalities for
s(G), rξ(G), cj(G). Then we apply a net argument to control the left error of G and a union
bound over columns to control the right error of G. We will repeatedly use the spectral
bounds of item (3) in Proposition 5.2.3 to control these quantities.

143

Lemma 5.2.6. For ε-doubly balanced frame U ∈ Mat(d, n) and vec(G) ∼ N(0, 1
dn
PU)

according to Definition 5.2.2, the size can be bounded by

1− 1

d
− d

n
≤ E[s(G)] ≤ 1−max

{
1

d
,
d

n

}
.

Further, if d ≥ 100, n ≥ 100d, then for any θ ≤ 1
4

the size concentrates as

Pr[|s(G)− E[s(G)]| ≥ 3θ] ≤ 2 exp(−θ2dn).

Proof. Item (4) of Proposition 5.2.3 shows that s(G) = ‖G‖2
F is distributed as 1

dn
χ(k)

where dn− n− d2 ≤ k ≤ dn−max{n, d2}. So E[s(G)] = k
dn

and the bounds on the mean
follow.

To show concentration, we can use Theorem 2.5.11 to show

Pr
[
|s(G)− E[s(G)]| ≥ 3θ

]
≤ 2 exp

(
−

(6
5
θdn)2

k

)
≤ 2 exp

(
−θ2dn

)
,

where in the first step we used the assumption θ ≤ 1
4

to bound 3θ ≥ 6
5

5
2
θ ≥ 6

5
(2θ + 2θ2),

and the last step was by k ≥ nd−n−d2 ≥ 8
9
dn by the assumptions d ≥ 100, n ≥ 100d.

Next, we show that rξ∈Sd−1 also concentrates around this value.

Lemma 5.2.7. For ε-doubly balanced frame U ∈ Mat(d, n) and vec(G) ∼ N(0, 1
dn
PU)

according to Definition 5.2.2, the row sum for any ξ ∈ Sd−1 can be bounded by

1− d

n
− 1 + 3ε

d
≤ E[d · rξ(G)] ≤ 1−max

{
d

n
,
1− 3ε

d

}
.

Further, for any 0 ≤ θ ≤ 1
2
,

Pr
[∣∣∣d · rξ(G)− E[d · rξ(G)]

∣∣∣ ≥ θ
]
≤ 2 exp

(
−θ

2n

8

)
.

Proof. For fixed ξ ∈ Sd−1, we use Definition 4.2.3 to rewrite rξ(G) as the quadratic form
of standard Gaussian g ∼ N(0, Idn):

rξ(G) =
n∑
j=1

〈ξ,Gej〉2 =
〈
ξξ∗ ⊗ In, vec(G) vec(G)∗

〉
=

1

dn

〈
ξξ∗ ⊗ In, Pgg∗P

〉
, (5.1)

144

where the last step is by vec(G) ∼ N(0, 1
dn
P). Therefore, the mean can be calculated as

E[d · rξ(G)] =
1

n
E
〈
ξξ∗ ⊗ In, Pgg∗P

〉
=

1

n

〈
ξξ∗ ⊗ In, P

〉
,

where we used E[gg∗] = Idn and the fact that P 2 = P for projection P according to
Definition 2.1.12. Since we don’t have an explicit formula for P , we apply spectral bounds
from item (3) of Proposition 5.2.3 to bound

1

n

〈
ξξ∗ ⊗ In, Idn − PL − PR

〉
≤ 1

n

〈
ξξ∗ ⊗ In, P

〉
≤ 1

n

〈
ξξ∗ ⊗ In, Idn −max{PL, PR}

〉
.

(5.2)

To control the mean, we bound the inner products with PL, PR.

〈ξξ∗ ⊗ In, PL〉 = 〈ξξ∗ ⊗ In, Id ⊗ U∗(UU∗)−1U〉 = 〈ξξ∗, Id〉 · Tr[U∗(UU∗)−1U] = d,

where in the first step we substituted the explicit form of PL given in item (1) of Proposi-
tion 5.2.3, and in the final step we used the fact that ξ ∈ Sd−1 as well as the cyclic property
of trace Tr[U∗(UU∗)−1U] = Tr[(UU∗)(UU∗)−1].

We bound the inner product with PR similarly as

〈ξξ∗ ⊗ In, PR〉 =

〈
ξξ∗ ⊗ In,

n∑
j=1

uju
∗
j

‖uj‖2
2

⊗ Ejj

〉
=

n∑
j=1

〈ξ, uj〉2

‖uj‖2
2

〈In, Ejj〉 ∈
n

1± ε
rξ(U),

where in the first step we substituted the explicit form of PR given in item (1) of Proposi-
tion 5.2.3, and in the final step we used the fact that U is ε-equal norm so n‖uj‖2

2 ∈ 1± ε
and then substituted rξ by Definition 4.2.3. We can now bound the mean using the bounds
in Eq. (5.2):

1− d

n
− rξ(U)

1− ε
≤ E[d · rξ(G)] =

1

n
〈ξξ∗ ⊗ In, P 〉 ≤ 1−max

{
d

n
,
rξ(U)

1 + ε

}
.

Since U is assumed to be ε-Parseval, the statement in the lemma follows by the bounds
d · rξ(U) ∈ 1± ε and the Taylor approximation 1+x

1−x ∈ 1± 3x for |x| ≤ 1
3
.

To prove concentration on rξ(G), we recall by Eq. (5.1) that we can write

d · rξ(G) =
1

n

〈
P (ξξ∗ ⊗ In)P, gg∗

〉
,

145

where g ∼ N(0, Idn). Then, we apply Corollary 2.5.14 to this quadratic form to show

Pr
[∣∣∣d · rξ(G)− Ed · rξ(G)

∣∣∣ ≥ θ
]

= Pr
[∣∣∣〈P (ξξ∗ ⊗ In)P, gg∗〉 − Tr[P (ξξ∗ ⊗ In)P]

∣∣∣ ≥ θn
]

≤ 2 exp

(
− θn

8‖P (ξξ∗ ⊗ In)P‖op

min

{
θn

Tr[P (ξξ∗ ⊗ In)P]
, 1

})
,

where in the first step we used Egg∗ = Idn to calculate the mean. To finish the lemma, we
can plug in bounds Tr[P (ξξ∗ ⊗ In)P] ≤ n using P 2 = P � Idn, and ‖P (ξξ∗ ⊗ In)P‖op ≤
‖P 2‖op ≤ 1 to conclude that

Pr
[∣∣∣d · rξ(G)− E[d · rξ(G)]

∣∣∣ ≥ θ
]
≤ exp

(
−θ

2n

8

)
.

At the end of this subsection, we will use the concentration of rξ to control the left error
of V by a standard net argument. The next lemma show that each column concentrates
around a similar value to s(G), rξ, which we will use to control the right error.

Lemma 5.2.8. For ε-doubly balanced frame U ∈ Mat(d, n) and vec(G) ∼ N(0, 1
dn
PU)

according to Definition 5.2.2, the column sum for any j ∈ [n] can be bounded by

1− (1 + 3ε)d

n
− 1

d
≤ E[n · cj(G)] ≤ 1−max

{
(1− 3ε)d

n
,

1

d

}
.

Further for any θ ≥ 0,

Pr
[∣∣∣n · cj(G)− E[n · cj(G)]

∣∣∣ ≥ θ
]
≤ 2 exp

(
−min{θ2, θ}d

8

)
.

Proof. For fixed j ∈ [n], we use Definition 4.2.3 to rewrite n · cj(G) as a quadratic form
with standard Gaussian g ∼ N(0, Idn) as

n · cj(G) = n
〈
Id ⊗ Ejj, vec(G) vec(G)∗

〉
=

1

d

〈
Id ⊗ Ejj, Pgg∗P

〉
, (5.3)

where the last step is by vec(G) ∼ N(0, 1
dn
P). The mean can then be calculated as

E[n · cj(G)] =
1

d
E
〈
Id ⊗ Ejj, Pgg∗P

〉
=

1

d

〈
Id ⊗ Ejj, P

〉
,

146

where we used E[gg∗] = Idn and the fact that P 2 = P as P is a projection. Since we don’t
have an explicit formula for P , we apply spectral bounds from item (3) of Proposition 5.2.3
to show

1

d
〈Id ⊗ Ejj, Idn − PL − PR〉 ≤

1

d
〈Id ⊗ Ejj, P 〉 ≤

1

d
〈Id ⊗ Ejj, Idn −max{PL, PR}〉. (5.4)

So to control the mean, we bound the inner products with PL, PR.〈
Id ⊗ Ejj, PL〉 =

〈
Id ⊗ Ejj, Id ⊗ U∗(UU∗)−1U

〉
= d〈Ejj, U∗(UU∗)−1U〉

= d〈uju∗j , (UU∗)−1〉 ∈ d
(

d

1± ε

)
‖uj‖2

2 ∈ (1± 3ε)
d2

n
,

where in the first step we substituted the explicit form of PL given in item (1) of Proposi-
tion 5.2.3, in the fourth step we used that U is ε-Parseval so ‖dUU∗−Id‖op ≤ ε, and in the
final step we used that U is ε-equal norm, as well the Taylor approximation 1+x

1−x ∈ 1± 3x

for |x| ≤ 1
3
.

We similarly calculate the inner product with PR as

〈Id ⊗ Ejj, PR〉 =

〈
Id ⊗ Ejj,

n∑
j′=1

uj′u
∗
j′

‖uj′‖2
2

⊗ Ej′j′
〉

=
〈Id, uju∗j〉
‖uj‖2

2

= 1,

where in the first step we substituted the explicit form of PR given in item (1) of Proposi-
tion 5.2.3, and in the second step the cross terms vanished by 〈Ejj, Ej′j′〉 = 1[j = j′]. We
can now bound the mean using the bounds in Eq. (5.4):

1− (1 + 3ε)d

n
− 1

d
≤ E[n · cj(G)] =

1

d
〈Id ⊗ Ejj, P 〉 ≤ 1−max

{
(1− 3ε)d

n
,

1

d

}
.

To prove concentration, we recall the expression that by Eq. (5.3) we can write

n · cj(G) =
1

d
〈P (Id ⊗ Ejj)P, gg∗〉,

where g ∼ N(0, Idn). So we can apply Corollary 2.5.14 to get

Pr
[∣∣∣n · cj(G)− E[n · cj(G)]

∣∣∣ ≥ θ
]

= Pr
[∣∣∣〈P (Id ⊗ Ejj)P, gg∗〉 − Tr[P (Id ⊗ Ejj)P]〉

∣∣∣ ≥ θd
]

≤ 2 exp

(
− θd

8‖P (Id ⊗ Ejj)P‖op

min

{
θd

Tr[P (Id ⊗ Ejj)P]
, 1

})
.

147

To finish the lemma, we plug in the bounds Tr[P (Id ⊗ Ejj)P] ≤ d using P 2 = P � Idn,
and ‖P (Id ⊗ Ejj)P‖op ≤ ‖P 2‖op ≤ 1 to conclude that

Pr
[∣∣∣n · cj(G)− E[n · cj(G)]

∣∣∣ ≥ θ
]
≤ 2 exp

(
−min{θ2, θ}, d

8

)
.

The above lemmas have shown that dri(G) ≈ s(G) and ncj(G) ≈ s(G) for each row
and column. To bound the left error of G, we use a net argument over Sd−1, and to bound
the right error of G we use a simple union bound over columns j ∈ [n].

Proposition 5.2.9. For ε-doubly balanced frame U ∈ Mat(d, n) and any d
n

+ 1
d
≤ θ ≤ 1

4

such that d ≥ 100 and 100 d
θ2 ≤ n ≤ exp(θ

2d
100

), the output V = U + δG of the perturbation
process in Definition 5.2.2 satisfies the following simultaneously with probability at least
1− 6 exp(− θ2d

2
):

1. |s(G)− E[s(G)]| ≤ θ
2
;

2. ‖∇L
G‖op ≤ ε+ 6θ;

3. ‖∇R
G‖∞ ≤ ε+ 5θ.

Proof. Item (1) follows exactly from Lemma 5.2.6 with failure probability at most 2 exp(−θ2dn/9) ≤
2 exp(−θ2d/2) as n ≥ 100 by assumption.

To show the remaining items, we use a net argument and union bound to control the
errors of G, and then apply Lemma 5.2.5 to control the error of V = U + δG.

To show (2), we bound the left error of G by

‖∇L
G‖op ≤ sup

ξ∈Sd−1

∣∣∣d · rξ(G)− E[d · rξ(G)]
∣∣∣+
∣∣∣E[d · rξ(G)]− E[s(G)]

∣∣∣+
∣∣∣s(G)− E[s(G)]

∣∣∣,
(5.5)

using the triangle inequality. We first apply the bounds on expectations given in Lemma 5.2.6
and Lemma 5.2.7 to show:∣∣∣E[s(G)]− E[d · rξ(G)]

∣∣∣ ≤ 3εmax

{
d

n
,

1

d

}
+ min

{
d

n
,

1

d

}
≤ d

n
+

1

d
,

where we used the assumption ε ≤ 1
3

in the final inequality.

148

Then we can use the concentration bound in Lemma 5.2.7 to show for any fixed ξ ∈ Sd−1

Pr
[∣∣∣d · rξ(G)− E[d · rξ(G)]

∣∣∣ ≥ 3θ
]
≤ exp(−θ2n).

To show the final bound on∇L
G, we use a standard net argument. So let N ⊆ Sd−1 be an

η = 1
9
-net according to Definition 2.6.2. By Fact 2.6.3 we can assume |N | ≤ (1 + 2η−1)d =

19d ≤ e3d. So we can bound

Pr
[

sup
ξ∈N

∣∣∣d · rξ(G)− E[d · rξ(G)]
∣∣∣ ≥ 3θ

]
≤ 2 exp(3d− θ2n) ≤ 2 exp

(
− θ2n

2

)
,

where we used the union bound over N and Lemma 5.2.7, and the last step was by the
assumption n ≥ 100 d

θ2 .

Then we can apply Lemma 2.6.5 for quadratic forms on the matrix 〈ξξ∗, dGG∗ −
E[dGG∗]〉 to show

sup
ξ∈Sd−1

∣∣∣d · rξ(G)− E[d · rξ(G)]
∣∣∣ ≤ (1− 2η − η2)−1 sup

ξ∈N

∣∣∣d · rξ(G)− E[d · rξ(G)]
∣∣∣ ≤ 3

2
· 3θ.

(5.6)

where the last step was by our choice of η = 1
9
.

The concentration of s and rξ all hold simultaneously with failure probability at most
2 exp(−θ2dn/9) + 2 exp(4d− θ2n/10) ≤ 4 exp(−θ2n/20). So we can bound the error

‖∇L
G‖op ≤

9

2
θ +

(
d

n
+

1

d

)
+ θ ≤ 6θ,

where the first step was by bounding each of the three terms in the decomposition in
Eq. (5.5), and the last inequality was by the condition d ≥ 100

θ2 , n ≥ 100 d
θ2 and θ ≤ 1

4
.

Similarly, we can bound the column error

‖∇R
G‖∞ ≤ max

j∈[n]

∣∣∣n · cj(G)− E[n · cj(G)]
∣∣∣+
∣∣∣E[n · cj(G)]− E[s(G)]

∣∣∣+
∣∣∣s(G)− E[s(G)]

∣∣∣.
(5.7)

Applying the union bound over all columns gives

Pr
[

max
j∈[n]

∣∣∣n · cj(G)− E[n · cj(G)]
∣∣∣ ≥ 3θ

]
≤ 2n exp(−θ2d) ≤ exp

(
−θ

2d

2

)
,

149

where the first step follows from the bound in Lemma 5.2.8 on each individual column, and
the last step was by our assumption n ≤ exp(θ

2d
100

). Note that this is a crucial assumption
to bound the column error.

Therefore, we can collect terms to show

‖∇R
G‖∞ ≤

(
d

n
+

1

d

)
+ 3θ + θ ≤ 5θ,

where the first step was by bounding each of the three terms in the decomposition in
Eq. (5.7), and the last inequality was by the conditions d ≥ 100

θ2 , n ≥ 100 d
θ2 with θ ≤ 1

4
.

Finally, when these error bounds of ∇G hold, we can apply Lemma 5.2.5 to show

‖∇L
V ‖op ≤ ε+ δ2‖∇L

G‖op ≤ ε+ 6θδ2, ‖∇R
V ‖∞ ≤ ε+ δ2‖∇R

G‖∞ ≤ ε+ 5θδ2

Note that the only place we used the upper bound n ≤ exp(θ
2d

100
) was to bound the

column error of G in Proposition 5.2.9. In the next section, we will deal with the case of
larger n by right-normalizing our perturbation.

5.2.3 Pseudorandom Condition

In this subsection we will show that the perturbed frame V = U + δG in Definition 5.2.2
is pseudorandom with high probability. The argument will be somewhat similar to Sec-
tion 5.1, but more complicated due to dependencies in the entries of noise G. We will show
that the noise G has Ω(δ2) contribution in each term of Lemma 5.1.1.

Recall that Lemma 5.1.1 gives a spectral characterization of the frame pseudorandom
condition which requires a lower bound on

inf
ξ∈Sd−1

∑
j∈T

|〈ξ, vj〉|2 = inf
ξ∈Sd−1

‖ξ∗V PT‖2
2

for every T ∈
(

[n]
βn

)
where we use PT = diag(1T) ∈ Mat(n) to denote the orthogonal

coordinate projection onto T .

Substituting in V = U + δG according to Definition 5.2.2 of the perturbation process,
we can rewrite ‖ξ∗V PT‖2 = ‖ξ∗UPT − δξ∗GPT‖2. Now if we had orthogonality conditions
for these two terms (like in Proposition 5.2.3(2) for rows and columns), then we could

150

separate into two terms, one depending only on U and other depending only on G, and
focus on lower bounding the random part. The first issue with this strategy is that the U
term is totally arbitrary, so it does not necessarily help with the pseudorandom condition,
unlike in Section 5.3.2 where we were able to use the ε-doubly balanced condition of U
to bound the error of V . The second issue is that, even though we only require a lower
bound, the U and G parts are not necessarily orthogonal, so we cannot ignore the U term.

What we can do is show that the random matrix G part is mostly uncorrelated with
the deterministic matrix U . Explicitly, we will show that for every ξ, T , there is a large
component of ξ∗GPT that is orthogonal to ξ∗UPT . For this purpose, we define the following
projections.

Definition 5.2.10. For ε-doubly balanced frame U ∈ Mat(d, n), let PT := diag(1T) ∈
Mat(n) be the orthogonal projection onto column subset T ⊆ [n]. Let PU,T ∈ Mat(n) be
the orthogonal projection onto the row space of UPT , which according to Eq. (2.3), can be
written as

PU,T = (UPT)∗(UPTPTU
∗)−1(UPT) = (UPT)∗

(∑
j∈T

uju
∗
j

)−1

(UPT).

Note that we have defined PU,T such that its image contains the entire row space of
UPT (i.e. ξ∗UPT for any ξ ∈ Rd). So our plan is to show ξ∗GPT has a large component
in the kernel of PUT . This may seem like overkill, as we really only need orthogonality for
each fixed pair ξ∗UPT and ξ∗GPT . But this property is less robust for changes in ξ, so it
will be difficult to perform the approximation portion of our net argument below with only
pairwise orthogonality.

Therefore, we can use these projections to isolate the random contribution in order to
lower bound ‖ξ∗V PT‖F . We will use the fact that Im(PU,T) ⊆ Im(PT), and in particular
that these projections commute.

Lemma 5.2.11. For ε-doubly balanced frame U ∈ Mat(d, n) and perturbation V = U+δG
according to Definition 5.2.2,

‖ξ∗V PT‖2
F ≥ δ2‖ξ∗G(PT − PU,T)‖2

2

for any ξ ∈ Sd−1 and T ∈
(

[n]
βn

)
where PT , PU,T are given according to Definition 5.2.10.

Proof. Note that Im(PUT) ⊆ Im(PT) and therefore PT = (PT − PUT) + PUT gives a
decomposition of Im(PT) into orthogonal subspaces. This will separate the components of

151

random vector ξ∗GPT into two parts, depending on whether or not they are orthogonal to
the deterministic part ξ∗UPT . So for any ξ ∈ Sd−1 we have

‖ξ∗V PT‖2
2 = ‖ξ∗(UPT + δGPUT) + δξ∗G(PT − PUT)‖2

2

= ‖ξ∗UPT + δξ∗GPUT‖2
2 + δ2‖ξ∗G(PT − PUT)‖2

2,

where the first step was by the decomposition PT = (PT − PUT) + PUT , and the last step
was by the fact that ξ∗GPUT and ξ∗UPT are both always contained in Im(PUT), whereas
ξ∗G(PT −PUT) is in the orthogonal component ker(PUT). Both terms are non-negative, so
lemma follows by ignoring the first.

This lemma allows us to show that V is pseudorandom by lower bounding the smallest
singular value of the set of random matrices G(PT − PU,T) for T ∈

(
[n]
βn

)
. There are

two problems with using standard two-sided concentration results on Gaussian random
matrices: first our Gaussian noise has complicated dependencies; second, similar to the
issue in Section 5.1, standard Gaussian concentration can give an upper bound of at most
exp(−βn/4) on the failure probability, which is slightly too weak for a union bound over(
n
βn

)
≈ 2βn(1−log2 β) many subsets. So we will rely on Lemma 2.5.15 which gives stronger

probability bounds for the lower tail.

We first show mean and concentration bounds for an individual ξ ∈ Sd−1.

Lemma 5.2.12. For any fixed ξ ∈ Sd−1, T ∈
(

[n]
βn

)
and vec(G) ∼ N(0, 1

dn
PU) according to

Definition 5.2.2:

1

d

(
β − d

n
− (1 + ε)2

d

)
≤ E‖ξ∗G(PT − PU,T)‖2

2 ≤
β

d
.

Further, if n ≥ 100 d
β

and d ≥ 100
β

, then for any c ≥ 5

Pr

[
‖ξ∗G(PT − PU,T)‖2

2 ≥ (1 + c)
β

d

]
≤ exp

(
−cβn

9

)
and

Pr

[
‖ξ∗G(PT − PU,T)‖2

2 ≤ 0.95e−c
β

d

]
≤ exp

(
−2

5
c(0.95βn)

)
give high probability bounds for the upper and lower tail, respectively.

Proof. We first rewrite the term as a quadratic form with standard Gaussian g ∼ N(0, Idn):〈
ξξ∗, G(PT − PUT)2G∗

〉
=
〈
ξξ∗ ⊗ (PT − PUT)2, vec(G) vec(G)∗

〉
=

1

dn

〈
ξξ∗ ⊗ (PT − PUT), Pgg∗P

〉
,

152

where the first step is a straightforward calculation on tensor products, and in the last step
we used that vec(G) ∼ N(0, 1

dn
PU) along with the fact that (PT − PUT)2 = (PT − PUT) as

it is an orthogonal projection. Now we can calculate the mean:

E‖ξ∗G(PT − PUT)‖2
2 =

1

dn
E
〈
ξξ∗ ⊗ (PT − PUT), Pgg∗P

〉
=

1

dn
〈ξξ∗ ⊗ (PT − PUT), P 〉,

where the last step was by P 2 = P as it is an orthogonal projection. Since we don’t have
an explicit formula for P , we bound this expectation using the spectral bounds from item
(3) Proposition 5.2.3 as

〈ξξ∗ ⊗ (PT − PUT), Idn − PL − PR〉 ≤ 〈ξξ∗ ⊗ (PT − PUT), P 〉
≤ 〈ξξ∗ ⊗ (PT − PUT), Idn −max{PL, PR}〉. (5.8)

So we calculate inner products with Idn, PL, PR to bound the mean. First,

〈ξξ∗ ⊗ (PT − PUT), Idn〉 = 〈ξξ∗, Id〉Tr[PT − PUT] = rk(PT − PUT),

where the last step was because PT − PUT is an orthogonal projection. By comparing
dimensions, we get

|T | − d ≤ rk(PT)− rk(PUT) ≤ 〈ξξ∗ ⊗ (PT − PUT), Idn〉 ≤ rk(PT) = |T |,

where the lower bound was because rk(PUT) ≤ rk(U) = d. Similarly we can bound the
inner product with PL as

〈ξξ∗ ⊗ (PT − PUT), PL〉 = 〈ξξ∗ ⊗ (PT − PUT), Id ⊗ U∗(UU∗)−1U〉
= 〈ξξ∗, Id〉〈PT − PUT , U∗(UU∗)−1U〉 = 〈PT − PUT , U∗(UU∗)−1UPT 〉 = 0, (5.9)

where in the first step we substituted the explicit form for PL given in item (1) of Propo-
sition 5.2.3, in the third step we used PT − PUT = PT (PT − PUT) since all of these are
commuting projections, and the last step was because PT − PUT is the projection to the
orthogonal subspace of the row span of UPT , so UPT ∈ ker(PT − PUT). We also calculate
the inner product with PR as

〈ξξ∗⊗(PT−PUT), PR〉 =

〈
ξξ∗ ⊗ (PT − PUT),

n∑
j=1

uju
∗
j

‖uj‖2
2

⊗ Ejj

〉
∈

n∑
j=1

n〈ξ, uj〉2

1± ε
〈PT−PUT , Ejj〉,

153

where the last step was because U is ε-equal norm. Since PT − PUT is an orthogonal
projection, we can bound the inner product 0 ≤ 〈PT − PUT , Ejj〉 ≤ 1. So in total, we can
bound the PR term

0 ≤ 〈ξξ∗ ⊗ (PT − PUT), PR〉 ≤
n

1− ε
rξ(U) ≤ (1 + 3ε)

n

d
,

where in the last step we used that U is ε-Parseval and the Taylor approximation 1+x
1−x ∈

1± 3x for |x| ≤ 1
3
.

Plugging the above calculations into Eq. (5.8) gives upper and lower bounds

E‖ξ∗G(PT − PUT)‖2
2 ≤

1

dn
〈ξξ∗ ⊗ (PT − PUT), Idn〉 ≤

β

d
and (5.10)

E‖ξ∗G(PT − PU,T)‖2
2 ≥

1

dn
〈ξξ∗ ⊗ (PT − PUT), Idn − PL − PR〉

≥ |T | − d
dn

− 0− 1 + 3ε

dn

n

d
=

1

d

(
β − d

n
− 1 + 3ε

d

)
≥ 0.95β

d
,

(5.11)

where the first step was by Eq. (5.8), in the second step we plugged in the bounds for Idn, PL,
and PR, in the third step we used |T | = βn, and the last step was by our assumptions
d ≥ 100

β
, n ≥ 100 d

β
so that d

n
≤ β

100
and 1

d
≤ β

100
.

To show concentration for the upper bound, we can apply Corollary 2.5.14 to the
quadratic form 〈P (ξξ∗ ⊗ (PT − PUT))P, gg∗〉 along with the bounds

‖P (ξξ∗ ⊗ (PT − PUT))P‖op ≤ ‖P 2‖op ≤ 1,

since PT − PUT � In as it is an orthogonal projection, and Tr[P (ξξ∗ ⊗ (PT − PUT))P] ≤
〈Idn, ξξ∗ ⊗ (PT − PUT)〉 ≤ βn from Eq. (5.10) to show, for c ≥ 1:

Pr
[
‖ξ∗G(PT − PUT)‖2

2 ≥ (1 + c)
β

d

]
= Pr

[
〈P (ξξ∗ ⊗ (PT − PUT))P, gg∗〉 ≥ (1 + c)βn

]
≤ exp

(
−min

{ (cβn)2

8(βn)(1)
,
cβn

8(1)

})
= exp

(
− βn

8

)
.

Similarly, to show a high probability bound for the lower tails, we apply Lemma 2.5.15
with c ≥ 5 to show

Pr
[
‖ξ∗G(PT − PUT)‖2

2 ≤ e−c · 0.95
β

d

]
≤ exp

(
−2

5
c(0.95βn)

)
,

where we used the lower bound on the mean given in Eq. (5.11).

154

We emphasize that this lemma allows us to tune the failure probability to be arbitrarily
high at the cost of worse upper and lower bounds. Note that the cost of the lower tail is
especially high, as the bound grows exponentially with respect to c.

To show pseudorandomness of V , we continue with a standard net argument to give
high probability lower tail bounds for the random matrix in Lemma 5.2.11.

Lemma 5.2.13. For ε-doubly balanced frame U ∈ Mat(d, n), consider the perturbation
V := U + δG with δ ≤ 1

4
and vec(G) ∼ N(0, 1

dn
PU) according to Definition 5.2.2. If β ≤ 1

2
,

d ≥ 100
β

and n ≥ 100d
β

, then for any T ∈
(

[n]
βn

)
, c ≥ 5

Pr

[
inf

ξ∈Sd−1
‖ξ∗G(PT − PU,T)‖2

2 ≤ e−(c+1)β

d

]
≤ 2 exp

(
−cβn

3

)
.

Proof. Our plan is to bound each direction ξ ∈ NL ⊆ Sd−1 for an appropriate net NL ⊆
Sd−1, and then use Lemma 2.6.6 to bound the infimum over Sd−1. Intuitively, the random
matrix G(PT − PUT) will be well-conditioned with high probability, so we can decrease
the cardinality of the net NL by first proving high probability upper bounds according to
Lemma 2.6.5.

So we choose ηU = 1
9

and let NU ⊆ Sd−1 be an ηU -net. By Fact 2.6.3 we have

|NU | ≤ (1 + 2η−1
U)d = 19d ≤ e3d.

For c ≥ 5, this gives the upper bound

Pr
[

sup
ξ∈NU

‖ξ∗G(PT − PUT)‖2 ≥
√

(1 + 3c)β/d
]
≤ exp

(
3d− 3

8
cβn

)
≤ exp

(
− cβn

3

)
,

where the first step was by the union bound over NU as well as the concentration shown
in Lemma 5.2.12, and the final step was by our assumption n ≥ 100 d

β
.

Assuming that these bad events do not occur, we can bound every ξ ∈ Sd−1 by the
multiplicative upper bound in Lemma 2.6.5:

sup
ξ∈Sd−1

‖ξ∗G(PT − PUT)‖2 ≤
9

8
sup
ξ∈NU

‖ξ∗G(PT − PUT)‖2 ≤
9

8

√
(1 + 3c)

β

d
.

Now let NL ⊆ Sd−1 be an ηL = 1
3

√
0.95e−c

(9
8

)2(1+3c)
. By Lemma 2.6.6, we can bound the

cardinality of the net

|NL| ≤ (1 + 2η−1
L)d ≤

(
1 + 2 · 3 · 9

8

√
ec(1 + 3c)

0.95

)d
≤ e2cd,

155

where the last inequality was due to the assumption c ≥ 5. This allows us to simultaneously
lower bound every ξ ∈ NL by

Pr
[

inf
ξ∈NL

‖ξ∗G(PT − PUT)‖2 ≤
√

0.95e−cβ/d
]
≤ exp

(
2cd− 2

5
cβn

)
≤ exp

(
− cβn

3

)
,

where the first step was by the union bound, the cardinality bound on NL, and the con-
centration shown in Lemma 5.2.12, and the last step was by the assumption n ≥ 100 d

β
.

Now assume both events occur:

inf
ξ∈NL

‖ξ∗G(PT −PUT)‖2 ≥
√

0.95e−cβ/d and sup
ξ∈Sd−1

‖ξ∗G(PT −PUT)‖2 ≤
9

8

√
(1 + 3c)

β

d
,

which by the union bound occurs with probability at least 1 − 2 exp(−cβn/3). Then we
can simultaneously lower bound all ξ ∈ Sd−1:

inf
ξ∈Sd−1

‖ξ∗G(PT − PUT)‖2 ≥ inf
ξ∈NL

‖ξ∗G(PT − PUT)‖2 − ηL sup
ξ∈Sd−1

‖ξ∗G(PT − PUT)‖2

≥
√

0.95e−c
β

d
− 1

3

√
0.95e−c

(9
8
)2(1 + 3c)

√
(
9

8
)2(1 + 3c)

β

d
≥ 2

3

√
0.95e−c

β

d
,

where the first step was by Lemma 2.6.6, the second step was by choice of ηL and the upper
bound assumption. The result follows by squaring both sides and noting 0.954

9
≥ e−1.

We can finally show pseudorandomness of the perturbation V = U + δG by a union
bound over sets.

Proposition 5.2.14. For ε-doubly balanced frame U ∈ Mat(d, n) let V := U + δG be the
perturbation according to Definition 5.2.2. If δ ≤ 1

4
, β ≤ 1

2
, d ≥ 100

β
, n ≥ 100d

β
, then V is

(exp(−(4− 3 log2 β))δ2, β)-pseudorandom with probability at least 1− 2 exp(−βn/5).

Proof. We apply Lemma 5.2.13 with c = 3(1 − log2 β) simultaneously to every T ∈
(

[n]
βn

)
.

With failure probability at most 2βn(1−log2 β) exp(−cβn/3) ≤ exp(−cβn/5), this gives the
lower bound

min
T∈([n]

βn)
inf

ξ∈Sd−1
‖ξ∗V PT‖2

2 ≥ min
T∈([n]

βn)
inf

ξ∈Sd−1
δ2‖ξ∗G(PT−PUT)‖2

2 ≥ δ2e−(c+1)β

d
≥ e−(4−3 log2 β)δ2β

d
,

where the first step is by Lemma 5.2.11, the second is the conclusion of Lemma 5.2.13, and
the final step is by our choice of c. This is exactly the sufficient condition for pseudoran-
domness given by Lemma 5.1.1.

156

5.2.4 Putting it Together

Proof of Theorem 5.2.1. Let V be the output of Definition 5.2.2. Then the first part of
item (1) follows as V − U = δG so ‖V − U‖2

F = δ2‖G‖2
F = δ2s(G). The second follows by

the orthogonality condition in Proposition 5.2.3(2). To show the bound on s(G), we use
the mean and concentration bounds to show

|s(G)− 1| ≤ |s(G)− E[s(G)]|+ |E[s(G)]− 1| ≤ θ

2
+

1

d
+
d

n
≤ θ,

where we used the bound on the mean given in Lemma 5.2.6 and the concentration given in
Proposition 5.2.9(1) in the first step, and the final inequality follows from our assumptions
d ≥ 100

θ2 and n100d
θ2 .

Item (2) is exactly Proposition 5.2.9(2) and (3).

Item (3) is exactly Proposition 5.3.17.

So by the union bound these occur simultaneously with probability at least

1− 2 exp
(
− θ2n

10

)
− 2 exp

(
− θ2d

10

)
− 2 exp

(
− βn

10

)
1− 6 exp

(
− θ2d

10

)
> 0,

where the first inequality is by our assumptions n ≥ βn ≥ 100d, and the last inequality is
by our assumptions d ≥ 100

θ2 .

5.3 Perturbation Argument for Large n

The goal of this section is to prove Theorem 4.5.2. We will in fact use a modified pertur-
bation process for the smoothed analysis argument to prove the following generalization.

Theorem 5.3.1. Let U ∈ Mat(d, n) be an equal-norm frame with size s(U) = 1 that is
ε-Parseval for ε ≤ 1

10
. If δ ≤ 1

4
, β ≤ 1

2
, then for any choice of 1

d
+ d

n
≤ θ ≤ 1

4
, C ≥ 10 such

that d ≥ 100
β
, n ≥ 100d

min{β,θ2} , and β ≥ 20Ce−d/9, the output V ′ of the perturbation process
given in Definition 5.3.2 satisfies the following properties simultaneously:

1. (Distance): ‖V ′ − U‖2
F ≤ (1 + θ)δ2;

2. (Error): ‖∇L
V ′‖op ≤ (1 + δ2)ε+ δ2(8θ + 2

√
δ2 · (1 + 3θ)7Cd+ δ2 · 21Cd+ δ4 · 20Cd)

and ∇R
V ′ = 0;

157

3. (Pseudorandom): V ′ is an (e−(6−3 log2 β)δ2, β)-pseudorandom frame;

with probability at least 1− 4
C
− 4 exp(−θ2n/10)− 4 exp(−βn/10).

Before we give the formal details of the smoothed analysis argument, let us see how
this implies the existence of the perturbation given in Theorem 4.5.2 in the F = R case.
This can be simply lifted to C according to Remark 5.2.4.

Proof of Theorem 4.5.2. Our input U is ε-doubly balanced, so we first column-normalize
u′j :=

uj√
n‖uj‖2 so that we can apply Theorem 5.3.1. This produces U ′ that has size s(U ′) = 1

and ∇R
U ′ = 0 by construction. Further by Fact 4.1.5, U ′ is 3ε-doubly balanced and

‖U ′ − U‖2
F ≤ ε2.

Now we can apply Theorem 5.3.1 with the appropriate choice of parameters to get
output V ′ which will satisfy the three properties with non-zero probability. To this end,
let δ2 = e11−3 log2 βε and θ = e−(14−3 log2 β) and C = 10. Clearly θ ≤ 1

2
, and we can choose

C ′ large enough in Theorem 4.5.2 such that

d ≥ 100

min{β, θ2}
, and n ≥ 100

d

min{β, θ2}
,

so that β ≥ 10Ce−d/9. Therefore, the three conclusions Theorem 5.3.1 hold simultaneously
with failure probability at most

4

C
+ 4 exp(−βn/10) + 4 exp(−θ2n/10) ≤ 8

10
< 1,

where the first inequality was by the assumption that n ≥ 100 d
θ2 . Below we verify the

distance, error, and pseudorandom conditions of V ′.

1. (Distance): We calculate

‖V ′ − U‖2
F ≤ (‖V ′ − U ′‖F + ‖U ′ − U‖F)2 ≤ (

√
(1 + θ)δ2 +

√
ε2)2 ≤ e12−3 log2 βε,

where the first step was by triangle inequality, in the second step we bounded the
first term by item (1) of Theorem 5.3.1 and the second term by the calculation
above using Fact 4.1.5, and the third step was by our choice of δ2 = e11−3 log2 βε and
θ = e−(14−3 log2 β) and the assumption ε ≤ 1

e40−9 log2 βd
.

158

2. (Error): ∇R
V ′ = 0 by construction, so we can bound the left error by item (2) of

Theorem 5.3.1 to show

‖∇L
V ′‖op ≤ 3ε+ δ2(3ε+ 8θ) + 2δ3

√
(1 + 3θ)7Cd+ δ4(21Cd) + δ6(20Cd)

≤
(

3ε+ e11−3 log2 βε(3ε+ 8e−(14−3 log2 β))

+ 2e16.5−4.5 log2 βε
√

(1 + 3e−(14−3 log2 β))ε · 70d

+ e22−6 log2 βε2(210d) + e33−9 log2 βε3(200d)

)
≤ ε
(

3 + 3e−10 + 8e−3 + e−2 + e−10 + e−40d−1
)
≤ 4ε,

where we used Fact 4.1.5 to bound ‖∇L
U ′‖op ≤ 3ε, in the second step we substituted

our choice of C = 10, δ2 = e11−3 log2 βε, and θ = e−(14−3 log2 β), and in the final step we
used our the assumption that ε ≤ 1

e40−9 log2 βd
. Note that the higher order terms are

the only place we use the assumption ε . 1
d
, and we believe this part of the analysis

can be improved. This will be discussed in more detail in Section 5.3.2.

3. (Pseudorandom): By item (3) of Theorem 5.2.1, V ′ is (α, β)-pseudorandom with

α ≥ e−(6−3 log2 β)δ2 = e5ε ≥ 16e(4ε),

where we plugged δ2 = e11−3 log2 βε in the second step.

The formal description of the perturbation will be given in Section 5.3.1, and the proof
of the error and pseudorandom properties will be given in Section 5.3.2 and Section 5.3.3
respectively.

5.3.1 Perturbation Process

For the previous perturbation argument, we used the assumption n ≤ ed/C in Lemma 5.2.8
to show that the error of every column |cj(G) − 1| remains bounded. As n → ∞, the
union bound over these n columns will fail because some column ‖gj‖2

2 will be large with
probability approaching 1. To get around this, we perform a right-normalization after
our perturbation and show that we still have enough randomness (degrees of freedom) to
maintain the error and pseudorandom properties.

159

Definition 5.3.2 (Perturbation Process). Let frame U ∈ Mat(d, n) of size s(U) = 1 be
ε-Parseval (‖∇U‖op ≤ ε) and equal-norm (‖∇R

U‖∞ = 0), and consider some δ > 0. First,
add noise V := U + δG where vec(G) ∼ N(0, 1

dn
PU) according to Definition 5.2.2, then

output the column normalization V ′ := {v′1, ..., v′n} ⊆ Cd defined as

v′j :=
vj√
n‖vj‖2

=
uj + δgj√
n‖uj + δgj‖2

.

Note that the output V ′ has size s(V ′) = 1 and ∇R
V ′ = 0 by construction.

We emphasize that in the sequel we will use g ∼ N(0, Idn) for the standard Gaussian,
which is not to be confused by {gj = Gej} the columns of the random matrix vec(G) ∼
N(0, 1

dn
PU).

In the following two section, we will show that for nearly doubly balanced frame U , the
normalized output V ′ still has small error and satisfies the pseudorandom property. To
simplify calculations, we have assumed that input U is also equal-norm. As shown in the
proof of Theorem 4.5.2, this assumption can be satisfied with only a small loss.

5.3.2 Error

In this subsection, we bound the error of V ′ after the perturbation process in Defini-
tion 5.3.2. By definition, ∇R

V ′ = 0, so the main result of this subsection is the following
bound on the left error.

Proposition 5.3.3. For frame U ∈ Mat(d, n) with size s(U) = 1 which is equal-norm
(∇R

U = 0) and ε-Parseval (‖∇L
U‖op ≤ ε), let V ′ be the output of the perturbation process in

Definition 5.3.2. Then, for any 10(1
d

+ d
n
) ≤ θ ≤ 1

4
and C ≥ 10 with d ≥ 100, n ≥ 100 d

θ2 ,

‖∇L
V ′‖op ≤ ε+ δ2(ε+ 8θ +

√
δ2 · 100Cd+ δ2 · 21Cd+ δ4 · 20Cd),

with probability at least 1− 10 exp(−θ2n/10)− 3
C

.

Note that ∇R
V ′ = 0 by construction. By Definition 4.2.3, we can write the left error as

‖∇L
V ′‖op = ‖d · V ′V ′∗ − s(V ′)Id‖op = sup

ξ∈Sd−1

|〈ξξ∗, d · V ′V ′∗ − Id〉|, (5.12)

where V ′ is normalized so s(V ′) = 1 by construction. In Section 4.4 and Section 5.2.2, we
were able to control the error using Gaussian concentration. But the normalization step

160

in Definition 5.3.2 makes the distribution much more complicated, and we cannot simply
apply Gaussian concentration e.g. Corollary 2.5.14. Therefore we will use some Taylor
approximations and simple moment bounds to control the error of V ′, which will only give
constant success probability instead of high probability results. The proof is quite long as
there are many terms to bound, but the calculations are elementary.

We begin by decomposing the error of V ′ into various terms that we control separately.

Lemma 5.3.4. For perturbation V ′ given according to Definition 5.3.2, the left error can
be bounded by the following:

‖∇L
V ′‖op ≤ ‖∇L

U‖op︸ ︷︷ ︸
(0)

+δ2

∥∥∥∥∥d
n∑
j=1

gjg
∗
j − d

n∑
j=1

(n‖gj‖2
2)uju

∗
j

∥∥∥∥∥
op︸ ︷︷ ︸

(2)

+ δ3

√√√√4

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)uju∗j

∥∥∥∥∥
op

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)gjg∗j

∥∥∥∥∥
op︸ ︷︷ ︸

(3)

+ δ4

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)gjg

∗
j

∥∥∥∥∥
op︸ ︷︷ ︸

(4)

+ 2δ4

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2uju

∗
j

∥∥∥∥∥
op

+ 2δ6

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2gjg

∗
j

∥∥∥∥∥
op︸ ︷︷ ︸

(H)

,

where the terms are named based on the order of δ, and (H) stands for “higher-order”.

Proof. Note that item (2) of Proposition 5.2.3 shows that

n‖vj‖2
2 = n‖uj‖2

2 + δ2n‖gj‖2
2 = 1 + δ2n‖gj‖2

2,

where the last step was by the equal norm property of U . Below, we use the Taylor
expansion 1

1+x
= 1− x+ x2

1+x
to write out the left marginal as

V ′V ′∗ =
n∑
j=1

vjv
∗
j

n‖vj‖2
2

=
n∑
j=1

vjv
∗
j

1 + δ2n‖gj‖2
2

=
n∑
j=1

(
1− δ2n‖gj‖2

2 +
(δ2n‖gj‖2

2)2

1 + δ2n‖gj‖2
2

)
vjv
∗
j .

(5.13)

161

According to Eq. (5.12), we want to bound the difference ‖dV ′V ′∗ − Id‖op. We show the
lemma by substituting vj := uj + δgj into Eq. (5.13) and grouping terms by the exponent
of δ:

‖dV ′V ′∗ − Id‖op ≤ ‖dUU∗ − Id‖op︸ ︷︷ ︸
(0)

+δd ‖UG∗ +GU∗‖op︸ ︷︷ ︸
(1)

+ δ2

∥∥∥∥∥d
n∑
j=1

gjg
∗
j − d

n∑
j=1

(n‖gj‖2
2)uju

∗
j

∥∥∥∥∥
op︸ ︷︷ ︸

(2)

+δ3

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)
(
ujg

∗
j + gju

∗
j

)∥∥∥∥∥
op︸ ︷︷ ︸

(3)

+ δ4

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)gjg

∗
j

∥∥∥∥∥
op︸ ︷︷ ︸

(4)

+δ4

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2

1 + δ2n‖gj‖2
2

(
uj + δgj

)(
uj + δgj

)∗∥∥∥∥∥
op︸ ︷︷ ︸

(H)

, (5.14)

where we applied triangle inequality on ‖ · ‖op, and names are based on the exponent of δ
((H) stands for “higher order”).

Now we bound term-by-term. First note U that term (0) matches exactly as ‖dUU∗ −
Id‖op = ‖∇L

U‖op by Definition 4.2.3, term (1) vanishes due to the orthogonality condition
of Proposition 5.2.3(2), and the terms (2) and (4) in Eq. (5.14) match exactly with the
same terms in the statement of Lemma 5.3.4. The following two claims will match (3) to
(3) and (H) to (H), from which the lemma follows.

Claim 5.3.5. Term (3) in Eq. (5.14) can be bounded by∥∥∥∥∥
n∑
j=1

(δ2n‖gj‖2
2)δ(ujg

∗
j + gju

∗
j)

∥∥∥∥∥
2

op

≤ 4

∥∥∥∥∥
n∑
j=1

(δ2n‖gj‖2
2)uju

∗
j

∥∥∥∥∥
op

∥∥∥∥∥
n∑
j=1

(δ2n‖gj‖2
2)δ2gjg

∗
j

∥∥∥∥∥
op

.

Proof. For any ξ ∈ Sd−1, we consider the quadratic form∣∣∣∣∣〈ξξ∗,
n∑
j=1

(δ2n‖gj‖2
2)δ(ujg

∗
j + gju

∗
j)〉

∣∣∣∣∣
2

=

∣∣∣∣∣2
n∑
j=1

(δ2n‖gj‖2
2)〈ξ, uj〉〈δgj, ξ〉

∣∣∣∣∣
2

≤ 4

(
n∑
j=1

(δ2n‖gj‖2
2)〈ξ, uj〉2

)(
n∑
j=1

(δ2n‖gj‖2
2)δ2〈ξ, gj〉2

)
,

where the final step was by Cauchy-Schwarz. The claim then follows by taking supremum
over ξ ∈ Sd−1 according to the definition of ‖ · ‖op.

162

Next we deal with the higher-order terms in (H).

Claim 5.3.6. (H) in Eq. (5.14) can be bounded by∥∥∥∥∥
n∑
j=1

(δ2n‖gj‖2
2)2

1 + δ2n‖gj‖2
2

vjv
∗
j

∥∥∥∥∥
op

≤ 2

∥∥∥∥∥
n∑
j=1

(δ2n‖gj‖2
2)2uju

∗
j

∥∥∥∥∥
op

+ 2δ2

∥∥∥∥∥
n∑
j=1

(δ2n‖gj‖2
2)2gjg

∗
j

∥∥∥∥∥
op

.

Proof. Since the term (H) on the left hand side is positive semidefinite, we only increase
the operator norm by removing the normalization 1 + δ2n‖gj‖2

2 ≥ 1. Therefore we have

n∑
j=1

(δ2n‖gj‖2
2)2

1 + δ2n‖gj‖2
2

vjv
∗
j �

n∑
j=1

(δ2n‖gj‖2
2)2
(
uju

∗
j + uj(δgj)

∗ + (δgj)u
∗
j + δ2gjg

∗
j

)
.

To deal with the cross-term, note that for any ξ ∈ Sd−1〈
ξξ∗,

n∑
j=1

(δ2n‖gj‖2
2)2(δujg

∗
j + δgju

∗
j)

〉
=

n∑
j=1

(δ2n‖gj‖2
2)22

(
〈ξ, uj〉

)(
δ〈ξ, gj〉

)
≤

n∑
j=1

(δ2n‖gj‖2
2)2
(
〈ξ, uj〉2 + δ2〈ξ, gj〉2

)
,

where the last step was by 2ab ≤ a2 + b2. The claim then follows by taking supremum over
ξ ∈ Sd−1 according to the definition of ‖ · ‖op.

The right hand sides of Claim 5.3.5 and Claim 5.3.6 are exactly the terms (3) and (H)
in Lemma 5.3.4, so the lemma is shown.

Note that the term (3) in Lemma 5.3.4 combines terms from (2) and (4). We will
control both of these terms separately, which will imply a bound on (3) by Claim 5.3.5.

We first bound (2) in Lemma 5.3.4 by Gaussian concentration and a net argument,
similar to how we bounded ‖∇L

V ‖op in the previous section. We first define a shorthand
for the quadratic term that comes from the Taylor approximation for the normalization.

Definition 5.3.7. Consider equal-norm frame U ∈ Mat(d, n) with vec(G) ∼ N(0, 1
dn
PU)

according to Definition 5.2.2. Define Y := diag{
√
n‖gj‖2}nj=1 so that, for any ξ ∈ Sd−1,

rξ(UY) =
n∑
j=1

〈ξ, uj〉2(n‖gj‖2
2).

163

With this definition, we can rewrite quadratic term (2) in Lemma 5.3.4 as∥∥∥∥∥d
n∑
j=1

gjg
∗
j − d

n∑
j=1

(n‖gj‖2
2)uju

∗
j

∥∥∥∥∥
op

= sup
ξ∈Sd−1

d |rξ(G)− rξ(UY)| .

In Eq. (5.6) in the proof of item Proposition 5.2.9(2), we have already shown high probabil-
ity bounds on rξ(G). We will use a similar argument to show that rξ(UY) also concentrates
around the same value, so the quadratic term can be bounded.

Lemma 5.3.8. If frame U ∈ Mat(d, n) of size s(U) = 1 is ε ≤ 1
8
-Parseval and exactly

equal norm (according to Definition 4.1.2), then for every ξ ∈ Sd−1,

1− ε− (1 + 3ε)d

n
− 1− ε

d
≤ E[d · rξ(UY)] ≤ 1 + ε−max

{
(1− 3ε)d

n
,
1 + ε

d

}
.

Further, for any 0 ≤ θ ≤ 1
4
,

Pr
[∣∣∣d · rξ(UY)− E[d · rξ(UY)]

∣∣∣ ≥ θ
]
≤ 2 exp

(
− θ2n

9

)
.

Proof. We rewrite d · rξ(UY) as a quadratic form with standard Gaussian g ∼ N(0, Idn).
We emphasize that gj ∈ Rd is the j-th column of random matrix gj = Gej where vec(G) ∼
N(0, 1

dn
P), so gj is not a subset of the coordinates of g ∼ N(0, Idn).

d · rξ(UY) = dn
n∑
j=1

〈ξ, uj〉2‖gj‖2
2 =

n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, Pgg∗P 〉, (5.15)

where the last step is by vec(G) ∼ N(0, 1
dn
P) and gj = Gej. Now we can control the mean:

E[d · rξ(UY)] = E
n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, Pgg∗P 〉 =
〈 n∑
j=1

Id ⊗ (〈ξ, uj〉2Ejj), P
〉
,

where the last step was by P 2 = P as P is an orthogonal projection and Egg∗ = Idn. Since
we don’t have an explicit formula for P , we control the expectation using the spectral
bounds in Proposition 5.2.3(3):

n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, Idn − PL − PR〉 ≤
n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, P 〉

≤
n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, Idn −max{PL, PR}〉,
(5.16)

164

where again we use max as shorthand to denote that the inequality is satisfied with both
terms separately. Now, we bound the inner products with Idn, PL, PR. First,

n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, Id ⊗ In〉 = d

n∑
j=1

〈ξ, uj〉2 = d · rξ(U).

Then, we calculate the inner product with PL as

n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, PL〉 =
n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, Id ⊗ U∗(UU∗)−1U〉

= 〈Id, Id〉
n∑
j=1

〈ξ, uj〉2〈Ejj, U∗(UU∗)−1U〉 = d
n∑
j=1

〈ξ, uj〉2〈uju∗j , (UU∗)−1〉

∈ d
n∑
j=1

〈ξ, uj〉2
(

d

1± ε

)
‖uj‖2

2 ∈ d · rξ(U)

(
d

n(1± ε)

)
,

where the fourth step was because U is ε-Parseval with s(U) = 1 so dUU∗ ∈ (1± ε)Id, and
the final step was because U is equal norm so n‖uj‖2

2 = s(U) = 1. Finally, we calculate
the inner product with PR as

n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, PR〉 =
n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj,
n∑

j′=1

uj′u
∗
j′

‖uj′‖2
2

⊗ Ej′j′〉 =
n∑
j=1

〈ξ, uj〉2 = rξ(U),

where we used 〈Ej′j′ , Ejj〉 vanishes unless j = j′, and that Tr[uju
∗
j] = ‖uj‖2

2. Plugging
these calculations into Eq. (5.16), we bound the mean

drξ(U)

(
1− d

(1− ε)n
− 1

d

)
≤ E[d · rξ(UY)] ≤ drξ(U)

(
1−max

{
d

(1 + ε)n
,

1

d

})
.

where we used Taylor approxamation |(1+x)−1−1| ≤ 2|x| for |x| ≤ 1
3

to bound the ε terms.
The bound in the lemma now follows by the fact that U is ε-Parseval of size s(U) = 1
so d · rξ(U) ∈ 1 ± ε for all ξ ∈ Sd−1. Therefore we can use the Taylor approximation
|1+x
1−x − 1| ≤ 3|x| for |x| ≤ 1

3
to bound the error terms.

To prove concentration, we recall Eq. (5.15) where we wrote d · rξ(UY) in terms of
standard Gaussian g ∼ N(0, Idn):

d · rξ(UY) =

〈
P

(
n∑
j=1

Id ⊗ (〈ξ, uj〉2Ejj)

)
P, gg∗

〉
.

165

To get concentration, we will plug the following bounds into Corollary 2.5.14:

Tr

[
P

(
n∑
j=1

Id ⊗ (〈ξ, uj〉2Ejj)

)
P

]
≤

n∑
j=1

〈ξ, uj〉2〈Id ⊗ Ejj, Idn〉 ≤ d · rξ(U) ≤ 1 + ε,

∥∥∥∥∥P
(

n∑
j=1

Id ⊗ (〈ξ, uj〉2Ejj)

)
P

∥∥∥∥∥
op

≤ max
j∈[n]
〈ξ, uj〉2‖P 2‖op ≤ max

j∈[n]
‖uj‖2

2 =
1

n
,

where in the first line we used the spectral bound P � Idn from Proposition 5.2.3(3) and
the fact that U is ε-Parseval of size s(U) = 1, and in the second line we used Cauchy-
Schwarz for the second step and the fact that U is exactly equal-norm with s(U) = 1 for
the final step. Therefore, applying Corollary 2.5.14 shows

Pr
[∣∣∣d · rξ(UY)− E[d · rξ(UY)]

∣∣∣ ≥ θ
]
≤ 2 exp

(
−min{θ2, θ} n

8(1 + ε)

)
≤ 2 exp

(
− θ2n

9

)
,

where the last step was by our assumptions θ ≤ 1
4

and ε ≤ 1
8
.

Now that we have proved concentration results for both quadratic terms, we can bound
term (2) in Lemma 5.3.4.

Lemma 5.3.9. If ε ≤ 1
8

and 1
4
≥ θ ≥ 10(d

n
+ 1

d
), then the term (2) in Lemma 5.3.4 satisfies∥∥∥∥∥d

n∑
j=1

gjg
∗
j − d

n∑
j=1

(n‖gj‖2
2)uju

∗
j

∥∥∥∥∥
op

= sup
ξ∈Sd−1

∣∣∣d · rξ(G)− d · rξ(UY)
∣∣∣ ≤ ε+ 8θ

with probability at least 1− 4 exp(− θ2n
2

).

Proof. By the triangle inequality, we can bound∣∣∣rξ(G)− rξ(UY)
∣∣∣ ≤ ∣∣∣rξ(G)− E[rξ(G)]

∣∣∣+
∣∣∣E[rξ(G)]− E[rξ(UY)]

∣∣∣+
∣∣∣rξ(UY)− E[rξ(UY)]

∣∣∣.
In Eq. (5.6) in the proof of Proposition 5.2.9(2), we have already shown

sup
ξ∈Sd−1

∣∣∣d · rξ(G)− E[d · rξ(G)]
∣∣∣ ≤ 4.5θ

166

with probability at least 1− 2 exp(− θ2n
2

) as n ≥ 100 d
θ2 . We can also control the difference

in expectations:

sup
ξ∈Sd−1

∣∣∣E[d · rξ(G)]− E[d · rξ(UY)]
∣∣∣ ≤ ε+ (1 + 3ε)

(1

d
+
d

n

)
,

where the first step was by the two-sided bounds in Lemma 5.2.7 and Lemma 5.3.8.

We apply a net argument (similar to Proposition 5.2.9) to give high probability bounds
for rξ(UY). So let N ⊆ Sd−1 be an η = 1

25
-net so that 1− 2η − η2 ≥ 9.9. Fact 2.6.3 gives

us the bound |N | ≤ (1 + 2η−1)d ≤ e4d, so we can use the union bound to show

Pr
[

sup
ξ∈Sd−1

∣∣∣rξ(UY)− E[rξ(UY)]
∣∣∣ ≥ 3θ

d

]
≤ Pr

[
sup
ξ∈N

∣∣∣rξ(UY)− E[rξ(UY)]
∣∣∣ ≥ (0.9)3θ

d

]
≤
∑
ξ∈N

Pr
[∣∣∣rξ(UY)− E[rξ(UY)]

∣∣∣ ≥ (0.9)3θ

d

]
≤ 2 exp(4d− (0.9θ)2n) ≤ 2 exp

(
− θ2n

2

)
,

where the first step was by Lemma 2.6.5, the second was by the union bound over N , the
third was by by the concentration probability shown in Lemma 5.3.8, and the final step
was by the assumption n ≥ 100 d

θ2 .

In total, with probability 1− 4 exp(− θ2n
2

), the quadratic term can be bounded by∥∥∥∥∥d
n∑
j=1

gjg
∗
j − d

n∑
j=1

(n‖gj‖2
2)uju

∗
j

∥∥∥∥∥
op

≤ 4.5θ + ε+ (1 + 3ε)
(1

d
+
d

n

)
+ 3θ ≤ ε+ 8θ,

where the last step was by the assumption θ ≥ 10(1
d

+ d
n
) and ε ≤ 1

8
.

To bound the higher order terms (4) and (H) of Lemma 5.3.4, we use a crude triangle
inequality and the following bound on higher order moments of Gaussian norm cj(G) =
‖gj‖2

2.

Lemma 5.3.10. For every j ∈ [n], if frame U ∈ Mat(d, n) is ε ≤ 1
3
-doubly balanced, then

for vec(G) ∼ N(0, 1
dn
PU) according to Definition 5.2.2 and any p ≥ 1:

E(dn‖gj‖2
2)p ≤ (8p)pd+ (2d)p.

Proof. We rewrite n · ‖gj‖2
2 as a quadratic form with standard Gaussian g ∼ N(0, Idn).

n‖gj‖2
2 = n〈Id ⊗ Ejj, vec(G) vec(G)∗〉 =

1

d
〈Id ⊗ Ejj, Pgg∗P 〉,

167

where the last step is because vec(G) ∼ N(0, 1
dn
P).

We have derived the following bounds in Lemma 5.2.8:

‖P (Id ⊗ Ejj)P‖op ≤ ‖P 2‖op ≤ 1, and Tr[P (Id ⊗ Ejj)P] ≤ 〈Id ⊗ Ejj, Idn〉 ≤ d,

where we used P � Idn. Therefore, we can apply Corollary 2.5.17 with the bounds to show,
for any p ≥ 1:

E(dn‖gj‖2
2)p ≤ (8p)p Tr[P (Id⊗Ejj)P]‖P (Id⊗Ejj)P‖p−1

op +(2 Tr[P (Id⊗Ejj)P])p ≤ (8p)pd+(2d)p.

This allows us to bound the expectation of (4) and (H) in Lemma 5.3.4. Unlike the
arguments of Lemma 5.3.9, for these terms we bound the whole ‖ ·‖op instead of each inner
product 〈ξξ∗, ·〉, and we will not use a net argument. We will also only be able to prove
constant probability bounds on these terms using Markov’s inequality.

We begin by bounding term (4) in Lemma 5.3.4.

Claim 5.3.11. For equal-norm frame U ∈ Mat(d, n) and vec(G) ∼ N(0, 1
dn
PU) according

to Definition 5.2.2,

E

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)gjg

∗
j

∥∥∥∥∥
op

≤ 4d+ 256.

Proof. We use a crude triangle inequality to bound in terms of ‖gj‖2
2:∥∥∥∥∥d

n∑
j=1

(n‖gj‖2
2)gjg

∗
j

∥∥∥∥∥
op

≤ dn
n∑
j=1

‖gj‖4
2.

So we can bound the expectation using the Gaussian moment bounds:

E

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)gjg

∗
j

∥∥∥∥∥
op

≤ 1

dn

n∑
j=1

E(dn‖gj‖2
2)2 ≤ 1

dn

n∑
j=1

((2d)2 + (8 · 2)2 · d) = 4d+ 256,

where the first step was by the triangle inequality, and the second step was by Lemma 5.3.10
with p = 2.

Next, we bound the first term in (H) in Lemma 5.3.4.

168

Claim 5.3.12. For equal-norm frame U ∈ Mat(d, n) and vec(G) ∼ N(0, 1
dn
PU) according

to Definition 5.2.2,

E2

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2uju

∗
j

∥∥∥∥∥
op

≤ 2(4d+ 256).

Proof. We use a crude triangle inequality to bound in terms of ‖gj‖2
2:∥∥∥∥∥d

n∑
j=1

(n‖gj‖2
2)2uju

∗
j

∥∥∥∥∥
op

≤ dn2

n∑
j=1

‖gj‖4
2

n
,

where we used that U is equal-norm in the last step so ‖uj‖2
2 = 1

n
. So we can bound the

expectation using the Gaussian moment bounds:

E

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2uju

∗
j

∥∥∥∥∥
op

≤ 1

dn

n∑
j=1

E(dn‖gj‖2
2)2 ≤ 4d+ 256,

where the first step was by the triangle inequality, and the second step was by Lemma 5.3.10
with p = 2 (we omit the calculation as it is the same term as Claim 5.3.11).

Finally, we bound the second term in (H) in Lemma 5.3.4.

Claim 5.3.13. For equal-norm frame U ∈ Mat(d, n) and vec(G) ∼ N(0, 1
dn
PU) according

to Definition 5.2.2,

E2

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2gjg

∗
j

∥∥∥∥∥
op

≤
(

16d+
2(24)3

d

)
.

Proof. We use a crude triangle inequality to bound in terms of ‖gj‖2
2:∥∥∥∥∥d

n∑
j=1

(n‖gj‖2
2)2gjg

∗
j

∥∥∥∥∥
op

≤ dn2

n∑
j=1

‖gj‖6
2.

So we can bound the expectation using the Gaussian moment bounds:

E2

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2gjg

∗
j

∥∥∥∥∥
op

≤ 2

d2n

n∑
j=1

E(dn‖gj‖2
2)3 ≤ 2

d2n

n∑
j=1

((2d)3+(8·3)3d) ≤
(

16d+
2(24)3

d

)
,

where the first step was by the triangle inequality, and the second step was by Lemma 5.3.10
with p = 3.

169

We can now combine these terms to get a bound on the left marginal.

Proof of Proposition 5.3.3. We use the decomposition in Lemma 5.3.4 and bound term by
term. First, ‖∇U‖op ≤ ε by the ε-Parseval assumption on U . Then, Lemma 5.3.9 shows

the quadratic term is bounded by ε+ 8θ with probability at least 1− 4 exp(− θ2n
2

).

For the higher order terms in Lemma 5.3.4, we apply the expectation bounds given in
Claims 5.3.11, 5.3.12, and 5.3.13, along with Markov’s inequality for C ≥ 1 to show that
simultaneously with probability at least 1− 3

C∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)gjg

∗
j

∥∥∥∥∥
op

≤ CE

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)gjg

∗
j

∥∥∥∥∥
op

≤ C(4d+ 256) ≤ 7Cd;

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2uju

∗
j

∥∥∥∥∥
op

≤ CE

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2uju

∗
j

∥∥∥∥∥
op

≤ 2C(4d+ 256) ≤ 14Cd;

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2gjg

∗
j

∥∥∥∥∥
op

≤ CE

∥∥∥∥∥d
n∑
j=1

(n‖gj‖2
2)2gjg

∗
j

∥∥∥∥∥
op

≤ C
(

16d+
2(24)3

d

)
≤ 20Cd;

where the last step in each line was by the assumption d ≥ 100.

This also allows us to bound term (3) in Eq. (5.14), as∥∥∥∥∥d
n∑
j=1

(δ2n‖gj‖2
2)δ(ujg

∗
j + gju

∗
j)

∥∥∥∥∥
2

op

≤ 4

∥∥∥∥∥d
n∑
j=1

(δ2n‖gj‖2
2)uju

∗
j

∥∥∥∥∥
op

∥∥∥∥∥d
n∑
j=1

(δ2n‖gj‖2
2)δ2gjg

∗
j

∥∥∥∥∥
op

≤ 4
(
δ2(1 + ε+ 3θ)

)(
δ4 · 7Cd

)
,

where the first step was by Claim 5.3.5, we bounded the first term by using Lemma 5.3.8
to bound the expectation and following the proof of Lemma 5.3.9 for concentration, and
we used the bound derived for term (4) above to bound the second term.

In total, we can collect all terms in Lemma 5.3.4 and show that with probability 1 −
4 exp(− θ2n

10
)− 3

C
:

‖∇L
V ′‖op ≤ ε+ δ2(ε+ 8θ) + 2δ3

√
(1 + ε+ 3θ)(7Cd) + δ4(21Cd) + δ6(20Cd).

Remark 5.3.14. We believe the moment bounds in Claims 5.3.11, Claim 5.3.12, Claim 5.3.13
are not necessarily the best way to analyze these terms. These are in fact the bottleneck in
our assumption ε . 1

d
. Note that Theorem 5.2.1 covers all n ≤ ed/C, so for this case, we

could try to use the assumption n ≥ ed/C to improve the error bound.

170

5.3.3 Pseudorandom Condition

In Section 5.2.3, we were able to use Gaussian concentration to give high probability
lower bounds for the spectral pseudorandom condition given in Lemma 5.1.1. In this
section, we have right-normalized the perturbed input V = U + δG, so the distribution
of columns becomes more complicated. Therefore, instead of proving the lower bound
directly, we follow a strategy similar to Section 5.1 by using Lemma 5.1.2 to bound the
effect of normalization on pseudorandomness. For this purpose, we use the following lemma
to show the normalization affects most columns very little.

Lemma 5.3.15. For equal norm frame U ∈ Mat(d, n), let V = U + δG and V ′ be the
output of the perturbation process according to Definition 5.3.2. Then for any C ≥ 10, the
random variable TB := {j ∈ [n] | n‖gj‖2

2 ≥ 6} satisfies

Pr[|TB| ≥ 2Ce−d/2n] ≤ 1

C
.

Proof. To show the claim, let Xj be the indicator variable for the event j ∈ TB and note

EXj = Pr[n‖gj‖2
2 ≥ 6] ≤ Pr[n · cj(G) ≥ 1 + 5] ≤ 2 exp

(
− d

2

)
,

where in the second step we used the definition of cj, and in the final step we applied
concentration from Lemma 5.2.8.

Therefore we use Markov’s inequality to show

Pr
[
|TB| ≥ 2Ce−d/2

]
≤ Pr

[
|TB| ≥ CE|TB|

]
≤ 1

C
,

where the first step was by the above bound on E|TB|.

Remark 5.3.16. This is the part of the argument most ready for improvement. We believe
that the different columns will only be weakly dependent and so we should be able to get a
high probability bound in the above statement.

We can now prove pseudorandomness of V ′ simply by applying Lemma 5.1.2.

Proposition 5.3.17. For ε-doubly balanced U ∈ Mat(d, n) with ε ≤ 1
4
, and V ′ the output

of the perturbation process in Definition 5.3.2, if δ ≤ 1
4
, d ≥ 100

β
, n ≥ 100d

β
, β ≥ 10Ce−d/2,

then V ′ is (e−(6−3 log2 β)δ2, β)-pseudorandom with probability at least 1− 2
C

.

171

Proof. Applying Proposition 5.2.14 with 4
5
β shows that V is (e−(5−3 log2 β), 4

5
β)-pseudorandom.

Then we normalize v′j :=
vj√
n‖vj‖2 , so we want to bound the size of TB := {j ∈ [n] | n‖gj‖2

2 ≥
6}. Applying Lemma 5.3.15 with C = 10 gives that |TB| ≤ Ce−d/2n ≤ 1

5
βn by our as-

sumption β ≥ 10Ce−d/2. By the union bound, both of these events occur simultaneously
with the probability stated.

Our plan is to reduce pseudorandomness of V ′ to the pseudorandomness of V , so we
rewrite the normalization as V ′ = V R with Rjj = 1√

n‖vj‖2 . Note n‖vj‖2
2 = n‖uj‖2

2 +

δ2n‖gj‖2
2 = 1 + δ2n‖gj‖2

2 by Proposition 5.2.3(2) and the equal-norm property of U . So
j ∈ TB =⇒ R2

j ≤ 1
1+6δ2 . By the assumption δ ≤ 1

4
, we can apply Lemma 5.1.2 with

τ = 8
11
≥ 1

1+6δ2 to show V ′ is (α′δ2, β′)-pseudorandom for β′ ≤ 4
5
β + 1

5
β = β and

α′ ≥ 8

11
· e−(5−3 log2 β) · 4

5
≥ e−(6−3 log2 β),

where we used (e−(5−3 log2 β), 4
5
β)-pseudorandomness of V and substituted in τ = 8

11
.

5.3.4 Putting it Together

Proof of Theorem 5.3.1. Let V ′ be the output of Definition 5.3.2. Then item (2) follows
from Proposition 5.3.3 by the assumption that U is ε-Parseval with s(U) = 1 (so ‖∇L

U‖op ≤
ε) and item (3) is exactly the content of Proposition 5.3.17, so by the union bound these
occur simultaneously with failure probability at most

4 exp
(
− θ2n

10

)
+ 2 exp

(
− βn

10

)
+

4

C
< 1,

where the last step is by our assumptions C ≥ 10, n ≥ 100 d
min{β,θ2} .

To show item (1), we claim that the distance from U → V ′ is less than the distance
from U → V . The claim then follows as

‖V ′ − U‖2
F ≤ ‖V − U‖2

F ≤ (1 + θ)δ2,

where the last step is by item (1) of Theorem 5.2.1.

To show the claim, we use the fact that both U and V ′ are equal norm. In particular,
for every j ∈ [n] we have

v′j = arg min
w
{‖w − vj‖2

2 | n‖w‖2
2 = 1}.

172

By the orthogonality conditions in Proposition 5.2.3(2), ‖vj‖2
2 = ‖uj‖2

2 +δ2‖gj‖2
2 ≥ ‖uj‖2

2 =
1
n
, so in fact v′j is the projection of vj ontoBd

2 . Therefore, the claim follows by Lemma 2.3.13.

This completes the smoothed analysis section of the thesis. With the results of Sec-
tion 5.2 and Section 5.3, we can complete the optimal distance bound for the Paulsen
problem as shown in Section 4.5.

173

Chapter 6

Geodesic Convexity and Scaling

The main goal of this chapter is to present a framework for our analysis of the general tensor
scaling problem. To this end, we first present the scaling framework from a more abstract
perspective in Section 6.1. This background comes from a long line of work in mathematical
physics and algebraic geometry, and is quite abstract and technical. This general theory
is not required in order to understand our results, as the analysis of tensor scaling mostly
relies on tools from basic linear algebra and convexity theory. In Section 6.2, we formally
define the tensor scaling problem, which is a special case of the scaling framework and
the most general problem we study in this thesis. Then, we use the theory of Kempf-
Ness functions presented in Section 6.1 to give a geodesically convex formulation for tensor
scaling. This is main result of this chapter, and in Chapter 7 we use it to generalize
the matrix scaling analysis of Chapter 3 to the tensor setting. Finally in Section 6.3, we
use this geodesically convex formulation to prove the frame-to-matrix reduction given in
Theorem 4.2.13. We also present a general reduction theorem from the non-commutative
tensor scaling problem to the simpler commutative setting. Using this reduction, we are
able to unify the arguments in [63] and [36], as well as to give quantitative improvements
in Chapter 7.

6.1 Background on Scaling

In this section, we would like to give some background for the geodesic convex formulation
for tensor scaling that we present in Section 6.2. The ideas presented here come from the
fields of Hamiltonian geometry and geometric invariant theory. We reiterate to the reader
that most of this abstract perspective is only discussed for context, and will not be used in

174

subsequent analyses. Since we will only require a small bit of this theory, we mostly give
sketches here without formal definitions.

The following subsections proceed in order from general to specific, ending with the a
description of the convex optimization framework that we specialize to our analysis of tensor
scaling. Section 6.1.1 contains a very brief sketch of the moment map, using the Schur-
Horn Theorem and Horn’s problem as illustrating examples. The moment map is used
to understand (compact) groups acting on (symplectic) spaces in a specific (Hamiltonian)
way. Then in Section 6.1.2, we present some ideas and questions from geometric invariant
theory, which studies group actions with additional algebraic structure. For this and the
remaining sections, we will use the example of matrix normalization to illustrate concepts.
It turns out that this setting can be seen as a special case of the Hamiltonian group
actions discussed in Section 6.1.1. The focus of Section 6.1.3 is the Kempf-Ness Theorem
[58], which presents an optimization formulation for some of the group orbit questions of
Section 6.1.2. This is also the context for the most general form of scaling, which can be
viewed as a dual problem to the null cone question from geometric invariant theory. One
of the key contributions of the Kempf-Ness theorem is to explain the underlying geodesic
convex structure of these group optimization problems. Finally, in Section 6.1.4, we follow
the presentation of Bürgisser et al. [20], which makes quantitative the relationship between
group optimization and scaling. In particular, this is the place we discuss scaling algorithms
and their analysis at a high level. This sets the stage for Section 6.2, where we use this
geodesic convex optimization framework to analyze tensor scaling.

6.1.1 The Moment Map

The moment map and moment polytope are central objects in the study of Hamiltonian
manifolds. This subject has a long history with many connections across mathematics
and physics. We will only need a tiny sliver of the full theory for the work in this thesis.
Therefore we invite the reader to consult the monograph by Guillemin and Sjamaar [41]
for a much more thorough exposition of the history and main results. In this subsection,
we will discuss some concepts via the following illustrating example.

Example 6.1.1. Given two vectors λ, a ∈ Rd, when does there exist a matrix A ∈ H(d)
with spectrum λ and diagonals diag(A) = a?

The answer to the above question is a classical result in matrix analysis and is known
as the Schur-Horn Theorem [51]. It states that A exists iff a is in the convex hull of
permutations of λ, i.e. Sd · λ := {(λσ(1), ..., λσ(d)) | σ ∈ Sd} where Sd are the set of

175

permutations on [d]. One elementary proof of this result relies on the theory of majorization
and is explained in detail in the wonderful book by Bhatia [12]. Below, we translate this
result into a more general language in order to illustrate the concepts of moment maps and
moment polytopes.

First note that by the Spectral Theorem (Theorem 2.1.8), A ∈ H(d) has spectrum
λ ∈ Rd iff A = UΛU∗ for some unitary matrix of eigenvectors U ∈ U(d), where Λ = diag(λ).
Therefore, we can rewrite the set under consideration as the orbit of Λ under conjugation by
the group U(d). We want to understand the image of this orbit under diagonal projection
diag(B) := {bii}i∈[d], and the Schur-Horn theorem tells us that this image is in fact a
convex polytope with vertices Sd · λ.

We can now present the main characters in the general story: the input is a set X
(symplectic manifold), a group G (compact Lie group), and a special kind of (Hamiltonian)
action G ·X → X, and we want to understand the properties of this action using a specific
(moment map) µ : X → g, where g is a vector space associated with G (its Lie algebra, see
the discussions in Section 2.2.3). The role of the moment map is to encode the infinitesimal
behavior of the group action at each point. We will not detail how exactly this is done,
but will present a more concrete example in Section 6.1.3.

In the context of Example 6.1.1, we have X the subset of H(d) with spectrum λ, group
G = U(d) acts by conjugation on X, and we want to understand this group action through
its diagonal projection diag : H(d) → Rd. The main content of the Schur-Horn Theorem
is that the image diag(UΛU∗) is a convex polytope.

As the culmination of a long line of work in symplectic geometry [6], [42], [43], Kirwan
[59] proved the following grand generalization: the image of the moment map for any
Hamiltonian action is always a convex polytope! This allows us to unambiguously define
this image as the moment polytope. In the next Section 6.1.2, we restrict to the some
problems in geometric invariant theory which are illuminated by the theory of moment
maps.

6.1.2 Geometric Invariant Theory

In this section, we present some basic ideas from geometric invariant theory. This is a
subfield of algebraic geometry where we want to study the action of a group G on a vector
space V via the geometry of polynomial functions on V . Once again this is a powerful and
deep subject which we will barely sketch, so we point the interested reader to the classical
text of Mumford et al. [73] for a more thorough treatment.

176

In order to avoid too many technical details, we will mostly focus on the following
illustrating example.

Example 6.1.2. Given matrix A ∈ Mat(n), when is it diagonalizable according to Defini-
tion 2.1.6, i.e. when is there some V ∈ GL(n) such that V AV −1 ∈ diag(n)? Further, if it
is diagonalizable, what is the condition number defined as

inf
V
κ(V) := inf

V
‖V ‖op‖V −1‖op?

Here, the infimum is over all possible bases of eigenvectors V ∈ GL(n).

Recall that according to Definition 2.1.6, A is diagonalizable iff it has a linearly inde-
pendent basis of eigenvectors. On the other hand, if Ak ≡ 0 for some k ∈ N, then A is said
to be nilpotent, and A cannot be diagonalized if this is the case. Below, we present some
stability concepts from geometric invariant theory which generalize the diagonalizability
property in Example 6.1.2. We will revisit the condition number in Section 6.1.4.

Definition 6.1.3. Let v ∈ V for some inner product space V over field C, and let G ⊆
GL(V) be an appropriately nice (complex algebraic reductive) group with a linear action on
V . We denote the orbit of v by G · v, and the orbit closure with respect to the Euclidean
topology by G · v. We say v is

1. unstable: if 0 ∈ G · v;

2. semi-stable: if 0 6∈ G · v;

3. stable: if G · v is closed;

The set of unstable points is called the null cone of the group action.

Note that 0 ∈ V is a singleton closed orbit under any linear action, so v stable implies
v is semi-stable. In the context of Example 6.1.2, it can be shown that for vector space
Mat(n) and conjugation action V AV −1 of V ∈ SL(n), the null cone is exactly the set of
nilpotent matrices, and that A is diagonalizable iff this orbit is closed, i.e. A is stable.
This suggests the following natural problem

Definition 6.1.4 (Null Cone Membership). Given (V,G) as in Definition 6.1.3, decide
whether input v ∈ V is stable or in the null cone.

177

This basic problem contains many natural questions in computational complexity and
algebra as special cases. It turns out that in this general setting, classical results by Hilbert
and Mumford (see [73]) show that the null cone can always be written as the common zeros
of some set of G-invariant polynomials. This motivates the following approach to null cone
membership: compute the set of invariant polynomials and test whether they all vanish on
the given input. This algebraic approach has been made constructive in some cases (e.g.
[72]), but often with prohibitively large runtime.

By another set of classical results [58], it turns out that we can connect the null cone
problem to the moment map from Section 6.1.1. For now, we will just state the result
for Example 6.1.2. In this setting, µ(A) := AA∗ − A∗A is the moment map. Note that
µ(A) = 0 is exactly the set of normal matrices which can be diagonalized by unitaries
(see Theorem 2.1.8). Therefore the diagonalization problem can be rephrased as finding
an element of the orbit B ∈ SL(d) · A := {V AV −1 | V ∈ SL(d)} such that µ(B) = 0.
Equivalently, A is stable iff A is diagonalizable iff 0 ∈ µ(SL(d) · A). This is known as the
scaling problem associated to null cone membership problem in Definition 6.1.4.

In Section 6.1.3, we explore this connection between stability and scaling in more detail.

6.1.3 Kempf-Ness Equivalence

In this subsection, we will introduce an optimization formulation for the null cone problem
given in Definition 6.1.4. We will follow the work of Kempf and Ness [58], which connects
the moment map from Section 6.1.1 to the group optimization setting. We will once again
use the example of matrix diagonalization from Example 6.1.2.

First note that deciding the stability properties of v ∈ V according to Definition 6.1.3
can be rewritten in terms of the following optimization problem:

cap(v) := inf
g∈G
‖g · v‖2

2 = 0,

where ‖ · ‖2 is the standard Euclidean norm on inner product space V . This is called the
capacity of group orbit G · v and has a long history not only in geometric invariant theory,
but also in various instances of the scaling framework in theoretical computer science,
namely operator scaling [45] and the Brascamp-Lieb inequalities [39]. Indeed, it can be
shown that cap(v) = 0 iff 0 ∈ G · v iff v is in the null cone, i.e. v is unstable. This reduces
the null cone membership problem in Definition 6.1.4 to solving this group optimization
problem, or even approximating it to sufficient precision.

178

Going back to our diagonalizability example, consider the standard upper triangular
Jordan block N ∈ Mat(2) which sends Ne2 = e1 and Ne1 = 0. Clearly N is nilpotent as
N2 ≡ 0. We can simply verify that N is in the null cone of the SL(2) conjugation action:
let Vt := diag(e−t, et) ∈ SL(2) and observe that

lim
t→∞

VtNV
−1
t = lim

t→∞

(
e−t 0
0 et

)(
0 1
0 0

)(
et 0
0 e−t

)
= lim

t→∞

(
0 e−2t

0 0

)
= 0,

so 0 is in the orbit closure of N and N is in the null cone according to Definition 6.1.3.

This answers one direction of the null cone problem, but for the stable case, we would
like to certify that cap > 0. If the function g → ‖g ·v‖2

2 were convex, then we could attempt
to find the minimizer of this function, and the vanishing gradient would give the required
certificate of optimality (see Lemma 2.3.4). It turns out that this is the right idea given
an appropriate geometry on G. In particular, the Kempf-Ness function [58] for group G
and vector v is defined as

fv(g ∈ G) := ‖g · v‖2
2,

and the capacity of G ·v is the optimum value of fv over G. Further, by defining the appro-
priate notion of geodesic convexity and geodesic gradients on G, we can certify optimality
of the Kempf-Ness function and show that v is stable according to Definition 6.1.3. Below
we explicitly describe these optimality certificates in the matrix conjugation example.

Proposition 6.1.5. For A ∈ Mat(d) and group SL(d) acting by conjugation, the Kempf-
Ness function is defined as

fA(V) := ‖V AV −1‖2
F .

By unitary invariance of ‖ · ‖F , the value of fA(g) depends only on the polar part V ∗V .
Further, for any P ∈ SPD(d) and X ∈ spd(d) given in Definition 2.1.10, the univariate
restriction

h(t) := fA(
√
PetX

√
p)

is convex on t ∈ R. Finally, the moment map µ(B) := BB∗ −B∗B encodes the first order
derivative of fA in the following sense: for any P ∈ SPD(d) and X ∈ spd(d),

∂t=0h(t) = ∂t=0fA(
√
PetX

√
p) = Tr[µ(

√
P · A)X].

Therefore, V is an optimizer of fA iff µ(V AV −1) = 0 iff V AV −1 is normal.

We omit the proof of these properties, as refer to Proposition 6.2.18 for the explicit
calculations in the tensor scaling setting. Note that we have used the Kempf-Ness function

179

to explicitly connect the moment map to the group stability conditions in Definition 6.1.3.
In fact, in this group optimization setting, the Kempf-Ness function gives an equivalent
way to define the moment map as µ(g · v) := ∇fv(g) where ∇ denotes the appropriate
notion of (geodesic) gradient on the group G. We will discuss this more formally later (see
Definition 7.1.1). This gives us enough machinery to state the Kempf-Ness theorem [58],
which completely characterizes unstable and stable points.

Theorem 6.1.6 (Kempf-Ness Theorem). Let v ∈ V for some inner product space V over
field C, and let G be a nice (complex reductive) group with a linear action on V . Then v is

1. unstable iff cap(v) = infg∈G fv(g) = 0.

2. semi-stable iff cap(v) > 0.

3. stable iff ∃g ∈ G such that cap(v) = fv(g) iff µ(g · v) = ∇fv(g) = 0.

This tells us that we can decide the stability of v in two ways: either by solving
the group optimization problem cap(v) = infg∈G fv(g) = infg∈G ‖g · v‖2

2, or by solving
the so-called scaling problem g∗ := arg infg∈G ‖µ(g · v)‖2

g = arg infg∈G ‖∇fv(g)‖2
g, where

‖ · ‖g is an appropriately chosen norm for the gradient of fv. Note that item (3) shows
that for the Kempf-Ness function, the local optimality condition given by ∇fv(g) = 0
is equivalent to the global optimality condition cap(v) = fv(g). This is reminiscent of
convex analysis (Lemma 2.3.4), and indeed an important result of [58] shows that fv is
in fact a convex function when the domain G is given the appropriate geodesic geometry
(see Definition 6.2.13). In the next Section 6.1.4, we will discuss how this can be viewed
as a duality theory between the null cone problem and scaling. Then we will present a
quantitative strengthening of the Kempf-Ness theorem due to [20] which makes this duality
effective and allows us to transfer results between the two problems.

6.1.4 Optimization for Scaling

In this subsection, we will discuss the non-commutative duality theory due to [20]. This
will allow us to effectively connect the group optimization framework to scaling problems,
which are the main focus of this thesis.

One of the main results of [20] is the following quantitative strengthening of the Kempf-
Ness Theorem (6.1.6).

180

Theorem 6.1.7 (Non-commutative Duality Theorem 1.17 of [20]). Let V be an inner
product space with linear action of complex reductive group G. Then there are constants γ
(weight margin) and L (weight norm), depending only on (G, V) such that, for any v ∈ V ,
the capacity cap(v) := infg∈G ‖g · v‖2

2 and moment map µ : V → g are related by

1− 1

γ
· ‖µ(v)‖g
‖v‖2

≤ cap(v)

‖v‖2
2

≤ 1− 1

2L
·
‖µ(v)‖2

g

‖v‖2
2

.

Assuming the normalization ‖v‖2 = 1 for simplicity, we can rewrite this in terms of the
Kempf-Ness function fv(g) := ‖g · v‖2

2 as

1− ‖∇fv(IG)‖g
γ

≤ inf
g∈G

fv(g) ≤ 1−
‖∇fv(IG)‖2

g

2L
,

where ∇ denotes the geodesic gradient for fv.

These inequalities now allow us to transfer results between the group optimization and
scaling problems. Explicitly, if we have a scaling algorithm that can output a point v 6= 0
with ‖∇v‖g < γ, then this implies

cap(v) = inf
g∈G

fv(g) ≥ ‖v‖2
2

(
1− ‖∇v‖g

γ

)
> 0,

which by Theorem 6.1.6 certifies that v is semi-stable, i.e. v is not in the null cone.
Conversely, if we have a group optimization algorithm which can output a δ-optimizer g
satisfying fv(g) = ‖g · v‖2

2 ≥ (1 − δ)−1cap(v), then this gives an approximate solution to
the scaling problem as

‖∇fv(g)‖2
g ≤ 2L

(
1− cap(v)

‖g · v‖2
2

)
≤ 2Lδ.

Now that we have this framework, the duality theory of Theorem 6.1.7 along with the
geodesic convexity of the Kempf-Ness function suggests that we can borrow ideas from
classical convex optimization in order to solve scaling problems. This perspective was a
major contribution of [20] and allowed them to give new algorithms for a variety of scaling
problems that were previously intractable, as well as to give a principled analysis for many
known algorithms. We discuss these algorithmic results in more detail in Chapter 8.

Below we present some concrete instances of the scaling framework and discuss the
consequences of Theorem 6.1.7 as they relate to the results in this thesis. We will specifically
discuss known bounds on the parameters γ and L from Theorem 6.1.7.

181

In the work of Linial et al. [66] on the matrix scaling problem, it was shown γ−1 is
bounded by a polynomial in the dimension, though they did not use this language. This
was a key step in their strongly polynomial algorithm for matrix scaling. It turns out that
a similar polynomial bound holds for the matrix balancing problem [76], which also has
many well-known polynomial time algorithms.

For the non-commutative generalizations of frame and operator scaling, it had been
known since the work of [45] that γ−1 . dn for inputs in Mat(d, n), though once again
this was not the language used. This bound was a key step in our preliminary bound
p(d, n, ε) . dnε on the Paulsen problem in [62]. The polynomial bound for operator
scaling also explains the polynomial time algorithm for operator scaling and its various
downstream applications in algebraic complexity given in [38].

On the other hand, almost all other scaling problems are not known to have polynomial
bounds for γ−1. In fact, even for the next simplest case of 3-tensor scaling, a result of
Kravtsov [60] shows that γ−1 must be exponential in the dimensions (see also the extension
to higher order tensor scaling in [37]). This can be seen as analogous to the jump in
difficulty from graph matching to hypergraph matching.

In Chapter 3, we were able to prove much stronger results for matrix scaling inputs
that satisfied the strong convexity or pseudorandom conditions. Similarly, in Chapter 7
we will give very strong results for tensor scaling, but not in the worst case. We generalize
the strongly convex and pseudorandom analyses of Chapter 3 to the tesor setting in order
to bypass the worst-case convergence results given in Theorem 6.1.7. This is sufficient
for our applications to the Paulsen problem (Chapter 4) and the tensor normal model
(Chapter 9), as we can show random instances of tensor scaling satisfy these conditions
with high probability.

Our subsequent analyses on the tensor scaling problem can be derived in a self-contained
manner. The background presented in this section serves to motivate and contextualize
the concepts used, but is not required to understand the main results in this thesis. Of
course, many of the key observations and ideas for the analysis are heavily inspired by the
theory of general scaling problems.

In the subsequent sections, we restrict our attention to the tensor scaling setting, though
we can now use language that connects our work to the general setting of [20].

182

6.2 Tensor Scaling and Geodesic Convex Formulation

In this section, we will introduce the tensor scaling problem, which is a generalization of
both matrix and frame scaling. The problem will use the language of classical Lie groups
and Lie algebras, so we refer the reader to Section 2.2.3 for the relevant notation and
definitions. This section provides the framework for our analyses in Chapter 7, where we
provide quantitatively stronger analyses for inputs to the tensor scaling problem satisfying
additional conditions.

In Section 6.2.1, we formally define the tensor scaling problem. We also prove some
simple properties of scalings that will be useful for our optimization formulation. Then
in Section 6.2.2, we explicitly define the Kempf-Ness function for tensor scaling. This
function will be crucial to our analysis, as it provides a tractable optimization formulation
for the tensor scaling problem. In Section 6.2.3, we define the notion of geodesic convexity
on positive definite matrices. This reveals the proper geometry in which the Kempf-Ness
function is convex. Finally, in Section 6.2.4, we formally show that the Kempf-Ness function
gives a geodesic convex optimization formulation for tensor scaling. This will allow us to
use tools from convex optimization in our analysis in Chapter 7.

6.2.1 Tensor Scaling Problem

The tensor scaling problem is a generalization of matrix scaling in two directions: the inputs
are higher order tensors instead of matrices, and scalings are general matrices instead of
diagonal ones. We eventually want to describe the general tensor scaling problem, which
involves finding a scaling of a particular form in order to satisfy certain balance conditions
on the input. We begin by giving some basic definitions about tensors.

Definition 6.2.1. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces {Va}a∈[m].
Then for tuple x := {x1, ..., xK} ∈ V K, its size and associated operator are defined as

s(x) :=
K∑
k=1

‖xk‖2
2, and ρx :=

K∑
k=1

xkx
∗
k,

where ‖ · ‖2 is the standard Euclidean norm on V . Note that ρx � 0 is positive semidefinite
and Tr[ρx] =

∑K
k=1 ‖xk‖2

2 = s(x).

We recall that the input to matrix and frame scaling are (tuples of) elements from
Mat(d, n) which is isomorphic to the tensor product Fd ⊗ Fn by A→ vec(A). The size of

183

tensor tuple {vec(A1), ..., vec(Ak)} ∈ Fd⊗Fn as given in Definition 6.2.1 is consistent with
the size of matrix tuple A ∈ Mat(d, n)K as given by Definition 3.1.1.

The following notion of tensor marginals gives an analogous generalization of row and
column sums of matrix tuples.

Definition 6.2.2. Consider linear operator ρ ∈ L(V) on tensor product V = ⊗a∈[m]Va,
and any S ⊆ [m] with VS := ⊗a∈SVa. Then the S-marginal of ρ is defined as ρS := TrS[ρ],
where TrS denotes the partial trace over the complement VS as given in Definition 2.4.7.
For small subsets e.g. S = {a} or S = {a, b, c}, we use shorthand ρ(a) or ρ(abc).

The appropriate notion of balance for tensors will be defined using these marginals.
Below, we show how this definition generalizes the row and column sums of frames and
matrices, which were the quantities of interest in the matrix and frame scaling problems.

Consider tuple A = {vec(A1), ..., vec(Ak)} ∈ (Fd⊗ Fn)K . Then the associated operator
according to Definition 6.2.1 is

ρA :=
K∑
k=1

vec(Ak) vec(Ak)
∗.

If we use ρLA ∈ L(d), ρRU ∈ L(n) to denote the left and right marginals, then these can be
explicitly calculated as follows. For the left marginal, we calculate the inner product with
Eii = eie

∗
i ∈ L(d) for standard basis {ei}i∈[d] ⊆ Fd as

〈ρA, Eii ⊗ In〉 =
〈 K∑
k=1

vec(Ak) vec(Ak)
∗,

n∑
j=1

(ei ⊗ ej)(ei ⊗ ej)∗
〉

=
n∑
k=1

n∑
j=1

|(Ak)ij|2,

where the first step was by the formula above for ρA and the decomposition In =
∑n

j=1Ejj
for standard basis {ej}j∈[n] ⊆ Fn. Definition 2.4.7 tells us that ρLA = TrR[ρA] is the unique
operator satisfying 〈ρLA, X〉 = 〈ρA, X ⊗ In〉 for all X ∈ L(d). Matching this to the above,
we see that the diagonals of ρLA are exactly the row sums diag{ri(A)}di=1 according to Def-
inition 3.1.1. The symmetric calculation shows that the diagonals of ρRA = diag{cj(A)}nj=1

are exactly the column sums.

Next, we show how this generalizes the row and column sums of Definition 4.2.3 for
frames. Consider frame {u1, ..., un} ∈ Un for inner product space U . This can equivalently
be viewed as the tuple U := {u1 ⊗ e1, ..., un ⊗ en} ∈ (U ⊗Rn)n for standard basis {ej}nj=1.
Then the associated operator according to Definition 6.2.1 is

ρU :=
n∑
j=1

(uj ⊗ ej)(uj ⊗ ej)∗ =
n∑
j=1

(uju
∗
j ⊗ Ejj).

184

We use ρLU ∈ L(U), ρRU ∈ L(n) to denote the left and right marginals according to Defini-
tion 6.2.2, and compute them explicitly as follows. For the left marginal, we calculate the
inner product with arbitrary X ∈ L(U) as

〈ρU , X ⊗ In〉 =
n∑
j=1

〈uju∗j ⊗ Ejj, X ⊗ In〉 =
n∑
j=1

〈uju∗j , X〉,

where the first step was by the formula above for ρU , and the second step was by definition
of tensor products. Definition 2.4.7 tells us that ρLU = TrR[ρU] is the unique operator
satisfying 〈ρLU , X〉 = 〈ρU , X ⊗ In〉 for all X ∈ L(U), so matching this to the above we see

ρLU =
n∑
j=1

uju
∗
j .

A similar calculation shows ρRU = diag{‖uj‖2
2}nj=1. These exactly produce the row and

column marginals of a frame given in Definition 4.2.3.

Recall that both frames and matrices were defined by elements of Mat(d, n). The matrix
and frame settings were different as the left marginal for frames could be scaled by arbitrary
matrices instead of diagonal ones, and we required a stronger balance condition on this left
marginal for frames in Definition 4.1.2 instead of just on the diagonals in Definition 3.1.2.

To properly generalize these to the tensor setting, we need to specify a set of scaling
operations and balance conditions. These will be defined based on the following notion of
a scaling group. The definition is a bit long and technical, and the reader can keep in mind
the matrix scaling setting, where we acted on the left and right by diagonal matrices.

Definition 6.2.3 (Tensor Scaling Group). Let V = ⊗a∈[m]Va be a tensor product of inner
product spaces over field F ∈ {R,C}. A tensor scaling group on V is defined as

• G = (G1, ..., Gm) where each Ga is a choice of one of the following groups:

(non-commutative) Ga = SLF(Va), OR

(commutative) Ga = STΞa

F (Va) with

{
Ξa ∈ SU(Va) if F = C
Ξa ∈ SO(Va) if F = R

.

G has the natural embedding G → {g1 ⊗ ... ⊗ gm | ga ∈ Ga} ⊆ SLF(V), which is in
fact gives an isomorphism of the group structure by component-wise multiplication.
We will often use G to refer to this embedding G ⊆ SLF(V) by abuse of notation.

185

The polar part of scaling group G is denoted (P, p), and is defined as

• P = (P1, ..., Pm) where Pa is the polar part of Ga according to Theorem 2.1.13.
Explicitly,

(non-commutative) Ga = SLF(Va) =⇒ Pa = SPDF(Va),

(commutative) Ga = STΞa

F (Va) =⇒ Pa = STΞa

+ (Va).

P has the induced embedding P → {p1 ⊗ ...⊗ pm | pa ∈ Pa} ⊆ SPDF(V), which is in
fact the polar part of the embedding G ⊆ SLF(V) by Theorem 2.1.13. We will use P
to refer to this embedding P ⊆ SPDF(V) by abuse of notation.

• p = p1 ⊕ ... ⊕ pm where pa = logPa is the associated vector space according to the
discussion in Section 2.2.3 and Section 2.2.2 for non-commutative and commutative
groups respectively. Explicitly,

(non-commutative) Pa = SPDF(Va) =⇒ pa = spdF(Va),

(commutative) Pa = STΞa

+ (Va) =⇒ pa = stΞ
a

+ (Va),

where spd(V) := log SPD(V) is explicitly given in Eq. (2.7). p has the induced
embedding

p→ {Z1 ⊗ I1 + ...+ Im ⊗ Zm | Za∈[m] ∈ pa∈[m]},
where Ia the identity operator on ⊗b 6=aVb. This is the associated vector space of the
embedding P ⊆ SPDF(V) as discussed in Section 2.2.3, i.e. p = logP .

Matrix scaling is specified by choosing G = (ST(d), ST(n)) in Definition 6.2.3. In
Definition 3.1.5, we restricted the set of scalings to the vector space t = st(d) ⊕ st(n) by
the simple change of variables x → ex without loss of generality. Similarly, frame scaling
is specified by G = (SL(d), ST(n)), and in Definition 4.2.9 we reduced the set of scalings
to P = (SPD(d), ST+(n)) and its Lie algebra p = spd(d) ⊕ st+(n) by the same change of
variables. Operator scaling [38] is specified by the choice G = (SL(d), SL(n)), and it can
be shown that the set of scalings can similarly be reduced to the positive definite matrices.
In general, the set of scalings for the tensor setting can also be reduced to the polar parts
(P, p). In Section 6.2.3, we can define a natural geometry on P which will allow us to
give a tractable optimization formulation for the tensor scaling problem in Definition 6.2.5
below. Similarly, the reduction to p = logP will allow us to use standard convex analysis
on vector spaces to analyze this more general group optimization setting.

We can now define the balance condition for tensors. This will depend on the choice of
scaling group in Definition 6.2.3.

186

Definition 6.2.4. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces {Va}a∈[m]

with choice of scaling group (G,P, p) according to Definition 6.2.3. Then tuple x =
{x1, ..., xK} ∈ V K is ε-G-balanced if for every a ∈ [m]:

1− ε
da

s(x)Ia � ρ(a)
x �

1 + ε

da
s(x)Ia if Ga = SL(da),

1− ε
da

s(x)Ia � diagΞa(ρ(a)
x) � 1 + ε

da
s(x)Ia if Ga = STΞa(da),

where diagΞ is the diagonal projection in the Ξ basis as given in Section 2.2.2. x is called
G-balanced if the above holds with ε = 0.

In our discussion after Definition 6.2.2, we showed that for input {vec(A1), ..., vec(AK)} ∈
(Fd⊗Fn)K , the diagonal entries of ρLA and ρRA corresponded exactly to the row and column
sums of matrix tuple A ∈ Mat(d, n)K given in Definition 3.1.1. Therefore, A is an ε-doubly
balanced matrix according to Definition 3.1.2 iff it is ε-G-balanced for G = (ST(d), ST(n))
according to Definition 6.2.4. Similarly, Definition 4.1.2 of the ε-doubly balanced frame
condition corresponds exactly to the ε-G-balance condition for G = (SL(d), ST(n)). And
Definition 2.12 in [63] of an ε-doubly balanced operator corresponds to the ε-G-balance
condition for G = (SL(d), SL(n)).

Now we can collect the above into a formal definition of the tensor scaling problem.

Definition 6.2.5 (Tensor Scaling Problem). Let V = ⊗a∈[m]Va be a tensor product of inner
product spaces {Va}a∈[m] with scaling group (G,P, p) according to Definition 6.2.3. Then
for input x = {x1, ..., xK} ∈ V K, output scaling g = ⊗a∈[m]ga ∈ G such that

g · x := {g · xk}Kk=1 = {⊗a∈[m]ga · xk}Kk=1

is G-balanced according to Definition 6.2.4.

Note that from here onwards, we will repeatedly (and implicitly) use the isomorphism
(g1, ..., gm)→ g1 ⊗ ...⊗ gm as described in Definition 6.2.3.

This gives a common generalization of matrix, frame, and operator scaling, as well as
many other problems in the scaling framework. The first three are known to be solvable
in polynomial time. Similarly, if T is a commutative group then this reduces to geometric
programming, which can be solved using standard convex optimization techniques (see
e.g. [21]). On the other hand, for all non-commutative tensor scaling problems with m ≥ 3,
the framework of [20] requires exponential time even to decide whether there exists a non-
trivial g 6= 0 for which g · x is G-balanced. This is because the weight margin γ described

187

in Theorem 6.1.7 is exponentially small for tensor scaling, and this parameter controls the
algorithmic analysis of [20]. In Chapter 9, we will consider the setting V = ⊗a∈[m]Rda with
scaling group G = (SL(d1), ..., SL(dm)) for our statistical application. Importantly, our
inputs will come from natural random distributions which we show satisfy certain strong
convexity and pseudorandom conditions. This allows us to give strong bounds on the
solution and algorithms to compute them in this beyond worst-case setting.

To finish this subsection, we give a useful property of the balance conditions which
will allow us to restrict the scalings to the polar (P, p) and eventually will be useful in
our optimization formulation. This result generalizes the discussion in Definition 3.1.5 and
Fact 4.2.7 showing we could restrict scalings to the polar components for the matrix and
frame settings respectively.

Lemma 6.2.6 (Equivariance and Invariance). The following properties hold for input x ∈
V K with V = ⊗a∈[m]Va.

1. For scaling g ∈ GL(V), the associated operator satisfies ρg·x = gρxg
∗.

2. For any S ⊆ [m], the S-marginal also satisfies the following equivariance: for any
gS ∈ GL(VS) where VS := ⊗a∈SVa,

ρS(gS⊗IS)·x = gSρ
S
xg
∗
S.

3. Let (G,P, p) be a choice of scaling group according to Definition 6.2.3, and let U :=
G ∩ SU(V) be the subset of unitary operators. Then x is ε-G-balanced iff u · x is ε-
G-balanced for any u ∈ U , i.e. the balance conditions in Definition 6.2.4 is invariant
under G ∩ SU(V).

Proof. The first statement follows by expanding Definition 6.2.1 of ρ:

ρg·x =
K∑
k=1

(gxk)(gx
∗
k) = gρxg

∗.

We prove the second statement in the special case when S = {a} is a singleton. Note
that the general case follows by considering the partition V = VS⊗VS. To do so, we verify

that gaρ
(a)
x g∗a matches Definition 6.2.2 of the marginal. So consider arbitrary X ∈ L(Va)

and calculate the inner product

〈ρ(ga⊗Ia)·x, X ⊗ Ia〉 = 〈ρx, g∗aXga ⊗ Ia〉 = 〈ρ(a)
x , g∗aXga〉 = 〈gaρ(a)

x g∗a, X〉,

188

where in the first step we used ρg·x = gρxg
∗ as shown above, and the second step was by

Definition 2.4.7 of marginals. Since ρ
(a)
(ga⊗Ia)·x is uniquely defined by the equation

〈ρ(a)
(ga⊗Ia)·x, X〉 = 〈ρ(ga⊗Ia)·x, X ⊗ Ia〉

for all X ∈ L(Va), this matches with gaρ
(a)
x g∗a and the second statement is shown.

Now we prove the third statement. Consider u1⊗ ...⊗um ∈ U , which we decompose as

u1 ⊗ ...⊗ um =
m∏
a=1

(ua ⊗ Ia).

We will show that each individual transformation maintains the G-balance property.

So consider u := ua⊗ Ia, and we claim that ρu·x is ε-G-balanced iff ρx is ε-G-balanced.
We first show that the size does not change. This follows simply as

s(u · x) =
K∑
k=1

‖u · xk‖2
2 =

K∑
k=1

‖xk‖2
2 = s(x),

where the first and last steps were by Definition 6.2.1, and the middle step was because
u ∈ SU(V) is an isometry according to Definition 2.1.11 so Euclidean norm ‖·‖2 is invariant
by definition.

Now we show that every b 6= a marginal is unchanged. So consider arbitrary Zb ∈ L(Vb)
and calculate the inner product

〈ρu·x, Zb ⊗ Ib〉 = 〈ρx, u∗aua ⊗ Zb ⊗ Iab〉 = 〈ρ(b)
x , Zb〉,

where the first step was by the equivariance property ρu·x = uρxu
∗, and in the last step we

used ua ∈ Ga ⊆ SU(Va) so u∗aua = Ia by Definition 2.1.11. This shows ρ
(b)
u·x = ρ

(b)
x since the

marginal is uniquely defined by the equation

〈ρ(b)
u·x, Zb〉 = 〈ρu·x, Zb ⊗ Ib〉.

Now we show that the a-th marginal ρ
(a)
x is ε-balanced iff ρ

(a)
u·x is. Define Sa := {ξ ∈

Va | ‖ξ‖2
2 = 1} if Ga = SL(Va) and Sa := {ξi ∈ Ξ} if Ga = STΞ(Va), and consider arbitrary

ξ ∈ Sa. Then for arbitrary y ∈ V K , we can rewrite the constraint in Definition 6.2.4 of the
ε-G-balance condition for the a-th marginal as

1− ε
da

s(y)Ia � ρ(a)
y �

1 + ε

da
s(y)Ia iff sup

ξ∈Sa
|〈ξξ∗, daρ(a)

y − s(y)Ia〉| ≤ s(y)ε, (6.1)

189

where we used that Sa is the sphere for Ga = SL(Va) and the standard basis for Ga =
STΞ(Va). For y = (ua ⊗ Ia) · x with ua ∈ Ga, we have

sup
ξ∈Sa
|〈daρ(a)

u·x−s(u·x)Ia, ξξ
∗〉| = sup

ξ∈Sa
|〈daρ(a)

x −s(x)Ia, u
∗
aξξ
∗ua〉| = sup

ψ∈Sa
|〈daρ(a)

x −s(x)Ia, ψψ
∗〉|,

where in the first step we used the equivariance ρ
(a)
u·x = uaρ

(a)
x u∗a for the first term and

s(u ·x) = s(x) shown in the calculation above for the second term, and the second step was
by the change of variable ψ := u∗aξ as ua ∈ Ga preserves the sphere Sa. Matching this to
Eq. (6.1), we see that x is ε-balanced in the a-th marginal iff u ·x is. Since the other b 6= a
marginals were invariant as shown above, this verifies that x is ε-G-balanced according to
Definition 6.2.4 iff u ·x is ε-G-balanced. Finally, we can apply this iteratively for each part
to show the third statement for arbitrary u ∈ U .

By the polar decomposition in Theorem 2.1.13, we can factor G = U · P for uni-
tary part U and polar part P . The unitary invariance of the balance condition shown
in Lemma 6.2.6(3) implies that we do not lose anything by restricting our scalings to P .
In Section 6.2.3 we will provide a geometry on the positive definite matrices in P . This
will allow us to use the theory of Kempf-Ness functions in algebraic geometry to give a
tractable optimization formulation for finding the solution to the tensor scaling problem.

6.2.2 Kempf-Ness Function

In this subsection, we will formally define the Kempf-Ness function [58] for tensor scaling.
This will give the optimization formulation we use to analyze the tensor scaling problem.
For background on this function in geometric invariant theory, see Section 6.1.2.

Definition 6.2.7. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces {Va}a∈[m]

with scaling group (G,P, p) according to Definition 6.2.3. Then for tuple x := {x1, ..., xK} ∈
V K, the Kempf-Ness function f̃Gx : G→ R+ is defined as

f̃Gx (g) := s(g · x) = Tr[ρg·x] = 〈ρx, g∗g〉.

The goal of the tensor scaling problem in Definition 6.2.5 is to find a G-balanced scaling
of the input. In Lemma 6.2.6(3), we showed that if there is a balanced scaling y ∈ G · x,
then we can assume without loss that y ∈ P · x. A similar invariance property holds for
the Kempf-Ness function.

190

Fact 6.2.8. The tensor Kempf-Ness function is unitarily invariant, i.e. the value of f̃Gx
at g depends only on g∗g ∈ P .

As a consequence, this function is also well-defined on P , which will be useful for our
optimization formulation given in Section 6.2.4

Definition 6.2.9. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
scaling group (G,P, p) according to Definition 6.2.3. Then for tuple x := {x1, ..., xK} ∈ V K,
the Kempf-Ness function can be equivalently defined as fPx : P → R+, where

fPx (p) := 〈ρx, p〉.

Note that f̃Gx (g) = fPx (g∗g) and fPx (p) = f̃Gx (p1/2).

This last line is why we give different names to f̃G, fP . Specifically, note that P ⊆ G
so the domain of fP is contained in the domain of f̃G, but they may have different values
fPx (p) 6= f̃Gx (p) for p ∈ P on this common domain. Therefore, we will tend to use fP

exclusively for positive definite elements to avoid confusion.

In the next subsection, we will provide a geometry on positive definite matrices P
which will allow us to do calculus on the Kempf-Ness function. The geometry is more
straightforward when the base point is the identity, so we will repeatedly use the following
property to simplify calculations.

Fact 6.2.10 (Equivariance). Let V = ⊗a∈[m]Va be a tensor product of inner product
spaces {Va}a∈[m] with scaling group (G,P, p) according to Definition 6.2.3. For tuple
x := {x1, ..., xK} ∈ V K, the Kempf-Ness functions in Definition 6.2.7 and Definition 6.2.9
satisfy the following relations:

f̃Gx (g) = s(g · x) = f̃Gg·x(IV), and fPx (p) = 〈ρx, p〉 = fPp1/2·x(IV)

where IV = ⊗a∈[m]Ia is the identity element of G ⊆ GL(V).

In the following section, we define the notion of geodesic convexity on positive definite
matrices. This will allow us to better understand the Kempf-Ness function fP in Defini-
tion 6.2.9 and eventually show that it gives a tractable optimization perspective for the
tensor scaling problem.

191

6.2.3 Calculus for Positive Definite Operators

This subsection will introduce the geodesic framework that reveals the underlying convexity
of the Kempf-Ness function in Definition 6.2.9. This subsection simply lifts the results of
Section 2.2.4 to the tensor scaling setting.

The domain of the Kempf-Ness function in Definition 6.2.9 is a tensor product of subsets
of positive definite matrices. It turns out that the geodesic curves from Definition 2.2.4 lift
naturally to this tensor setting.

Fact 6.2.11. For tensor product V = ⊗a∈[m]Va, let (G,P, p) be a scaling group according to
Definition 6.2.3. Then P is closed under the geodesics given in Definition 2.2.4. Explicitly,
for any p, q ∈ P and Z ∈ p,

γp,q(η) = ⊗a∈[m]p
1/2
a (p−1/2

a qap
−1/2
a)ηp1/2

a , and γp(Z) = ⊗a∈[m]p
1/2
a eZap1/2

a ,

where we have used the embeddings given in Definition 6.2.3: p → p1⊗, ...,⊗pm ∈ P , and
Z → Z1 ⊗ I1 + ...+ Zm ⊗ Im ∈ p.

The symmetry properties of geodesics also lift to this tensor setting by applying Fact 2.2.5
component-wise.

Fact 6.2.12. Consider tensor product V = ⊗a∈[m]Va with scaling group (G,P, p) according
to Definition 6.2.3. For any p, q ∈ P , the geodesics satisfy γp,q(η) = γq,p(1 − η) for any
η ∈ [0, 1]. Further, ‖ log p−1/2qp−1/2‖ = ‖ log q−1/2pq−1/2‖ for any unitarily invariant norm
‖ · ‖ on p.

Since our scaling groups are just direct products of the very simple groups SL(d) and
ST(d), the above result follows immediately from our embeddings, so we omit the proofs.
This above is a special case of the Cartan decomposition in the general Lie group setting.
For details, see the book of Wallach [97].

The convexity of the matrix Kempf-Ness function was a crucial ingredient in our analysis
of Chapter 3. The following definition generalizes the notion of a convex function on a
vector space to this geodesic setting and will be equally crucial in our analysis of tensor
scaling in Chapter 7.

Definition 6.2.13 (Geodesic Convexity). Let V = ⊗a∈[m] be a tensor product of inner
product spaces, and let (G,P, p) be a scaling group according to Definition 6.2.3. Then
function f : P → R is geodesically convex if for every p, q ∈ P , the univariate restriction
η → f(γp,q(η)) is convex according to Definition 2.3.1.

192

Given norm ‖ · ‖ on p, f is α-geodesically strongly convex at p ∈ P with respect to ‖ · ‖
iff for every Z ∈ p,

∂2
η=0f(γp(ηZ)) ≥ α‖Z‖2

p,

where γp(ηZ) = p1/2eηZp1/2 is the geodesic given in Fact 6.2.11.

In the following subsection, we will show that the Kempf-Ness function for tensor scaling
is geodesically convex. This will allow us to use tools from convex optimization to analyze
the tensor scaling solution.

As an example, we can relate critical points and optimizers of geodesically convex
functions similar to the result of Lemma 2.3.4 for univariate functions.

Definition 6.2.14. Let V = ⊗a∈[m] be a tensor product of inner product spaces, and let
(G,P, p) be a scaling group according to Definition 6.2.3. Then p ∈ P is a critical point of
function f : P → R iff

∀q ∈ P : ∂η=0f(γp,q(η))) = 0.

This condition can be equivalently written as

∀Z ∈ p : ∂η=0f(γp(ηZ)) = ∂η=0f(p1/2eηZp1/2) = 0.

The following lemma generalizes the natural property of convex functions: that local
minimizers are global minimizers.

Lemma 6.2.15. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces, and let
(G,P, p) be a scaling group according to Definition 6.2.3. For geodesically convex function
f : P → R, p ∈ P is a critical point iff it is a global minimizer of f .

Proof. If p ∈ P is the optimizer of f , then in particular for any Z ∈ p we must have

∂η=0f(γp(ηZ)) ≥ 0, and − ∂η=0f(γp(ηZ)) = ∂η=0f(γp(−ηZ)) ≥ 0.

This implies ∂η=0f(γp(tZ)) ≥ 0 for every Z ∈ p and verifies criticality of p according to
Definition 6.2.14.

Conversely, assume p ∈ P is a critical point of f , and consider arbitrary q ∈ P . By
univariate convexity, we have

f(q)− f(p) = f(γp,q(1))− f(γp,q(0)) ≥ (1− 0)∂η=0f(γp,q(η)) = 0,

where the first step was by Definition 2.2.4, the second step was by the 1-st order condition
of Definition 2.3.2 applied to univariate convex function t→ f(γp,q(η)), and the final step
is because p is a critical point. As q ∈ P was arbitrary, p is a global minimimizer of f .

193

Recall that in Lemma 3.1.8 we were able to show that critical points of the matrix
Kempf-Ness function correspond to doubly balanced scalings. This implied that the matrix
Kempf-Ness function gives a convex formulation for matrix scaling as shown in Proposi-
tion 3.1.10. We will show a similar result for the more general tensor case in the following
subsection using Lemma 6.2.15.

6.2.4 Geodesic Convex Formulation for Tensor Scaling

In this subsection we show that the Kempf-Ness function in Definition 6.2.9 gives a geodesi-
cally convex optimization formulation for the tensor scaling problem in Definition 6.2.5.
These results are well-known in the geometric invariant theory literature (see [58], [40],
[73], [11], [20]), and follow by straightforward derivative calculations as shown below.

We first show that G-balanced scalings correspond to critical points of fP . This gen-
eralizes Lemma 3.1.8 for the matrix scaling problem.

Lemma 6.2.16. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces {Va}a∈[m]

with scaling group (G,P, p) according to Definition 6.2.3. For tuple x := {x1, ..., xK} ∈ V K

and g ∈ G, g · x is a G-balanced scaling of x iff p := g∗g is a critical point of fPx (p)
according to Definition 6.2.14.

Proof. We will show that y ∈ V is G-balanced iff the identity IV is a critical point for fPy .
This suffices to show the lemma as

∂η=0f
P
x (γp(ηZ)) = ∂η=0〈ρx, p1/2eηZp1/2〉 = ∂η=0〈ρp1/2·x, e

ηZ〉 = ∂η=0fp1/2·x(γIV (ηZ)),

where the first and last steps were by Definition 6.2.9 of the Kempf-Ness function and
Fact 6.2.11 of geodesics on P , and the second step was by the equivariance property of ρ
shown in Lemma 6.2.6(1). Therefore p is critical for fPx iff IV is critical for fP

p1/2·x.

We first calculate the first order derivative of fPy as

∂η=0f
P
y (eηZ) = ∂η=0〈ρy, eηZ〉 = 〈ρy, ZeηZ〉|η=0

=
〈
ρy,
∑
a∈[m]

Za ⊗ Ia
〉

=
∑
a∈[m]

〈ρ(a)
y , Za〉 =

∑
a∈[m]

〈
ρ(a)
y −

s(y)

da
Ia, Za

〉
,

(6.2)

where the first step was by Definition 6.2.9 of the Kempf-Ness function, the second step
was by standard matrix calculus ∂ηe

ηZ = ZeηZ and the embedding Z →
∑

a∈[m] Za ⊗ Ia
given in Definition 6.2.3 for p, in the fourth step we used Definition 6.2.2 of marginals of

194

ρ, and in the final step we used the fact that for every a ∈ [m], Za ∈ pa ⊆ spd(Va) so
〈Ia, Za〉 = Tr[Za] = 0 by Definition 2.1.10.

Using this formula, we first show that the balance condition implies criticality. So
assume y is G-balanced, and first consider the case Ga = SL(Va). Then, according to

Definition 6.2.4, ρ
(a)
y − s(y)

da
Ia = 0 so the a-th term above vanishes. In the other case Ga =

STΞ(Va), the G-balance condition in Definition 6.2.4 implies that diagΞ(ρ
(a)
y − s(y)

da
Ia) = 0.

Since Za ∈ pa, it is also diagonal in the Ξ basis, so the a-th term vanishes in this case as
well. Therefore, for G-balanced y, the entire derivative vanishes in Eq. (6.2). Since Z ∈ p
was arbitrary, this verifies Definition 6.2.14 showing IV is a critical point of fPy .

Conversely, assume y is notG-balanced. We will exhibit a Z ∈ p such that the derivative
∂η=0f

P
y (eηZ) 6= 0, which implies that IV is not a critical point of fPy . In the case when

Ga = SL(Va) we choose Za := ρ
(a)
y − s(y)

da
Ia, and in the case when Ga = STΞ(Va), we choose

its diagonal projection Za = diagΞ(ρ
(a)
y − s(y)

da
Ia). By construction, Z =

∑
a∈[m] Za⊗ Ia ∈ p,

and since y is not G-balanced, Z 6= 0. Therefore, we can calculate

∂η=0f
P
y (eηZ) =

∑
a∈[m]

〈
ρ(a)
y −

s(y)

da
Id, Za

〉
=
∑
a∈[m]

‖Za‖2
F > 0,

where the first step was shown in Eq. (6.2), in the second step we used the definition of Z,
and the last inequality is strict as y is not G-balanced so Z 6= 0. This shows the identity
is not a critical point of fPy according to Definition 6.2.14.

Next we show that the Kempf-Ness function is geodesically convex everywhere.

Lemma 6.2.17. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces {Va}a∈[m]

with choice of scaling group (G,P, p) according to Definition 6.2.3. Then for any tuple
x := {x1, ..., xK} ∈ V K, the Kempf-Ness function fPx is geodesically convex on P according
to Definition 6.2.13.

Proof. We will show that fPy is geodesically convex at the identity for any choice of y ∈ V K .
This will suffice to show the lemma as, for any p ∈ P and Z ∈ p, ∂2

η=0f
P
x (γp(ηZ)) =

∂2
η=0fp1/2·x(e

ηZ) by the equivariance property of Fact 6.2.8, so fPx is geodesically convex at
p iff fp1/2·x is geodesically convex at the identity.

For any Z ∈ p, we calculate

∂2
η=0f

P
y (eηZ) = ∂2

η=0〈ρy, eηZ〉 = 〈ρy, Z2〉 ≥ 0, (6.3)

195

where the first step was by Definition 6.2.9 of the Kempf-Ness function, the second step
was by standard matrix calculus ∂ηe

ηZ = ZeηZ, and the final inequality was because
Z ∈ p ⊆ H(V) so Z2 � 0 and the inner product of two positive definite operators is
always non-negative. This verifies that the univariate function η → fPy (eηZ) is convex by
Definition 2.3.2, and since Z ∈ p was arbitrary, this verifies geodesic convexity.

Below we collect the properties we have shown in this subsection.

Proposition 6.2.18. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces
{Va}a∈[m] with choice of scaling group (G,P, p) according to Definition 6.2.3. Then for
any tuple x := {x1, ..., xK} ∈ V K:

1. The Kempf-Ness function fPx is geodesically convex on P ;

2. For g ∈ G, g · x is G-balanced iff (g∗g)1/2 is a critical point of fPx ;

3. For g ∈ G, g · x is G-balanced iff g∗g is a global minimizer of fPx .

In Chapter 7, we will prove strong bounds on the tensor scaling solution for special
inputs using tools from convex analysis to analyze the geodesically convex formulation.

6.3 General Scaling Reductions

Now that we have properly defined the geodesically convex formulation for tensor scaling,
we can give a formal proof of the frame-to-matrix reduction in Theorem 4.2.13. Specifically,
we will use Proposition 6.2.18(3) equating the scaling solution to the global minimum of
the Kempf-Ness function in Definition 6.2.9. We first present a simple functional statement
that will be useful in the proof of Theorem 4.2.13. It will also be used in Chapter 7 to
reduce the analysis of the tensor scaling problem to the simpler setting of commutative
scaling groups (see Definition 6.2.3 and Definition 7.2.1).

Theorem 6.3.1. Let f : P → R be a continuous function on domain P . Let there be a
(not necessarily disjoint) decomposition P = ∪Ξ∈XP

Ξ, and assume for every Ξ ∈ X the
restriction f |PΞ attains its minimum (not necessarily uniquely) at some point pΞ ∈ PΞ. If
there is some compact set K ⊆ P such that pΞ ∈ K for every Ξ ∈ X , then f attains its
global minimum at some point p∗ ∈ ∪Ξ∈XpΞ.

196

Proof. In order to find the global minimum of f , we can restrict our attention to

inf
p∈P

f(p) = inf
Ξ∈X

inf
q∈PΞ

f(q) = inf
Ξ∈X

f(pΞ),

where the first step was by the decomposition P = ∪Ξ∈XP
Ξ, and the last step was by the

assumption pΞ = arg infq∈PΞ f(q). Therefore, if the global minimum of f is attained, then
we can assume that the optimizer is an element of ∪Ξ∈XpΞ.

To show that the global minimum is attained, we write the infimum as

inf
p∈P

f(p) = inf
Ξ∈X

f(pΞ) = inf
q∈K

f(q),

as ∪Ξ∈XpΞ ⊆ K by assumption. The right hand side is the infimum of continuous f over
compact set K, so by the extreme value theorem, this infimum is attained at some point
p∗. The left hand side shows that p∗ is the global minimizer of f , and by the argument
above, p∗ ∈ ∪Ξ∈XpΞ.

This simple result is the key to many of our reduction for the analysis of tensor scaling.
It also allows us to unify and improve the analyses of [63] and [36] for tensor scaling by
choosing different decompositions P = ∪ΞPΞ. We discuss this in more detail at the end of
the section.

At this point, our reduction from frame scaling to matrix scaling in Theorem 4.2.13
follows simply by translating the language of Chapter 4 to the geodesic convex formulation
of Proposition 6.2.18 and applying the decomposition result of Theorem 6.3.1.

Proof of Theorem 4.2.13. We first rewrite the frame scaling problem in the language of
Definition 6.2.5: we are given input vec(U) ∈ Fd⊗Fn with scaling groupG = (SL(d), ST(n))
and P = (SPD(d), ST+(n)) the associated polar part according to Definition 6.2.3. By
Proposition 6.2.18(3), if p∗ = (eX∗ , eY∗) := arg infp∈P f

P
U (p) is a global minimum of the

Kempf-Ness function in Definition 6.2.9, then the scaling eX∗/2UeY∗/2 produces a doubly
balanced frame according to Definition 6.2.4 (or more simply Definition 4.1.2 for frames).

To show the conclusion of the theorem, we will apply Theorem 6.3.1 to fPU with the
decomposition

P = ∪ΞT
Ξ
+ := ∪Ξ(STΞ

+(d), ST(n)),

where the union is over all orthonormal bases Ξ ⊆ Fd according to the decomposition of
SPD(d) given in Eq. (2.6).

197

The optimizer of each restriction fPU |TΞ
+

can be found by using the assumption that, for

every orthonormal basis Ξ and matrix representation MΞ := Ξ∗U , there exists a diagonal
scaling (XΞ, YΞ) ∈ t (where t = st+(d) ⊕ st+(n) according to Definition 3.1.5) such that
eXΞ/2MΞeYΞ/2 is a doubly balanced matrix according to Definition 3.1.2. Note that for any
matrix representation MΞ, the diagonal scaling (X, Y) ∈ t induces a frame scaling

eX/2MΞeY/2 → (ΞeX/2Ξ∗)UeY/2

according to Eq. (3.5).

Therefore, if fMΞ is the matrix Kempf-Ness function according to Definition 3.1.6, then
it is related to the frame Kempf-Ness function as

fMΞ((X, Y) ∈ t) = s(eX/2MΞeY/2) = s((ΞeX/2Ξ∗)UeY/2) = fPU (ΞeXΞ∗, eY), (6.4)

where the first step was by Definition 3.1.6 of the matrix Kempf-Ness function, the second
was by our calculation above showing (ΞeX/2Ξ∗)UeY/2 is the frame scaling induced by
(X, Y) ∈ t, and the final step was by Definition 6.2.9 of the Kempf-Ness function for frame
scaling on domain P .

By Proposition 3.1.10(3), eXΞ/2MΞeYΞ/2 is a doubly balanced matrix scaling iff (XΞ, YΞ)
is the global minimizer of the matrix Kempf-Ness function fMΞ given in Definition 3.1.6.
By the equivalence in Eq. (6.4), this means that pΞ := (ΞeXΞΞ∗, eYΞ) ∈ (STΞ

+(d), ST(n)) =
TΞ

+ is the global minimum of fPU |TΞ
+

. Further, by the assumption that ‖(XΞ, YΞ)‖t ≤ R,
we have that these optimizers are contained in a compact set. Therefore, we can apply
Theorem 6.3.1 to fPU with decomposition P = ∪ΞT

Ξ
+ to find the global minimizer p∗ ∈

∪Ξ(ΞeXΞΞ∗, eYΞ). By Proposition 6.2.18(3), the induced scaling is a doubly balanced frame.

We now discuss how the partition idea in Theorem 6.3.1 allows us to unify the previous
analyses of specific tensor scaling groups.

In [62] and [63], our motivation was to analyze the Paulsen problem in Chapter 4, so we
defined the dynamical system in Definition 4.1.6 as the simultaneous and continuous version
of the alternate scaling algorithm in Eq. (4.2). Because we did not have the perspective
of geodesic convex optimization, we directly analyzed the convergence of this dynamical
system in terms of the error in the doubly balanced condition. Specifically, we showed
that the error ‖∇U‖2

p defined in Definition 4.2.3 decreased exponentially when the input
frame satisfied a natural spectral condition. Now that we have a better understanding of
the geodesic convex formulation, we can derive this as the exponential convergence of the

198

gradient under gradient flow for geodesically strongly convex inputs. But as discussed in
Section 4.2.3, the reduction in Theorem 4.2.13 is crucial to our application to the Paulsen
problem because it allows us to use the stronger robustness properties of matrix scaling
(e.g. Lemma 3.3.4) to bound the frame scaling solution.

Similarly, in [36], we analyzed the tensor scaling solution directly using functional ar-
guments and geodesic convexity. Specifically, we bound the optimizer of the Kempf-Ness
function by decomposing P into geodesic curves and bounding the optimum for each uni-
variate restriction. We repeat this argument in Theorem 7.1.16. Since each piece of the
partition is just a univariate convex function, we can use very simple arguments based
on the gradient to bound the optimum. Further, these univariate restrictions enjoy strong
robustness properties for tensors similar to matrix scaling. While this argument is straight-
forward, it loses some information about the error in the balance conditions. Therefore
in Section 7.2 we are able to given an improved analysis for the case of commutative
tori by analyzing the ε-G-balance condition of Definition 6.2.4 directly throughout gradi-
ent flow. Then, we are once again able to lift this to the non-commutative setting using
Theorem 6.3.1.

As the above discussion shows, the choice of partition P = ∪ΞPΞ affects the analysis of
tensor scaling in subtle ways. By Proposition 6.2.18(3), finding the tensor scaling solution
for input x with scaling group (G,P, p) is equivalent to finding the optimizer of the Kempf-
Ness function minp∈P f

P
x given in Definition 6.2.9. By using the partition argument in

Theorem 6.3.1, we can reduce this to bounding the optimizer on each piece PΞ, which may
be simpler. But it is also important to consider how much global information about the
tensor is preserved when analyzing the restricted optimization problem over PΞ. The value
of Theorem 6.3.1 is that the choice of decomposition is left to the user, and therefore gives
flexibility to leverage different partitions and different simpler analyses to approach the
full tensor scaling problem. It would be interesting to see whether we could find improved
analyses of tensor scaling for other special subsets of P .

At this point, we have described all the general theory required to analyze tensor
scaling. In particular, we have shown that Definition 6.2.9 gives a geodesically convex
formulation for tensor scaling, and analysis of the non-commutative setting can be reduced
to the commutative setting using Theorem 6.3.1. Recall that there were many valuable
properties of matrix scaling (e.g. standard convexity, strong robustness in Lemma 3.2.4)
which do not necessarily carry over to frame scaling. Similarly, we will be able to give
improved results for the tensor scaling problem when the scaling group is commutative,
and then use Theorem 6.3.1 to lift these results to the non-commutative setting. As a
consequence of these ideas, our work in Chapter 7 will mostly use elementary convex
analysis and structural observations about scaling.

199

Chapter 7

Tensor Scaling

In this chapter, we study the tensor scaling problem described in Definition 6.2.5. This
is a common generalization of matrix, frame, and operator scaling. We will generalize
the strongly convex and pseudorandom techniques of Chapter 3 in order to analyze the
geodesic convex formulation given in Proposition 6.2.18. A key component in our proofs
will be the decomposition strategy given by Theorem 6.3.1. This will allow us to reduce
to the simpler commutative setting, where we can use arguments from standard convex
optimization. Our main application of these results is given in Chapter 9, where we prove
strong bounds on sample complexity and error for the tensor normal model from statistics.

Overview: In Section 7.1, we present the necessary definitions relating to our strong
convergence results, specifically strong convexity, pseudorandomness, and the spectral con-
dition. This leads to a reasonably simple preliminary analysis of the scaling solution for
sufficiently strongly convex inputs. Then, in Section 7.2, we improve this analysis for the
commutative tensor scaling problem when the inputs are strongly convex and pseudoran-
dom. This is lifted to the non-commutative setting using the decomposition ideas from
Theorem 6.3.1. In Section 7.3, we consider robustness properties of these convergence
conditions for non-commutative tensor scaling. These will be helpful in deriving algorith-
mic guarantees for inputs satisfying these sufficient conditions. Finally, in Section 7.4, we
show that the pseudorandom condition implies strong convexity. This is a similar (but
incomparable) result to Theorem 3.4.7 on matrix pseudorandomness and strong convexity.

200

7.1 First Analysis of Strongly Convex Tensor Scaling

In this section, we give our first results on the scaling solution for tensor scaling inputs
satisfying a natural strong convexity assumption. This can be accomplished by lifting ideas
from convex optimization to analyze the optimizer of the geodesically convex formulation
for tensor scaling presented in Proposition 6.2.18 This preliminary analysis can be viewed
as a generalization of Theorem 3.2.8, and will be sharpened in two ways in Section 7.2.

In Section 7.1.1 and Section 7.1.2, we extend the notion of gradient and gradient flow
to the geodesic setting, specifically for the Kempf-Ness function. In Section 7.1.3, we
define the appropriate notion of geodesic strong convexity for tensor scaling. Finally, in
Section 7.1.4, we show a bound on the optimizer for inputs satisfying this assumption by
lifting arguments for strongly convex functions to the geodesic setting.

7.1.1 Geodesic Gradient

The simplest and most natural approaches to convex optimization are gradient based al-
gorithms (discussed briefly in Section 2.3.2). In this subsection, we formally define the
geodesic gradient. We use this to define the geodesic gradient flow algorithm in Sec-
tion 7.1.2.

Recall, from Definition 2.3.12, that the gradient of function h : V → R on vector
space V encodes the first order differential information of the function. Explicitly, for
any x ∈ V, v ∈ V and inner product 〈·, ·〉 on V , the gradient ∇h(x) ∈ V is defined to
satisfy 〈∇h(x), v〉 = ∂t=0h(x + tv). In our setting, the Kempf-Ness function for tensor
scaling is defined on positive definite matrices, so the natural vector gradient is not well-
defined. But we can use the geodesics in Fact 6.2.11 to encode first order differential
information in the geodesic gradient. Specifically, for scaling group (G,P, p) according to
Definition 6.2.3, infinitesimal changes at p ∈ P correspond to geodesic curves γp(ηZ) :=
p1/2eηZp1/2 parametrized by Z ∈ p. Therefore, we would like the geodesic gradient to
capture first order information for these directions.

Definition 7.1.1. Consider scaling group (G,P, p) according to Definition 6.2.3 with inner
product 〈·, ·〉 on vector space p. Then the geodesic gradient of function F : P → R at point
p ∈ P satisfies

∀Z ∈ p : 〈∇F (p), Z〉p = ∂η=0F (γp(ηZ)) = ∂η=0F (p1/2eηZp1/2). (7.1)

This definition of geodesic gradient applies in the general setting of Riemannian man-
ifolds. These are spaces which locally look like inner product spaces, and so the geodesic

201

gradient encodes local first order information with respect to these local inner products.
As discussed in Section 2.2.3, our domain is a special kind of manifold for which the lo-
cal structure is invariant under a natural group action. Therefore, in this thesis, we will
restrict our definitions to this simpler setting. We will briefly mention extensions to more
general geodesic settings in Chapter 10.

Below, we make an appropriate choice of inner product which is adapted to the tensor
scaling problem, and then present the explicit form of the geodesic gradient for the tensor
Kempf-Ness function.

Definition 7.1.2 (p Inner Product). Let V = ⊗a∈[m]Va be a tensor product of inner product
spaces, and let (G,P, p) be a choice of scaling group on V according to Definition 6.2.3.
Then, for elements Y, Z ∈ p, the inner product is defined as

〈Y, Z〉p :=
∑
a∈[m]

1

da
〈Ya, Za〉,

where the right hand side uses the standard L(Va) inner product 〈X, Y 〉 = Tr[X∗Y].

This inner product is a natural choice for our tensor setting. As shown in Defini-
tion 6.2.3, p has a natural embedding into L(V) as the infinitesimal of P :

Z ∈ p → ∂η=0 ⊗a∈[m] e
ηZa =

∑
a∈[m]

Za ⊗ Ia,

where Ia is the identity operator on Va := ⊗b 6=a∈[m]Vb. From this perspective, Defini-
tion 7.1.2 is (up to constant factor) the natural Frobenius inner product on this embedding:〈 ∑

a∈[m]

Ya ⊗ Ia,
∑
b∈[m]

Zb ⊗ Ib
〉

=
∑
a∈[m]

〈Ya, Za〉〈Ia, Ia〉+
∑
a6=b

〈Ya, Ia〉〈Ib, Zb〉〈Iab, Iab〉

= D
∑
a∈[m]

1

da
〈Ya, Za〉+ 0 = D · 〈Y, Z〉p,

where D :=
∏

a∈[m] da so D
da

is the dimension of Va, and the cross-terms vanish because

Ya, Za ∈ spd(Va) so 〈Ya, Ia〉 = 〈Ib, Zb〉 = 0 by Definition 2.1.10. This last expression exactly
matches Definition 7.1.2 up to the constant D factor.

This is also a natural generalization of the inner product in Definition 3.1.11 for matrix
scaling. In that setting, we are given matrix tuple A ∈ Mat(d, n)K which can be viewed

202

as a tuple of elements in Fd ⊗ Fn by Ak → vec(Ak). The diagonal scaling group is T :=
(ST(d), ST(n)), and this gives the associated infinitesimal vector space t := st+(d)⊕st+(n)
according to Definition 6.2.3. So for elements (X, Y), (X ′, Y ′) ∈ t we have

〈
(X, Y), (X ′, Y ′)

〉
t
=
〈X,X ′〉

d
+
〈Y, Y ′〉
n

=
1

d

d∑
i=1

XiiX
′
ii +

1

n

n∑
j=1

YjjY
′
jj,

where in the last step we used that operators in t are all diagonal in the standard basis.
This exactly matches the inner product given in Definition 3.1.11.

Now that we have chosen an inner product on p, the geodesic structure of P induces a
unique geodesic gradient for the Kempf-Ness function.

Proposition 7.1.3. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
scaling group (G,P, p) according to Definition 6.2.3. Then for input x = {x1, ..., xK} ∈ V K,
the geodesic gradient of the Kempf-Ness function fPx at point p ∈ P satisfies ∇fPx (p) =
∇fP

p1/2·x(IV), and is given by ∇fPx (p) = {(∇fPx (p))(a)}a∈[m] which is defined component-wise
as

(∇fPx (p))(a) =

da · ρ
(a)

p1/2·x − s(p
1/2 · x) · Ia if Ga = SL(Va),

diagΞa
(
da · ρ(a)

p1/2·x − s(p
1/2 · x) · Ia

)
if Ga = STΞa(Va)

,

where diagΞ is the diagonal projection into basis Ξ. Note that (∇fPx (p))(a) ∈ pa for all a ∈
[m], and ∇fPx (p) = {(∇fPx (p))(a)}a∈[m] ∈ p. We will often use shorthand ∇x := ∇fPx (IV),

and ∇x = {∇(a)
x }a∈[m] for the marginals.

Proof. We will verify that the above formulas satisfy the requirements for geodesic gradient
given in Definition 7.1.1. Recall that

fPx (γp(ηZ)) = 〈ρx, p1/2eηZp1/2〉 = 〈p1/2ρxp
1/2, eηZ〉 = 〈ρp1/2·x, e

ηZ〉 = fPp1/2·x(γIV (ηZ)),

where in the first and last steps we used Definition 6.2.9 of the Kempf-Ness function and
Fact 6.2.11 for geodesics, and the third step was by the equivariance of ρ as shown in
Lemma 6.2.6(1).

Therefore, we can reduce our calculation of the gradient to geodesics from the identity
by the change of variable y := p1/2 · x, as

〈∇fPx (p), Z〉p = ∂η=0f
P
x (γp(ηZ)) = ∂η=0f

P
y (γIV (ηZ)) = 〈∇fPy (IV), Z〉p,

203

where the first and last steps were by Definition 7.1.1 of the geodesic gradient, and the
second step was by substituting y := p1/2·x into the equation fPx (γp(ηZ)) = fP

p1/2·x(γIV (ηZ))

shown above. We emphasize that ∇fPg·x(IV) 6= ∇fPx (g∗g) unless g = (g∗g)1/2 is the unique
positive definite square-root.

Now we calculate the first order differential from IV using Eq. (6.2):

∂η=0fy(e
ηZ) =

∑
a∈[m]

〈
ρ(a)
y −

s(y)

da
Ia, Za

〉
=
∑
a∈[m]

1

da
〈da · ρ(a)

y − s(y)Ia, Za〉.

If Ga = SL(Va) we leave the term as is, and if Ga = STΞ(Va) then Za ∈ pa = stΞ+(Va) so the

inner product does not change by projecting da · ρ(a)
y − s(y)Ia → diagΞ(da · ρ(a)

y − s(y)Ia).
In either case, the above expression exactly matches the given definition of gradient as

〈∇y, Z〉p =
∑
a∈[m]

1

da
〈(∇fy(IV))(a), Za〉

by Definition 7.1.2 of the inner product 〈·, ·〉p.

The p-norm of the geodesic gradient gives a natural way to measure error that is
compatible with the balance condition of Definition 6.2.4.

Fact 7.1.4. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with dim(Va) =
da for each a ∈ [m] along with scaling group (G,P, p) according to Definition 6.2.3. For ε-
G-balanced tensor tuple x ∈ V K according to Definition 6.2.4, the gradient ∇x = ∇fPx (IV)
satisfies

‖∇x‖2
p ≤ m · s(x)2ε2.

Proof. We assume that Ga = SL(Va) for every a ∈ [m]. The case of diagonal scaling groups
follows simply by applying the calculation below to the diagonal restriction. So let ∇x be
the geodesic gradient according to Proposition 7.1.3, and we calculate

‖∇x‖2
p =

∑
a∈[m]

‖daρ(a)
x − s(x)Ia‖2

F

da
≤
∑
a∈[m]

‖daρ(a)
x − s(x)Ia‖2

op ≤ m · s(x)2ε2,

where in the first step we substituted in the expression from Proposition 7.1.3 for the
geodesic gradient and Definition 7.1.2 for ‖ · ‖p, the second step was by the inequality

‖ · ‖2
F ≤ da‖ · ‖2

op applied to ∇(a)
x ∈ pa ⊆ L(Va) with dim(Va) = da for each a ∈ [m], and

the final step was by ε-G-balance condition of x according to Definition 6.2.4, or more
precisely, the expression in Eq. (6.1) for ε-G-balanced inputs.

204

After defining the appropriate notion of strong geodesic convexity in Section 7.1.3, we
will use simple gradient arguments to bound the scaling solution of sufficiently strongly
convex inputs in Section 7.1.4. In the following subsection, we will describe the gradient
flow dynamical system which is naturally induced by Proposition 7.1.3. This part is not
required for our analysis and is only presented for completeness.

7.1.2 Geodesic Gradient Flow

In this subsection, we will present the geodesic gradient flow for tensor scaling. This part
can be skipped without loss for any of our results, as the analysis of Section 7.1.4 only
uses properties of the geodesic gradient and geodesic strong convexity, and the analyses in
Section 7.2 only use gradient flow for the much simpler commutative tensor scaling setting.
The goal of this subsection is to discuss the techniques in this thesis in relation to past
work on tensor scaling.

We first present the formal definition of the gradient flow dynamical system for non-
commutative tensor scaling.

Definition 7.1.5. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
scaling group (G,P, p) according to Definition 6.2.3. Then, for input x = {x1, ..., xK} ∈
V K, the G-gradient flow is the dynamical system {gt ∈ G}t≥0 defined by initial condition
g0 = IV and differential equation

∂tgt = −1

2
∇fPgt·x(IV) · gt.

This induces a dynamical system on tensors by xt := gt · x.

Note that the above definition is with respect to G scalings. For most of the results
in this thesis, the properties of interest will be invariant with respect to isometries (e.g.
Lemma 6.2.6), and so we will be able to restrict our attention to the polar P and its
geodesic geometry. This is not the case for gradient flow, and we will discuss the reason
for this at the end of this subsection.

Before this, we prove that the dynamical system in Definition 7.1.5 is natural in the
sense that it follows the direction of steepest descent for the Kempf-Ness function s(g ·x) =
f̃Gx (g) = fPx (g∗g).

Lemma 7.1.6. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and consider
scaling group (G,P, p) according to Definition 6.2.3. Then, for input x = {x1, ..., xK} ∈ V K

205

and xt = gt · x the solution to gradient flow given in Definition 7.1.5, the change in size is
∂ts(xt) = −‖∇xt‖2

p. As a consequence

s(xT)− s(x) = −
∫ T

0

‖∇xt‖2
p.

Proof. We begin by rewriting the size of xt := gt · x in terms of the Kempf-Ness function
and the gradient flow:

s(xt) = Tr[ρgt·x] = 〈ρx, g∗t gt〉, (7.2)

where the first step was by Definition 6.2.1 for the size of tensor xt := gt ·x, and the second
step was by the equivariance property in Fact 6.2.10

Since this only depends on the polar part of gt, for the purpose of computing the size
we write the induced dynamical system as

−∂t(g∗t gt) = −(∂tgt)
∗gt − g∗t (∂tgt)

=
(1

2
∇fPgt·x(IV) · gt

)∗
gt + g∗t

(1

2
∇fPgt·x(IV) · gt

)
= g∗t (∇fPgt·x(IV))gt,

(7.3)

where the first step was by the product rule, the second step was by Definition 7.1.5 of
gradient flow, and in the final step we used that ∇fPgt·x(IV) ∈ p is self-adjoint.

Now we can simply compute the change in size as

−∂ts(xt) = −∂t〈ρx, g∗t gt〉 = 〈ρx, g∗t (∇fPgt·x(IV))gt〉 =
∑
a∈[m]

〈ρgt·x, (∇fPgt·x(IV))(a) ⊗ Ia〉

=
∑
a∈[m]

〈ρ(a)
xt ,∇

(a)
xt 〉 =

∑
a∈[m]

1

da
〈daρ(a)

xt − s(xt)Ia,∇
(a)
xt 〉 =

∑
a∈[m]

‖∇(a)
xt ‖2

F

da
= ‖∇xt‖2

p,

where the first step was by the calculation in Eq. (7.2), in the second step we used
the formula for the derivative of the polar part given in Eq. (7.3), in the third step we
used ρgt·x = gtρxg

∗
t by the equivariance property in Fact 6.2.10 as well as the embedding

∇fPxt(IV) =
∑

a∈[m](∇fPxt(IV))(a) ⊗ Ia as described in Definition 6.2.3, in the fourth step
we substituted xt = gt · x as well as Definition 6.2.2 to reduce the inner product to each
marginal, in the fifth step we subtracted s(xt)Ia from each term as ∇(a)

xt ∈ pa ⊆ spd(Va) so

〈∇(a)
xt , Ia〉 = 0 by Definition 2.1.10, in the sixth step we substitute ∇(a)

xt = daρ
(a)
xt − s(xt)Ia

or its diagonal restriction depending on the scaling group according to Proposition 7.1.3,
and the final step was by Definition 7.1.2 of the p-norm. The second statement follows
simply from the first by the fundamental theorem of calculus.

206

To complement this lemma, the discussion below gives an intuitive derivation of the
dynamical system in Definition 7.1.5 as the steepest descent direction for the Kempf-Ness
function. Recall that s(g ·x) = f̃Gx (g) = fPx (g∗g) by Definition 6.2.7 and Definition 6.2.9. It
is intuitively clear by the first order definition of the geodesic gradient in Definition 7.1.1,
that for the Kempf-Ness function at point p ∈ P , the geodesic curve η → γp(−η∇fPx (p)) =

p1/2e−η∇f
P
x (p)p1/2 gives the steepest descent (infinitesimally) with respect to the p-norm in

Definition 7.1.2. Recall by the unitary invariance of Fact 6.2.8, f̃Gx (g) depends only on
the polar part g∗g. Therefore, even though the tangent space for g ∈ G is the larger set
(ip⊕ p) · g as discussed in Section 2.2.3, the steepest descent direction will only depend on
the polar direction in p · g. As shown in Eq. (2.8), the curve η → e−η∇f

P
g·x(IV) · g induces

the polar curve η → g∗e−η∇f
P
g·x(IV)g, so this also gives the steepest descent direction for

s(g · x) = f̃Gx (g).

But if we were only interested in the steepest descent for the Kempf-Ness function,
we could as well have defined the dynamical system in Definition 7.1.5 just in terms of
the polar part. In fact, this seems more natural if we wanted to use geodesic convexity
to analyze tensor scaling. The differential equation at time t is always in p · gt, so in
some sense we are only concerned with the infinitesimal polar direction. But due to the
non-commutativity of G, this does not imply that gt ∈ P for all time.

The reason we choose to define the gradient flow in terms of gt ∈ G comes from Kempf-
Ness theory [58], [11], [40]. We can illustrate this using the simple example of matrix
scaling. For this setting, we showed in Theorem 4.3.4 that the geodesic gradient flow for
the Kempf-Ness function fA induces the same direction as the Euclidean gradient flow for
‖∇A‖2

t . In order to preserve this natural property for the non-commutative setting, we
need to define a dynamical system in terms of gt ∈ G.

In fact, this gives a principled derivation for the dynamical system for operator scaling
that we defined in [62] and [63]. These works were motivated by the Paulsen problem
in frame theory described in Chapter 4. Therefore, they defined a dynamical system on
frame U = {u1, ..., un} ∈ Mat(d, n) for the purpose of decreasing a natural notion of error
to doubly balanced:

∂tuj(t) :=
(
s(U(t))Id − dU(t)U(t)∗

)
uj(t) + uj(t)

(
s(U(t))− n‖uj‖2

2

)
.

This is equivalent to the gradient flow given in Definition 7.1.5 for G = (SL(d), SL(n)) (up
to the factor 1

2
) as the terms in parentheses are exactly the geodesic gradients for frame

scaling given in Proposition 7.1.3. This is a special case of the Kempf-Ness equivalence [58],
[40] from geometric invariant theory which then allows us to use techniques from geodesic
convex analysis to further understand this dynamical system.

207

Another simple feature of the matrix gradient flow in Definition 3.1.14 is that it is
defined in terms of (Xt, Yt) ∈ t, which is a vector space. Recall that P = ep by the
discussion in Section 2.2.3, so we could try to give Definition 7.1.5 in terms of p instead.
Unfortunately, for non-commutative scalings, this change of variables makes calculus much
more difficult as the geodesic structure is only locally defined with respect to p. Explicitly,
for non-commutative scalings eY , eZ ∈ P , eY/2eZeY/2 6= eY+Z . This makes the curve from
eY → eZ ∈ P quite difficult to express purely in terms of p, which is why we define the
non-commutative gradient flow on gt ∈ G. On the other hand, if P is commutative, then
everything can be more simply expressed in terms of p, and this is the approach we take in
Section 7.2 to give our improved strong convexity result. Therefore we will further discuss
how to generalize Definition 3.1.14 of matrix gradient flow in this simpler commutative
setting in Section 7.2.1.

Much of this thesis builds upon the work of [20], which placed the scaling framework
into the context of geodesic convex optimization as shown in Chapter 6. That work also
used gradient flows similar to Definition 7.1.5 in order to prove convergence results for
optimization algorithms for scaling problems. We hope that the gradient flow techniques
developed in this thesis will be useful for more questions in the scaling framework.

7.1.3 Strong Convexity

In this subsection, we will use the norm given by Definition 7.1.2 to define geodesic strong
convexity for the tensor Kempf-Ness function. We will also present a related spectral con-
dition that will be easier to show for random inputs and will be applied in Chapter 9. With
the appropriate geodesic notions of gradient and strong convexity in hand, in Section 7.1.4
we apply standard arguments from convex analysis to give our first quantitative scaling
result.

We begin with the natural notion of strong convexity induced by ‖ · ‖p.

Definition 7.1.7. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and let
(G,P, p) be the scaling group according to Definition 6.2.3. Then input x ∈ V K is α-p-
strongly convex if

∀Z ∈ p : ∂2
η=0f

P
x (γIV (ηZ)) = ∂2

η=0〈ρx, eηZ〉 ≥ α‖Z‖2
p.

The expression above only depends on the input tuple x. Below, we show that this is
equivalent to geodesic strong convexity with respect to the Kempf-Ness function.

208

Lemma 7.1.8. Consider tensor product V = ⊗a∈[m]Va with input x ∈ V K and scaling
group (G,P, p) according to Definition 6.2.3 with g ∈ G. Then y = g · x is α-p-strongly
convex according to Definition 7.1.7 iff fPx is α-geodesically strongly convex at g∗g with
respect to ‖ · ‖p according to Definition 6.2.13.

Proof. We first rewrite the α-p-strong convexity of y = g · x as

inf
Z∈p

∂2
η=0〈ρg·x, eηZ〉
‖Z‖2

p

= inf
Z∈p

〈ρx, g∗Z2g〉
‖Z‖2

p

≥ α,

where we used Eq. (6.3) and substituted ρg·x = gρxg
∗ by the equivariance property in

Lemma 6.2.6(1). Letting p = g∗g, we can similarly rewrite the α-geodesic strong convexity
condition as

inf
Z∈p

∂2
η=0f

P
x (γp(ηZ))

‖Z‖2
p

= inf
Z∈p

〈ρx, p1/2Z2p1/2〉
‖Z‖2

p

≥ α,

where we usd Fact 6.2.11 for the geodesic γp(ηZ) = p1/2eηZp1/2 and again applied the
calculation in Eq. (6.3).

By the polar decomposition in Theorem 2.1.13, we can write g = up1/2 where u ∈
G ∩ SU(V) is an isometry and p1/2 ∈ P is the polar part. This allows us to show the two
expressions above are equal, as

inf
Z∈p

∂2
η=0〈ρg·x, eηZ〉
‖Z‖2

p

= inf
Z∈p

〈ρx, g∗Z2g〉
‖Z‖2

p

= inf
Z∈p

〈ρx, p1/2(u∗Zu)2p1/2〉
‖Z‖2

p

= inf
Y ∈p

∂2
η=0f

P
x (γp(ηY))

‖Y ‖2
p

,

where the first step was calculated above for the α-p-strong convexity condition of y = g ·x,
the second step was by the polar decomposition g = up1/2, and in the final step we applied
the change of variable Y = u∗Zu along with the fact ‖Y ‖p = ‖Z‖p by unitary invariance
of Definition 7.1.2 as well as the calculation above for the α-geodesic strong convexity of
fPx at p. Therefore, these two expressions are equivalent and g · x is α-p-strongly convex
according to Definition 7.1.7 iff fPx is α-geodesically strongly convex at p = g∗g according
to Definition 6.2.13.

This equivalent condition will be helpful in Chapter 8, where we will be able to lift
tools from convex optimization to the geodesic setting to prove convergence of algorithms
for tensor scaling.

We also present a spectral condition which implies strong convexity and will be easier
to prove for random tensors. To motivate this definition, we expand out the second-order

209

derivative calculation in Eq. (6.3):

∂2
η=0f

P
x (eηZ) =

〈
ρx,
(∑
a∈[m]

Ia ⊗ Za
)2
〉

=
∑
a∈[m]

〈ρ(a)
x , Z2

a〉+
∑

a6=b∈[m]

〈ρ(ab)
x , Za ⊗ Zb〉. (7.4)

The cases of interest to us will be when x is a nearly balanced tensor so daρ
(a)
x ≈ Ia and the

diagonal terms 〈ρ(a)
x , Z2

a〉 are large. So we define the following spectral condition in order
to control the off-diagonal terms.

Definition 7.1.9. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and let
(G,P, p) be the scaling group according to Definition 6.2.3. The input x ∈ V K satisfies the
λ-pab-spectral condition if

sup
Za∈pa,Zb∈pb

|〈ρ(ab)
x , Za ⊗ Zb〉|
‖Za‖F‖Zb‖F

≤ λ√
dadb

.

Input x satisfies the λ-p-spectral condition if the above holds for every pair a 6= b ∈ [m].

Note that the above condition is symmetric in the sense that the pab-spectral condition
is equivalent to the pba-spectral condition.

A very similar spectral condition was used in [63] to give a fast convergence result for
operator scaling, and we discuss the relation of Definition 7.1.9 to [63] at the end of this
subsection. We next show how this condition can be simply combined with the balance
condition in Definition 6.2.4 to show strong convexity.

Proposition 7.1.10. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and
let (G,P, p) be the scaling group according to Definition 6.2.3. If input x ∈ V K is ε-G-
balanced according to Definition 6.2.4, and satisfies the λ-p-spectral condition according to
Definition 7.1.9, then x is α-p-strongly convex for α ≥ s(x)(1− ε)− (m− 1)λ.

Proof. Our plan is to show that the expression in Eq. (7.4) is lower bounded by using
the balanced condition to lower bound the diagonal terms, and the spectral condition to
upper bound the off-diagonal terms in absolute value. To show that the diagonal terms in
Eq. (7.4) are large, we use the fact that x is ε-balanced so

〈ρ(a)
x , Z2

a〉 ≥ s(x)
1− ε
da
〈Ia, Z2

a〉 = s(x)
1− ε
da
‖Za‖2

F ,

where the first step was by Definition 6.2.4 and the fact that Z2
a � 0.

210

The off-diagonal terms are bounded by Definition 7.1.9 of spectral gap, so we can bound
the second order derivative for any Z ∈ p by

∂2
η=0fx(e

ηZ) =
∑
a∈[m]

〈ρ(a)
x , Z2

a〉+
∑

a6=b∈[m]

〈ρ(ab)
x , Za ⊗ Zb〉

≥
∑
a∈[m]

s(x)(1− ε)
da

‖Za‖2
F −

∑
a6=b∈[m]

λ√
dadb
‖Za‖F‖Zb‖F

=
∑
a∈[m]

(s(x)(1− ε) + λ)
‖Za‖2

F

da
− λ

∑
a∈[m]

‖Za‖F√
da

2

≥ ((s(x)(1− ε) + λ)‖Z‖2
p −mλ‖Z‖2

p,

where the first step was given in Eq. (7.4), in the second step we lower bounded the
diagonal terms by the calculation above and upper bounded the off-diagonal terms by
Definition 7.1.9, and the last step used Cauchy-Schwarz as well as Definition 7.1.2 of 〈·, ·〉p.
As Z ∈ p was arbitrary, this verifies Definition 7.1.7 of strong convexity.

Note that the above proof only used the lower bound ρ
(a)
x � s(x)(1−ε)

da
Ia. In the m = 2

operator scaling case there is a partial converse using the upper bound ρ
(a)
x � s(x)(1+ε)

da
Ia.

Lemma 7.1.11. Input A ∈ Mat(d, n)K can be considered as a tuple of elements in the
tensor product space V := Fd⊗Fn by the natural isomorphism Ak → vec(Ak). Let (G,P, p)
be any choice of scaling group on V = Fd ⊗ Fn according to Definition 6.2.3. If ε-G-
balanced A is satisfies the λ-p-spectral condition and is α-p-strongly convex according to
Definition 7.1.7, then α ≤ s(A)(1 + ε)− λ.

Proof. Let (X, Y) ∈ p be the elements that achieve the supremum in Definition 7.1.9. By
changing sign and normalizing if necessary, we assume without loss that ‖X‖2

F = d, ‖Y ‖2
F =

n and 〈ρA, X ⊗ Y 〉 = −λ‖X‖F ‖Y ‖F√
dn

= −λ. Then, we calculate

∂2
η=0fA(eηX , eηY) = 〈ρ, (X ⊗ In + Id ⊗ Y)2〉 = 〈ρL, X2〉+ 〈ρR, Y 2〉+ 2〈ρ,X ⊗ Y 〉

≤ s(A)(1 + ε)

d
‖X‖2

F +
s(A)(1 + ε)

n
‖Y ‖2

F − 2
λ√
dn
‖X‖F‖Y ‖F

= 2(s(A)(1 + ε)− λ) = (s(A)(1 + ε)− λ)‖(X, Y)‖2
p,

where the first step was by the calculation in Eq. (6.3), the second was given in Eq. (7.4), in
the third step we used the ε-G-balance condition in Definition 6.2.4 to bound the diagonal

211

terms by max{d‖ρL‖op, n‖ρR‖op} ≤ s(A)(1 + ε) and used 〈ρA, X ⊗ Y 〉 = −λ‖X‖F ‖Y ‖F√
dn

to

bound the off-diagonal term, and the final steps were by our assumption that
‖X‖2F
d

=
‖Y ‖2F
n

= 1. Since Definition 7.1.7 of strong convexity gives a lower bound for every (X, Y) ∈
p, this shows the required upper bound for α.

Therefore, in the case of m = 2 scaling (i.e. matrix, frame, or operator), for nearly
doubly balanced inputs, strong convexity and the spectral condition are nearly equivalent
for analyzing fast convergence.

In [63], we used a similar plan to lower bound the diagonal terms and upper bound the
cross term in Eq. (7.4) for V = MatR(d, n) ' Rd ⊗ Rn. We showed that the dynamical
system in Definition 7.1.5 converged quickly to the solution of operator scaling when the
input satisfied a spectral condition. To do so, in [63] we considered the associated operator
ΦA : L(Rn)→ L(Rd) satisfying 〈X,ΦA(Y)〉 = 〈ρA, X ⊗ Y 〉 according to Proposition 2.4.5.
Tuple A ∈ Mat(d, n)K was said to satisfy the σ-spectral gap condition if

σ2(ΦA) ≤ (1− σ)
s(A)√
dadb

,

where σ1 ≥ σ2 ≥ ... are the singular values of the linear operator ΦA written in decreasing
order. The main technical work of Section 3.3 of [63] was to control the cross term in
Eq. (7.4) by combining the spectral gap and nearly balanced conditions. Specifically, we
were able to show that if A is nearly doubly balanced, then the top singular value is
≈ s(A)√

dn
with singular value pair close to (Ia√

da
, Ib√

db
). Therefore, if the spectral gap σ is large

then the cross term is small. Further, σ � ε implies that ‖∇At‖2
p decreases exponentially

throughout gradient flow.

In this thesis, we give a slightly cleaner analysis using strong convexity. In particular,
our definition of the spectral condition is defined on (pa, pb) ⊆ (Va, Vb) instead of in relation
to the top singular vector pair of ΦA. This allows us to control the cross term in Eq. (7.4)
more directly, which then implies strong convexity for nearly balanced inputs. As shown in
Lemma 7.1.11, for nearly balanced inputs with λ small enough (or σ large enough), these
definitions are nearly equivalent. The value of Definition 7.1.7 is that our results can be
applied to inputs that are not nearly balanced if strong convexity is shown by other means.

In the following Section 7.1.4, we will combine these definitions to give strong bounds
on tensor scaling.

212

7.1.4 Strong Convergence Bound

In this part, we will analyze strongly convex tensor inputs that are nearly balanced. The
proof can be seen as an extension of standard arguments from strongly convex optimization
to the geodesic setting. At the end, we will discuss the exact parameters of the theorem
that will be improved in Section 7.2.

Our plan is to show that strong convexity is robust for small scalings p ≈ IV . This
will allow us to use Lemma 2.3.7 to bound the optimizer of the Kempf-Ness function along
each geodesic, which will then allow us to control the scaling solution.

We will need the following version of operator norm, which controls the change in strong
convexity with respect to scalings.

Definition 7.1.12. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and let
(G,P, p) be the scaling group according to Definition 6.2.3. Then, for Z ∈ p, the operator
norm is defined as

‖Z‖op :=
∑
a∈[m]

‖Za‖op,

where ‖·‖op refers to the standard Euclidean operator norm on L(V) and L(Va), respectively.

Similar to the discussion after Definition 7.1.2, note that this definition of the operator
norm is motivated by the Euclidean operator norm of Z with respect to the embedding Z →∑

a∈[m] Ia⊗Za ∈ L(V). We note that ‖
∑

a∈[m] Ia⊗Za‖op ≤
∑

a∈[m] ‖Za‖op, and in general,

the inequality could be strict (e.g. X = diag{2,−1,−1} ∈ st(3) and Z := X⊗I3−I3⊗X).
We use the notation ‖Z‖op for the norm in Definition 7.1.12 for simplicity.

This norm allows us to show that strong convexity is maintained along univariate
restrictions h(η) := fPx (γp(ηZ)) for any p ∈ P . In Lemma 7.2.13, this result is generalized
to show that strong convexity is maintained for commutative scalings, and in Section 7.3
it is further generalized to non-commutative scaling groups.

Lemma 7.1.13. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with scal-
ing group (G,P, p) according to Definition 6.2.3, and consider x ∈ V K with Kempf-Ness
function fPx according to Definition 6.2.9. If fPx is α-geodesically strongly convex at p ∈ P
according to Definition 6.2.13, then for any direction Z ∈ p, the univariate restriction
h(η) := fPx (γp(ηZ)) is e−‖ηZ‖op · α‖Z‖2

p-strongly convex at η ∈ R.

Proof. By Definition 6.2.13, α-geodesic strong convexity of fPx at p ∈ P implies that

〈p1/2ρxp
1/2, Z2〉 = ∂2

η=0〈ρx, p1/2eηZp1/2〉 = ∂2
η=0f

P
x (γp(ηZ)) ≥ α‖Z‖2

p,

213

where the first step was by the derivative calculation ∂2
ηe
ηZ = eηZZ2, in the second step

we used Fact 6.2.11 for the geodesic γp(ηZ) = p1/2eηZp1/2 as well as Definition 6.2.9 of the
Kempf-Ness function fPx , and the final step was by Definition 6.2.13 of α-geodesic strong
convexity in ‖ · ‖p.

We can use this to bound the second derivative at other points as

∂2
ηf

P
x (γp(ηZ)) = 〈p1/2ρxp

1/2, eηZZ2〉 ≥ e−‖ηZ‖op〈p1/2ρxp
1/2, Z2〉 ≥ e−‖ηZ‖op · α‖Z‖2

p,

where the first step was again by Definition 6.2.9 of the Kempf-Ness function and the deriva-
tive calculation, in the second step we used the spectral lower bound eηZZ2 � e−‖ηZ‖opZ2

by Definition 7.1.12 of the operator norm in order to bound the inner product since both
terms are positive semi-definite, and the final step was by α-geodesic strong convexity of
fPx at p ∈ P as calculated above. This verifies Definition 2.3.2 of strong convexity for
h(η) = fPx (γp(ηZ)).

Remark 7.1.14. The important property used in the proof of Lemma 7.1.13 was that
eZ commuted with the second order term Z2. In Lemma 7.2.13, we will generalize this to
show a similar robustness of strong convexity for commutative scalings. This generalization
will be used to give an improved analysis in Section 7.2. In Section 7.3, we will further
generalize this result to show that small perturbations maintain p-strong convexity for non-
commutative scaling groups.

In the following, we give a translation between norms so that we can apply standard
gradient based analysis to the strongly convex scaling setting.

Lemma 7.1.15. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with scal-
ing group (G,P, p) according to Definition 6.2.3. Then for any Z ∈ p, the norms ‖ · ‖p
(Definition 7.1.2) and ‖ · ‖op (Definition 7.1.12) satisfy(∑

a∈[m]

da

)−1

‖Z‖2
op ≤ ‖Z‖2

p ≤
∑
a∈[m]

‖Za‖2
op.

Proof. By Definition 7.1.2 of ‖ · ‖p and Definition 7.1.12 of ‖ · ‖op,

‖Z‖2
p =

∑
a∈[m]

‖Za‖2
F

da
≤
∑
a∈[m]

‖Za‖2
op,

214

where the second step was by the bound ‖Za‖2
F ≤ da‖Za‖2

op for Za ∈ L(Va) with dim(Va) =
da. To show the reverse bound, we calculate

‖Z‖2
op =

(∑
a∈[m]

‖Za‖op

)2

≤
(∑
a∈[m]

‖Za‖F
)2

≤
(∑
a∈[m]

da

)(∑
a∈[m]

‖Za‖2
F

da

)
=

(∑
a∈[m]

da

)
‖Z‖2

p,

where the first step was by Definition 7.1.12 of the operator norm, in the second step we
used ‖Za‖op ≤ ‖Za‖F , the third step was by Cauchy-Schwarz, and the final step was by
Definition 7.1.2 of ‖ · ‖p.

We can now apply the reduction in Theorem 6.3.1 to bound the tensor scaling solution.

Theorem 7.1.16. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
scaling group (G,P, p) according to Definition 6.2.3. If input x ∈ V K has size s(x) = 1

and is α-p-strongly convex according to Definition 7.1.7 with α
e
≥
√∑

a∈[m] da·‖∇fPx (IV)‖p,
then there is a G-balanced scaling x∗ := eZ∗/2 · x with Z∗ ∈ p satisfying

‖Z∗‖p ≤
e‖∇fPx (IV)‖p

α
.

As a consequence, s(x∗) ≥ 1− e‖∇x‖2p
2α

.

Proof. By Proposition 6.2.18(3), in order to find a G-balanced scaling, it is enough to find
the global minimum of fPx . We decompose the domain P into univariate restrictions using
the “sphere” Sp := {Z ∈ p | ‖Z‖p = 1} as

P = ep = ∪Z∈Spe
RZ ,

where the first step is by the discussion in Section 2.2.3 of the Lie algebra p := logP . We
will apply Theorem 6.3.1 to find the optimizer of fPx , so by the partition above it is enough
to bound the optimizers of the univariate restrictions hZ∈Sp(η) := fPx (eηZ).

For each univariate restriction, we will show that |h′Z(0)| is small and hZ is α
e
-strongly

convex on the interval |η| ≤ |h′Z(0)|
α/e

, which then allows us to apply Lemma 2.3.7 to bound

the optimizer. We will use the shorthand ∇x = ∇fPx (IV) as this is the only geodesic
gradient we consider in this proof. First we bound the gradient by

|h′Z(0)| = |∂η=0f
P
x (eηZ)| = |〈∇x, Z〉p| ≤ ‖∇x‖p‖Z‖p = ‖∇x‖p,

215

where the first step was by our definition of hZ , the second was by Fact 6.2.11 of geodesics
from the identity as well as Definition 7.1.1 of the geodesic gradient ∇x = ∇fPx (IV), the
third step was by Cauchy-Schwarz, and in the final step we used that Z ∈ Sp so ‖Z‖p = 1.

To show strong convexity of hZ , we first note that α-strong convexity of input x is
equivalent to α-geodesic strong convexity of fPx at the identity by Lemma 7.1.8. There-
fore, we can apply the robustness property of Lemma 7.1.13 to show hZ(η) = fPx (eηZ)
is e−‖ηZ‖op · α-strongly convex at η ∈ R. In particular, hZ is α

e
-strongly convex for all

|η| ≤ (
∑

a∈[m] da)
−1/2 as

η2 ≤
(∑
a∈[m]

da

)−1

=⇒ ‖ηZ‖2
op ≤ η2

(∑
a∈[m]

da

)
‖Z‖2

p ≤ 1,

where we used Lemma 7.1.15 to transfer between norms and ‖Z‖p = 1 as Z ∈ Sp. This

implies hZ is α
e
-strongly convex for |η| ≤ |h′Z(0)|

α/e
as

|h′Z(0)|
α/e

≤ ‖∇x‖p
α/e

≤
(∑
a∈[m]

da

)−1/2

,

where in the first step we used gradient bound |h′Z(0)| ≤ ‖∇x‖p calculated above and the

final step was exactly our assumption α
e
≥
√∑

a∈[m] da · ‖∇x‖p. Therefore, Lemma 2.3.7

shows that the optimizer ηZ of hZ satisfies

hZ(ηZ) ≥ hZ(0)− |h
′
Z(0)|2

2α/e
≥ s(x)−

e‖∇x‖2
p

2α
and |ηZ | ≤

|h′Z(0)|
α/e

≤ e‖∇x‖p
α

,

where we used hZ(0) = fPx (IV) = s(x) and the bound |h′(0)| ≤ ‖∇x‖p calculated above.

Finally, since each univariate restriction in the partition P = ∪Z∈Spe
RZ has bounded

optimizer eηZZ ∈ eRZ , we can apply Theorem 6.3.1 to show that the global minimum of fPx
is of the form eZ∗ := eηZZ for some Z ∈ Sp. By Proposition 6.2.18(3), this shows eZ∗/2 · x
is G-balanced, and further we can lower bound the function and upper bound ‖Z∗‖p using
the univariate calculations above as

fPx (eZ∗) ≥ inf
Z∈Sp

hZ(ηZ) ≥ s(x)−
e‖∇x‖2

p

2α
and ‖Z∗‖p ≤ sup

Z∈Sp

|ηZ |‖Z‖p ≤
e‖∇x‖p
α

.

216

In the following Section 7.2 we will use gradient flow to show stronger bounds for the
scaling solution. Specifically, we will be able to use bounds on ‖∇‖op to directly analyze the
path to the optimizer, instead of just relying on gradient bound ‖∇‖p. These results can be
compared to the improved strong convexity analysis of Section 3.2 and the pseudorandom
analysis of Section 3.3.

7.2 Improvement through Commutative Gradient Flow

In the previous Section 7.1, we gave the appropriate definitions required to lift simple
gradient and strong convexity arguments to the geodesic setting. This is analogous to
the result in Theorem 3.2.8 on matrix scaling. In this section, we will use structural
properties of commutative gradient flow to strengthen these results. Specifically, we will
analyze inputs that are ε-G-balanced so that ‖∇(a)

x ‖op ≤ s(x)ε for every a ∈ [m]. Note
that by Fact 7.1.4, this implies ‖∇x‖2

p ≤ m · (s(x)ε)2. In this section, we will go beyond
standard convexity arguments by directly analyzing the operator norm of the solution
through gradient flow. This will allow us to achieve the same conclusions as Theorem 7.1.16
while significantly weakening the assumption on strong convexity. The improved analyses
in this section will be applied to give the best-known sample complexity and error bounds
for the tensor normal model in Chapter 9.

By Theorem 6.3.1 we will reduce the analysis of general tensor scaling to commutative
scaling groups. So in Section 7.2.1 we will review and simplify the definitions of the
Kempf-Ness function and gradient flow in these settings. Then, in Section 7.2.2 we present
a refined analysis of commutative gradient flow when the input is strongly convex. This is
analogous to the improvement from Theorem 3.2.8 to Theorem 3.2.19 for strongly convex
matrix scaling, which also came from directly analyzing the∞-norm of the scaling solution
instead of the t-norm. Finally in Section 7.2.3, we will define a “pseudorandom” condition
on tensors and use it to show even faster convergence of gradient flow.

7.2.1 Simplified Setup for Commutative Tensors

In this subsection, we review the definitions of Section 6.2 and Section 7.1.4 for the sim-
pler setting of commutative tensor scaling. We begin by repeating Definition 6.2.3 for
commutative scaling groups.

Definition 7.2.1 (Commutative Tensor Scaling Group). Let V = ⊗a∈[m]Va be a tensor
product of inner product spaces {Va}a∈[m] all over field F ∈ {R,C}. A commutative tensor

217

scaling group on V is defined as T = (T1, ..., Tm), where for each a ∈ [m], Ta = STΞa

F (Va)
for some isometry Ξa ∈ SU(Va) if F = C and Ξa ∈ SO(Va) if F = R. The polar part is
denoted by T+ = {STΞa

+ (Va)}a∈[m] along with associated vector space t = ⊕a∈[m]st
Ξa

+ (Va).
We will sometimes refer to (T, T+, t) as the commutative scaling group diagonal in the
Ξ = {Ξa}a∈[m] basis.

A commutative scaling group can be viewed as a set of diagonal matrices in the Ξa

basis. As a consequence, all the elements of (T, T+, t) commute. We will often reduce to
the standard basis T = (ST(d1), ..., ST(dm)) by a change of basis on the input. This is
only to reduce clutter, and our analysis will hold for any commutative scaling group.

Next, we give a simpler definition of the Kempf-Ness function for commutative scaling
groups.

Definition 7.2.2. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
commutative scaling group (T, T+, t) according to Definition 7.2.1. Then for tuple x :=
{x1, ..., xK} ∈ V K, the Kempf-Ness function from Definition 6.2.9 can be equivalently
defined as f t

x : t→ R+ where

f t
x(Z) := fT+

x (eZ) = 〈ρx, eZ〉.

We could have given this form of the Kempf-Ness function in Definition 6.2.9 by the
change of variable P = ep. But for non-commutative scaling groups, the geodesic structure
is more difficult to understand from this perspective as eY/2eZeY/2 6= eY+Z . Therefore we
chose to give the definitions in Section 6.2 with respect to the polar P . In this section,
we will focus on the commutative setting, and so the definition of geodesic gradient and
geodesic gradient flow can also be simplified by this change of variable.

Proposition 7.2.3. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and
consider commutative scaling group (T, T+, t) diagonal in the Ξ basis according to Defini-
tion 7.2.1. Then for input x = {x1, ..., xK} ∈ V K, the gradient of f t

x at Y ∈ t satisfies

∇f t
x(Y) = ∇fT+

x (eY) = ∇fT+

eY/2·x(IV) = ∇f t
eY/2·x(0),

and is defined component-wise as

(∇f t
x(Y))(a) = (∇fT+

x (eY))(a) = diagΞa
(
daρ

(a)

eY/2·x − s(e
Y/2 · x)Ia

)
.

We will often use shorthand ∇x = ∇f t
x(0) and ∇x = {∇(a)

x }a∈[m] for the marginals.

218

Proof. The explicit expression for (∇f t
x(Y))(a) follows directly from the analogous state-

ment in Proposition 7.1.3 by the equality (∇f t
x(Y))(a) = (∇fT+

x (eY))(a). Therefore, we

focus on proving the first statement. Note that the equality ∇fT+
x (eY) = ∇fT+

eY/2·x(IV) was

already shown in Proposition 7.1.3, and ∇fT+

eY/2·x(IV) = ∇f t
eY/2·x(0) follows from the first

equality by the change of variable x′ = eY/2 · x and Y ′ = 0.

We show the first equality ∇f t
x(Y) = ∇fT+

x (eY) by relating Definition 2.3.12 of the
gradient and Definition 7.1.1 of the geodesic gradient. For fixed Y ∈ t, we can calculate
the directional derivative for arbitrary Z ∈ t as

〈∇f t
x(Y), Z〉t = ∂η=0f

t
x(Y +ηZ) = ∂η=0f

T+
x (eY+ηZ) = ∂η=0f

T+
x (γeY (ηZ)) = 〈∇fT+

x (eY), Z〉t,

where the first step was by Definition 2.3.12 of the gradient of f t
x, in the second step we

used the equivalence f t
x(·) = fT+

x (e·) according to Definition 7.2.2, in the third step we used
Fact 6.2.11 for the geodesic γeY (ηZ) = eY/2eηZeY/2 = eY+ηZ by commutativity of (T, T+, t),
and the final step was by Definition 7.1.1 of the geodesic gradient of fT+

x . The statement
follows since Z ∈ t was arbitrary.

Now that we have an expression for the gradient of the commutative Kempf-Ness func-
tion, we can show that the gradient flow from Definition 7.1.5 can also be written as a
dynamical system on vector space t in the commutative case.

Proposition 7.2.4. With the same assumptions Proposition 7.2.3, the gradient flow in
Definition 7.1.5 can be written in terms of Zt ∈ t with initial condition Z0 = 0 satisfying
differential equation

∂tZt = −∇f t
eZt/2·x(0) = −∇f t

x(Zt).

This induces the dynamical system xt := eZt/2 · x.

Proof. Note that we have already shown ∇f t
eZt/2·x(0) = ∇f t

x(Zt) in Proposition 7.2.3. Let

xt := gt · x be the dynamical system from Proposition 7.2.4 and yt := eZt/2 · x be the
dynamical system in this proposition. We will show that xt = yt for all time so that these
two equations define the same dynamical system. By the initial conditions g0 = IV = eZ0/2,
the statement is true at time t = 0.

To show the equivalence for all time, we rewrite the differential equation for xt as

∂txt = ∂t(gt · x) = −1

2
(∇fT+

gt·x(IV)) · gt · x = −1

2
(∇fT+

xt (IV)) · xt,

219

where in the first and last steps we substituted xt = gt · x, and in the second step we used
Definition 7.1.5 for the gradient flow for gt. Similarly, we rewrite

∂tyt = ∂(eZt/2 · x) =
1

2
(∂tZt)e

Zt/2 · x = −1

2
(∇f t

eZt/2·x(0))(eZt/2 · x) = −1

2
(∇f t

yt(0)) · yt,

where in the first and last steps we substituted yt = eZt/2 · x, the second step was by the
chain rule, and the third step was by the defining equation ∂tZt = −∇f t

eZt/2·x(0).

The calculation above, along with the equivalence ∇f t
yt(0) = ∇fT+

yt (IV) as given in
Proposition 7.2.3, shows that if xt = yt, then the differential equations are also the same
at time t. Therefore, since the initial conditions are the same, this implies that the two
dynamical systems are equivalent and xt = gt · x = eZt/2 · x = yt for all time.

Below, we state the formula for change in size over gradient flow which follows directly
from the non-commutative version in Lemma 7.1.6 by the equivalence of gradient flows
shown in Proposition 7.2.4.

Lemma 7.2.5. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and consider
commutative scaling group (T, T+, t) according to Definition 7.2.1. Then for input x =
{x1, ..., xK} ∈ V K and xt = eZt/2 ·x the solution to gradient flow given in Proposition 7.2.4,
the change in size is ∂ts(xt) = −‖∇xt‖2

t . As a consequence

s(xT)− s(x) = −
∫ T

0

‖∇xt‖2
p.

We can also simplify Definition 7.1.7 of strong convexity in the commutative setting.

Definition 7.2.6. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and
consider commutative scaling group (T, T+, t) according to Definition 7.2.1. Then input
x = {x1, ..., xK} ∈ V K is α-t-strongly convex if f t

x is α-strongly convex at the origin:

∀Z ∈ t : ∂2
η=0f

t
x(ηZ) ≥ α‖Z‖2

t = α
∑
a∈[m]

‖Za‖2
F

da
.

By this change of variable (from T+ to t), we can use tools from standard convex
analysis on the vector function f t

x. In particular, we can show that strong convexity
implies fast convergence of gradient flow. This follows by lifting the argument in the proof
of Proposition 3.2.2 to the tensor setting.

220

Proposition 7.2.7. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and com-
mutative scaling group (T, T+, t) according to Definition 7.2.1. If input x = {x1, ..., xK} ∈
V K is α-t-strongly convex according to Definition 7.2.6, then the trajectory of gradient
flow xt = eZt/2 · x given in Proposition 7.2.4 satisfies −∂t=0‖∇xt‖2

t ≥ 2α‖∇x‖2
t . As a

consequence, if xt is α-t-strongly convex for t ∈ [0, T] then

‖∇xT ‖2
t ≤ e−2αT‖∇x‖2

t and ‖ZT‖t ≤
‖∇x‖t
α

.

Proof. This proof is a simple generalization of Proposition 3.2.2 in the matrix setting.
So we first show −∂t=0‖∇xt‖2

t = 2∂2
η=0f

t
x(−η∇x), which will imply the first statement by

strong convexity. Starting from the left hand side, we calculate

−1

2
∂t=0‖∇xt‖2

t = 〈∂t=0∇xt ,−∇x〉t = lim
t→0

t−1〈∇xt −∇x,−∇x〉t

= lim
t→0

t−1
(
∂η=0f

t
xt(−η∇x)− ∂η=0f

t
x(−η∇x)

)
= lim

t→0
t−1
(
∂η=0f

t
x(Zt − η∇x)− ∂η=0f

t
x(−η∇x)

)
= ∂t=0∂η=0f

t
x

(
Zt − η∇x

)
,

where the first two steps are by calculus, in the third step we used the Definition 2.3.12
of the gradient to translate 〈∇y, Z〉 = ∂η=0f

t
y(ηZ) for y = xt and y = x in direction Z =

−∇x = −∇f t
x(0), and the fourth equality was by equivariance property of Lemma 6.2.6(1)

applied with xt := eZt/2 · x so f t
xt(−η∇x) = f t

x(Zt − η∇x). To show this is equal to the
right hand side, we calculate

∂2
η=0f

t
x(−η∇x) = ∂η

(
∂ηf

t
x(−η∇x)

)
|η=0 = ∂η=0〈∇f t

x(−η∇x),−∇x〉t

= ∂η=0〈∇f t
x(−η∇x), ∂t=0Zt〉t = ∂η=0∂t=0f

t
x

(
Zt − η∇x

)
,

where in the second step we used Definition 2.3.12 of the gradient to replace ∂ηf
t
x(−η∇x) =

∂ν=0f
t
x(−η∇x − ν∇x) = 〈∇f t

x(−η∇x),−∇x〉t, the third step was by Definition 7.1.5 of
commutative gradient flow ∂t=0Zt = −∇f t

x(Z0) = −∇x for initial condition Z0 = 0, and
the final step was by the Definition 2.3.12 of the gradient of f t

x as well as the chain rule
for ∂t with initial condition Z0 = 0.

Therefore, we have the lower bound −∂t=0‖∇xt‖2
t = 2∂2

η=0f
t
x(−η∇x) ≥ 2α‖∇x‖2

t by
Definition 7.2.6 of strong convexity.

221

Equivalently, −∂t=0 log ‖∇xt‖2
t ≥ 2α by the chain rule. This implies

log ‖∇xT ‖2
t − log ‖∇x‖2

t =

∫ T

t=0

∂t log ‖∇xt‖2
t ≤ −2αT,

where the first step was by the fundamental theorem of calculus, and the second was by fast
convergence inequality just derived. Exponentiating both sides gives the second statement.

The final statement is also a consequence of the fundamental theorem of calculus, as

‖ZT‖t =

∥∥∥∥∫ T

0

−∇xt

∥∥∥∥
t

≤
∫ T

0

‖∇xt‖t ≤ ‖∇x‖t
∫ T

0

e−αt ≤ ‖∇x‖t
α

,

where in the first step we used Z0 = 0 and ∂tZt = −∇xt according to Proposition 7.2.4
of gradient flow, in the second step is we used the triangle inequality on ‖ · ‖t, and in the
third step we used ‖∇xt‖t ≤ e−αT‖∇x‖t as shown in the second statement.

This result can also be shown straightforwardly for non-commutative scalings by for-
mally defining the geodesic Hessian. We do not give this definition as commutative gradient
flow is sufficient for our analysis.

Next, we simplify Definition 7.1.12 of the operator norm for commutative scaling groups.

Definition 7.2.8. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with com-
mutative scaling group (T, T+, t) that is diagonal in basis Ξ according to Definition 7.2.1.
The operator norm for Z ∈ t is defined as

‖Z‖∞ :=
∑
a∈[m]

‖ diagΞa(Za)‖op =
∑
a∈[m]

max
ja∈[da]

|〈ξjaξ∗ja , Za〉|.

This commutative version of the operator norm satisfies the same relations with ‖ · ‖t
as the non-commutative version, so we repeat Lemma 7.1.15 for the commutative setting
without proof.

Lemma 7.2.9. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with com-
mutative scaling group (T, T+, t) according to Definition 7.2.1. Then, the norms ‖ · ‖∞
(Definition 7.2.8) and ‖ · ‖t (Definition 7.1.2) satisfy the two-sided relations(∑

a∈[m]

da

)−1

‖Z‖2
∞ ≤ ‖Z‖2

t ≤
∑
a∈[m]

‖Za‖2
∞.

222

With these definitions in hand, we will make some structural observations about gra-
dient flow for commutative scalings when the input is ε-T -balanced. This will allow us to
give an improved analysis in the strongly convex setting in Section 7.2.2, as well as another
strong bound on the scaling solution when the input satisfies a pseudorandom condition.
As mentioned previously, both of these results will be lifted to the non-commutative scaling
setting using Theorem 6.3.1.

7.2.2 Strongly Convex Analysis

In this subsection, we will use commutative gradient flow to analyze the scaling solution
for strongly convex inputs. In Theorem 7.2.16 at the end of this subsection, we will use
Theorem 6.3.1 to lift this result to the general non-commutative tensor scaling problem.
This gives a small polynomial improvement as compared to Theorem 7.1.16 and will be
applied to give a better sample complexity result for the tensor normal model in Chapter 9.

In Theorem 7.1.16, our analysis required α &
√∑

a∈[m] da‖∇x‖p in order to show that

every univariate restriction η → fPx (eηZ) is strongly convex for a large enough interval. The

extra factor is due to the inequality ‖ · ‖op ≤
√∑

a∈[m] da · ‖ · ‖p which is tight in general.

In this part, our inputs will be ε-T -balanced according to Definition 6.2.4, which implies
the gradient bound ‖∇x‖2

t ≤ mε2 by Fact 7.1.4. To bound the scaling solution, we will
follow commutative gradient flow and directly analyze ‖Zt‖∞ instead of analyzing ‖Zt‖t
via bounds on the gradient. This will allow us to show that strong convexity is maintained
for all time until the optimum is reached, which implies the main theorem of this section
by a similar strategy to Theorem 3.2.19.

In this and the following Section 7.2.3, we will focus on the case when V = ⊗a∈[m]Fda
with standard diagonal scaling groups T = (ST(d1), ... ST(dm). The results generalize to
an arbitrary choice of commutative scaling group in a straightforward manner by change
of basis, and will be lifted to the non-commutative setting at the end of this subsection.

Recall by Definition 7.2.8 and Proposition 7.2.3 for the commutative T -scaling problem,

‖∇x‖∞ =
∑
a∈[m]

‖(∇f t
x(0))(a)‖op =

∑
a∈[m]

∥∥∥ diag
(
daρ

(a)
x − s(x)Ia

)∥∥∥
op
, (7.5)

where we restricted to the diagonal basis for T = (ST(d1), ..., ST(dm)). Below, we explicitly

calculate the change in the quantities s(x) and ρ
(a)
x to show that ‖∇xt‖∞ changes somewhat

slowly under gradient flow. Once again, we ignore questions of differentiability for the
infinity norm (see Remark 3.2.11 for this technical detail).

223

Lemma 7.2.10. Let V = ⊗a∈[m]Fda with scaling group T = (ST(d1), ..., ST(dm)) and
associated polar (T+, t) according to Definition 7.2.1. Then for input x ∈ V K and xt the
solution to gradient flow according to Proposition 7.2.4, the change in the diagonals of ρxt
can be explicitly calculated as

−∂t=0〈E(a)
ii , ρ

(a)
xt 〉 = 〈E(a)

ii ,∇(a)
x 〉〈E

(a)
ii , ρ

(a)
x 〉+

∑
b 6=a∈[m]

〈ρ(ab)
x , E

(a)
ii ⊗∇(b)

x 〉,

where E
(a)
ii are the diagonals matrices in the standard basis of Va = Fda.

Proof. By Proposition 7.2.4 of gradient flow, we can calculate

−∂t=0〈E(a)
ii , ρ

(a)
xt 〉 = −∂t=0〈E(a)

ii ⊗ Ia, eZt/2ρxeZt/2〉 = −〈(∂t=0Zt)(E
(a)
ii ⊗ Ia), ρx〉

=
∑
b∈[m]

〈(∇(b)
x ⊗ Ib)(E

(a)
ii ⊗ Ia), ρx〉

= 〈E(a)
ii ,∇(a)

x 〉〈E
(a)
ii , ρ

(a)
x 〉+

∑
b 6=a∈[m]

〈ρ(ab)
x , E

(a)
ii ⊗∇(b)

x 〉,

where the first step was by Definition 6.2.2 of the partial trace and marginals as well as the
equivariance property in Lemma 6.2.6(1), in the second step we used the initial condition

Z0 = 0 along with the fact that Za commutes with E
(a)
ii , in the third step we applied

Proposition 7.2.4 of gradient flow, and the final step was once again by Definition 6.2.2 of
the marginals along with the fact that ∇ ∈ t so ∇(a)

x commutes with E
(a)
ii .

We will use the above formula to show that ‖∇xt‖∞ changes somewhat slowly under
gradient flow. More precisely, we will bound the rate of increase for small t, and then show
that it decreases exponentially for large t. If xt is α-t-strongly convex for t ∈ [0, T], then

‖∇(a)
xT
‖2
∞ ≤ da‖∇(a)

xT
‖2
t ≤ da‖∇xT ‖2

t ≤ da‖∇x‖2
t e
−2αT , (7.6)

where the first step is by the relation between ‖ · ‖∞ and ‖ · ‖t in Definition 7.2.8, and
the final step was by Proposition 7.2.7. For input x that is ε-T -balanced, we can use
Lemma 7.2.10 to improve this da-factor loss near the beginning of gradient flow.

Lemma 7.2.11. Let V = ⊗a∈[m]Fda with scaling group T = (ST(d1), ..., ST(dm)) and
associated polar (T+, t) according to Definition 7.2.1. Then for input x ∈ V K with xt the
solution to gradient flow according to Proposition 7.2.4,

∂t max
a∈[m]

log ‖∇(a)
xt ‖∞ ≤ (m− 2)s(xt) + (2m− 2) max

a∈[m]
‖∇(a)

xt ‖∞.

224

Proof. We will show that for every y ∈ V K , ∂t=0 maxa∈[m] log ‖∇(a)
yt ‖∞ ≤ (m − 2)s(y) +

(2m−2) maxa∈[m] ‖∇(a)
y ‖∞. The lemma follows for arbitrary t by considering gradient flow

starting at y = xt.

Let a = arg maxb∈[m] ‖∇(b)
x ‖∞ and further let i ∈ arg maxj∈[da] |〈E(a)

jj , da · ρ
(a)
x − s(x)Ia〉|

be the diagonal with the worst error. We will separate into two cases depending on the
sign of this error. We first bound the change in size:

−∂t=0s(xt) = ‖∇x‖2
t ≤

∑
b∈[m]

‖∇(b)
x ‖2
∞ ≤ ‖∇(a)

x ‖∞‖∇x‖∞, (7.7)

where the first step was by Lemma 7.2.5, the second was by Lemma 3.2.7, and the third
was by our case assumption a = arg maxb∈[m] ‖∇(b)

x ‖∞.

Now consider the case ‖∇(a)
x ‖∞ = 〈E(a)

ii ,∇
(a)
x 〉 = da〈E(a)

ii , ρ
(a)
x 〉 − s(x), meaning this

diagonal is larger than average. We bound its increase by Lemma 7.2.10:

∂t=0〈E(a)
ii , ρ

(a)
xt 〉 = −〈E(a)

ii ,∇(a)
x 〉〈ρ(a)

x , E
(a)
ii 〉 −

∑
b 6=a∈[m]

〈ρ(ab)
x , E

(a)
ii ⊗∇(b)

x 〉

≤ −‖∇(a)
x ‖∞〈ρ(a)

x , E
(a)
ii 〉+

∑
b6=a∈[m]

‖∇(b)
x ‖∞〈ρ(ab)

x , E
(a)
ii ⊗ Ib〉

= 〈ρ(a)
x , E

(a)
ii 〉
(
− ‖∇(a)

x ‖∞ +
∑

b6=a∈[m]

‖∇(b)
x ‖∞

)
≤ (m− 2)‖∇(a)

x ‖∞〈ρ(a)
x , E

(a)
ii 〉,

where the first step was by Lemma 7.2.10, in the second step we used our case assumption
‖∇(a)

x ‖∞ = 〈E(a)
ii ,∇

(a)
x 〉 to bound the first term and |∇(b)

x | � ‖∇(b)
x ‖∞ · Ib to bound the

second term, and in the final step we used the case assumption ‖∇(a)
x ‖∞ ≥ ‖∇(b)

x ‖∞ for all
b ∈ [m]. Ignoring questions of differentiability for ‖ · ‖∞ (see Remark 3.2.11), this allows

us to bound the change in ∇(a)
x by

∂t=0 log ‖∇(a)
xt ‖∞ =

∂t=0da〈E(a)
ii , ρ

(a)
xt 〉 − ∂t=0s(xt)

‖∇(a)
x ‖∞

≤ (m− 2)da〈E(a)
ii , ρ

(a)
x 〉+ ‖∇x‖∞,

where in the last step we used the bound derived above for change in 〈E(a)
ii , ρ

(a)
xt 〉 and

Eq. (7.7) for the change in size.

225

In the other case −‖∇(a)
x ‖∞ = 〈E(a)

ii ,∇
(a)
x 〉, we bound the decrease of the diagonal

〈E(a)
ii , ρ

(a)
xt 〉:

−∂t=0〈E(a)
ii , ρ

(a)
xt 〉 = 〈E(a)

ii ,∇(a)
x 〉〈ρ(a)

x , E
(a)
ii 〉+

∑
b6=a∈[m]

〈ρ(ab)
x , E

(a)
ii ⊗∇(b)

x 〉

≤ −‖∇(a)
x ‖∞〈ρ(a)

x , E
(a)
ii 〉+

∑
b 6=a∈[m]

‖∇(b)
x ‖∞〈ρ(ab)

x , E
(a)
ii ⊗ Ib〉

= 〈ρ(a)
x , E

(a)
ii 〉
(∑
b 6=a∈[m]

‖∇(b)
x ‖∞ − ‖∇(a)

x ‖∞
)

≤ (m− 2)‖∇(a)
x ‖∞〈ρ(a)

x , E
(a)
ii 〉,

where the first step was by Lemma 7.2.10, in the second step we used our case assumption
〈E(a)

ii ,∇
(a)
x 〉 = −‖∇(a)

x ‖∞ to bound the first term and |∇(b)
x | � ‖∇(b)

x ‖∞ · Ib to bound the

second term, and in the final step we used that a = arg maxb∈[m] ‖∇(b)
x ‖∞. This allows us

to bound the change in ∇(a)
x as

∂t=0 log ‖∇(a)
xt ‖∞ =

∂t=0s(xt)− ∂t=0da〈E(a)
ii , ρ

(a)
xt 〉

‖∇(a)
x ‖∞

≤ (m− 2)da〈E(a)
ii , ρ

(a)
x 〉 − 0,

where in the last step we used the bounds derived above for change in 〈E(a)
ii , ρ

(a)
xt 〉 and the

equality ∂t=0s(xt) = −‖∇x‖2
t given in Eq. (7.7).

In both cases, we can bound the change by

∂t=0 log ‖∇(a)
xt ‖∞ ≤ (m− 2)(s(x) + ‖∇(a)

x ‖∞) + ‖∇x‖∞ ≤ (m− 2)s(x) + (2m− 2)‖∇(a)
x ‖∞,

where the first step was by da〈E(a)
ii , ρ

(a)
x 〉 = s(x) ± 〈E(a)

ii ,∇
(a)
x 〉 ≤ s(x) + ‖∇(a)

x ‖∞, and

in the final step we used a ∈ arg maxb∈[m] ‖∇(b)
x ‖∞ so ‖∇x‖∞ ≤ m‖∇(a)

x ‖∞ according to
Definition 7.2.8.

This generalizes the bound on error shown in Lemma 3.2.10 for the matrix case. Note
that for m = 2, the first term vanishes, and so the bound in Lemma 7.2.11 depends only
on the error ‖∇x‖∞. This allows us to bound ‖(XT , YT)‖∞ in Proposition 3.2.13 and
Proposition 3.2.18 for strongly convex inputs. For the m ≥ 3 tensor case, we have a much
worse bound on the error over time. Below, we combine Lemma 7.2.11 with Eq. (7.6) to
improve the bound on the scaling solution in Theorem 7.1.16 for strongly convex inputs.

226

Proposition 7.2.12. Let V = ⊗a∈[m]Va be a tensor product of m ≥ 3 inner product spaces
with dim(Va) = da for each a ∈ [m], and let (T, T+, t) be a commutative scaling group
according to Definition 7.2.1. Let x ∈ V K be an input of size s(x) = 1 and xt be the
solution of gradient flow according to Proposition 7.2.4. Assume x is ε-T -balanced and xt
is α-t-strongly convex and satisfies maxa∈[m] ‖∇(a)

xt ‖∞ ≤ 1
2m

for all t ∈ [0, T]. Then

‖Z(a)
T ‖∞ ≤ ε

√
mda

1− α
m−1+α

(
1

m− 1
+

1

α

)
≤ 3

2
· ε
√
mda

1− α
m

α
.

Proof. We can assume without loss that Va = Fda and Ta = ST(da) for each a ∈ [m] by a
change of basis if necessary.

We first show that for any a ∈ [m] and any t ∈ [0, T], the gradient is bounded by

‖∇(a)
xt ‖∞ ≤ min{εe(m−1)t, ε

√
mdae

−αt} ≤ ε
√
mda

1− α
m−1+α . (7.8)

The bound on ‖Z‖∞ will follow by the fundamental theorem of calculus. This bound will
also be useful in the proof of Theorem 7.2.15.

For the first term in the min, we use Lemma 7.2.11 to show

max
a∈[m]

log ‖∇(a)
xt ‖∞ ≤ max

a∈[m]
log ‖∇(a)

x ‖∞ +

∫ t

0

∂τ max
a∈[m]

log ‖∇(a)
xτ ‖∞

≤ log ε+

∫ t

0

(
(m− 2)s(xτ) + (2m− 2)‖∇(a)

xτ ‖∞
)

≤ log ε+

∫ t

0

(m− 1) = log(εe(m−1)t),

where the first step was by the fundamental theorem of calculus, in the second step we
used the bound ‖∇(a)

x ‖∞ ≤ s(x)ε ≤ ε for the first term as x has size s(x) = 1 and is
ε-T -balanced according to Definition 6.2.4 and Lemma 7.2.11 to bound the rate of change
in the second term, and in the third step we used s(xτ) ≤ s(x) = 1 to bound the first term

in the integral (since ∂ts(xt) ≤ 0 by Lemma 7.2.5) and the assumption ‖∇(a)
xτ ‖∞ ≤ 1

2m
for

all τ ∈ [0, T] to bound the second term.

For the second term in the min expression in Eq. (7.8), we use the exponential conver-
gence of Proposition 7.2.7 to show

‖∇(a)
xt ‖∞ ≤

√
da‖∇(a)

xt ‖t ≤
√
da‖∇xt‖t ≤

√
da‖∇x‖te−αt ≤ ε

√
mda · e−αt,

227

where the first step was by the relation in Lemma 7.2.9, the third step was by Proposi-
tion 7.2.7 applied with α-t-strong convexity till time t, and in the final step we used the
bound ‖∇x‖2

t ≤ mε2 by Fact 7.1.4 for ε-T -balanced x of size s(x) = 1.

Therefore, we have shown both bounds in the first inequality of Eq. (7.8). This is all

that is necessary to bound ‖Z(a)
T ‖∞. We show the second inequality for use in the proof of

Theorem 7.2.15. We optimize the upper bound in Eq. (7.8) by balancing terms:

εe(m−1)t = ε
√
mdae

−αt ⇐⇒ (m− 1)t = log
√
mda − αt ⇐⇒ t =

log
√
mda

m− 1 + α
.

Substituting this in to Eq. (7.8) gives

max
t∈[0,T]

‖∇(a)
xt ‖∞ ≤ max

t≥0
min{εe(m−1)t, ε

√
mdae

−αt} ≤ ε
√
mda

1− α
m−1+α ,

where we plugged in t = log
√
mda

m−1+α
for the last step.

To show the bound on ‖Z(a)
T ‖∞, we apply the gradient bound in Eq. (7.8) up till time

T . We assume T ≥ κ := log
√
mda

m−1+α
, as the argument below is only stronger otherwise. We

can bound

‖Z(a)
T ‖∞ =

∥∥∥∥∫ T

0

−∇(a)
xt

∥∥∥∥
∞
≤
∫ κ

0

‖∇(a)
xt ‖∞ +

∫ T

κ

‖∇(a)
xt ‖∞ ≤

∫ κ

0

εe(m−1)t + ε
√
mda

∫ T

κ

e−αt

≤ εe(m−1)κ

m− 1
+
ε
√
mda · e−ακ

α
= ε
√
mda

1− α
m−1+α

(
1

m− 1
+

1

α

)
,

where the first step was by the fundamental theorem of calculus for gradient flow defined
by Z0 = 0 and ∂tZt = −∇xt according to Proposition 7.2.4, the second step was by the
triangle inequality for ‖ ·‖∞, in the third step we used Eq. (7.8) to bound the first stage by

‖∇(a)
xt ‖∞ ≤ εe(m−1)t and the second stage by ‖∇(a)

xt ‖∞ ≤ exp
√
mda · e−αt, the fourth step

was by integration, and in the final step we plugged in κ = log
√
mda

m−1+α
. The final inequality in

the proposition follows by the bounds m−1+α ≤ m as α ≤ s(x) ≤ 1 by Proposition A.5.2,
and 1

m−1
≤ 1

2α
as m ≥ 3.

The above proposition improves upon the bound on Z from Theorem 7.1.16 as shown
below. For ε-T -balanced input x of size s(x) = 1, we have ‖∇x‖2

t ≤ mε2 by Fact 7.1.4.

Therefore, if x is an α ≥ Ω(1)-t-strongly convex input with 1 & ε
√
m
∑

a∈[m] da, then

‖Z(a)
T ‖∞ ≤ ‖Z

(a)
T ‖F ≤

√
da‖ZT‖t ≤

√
da
‖∇x‖t
α/e

. ε
√
mda, (7.9)

228

where the first step was by the inequality ‖ · ‖op ≤ ‖ · ‖F , the second step was by Def-
inition 7.1.2 of ‖ · ‖t, the third step was by the conclusion of Theorem 7.1.16, and the
final step was by the calculation ‖∇x‖2

t ≤ mε2 as shown in Fact 7.1.4. Comparing this to

Proposition 7.2.12, we get an improvement of d
Ω(1/m)
a in the conclusion. This will be useful

to give improved error bounds for our statistical application in Chapter 9.

The other valuable part of this analysis is that it allows us to weaken the strong convex-
ity assumption of Theorem 7.1.16. Specifically, we will eventually show that the conditions
required throughout gradient flow in Proposition 7.2.12 are implied by sufficient strong
convexity of the initial input. To this end, we generalize Lemma 7.1.13 to show robustness
of t-strong convexity.

Lemma 7.2.13. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
dim(Va) = da for each a ∈ [m], and let (T, T+, t) be a commutative scaling group ac-
cording to Definition 7.2.1. If input x ∈ V K is α-t-strongly convex, then for any Y ∈ t the
scaling eY/2 · x is e−‖Y ‖op · α-t-strongly convex.

Proof. We will lower bound ∂2
η=0f

t
eY/2·x(ηZ) for arbitrary Z ∈ t to verify Definition 7.2.6

of strong convexity. Note that (T, T+, t) are all commutative, so Y, Z ∈ t implies Y, Z
commute. Therefore we can lower bound the second-order derivative by

∂2
η=0feY/2·x(e

ηZ) = ∂2
η=0〈ρeY/2·x, eηZ〉 = 〈ρx, eY/2Z2eY/2〉 ≥ e−‖Y ‖∞〈ρx, Z2〉 ≥ e−‖Y ‖∞α‖Z‖2

t ,

where the first step was by Definition 7.2.2 of the Kempf-Ness function, the second was
by equivariance from Lemma 6.2.6(1) as well as standard matrix calculus ∂xe

x = xex, in
the third step we used the spectral lower bound eY/2Z2eY/2 � e−‖Y ‖∞Z2 for commuting
Y, Z ∈ t to lower bound the inner product since ρx � 0 and Z ∈ t ⊆ H(V) so Z2 � 0, and
the final step was by Definition 7.2.6 of α-strong convexity of x. Since Z ∈ t was arbitrary,
this verifies e−‖Y ‖∞ · α-t-strong convexity according to Definition 7.2.6.

Remark 7.2.14. In Section 7.3, we will further generalize this result to show that small
perturbations maintain p-strong convexity for non-commutative scaling groups. In this case
we will only be able to show additive bounds of the form α − O(δ) for scaling ‖Y ‖op . δ,
which becomes vacuous for δ ≈ α. For the purpose of our sample complexity results in
Chapter 9, this only induces a constant factor loss, as in that setting we analyze random
inputs which are shown to satisfy α ≈ 1 strong convexity. But as discussed in Section 4.2.3,
the multiplicative robustness result was crucial for our work on the Paulsen problem, and
we believe it is of independent interest, since Appendix A.2 shows that it is a tight result.

229

At this point, we can refine our analysis to simultaneously weaken the assumption of
Theorem 7.1.16 by a polynomial factor and give slightly stronger bounds on the scaling.
The theorem below will be applied in Chapter 9 to get a small polynomial improvement
in sample complexity for the tensor normal model.

Theorem 7.2.15. For m ≥ 3, let V = ⊗a∈[m]Va be a tensor product of inner product spaces
with dim(Va) = da for a ∈ [m], and let (T, T+, t) be a commutative scaling group according
to Definition 7.2.1. If input x ∈ V K of size s(x) = 1 is ε-T -balanced and α-t-strongly

convex with α√
e
≥ 6m · ε

√
mdmax

1−α/
√
e

m , then:

1. For all time T ≥ 0, the solution ZT of gradient flow satisfies

‖ZT‖t ≤
ε
√
m

α/
√
e

and ∀a ∈ [m] : ‖Z(a)
T ‖∞ ≤

3ε
√
mda

1−α/
√
e

m

2α/
√
e

.

2. The limit Z∞ := limt→∞ Zt exists and x∞ := eZ∞/2 ·x is a T -balanced scaling solution
to the T -tensor scaling problem in Definition 6.2.5;

3. The size of the solution can be lower bounded by

s(x∗) = f t
x(Z∗) ≥ 1− mε2

2α/
√
e
.

Proof. We claim that for all time, xt satisfies the gradient bound maxa∈[m] ‖∇(a)
xt ‖∞ ≤ 1

2m

and is at least α√
e
-t-strongly convex. For contradiction, assume that T is the last time

all of these conditions hold. Let us first consider the case that ‖∇(a)
xT ‖∞ = 1

2m
and the

gradient condition does not hold after time T . Then, we can apply Proposition 7.2.12 for
ε-T -balanced input x with α√

e
-t-strong convexity up till time T to show

‖∇(a)
xT
‖∞ ≤ ε

√
mda

1−α/
√
e

m ≤ α/
√
e

6m
≤ 1

6m
,

where the first step was by the bound in Eq. (7.8) applied with α√
e
-t-strong convexity, the

second step was by our assumption α√
e
≥ 6m · ε

√
mdmax

1−α/
√
e

m , and the final step was by

the bound α ≤ s(x) = 1 by Proposition A.5.2. By continuity, T cannot be the last time

maxa∈[m] ‖∇(a)
xt ‖∞ ≤ 1

2m
, so the balance condition cannot fail first.

230

Then, we can consider the case that T is the last time xT is α√
e
-t-strongly convex.

By Lemma 7.2.13 in the contrapositive, this implies ‖ZT‖∞ ≥ 1
2
. But we can apply

Proposition 7.2.12 with gradient bound ‖∇(a)
xt ‖∞ ≤ 1

2m
and α√

e
-t-strong convexity up till

time T to bound

‖ZT‖∞ ≤ m · max
a∈[m]

‖Z(a)
T ‖∞ ≤ m · 3m · ε

√
mdmax

1−α/
√
e

m

2α/
√
e

≤ 1

4
,

where the first step was by Definition 7.2.8 of the infinity norm, the second step was by
Proposition 7.2.12 applied with α√

e
-t-strong convexity, and the final bound was by our

assumption α√
e
≥ 6m · ε

√
mdmax

1−α/
√
e

m . This gives the required contradiction, so the
assumptions must hold for all time.

Now that we have the claim, we can apply Proposition 7.2.12 for all time. The bound
on ‖Z(a)

T ‖∞ in item (1) follows from the conclusion of Proposition 7.2.12 with α√
e
-t-strong

convexity for any T ≥ 0. The bound in item (1) also follows by strong convexity as

‖ZT‖t =

∥∥∥∥∫ T

0

−∇xt

∥∥∥∥
t

≤
∫ T

0

‖∇xt‖t ≤ ‖∇x‖t
∫ T

0

e−αt/
√
e ≤ ε

√
m

α/
√
e
,

where the first step was by the fundamental theorem of calculus as Z0 = 0 and ∂tZt = −∇xt

according to Proposition 7.2.4, the second step was by the triangle inequality on ‖ · ‖t, in
the third step we applied Proposition 7.2.7 with α√

e
-t-strong convexity, and in the final step

we used ‖∇x‖2
t ≤ mε2 by Fact 7.1.4 applied to ε-T -balanced input x of size s(x) = 1.

To show item (2), we can again use strong convexity for all time to bound

lim
T→∞

∫
t≥T
‖∂tZt‖t = lim

T→∞

∫
t≥T
‖∇xt‖t ≤ lim

T→∞
‖∇A‖t

∫
t≥T

e−αt/
√
e = 0,

where the first step was by Proposition 7.2.4 of gradient flow, and the second was by
Proposition 7.2.7 with α√

e
-t-strong convexity for all time. This implies that the limit

Z∞ ∈ t exists, and x∞ = eZ∞/2 · x satisfies ∇x∞ = ∇f t
x(Z∞) = 0, so x∞ is T -balanced by

Proposition 6.2.18(2).

To show item (3), we can bound the change in size over gradient flow by

s(x)− s(x∗) =

∫ ∞
0

‖∇xt‖2
t ≤

∫ ∞
0

‖∇x‖2
t e
−2αt/

√
e ≤ mε2

2α/
√
e
,

231

where the first step was by Lemma 7.2.5, the second step was by Proposition 7.2.7 applied
with α√

e
-t-strong convexity throughout, and in the final step we used Fact 7.1.4 to bound

‖∇x‖2
t ≤ mε2 as s(x) = 1 and x is ε-T -balanced by assumption. Item (3) follows by using

the fact that s(x) = 1 and rearranging.

Finally, we can lift this result to the non-commutative setting using the reduction given
in Theorem 6.3.1.

Theorem 7.2.16. For m ≥ 3, let V = ⊗a∈[m]Va be a tensor product of inner product
spaces with dim(Va) = da for each a ∈ [m] with scaling group (G,P, p) according to Defini-
tion 6.2.3. If input x ∈ V K of size s(x) = 1 is ε-G-balanced and α-p-strongly convex with

α√
e
≥ 6m · ε

√
mdmax

1−α/
√
e

m , then there is a scaling x∗ = p
1/2
∗ · x = eZ∗/2 · x with p∗ ∈ P and

Z∗ ∈ p satisfying:

1. x∗ is a G-balanced tensor;

2. ‖Z∗‖p ≤ ε
√
m

α/
√
e
, and ‖Z(a)

∗ ‖op ≤ 3ε
√
mda

1−α/
√
e

m

2α/
√
e

for every a ∈ [m];

3. The size of the scaling solution is lower bounded by s(x∗) ≥ 1− mε2

2α/
√
e
.

Proof. Our plan is to apply the reduction in Theorem 6.3.1. Let (TΞ, TΞ
+ , t

Ξ) denote the
commutative scaling group that is diagonal in the basis Ξ = {Ξa} according to Defini-
tion 7.2.1, and consider the decomposition P = ∪Ξ∈XT

Ξ
+ = ∪Ξ∈X e

tΞ where Ξ ∈ X runs
over all tuples of orthonormal bases such that TΞ

+ ⊆ P , i.e. stΞ
a

+ ⊆ pa for each a ∈ [m].
Explicitly, if pa = stΞ

a

+ (Va), then the a-th component just contains the singleton Ξa, and if
pa = spd(Va), then Ξa runs over all orthonormal bases of Va.

Since TΞ ⊆ G, the ε-G balance condition of Definition 6.2.4 implies ε-TΞ-balance for
every Ξ ∈ X . Similarly, tΞ ⊆ p, so the α-p-strong convexity condition of Definition 7.1.7
implies α-tΞ-strong convexity for every Ξ ∈ X . Therefore, Theorem 7.2.15 applied to each
commutative restriction (TΞ, TΞ

+ , t
Ξ) produces scaling solution ZΞ ∈ tΞ such that

f t
Ξ

x (ZΞ) = f
TΞ

+
x (eZΞ) = inf

t∈TΞ
+

fPx (t),

where the global minimum property is by Proposition 6.2.18(2) for the (TΞ, TΞ
+ , t

Ξ)-scaling
problem on input x. The bound on ‖ZΞ‖∞ given in item (1) of Theorem 7.2.15 clearly
implies that ∪Ξ∈X e

ZΞ is contained in a compact set, so we can apply Theorem 6.3.1 to get
a global minimizer of fPx of the form eZ∗ = eZΞ for some Ξ.

232

By Proposition 6.2.18(3), this global minimum is a G-balanced scaling solution. There-
fore the guarantees in items (2) and (3) follows exactly from Theorem 7.2.15.

When m = 2, we can apply the α & ε log d result of Theorem 3.2.19 instead of Theo-
rem 7.2.15, and lift it to the non-commutative setting using the same reduction strategy
as the proof above. We show this explicitly for operator scaling in Section 7.3.3, where we
combine it with a robustness result to show strong convexity of the optimizer.

7.2.3 Pseudorandom Analysis

In this subsection, we analyze tensor scaling when the input satisfies a pseudorandom
property which we show in Section 7.4 to be stronger than the strong convexity condition
used in Section 7.1.3. We will use this condition to directly analyze ‖∇xt‖op through
gradient flow. This allows us to remove the dimension-dependent factor in the condition
on α

ε
as compared to the strongly convex convergence analysis of Theorem 7.2.16.

In order to understand how this analysis compares to the strong convexity analysis in
Section 7.1.3, we give a brief overview of the argument. Recall that in Proposition 7.2.12, we
bounded the error and scaling solution by breaking the evolution of these quantities into two
stages, showing the error ‖∇xt‖op grows slowly in the first stage, and then using exponential
convergence of ‖∇xt‖p by strong convexity for the second stage. In this subsection, we will
use pseudorandomness to show that the error ‖∇xt‖op converges exponentially for all time.
This avoids the first phase where the error grows, which gives a much stronger dimension
independent bound on the scaling solution.

In more detail, the main consequence of pseudorandomness that we use in our analysis
is given in Lemma 7.2.19. Here, we show that the error ‖∇(a)

xt ‖∞ in a fixed marginal
is not significantly affected by the other marginals through gradient flow. This is used
to show that the marginal with the largest error decreases exponentially for all time.
Then we show that pseudorandomness is robust to small scalings, which implies that it is
maintained throughout gradient flow. The analysis in this subsection can be thought of as
the appropriate tensor generalization of Section 3.3.

We first define the pseudorandom condition for general scaling groups. Afterwards,
we focus on the commutative case and then lift the result to non-commutative groups by
decomposing into commutative subgroups and applying the reduction in Theorem 6.3.1.

Definition 7.2.17 (Tensor Pseudorandom Condition). Let V = ⊗a∈[m]Va be a tensor
product of inner product spaces with dim(Va) = da for each a ∈ [m] along with scaling

233

group (G,P, p) according to Definition 6.2.3. For any pair a 6= b ∈ [m], let

Sa :=

{
{ξ ∈ Va | ‖ξ‖2 = 1} if Ga = SL(Va)

{ξi ∈ Ξa | i ∈ [da]} if Ga = STΞa(Va)
, and

Pb :=

{
{Q ∈ L(Vb) | Q∗ = Q,Q2 = Q, rk(Q) = db

2
} if Gb = SL(Vb)

{
∑

j∈T ψjψ
∗
j | T ∈

(
[db]
db/2

)
, ψj ∈ Ξb} if Gb = STΞb(Vb).

i.e. the first set is the sphere of Va restricted to domain of Ga, and the second set is a
subset of orthogonal projections restricted to the domain of Gb. Then x ∈ V K is γ-pa←b-
pseudorandom if, for every ξ ∈ Sa and Q ∈ Pb,

〈ρ(ab)
x , ξξ∗ ⊗Q〉 ≥ e−γ

Tr[ξξ∗]

da
· Tr[Q]

db
=
e−γ

2da
.

x is γ-p-pseudorandom if the above is satisfied for every pair a 6= b ∈ [m].

Remark 7.2.18. Technically, if db is odd, then we should use bdb
2
c. We ignore this dis-

crepancy in future for simplicity so as not to further clutter the notation.

For intuition, the value of 〈ρ(ab)
x , ξξ∗ ⊗ Q〉 for a uniformly random ξ ∈ Sa, Q ∈ Pb is

exactly s(x)
2da

. Therefore, if x is γ-pa←b-pseudorandom, then ρ
(ab)
x has significant weight in

every direction ξ ∈ Sa, Q ∈ Pb. We point out that γ-p-pseudorandomness according to
Definition 7.2.17 is a stronger condition for smaller γ, whereas (α, β)-pseudorandomness
for matrices according to Definition 3.3.1 is a stronger condition for larger α.

We can directly compare the two conditions for matrix scaling: tuple A ∈ Mat(d, n)K

can be viewed as a tensor tuple by the isomorphism Ak → vec(Ak) ∈ Fd ⊗ Fn = VL ⊗ VR
with scaling group T = (TL, TR) = (ST(d), ST(n)). Then vec(A) ∈ (Fd ⊗ Fn)K is γ-tL←R-
pseudorandom iff A is an (e−γ, 1

2
)-pseudorandom matrix according to Definition 3.3.1.

Similarly, input frame U ∈ Mat(d, n) can be viewed as a tensor by the same isomorphism,
and frame scaling corresponds to the scaling group G = (GL, GR) = (SL(d), ST(n)) with
associated infinitesimal vector space (pL, pR) = (spd(d), st+(n)). Then vec(U) ∈ Fd ⊗ Fn
is γ-pL←R-pseudorandom iff U is an (e−γ, 1

2
)-pseudorandom frame according to Defini-

tion 4.2.11. Note that the pseudorandomness condition in Definition 4.2.11 always corre-
sponds to the L← R direction. This asymmetry was useful in Chapter 4 when n� d for
the Paulsen problem.

In Lemma 7.2.19, we show a consequence of pseudorandomness that will be more di-
rectly useful in analyzing gradient flow for tensors. We define pseudorandomness by Defini-
tion 7.2.17 because this property enjoys stronger (multiplicative) robustness, which means
that less initial pseudorandomness is required for our fast convergence analysis.

234

In this subsection, we will mostly focus on the case V = ⊗a∈[m]Fda and scaling group
T = (ST(d1), ..., ST(dm)). This analysis generalizes to an arbitrary choice of commutative
scaling group by a simple change of basis, and the results will be lifted to non-commutative
scaling groups by Theorem 6.3.1 at the end of the subsection.

Recall that Lemma 7.2.10 gives an expression for the change in any marginal under
gradient flow involving terms of the form 〈ρ(ab)

x , E
(a)
ii ⊗ ∇

(b)
x 〉. In the following lemma, we

will use the pseudorandom condition to show that these terms do not exert too much
influence on the a-th marginal, which will be used to show fast convergence.

Lemma 7.2.19. Let V = ⊗a∈[m]Fda with scaling group T = (ST(d1), ..., ST(dm)) and
associated polar (T+, t) according to Definition 7.2.1. If x ∈ V K is γ-ta←b-pseudorandom,
then for any Zb ∈ tb = st+(db),

|da〈ρ(ab)
x , E

(a)
ii ⊗ Zb〉| ≤ ‖Zb‖∞(da〈ρ(a)

x , E
(a)
ii 〉 − e−γ).

Proof. This is a simple application of Fact 2.6.4, which shows that the vertices of {Zb ∈
st+(db), ‖Zb‖∞ ≤ 1} are of the form Ib − 2P , where P = PT ∈ Pb is the coordinate
projection onto some T ∈

(
[db]
db/2

)
(we leave out the case of odd db for simplicity). We can

assume without loss that ‖Zb‖∞ = 1 and bound the inner product by

da〈ρ(ab)
x , E

(a)
ii ⊗ Zb〉 ≤ da〈ρ(ab)

x , E
(a)
ii ⊗ Ib〉 − 2 min

P∈Pb
da〈ρ(ab)

x , E
(a)
ii ⊗ P 〉 ≤ da〈ρ(a)

x , E
(a)
ii 〉 − e−γ,

where in the first step we used Fact 2.6.4 to upper bound by the vertices of {Zb ∈
tb, ‖Zb‖∞ ≤ 1}, and in the final step we applied Definition 6.2.2 of the marginal for the
first term and bounded the second term by Definition 7.2.17 of pseudorandomness.

Lemma 7.2.19 is the main consequence of pseudorandomness that we use in our analysis
to show exponential convergence of the error through gradient flow. The pseudorandom
property is helpful because it is multiplicatively robust, shown in Lemma 7.2.23, whereas
it is more difficult to control the change in the bound in Lemma 7.2.19 for scalings of x.

This allows us to bound the change in ‖∇x‖∞ as follows.

Lemma 7.2.20. Consider V = ⊗a∈[m]Fda with scaling group T = (ST(V1), ..., ST(Vm))
and associated infinitesimal vector space t := ⊕a∈[m]st+(da) according to Definition 6.2.3.
If x ∈ V K is γ-t-pseudorandom, then

−∂t=0 max
a∈[m]

log ‖∇(a)
xt ‖∞ ≥ s(x)− (m− 1)

(
s(x) + 2 max

a∈[m]
‖∇(a)

x ‖∞ − e−γ
)
.

235

Proof. Let a ∈ arg maxb∈[m] ‖∇(b)
x ‖∞ and i ∈ arg maxi∈[da] |〈E(a)

ii ,∇
(a)
x 〉| be the diagonal

with the worst error. We will show this error is decreasing by examining the terms in
Lemma 7.2.10 and bounding them using the pseudorandom condition in Definition 7.2.17.
We first recall the following bound on the change in size:

−∂t=0s(xt) = ‖∇x‖2
t ≤

∑
b∈[m]

‖∇(b)
x ‖2
∞ ≤ ‖∇(a)

x ‖∞‖∇x‖∞, (7.10)

where the first step was by Lemma 7.1.6, the second was by Lemma 7.2.9, and the last
step was by our case assumption that ‖∇(a)

x ‖∞ ≥ ‖∇(b)
x ‖∞ for b ∈ [m]. Now we separate

into two cases depending on the sign of the error in the i-th diagonal.

First consider the case ‖∇(a)
x ‖∞ = maxi∈[da]〈E(a)

ii ,∇
(a)
x 〉 = da〈ρ(a)

x , E
(a)
ii 〉− s(x), meaning

this diagonal is larger than average. We show it is decreasing by Lemma 7.2.10, as

−∂t=0da〈E(a)
ii , ρ

(a)
xt 〉 = da〈E(a)

ii ,∇(a)
x 〉〈ρ(a)

x , E
(a)
ii 〉+

∑
b 6=a∈[m]

da〈ρ(ab)
x , E

(a)
ii ⊗∇(b)

x 〉

≥ ‖∇(a)
x ‖∞da〈ρ(a)

x , E
(a)
ii 〉 −

∑
b6=a∈[m]

‖∇(b)
x ‖∞(da〈ρ(a)

x , E
(a)
ii 〉 − e−γ)

≥ ‖∇(a)
x ‖∞(s(x) + ‖∇(a)

x ‖∞)− (m− 1)‖∇(a)
x ‖∞(s(x) + ‖∇(a)

x ‖∞ − e−γ),

where the first step was by Lemma 7.2.10 (see Remark 3.2.11 for questions of differentiabil-

ity of ‖·‖∞), in the second step we used our case assumption ‖∇(a)
x ‖∞ = da〈ρ(a)

x , E
(a)
ii 〉−s(x)

to bound the first term and Lemma 7.2.19 applied with Zb := ∇(b)
x to bound each term in

the sum, and in the final step we used da〈ρ(a)
x , E

(a)
ii 〉 = s(x) + ‖∇(a)

x ‖∞ by our case assump-

tion on i and ‖∇(a)
x ‖∞ ≥ ‖∇(b)

x ‖∞ by our case assumption on a. This allows us to bound

the change in ‖∇(a)
x ‖∞ as

−∂t=0 log ‖∇(a)
xt ‖∞ =

−∂t=0da〈E(a)
ii , ρ

(a)
xt 〉+ ∂t=0s(xt)

‖∇(a)
x ‖∞

≥ (s(x) + ‖∇(a)
x ‖∞)− (m− 1)(s(x) + ‖∇(a)

x ‖∞ − e−γ)− ‖∇x‖∞
≥ s(x)− (m− 1)(s(x) + 2‖∇(a)

x ‖∞ − e−γ),

where the first step is by the assumption that ‖∇(a)
x ‖∞ = da〈E(a)

ii , ρ
(a)
x 〉−s(x), in the second

step we used the bounds derived above for change in 〈E(a)
ii , ρ

(a)
xt 〉 as well as Eq. (7.10) for

the size, and in the final step we used ‖∇x‖∞ ≤ m‖∇(a)
x ‖∞ since a ∈ arg maxb∈[m] ‖∇(b)

x ‖∞.

236

Now consider the case ‖∇(a)
x ‖∞ = −〈E(a)

ii ,∇
(a)
x 〉 = s(x) − da〈E(a)

ii , ρ
(a)
x 〉. We show it is

increasing by Lemma 7.2.10, as

∂t=0da〈E(a)
ii , ρ

(a)
xt 〉 = da〈E(a)

ii , (−∇(a)
x)〉〈ρ(a)

x , E
(a)
ii 〉+

∑
b6=a∈[m]

da〈ρ(ab)
x , E

(a)
ii ⊗ (−∇(b)

x)〉

≥ ‖∇(a)
x ‖∞da〈ρ(a)

x , E
(a)
ii 〉 −

∑
b 6=a∈[m]

‖∇(b)
x ‖∞(da〈ρ(a)

x , E
(a)
ii 〉 − e−γ)

≥ ‖∇(a)
x ‖∞(s(x)− ‖∇(a)

x ‖∞)− (m− 1)‖∇(a)
x ‖∞(s(x)− ‖∇(a)

x ‖∞ − e−γ)

where the first step was by Lemma 7.2.10, in the second step we used our case assumption
‖∇(a)

x ‖∞ = −〈E(a)
ii ,∇

(a)
x 〉 to bound the first term and Lemma 7.2.19 with Zb = ∇(b)

x to

bound each term in the sum, and in the final step we used da〈ρ(a)
x , E

(a)
ii 〉 = s(x)− ‖∇(a)

x ‖∞
by our case assumption on i and ‖∇(a)

x ‖∞ ≥ ‖∇(b)
x ‖∞ by our case assumption on a. This

allows us to bound the change in ∇(a)
x as

−∂t=0 log ‖∇(a)
xt ‖∞ =

∂t=0da〈E(a)
ii , ρ

(a)
xt 〉 − ∂t=0s(xt)

‖∇(a)
x ‖∞

≥ (s(x)− ‖∇(a)
x ‖∞)− (m− 1)(s(x)− ‖∇(a)

x ‖∞ − e−γ) + 0

where the first step is by the assumption that ‖∇(a)
x ‖∞ = da〈E(a)

ii , ρ
(a)
x 〉−s(x), in the second

step we used the bounds derived above for change in 〈E(a)
ii , ρ

(a)
xt 〉 and for the size we simply

used −∂t=0s(xt) ≥ 0 by Lemma 7.2.5.

Combining the two cases, the lemma is shown as we have

−∂t=0 log ‖∇(a)
xt ‖∞ ≥ s(x)− (m− 1)(s(x) + 2‖∇(a)

x ‖∞ − e−γ).

Remark 7.2.21. As mentioned previously in the analyses of Chapter 3 and Section 7.2.2,
we ignore questions of differentiability for the infinity norm and discuss the technical solu-
tion in Remark 3.2.11 using e.g. the envelope theorem of Milgrom and Segal [70].

Recall that in Section 7.2.2, we used Lemma 7.2.11 to show that the error grew slowly
for small t, and then we were able to apply the fast convergence of Proposition 7.2.7 to show
the error remained bounded. In this analysis, we can use the above Lemma 7.2.20 to show
that ‖∇x‖∞ is always exponentially decreasing, which will allow us to bound the scaling
‖ZT‖∞ from gradient flow directly. This is similar to our analysis in Proposition 3.3.9 for
the matrix setting.

237

Proposition 7.2.22. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
dim(Va) = da, and let (T, T+, t) be a commutative scaling group according to Defini-
tion 7.2.1. Let x ∈ V K be an input of size s(x) = 1 that is ε-T -balanced, and assume
that for all t ∈ [0, T] the solution of gradient flow xt according to Proposition 7.2.4 satisfies

s(xt) ≥ 3
4
, (2) γ-t-pseudorandomness with γ ≤ 1

16m
, and (3) maxa∈[m] ‖∇(a)

xt ‖∞ ≤ 1
16m

.
Then

‖∇(a)
xT
‖∞ ≤ εe−T/2 and ‖Z(a)

T ‖∞ ≤ 2ε.

Proof. We can assume without loss that Va = Fda and Ta = ST(da) by a change of basis
if necessary. This is only to reduce clutter, and we emphasize that these results hold for
general commutative scaling groups. Under these conditions, we have for t ∈ [0, T] that

−∂t max
a∈[m]

log ‖∇(a)
xt ‖∞ ≥ s(xt)− (m− 1)

(
s(xt) + 2 max

a∈[m]
‖∇(a)

xt ‖∞ − e
−γ
)

≥ 3

4
− (m− 1)

(
1 +

1

8m
−
(

1− 1

8m

))
≥ 3

4
− m− 1

4m
≥ 1

2
,

where the first step was by Lemma 7.2.20 applied to xt, in the second step we used the
assumptions 1 = s(x) ≥ s(xt) ≥ 3

4
and maxa∈[m] ‖∇(a)

xt ‖∞ ≤ 1
16m

as well as the Taylor
approximation e−γ ≥ 1− 2γ for 0 ≤ γ ≤ 1

16m
.

Therefore by the fundamental theorem of calculus, we have

max
a∈[m]

log ‖∇(a)
xT
‖∞ = max

a∈[m]
log ‖∇(a)

x ‖∞ +

∫ T

0

∂t max
a∈[m]

log ‖∇(a)
xt ‖∞ ≤ log ε− T

2
,

where the first step is by the fundamental theorem of calculus, and the second is by the
derivative bound ∂t maxa∈[m] log ‖∇(a)

xt ‖∞ ≥ 1
2
. The first statement follows by exponentiat-

ing both sides.

For the second statement, we again use the fundamental theorem of calculus to show

‖Z(a)
T ‖∞ =

∥∥∥∥∫ T

0

−∇(a)
xt

∥∥∥∥ ≤ ∫ T

0

max
b∈[m]
‖∇(b)

xt ‖∞ ≤ ε

∫ T

0

e−t/2 ≤ 2ε,

where the first step was by Proposition 7.2.4 of gradient flow, the second was by triangle
inequality on ‖·‖∞, and the third step was by the gradient bound in the first statement.

238

Our plan is to remove the assumptions of Proposition 7.2.22 and replace them with
sufficient pseudorandomness of the initial tensor. To this end, the next lemma shows that
pseudorandomness is maintained by scalings.

Lemma 7.2.23. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
dim(Va) = da, and let (T, T+, t) be a commutative scaling group according to Defini-
tion 7.2.1. If input x ∈ V K is γ-ta←b-pseudorandom, then for any Y ∈ t the scaling
eY/2 · x is (‖Y ‖∞ + γ)-ta←b-pseudorandom.

Before proving this statement, note that this is a multiplicative robustness bound on
pseudorandomness, as Definition 7.2.17 has the parameter in the exponent. In Theo-
rem 7.3.4, we will show that this kind of multiplicative bound holds for the non-commutative
pseudorandom condition as well.

Proof. Choose an arbitrary ξ ∈ Sa and orthogonal projection P ∈ Pb according to Defini-
tion 7.2.17. Then we can bound the quantity

〈ρ(ab)

eY/2·x, ξξ
∗ ⊗ P 〉 = 〈eY/2ρxeY/2, ξξ∗ ⊗ P ⊗ Iab〉 = 〈ρx, eY · (ξξ∗ ⊗ P ⊗ Iab)〉

≥ e−‖Y ‖∞〈ρx, ξξ∗ ⊗ P ⊗ Iab〉 ≥ e−‖Y ‖∞
e−γ

2da
,

where in the first step was by Definition 6.2.2 of marginals as well as the equivariance
property of Lemma 6.2.6(1), in the second step we used that fact that Y ∈ t and ξ ∈ Sa
and P ∈ Pb so eY/2 commutes with ξξ∗⊗P⊗Iab, in the third step we used the fact that both
terms in the inner product are positive semidefinite, so we can bound the inner product
by the spectral lower bound eY � e−‖Y ‖∞IV by Definition 7.2.8, and in the final step the
lower bound was by the γ-ta←b-pseudorandom condition of x according to Definition 7.2.17.
Since ξ ∈ Sa and P ∈ Pb were arbitrary, this verifies Definition 7.2.17 for eY/2 · x.

Remark 7.2.24. Unlike the strong convexity analysis in Proposition 7.2.12, the pseudo-
random condition is only useful when γ . 1

m
, regardless of how small the initial error is.

This is in contrast with the m = 2 matrix scaling analysis of Section 3.3 where pseudo-
randomness requirement only depended on the initial error and could be taken as small as
Ω(ε) for ε-doubly balanced input.

Now we can prove the main result of this subsection by bounding the scaling solution
of nearly balanced and pseudorandom inputs.

239

Theorem 7.2.25. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
dim(Va) = da for each a ∈ [m], and consider commutative scaling group (T, T+, t) according
to Definition 7.2.1. If x ∈ V K of size s(x) = 1 is ε-T -balanced for ε ≤ 1

100m2 and γ-t-
pseudorandom for γ ≤ 1

32m
, then:

1. For all time t ≥ 0, the solution Zt of gradient flow satisfies

max
a∈[m]

‖Z(a)
t ‖∞ ≤ 2ε;

2. The limit Z∞ := limt→∞ Zt exists and x∞ := eZ∞/2 ·x is a T -balanced scaling solution
to the T -tensor scaling problem in Definition 6.2.5;

3. The size of the solution can be lower bounded

s(x∗) = f t
x(Z∗) ≥ 1−mε2.

Proof. We can assume without loss that Va = Fda and Ta = ST(da) by a change of basis
if necessary. This is only to reduce clutter, and we emphasize that these results hold for
general commutative scaling groups.

We claim that for all time xt satisfies the assumptions of Proposition 7.2.22, i.e. for all
t ≥ 0: (1) s(xt) ≥ 3

4
, (2) maxa∈[m] ‖∇(a)

xt ‖∞ ≤ 1
16m

, and (3) γ′ = 1
16m

-t-pseudorandomness.
For contradiction, assume that T is the last time these conditions hold, and in particular
assume that the size condition fails first. Up till this time, we can bound

s(x)− s(xT) =

∫ T

0

‖∇xt‖2
t ≤

∫ T

0

mmax
a∈[m]

‖∇(a)
xt ‖

2
∞ ≤ mε2

∫ T

0

e−t < mε2 <
1

4
,

where the first step was by Lemma 7.2.5, the second was by Lemma 7.2.9, the third step
was by the conclusion of Proposition 7.2.22 showing for all t ∈ [0, T] : maxa∈[m] ‖∇(a)

xt ‖∞ ≤
εe−t/2, and the final step was by our assumption ε ≤ 1

100m2 . Therefore the size condition
cannot fail first.

We use Proposition 7.2.22 to show that the error condition (2) cannot fail first, as

max
a∈[m]

‖∇(a)
xT
‖∞ ≤ εe−T/2 ≤ ε <

1

16m
,

where the first step was by the conclusion of Proposition 7.2.22 applied up till time T , and
the final step was by the assumption ε ≤ 1

100m2 .

240

Finally, assume that the pseudorandom condition fails first. Then by Lemma 7.2.23 in
the contrapositive, this implies ‖ZT‖∞ ≥ 1

16m
− γ ≥ 1

32m
as γ ≤ 1

32m
. But the conditions

for Proposition 7.2.22 are satisfied up to time T , so we can bound

‖ZT‖∞ ≤ mmax
a∈[m]

‖Z(a)
T ‖∞ ≤ 2mε ≤ 1

50m
,

where the first step was by Definition 7.2.8 of the ‖ · ‖∞, the second was by the conclusion
of Proposition 7.2.22 applied up till time T , and the final step was by our assumption
ε ≤ 1

100m2 . This gives the desired contradiction, so we have fast convergence for all time.

This allows us to apply Proposition 7.2.22 for all time, and conclusion (1) follows. To

show (2), note that we have already shown that maxa∈[m] ‖∇(a)
xT ‖∞ ≤ εe−T/2 for all time by

Proposition 7.2.22. This allows us to bound

lim
T→∞

∫ ∞
T

‖∂tZ(a)
t ‖∞ = lim

T→∞

∫ ∞
T

‖∇(a)
xt ‖∞ ≤ lim

T→∞
ε

∫
t≥T

e−t/2 = 0,

where the first step was by Proposition 7.2.4 of gradient flow, and the second was by
exponential convergence ‖∇(a)

xt ‖∞ ≤ εe−t/2. Therefore the limit Z∞ exists, and further
∇x∞ = 0 implies that x∞ is T -balanced by Proposition 6.2.18(2).

To show the size lower bound in (3), we can repeat the calculation above:

s(x)− s(x∗) =

∫ ∞
0

‖∇xt‖2
t ≤

∫ ∞
0

mmax
a∈[m]

‖∇(a)
xt ‖

2
∞ ≤ mε2

∫ ∞
0

e−t = mε2,

where the first step was by the fundamental theorem of calculus and Lemma 7.2.5 of the
change in size, in the second step we applied Lemma 7.2.9, and the third step was by the
conclusion of Proposition 7.2.22. Item (3) follows as s(x) = 1 by assumption.

Finally, this theorem can be lifted to the non-commutative setting by using the decom-
position technique given in Theorem 6.3.1.

Theorem 7.2.26. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
dim(Va) = da for each a ∈ [m] and scaling group (G,P, p) according to Definition 6.2.3. If
input x ∈ V K of size s(x) = 1 is ε-G-balanced for ε ≤ 1

100m2 and γ-p-pseudorandom for

γ ≤ 1
32m

, then there is a scaling x∗ = p
1/2
∗ · x = eZ∗/2 · x with p∗ ∈ P,Z∗ ∈ p that satisfies:

1. x∗ is a G-balanced tensor scaling solution to Definition 6.2.5;

2. maxa∈[m] ‖Z(a)
∗ ‖op ≤ 2ε;

241

3. The size of the scaling solution is lower bounded by s(x∗) ≥ 1−mε2.

Proof. This proof is exactly the same as the proof of Theorem 7.2.16, except that we apply
the pseudorandom analysis of Theorem 7.2.25 for the conclusions.

7.3 Non-Commutative Robustness

A key part of our analysis of tensor scaling in Section 7.2 as well as the analysis of matrix
scaling in Chapter 3 relied on showing that the convergence properties (strong convexity
or pseudorandomness) were maintained throughout gradient flow. In the proofs of those
results, we crucially used commutativity of the scaling group to show that the convergence
parameter was multiplicatively robust under scalings. Using the reduction argument of
Theorem 6.3.1, we were then able to leverage this multiplicative robustness in the commu-
tative setting to show strong bounds on the solution for general non-commutative tensor
scaling problems. However, one drawback is that this leads to non-constructive existential
results on the optimizer in the non-commutative setting.

In this section, we will show robustness results for the non-commutative setting. These
general robustness results will be valuable in our study of geodesically convex optimization
algorithms that will be used to give constructive results for scaling problems in Chapter 8.
In Section 7.3.1, we show multiplicative robustness bounds for the frame pseudorandom
property in Definition 4.2.11. This will be applied in Section 8.5 in order to make the frame
scaling results of Chapter 4 constructive. Similarly, in Section 7.3.2, we show multiplicative
robustness bounds for the tensor pseudorandom property in Definition 7.2.17. The final
two subsections will study strong convexity for tensors and will be quantitatively weaker.
In Section 7.3.3, we show that multiplicative robustness of strong convexity is impossible in
the non-commutative setting. Therefore, we settle for a weaker additive robustness result,
which is sufficient to reproduce the work of [63] on operator scaling. Then, in Section 7.3.4,
we lift these results to higher-order tensors and show additive robustness of tensor strong
convexity for non-commutative scalings. This will be used in Chapter 9 to give strong
algorithmic convergence guarantees for the Flip-Flop algorithm (Definition 8.4.1) for the
tensor normal model.

7.3.1 Robustness of Frame Pseudorandomness

In this subsection, we show that Definition 4.2.11 of frame pseudorandomness is multiplica-
tively preserved under arbitrary scalings. For β = 1

2
, this is a special case of the robustness

242

result for tensors proven in the following Section 7.3.2. We repeat the proof of the simpler
frame case here for clarity, as the tensor setting comes with a bit more notation.

Remark 7.3.1. A very similar robustness property was shown in Prop 4.3.5 of [62], and
was crucial to the fast convergence results. This robustness was only proved for the com-
mutative matrix case, so in order to apply these results to the Paulsen problem in that
work, we had to use a much more complicated perturbation argument and analysis. Here
we show that a simple non-commutative robustness statement follows the same proof and
allows us to greatly simplify the original argument of [62], even bypassing the frame to
matrix reduction of Theorem 4.2.13 we use in this thesis.

In the proof of Lemma 3.3.4 we showed a more refined statement that gave multiplicative
robustness for every unit vector and projection in Definition 3.3.1 of pseudorandomness.
The key feature of this robustness result was that it produced a multiplicative bound
α → e−δ · α for any scaling ‖(X, Y)‖op ≤ δ. Therefore, in the proof of Theorem 3.3.10,
we used the fact that pseudorandomness was maintained up to constant factors even for
scalings with ‖(X, Y)‖∞ ≈ Θ(1), regardless of the pseudorandomness of the initial input.

In the following, we give a robustness result for frame pseudorandomness according to
Definition 4.2.11. This result will also be multiplicative, but will only hold for the infimum
and not individually for every unit vector and projection.

Lemma 7.3.2. Let U = {u1, ..., un} ∈ Mat(d, n) be a frame that is (α, β)-pseudorandom
according to Definition 4.2.11. Then, for any L ∈ L(d), R ∈ diag(n), the scaling V := LUR
is (α′, β)-pseudorandom as a frame with α′ ≥ σ2

min(L) · σ2
min(R) · α.

Proof. Recall that Lemma 5.1.1 gives the following equivalent formulation for (α, β)-
pseudorandomness: for any ξ ∈ Sd−1 and T ∈

(
[n]
βn

)
,

‖ξ∗UPT‖2
F =

∑
j∈T

|〈ξ, uj〉|2 ≥ α
β

d
,

where PT is the orthogonal projection onto the coordinates T ⊆ [n]. We verify this holds
for V with the bounds given in the lemma:

‖ξ∗V PT‖F = ‖ξ∗LURPT‖F ≥ ‖L∗ξ‖2

(
inf

ψ∈Sd−1
‖ψ∗UPT‖F

)
min
j∈T
|Rjj| ≥ σmin(L)σmin(R)

√
α
β

d
,

where in the first step we substituted V = LUR, in the second step we used the change of
variable ψ = L∗ξ

‖L∗ξ‖2 ∈ S
d−1 for the left scaling and the fact that R commutes with PT since

243

they are both diagonal, and in the final step we used the definitions of minimum singular
value for the lower bounds σmin(L) and σmin(R), and the pseudorandomness of U to lower
bound ‖ψ∗UPT‖F . Since ξ ∈ Sd−1, T ∈

(
[n]
βn

)
were arbitrary, squaring both sides verifies

the pseudorandomness property of V according to Lemma 5.1.1 and gives the result.

We reiterate that this is not a bound for every unit vector and projection individually,
as in Lemma 3.3.4. But this is still a multiplicative lower bound, and so gives non-trivial
pseudorandomness bounds for O(1)-scalings regardless of the initial value of α. This will
be useful for our algorithmic results for the Paulsen problem in Section 8.5.

As an illustration, we combine the above robustness with our convergence analysis
in Theorem 4.2.14 for pseudorandom frames to show strong convexity of the solution to
frame scaling in this case. This is the main consequence of robustness that we use as our
algorithmic results in Chapter 8 rely on strong convexity of the geodesic convex formulation
in Proposition 6.2.18.

Theorem 7.3.3. If frame U ∈ Mat(d, n) of size s(U) = 1 is ε-doubly balanced and (α, β)-
pseudorandom for 1

5
≥ α ≥ 16e · ε and β ≤ 1

2
, then there is a scaling U∗ = eX∗/2UeY∗/2 with

(X∗, Y∗) ∈ p satisfying:

1. U∗ := eX∗/2UeY∗/2 is a doubly balanced frame;

2. max{‖X∗‖op, ‖Y∗‖op} ≤ 9ε
α

;

3. The size of the scaling solution is lower bounded by s(U∗) ≥ 1− 10ε2

α
.

4. U∗ is (α
e
, β)-pseudorandom according to Definition 4.2.11;

5. If β ≤ 1
16

, then U∗ is an α∗-strongly convex frame for α∗ ≥ e−12 · α.

Proof. The first three items are exactly the content of Theorem 4.2.14. For item (4), we use
the fact that V is (α, β)-pseudorandom and apply Lemma 7.3.2 to show U∗ = eX∗/2UeY∗/2

is (α′, β)-pseudorandom for

α′ ≥ α · σmin(eX∗/2)2 · σmin(eY∗/2)2 ≥ α · e−‖X∗‖op−‖Y∗‖op ≥ α · exp
(
− 18ε

α

)
≥ α

e
,

where the first step was by the robustness result in Lemma 7.3.2, the second step used the
bound σmin(eX∗/2)2 ≥ eλmin(X∗) ≥ e−‖X∗‖op and a similar calculation for Y∗, the third step
is by the bound in item (2), and the last step is by our assumption α ≥ 16e · ε.

244

For the final item, we have the stronger assumption that β ≤ 1
16

, so we can simply
combine item (4) with Corollary 4.2.12 to show U∗ is an α∗-strongly convex frame for
α∗ ≥ e−11 · α′ ≥ e−12 · α.

Note that (X∗, Y∗) is a global minimum of the geodesically convex formulation for frame
scaling according to item (2) of Proposition 6.2.18. The above result can be combined with
Lemma 7.3.2 to show that there is a large region near the optimizer (X∗, Y∗) where the
Kempf-Ness function fPU is Ω(α)-geodesically strongly convex. In Section 8.5, we will use
this strongly convex region to show fast convergence of frame scaling algorithms for random
frames as well as our solution to the Paulsen problem.

7.3.2 Tensor Pseudorandomness

In this subsection, we show that tensor pseudorandomness is multiplicatively preserved
under arbitrary scalings. This is a generalization of the robustness of frame pseudoran-
domness shown in Section 7.3.1, and the proof will be nearly the same, but requires a bit
more notation in the tensor case.

We will show that the infimum over unit vectors and projections given in Defini-
tion 7.2.17 of pseudorandomness is multiplicatively robust. Note that this is weaker than
multiplicative robustness with respect to every individual unit vector and projection.

Theorem 7.3.4. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with scaling
group (G,P, p) according to Definition 6.2.3, and consider tuple x ∈ V K that is γ-pa←b-
pseudorandom according to Definition 7.2.17. Then, for any (g1, ..., gm) ∈ G, the scaling
y := g · x is γ′-pa←b-pseudorandom for

γ′ ≤ γ −
∑
c∈[m]

log λmin(g∗cgc).

Note that there are no restrictions on g, i.e. the scalings are not restricted to positive
definite elements P , which is the domain of our geodesically convex formulation fPx .

Proof. If g∗aga is non-invertible for any a ∈ [m], then the bound is trivial. So for the
remainder of the proof, we assume λmin(g∗aga) > 0 for all a ∈ [m].

To show pseudorandomness according to Definition 7.2.17, we would like to bound
〈ρ(ab)
g·x , ξξ∗⊗P 〉 for every ξ ∈ Sa, P ∈ Pb. Our plan is to bound this in terms of 〈ρ(ab)

x , ψψ∗⊗
Q〉 for some ψ ∈ Sa, Q ∈ Pb, and then apply pseudorandomness of x.

245

First consider arbitrary ξ ∈ Sa, P ∈ Pb and note

〈ρ(ab)
g·x , ξξ

∗ ⊗ P 〉 = 〈gρxg∗, ξξ∗ ⊗ P ⊗ Iab〉 = 〈ρx, (g∗aξξ∗ga)⊗ (g∗bPgb)⊗ (g∗
ab
gab)〉,

where we used Definition 6.2.2 of the marginals and the equivariance property ρg·x = gρxg
∗

according to Lemma 6.2.6(1).

In order to use the fact that x is γ-p-pseudorandom, we note that both terms in the inner
product above are positive semi-definite, so in order to lower bound the inner product, it is
enough to give a spectral lower bound. To this end, note ‖g∗aξ‖2

2 ≥ λmin(g∗aga) as ‖ξ‖2 = 1,
so g∗aξξ

∗ga � ‖(g∗aga)−1‖opψψ
∗ where ψ := g∗aξ

‖g∗aξ‖2
∈ Sa. Similarly, we can exhibitQ ∈ Pb (i.e.

Q is an orthogonal projection with rk(Q) = rk(P) = db
2

) such that g∗bPgb � λmin(g∗bgb) ·Q.
If Gb is commutative, then this claim is clear as P and gb commute. The non-commutative
case follows from Claim 7.3.5. With these two spectral lower bounds, we have

〈ρ(ab)
g·x , ξξ

∗ ⊗ P 〉 = 〈ρx, (g∗aξξ∗ga)⊗ (g∗bPgb)⊗ (g∗
ab
gab)〉

≥ 〈ρx, (λmin(g∗aga) · ψψ∗)⊗ (λmin(g∗bgb) ·Q)⊗ (λmin(g∗
ab
gab) · Iab)〉

≥ λmin(g∗aga)λmin(g∗bgb)λmin(g∗
ab
gab) ·

e−γ

2da
=
∏
c∈[m]

λmin(g∗cgc) ·
e−γ

2da
,

where the first step was by the calculation above, in the second step we applied our spectral
lower bounds, and the third step was by γ-pa←b-pseudorandomness of x applied to ψ ∈
Sa, Q ∈ Pb. This verifies Definition 7.2.17 of pseudorandomness of g · x.

To finish the proof, we show the spectral lower bound in the claim below.

Claim 7.3.5. For any orthogonal projection P ∈ H(d) and any invertible g ∈ GL(d), there
is an orthogonal projection Q ∈ H(d) such that rk(P) = rk(Q) and

g∗Pg � λmin(g∗g) ·Q.

Proof. First note that rk(g∗Pg) = rk(P) as g ∈ GL(d) is invertible. To show the spectral
lower bound, we will use Sylvester’s Law of Intertia (Theorem 4.5.8 in [52]), which says
that for any Hermitian A and invertible g, A and g∗Ag have the same number of positive,
0, and negative eigenvalues.

Now consider A := P − (1 − δ)Id for δ > 0 arbitrary. Note that A has rk(P) positive
eigenvalues and the remaining d−rk(P) are negative (see Definition 2.1.12 of the spectrum
of orthogonal projections). Therefore, this must also be the signature of g∗Ag = g∗Pg −

246

(1− δ)g∗g by Sylvester’s Law of intertia. Therefore, there must be a subspace S ⊆ Fd with
dim(S) = rk(P) such that

∀v ∈ S : 〈vv∗, g∗Pg〉 > (1− δ)〈vv∗, g∗g〉 ≥ (1− δ) · λmin(g∗g)‖v‖2
2,

where the first step is by the variational principle for Hermitian eigenvalues applied to A
which has rk(P)-many positive eigenvalues (see e.g. Corollary III.1.2 in [12]), and the last
step was by definition of the minimum eigenvalue of Hermitian g∗g. Therefore, for Q the
orthogonal projection onto S according to Definition 2.1.12, we have

g∗Pg � (1− δ)Q,

as g∗Pg � 0 and Q is 0 on the orthogonal complement S. The statement follows by taking
the limit δ → 0.

Note that in Lemma 7.2.23, we were able to give a lower bound for each individual
ξ ∈ Sa, P ∈ Pb, whereas in Theorem 7.3.4 the scaling was arbitrary, so we could only
bound the infimum. But this robustness is still multiplicative, meaning that we get a non-
trivial result for arbitrary scalings. But our analysis in Theorem 7.2.26 requires γ . 1

m

pseudorandomness, so this robustness bound will stop being useful when ‖g−I‖op & 1
m

. In
Theorem 7.4.11, we will use the robustness of Theorem 7.3.4 to show that the pseudoran-
dom analysis of Theorem 7.2.26 also implies pseudorandomness and strong convexity for
the output G-balanced scaling. This will be useful in Chapter 9 to show fast algorithmic
convergence for random inputs to the tensor scaling problem.

7.3.3 Strong Convexity for Operators

The subject of this and the following subsection will be robustness of strong convexity for
non-commutative tensor scaling. It turns out that unlike the pseudorandomnes results of
the previous subsections, for strong convexity, it is not possible to lift the multiplicative
robustness bounds from Theorem 7.3.14 to the non-commutative setting as we show using
a small frame example. Therefore, the remainder of this subsection will be devoted to
setting up the proper definitions for our additive robustness results for strong convexity.
At the end of this subsection, we will have enough tools to reproduce a strengthening of
the main theorem of [63].

In the proof of Lemma 7.2.13, we crucially used that the direction Z ∈ t and the scaling
Y ∈ t commute. It turns out that this is not merely an artifact of the proof, but is necessary
for any multiplicative robustness bound. The following example was found during joint
work [36] with Cole Franks, Rafael Oliveira, and Michael Walter.

247

Example 7.3.6. Let G = SL(2)⊗ ST(2) be the frame scaling group with associated polar
and infinitesimal vector space (P, p) according to Definition 6.2.3. Consider input V ∈
Mat(2, 2) and scaling V ′ ∈ G · V defined below:

V :=

(√
2 1

1
√

2

)
, V ′ := V −1V = I2.

Then V is Ω(1)-p-strongly convex as a frame, but V ′ = I2 is not strictly convex, i.e. it is
not α-p-strongly convex for any α > 0.

This is proved by a straightforward calculation in Appendix A.4. Note that one conse-
quence of multiplicative robustness is that if x is α-strongly convex for any α > 0, then any
scaling eY/2 · x is e−‖Y ‖op · α > 0 strongly convex. The example shows that it is impossible
to derive a general multiplicative robustness bound for arbitrary scalings.

Therefore, in the following, we will focus on proving weaker robustness bounds which
show that strong convexity is preserved up to additive error α→ α−O(‖Y ‖op).

In the remainder of this section we will fix vector space V = ⊗a∈[m]Va with dim(Va) = da
for each a ∈ [m] and G = (SL(V1), ..., SL(Vm)), as this is the only scaling group we use for
our algorithmic results in Chapter 9. The case of arbitrary scaling groups can be thought
of as a (subgroup) restriction of this group G, and the following proofs of robustness can
be extended straightforwardly.

By Definition 7.1.7, input x ∈ V K is shown to be strongly convex if for every Z ∈ p we
can lower bound

∂2
η=0f

P
x (eηZ) =

∑
a∈[m]

〈ρ(a)
x , Z2

a〉+
∑

a6=b∈[m]

〈ρ(ab)
x , Za ⊗ Zb〉,

where the decomposition is given in Eq. (7.4). Our plan is to use matrix perturbation
results to bound each term when x→ g · x for scalings g ≈ IV .

Recall that in Proposition 7.1.10, we lower bounded the diagonal terms of the above
decomposition for nearly balanced inputs, and upper bounded the off-diagonal term using
the spectral condition for tensors. In the m = 2 operator scaling case, Lemma 7.1.11
shows that for nearly doubly balanced operators, strong convexity is nearly equivalent to
the spectral condition, so in the following proof, we will actually analyze robustness of the
spectral condition. We first use Definition 2.4.4 and Proposition 2.4.5 so that we can apply
simple operator inequalities to show robustness for the associated quantum maps.

Most of the results in this subsection were already achieved in [63], and we view our
contribution mostly as a principled approach via geodesic convexity. At the end, we will

248

be able to combine the robustness result with our improved analysis of matrix scaling in
Chapter 3 in order to produce a slight strengthening of the main results of [63] on strongly
convex operator scaling. The next subsection lifts these results to the tensor case and
requires some new ideas.

Our plan is to relate strong convexity to certain norms on quantum maps. Recall that
according to Definition 2.4.4, the bipartite tensor tuple x ∈ (U ⊗ V)K has associated state
ρx and quantum map Φx : H(V)→ H(U) defined by

〈Z,Φx(Y)〉 = 〈ρx, Z ⊗ Y 〉 =
K∑
k=1

〈xkx∗k, Z ⊗ Y 〉

for arbitrary Z ∈ H(U) and Y ∈ H(V). Also recall that the spectral condition in Defini-
tion 7.1.9 is defined with respect to the infinitesimal vector space spd(d)⊕ spd(n) given in
Definition 2.1.10.

We first give preliminary definitions relating the spectral condition to quantum maps.

Definition 7.3.7. For Φ : H(V)→ H(U), we define two measures

‖Φ‖F→F := sup
X∈H(U),Y ∈H(V)

|〈X,Φ(Y)〉|
‖X‖F‖Y ‖F

, and ‖Φ‖0 := sup
X∈spd(U),Y ∈spd(V)

|〈X,Φ(Y)〉|
‖X‖F‖Y ‖F

.

Recall that spd(U) = {X ∈ H(U) | Tr[X] = 0}, so the 0 in ‖ · ‖0 represents the trace 0
condition for the supremum.

Remark 7.3.8. We could have equivalently defined Φ : L(V)→ L(U) and then ‖Φ‖F→F =

supY ∈L(V)
‖Φ(Y)‖F
‖Y ‖F

as is standard. The restriction to H(V) is without loss of generality since
Φ is Hermitian preserving. This can be explicitly shown in a similar fashion to Theorem
4.27 of [98] by using e.g. the Cartesian decomposition L(V) = H(V)⊕ iH(V).

Also note that the absolute value in the definitions of both ‖ · ‖F→F and ‖ · ‖0 are not
necessary as we can always assume the optimum value is positive by symmetry.

We show some simple properties of these two measures that will be used repeatedly.

Proposition 7.3.9. For arbitrary inner product spaces U, V ,

1. ‖ · ‖F→F is the standard operator norm induced by ‖ · ‖F according to Eq. (2.4);

2. ‖ · ‖F→F is sub-multiplicative, i.e. for any Ψ : H(W)→ H(V),Φ : H(V)→ H(U),

‖Ψ ◦ Φ‖F→F ≤ ‖Ψ‖F→F‖Φ‖F→F ;

249

3. For any Φ : H(V)→ H(U), ‖Φ‖0 ≤ ‖Φ‖F→F .

4. ‖ · ‖0 is a semi-norm, i.e. it is homogenous and convex.

Proof. Since ‖ · ‖F is the standard Euclidean norm on H(U) and H(V), the first statement
is clear by the definition as

‖Φ‖F→F = sup
X∈H(U),Y ∈H(V)

〈X,Φ(Y)〉
‖X‖F‖Y ‖F

= sup
Y ∈H(V)

‖Φ(Y)‖F
‖Y ‖F

,

where we used Proposition 2.1.17 for ‖ · ‖F and the fact that Φ is Hermitian-preserving.
The second item also follows from this formula as, for arbitrary Y ∈ H(W),

‖Ψ(Φ(Y))‖F ≤ ‖Ψ‖F→F‖Φ(Y)‖F ≤ ‖Ψ‖F→F‖Φ‖F→F‖Y ‖F

where we repeatedly used the definition of ‖ · ‖F→F as well as the fact that both Φ and Ψ
are Hermitian preserving.

The third item follows simply as the domain of optimization for ‖·‖0 is strictly contained
in that of ‖ · ‖F→F .

For the fourth item, it is clear that ‖ · ‖0 is homogenous under scalars, so to show it is
a semi-norm, we verify the triangle inequality:

|〈X, (Ψ + Φ)(Y)〉| = |〈X,Ψ(Y)〉+ 〈X,Φ(Y)〉| ≤ |〈X,Ψ(Y)〉|+ |〈X,Φ(Y)〉|.

Finally, we note that ‖ · ‖0 is not a norm by the following example:

Φ(Y) := 〈In, Y 〉Id =⇒ ‖Φ‖0 = sup
X∈spd(d),Y ∈spd(n)

〈X,Φ(Y)〉
‖X‖F‖Y ‖F

= 0,

where the last step is by Definition 2.1.10 of spd(n) = {Y ∈ H(n) | Tr[Y] = 0}. Clearly
Φ 6= 0 so ‖ · ‖0 is not positive-definite.

We will use these measures to bound the change in the off-diagonal terms of Eq. (7.4)
under scaling. To this end, we show how ‖ · ‖0 and ‖ · ‖F→F relate to the spectral condition
and strong convexity for tensors.

Lemma 7.3.10. Consider V = ⊗a∈[m]Va with dim(Va) = da for each a ∈ [m] and scaling
group G = (SL(V1), ..., SL(Vm)) along with polar (P, p) according to Definition 6.2.3. For
arbitrary pair a 6= b ∈ [m]:

250

1. x ∈ V K satisfies the λ-pab-spectral condition according to Definition 7.1.9 iff

‖Φ(ab)
x ‖0 ≤

λ√
dadb

,

where Φ
(ab)
x is the map associated to ρ

(ab)
x according to Proposition 2.4.5.

2. For any x ∈ V K, ‖Φ(ab)
x ‖F→F ≤

√
‖ρ(a)
x ‖op‖ρ(b)

x ‖op

dadb
.

Proof. The first item follows from Definition 7.1.9 of the spectral condition for pa = spd(Va)

and pb = spd(Vb) and Definition 7.3.7 of ‖ · ‖0 as 〈Za,Φ(ab)
x (Zb)〉 = 〈ρ(ab)

x , Za ⊗ Zb〉 by the
correspondence in Proposition 2.4.5. The second item is exactly Lemma 3.6 in [63]. Below,
we give another proof inspired by geodesic convexity.

For any Z ∈ H(Va) and Y ∈ H(Vb), we have

∂2
η=0〈ρ(ab)

x , eηZ ⊗ eηY 〉 = 〈ρ(ab)
x , (Z ⊗ Ib + Ia ⊗ Y)2〉 ≥ 0,

where the first step was by the product rule, and in the last step we used that ρ
(ab)
x � 0

and Z ∈ H(Va) and Y ∈ H(Vb) so (Z ⊗ Ib + Ia ⊗ Y)2 � 0. We expand this expression as

0 ≤ 〈ρ(ab)
x , (Z ⊗ Ib + Ia ⊗ Y)2〉 = 〈ρ(a)

x , Z2〉+ 〈ρ(b)
x , Y

2〉+ 2〈Z,Φ(ab)
x (Y)〉,

where in the last step we used 〈ρx, Z⊗Y 〉 = 〈Z,ΦA(Y)〉 by Proposition 2.4.5. Rearranging
the terms gives

2〈Z,Φ(ab)
x (Y)〉 = 〈ρ(a)

x , Z2〉+ 〈ρ(b)
x , Y

2〉 − 〈ρ(ab)
x , (Z ⊗ Ib − Ia ⊗ Y)2〉

≤ ‖ρ(a)
x ‖op‖Z2‖1 + ‖ρ(b)

x ‖op‖Y 2‖1 =
‖ρ(a)

x ‖op‖Z‖2
F

da
+
‖ρ(b)

x ‖op‖Y ‖2
F

db
,

(7.11)

where the second step was by Schatten norm duality 〈A,B〉 ≤ ‖A‖op‖B‖1 given in Propo-

sition 2.1.17 for the diagonal terms and the lower bound 〈ρ(ab)
x , (Z ⊗ Ib + Ia ⊗ Y)2 ≥ 0

for the second term, and in the third step we used ‖Z2‖1 = ‖Z‖2
F and ‖Y 2‖1 = ‖Y ‖2

F for
Hermitian Z ∈ H(Va) and Y ∈ H(Vb).

251

We complete the proof by using AM-GM to bound the F → F norm:

‖Φ(ab)
x ‖F→F = sup

Z∈H(Va),Y ∈H(Vb)

inf
η>0

|〈ηZ,Φ(ab)
x (η−1Y)〉|

‖Z‖F‖Y ‖F

≤ sup
Z∈H(Va),Y ∈H(Vb)

inf
η>0

1

‖Z‖F‖Y ‖F

(
η2‖ρ

(a)
x ‖op‖Z‖2

F

2da
+ η−2‖ρ

(b)
x ‖op‖Y ‖2

F

2db

)

=

√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op

dadb

where the first step was by Definition 7.3.7 of the F → F norm, in the second step we
used the bound in Eq. (7.11) applied to (ηZ, η−1Y), and the final step was by choosing η
in the infimum so that we can replace the arithmetic mean by the geometric mean (i.e. the
setting when AM-Gm is tight).

We defer the more complicated m ≥ 3 tensor case to Section 7.3.4, and in the rest of this
subsection, we focus on showing robustness for the m = 2 case of operator scaling. With
the previous definitions, we can bound the change in the off-digaonal term 〈ρA, X ⊗ Y 〉 of
Eq. (7.4) using the above semi-norms.

Lemma 7.3.11. Given tuple A ∈ Mat(d, n)K and L ∈ Mat(d), R ∈ Mat(n) such that
max{‖L− Id‖op, ‖R− In‖op} ≤ 1

2
, scaling B := LAR satisfies

‖ΦB − ΦA‖0 ≤ ‖ΦA‖F→F
(

(1 + 2.5‖L− Id‖op)(1 + 2.5‖R− In‖op)− 1
)
.

As a consequence, if A is ε-G-balanced with G = (SL(d), SL(n)) according to Defini-
tion 6.2.4 and satisfies the λ-p-spectral condition according to Definition 7.1.9 for p =
spd(d)⊕ spd(n), then B satisfies the λ′-p-spectral condition with

λ′ ≤ λ+ s(A)(1 + ε)
(

(1 + 2.5‖L− Id‖op)(1 + 2.5‖R− In‖op)− 1
)
.

Proof. We first rewrite ΦB in terms of ΦA as, for arbitrary Y ∈ H(n),

ΦB(Y) =
K∑
k=1

BkY B
∗
k =

K∑
k=1

(LAkR)Y (LAkR)∗ = L(ΦA(RY R∗))L∗,

where the first and last steps were by Definition 2.4.4 of ΦB and ΦA, and in the second
step we substituted B = LAR.

252

Now we can write the map ΦB as a perturbation of ΦA. To this end, let R : Mat(n)→
Mat(n) be the linear operator defined by

R(Y) := RY R∗ = Y + (R− In)Y + Y (R− In)∗ + (R− In)Y (R− In).

Note that if R is small, we can show R is close to the identity operator In : Mat(n) →
Mat(n), as for any Y ∈ H(n),

‖R(Y)− In(Y)‖F ≤ ‖(R− In)Y ‖F + ‖Y (R− In)∗‖F + ‖(R− In)Y (R− In)∗‖F
≤ ‖Y ‖F (2‖R− In‖op + ‖R− In‖2

op),

where the first step was by the triangle inequality on ‖ · ‖F and the last step was by the
bound ‖XY ‖F ≤ ‖X‖op‖Y ‖F . Since Y ∈ H(n) is arbitrary, this implies ‖R − In‖F→F ≤
2‖R − In‖op + ‖R − In‖2

op by Definition 7.3.7. For L : Mat(d) → Mat(d) defined as
L(X) = LXL∗, and the identity operator Id : Mat(d) → Mat(d), we can use a similar
calculation to show ‖L − Id‖F→F ≤ 2‖L− Id‖op + ‖L− Id‖2

op.

Now we observe that ΦB for scaling B = LAR is close to ΦA as

ΦB − ΦA = L ◦ ΦA ◦ R − Id ◦ ΦA ◦ In
= (L − Id)ΦA + ΦA(R− In) + (L − Id)ΦA(R− In).

This decomposition allows us to bound the difference by

‖ΦB − ΦA‖0 ≤ ‖(L − Id)ΦA‖0 + ‖ΦA(R− In)‖0 + ‖(L − Id)ΦA(R− In)‖0

≤ ‖ΦA‖F→F (‖L − Id‖F→F + ‖R − In‖F→F + ‖L − Id‖F→F‖R − In‖F→F)

≤ ‖ΦA‖F→F
(

(1 + 2.5‖L− Id‖op)(1 + 2.5‖R− In‖op)− 1
)

where in the first step we used the triangle inequality on semi-norm ‖ · ‖0 by Proposi-
tion 7.3.9(4), in the second step we used the bounds ‖·‖0 ≤ ‖·‖F→F and sub-multiplicativity
of ‖ · ‖F→F from items (2) and (3) of Proposition 7.3.9, and in the final step we used the
bounds on L,R derived above as well as the assumption that max{‖L−Id‖op, ‖R−In‖op} ≤
1
2

to bound ‖L− Id‖2
op ≤ 1

2
‖L− Id‖op and ‖R − In‖2

op ≤ 1
2
‖R − In‖op. This is exactly the

perturbation bound in the lemma.

For the last statement, item (1) in Lemma 7.3.10 shows that A satisfies the λ-p-spectral
condition iff ‖ΦA‖0 ≤ λ√

dn
. Therefore, we can bound

‖ΦB‖0 ≤ ‖ΦA‖0 + ‖ΦB − ΦA‖0,

253

where we can apply the triangle inequality for semi-norm ‖ · ‖0 by Proposition 7.3.9(4).
Further, we can use the balance condition of A to bound

‖ΦA‖0 ≤ ‖ΦA‖F→F ≤
√
‖ρLA‖op‖ρRA‖op ≤

s(A)(1 + ε)√
dn

,

where the first step is by item (2) of Lemma 7.3.10 and the final step is by the assumption
that A is ε-G-balanced (see Definition 6.2.4). Combining this with the perturbation bound
on ‖ΦB − ΦA‖0 shows

‖ΦB‖0 ≤ ‖ΦA‖0 +‖ΦB−ΦA‖0 ≤
λ√
dn

+
s(A)(1 + ε)√

dn

(
(1+‖L−Id‖op)(1+‖R−In‖op)−1

)
,

which again by item (1) of Lemma 7.3.10 implies that B satisfies the λ′-p-spectral condition
for λ′ as given in the lemma.

This can be combined with the analysis of matrix scaling in Section 3.2.3 to show
strong convexity of the optimizer for operators satisfying the spectral condition. In the
next subsection, we will lift this result to the tensor setting.

Theorem 7.3.12. Consider matrix tuple A ∈ Mat(d, n)K ' (Fd⊗Fn)K along with scaling
group G = (SL(d), SL(n)) and polar (P, p) according to Definition 6.2.3. If A of size s(A) =
1 is ε-G-balanced and satisfies the λ-p-spectral condition according to Definition 7.1.9 with
1
5
≥ 1 − λ ≥ ε(4 log d + 21), then there is a scaling A∗ = eX∗/2AeY∗/2 with (X∗, Y∗) ∈ p

satisfying:

1. A∗ := eX∗/2AeY∗/2 is a doubly balanced operator;

2. The scaling solution (X∗, Y∗) ∈ p satisfies

‖(X∗, Y∗)‖p .
ε

1− λ
and max{‖X∗‖op, ‖Y∗‖op} .

ε log d

1− λ
;

3. The size of the solution can be lower bounded by

s(A∗) = fA(eX∗ , eY∗) ≥ 1−O
(ε2

1− λ

)
;

4. A∗ is α∗-p-strongly convex with

α∗ ≥ 1− λ−O
(ε log d

1− λ

)
.

254

Note item (4) only gives a non-trivial lower bound for (1− λ)2 & ε log d.

Proof. By item (2) of Proposition 6.2.18, if

(eX∗ , eY∗) := arg inf
p∈p

fPA (p)

is the global optimizer of the Kempf-Ness function fPA given in Definition 6.2.9, then
eX∗/2AeY∗/2 is a G-balanced scaling of A according to Definition 6.2.4. We will show that
this global minimum is attained and satisfies the bounds above. Our plan is to use the
decomposition result of Theorem 6.3.1 in order to reduce to the simpler matrix scaling
setting where we can apply the strongly convex analysis of Theorem 3.2.19.

First note that by Proposition 7.1.10, we have that A is α-p-strongly convex with

α ≥ s(A)(1− ε)− λ = 1− λ− ε ≥ ε(4 log d+ 20),

where the last step is by our assumption 1− λ ≥ ε(4 log d+ 21).

Now for any choice of orthonormal bases (Ξ,Ψ) for (Fd,Fn) respectively, let (TΞ,Ψ, TΞ,Ψ
+ , tΞ,Ψ)

be the commutative matrix scaling groups that are diagonal in the (Ξ,Ψ) bases according
to Definition 7.2.1. Explicitly, we have tΞ,Ψ+ = stΞ+(d)⊕ stΨ+(n) (see Section 2.2.2), and this
definition allows us to decompose

P = ∪Ξ,ΨT
Ξ,Ψ
+ , and p = ∪Ξ,Ψt

Ξ,Ψ

by Eq. (2.6) and Eq. (2.7) for each component.

As TΞ,Ψ ⊆ G, the ε-G-balance condition of A implies the ε-TΞ,Ψ-balance condition
according to Definition 6.2.4. Similarly, as tΞ,Ψ ⊆ p, α-p-strong convexity of A implies α-
tΞ,Ψ-strong convexity according to Definition 7.1.7. Therefore, each matrix representation
MΞ,Ψ := Ξ∗AΨ satisfies the balance and strong convexity conditions of Theorem 3.2.19,
which gives matrix scaling solution (XΞ,Ψ, YΞ,Ψ) ∈ t. By Proposition 3.1.10(3), this implies
that (XΞ,Ψ, YΞ,Ψ) is the global minimizer of the matrix Kempf-Ness function fMΞ,Ψ in
Definition 3.1.6. For (X, Y) ∈ t, we can rewrite this as

fMΞ,Ψ(X, Y) :=
K∑
k=1

‖eX/2MΞ,Ψ
k eY/2‖2

F =
K∑
k=1

‖(ΞeX/2Ξ∗)Ak(Ψe
Y/2Ψ∗)‖2

F = fPA (ΞeX/2Ξ∗,ΨeY/2Ψ∗),

where the first step was by Definition 3.1.6 of the matrix Kempf-Ness function, in the
second step we used invariance of ‖ · ‖F under isometries Ξ,Ψ, and the final step was by
Definition 6.2.9 of the Kempf-Ness function on domain P .

255

Therefore, fMΞ,Ψ is equivalent to the restriction of fPA to the subset TΞ,Ψ
+ ⊆ P , and

(ΞeX/2Ξ∗)Ak(Ψe
Y/2Ψ∗) ∈ TΞ,Ψ

+ is the global minimizer on this restriction. Since each
(XΞ,Ψ, YΞ,Ψ) is bounded, we can apply Theorem 6.3.1 to the decomposition P = ∪Ξ,ΨT

Ξ,Ψ

to find a global minimizer of fPA of the form (eX∗ , eY∗) ∈ ∪Ξ,Ψ(ΞeXΞ,ΨΞ∗,ΨeYΞ,ΨΨ∗), which
then implies that A∗ := eX∗/2AeY∗/2 is a doubly balanced operator by Proposition 6.2.18(3).
The bounds in items (1)-(3) are implied by the analogous bounds on the matrix scaling
solutions from Theorem 3.2.19 applied with α ≥ 1 − λ − ε & 1 − λ by the assumption
1− λ & ε log d.

To prove item (4), we first apply Lemma 7.3.11 to show that A∗ satisfies the λ′-p-spectral
condition with

λ′ − λ ≤ s(A)(1 + ε)
(

(1 + 2.5‖eX∗/2 − Id‖op)(1 + 2.5‖eY∗/2 − In‖op)− 1
)

≤ (1 + ε)
(

(1 + 2.5‖X∗‖op)(1 + 2.5‖Y∗‖op)− 1
)
. ‖X∗‖op + ‖Y∗‖op .

ε log d

1− λ
,

where the first step was by Lemma 7.3.11 applied to A, which is ε-doubly balanced and
satisfies the λ-p-spectral condition, along with scaling A∗ := eX∗/2AeY∗/2, and the final
steps used the assumption s(A) = 1 as well as the Taylor approximation |ez − 1| ≤ 2|z|
for |z| ≤ 1

2
applied to max{‖X∗‖op, ‖Y∗‖op} . ε log d

1−λ ≤
1
2

by item (2) and our assumption
1− λ ≥ ε(4 log d+ 21).

Finally, we apply Proposition 7.1.10 to show that A∗ is α∗-p-strongly convex with

α∗ ≥ s(A∗)− λ′ ≥ 1−O
(ε2

1− λ

)
− λ−O

(ε log d

1− λ

)
,

where we used Proposition 7.1.10 and the fact that A∗ is doubly balanced in the first step,
and in the second step we used the size lower bound s(A∗) ≥ 1−O(ε2

1−λ) given in item (3)
as well as the spectral upper bound on λ′ calculated above.

This should be compared with the proof of Theorem 1.5 in [63] which analyzed the
scaling solution using the more complicated non-commutative gradient flow described in
Definition 7.1.5. This required robustness of strong convexity in the non-commutative
setting, which meant that we were only able to prove existence of the operator scaling
solution with the stronger assumption (1 − λ)2 & ε log d. We improve this existence part
of the result by our reduction to matrix scaling. But as shown in Example 7.3.6, it is not
possible to show non-commutative multiplicative robustness of strong convexity, so our
result on the strong convexity of the operator scaling solution is identical to the one given
in [63] up to constants.

256

7.3.4 Strong Convexity for Tensors

In this subsection, we will show that strong convexity for non-commutative tensor scaling
is additively robust. We will follow the plan laid out in Section 7.3.3 by showing that
each term in the block decomposition in Eq. (7.4) does not change much for small scalings
g ≈ IV . For this subsection, we will fix vector space V = ⊗a∈[m]Va with dim(Va) = da for
each a ∈ [m] and G = (SL(V1), ..., SL(Vm)), as this is the only scaling group we use for our
algorithmic results in Chapter 9. The case of arbitrary scaling groups can be thought of
as a (subgroup) restriction of this group G, and the following proofs of robustness can be
extended straightforwardly.

We first rephrase Lemma 7.3.11 in the more general tensor scaling setting.

Lemma 7.3.13. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces and consider
scaling group G = (SL(V1), ..., SL(Vm)) along with polar (P, p) according to Definition 6.2.3.
For input x ∈ V K and pair a 6= b ∈ [m], if x′ := (gc ⊗ Ic) · x for c = a or c = b and
‖gc − Ic‖op ≤ 1

2
, then the scaling x′ satisfies

‖Φ(ab)
x′ − Φ(ab)

x ‖0 ≤ 2.5‖gc − Ic‖op‖Φ(ab)
x ‖F→F .

Consequently, for any Z ∈ spd(Va) and Y ∈ spd(Vb)

|〈ρ(ab)
x′ − ρ

(ab)
x , Z ⊗ Y 〉| ≤

(
2.5‖gc − Ic‖op

√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op

)
‖Z‖F‖Y ‖F .

Proof. Since the scaling gc ∈ Gc for c ∈ {a, b}, the first statement follows by Lemma 7.3.11

applied to the map Φ
(ab)
x . To show the second statement, we rewrite this in terms of the

marginals: for any Z ∈ spd(Va) and Y ∈ spd(Vb) with ‖Z‖F = ‖Y ‖F = 1 we have

|〈ρ(ab)
x′ − ρ

(ab)
x , Z ⊗ Y 〉| = |〈Z,Φ(ab)

x′ (Y)− Φ(ab)
x (Y)〉| ≤ ‖Φ(ab)

x′ − Φ(ab)
x ‖0

≤ 2.5‖gc − Ic‖op‖Φ(ab)
x ‖F→F ≤ 2.5‖gc − Ic‖op

√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op,

where the first step was by Proposition 2.4.5, the second was by Definition 7.3.7 of ‖ · ‖0

with the assumption ‖Z‖F = ‖Y ‖F = 1, the third step was by the first part of the lemma,
and the final step was by item (2) of Lemma 7.3.10.

Recall that for input x ∈ V K and Z ∈ p, Eq. (7.4) gives a decomposition

∂2
η=0f

P
x (eηZ) =

∑
a∈[m]

〈ρ(a)
x , Z2

a〉+
∑

a6=b∈[m]

〈ρ(ab)
x , Za ⊗ Zb〉.

257

Our plan is to consider the perturbation g · x as a composition of perturbations, {g1 ⊗
I1, ..., gm ⊗ Im, one for each part. We will show that each term in Eq. (7.4) changes only
a small amount for each part-wise perturbation. The above Lemma 7.3.13 allows us to
control the change in the ab-term by scaling ga ⊗ Ia or gb ⊗ Ib. But this bound contains
terms of the form ‖Φ(ab)

x′ ‖2
F→F ≤ ‖ρ

(a)
x′ ‖op‖ρ(b)

x′ ‖op, where x′ ∈ G · x come from the scalings

of x. In order to control these terms, we first show in Proposition 7.3.17 that ρ
(a)
x′ ≈ ρ

(a)
x

for small scalings x′ = g · x. We will then bound the change in two-body marginals ρ(ab)

which will allow us to control the off-diagonal terms in Proposition 7.3.19. The main result
in this subsection will be the following theorem.

Theorem 7.3.14. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces of dimen-
sion dim(Va) = da for each a ∈ [m], and consider scaling group G = (SL(V1), ..., SL(Vm))
along with polar (P, p) according to Definition 6.2.3. Consider tuple x ∈ V K of size
s(x) = 1 that is ε-G-balanced and α-p-strongly convex along with any g ∈ G such that
δ :=

∑
c∈[m] ‖gc − Ic‖op ≤ 1

20
. Then the scaling x′ := g · x is α′-p-strongly convex for

α′ ≥ α− (4 + 7.5(m− 1))δ · s(x)(1 + ε).

We begin by showing each one-body marginal ρ(a) does not change much under a single
scaling gc ⊗ Ic. We separate into two cases depending on whether c = a or c 6= a.

Lemma 7.3.15. For tensor product V = ⊗a∈[m]Va, consider tuple x ∈ V K and perturbation
ga ∈ Ga for a ∈ [m] such that ‖ga − Ia‖op ≤ 1

2
. Then scaling x′ := (ga ⊗ Ia) · x satisfies

‖ρ(a)
x′ − ρ

(a)
x ‖op ≤ 2.5‖ga − Ia‖op‖ρax‖op.

Proof. We first rewrite the marginal ρ
(a)
x′ as a perturbation of ρ

(a)
x :

ρ
(a)
x′ = gaρ

(a)
x g∗a = ρ(a)

x + (ga − Ia)ρ(a)
x + ρ(a)

x (ga − Ia)∗ + (ga − Ia)ρ(a)
x (ga − Ia)∗,

where we used the equivariance property in Lemma 6.2.6(2) for the S = {a} marginal.
This allows us to bound

‖ρ(a)
x′ − ρ

(a)
x ‖op ≤ ‖(ga − Ia)ρ(a)

x ‖op + ‖ρ(a)
x (ga − Ia)∗‖op + ‖(ga − Ia)ρ(a)

x (ga − Ia)∗‖op

≤ ‖ρ(a)
x ‖op(2‖ga − Ia‖op + ‖ga − Ia‖2

op) ≤ 2.5‖ga − Ia‖op‖ρ(a)
x ‖op,

where the first step was by the triangle inequality, the second step was by sub-multiplicativity
of ‖ · ‖op, and in the final step we used the assumption ‖ga − Ia‖op ≤ 1

2
.

The proof for perturbation gb with b 6= a is slightly more complicated, as we have to
expand out the marginals.

258

Lemma 7.3.16. For tensor product V = ⊗a∈[m]Va, consider tuple x ∈ V K and perturbation
gb ∈ Gb for b 6= a such that ‖gb − Ib‖op ≤ 1

10
. Then scaling x′ := (gb ⊗ Ib) · x satisfies

‖ρ(a)
x′ − ρ

(a)
x ‖op ≤ 2.5‖gb − Ib‖op‖ρ(a)

x ‖op.

Proof. By Eq. (2.5), we can rewrite the operator norm of the difference as ‖ρ(a)
x′ −ρ

(a)
x ‖op =

supξ∈Sda−1 |〈ξξ∗, ρ(a)
x′ − ρ

(a)
x 〉| since both ρ

(a)
x and ρ

(a)
x′ are Hermitian. To bound each such

inner product, we first rewrite ρ
(ab)
x′ as a perturbation of ρ

(ab)
x :

ρ
(ab)
x′ − ρ

(ab)
x = (gb ⊗ Ib)ρ(ab)

x (gb ⊗ Ib)∗ − ρ(ab)
x

= (Ia ⊗ (gb − Ib))ρ(ab)
x + ρ(ab)

x (Ia ⊗ (gb − Ib))∗ + (Ia ⊗ (gb − Ib))ρ(ab)
x (Ia ⊗ (gb − Ib))∗,

where we applied the equivariance property from Lemma 6.2.6(2) to ρ
(ab)
x .

Now for arbitrary ξ ∈ Sda−1, we can bound the inner product as

|〈ξξ∗, ρ(a)
x′ − ρ

(a)
x 〉| = 〈ξξ∗ ⊗ Ib, (Ia ⊗ gb)ρ(ab)

x (Ia ⊗ gb)∗ − ρ(ab)
x 〉

=
∣∣∣〈ξξ∗ ⊗ ((gb − Ib) + (gb − Ib)∗ + (gb − Ib)∗(gb − Ib)

)
, ρ(ab)

x

〉∣∣∣
≤ |〈ξξ∗ ⊗ Ib, ρ(ab)

x 〉|(2‖gb − Ib‖op + ‖gb − Ib‖2
op),

where the first step was by the equivariance property from Lemma 6.2.6(2), the second
step was shown above, and in the final step we used the fact that |gb− Ib| � ‖gb− Ib‖op · Ib
and ρ

(ab)
x � 0 so we can bound the inner product using this spectral upper bound. The

lemma follows as
|〈ξξ∗ ⊗ Ib, ρ(ab)

x 〉| = |〈ξξ∗, ρ(a)
x 〉| ≤ ‖ρ(a)

x ‖op,

where the first step was by Definition 6.2.2 of marginals, and the final step was by the fact
that ξ ∈ Sda−1 was arbitrary.

We can now combine the above lemmas to bound the diagonal term in Eq. (7.4).

Proposition 7.3.17. For tensor product V = ⊗a∈[m]Va, consider tuple x ∈ V K and per-
turbation g ∈ G = (SL(V1), ..., SL(Vm)) such that

∑
b∈[m] ‖gb − Ib‖op ≤ 1

10
. Then scaling

x′ := ⊗b∈[m]gb · x satisfies

∀Z ∈ H(Va) : |〈ρ(a)
x′ − ρ

(a)
x , Z2〉| ≤ 4‖ρ(a)

x ‖op‖Z‖2
F

∑
b∈[m]

‖gb − Ib‖op.

259

Proof. We treat the scaling as the composition of m perturbations

x0 := x, → x1 := (g1 ⊗ I1) · x0, → ...→ xm := (gm ⊗ Im) · xm−1 = x′.

For Hermitian Z ∈ H(Va) so that Z2 � 0, so we can bound

|〈ρ(a)
x′ − ρ

(a)
x , Z2〉| ≤

m∑
b=1

‖ρ(a)
xb
− ρ(a)

xb−1
‖op‖Z2‖1 ≤

m∑
b=1

2.5‖gb − Ib‖op‖ρ(a)
xb−1
‖op‖Z‖2

F , (7.12)

where the first step is by a telescoping sum and the triangle inequality for 〈X, Y 〉 ≤
‖X‖S1‖Y ‖S∞ as shown in Proposition 2.1.17, and in the final step we used Lemma 7.3.15
to bound the b = a term and Lemma 7.3.16 for the rest. It can further be shown that

‖ρ(a)
xb
‖op ≤ ‖ρ(a)

xb−1
‖op + ‖ρ(a)

xb
− ρ(a)

xb−1
‖op ≤ ‖ρ(a)

xb−1
‖op(1 + 2.5‖gb − Ib‖op),

where the first step was by the triangle inequality, and the final step was by the pertur-
bation bounds in Lemma 7.3.15 and Lemma 7.3.16. By induction, this implies ‖ρ(a)

xb ‖op ≤
‖ρ(a)

x ‖op

∏b
j=1(1 + 2.5‖gj − Ij‖op), so we can collect terms to show

|〈ρ(a)
x′ − ρ

(a)
x , Z2〉| ≤ ‖ρ(a)

x ‖op‖Z‖2
F

m∑
b=1

2.5‖gb − Ib‖op

b−1∏
j=1

(1 + 2.5‖gj − Ij‖op)

= ‖ρ(a)
x ‖op‖Z‖2

F

(
m∏
b=1

(1 + 2.5‖gb − Ib‖op)− 1

)

≤ ‖ρ(a)
x ‖op‖Z‖2

F

(
exp

(
2.5

m∑
b=1

‖gb − Ib‖op

)
− 1

)
≤ 4‖ρ(a)

x ‖op‖Z‖2
F

m∑
b=1

‖gb − Ib‖op,

where the first step was by Eq. (7.12) where we substituted ‖ρ(a)
xb−1‖op ≤ ‖ρ(a)

x ‖op

∏b−1
j=1(1 +

2.5‖gj−Ij‖op), the second step was by the formula 1+
∑m

i=1 ai
∏

j<i(1+aj) =
∏m

i=1(1+ai)
which can be shown by a simple induction, in the third step we used the bound 1+x ≤ ex,
and the final step was by Taylor approximation ex ≤ 1+ 3

2
x for 0 ≤ x ≤ 1

4
which is satisfied

by our assumption
∑

b∈[m] ‖gb − Ib‖op ≤ 1
10

.

Recall that in Lemma 7.3.13, we bounded the difference ρ
(ab)
x′ − ρ

(ab)
x when the scaling

was on one of the parts a or b. In the next lemma, we will show a similar perturbation
bound when the scaling acts on another part c 6∈ {a, b}. This will allow us to bound the
change in the off-diagonal term in Proposition 7.3.19.

260

Lemma 7.3.18. For tensor product V = ⊗a∈[m]Va, consider tuple x ∈ V K, fixed a, b, c ∈
[m] all distinct, and perturbation gc ∈ Mat(dc) such that ‖gc − Ic‖op ≤ 1

2
. Then scaling

x′ := (gc ⊗ Ic) · x satisfies, for any Z ∈ H(Va), Y ∈ H(Vb):

|〈ρ(ab)
x′ − ρ

(ab)
x , Z ⊗ Y 〉| ≤

(
5‖gc − Ic‖op

√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op

)
‖Z‖F‖Y ‖F .

Proof. We first rewrite ρ
(abc)
x′ = (Iab ⊗ gc)ρ(abc)

x (Iab ⊗ gc)∗ as a perturbation of ρ
(abc)
x :

ρ
(abc)
x′ = ρ(abc)

x +(Iab⊗(gc−Ic))ρ(abc)
x +ρ(abc)

x (Iab⊗(gc−Ic))∗+(Iab⊗(gc−Ic))ρ(abc)
x (Iab⊗(gc−Ic))∗.

To bound the inner product in the lemma, we first consider Z ∈ H(Va), Y ∈ H(Vb) such
that Z � 0 and Y � 0:

〈ρ(ab)
x′ − ρ

(ab)
x , Z ⊗ Y 〉 = 〈(Iab ⊗ gc)ρ(abc)

x (Iab ⊗ gc)∗ − ρ(abc)
x , Z ⊗ Y ⊗ Ic〉

=

〈
ρ(abc)
x , Z ⊗ Y ⊗

(
(gc − Ic) + (gc − Ic)∗ + (gc − Ic)∗(gc − Ic)

)〉
≤ 〈ρ(abc)

x , Z ⊗ Y ⊗ Ic〉(2‖gc − Ic‖op + ‖gc − Ic‖2
op)

≤ ‖Φ(ab)
x ‖F→F‖Z‖F‖Y ‖F · 2.5‖gc − Ic‖op,

where the first step was by the equivariance property in Lemma 6.2.6(2) for marginal
S = {a, b, c}, the second step was by the decomposition above, in the third step we used

the fact that ρ
(abc)
x as well as Z, Y are positive semi-definite so we can apply spectral

upper bounds |gc − Ic| � ‖gc − Ic‖opIc to bound the inner product, and the final step

was by Definition 6.2.2 of the marginal ρ
(ab)
x , the relation 〈ρ(ab)

x , Z ⊗ Y 〉 = 〈Z,Φ(ab)
x (Y)〉

byProposition 2.4.5, and Definition 7.3.7 for the F → F norm.

Now consider arbitrary Z ∈ H(da), Y ∈ H(db) with decomposition Z = Z+ − Z− and
Y = Y+ − Y− where Y±, Z± � 0. Then

|〈ρ(ab)
x′ − ρ

(ab)
x , Z ⊗ Y 〉| = |〈ρ(ab)

x′ − ρ
(ab)
x , (Z+ − Z−)⊗ (Y+ − Y−)〉|

≤ 2.5‖gc − Ic‖op‖Φ(ab)
x ‖F→F (‖Z+‖F + ‖Z−‖F)(‖Y+‖F + ‖Y−‖F)

≤ 5‖gc − Ic‖op‖Φ(ab)
x ‖F→F‖Z‖F‖Y ‖F ,

where the second step was by the bounds derived above for Z±, Y± � 0, and the final step
was because

(‖Z+‖F + ‖Z−‖F)2 ≤ 2(‖Z+‖2
F + ‖Z−‖2

F) = 2‖Z‖2
F ,

by Cauchy-Schwarz and the fact that the decomposition Z = Z+ − Z− into positive and
negative parts is orthogonal for Hermitian Z. The same calculation holds for Y = Y+−Y−.

The lemma then follows as ‖Φ(ab)
x ‖F→F ≤

√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op by Lemma 7.3.10(2).

261

At this point, we can collect the above bounds to show that the off-diagonal term does
not change much under scaling. We will follow a similar inductive strategy as in the proof
of Proposition 7.3.17.

Proposition 7.3.19. For tensor product V = ⊗a∈[m]Va, consider tuple x ∈ V K, fixed
a, b ∈ [m], and perturbation g ∈ G such that δ :=

∑
c∈[m] ‖gc − Ic‖op ≤ 1

20
. For scaling

x′ := g · x and any Z ∈ spd(Va), Y ∈ spd(Vb):

|〈ρ(ab)
x′ − ρ

(ab)
x , Z ⊗ Y 〉| ≤

(
7.5δ

√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op

)
‖Z‖F‖Y ‖F .

As a consequence, if x is ε-G-balanced and satisfies the λ-pab-spectral condition, then scaling
x′ satisfies the λ′-pab-spectral condition with

λ′ ≤ λ+ 7.5δ · s(x)(1 + ε).

Proof. We treat the perturbation as the composition of m perturbations

x0 := x, → x1 := (g1 ⊗ I1) · x0, → ...→ xm := (gm ⊗ Im) · xm−1 = x′.

To show the first statement, for arbitrary Z ∈ spd(da), Y ∈ spd(db), we bound

|〈ρ(ab)
x′ − ρ

(ab)
x , Z ⊗ Y 〉| ≤

m∑
c=1

|〈ρ(ab)
xc − ρ

(ab)
xc−1

, Z ⊗ Y 〉| (7.13)

≤
m∑
c=1

5‖gc − Ic‖op

√
‖ρ(a)

xc−1‖op‖ρ(b)
xc−1‖op‖Z‖F‖Y ‖F (7.14)

where the first step is by the triangle inequality applied to the telescoping sum, and in the
second step we apply Lemma 7.3.13 for c ∈ {a, b} and Lemma 7.3.18 for the rest. It can
further be shown that

‖ρ(a)
xc ‖op ≤ ‖ρ(a)

xc−1
‖op + ‖ρ(a)

xc − ρ
(a)
xc−1
‖op ≤ ‖ρ(a)

xc−1
‖op(1 + 2.5‖gc − Ic‖op),

where the first step was by the triangle inequality, and the final step was by the perturba-
tion bounds in Lemma 7.3.15 and Lemma 7.3.16. This implies ‖ρ(a)

xc ‖op ≤ ‖ρ(a)
x ‖op

∏c
j=1(1+

2.5‖gj − Ij‖op), and same for ‖ρ(b)
xc ‖op. Therefore, we can substitute this bound into

262

Eq. (7.13) to show

|〈ρ(ab)
x′ − ρ

(ab)
x , Z ⊗ Y 〉| ≤ ‖Z‖F‖Y ‖F

m∑
c=1

5‖gc − Ic‖op

√
‖ρ(a)

xc−1‖op‖ρ(b)
xc−1‖op

≤
√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op‖Z‖F‖Y ‖F

m∑
c=1

5‖gc − Ic‖op

c−1∏
j=1

(1 + 5‖gj − Ij‖op)

=

√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op‖Z‖F‖Y ‖F

(
m∏
c=1

(1 + 5‖gc − Ic‖op)− 1

)

≤ 7.5

√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op‖Z‖F‖Y ‖F

m∑
c=1

‖gc − Ic‖op,

where the first two steps were shown above, the third step was by the formula 1 +∑m
i=1 ai

∏
j<i(1 + aj) =

∏m
i=1(1 + ai) which can be shown by a simple induction, in the

fourth step we used the bound 1 + x ≤ ex, and the final step was by Taylor approximation
ex ≤ 1+ 3

2
x for 0 ≤ x ≤ 1

4
which is satisfied by our assumption δ =

∑
c∈[m] ‖gc−Ic‖op ≤ 1

15
.

To show the second statement in the proposition, we recall Definition 7.1.9 showing
that the λ′-pab-spectral condition is equivalent to

sup
Z∈spd(Va),Y ∈spd(Vb)

〈ρ(ab)
x′ , Z ⊗ Y 〉
‖Z‖F‖Y ‖F

≤ λ′√
dadb

.

Therefore the statement follows as

〈ρ(ab)
x′ , Z ⊗ Y 〉
‖Z‖F‖Y ‖F

≤ |〈ρ
(ab)
x , Z ⊗ Y 〉|
‖Z‖F‖Y ‖F

+
|〈ρ(ab)

x′ − ρ
(ab)
x , Z ⊗ Y 〉|

‖Z‖F‖Y ‖F

≤ λ√
dadb

+ 7.5δ ·
√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op ≤

λ+ 7.5δ · s(x)(1 + ε)√
dadb

,

where in the second step we bounded the first term by the fact that x satisfies the λ-
spectral condition and the second term by the bound on the difference ρ

(ab)
x′ −ρ

(ab)
x in terms

of δ :=
∑

c∈[m] ‖gc−Ic‖op derived above, and in the last step we used da‖ρ(a)
x ‖op ≤ s(x)(1+ε)

for every a ∈ [m] by the ε-G-balance condition.

Finally, we can combine the bounds on each individual term to show robustness of
strong convexity.

263

Proof of Theorem 7.3.14. We follow the plan outlined above by bounding the difference of
each term in the decomposition in Eq. (7.4):∣∣∣∣〈ρx′ − ρx,(∑

a∈[m]

Za ⊗ Ia
)2
〉∣∣∣∣ ≤ ∑

a∈[m]

|〈ρ(a)
x′ − ρ

(a)
x , Z2

a〉|+
∑

a6=b∈[m]

|〈ρ(ab)
x′ − ρ

(ab)
x , Za ⊗ Zb〉|

≤ 4δ
∑
a∈[m]

‖ρ(a)
x ‖op‖Za‖2

F + 7.5δ
∑

a6=b∈[m]

√
‖ρ(a)

x ‖op‖ρ(b)
x ‖op‖Za‖F‖Zb‖F

≤ s(x)(1 + ε) · δ

4
∑
a∈[m]

‖Za‖2
F

da
+ 7.5

∑
a6=b

‖Za‖F‖Zb‖F√
dadb


≤ s(x)(1 + ε)δ · (4 + 7.5(m− 1))‖Z‖2

p,

where the first step was by the decomposition in Eq. (7.4), in the second step we bounded
the diagonal terms by Proposition 7.3.17 and the off-diagonal terms by Proposition 7.3.19,
in the third step we used the bound da‖ρ(a)

x ‖op ≤ s(x)(1 + ε) for every a ∈ [m] by the
ε-G-balance condition, and the final step was by the bound

∑
a6=b

‖Za‖F‖Zb‖F√
dadb

=

∑
a∈[m]

‖Za‖F√
da

2

−

∑
a∈[m]

‖Za‖2
F

da

 ≤ m

∑
a∈[m]

‖Za‖2
F

da

−
∑
a∈[m]

‖Za‖2
F

da


by Cauchy-Schwarz, which exactly matches (m− 1)‖Z‖2

p by Definition 7.1.2.

Combining this with the initial strong convexity of x, for arbitrary Z ∈ p, we get

∂2
η=0f

P
x′ (e

ηZ) = 〈ρx′ , Z2〉 ≥ 〈ρx, Z2〉 − |〈ρx′ − ρx, Z2〉|

≥
(
α− (4 + 7.5(m− 1))δ · s(x)(1 + ε)

)
‖Z‖2

p,

where the first step was by Eq. (6.3), and in the final step we lower bounded the first term
by α-strong convexity of x and upper bounded the difference by the calculation above.
Since Z ∈ p was arbitrary, this verifies Definition 7.1.7 of strong convexity for x′.

Remark 7.3.20. Surprisingly, all of the proofs in Section 7.3.3 and Section 7.3.4 go
through just as well for Schatten norms Sp → Sp operator norm bound instead of F → F .
This suggests that such a robustness theorem may be useful for future analyses of tensor
scaling using different forms of the spectral condition.

264

This robustness result will be key to our algorithmic guarantees in Chapter 8, as we will
be able to show a strongly convex region around the optimizer p∗ ∈ P of the Kempf-Ness
function fPx for sufficiently strongly convex input x.

As an illustration, we combine the robustness result shown above with the convergence
analysis of strongly convex inputs Theorem 7.2.16 to show that the tensor scaling solution
is also strongly convex. This will be helpful in Chapter 9 to show algorithmic guarantees
for the tensor normal model, as our convergence analysis of the Flip-Flop algorithm in
Theorem 8.4.8 relies on strong convexity of the optimizer.

Theorem 7.3.21. For m ≥ 3, let V = ⊗a∈[m]Va be a tensor product of inner product
spaces with dim(Va) = da for each a ∈ [m] with scaling group (G,P, p) according to Def-
inition 6.2.3. If input x ∈ V K of size s(x) = 1 is ε-G-balanced and α-p-strongly convex

according to Definition 7.1.7 with α2
√
e
≥ 30m2 · ε

√
mdmax

1−α/
√
e

m , then there is a scaling

x∗ = p
1/2
∗ · x = eZ∗/2 · x that satisfies:

1. x∗ is a G-balanced tensor;

2. ‖Z∗‖p ≤ ε
√
m

α/
√
e

and ‖Z(a)
∗ ‖op ≤ 3ε

√
mda

1−α/
√
e

m

2α/
√
e

for each a ∈ [m];

3. The size is lower bounded by s(x∗) ≥ 1− mε2

2α/
√
e
;

4. x∗ is α∗ ≥ α√
e
-p-strongly convex.

Proof. Note that the condition is stronger than that of Theorem 7.2.16 as α ≤ s(x) = 1

by Proposition A.5.2, so α√
e
≥ α2
√
e
≥ 6m · ε

√
mdmax

1−α/
√
e

m . Therefore, the first three items
follow exactly from the conclusions of Theorem 7.2.16.

To show item (4), we show that x∗ = eZ∗/2 · x is a small perturbation of x so that we
can apply the robustness result of Theorem 7.3.14. We first bound the operator norm of
the scaling eZ∗/2 as

δ :=
∑
a∈[m]

‖eZ
(a)
∗ /2 − Ia‖op ≤

∑
a∈[m]

‖Z(a)
∗ ‖op ≤ m · 3ε

√
mdmax

1−α/
√
e

m

2α/
√
e

≤ α

20m
,

where the second step was by Taylor approximation |ez − 1| ≤ 2|z| for |z| ≤ 1
2
, in the

third step we used the bound on ‖Z(a)
∗ ‖op given in item (2), and the final step was by the

265

assumption α2
√
e
≥ 30m2 ·ε

√
mdmax

1−α/
√
e

m . By Theorem 7.3.14, this implies that x∗ = eZ∗/2 ·x
is α∗-p-strongly convex with

α∗ ≥ α− (4 + 7.5(m− 1))δ · s(x)(1 + ε) ≥ α− 8m · δ ≥ α√
e
,

where the first step was by the robustness result of Theorem 7.3.14 applied to α-p-strongly
convex input x, in the second step we used the fact that s(x) = 1 and ε ≤ 1

m2 , and in the
final step we substituted in the bound δ ≤ α

20m
calculated above.

7.4 Relation between Strong Convexity and Pseudo-

randomness

In this section, we will prove that the pseudorandom condition in Definition 7.2.17 for pa←b
and pb←a implies the spectral condition for pab. At the end of this section, we use this to
show that an input satisfying the pseudorandom assumptions of Theorem 7.2.26 produces
a tensor scaling solution which is strongly convex, which will be useful for our algorithmic
results for the tensor normal model in Chapter 9.

Once again, we will fix vector space V = ⊗a∈[m]Va with dim(Va) = da for each a ∈ [m]
and G = (SL(V1), ..., SL(Vm)), as this is the only scaling group we use in Chapter 9. The
case of arbitrary scaling groups can be thought of as a (subgroup) restriction of this group
G, and the following proofs can be extended straightforwardly.

Our main tool will be the following interpolation inequality for Schatten norms which
we repeat from the preliminaries.

Theorem 7.4.1 (Corollary 3.1 of [61]). Let Φ : H(m) → H(n) or Φ : S(m) → S(n) be a
linear operator between two spaces of self-adjoint operators such that, for given p, q ∈ [1,∞],
the operator norms induced by the Schatten norms (Definition 2.1.16) ‖Φ‖p→p, ‖Φ‖q→q are
bounded. For any θ ∈ [0, 1] and pθ defined by 1

pθ
:= 1−θ

p
+ θ

q
, Φ satisfies

‖Φ‖pθ→pθ ≤ ‖Φ‖1−θ
p→p‖Φ‖θq→q.

We suspect that there is a more direct way to relate pseudorandomness and strong
convexity. We take this slightly more convoluted route because the interpolation technique
gives a family of bounds on a given pseudorandom input (parametrized by the Schatten-
p-norm) which we believe could be useful for future analyses of tensor scaling.

266

Our plan is to view both the spectral and pseudorandom conditions as particular in-
duced norms of the map Φx associated to a tensor x according to Proposition 2.4.5, and
then use Theorem 7.4.1 to interpolate between them. The operator we consider is defined
as follows.

Definition 7.4.2. For tensor product V = ⊗a∈[m]Va of inner product spaces of dimension
dim(Va) = da for each a ∈ [m], let QI⊥a

: H(Va)→ H(Va) be the orthogonal projection onto
the subspace orthogonal to Ia. For input x ∈ V K and fixed a 6= b ∈ [m], the off-diagonal

operator Ma←b
x : H(Vb) → H(Va) is defined as Ma←b

x := QI⊥a
◦ Φ

(ab)
x ◦ QI⊥b

. Note that for

Z ∈ H(Va) and Y ∈ H(Vb),

〈Z,Ma←b
x (Y)〉 = 〈QI⊥a

(Z),Φ(ab)
x (QI⊥b

(Y))〉 = 〈Φ(ba)
x (QI⊥a

(Z)), QI⊥b
(Y)〉 = 〈M b←a

x (Z), Y 〉,

i.e. Ma←b
x and M b←a

x are adjoint linear maps (see Section 2.1.2).

The off-diagonal operator defined above can be thought of as the map Φ(ab) restricted
to the traceless subspaces spd(Va) ⊆ H(Va) and spd(Vb) ⊆ H(Vb) given in Definition 2.1.10.
Therefore we expect its norm to be related to the spectral condition. This is formalized
below.

Lemma 7.4.3. Let V = ⊗a∈[m]Va with scaling group G = (SL(V1), ..., SL(Vm)) and associ-
ated polar and infinitesimal vector space (P, p) according to Definition 6.2.3. Then input
x ∈ V K satisfies the λ-pab-spectral condition according to Definition 7.1.9 iff

‖Ma←b
x ‖F→F = ‖M b←a

x ‖F→F ≤
λ√
dadb

.

Proof. The equality holds because adjoints (Ma←b
x)∗ = M b←a

x are adjoints and therefore
have the same induced operator norm, which is the F → F norm by Proposition 7.3.9(1).

We will show ‖Ma←b
x ‖F→F = ‖Φ(ab)

x ‖0 from which the inequality follows by Lemma 7.3.10(1).
By Definition 7.3.7 of the F → F norm, we can rewrite

‖Ma←b
x ‖F→F = sup

Z∈H(Va),Y ∈H(Vb)

〈Z,Ma←b
x (Y)〉

‖Z‖F‖Y ‖F
= sup

Z∈H(Va),Y ∈H(Vb)

〈QI⊥a
(Z),Φ

(ab)
x (QI⊥b

(Y))〉
‖Z‖F‖Y ‖F

,

where in the last step we substituted Definition 7.4.2 of the off diagonal operator. We
have QI⊥a

(Z) = Z for Z ∈ spd(Va), and similarly QI⊥b
(Y) = Y for Y ∈ spd(Vb). Since

spd(Va) ⊆ H(Va), we have ‖Ma←b
x ‖F→F ≥ ‖Φ(ab)

x ‖0.

267

To show the reverse inequality, we write

‖Ma←b
x ‖F→F = sup

Z∈H(Va),Y ∈H(Vb)

〈QI⊥a
(Z),Φ

(ab)
x (QI⊥b

(Y))〉
‖Z‖F‖Y ‖F

= sup
Z′∈spd(Va),Q

I⊥a
(Z)=Z′;

sup
Y ′∈spd(Vb),QI⊥

b
(Y)=Y ′;

〈Z ′,Φ(ab)
x (Y ′)〉

‖Z‖F‖Y ‖F

≤ sup
Z′∈spd(Va),Y ′∈spd(Vb)

〈Z ′,Φ(ab)
x (Y ′)〉

‖Z ′‖F‖Y ′‖F
= ‖Φ(ab)

x ‖0,

where the second step was by the change of variable QI⊥a
(Z) = Z ′ and QI⊥b

(Y) = Y ′, in

the third step we bounded ‖Z ′‖F = ‖QI⊥a
(Z)‖F ≤ ‖Z‖F as Q⊥Ia is an orthogonal projection

and similarly ‖Y ′‖F ≤ ‖Y ‖F , and the final step was by Definition 7.3.7 of ‖ ·‖0. Therefore,

we have ‖Ma←b
x ‖F→F = ‖Φ(ab)

x ‖0, and the inequality follows by Lemma 7.3.10(1) for x
satisfying the λ-pab-spectral condition.

Next we will define a condition related to pseudorandomness that looks more like an
induced norm. In the subsequent lemma, we make this connection formal.

Definition 7.4.4. x ∈ V K is a λ-(pa←b,∞)-expander if

sup
Z∈spd(Vb)

‖Φ(ab)
x (Z)‖op

‖Z‖op

= sup
ξ∈Sa

sup
Z∈spd(Vb)

|〈ξξ∗,Φ(ab)
x (Z)〉|

‖Z‖op

= sup
ξ∈Sa

sup
Z∈spd(Vb)

|〈ρ(ab)
x , ξξ∗ ⊗ Z〉|
‖Z‖op

≤ λ

da
.

It is a λ-(p,∞)-expander if the above holds for every a 6= b ∈ [m].

We could drop the absolute value in the definition as the optimizer can be assumed to
be positive by switching signs. Note that just like Definition 7.2.17, this condition is not
symmetric, i.e. (pa←b,∞)-expansion differs from (pb←a,∞)-expansion.

Looking back at Lemma 7.2.19, we can see that this lemma is really showing a bound
on this (pa←b,∞)-expansion condition when the input is pseudorandom. Further, as we
discussed in Section 7.2.3, this was the main consequence of pseudorandomness that we
use in our analysis to show fast convergence. In the following lemma, we show that this
property is equivalent to pseudorandomness for nearly balanced tensors (up to ε factors).

Lemma 7.4.5. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with dimen-
sion dim(Va) = da for each a ∈ [m], and consider scaling group G = (SL(V1), ..., SL(Vm))

268

along with polar (P, p) according to Definition 6.2.3. If x ∈ V K is ε-G-balanced (Defini-
tion 6.2.4) and satisfies the γ-pa←b-pseudorandom condition according to Definition 7.2.17,
then x is a λ-(pa←b,∞)-expander according to Definition 7.4.4 with λ ≤ s(x)(1 + ε)− e−γ.

Conversely, if x is ε-G-balanced and a λ-(pa←b,∞)-expander, then it satisfies the γ-
pa←b-pseudorandom condition for e−γ ≥ s(x)(1− ε)− λ.

Proof. To show the first direction, consider fixed ξ ∈ Sa and note

sup
Zb∈spd(Vb)

〈ρ(ab)
x , ξξ∗ ⊗ Zb〉
‖Zb‖op

= sup
P∈Pb
〈ρ(ab)
x , ξξ∗ ⊗ (Ib − 2P)〉 ≤ s(x)(1 + ε)− e−γ

da
,

where the first step was by Fact 2.6.4 which characterizes the vertices of {Z ∈ spd(Vb) |
‖Z‖op ≤ 1} along with the bound ‖Ib−2P‖op = 1 for P ∈ Pb, and in the final step we used

〈ρ(ab)
x , ξξ∗ ⊗ Ib〉 = 〈ρ(a)

x , ξξ∗〉 by Definition 6.2.2 of marginals as well as the ε-G-balance
condition to upper bound the first term, and Definition 7.2.17 of pseudorandomness to
lower bound the second term. Since ξ ∈ Sa was arbitrary, this verifies Definition 7.4.4 of
(pa←b,∞)-expansion.

To show the reverse direction, consider arbitrary ξ ∈ Sa and note that the λ-(pa←b,∞)-
expansion condition gives a bound

λ

da
≥ sup

Z∈spd(Vb)

〈ρ(ab)
x , ξξ∗ ⊗ Z〉
‖Z‖op

= sup
P∈Pb
〈ρ(ab)
x , ξξ∗ ⊗ (Ib − 2P)〉

= 〈ρ(a)
x , ξξ∗〉 − 2 inf

P∈Pb
〈ρ(ab)
x , ξξ∗ ⊗ P 〉,

where the first step was by Definition 7.4.4 of the∞-expansion condition, in the second step
we used Fact 2.6.4 which characterizes the vertices of {Z ∈ spd(Vb) | ‖Z‖op ≤ 1} in terms
of P ∈ Pb, and in the final step we used Definition 6.2.2 of marginals. Finally, we can use
the fact that s(x) = 1 and x is ε-G-balanced in order to bound da〈ρ(a)

x , ξξ∗〉 ≥ s(x)(1− ε)
for arbitrary ξ ∈ Sa. So in total we can rearrange to show

inf
ξ∈Sa

inf
P∈Pb
〈ρ(ab)
x , ξξ∗ ⊗ P 〉 ≥ s(x)(1− ε)− λ

2da
,

which verifies Definition 7.2.17 of pseudorandomness.

Finally, we can connect this expansion condition to the off-diagonal operator in Def-
inition 7.4.2. This will allow us to use interpolation to bound the spectral condition in
Definition 7.1.9 in terms of the ∞-expansion condition.

269

Lemma 7.4.6. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces of dimension
dim(Va) = da for each a ∈ [m], and consider scaling group G = (SL(V1), ..., SL(Vm))
with polar (P, p) according to Definition 6.2.3. If input x ∈ V K satisfies the λ-(pa←b,∞)-
expansion condition, then

‖Ma←b
x ‖op→op = ‖M b←a

x ‖1→1 ≤ 4
λ

da
,

where ‖ · ‖1 denotes the Schatten-1-norm according to Definition 2.1.16 and Ma←b
x is the

off-diagonal operator given in Definition 7.4.2.

Proof. The equality follows since Ma←b
x ,M b←a

x are adjoints so

‖Ma←b
x ‖op→op = sup

Y ∈L(Vb)

‖Ma←b
x (Y)‖op

‖Y ‖op

= sup
Y ∈L(Vb)

sup
Z∈L(Va)

〈Z,Ma←b
x (Y)〉

‖Z‖1‖Y ‖op

= sup
Z∈L(Va)

sup
Y ∈L(Vb)

〈M b←a
x (Z), Y 〉
‖Z‖1‖Y ‖op

= sup
Z∈L(Va)

‖M b←a
x (Z)‖1

‖Z‖1

= ‖M b←a
x ‖1→1,

where in the first and last steps we considered the operator norms induced by the Schatten-
∞-norm and Schatten-1-norm respectively, the second and fourth step was by the dual
characterization of Proposition 2.1.17, and the third step was by the observation in Def-
inition 7.4.2 showing Ma←b

x ,M b←a
x are adjoints. To show the inequality, we will use the

following claim.

Claim 7.4.7. For any a ∈ [m], ‖QI⊥a
‖op→op ≤ 2.

Proof. Note that for any Z ∈ L(Va) we have QI⊥a
(Z) = Z − 〈Z, Ia〉 Iada . Therefore

‖QI⊥a
Z‖op ≤ ‖Z‖op +

|〈Z, Ia〉|
da

‖Ia‖op ≤ ‖Z‖op +
‖Z‖op‖Ia‖1

da
= 2‖Z‖op,

where the first step was by triangle inequality, and in the second step we used Proposi-
tion 2.1.17 for |〈Z, Ia〉| ≤ ‖Z‖op‖Ia‖1.

Now we compute the induced norm

‖Ma←b
x ‖op→op = sup

Y ∈H(Vb)

‖Ma←b
x (Y)‖op

‖Y ‖op

= sup
Y ∈H(Vb)

‖QI⊥a
◦ Φ

(ab)
x ◦QI⊥b

(Y)‖op

‖Y ‖op

≤ ‖QI⊥a
‖op→op‖QI⊥b

‖op→op sup
Y ′∈spd(Vb)

‖Φ(ab)
x (Y ′)‖op

‖Y ′‖op

≤ 4λ

da
,

270

where the first step is by definition of ‖·‖op→op, in the second step we unravel Definition 7.4.2
of Ma←b

x , in the third step we perform a change of variable Y ′ := QI⊥b
(Y), and in the final

step we use the the claim to bound ‖QI⊥a
‖op→op ≤ 2 and ‖QI⊥b

‖op→op ≤ 2 as well as
Definition 7.4.4 of the ∞-expansion condition to bound the supremum.

Putting these together, we can interpolate between induced norms to show that the∞-
expansion condition in Definition 7.4.4 implies the spectral condition in Definition 7.1.9.

Theorem 7.4.8. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces of dimen-
sion dim(Va) = da for each a ∈ [m], and consider scaling group G = (SL(V1), ..., SL(Vm))
with polar (P, p) according to Definition 6.2.3. If input x ∈ V K is a λ-(pa→b,∞)-expander
and a λ-(pb→a,∞)-expander, then x satisfies the 4λ-pab-spectral condition.

Proof. We will apply the interpolation result of Theorem 7.4.1 to the operator Ma←b
x :=

QI⊥a
◦ Φ

(ab)
x ◦QI⊥b

. By Lemma 7.4.6 we can bound

‖Ma←b
x ‖op→op ≤

4λ

da
and ‖Ma←b

x ‖1→1 ≤
4λ

db
,

where the first and second inequalities follow from (pa←b,∞)-expansion and (pb←a,∞)-
expansion respectively. Recalling that ‖·‖op is the Schatten-∞-norm, ‖·‖F is the Schatten-
2-norm, and we have used ‖·‖1 to denote the Schatten-1-norm, we can apply Theorem 7.4.1

with p =∞, q = 1 and θ = 1
2

so that pθ = (1/2
p

+ 1/2
2q

)−1 = (0 + 1
2
)−1 = 2 to bound

‖Φ(ab)
x ‖0 = ‖Ma←b

x ‖F→F ≤
√
‖Ma←b

x ‖op→op‖Ma←b
x ‖1→1 ≤

4λ√
dadb

,

where the first step was shown in the proof of Lemma 7.4.3. The theorem follows by item
(1) of Lemma 7.3.10 as this verifies Definition 7.1.9 of the spectral condition.

Remark 7.4.9. This interpolation technique in fact gives the following family of inequal-
ities by choosing θ = 1

p
for p ∈ [1,∞] so that pθ = ((p−1)/p

∞ + 1/p
1

)−1 = p:

‖Ma←b
x ‖p→p ≤ ‖Ma←b

x ‖1−1/p
op→op‖Ma←b

x ‖1/p
1→1 ≤

4λ

da

(
da
db

)1/p

,

where Ma←b
x is the off-diagonal operator given in Definition 7.4.2, p→ p denotes the norm

on Ma←b
x induced by the Schatten p-norm according to Definition 2.1.16, and q = p−1

p
is

the conjugate exponent.

We believe this result is of independent interests and suggests future strategies to analyze
tensor scaling using these different expansion conditions on ‖Ma←b

x ‖p→p.

271

We can now collect all these results to show that pseudorandomness implies strong
convexity of tensors.

Proposition 7.4.10. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces with
scaling group (G,P, p) according to Definition 6.2.3. If input x ∈ V K is ε-G-balanced and
γ-p-pseudorandom, then x is α-p-strongly convex for

α ≥ s(x)(1− ε)− 4(m− 1)(s(x)(1− ε)− e−γ).

Proof. We focus on the case G = (SL(d1), ..., SL(dm)), as the statement for other scaling
groups follow by restricting to the appropriate diagonal entries. Our plan is to use following
chain of implications: pseudorandomness =⇒ ∞-expansion =⇒ spectral condition =⇒
strong convexity.

Now we carry out this plan quantitatively. First, since x is ε-G-balanced according to
Definition 6.2.4 and γ-p-pseudorandom according to Definition 7.2.17, Lemma 7.4.5 shows
that x satisfies the λ-(p,∞)-expansion condition for λ ≤ s(x)(1 − ε) − e−γ. Next, we
can use Theorem 7.4.8 to show that this implies the 4λ-p-spectral condition according to
Definition 7.1.9. Finally, we use Proposition 7.1.10 to show x is α-p-strongly convex with

α ≥ s(x)(1− ε)− (m− 1)(4λ) ≥ s(x)(1− ε)− 4(m− 1)(s(x)(1− ε)− e−γ),

where the first step was by Proposition 7.1.10 applied to ε-G-balanced input x satisfying
the 4λ-p-spectral condition, and the final step was by the bound λ ≤ s(x)(1 − ε) − e−γ

derived above.

Before we move on to showing how we can apply Proposition 7.4.10 to analyze tensor
scaling, we compare it to the matrix result in Section 3.4.

For illustration, consider matrix scaling with doubly balanced input A ∈ Mat(d, n)
with s(A) = 1. This is equivalent to vec(A) ∈ Fd ⊗ Fn that is T -balanced for scal-
ing group T = (ST(d), ST(n)) and polar t = tL ⊕ tR = st+(d) ⊕ st+(n). Note that
both Theorem 3.4.7 and Proposition 7.4.10 use pseudorandomness to show strong con-
vexity, though the proof of Theorem 3.4.7 is much more direct. Let compare the condi-
tions required to show Ω(1)-strong convexity of A: Theorem 3.4.7 requires A to be an
(Ω(1), 1

16
)-pseudorandom matrix according to Definition 3.3.1, whereas Proposition 7.4.10

requires A to be O(1)-t-pseudorandom according to Definition 7.2.17. As discussed in
Section 7.2.3, the (Ω(1), 1

16
)-pseudorandom matrix is strictly stronger than the (Ω(1), 1

2
)-

pseudorandom matrix condition, which is equivalent to O(1)-tL←R-pseudorandomness. On

272

the other hand, t-pseudorandomness is really equivalent to simultaneous tL←R and tR←L-
pseudorandomness. Therefore, the two conditions are incomparable. Theorem 3.4.7 was
especially useful for our application to the Paulsen problem, as n � d in that setting so
it was easier to show pseudorandomness of one side. We can also compare the conclu-
sions of the two theorems: Theorem 3.4.7 shows that (e−γ, 1

16
)-pseudorandomness implies

(e−11 · e−γ)-strong convexity when γ & 1 is a large enough constant, whereas Proposi-
tion 7.4.10 shows that γ-t-pseudorandomness implies α-strong convexity for

α ≥ s(A)− 4(2− 1)(s(A)− e−γ) = 1− 4(1− e−γ),

where the first step was by Proposition 7.4.10 applied to T -balanced and γ-t-pseudorandom
x, and in the final step we substituted in s(A) = 1. Note that this is only non-trivial
when γ . 1 is small enough, whereas Theorem 3.4.7 gives some strong convexity for
arbitrarily large γ. On the other hand, the best possible conclusion of Theorem 3.4.7 gives
at most e−12-strong convexity, whereas Proposition 7.4.10 gives α-strong convexity for α
arbitrarily close to 1 when γ is small enough. In our application in Chapter 9, we will have
pseudorandomness for all pairs, and will be concerned with showing small constants to give
improved sample complexity bounds, so it will be advantageous to apply Proposition 7.4.10.

In the following Chapter 8, we will study the convergence of algorithms for tensor scal-
ing. We will mostly use tools from standard convex optimization lifted to this geodesic
setting. In particular, we will show that algorithms converge quickly in the presence of
strong convexity. Therefore, the results in this section will be useful in showing pseudo-
random inputs also enjoy this fast convergence.

Below is an illustration of how we will connect the fast convergence analysis of Sec-
tion 7.2.3 to strong convexity.

Theorem 7.4.11. Let V = ⊗a∈[m]Fda be a tensor product of inner product spaces with
scaling group G = (SL(V1), ..., SL(Vm)) and polar (P, p) according to Definition 6.2.3. If
input x ∈ V K of size s(x) = 1 is ε-G-balanced for ε ≤ 1

100m2 and γ-p-pseudorandom for

γ ≤ 1
32m

, then there is a scaling x∗ = p
1/2
∗ · x = eZ∗/2 · x with p∗ ∈ P,Z∗ ∈ p that satisfies:

1. x∗ is a G-balanced tensor scaling solution to Definition 6.2.5;

2. maxa∈[m] ‖Z(a)
∗ ‖op ≤ 2ε;

3. The size of the scaling solution is lower bounded by s(x∗) ≥ 1−mε2;

4. x∗ is α∗ ≥ 1
2
-p-strongly convex.

273

Proof. The first three items are exactly the content of Theorem 7.2.26 with scaling group
G = (SL(V1), ..., SL(Vm)).

For the fourth item, we first note that x∗ = eZ∗/2 · x is a small scaling of x, and
in particular, λmin(eZ∗) = eλmin(Z∗) ≥ e−‖Z∗‖op as Z∗ ∈ p is Hermitian. Since x is γ-
p-pseudorandom, we can use Theorem 7.3.4 to show that x∗ is γ′-p-pseudorandom with
γ′ ≤ γ + ‖Z∗‖op. Now, we can apply Proposition 7.4.10 to show that

α∗ ≥ s(x∗)− 4(m− 1)(s(x∗)− e−γ
′
) ≥ 1−mε2 − 4(m− 1)(1− e−γ−‖Z∗‖op),

where the first step was by applying Proposition 7.4.10 toG-balanced and γ′-p-pseudorandom
x∗, and in the second step we substituted 1 = s(x) ≥ s(x∗) ≥ 1−mε2 by item (3) of this
theorem and γ′ ≤ γ + ‖Z∗‖op as derived above. Now, we can bound the scaling by

‖Z∗‖op =
∑
a∈[m]

‖Z(a)
∗ ‖op ≤ 2m · ε ≤ 1

50m
,

where the first step was by Definition 7.1.12 of ‖ · ‖op for p, and the last step was by our
assumption ε ≤ 1

100m2 . Therefore, plugging in our assumptions to give

α∗ ≥ 1−mε2 − 4(m− 1)(1− e−γ−‖Z∗‖op) ≥ 1−m · 1

100m2
− 4m · 2

(1

32m
+

1

50m

)
≥ 1

2
,

where the first step was shown above, in the second step we applied the Taylor approxi-
mation 1 − e−x ≤ 2x for 0 ≤ x ≤ 1

2
along with the assumptions ε ≤ 1

100m2 , γ ≤ 1
32m

, and
‖Z∗‖op ≤ 1

50m
as calculated above.

274

Chapter 8

Algorithms for Geodesic Convex
Optimization and Scaling

In Chapter 3, we showed a convex formulation for the matrix scaling problem which allowed
us to apply tools from standard convex analysis to give strong bounds on the matrix scaling
solution. In the subsequent chapters, we lifted these results to frame scaling (Chapter 4)
and general tensor scaling (Chapter 7). By leveraging the geodesic convexity of Proposi-
tion 6.2.18 and using the reduction in Theorem 6.3.1, we were able to reduce the analysis of
these non-commutative scaling problems to their simpler commutative counterparts, which
we could then approach using standard convex analysis.

However, the reduction in Theorem 6.3.1 is non-constructive, so one drawback is that
our analysis only provides existential results for the scaling solution. In this chapter, we
will be able to make these results algorithmic by showing exponential convergence for many
natural tensor scaling algorithms when the inputs satisfy a strong convexity assumption.
Our techniques will be based on lifting standard convergence results for strongly convex
function optimization to the geodesic setting. These results will be especially valuable for
our statistical application to the tensor normal model in Chapter 9.

In Section 8.1, we present a review of the literature on algorithms for scaling. There
are many important scaling problems that have each been rediscovered in a variety of
communities, so we only present a small selection of the results here. In Section 8.2 we
use our convex optimization perspective to re-prove the results of Linial, Samorodnitsky,
and Wigderson [66] analyzing convergence of the Sinkhorn algorithm for matrix scaling. In
Section 8.3, we discuss how strong convexity can help us improve the analysis of Sinkhorn
scaling. These results will then be formalized and generalized in Section 8.4 to show

275

fast convergence of the Flip-Flop algorithm for tensor scaling for strongly convex inputs.
Consequently, in Section 8.5, we will make our results on the Paulsen problem algorithmic
by showing fast convergence of frame scaling for the random inputs studied in Section 5.1,
as well as the perturbations in Section 4.5.

8.1 Previous Work

In this section, we discuss the previous algorithms in the scaling framework. We begin
with classical algorithms for matrix scaling, then discuss more and more general settings
culminating in the large class of geodesic convex optimization algorithms presented and
analyzed in [20].

As mentioned in Section 3.1, the original matrix scaling problem involves finding posi-
tive diagonal matrices L,R ∈ diag+(d) to scale a non-negative input A ∈ Rd×d

+ to doubly
stochastic (A1d = AT1d = 1d). Matrix balancing is a similar problem where the require-
ment is to conjugate non-negative A ∈ Rd×d

+ by positive diagonal X ∈ diag+(d) such that
for every i ∈ [d], the i-th row and i-th column sum of XAX−1 is equal. These are basic
problems in numerical linear algebra that are used as subroutines for a variety of appli-
cations in mathematics and statistics, e.g. optimal transport [27], matrix preconditioning
[76], and approximation of the permanent [66]. The most well-known algorithm for matrix
scaling is the Sinkhorn algorithm [83], which iteratively fixes the row and column condition.
A similar method for matrix balancing is known as Osborne’s iteration [76], which fixes a
single row/column pair in each iteration. Both of these produce solutions whose iteration
complexity scales as poly(1

δ
), where δ is the desired error bound. In Section 8.2, we show

that Sinkhorn scaling can be viewed as a natural descent method for the convex formula-
tion of matrix scaling presented in Proposition 3.1.10. This allows us to prove convergence
of the algorithm via standard convex optimization techniques.

The alternating scaling algorithm was generalized to solve the operator scaling problem
in the work of Gurvits [45]. In [38], this algorithm was shown to converge in polynomial
time to decide whether an operator is scalable. Note that this analysis parallels the matrix
Sinkhorn analysis, and therefore the convergence is once again poly(1

δ
). This was used

in [38] to give the first polynomial time algorithm for a variety of problems in algebraic
complexity, including a non-commutative version of polynomial identity testing.

For matrix scaling, there are also many algorithms which require only poly log(1
δ
) many

iterations to produce an δ-approximate solution. While the iterative Sinkhorn algorithm
is incredibly simple to implement and only requires first order information, these results

276

tend to use more complicated optimization procedures, such as the ellipsoid method [57]
or interior point methods [21], [88]. Recently, two independent groups [26], [2] used trust-
region methods as well as techniques from fast Laplacian solvers in order to give nearly
linear time algorithms for matrix scaling with poly log(1

δ
) error convergence. As a side

note, the algorithm of Cohen et al. [26] depends linearly on the condition number of the
scaling solution ‖(X∗, Y∗)‖∞. Therefore, our fast convergence analysis of Chapter 3 gives
sufficient conditions for this algorithm to converge in nearly linear time.

Trust region methods were used in [3] to give the first algorithm with poly log(1
δ
) con-

vergence for operator scaling. This gave the first known polynomial time algorithms for
some more complicated versions of the polynomial identity testing problem, which were
the main motivation of [45] and [38].

In a grand generalization, Bürgisser et al. [19] proposed a non-trivial extension of
the alternating algorithm which was able to solve a wide class of tensor scaling problems,
sometimes called scaling with prescribed marginals. The analysis was quite technical as
it relied on some machinery from the representation theory of Lie groups. Further, this
resulted in a runtime which was polynomial in 1

δ
, but crucially also depended on the binary

description of the desired marginals. This left open whether there were log 1
δ

convergent
algorithms in this significantly more general setting.

As discussed in Section 6.1.2, these scaling problems can be seen from the lens of
geometric invariant theory. Therefore, there are some known algebraic algorithms [72]
which rely on this invariant theory connection, but these are usually quite expensive in
terms of runtime. Interestingly, the main result of [18] shows that the most general version
of this scaling problem, moment polytope membership testing (described in Section 6.1.1),
is in NP ∩ coNP. This gives some evidence for tractability even in this general setting.

As a first step towards polynomial time scaling algorithms, the work of [20] gave a foun-
dation to unify the various (sometimes ad-hoc) techniques which were used to prove fast
convergence in each individual scaling setting. Specifically, they presented a geodesic con-
vex formulation for general scaling problems and gave quantitative analyses for a variety of
optimization algorithms (see Theorem 6.1.7). In particular, they defined natural geometric
quantities (the weight norm and weight margin) which depended on each scaling problem
and controlled the convergence of natural geodesic convex optimization algorithms. This
gave an explanation for previously known algorithms for individual scaling problems. On
the other hand, in many cases of interest, these parameters only have exponential bounds
which only leads to exponential time algorithms. In fact, in the simplest open case of
3-tensor scaling, the work of Kravtsov [60] shows that the exponential dependence of these
geometric parameters is necessary. These obstructions have recently been generalized to

277

higher order tensor scaling problems by Franks and Reichenbach [37].

Therefore, in order to find polynomial time algorithms for these difficult problems, new
ideas are required which bypass the standard convex optimization techniques of [20]. In
this thesis, we show that strong convexity is one such natural assumption which leads
to beyond worst case bounds for tensor scaling. Specifically, for m ≥ 3 tensor scaling
inputs that satisfy special assumptions (strong convexity and pseudorandomness), we are
able to show that even the simplest iterative algorithms have linear convergence (log 1

δ
) to

high quality solutions. This suggests that a natural first step towards understanding the
complexity of more general scaling problems would be to analyze inputs satisfying similar
sufficient conditions for fast convergence.

8.2 Sinkhorn’s Algorithm for Matrix Scaling

In this section, we present Sinkhorn’s algorithm for matrix scaling [83]. This algorithm
has been extensively studied for both its theoretical guarantees as well as its practical
performance for applications of matrix scaling (see survey [54]). We will be studying the
work of [66], where the goal was to design a deterministic approximation algorithm for the
permanent of non-negative matrices. Using the framework of Chapter 3 (heavily inspired
by [20]), we can re-interpret the work of [66] as a convergence analysis of Sinkhorn scaling
viewed as a natural convex optimization algorithm for the Kempf-Ness function for matrix
scaling. In the following Section 8.3, we will discuss how to improve these convergence
results when the input is strongly convex, as studied in Section 3.2.

Recall that by Proposition 3.1.10, we have shown that for input tuple A ∈ Mat(d, n)K ,
the matrix scaling problem on A in Definition 3.1.3 can be equivalently solved by optimizing
the convex function

inf
(X,Y)∈t

fA(X, Y) := s(eX/2AeY/2) =
K∑
k=1

d∑
i=1

eXi|(Ak)ij|2eYj ,

where t is given in Definition 3.1.5 and fA is given in Definition 3.1.6.

The following algorithm for matrix scaling is quite natural, easy to implement, and
performs well in practice. For this reason, it has been rediscovered and studied in a variety
of fields (see survey [54]).

278

Definition 8.2.1 (Sinkhorn Scaling). For matrix tuple A ∈ Mat(d, n)K, the Sinkhorn
scaling algorithm for matrix scaling alternates between the following operations

A←
(

d ·R
det(d ·R)1/d

)−1/2

A, and A← A

(
n · C

det(n · C)1/n

)−1/2

,

where R = diag{ri(A)}di=1 and C = diag{cj(A)}nj=1 are the diagonal transformations con-
taining the row and column sums given in Definition 3.1.1.

The iterations can be equivalently defined as an optimization method on t with alter-
nating steps

eXt+1 :=

(
d ·R

det(d ·R)1/d

)−1

eXt and eYt+1 := eYt
(

n · C
det(n · C)1/n

)−1

,

where the normalization by det implies (Xt, Yt) ∈ t for all steps.

Observe that the transformations produce a left-balanced and right-balanced matrix
tuple in alternating iterations. In the following, we show that if the current iterate is far
from doubly balanced, then the Sinkhorn scaling step makes significant progress in terms
of the Kempf-Ness function.

Lemma 8.2.2. For matrix tuple A ∈ Mat(d, n)K, let A → A′ represent one iteration of
Sinkhorn scaling. Then size decreases as

log s(A′) ≤ log s(A)− 1

6

min
{
‖(∇LA,0)‖2t
s(A)2 , 1

d

}
for left normalization

min
{
‖(0,∇RA)‖2t
s(A)2 , 1

n

}
for right normalization.

In terms of the Kempf-Ness function, this can be written as

log fA(Xt+1, Yt+1)− log fA(Xt, Yt) ≤ −
1

6

{
min{‖(∇ log fA(Xt, Yt))

L‖2
t ,

1
d
} t = 0 mod 2

min{‖(∇ log fA(Xt, Yt))
R‖2

t ,
1
n
} t = 1 mod 2

.

Proof. We follow the proofs of Lemma 3.1 in [66] along with the approximation given in
Lemma 5.2 of [38].

The second statement on the Kempf-Ness function follows by applying the first state-
ment on size to input At. This is because fA(X, Y) = s(eX/2AeY/2) by Definition 3.1.6 of

279

the Kempf-Ness function, as well as the simple fact (by chain rule) that ∇ log f = ∇f
f

, so
the progress terms are the same.

So we first analyze the change in size for row-normalization step A→ A′:

s(A′) =
d∑
i=1

n∑
j=1

K∑
k=1

|(A′k)ij|2 =
d∑
i=1

n∑
j=1

K∑
k=1

(
d · ri(A)

det(d ·R)1/d

)−1

|(Ak)ij|2

= det(d ·R)1/d

d∑
i=1

ri(A)

d · ri(A)
=

(
d∏
i=1

d · ri(A)

)1/d

,

(8.1)

where the first step was by Definition 3.1.1 of size, in the second step we plugged in
Definition 8.2.1 of a Sinkhorn step, and in the third step we simply used Definition 3.1.1
of the row marginal ri(A).

To bound this value in terms of ∇L
A, we note that

∑d
i=1 ri(A) = s(A), so we can apply

Claim 8.2.3 below with xi := d·ri(A)
s(A)

to show

− log
d∏
i=1

d · ri(A)

s(A)
≥ 1

6
min

{
d∑
i=1

(
d · ri(A)

s(A)
− 1

)2

, 1

}
=

1

6
min

{
d‖∇L

A‖2
t

s(A)2
, 1

}
, (8.2)

where the first inequality is by Claim 8.2.3, and the last step is by Proposition 3.1.12 of
∇L and Definition 3.1.11 of ‖ · ‖t on the left part. Combining this with the bound on size
above gives

log s(A′)− log s(A) =
1

d
log

d∏
i=1

d · ri(A)

s(A)
=

1

d
log

d∏
i=1

d · ri(A)

s(A)
≤ −1

6
min

{
‖∇L

A‖2
t

s(A)2
,

1

d

}
,

where the first step was by Eq. (8.1), and the final step was by Eq. (8.2). The calculation
for column-normalization is the same with ∇L

A replaced by ∇R
A and d replaced by n.

For the proof of Lemma 8.2.2, we need the following robust version of AM-GM. We
omit the proof, which is given in [38].

Claim 8.2.3 (Lemma 5.1 of [38]). For x ∈ Rd
++ satisfying

∑d
i=1 xi = d,

− log
d∏
i=1

xi ≥
1

6
min

{
1,

d∑
i=1

(xi − 1)2
}
.

280

The main goal of Linial et al. [66] was to give an approximation algorithm for the
permanent. Therefore, they first applied a simple preprocessing step to recognize the case
when the permanent was 0. They complemented this with an exponential lower bound for
the permanent of nearly doubly stochastic matrices. Their strategy was to apply Sinkhorn
scaling to transform any non-negative matrix to a nearly doubly stochastic one, which
could be approximated effectively. The key to this algorithm was the following polynomial
iteration bound for Sinkhorn scaling.

Theorem 8.2.4. Consider matrix tuple A ∈ Mat(d, n)K with f ∗ := inf(X,Y)∈t fA(X, Y) >
−∞. Then for any δ > 0, Sinkhorn scaling with starting point A0 = eX0/2AeY0/2 produces
an iterate (XT , YT) ∈ t satisfying ‖∇ log fA(XT , YT)‖t ≤ δ for some iteration

T .
log fA(X0, Y0)− log f ∗

min{δ2, 1
n
}

.

Proof. Assume, by applying a single Sinkhorn step if necessary, that ∇R
A = 0. This way

we are alternating between left and right balanced matrices. Let T be the first time
‖∇ log fA(XT , YT)‖t ≤ δ. Then until this time we make significant progress:

log fA(XT , YT)− log fA(X0, Y0) =
∑
t<T

(
log fA(Xt+1, Yt+1)− log fA(Xt, Yt)

)
<
−T
6

min{δ2,
1

n
},

where the final inequality was by Lemma 8.2.2 as ‖∇ log fA(Xt, Yt)‖t > δ for every step t <
T . The theorem follows by applying the simple bound f ∗ ≤ fA(XT , YT) and rearranging.

Remark 8.2.5. In the case when n� d, the column normalization step may make much
less progress due to the bottle-neck 1

n
term. To remedy this, we can apply two iterations

successively so our iterates are always right balanced and in each two steps we make signif-
icant progress. In particular, for 1

n
≤ δ2 ≤ 1

d
, this two step algorithm allows us to replace

1
n
→ 1

d
in the denominator of Theorem 8.2.4. The same observation carries over to the

analogous alternating algorithms for frame and operator scaling.

In Section 8.4, we will generalize Theorem 8.2.4 to show progress of the Flip-Flop
algorithm for tensor scaling. Many of these ideas have been greatly generalized in [20],
where they use use the framework of geodesic convex optimization to show convergence of
simple iterative methods for more general scaling problems.

Recall that one of the main results of Theorem 3.2.19 was the stronger lower bound

inf
(X,Y)∈t

fA(X, Y) = s(A∗) ≥ 1−O
(
‖∇A‖2

t

α

)
281

for input tuples A ∈ Mat(d, n)K of size s(A) = 1 that were sufficiently close to doubly
balanced and sufficiently strongly convex. Plugging this into Theorem 8.2.4 would give a
strong bound on the leading constant term but the convergence of the gradient would still
be at a rate of 1

δ2 . In the following section, we give an improved convergence rate of log(1
δ
)

by better utilizing strong convexity.

8.3 Algorithms for Strongly Convex Matrix Scaling

In this section, we will improve the result of Theorem 8.2.4 when the input is strongly
convex by showing fast convergence of the Sinkhorn algorithm in Definition 8.2.1. We
follow the analysis of [35] by using standard tools from strong convexity to effectively
analyze the progress made by Sinkhorn scaling. Many of the proofs in this section are
omitted or just sketched as we will cover them formally in the more general tensor scaling
setting in Section 8.4.

We first present the following standard result for strongly convex optimization. This
will give some intuition for how we will apply strong convexity in our matrix scaling setting.

Proposition 8.3.1. Let V be an inner product space with function F : V → R is α-strongly
convex in norm ‖ · ‖. Consider sequence {xt}t∈N satisfying

F (xt+1) ≤ F (xt)− ‖∇F (xt)‖2

for all t ∈ N. This is known as descent sequence, and an algorithm that produces such
iterates is known as a descent method. Then, for any δ ≤ ‖∇F (x0)‖, an element of the

sequence satisfies the bound ‖∇F (xT)‖ ≤ δ for some T . 1
α

log ‖∇F (x0)‖
δ

.

Proof. We will show by induction that the ‖∇F (xt)‖2 halves every O(1
α

) steps. Let T be
the first time that ‖∇F (xT)‖2 ≤ 2−1‖∇F (x0)‖2. We calculate the progress as

F (xT)− F (x0) =
∑
t<T

(
F (xt+1)− F (xt)

)
≤ −

∑
t<T

‖∇F (xt)‖2 ≤ −T
2
‖∇F (x0)‖2,

where the first step was by a telescoping sum, the second step was by the assumption on
descent sequence {xt}, and the final step was by our choice of T so that ‖∇F (xt)‖2 >
2−1‖∇F (x0)‖2 for all previous steps.

By strong convexity, at any point x ∈ V we have the following strong lower bound in
terms of the gradient:

F ∗ := inf
y∈V

F (y) ≥ F (x)− ‖∇F (x)‖2

2α
.

282

This can be shown by applying Lemma 2.3.7 to the univariate restriction between x and
the optimizer, which is α-strongly convex by assumption.

Therefore, applying this to x = x0 gives the lower bound F (xT) ≥ F ∗ ≥ F (x0) −
‖∇F (x0)‖2

2α
. Combining this with the progress shown above, we get

−‖∇F (x0)‖2

2α
≤ F (xT)− F (x0) ≤ −T‖∇F (x0)‖2

2
,

which gives T . 1
α

by rearranging.

Continuing this way, we define Tk to be the first time ‖∇F (xTk)‖2 ≤ 2−k‖∇F (x0)‖2.
Then for each k, we can repeat the argument above to show

−‖∇F (x0)‖2

2k · 2α
≤ −‖∇F (xTk)‖2

2α
≤ F (xTk+1

)− F (xTk) ≤ −(Tk+1 − Tk)
‖∇F (x0)‖2

2k+1 · 2
,

which shows Tk+1 − Tk . 1
α

by rearranging. Applying this for k = log(1
δ
) gives the

convergence bound in the proposition.

In Section 3.2, we studied matrix scaling for strongly convex tuples A ∈ Mat(d, n)K .
According to Definition 3.2.1, this only implies strong convexity of the Kempf-Ness function
fA at the origin, whereas the above Proposition 8.3.1 assumed that the function F is
strongly convex everywhere. Examining the proof, we note that strong convexity was
only used on the univariate restrictions between xt and the optimizer. Therefore, in the
following theorem we show how to leverage strong convexity of A to prove fast convergence
of Sinkhorn scaling.

Theorem 8.3.2. Consider matrix tuple A ∈ Mat(d, n)K such that the Kempf-Ness function
fA from Definition 3.1.6 is α strongly convex at the optimizer (X∗, Y∗). If starting point
(X0, Y0) ∈ t satisfies ‖∇fA(X0, Y0)‖t . α√

d+n
, then Sinkhorn scaling produces iterate AT :=

eXT /2A∗e
YT /2 with ‖∇ log fA(XT , YT)‖t ≤ δ for some T . fA(X0,Y0)

α
log ‖∇ log fA(X0,Y0)‖t

δ
.

This is a special case of the corresponding theorem for tensor scaling given in Theo-
rem 8.4.8, and so we only sketch the proof here.

Proof Overview. In order to apply the analysis of Proposition 8.3.1, it suffices to show that
for every iterate (Xt, Yt) produced by Sinkhorn scaling, fA is Ω(α)-strongly convex on the
restriction to the line (Xt, Yt) → (X∗, Y∗). By assumption, fA is α-strongly convex at the
optimizer (X∗, Y∗), and by the robustness property in Lemma 3.2.4, fA is Ω(α)-strongly

283

convex at every point in some neighborhood around (X∗, Y∗). So our goal will be to show
that (X0, Y0) and every subsequent iterate is within this neighborhood. This is proven
by using strong convexity to show that every point (X, Y) ∈ t with small gradient must
be near the optimizer (X∗, Y∗). The theorem then follows by applying the convergence
analysis of Proposition 8.3.1.

In the next section, we will formalize and generalize Theorem 8.3.2 to setting of tensor
scaling by lifting the above analysis of strongly convex optimization to the geodesic setting
using structural properties of the Kempf-Ness function.

8.4 Algorithms for Geodesic Strongly Convex Opti-

mization and Tensor Scaling

In this section, we lift tools from standard convex analysis to the geodesic setting to
analyze natural algorithms for tensor scaling. The main contribution of this section is to
show linear convergence when the input is a strongly convex tensor. These results will
be applied in Section 8.5 for the Paulsen problem and Chapter 9 in order to give fast
algorithmic guarantees for the tensor normal model.

We first give the appropriate generalization of Sinkhorn scaling to the tensor setting.
This is a very natural iterative algorithm which performs quite well in practice. In Sec-
tion 9.2.2, we discuss some background and motivate this algorithm in the context of
statistical estimation.

Definition 8.4.1 (Flip-Flop Algorithm). Let V = ⊗a∈[m]Va be a tensor product of inner
product spaces of dimension dim(Va) = da for each a ∈ [m], and let (G,P, p) be a choice of
scaling group according to Definition 6.2.3. Then for input x ∈ V K, one iteration of the
Flip-Flop algorithm chooses a := arg maxb∈[m] ‖∇(b)

x ‖p, and normalizes this marginal

x← Ia ⊗


(

daρ
(a)
x

det(daρ
(a)
x)1/da

)−1/2

· x if Ga = SL(Va)(
da diagΞa (ρ

(a)
x)

det(da diagΞa (ρ
(a)
x))1/da

)−1/2

· x if Ga = STΞa(Va)
.

Applying this iteratively gives the sequence of scalings {gt ∈ G}t≥0 such that xt := gt ·x.

284

This can be equivalently defined with respect to the Kempf-Ness function fPx (Defini-
tion 6.2.9) by the sequence

pt+1 =


p

1/2
t

(
Ia ⊗ daρ

(a)
x

det(daρ
(a)
x)1/da

)−1

p
1/2
t if Ga = SL(Va)

pt · Ia ⊗
(

da diagΞa (ρ
(a)
x)

det(da diagΞa (ρ
(a)
x))1/da

)−1

if Ga = STΞa(Va)
.

Note pt ∈ P for all steps and (∇fPx (pt))
(a) = 0 after normalizing the a-th marginal.

Remark 8.4.2. By Lemma 6.2.6(3), the balance condition of the a-th marginal is unaf-
fected by unitaries, so we could as well have chosen any h ∈ Ga with the same polar part

(h∗aha)
−1 = daρ

(a)
x

det(daρ
(a)
x)1/da

to normalize the a-th marginal. This choice is unimportant for

the purpose of geodesic convex optimization with respect to fPx , as the value only depends
on the polar part of the scaling g∗t gt, and we choose the positive definite square root in
Definition 8.4.1 for convenience.

In [19], the authors solve a more general scaling problem, and for their analysis it was
necessary to choose scaling h ∈ Ga such that gt is upper triangular for each iteration. Other
choices of h may be useful for the purposes of numerical stability or bit-complexity.

This natural normalization algorithm also satisfies a progress bound which generalizes
the result of Lemma 8.2.2 for matrix Sinkhorn.

Proposition 8.4.3. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces of
dimension dim(Va) = da for each a ∈ [m], and let (G,P, p) be a choice of scaling group
according to Definition 6.2.3. Then for input x ∈ V K, if x′ denotes the normalization of
the a-th marginal by Definition 8.4.1 of the Flip-Flop algorithm, then

log s(x′)− log s(x) ≤ −1

6
min

{
‖∇(a)

x ‖2
p

s(x)2
,

1

da

}
.

This can be rewritten in terms of the Kempf-Ness function as

log fPx (pt+1) ≤ log fPx (pt)−
1

6
min

{∥∥∥(∇ log fPx (pt)
)(a)∥∥∥2

p
,

1

da

}
,

where we have normalized the a-th marginal in step t.

285

Proof. Note that the second statement on the Kempf-Ness function follows by applying
the first statement on size to gt · x. This is because fPx (p) = s(p1/2 · x) by Definition 6.2.9,
as well as the simple fact (by chain rule) that ∇ log f = ∇f

f
, so the progress terms are the

same.

To show the progress in size, let a be marginal we are normalizing, and consider the
case Ga = SL(Va). The other case Ga = STΞ(Va) follows by the same calculation applied
to the diagΞ entries. We can write

s(x′) = 〈IV , ρx′〉 = 〈Ia, ρ(a)
x′ 〉 =

〈(
daρ

(a)
x

det(daρ
(a)
x)1/da

)−1

, ρ(a)
x

〉
= det(daρ

(a)
x)1/da , (8.3)

where the first step was by Definition 6.2.1 of size, in the second step we used Defi-
nition 6.2.2 of marginals, the third step was by the equivariance property for marginals
shown in Lemma 6.2.6(2), and in the final step we substituted 〈(ρ(a)

x)−1, ρ
(a)
x 〉 = Tr[Ia] = da.

From this point, we can use the same argument as in the proof of Lemma 8.2.2 to show

log s(x′)− log s(x) =
1

da
log det

(
daρ

(a)
x

s(x)

)
≤ −1

6
min

{
‖∇(a)

x ‖2
p

s(x)2
,

1

da

}
,

where we have applied Claim 8.2.3 to the eigenvalues of daρ
(a)
x

s(x)
in the same way as the proof

of Lemma 8.2.2.

At this point, we can show that the norm of the geodesic gradient for tensor scaling
decreases under the Flip-Flop algorithm. This is a special case of the result in [19], which
applies to much more general scaling problems.

Theorem 8.4.4. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces of dimen-
sion dim(Va) = da for each a ∈ [m], and let (G,P, p) be a choice of scaling group according
to Definition 6.2.3. Consider input tuple x ∈ V K with f ∗ := infp∈P f

P
x (p) > −∞. Then

for any δ > 0, the Flip-Flop algorithm with starting point x0 := g0 · x produces xT := gT · x
satisfying ‖∇ log fPx (g∗TgT)‖p ≤ δ for some iteration

T .
log fPx (g∗0g0)− log f ∗

min{ δ2

m
, 1
dmax
}

.

Proof. The argument is exactly the same as the proof of Theorem 8.2.4 except that we
apply Proposition 8.4.3 to bound the progress of Flip-Flop.

286

We will bound the number of iterations using the Kempf-Ness function fPx as a progress
measure, so let {gt ∈ G}t≥0 be the iterates of the Flip-Flop algorithm according to Defini-
tion 8.4.1 with corresponding polar {pt := g∗t gt ∈ P}t≥0, and let T be the first time that
‖∇ log fPx (pT)‖p ≤ δ. Then we make significant progress until this time:

log fPx (pT)− log fPx (p0) =
∑
t<T

(
log fPx (pt+1)− log fPx (pt)

)
≤ −T

6
min

{
δ2

m
,

1

dmax

}
,

where the final inequality was by Proposition 8.4.3 as ‖∇ log fPx (pT)‖p > δ for t < T , and
‖(∇fPx (pt))

(a)‖2
p ≥ 1

m
‖∇fPx (pt)‖2

p as we normalize the marginal with the largest error in
each step. The statement follows by applying the bound f ∗ ≤ fPx (pT) and rearranging.

The main result of Section 8.3 was to show linear convergence of Sinkhorn scaling for
strongly convex inputs. We next define the property of geodesic strong convexity that is
required to generalize the argument in Theorem 8.3.2 to tensor scaling.

Definition 8.4.5. Let (G,P, p) be a scaling group according to Definition 6.2.3 and let F :
P → R be a geodesically convex function with optimizer p∗ := arg infp∈P F (p). Then p ∈ P
is α-strongly convergent with respect to F if the restriction of F to the geodesic between p
and p∗ is α-strongly convex. Explicitly, if Z = log(p

−1/2
∗ pp

−1/2
∗) so that γp∗,p(η) = γp∗(ηZ) =

p
1/2
∗ eηZp

1/2
∗ according to Fact 6.2.11, then p is α-strongly convergent if h(η) := F (γp∗,p(η))

is α‖Z‖2
p-strongly convex for η ∈ [0, 1].

Note that this property only requires strong convexity on the geodesic from p to p∗,
which is much weaker than the condition that F is α-geodesically strongly convex at p
according to Definition 6.2.13.

This was the key property used in Proposition 8.3.1 to show fast convergence of a
descent sequence. In the following lemma, we derive the properties of strongly convergent
points that will be useful for our fast convergence results for tensor scaling.

Lemma 8.4.6. Let (G,P, p) be a scaling group according to Definition 6.2.3 and let F :
P → R be a geodesically convex function with optimizer F (p∗) = infp∈P F (p). Then for
α-strongly convergent p ∈ P :

1. (Function): F (p∗) ≥ F (p)− ‖∇F (p)‖2p
2α

;

2. (Distance): for Z := log(p−1/2p∗p
−1/2), ‖Z‖p ≤ ‖∇F (p)‖p

α
;

287

where ∇F (p) is the geodesic gradient according to Definition 7.1.1.

Proof. Consider the univariate restriction h(η) := F (γp,p∗(η)) = F (γp(ηZ)). For the func-
tion bound in item (1), our plan is to apply Lemma 2.3.7 to bound function gap between
optimizer h(1) = F (p∗) and h(0) = F (p). For this purpose, we bound

|h′(0)| = |∂η=0F (γp(ηZ))| = |〈∇F (p), Z〉p| ≤ ‖∇F (p)‖p‖Z‖p,

where the first step was by definition of h, the second step was by Definition 7.1.1 of the
geodesic gradient on (P, p), and the final step was by Cauchy-Schwarz for 〈·, ·〉p.

Recall that by Fact 6.2.12, the geodesics between p and p∗ are related by γp,p∗(η) =
γp∗,p(1 − η) for η ∈ [0, 1], and γp∗,p(η) = γp∗(ηY) for some Y ∈ p satisfying ‖Y ‖p = ‖Z‖p.
Therefore, the α-strong convergent property of p in Definition 8.4.5 implies that h(η) =
F (γp,p∗(η)) = F (γp∗,p(1− η)) is α‖Z‖2

p-strongly convex for η ∈ [0, 1] with optimizer η∗ = 1,
so we can lower bound

F (p∗) = h(1) ≥ h(0)− |h
′(0)|2

2α‖Z‖2
p

≥ F (p)−
‖∇F (p)‖2

p

2α
,

where in the first step we used h(1) = F (γp(Z)) = F (p∗) by definition of h and Z, in
the second step we applied Lemma 2.3.7 to h with α‖Z‖2

p-strong convexity from point
η = 0 to the optimizer η∗ = 1, and in the final step we used h(0) = F (p) and the bound
|h′(0)| ≤ ‖∇F (p)‖p‖Z‖p derived above.

To show the distance bound on ‖Z‖p in item (2), we use the strong convexity of h along
with the bound on |h′(0)| derived above to show

‖∇F (p)‖p‖Z‖p ≥ |h′(0)| =
∣∣∣h′(1) +

∫ 1

η=0

h′′(1− η)
∣∣∣ ≥ α‖Z‖2

p,

where the first inequality is by the bound |h′(0)| ≤ ‖∇F (p)‖p‖Z‖p derived above, the
second step is by the fundamental theorem of calculus, and in the final step we used
h′(1) = 0 for the first term by optimality of h(1) = F (p∗) and lower bounded the second
term by h′′(1−η) = ∂2

ηF (γp∗(ηY)) ≥ α‖Y ‖2
p = α‖Z‖2

p according to the α-strong convergent
property of p in Definition 8.4.5 and the fact that ‖Y ‖p = ‖Z‖p by Fact 6.2.12. The bound
follows by rearranging.

Using this property of strong convergence in the geodesic setting, we can lift the analysis
of Proposition 8.3.1 and Theorem 8.3.2 to formally prove linear convergence of the Flip-
Flop algorithm for strongly convex tensors. Our plan is to use geodesic strong convexity

288

at the optimizer and the multiplicative robustness of Lemma 7.1.13 to derive the strong
convergent property for points sufficiently close to the optimizer. To this end, we first
show a bound on the gradient which is sufficient for the strong convergent property. This
argument is heavily inspired by the analysis in [35].

Lemma 8.4.7. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces of dimension
dim(Va) = da for each a ∈ [m] along with scaling group (G,P, p) according to Defini-
tion 6.2.3 and input tuple x ∈ V K. If the Kempf-Ness function fPx in Definition 6.2.9 is
α-geodesically strongly convex at optimizer p∗ := arg infp∈P f

P
x (p), then p ∈ P with

fPx (p)‖∇ log fPx (p)‖p = ‖∇fPx (p)‖p ≤
α

e
√∑

a∈[m] da

satisfies the bound ‖ log(p−1/2p∗p
−1/2)‖op ≤ 1. As a consequence, any such p is α

e
-strongly

convergent with respect to fPx according to Definition 8.4.5.

Proof. Let Z := γ−1
p (p∗) = log(p−1/2p∗p

−1/2) so that p∗ = γp(Z) = p1/2eZp1/2 according to
Fact 6.2.11, and consider the univariate restriction h(η) := fPx (γp,p∗(η)) = fPx (ηZ). We will
show that the bound on the gradient ‖∇fPx (p)‖p implies ‖Z‖op ≤ 1. This is combined with
the robustness of strong convexity shown in Lemma 7.1.13 to prove the strong convergent
property.

In order to bound ‖Z‖op, we give upper and lower bounds for |h′(0)| using Defini-
tion 7.1.1 of the geodesic gradient and strong convexity respectively. For the upper bound,
we use a similar argument to the one in Lemma 8.4.6, showing

|h′(0)| = |∂η=0f
P
x (γp(ηZ))| = |〈∇fPx (p), Z〉p| ≤ ‖∇fPx (p)‖p‖Z‖p, (8.4)

where the first step was by definition of h(η) = fPx (γp(ηZ)), in the second step we used
Definition 7.1.1 of the geodesic gradient, and the final step was by Cauchy-Schwarz.

For the lower bound, we will use strong convexity to show that |h′(η)| grows rapidly.

Let Y := log(p
−1/2
∗ pp

−1/2
∗), and note that γp,p∗(η) = γp∗,p(1 − η) = γp∗((1 − η)Y) and

‖Y ‖p = ‖Z‖p by Fact 6.2.12 applied to unitarily invariant norm ‖ · ‖p. Therefore, we can
apply the robustness property of Lemma 7.1.13 to show

h′′(1− η) = ∂2
ηf

P
x (γp((1− η)Z)) = ∂2

ηf
P
x (γp∗(ηY)) ≥ e−‖ηY ‖op · α‖Y ‖2

p = e−‖ηZ‖op · α‖Z‖2
p,

where the first step was by definition h(η) = fPx (γp(ηZ)), in the second step we used
γp,p∗(1− η) = γp∗,p(η) = γp∗(ηY) by Fact 6.2.12, the third step was by Lemma 7.1.13 since

289

fPx is α-geodesically strongly convex at p∗ according to Definition 6.2.13, and in the final
step we used that ‖Y ‖op = ‖Z‖op and ‖Y ‖p = ‖Z‖p by Fact 6.2.12.

This allows us to lower bound |h′(0)| by the following calculation:

|h′(0)| =
∣∣∣∣h′(1) +

∫ 1

0

h′′(1− η)

∣∣∣∣ ≥ α‖Z‖2
p

∫ 1

0

e−‖ηZ‖op = α
‖Z‖2

p

‖Z‖op

(1− e−‖Z‖op), (8.5)

where the first step was by the fundamental theorem of calculus, and in the second step we
used h′(1) = 0 for the first term by the optimality of h(1) = fPx (p∗) and the lower bound
h′′(1− η) ≥ e−‖ηZ‖op · α‖Z‖2

p derived above.

Combining the upper and lower bounds, we can rearrange to get

‖∇fPx (p)‖p ≥
|h′(0)|
‖Z‖p

≥ α
‖Z‖p
‖Z‖op

(1− e−‖Z‖op) ≥ α(1− e−‖Z‖op)√∑
a∈[m] da

,

where the first step was by the bound |h′(0)| ≤ ‖∇fPx (p)‖p‖Z‖p from Eq. (8.4), the second
step was by the lower bound calculated in Eq. (8.5), and the last step was by the relation

in Lemma 7.1.15. Therefore, ‖Z‖op ≥ 1 implies ‖fPx (p)‖p ≥ α(1−e−1)√∑
a∈[m] da

, which gives the

claim by contrapositive.

To prove the strong convergent property for p, we can apply Lemma 7.1.13 to show
h(η) = fPx (γp∗,p(1 − η)) = fPx (γp∗((1 − η)Y)) is α

e
‖Y ‖2

p-strongly convex for η ∈ [0, 1] since
‖Y ‖op = ‖Z‖op ≤ 1 by Fact 6.2.12 and the first statement.

Now that we have a simple gradient condition which implies the strong convergent
property, we can lift the strongly convex analysis of Proposition 8.3.1 to the geodesic
setting to analyze the convergence of the Flip-Flop algorithm in Definition 8.4.1 for the
tensor scaling problem.

Theorem 8.4.8. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces of dimen-
sion dim(Va) = da for each a ∈ [m], and let (G,P, p) be a choice of scaling group according
to Definition 6.2.3. Consider input tuple x ∈ V K such that the Kempf-Ness function fPx
is α-geodesically strongly convex at the optimizer p∗ := arg infp∈P f

P
x (p). Then, for start-

ing point x0 := g0 · x and any δ ≤ min{‖∇ log fPx (g∗0g0)‖p, δ0} with δ0 :=
α/fPx (g∗0g0)

e
√∑

a∈[m] da
, the

Flip-Flop algorithm produces output xT := gT · x satisfying

1. (Gradient): ‖∇ log fPx (g∗TgT)‖p ≤ δ;

290

2. (Function): fPx (p∗) ≥ fPx (g∗TgT)− e‖∇fPx (g∗T gT)‖2p
2α

≥ fPx (g∗TgT)
(

1− fPx (g∗TgT) eδ
2

2α

)
;

3. (Distance): ‖ log(p
−1/2
∗ g∗TgTp

−1/2
∗)‖p ≤ fPx (g∗TgT) e·δ

α
;

for some number of iterations bounded by

T .
m

δ2
0

· log
fPx (g∗0g0)

f ∗
+ fPx (g∗0g0) · m

α
log

δ0

δ
.

Proof. Let {gt ∈ G}t≥0 be the iterates of the Flip-Flop algorithm according to Defini-
tion 8.4.1 with {pt := g∗t gt ∈ P}t≥0 the corresponding polar parts. Note that for any p ∈ P
with fPx (p) ≤ fPx (p0),

‖∇ log fPx (p)‖p ≤ δ0 =
α/fPx (g∗0g0)

e
√∑

a∈[m] da
≤ α/fPx (p)

e
√∑

a∈[m] da

is a sufficient condition for p to be α
e
-strongly convergent by Lemma 8.4.7. Therefore, our

plan is to break the iterations of the Flip-Flop algorithm into two stages based on the
first time ‖∇ log fPx (p)‖p ≤ δ0: we analyze the first stage using Theorem 8.4.4, and in the
second stage we use the strong convergent property to show exponential convergence by
an argument similar to the one in Proposition 3.2.2.

For the first stage, let T0 be the first time that ‖∇ log fPx (pT0)‖p ≤ δ0. If ‖∇ log fPx (p0)‖p ≤
δ0, then T0 = 0 and this part can be skipped. Otherwise, by Theorem 8.4.4, we have

T0 .
log fPx (p0)− log fPx (p∗)

min{δ2
0/m, d

−1
max}

=
m(log fPx (p0)− log fPx (p∗))

δ2
0

,

where the first step was by Theorem 8.4.4 applied with δ0, and in the second step we used

δ2
0 =

α2/fPx (p0)2

e2
∑

a∈[m] da
≤ 1

dmax

,

where the first step was by definition of δ0, and in the second step we used Proposition A.5.2
to bound α ≤ fPx (p∗) ≤ fPx (p0).

Now that ‖∇ log fPx (pT0)‖p ≤ δ0, Lemma 8.4.7 implies that pT0 is α
e
-strongly convergent

as fPx is α-geodesically strongly convex at p∗ by assumption. Therefore, we analyze the sub-
sequent iterations of the Flip-Flop algorithm by following the strategy in Proposition 8.3.1
and showing ‖∇ log fPx (p)‖2

p halves every O(m
α

) iterations.

291

Let T1 be the first time that ‖∇ log fPx (pT)‖2
p ≤ 1

2
δ2

0. We first use the α
e
-strong conver-

gent property of pT0 to lower bound the optimizer by

fPx (p∗) ≥ fPx (pT0)−
‖∇fPx (pT0)‖2

p

2α/e
= fPx (pT0)

(
1−

e‖∇ log fPx (pT0)‖2
p

2α/fPx (pT0)

)
,

where the first step is by Lemma 8.4.6(1) with α
e
-strong convergence, and in the final step

we used ∇ log f = ∇f
f

. Since ‖∇ log fPx (pT0)‖p ≤ δ0 by assumption of T0, we rewrite this as

log fPx (pT0)− log fPx (p∗) ≤ log
(

1− e · δ2
0

2α/fPx (pT0)

)−1

≤ e · δ2
0

α/fPx (pT0)
, (8.6)

where the last step was by the Taylor approximation − log(1 − x) ≤ 2x for 0 ≤ x ≤ 2
3

applied to

eδ2
0

2α/fPx (pT0)
=

(∑
a∈[m]

da

)−1

· e · α
2/fPx (p0)2

2α/fPx (pT0)
≤
(∑
a∈[m]

da

)−1
e · α/fPx (p0)

2
≤ 2

3
,

where in the first step we substituted in the definition of δ0, in the second step we used
fPx (pT0) ≤ fPx (p0) by the descent property of the Flip-Flop algorithm shown in Proposi-
tion 8.4.3, in the third step we used α ≤ fPx (p∗) ≤ fPx (p0) by Proposition A.5.2, and the
final step was by the assumption that m ≥ 2.

We can now apply Theorem 8.4.4 with this stronger lower bound to show

T1 − T0 .
log fPx (pT0)− log fPx (p∗)

min{δ2
0/2m, d

−1
max}

.
m

δ2
0

· δ2
0

α/fPx (pT0)
. fPx (p0)

m

α
,

where the first step was by Theorem 8.4.4 applied with δ2
0/2, in the second step we used

δ2
0 ≤ d−1

max as shown above and substituted in the lower bound from Eq. (8.6), and in
the final step we used fPx (pT0) ≤ fPx (p0) as Flip-Flop is a descent method according to
Proposition 8.4.3.

Continuing this way, we can define Tk to be the first time ‖∇ log fPx (pTk)‖2
p ≤ 2−kδ2

0

and bound
Tk+1 − Tk . fPx (pTk)

m

α
≤ fPx (p0)

m

α
.

The gradient bound in item (1) now follows by applying this argument inductively until
2−kδ2

0 ≤ δ2.

Since ‖∇ log fPx (pT)‖p ≤ δ ≤ δ0, we have that pT is α
e
-strongly convergent by Lemma 8.4.7.

Therefore, items (2) and (3) now follow from the gradient bound in item (1) as simple con-
sequences of Lemma 8.4.6(1) and (2), respectively.

292

Remark 8.4.9. Much of this algorithmic analysis goes through for any so-called descent
method which outputs a sequence {pt} satisfying

f(pt+1) ≤ f(pt)−
‖∇f(pt)‖2

p

2L

for some constant L which will then show up in the numerator of the iteration bound for
fast convergence. This more general approach was taken by Franks and Moitra [35] to give
a unified analysis for many natural scaling algorithms. In this thesis, we only require the
analysis of Sinkhorn and Flip-Flop algorithms.

In the following Section 8.5, we will show that the results on frame scaling given in
Chapter 4 can be made constructive. This will allow us to give fast algorithmic guarantees
for the statistical application of random frame scaling studied in [35].

8.5 Algorithms for the Paulsen Problem and Frame

Scaling

In this section, we will apply the results of Section 8.4 to give fast algorithmic guarantees
for particular cases of frame scaling. Specifically, we first give a slight improvement of
the core technical contribution of [35] which studied the convergence of Sinkhorn scaling
for random frames. This immediately implies a tight sample complexity bound for the
statistical estimation problem studied in [35]. Our second result is a randomized algorithm
which, given an input to the Paulsen problem, i.e. an ε-doubly balanced frame, converges
quickly to some exactly doubly balanced frame. This is really a constructive version of
Section 4.5 and so only the perturbation part will be randomized, whereas the remaining
scaling algorithm will be deterministic.

Our first result gives a strong bound on the solution of frame scaling for random unit
vectors. We apply Theorem 8.4.8 to give fast algorithmic guarantees for the frame version
of Sinkhorn/Flip-Flop. Note that for the statistical application of [35], we are mainly
concerned with bounding the error of the current iterate from the true scaling solution.

Theorem 8.5.1. Let U ∈ Mat(d, n) be a random matrix where the columns are independent
and uniformly distributed as uj ∼ n−1/2Sd−1. Then there exists a universal constant C such
that if n ≥ Cd, the following hold simultaneously with probability at least 1− exp(−Ω(n)):

1. U has size s(U) = 1 and is an ε-doubly balanced frame with ε2 . d
n

.

293

2. There is a doubly balanced scaling U∗ := eX∗/2UeY∗/2 with X∗ ∈ spd(d), Y∗ ∈ st+(n)
such that

‖(X∗, Y∗)‖p . ε and ‖(X∗, Y∗)‖op . ε.

Further, in this event, for every δ . 1√
d+n

, the Flip-Flop algorithm for frame scaling given

in Definition 8.4.1 produces iterate UT := LTURT and polar pT := (L∗TLT , R
∗
TRT) such

that, for p∗ := (eX∗ , eY∗),

‖∇UT ‖p . δ and ‖ log p−1/2
∗ pTp

−1/2
∗ ‖p . δ

in at most T . d+ log 1
δ
√
d+n

iterations.

Proof. We will first verify the first two items concerning initial error and bounds on the
doubly balanced solution using our pseudorandom analysis in Theorem 7.3.3. Then we will
use strong convexity along with Theorem 8.4.8 to prove fast algorithmic convergence.

To bound the frame scaling solution, our plan is to apply the pseudorandom analysis
in Theorem 7.3.3. So below, we show that U is nearly doubly balanced according to
Definition 4.1.2 and satisfies the pseudorandom condition in Definition 4.2.11. The random
vectors are distributed as uj ∼ n−1/2Sd−1, so by construction U is equal-norm and has size

s(U) =
n∑
j=1

‖uj‖2
2 =

n

n
= 1.

To show that U is ε-doubly balanced, we bound the error of the left marginal: Theo-
rem 4.4.1 shows that with probability at least 1− exp(−Ω(n)):∥∥∥∥∥d

n∑
j=1

uju
∗
j − Id

∥∥∥∥∥
op

.

√
d

n
≤ ε

where the final step was by our assumption that n & d
ε2

with ε ≤ O(
√

d
n
). This verifies

Definition 4.1.2 showing U is ε-doubly balanced.

We next show that U is pseudorandom. Specifically, we can apply Theorem 5.1.6 with
β = 1

16
(since n ≥ Cd for C large enough by assumption) to show that with probability at

least 1− exp(−Ω(n)), U is (Ω(1), 1
16

)-pseudorandom according to Definition 4.2.11.

By the union bound, both these events occur simultaneously with probability at least
1 − exp(−Ω(n)). In particular, U is ε-doubly balanced and (α, 1

16
)-pseudorandom with

294

α & Ω(1) & ε. This allows us to apply Theorem 7.3.3(1) to show that U∗ := eX∗/2UeY∗/2

is a doubly balanced frame, and bound the scaling solution by

max{‖X∗‖op, ‖Y∗‖op} .
ε

α
. ε,

where we used the bound in Theorem 7.3.3(2) for O(ε)-doubly balanced and (Ω(1), 1
16

)-
pseudorandom frame.

Note the above is the only randomized part of the procedure, and in the event that we
can apply Theorem 7.3.3, the following convergence guarantees are deterministic.

To show the algorithmic convergence of the frame Flip-Flop algorithm, our plan is to use
Theorem 8.4.8. For this purpose, we rewrite the above results in terms of the Kempf-Ness
formulation described in Proposition 6.2.18. We are given input U ∈ Mat(d, n) ' Rd⊗Rn

with frame scaling group G = (SL(d), ST(n)) and associated polar (P, p) according to
Definition 6.2.3. U∗ = eX∗/2UeY∗/2 is a doubly balanced frame by Theorem 7.3.3(1), which
is equivalent to p∗ := (eX∗ , eY∗) being an optimizer of the Kempf-Ness function fPU given
in Definition 6.2.9. Finally, Theorem 7.3.3(4) says that U∗ is an α∗-strongly convex frame
with α∗ ≥ e−12 · α ≥ Ω(1), which translates to α∗-geodesic strong convexity of fPU at p∗ by
to Lemma 7.1.8.

We can also use the size lower bound in Theorem 7.3.3(3) to bound

log
fPU (Id, In)

fPU (p∗)
= log

s(U)

s(U∗)
≤ − log

(
1− 10ε2

α

)
. ε2, (8.7)

where the first step was by the definition U∗ = eX∗/2UeY∗/2 so s(U∗) = fPU (eX∗ , eY∗),
the second step was by the size lower bound in Theorem 7.3.3(3) with (α ≥ Ω(1), 1

16
)-

pseudorandomness of U , and the final step was by Taylor approximation − log(1−x) ≤ 2x
for |x| ≤ 1

2
applied to ε2 . d

n
. 1 by assumption.

From this perspective, the Flip-Flop algorithm for frame scaling produces iterates
Ut = LtURt with (Lt, Rt) ∈ (SL(d), ST(n)) and associated polar pt := (L∗tLt, R

∗
tRt). The

conditions for algorithmic convergence translate to

‖∇ log fPU (pT)‖p . ‖∇fPU (pT)‖p . δ and ‖ log(p−1/2
∗ pTp

−1/2
∗)‖p . δ.

These are exactly the conclusions (1) and (3) of Theorem 8.4.8 applied with α∗ ≥ Ω(1)-

geodesic strong convexity at optimizer p∗ and δ ≤ α∗/fPU (Id,In)√
d+n

= δ0, so we can show show

295

that this occurs by iteration

T .
d+ n

α2
∗/f

P
U (Id, In)2

· log

(
fPU (Id, In)

fPU (p∗)

)
+
fPU (Id, In)

α∗
log

(
α∗

δ
√
d+ n

)
. (d+ n)ε2 + log

1

δ
√
d+ n

. d+ log
1

δ
√
d+ n

,

where the first step was by the iteration bound in Theorem 8.4.8 with α∗ ≥ Ω(1)-geodesic

strong convexity and δ0 =
α∗/fPU (Id,In)√

d+n
, in the second step we used log

fPU (Id,In)

fPU (p∗)
. ε2 by

Eq. (8.7) as well as the lower bound α∗ ≥ Ω(1) derived above, and the final step was by
the bound ε2 . d

n
as shown in item (1) of this theorem.

Remark 8.5.2. This is a technical improvement of the core scaling lemma in [35], which
requires n & d log2 d in order to get the same conclusions. With this improvement, we
show an optimal sample complexity result for Tyler’s M-estimator as shown in [35]. The
analysis of [35] focused on a slightly different convex formulation for frame scaling which
only produces equal-norm frames. This function does not necessarily have the multiplicative
univariate robustness properties shown in Lemma 7.1.13, which we used to show faster
convergence of the Flip-Flop algorithm in Theorem 8.4.8 (by the strong convergent property
in Definition 8.4.5).

The next result in this section is to give algorithmic guarantees for the smoothed anal-
ysis strategy of Section 4.5 for the Paulsen problem. For this application, we are mainly
concerned with convergence in ‖ · ‖F to a doubly balanced frame, not on scalings.

Theorem 8.5.3. There exists a universal constant C such that, for any ε-doubly balanced
frame U ∈ Mat(d, n) of size s(U) = 1, if either of the following two conditions hold:

d ≥ C,Cd ≤ n ≤ ed/C , ε ≤ 1

C
or d ≥ C, n ≥ ed/C , ε ≤ 1

Cd
,

then with Ω(1) probability, there is a doubly balanced frame V∗ of size s(V∗) = 1 satisfying

‖U − V∗‖2
F . ε.

Further in this event, for every δ . ε√
d+n

, the Flip-Flop algorithm for frame scaling takes at

most T . 1
ε
((n+d)+log ε

δ
√
d+n

) iterations to produce VT ∈ Mat(d, n) such that ‖∇VT ‖p . δ

and ‖VT −W‖2
F . δ2

ε
for some doubly balanced frame W ∈ Mat(d, n).

296

Proof. We will first verify distance bound on the doubly balanced solution using our pseu-
dorandom analysis in Theorem 7.3.3. Then we will use strong convexity of the solution
along with Theorem 8.4.8 to prove fast algorithmic convergence.

By the conditions on (n, d, ε), we are exactly in the two cases covered by Theorem 4.5.1
and Theorem 4.5.2, respectively. Applying these two theorems with β = 1

16
, we get per-

turbation V that with Ω(1) probability satisfies

1. V has size s(V) = 1 and ‖V − U‖2
F . ε;

2. V is O(ε)-doubly balanced;

3. V is (α, 1
16

)-pseudorandom with α ≥ Ω(ε).

This is the only randomized part of the algorithm. In the remainder of the proof, we
assume these events hold simultaneously.

V now satisfies the conditions of Theorem 4.2.14, so conclusions (1) and (4) imply the
frame scaling solution V∗ is doubly balanced and that

‖V∗ − V ‖2
F .

ε2

α
. ε,

where we used α & ε. Combining this with the perturbation distance, we get

‖V∗ − U‖2
F . ‖V∗ − V ‖2

F + ‖V − U‖2
F . ε+ ε . ε,

which verifies this distance bound in this theorem.

Our plan is now to use Theorem 8.4.8 to analyze algorithmic convergence of the frame
Flip-Flop algorithm. For this purpose, we rewrite the above results in terms of the
Kempf-Ness formulation described in Proposition 6.2.18. We begin with perturbed in-
put V ∈ Mat(d, n) ' Rd⊗Rn with frame scaling group G = (SL(d), ST(n)) and associated
polar (P, p) according to Definition 6.2.3. V∗ = eX∗/2V eY∗/2 is a doubly balanced frame by
Theorem 7.3.3(1), which by Proposition 6.2.18(3) is equivalent to p∗ := (eX∗ , eY∗) being
an optimizer of the Kempf-Ness function fPV given in Definition 6.2.9. Finally, Theo-
rem 7.3.3(4) says that V∗ is an α∗-strongly convex frame with α∗ ≥ e−12 · α ≥ Ω(ε), which
translates to α∗-geodesic strong convexity of fPV at p∗ according to Definition 6.2.13.

To bound the iterations, we require the size lower bound in Theorem 7.3.3(3):

log
fPV (Id, In)

fPV (p∗)
= log

s(V)

s(V∗)
≤ − log

(
1− 10ε2

α

)
. ε, (8.8)

297

where the first step was by the definition V∗ = eX∗/2V eY∗/2 so s(V∗) = fPV (eX∗ , eY∗),
the second step was by the size lower bound in Theorem 7.3.3(3) with (α ≥ Ω(ε), 1

16
)-

pseudorandomness of V , and the final step was by the Taylor approximation − log(1−x) ≤
2x applied to argument ε2

α
. ε . 1 by assumption.

From this perspective, the Flip-Flop algorithm for frame scaling produces iterates Vt =
LtV Rt with (Lt, Rt) ∈ (SL(d), ST(n)) and associated polar pt := (L∗tLt, R

∗
tRt). The first

requirement for algorithmic convergence then translates to

‖∇ log fPV (pT)‖p . ‖∇fPV (pT)‖p . δ.

This is exactly conclusions (1) of Theorem 8.4.8 applied with α∗ ≥ Ω(ε)-geodesic strong

convexity and δ ≤ α∗/fPU (Id,In)√
d+n

= δ0, and we can show show that this occurs by iteration

T .
d+ n

α2
∗/f

P
V (Id, In)2

· log

(
fPV (Id, In)

fPU (p∗)

)
+
fPV (Id, In)

α∗
log

(
α∗

δ
√
d+ n

)
.

(d+ n)

ε
· ε+

1

ε
log

ε

δ
√
d+ n

,

where the first step was by the iteration bound in Theorem 8.4.8 with α∗ ≥ Ω(ε)-geodesic

strong convexity and δ0 =
α∗/fPV (Id,In)√

d+n
, and in the second step we used log

fPV (Id,In)

fPV (p∗)
. ε by

Eq. (8.8) as well as the lower bound α∗ ≥ Ω(ε) derived above.

In the remainder of the proof, we focus on showing that there is a doubly balanced
frame W ∈ Mat(d, n) satisfying the distance bound ‖VT −W‖F . δ2

ε
. We want to use the

fact that V∗ is a doubly balanced frame that is close to V , and both V∗ and VT are scalings
of V . Our plan is to use the analysis of Proposition 4.3.6, which bounds the distance to a
doubly balanced matrix via the path length of matrix gradient flow. For this purpose, we
will need to perform a change of basis to find the appropriate matrix scaling.

Consider VT = LTV RT and V∗ = eX∗/2V eY∗/2. Since we want to use Proposition 4.3.6,
we exhibit a simple transformation of V∗ is a matrix scaling of VT :

V∗ = eX∗/2V eY∗/2 = eX∗/2(L−1
T VTR

−1
T)eY∗/2 = (eX∗/2L−1

T)VT (R−1
T eY∗/2),

where we substituted V∗ = eX∗/2V eY∗/2 in the first step and V = L−1
T VTR

−1
T in the second

step. Now let eX∗/2L−1
T = ΞA be the polar decomposition according to Theorem 2.1.13

where A = |eX∗/2L−1
T | ∈ SPD(d) is the polar component and and Ξ ∈ SO(d) is the isometry

component. Further let eY/2 := R−1
T eY∗/2 for Y ∈ st+(n) since both RT and eY∗/2 are in

ST+(n). We observe that

Ξ∗V∗ = Ξ∗(eX∗/2L−1
T)VT (R−1

T eY∗/2) = AVT e
Y/2

298

is a doubly balanced frame (by Fact 4.2.7), and further that it is a positive definite scaling
of VT . In fact, we can show that it is a matrix scaling of VT when viewed in the appro-
priate basis. Therefore, let Ψ ∈ SO(d) be the eigenbasis of A ∈ SPD(d) according to
Theorem 2.1.8 so that A = ΨeX/2Ψ∗ for some diagonal X ∈ st+(d). Then we consider the
matrix representations M := Ψ∗VT and M∗ := Ψ∗Ξ∗V∗ so that

M∗ = Ψ∗Ξ∗V∗ = Ψ∗AVT e
Y/2 = eX/2Ψ∗VT e

Y/2 = eX/2MeY/2,

where the first step was by definition of M∗, in the second step we substituted Ξ∗V∗ =
AVT e

Y/2 as shown above, in the third step we substituted A = ΨeX/2Ψ∗ for eigenbasis
Ψ ∈ SO(d), and the final step was by the definition M := Ψ∗VT .

Since M∗ = Ψ∗Ξ∗V∗ is a particular matrix representation of doubly balanced frame
V∗, Definition 4.2.11 shows that M∗ = eX/2MeY/2 is a doubly balanced matrix scaling of
M .In fact, M∗ is an α∗-strongly convex matrix as V∗ is an α∗-strongly convex frame. By
Proposition 3.1.10(3), this implies that (X, Y) ∈ t = st+(d) ⊕ st+(n) is an optimizer of
the matrix Kempf-Ness formulation fM given in Definition 3.1.6, and further that fM is
α∗-strongly convex at (X, Y). Therefore, Lemma 2.3.11 in fact shows that (X, Y) is the
unique optimizer of fM , which implies M∗ = eX∗/2MeY∗/2 is the unique doubly balanced
matrix scaling of M .

We have exhibited doubly balanced frame Ξ∗V∗ which is a scaling of VT , and further

‖Ξ∗V∗ − VT‖F = ‖Ψ∗Ξ∗V∗ −Ψ∗VT‖F = ‖M∗ −M‖F ,

where we used invariance of ‖ · ‖F under isometry Ψ ∈ SO(d). Therefore, if we can bound
the distance of matrix gradient flow travelling from M to M∗, this also bounds the distance
between VT and doubly balanced frame W := Ξ∗V∗.

The analysis of Proposition 4.3.6 requires strong convexity throughout gradient flow
and the bound is given in terms of the gradient of M . Note that ∇M := ∇f t

M(0, 0), so we
can bound this in terms of our iterate VT by

‖∇M‖2
t =

1

d

d∑
i=1

(〈Eii, d ·MM∗ − s(M)Id〉)2 +
1

n

n∑
j=1

(〈Ejj, n ·M∗M − s(M)In〉)2

=
1

d

d∑
i=1

(〈Eii, d ·Ψ∗VTV ∗T Ψ− s(VT)Id〉)2 +
1

n

n∑
j=1

(〈Ejj, n · V ∗T ΨΨ∗VT − s(VT)In〉)2

≤ 1

d
‖d · VTV ∗T − s(VT)Id‖2

F +
1

n
‖ diag(n · V ∗T VT − s(VT)In)‖2

F = ‖∇fPVT (Id, In)‖2
p,

299

where in the first step we used Proposition 3.1.12 for the matrix gradient, in the second
step we substituted M = Ψ∗VT , in the third step we used ‖ diag(X)‖2

F ≤ ‖X‖2
F for the

first term, and the fourth step was by Proposition 7.1.3 of the geodesic gradient of VT .

We have already shown that ‖∇VT ‖p . δ by Theorem 8.4.8, so the above calculation
implies ‖∇M‖t . δ. Further, if Mt = eXt/2MeYt/2 is the solution to matrix gradient flow
given in Definition 3.1.14, then Proposition 3.2.2 (with α ≥ 0) shows that ‖∇Mt‖t ≤
‖∇M‖t ≤ ‖∇VT ‖p . δ for all time.

We can use these gradient bounds to show strong convexity throughout matrix gradient
flow. We have already shown M∗ = Ψ∗Ξ∗V∗ is an α∗-strongly convex matrix. Further, since
δ . ε√

d+n
≤ α∗

e
√
d+n

=: δ0 by assumption, we have that Mt satisfies the gradient condition

‖∇Mt‖t . δ ≤ δ0 in Lemma 8.4.7. Specifically, rewriting M∗ = eX/2MeY/2 as shown
above, this allows us to apply Lemma 8.4.7 to show that ‖(Xt, Yt)− (X, Y)‖∞ ≤ 1 for all
time. Therefore, we can use the robustness property in Lemma 3.2.4 to show Mt is also
α∗
e
≥ Ω(ε)-strongly convex as a matrix for all time.

This verifies the conditions of Proposition 4.3.6, which shows

‖Ξ∗V∗ − VT‖2
F = ‖M∗ −M‖2

F ≤
‖∇f t

M(0, 0)‖2
t

4α∗/e
.
δ2

ε
,

where the first step was by the invariance of ‖ · ‖F under isometry Ψ ∈ SO(d) as M∗ =
Ψ∗Ξ∗V∗ and M = Ψ∗VT , the second step was by the distance bound in Proposition 4.3.6
with ∆(M) = ‖∇M‖2

t according to Definition 4.3.2, and the final step was by the fact that
‖∇M‖t ≤ ‖∇VT ‖p . δ and α∗

e
≥ Ω(ε)-strong convexity of Mt shown above. This gives the

required distance bound to frame W = Ξ∗V∗ which is doubly balanced by Fact 4.2.7 as V∗
is doubly balanced by the first statement in the theorem.

At this point, all the results of Chapter 3 and Chapter 4 have been made algorith-
mic. In the next Chapter 9, we will combine the bounds of Chapter 7 on tensor scaling
with Theorem 8.4.8 to give sample complexity bounds and algorithmic guarantees for a
statistical estimation problem on tensors.

300

Chapter 9

Maximum Likelihood Estimator for
the Tensor Normal Model

The results of this chapter are based on [36], which is joint work with Cole Franks, Rafael
Oliveira, and Michael Walter.

In this chapter, we consider covariance estimation for matrix-variate and tensor-variate
Gaussian data. In order to bypass information theoretical sample lower bounds, we consider
the well-studied matrix and tensor normal models, where the covariance is assumed to
factor into a product of tensor factors. These distributions arise naturally in numerous
applications like gene microarrays, spatio-temporal data, and brain imaging. This is the
second main application in this thesis, after the Paulsen problem discussed in Chapter 4. It
turns out that the maximum likelihood estimator (MLE) for this model is, up to some small
reductions, exactly the solution to a tensor scaling problem. In particular, we will study the
random tensor scaling problems that arise in this statistical setting and show strong bounds
on the MLE as a consequence of the convergence analyses presented in Chapter 7. We will
also use the algorithmic framework of Chapter 8 to give the first rigorous convergence
analysis of the natural Flip-Flop algorithm for finding the MLE, which explains the fast
convergence of this algorithm in practice.

The reader is not required to have any background in statistical estimation, and the
only concepts assumed will be linear algebra as covered in Section 2.1. Therefore, in
our first Section 9.1, we present the relevant concepts from statistics using the running
example of covariance estimation for the Gaussian distribution. In Section 9.2, we present
a natural generalization of this problem to matrix or tensor valued data, and give new
sample complexity results for covariance estimation in this setting. Our main tool will

301

be the analyses of tensor scaling from Chapter 7. We will also use the framework of
Chapter 8 to show the promised estimator can be computed to high accuracy via the Flip-
Flop algorithm in Definition 8.4.1. In Section 9.3, we show that random tensors satisfy
the strong convexity and pseudorandomness properties required to apply the analyses of
Chapter 7. These are stand-alone results on spectral properties of random tensors, and
we believe they are of independent interest. We also mention that our proof that random
tensors satisfy the spectral condition of Definition 7.1.9 is a small adaptation of a powerful
result of Pisier [80], which is stated from the perspective of quantum information theory.

9.1 Statistical Background

In this section, we present the statistical background necessary to state our new results
on the matrix and tensor normal model. Specifically, we will define statistical inference in
Section 9.1.1, maximum likelihood estimation in Section 9.1.2, and the measure of error
we use for our estimators in Section 9.1.3. We will use the running example of Gaussian
covariance estimation to illustrate these concepts. Finally, in Section 9.1.4 we present tight
sample complexity results for Gaussian covariance estimation.

9.1.1 Statistical Inference

The core problem in statistics is to gain some quantitative knowledge about an unknown
distribution based on samples from that distribution. A statistical model is a set of assump-
tions which constrains the possible family of distributions F that we are dealing with. For
a known model, the task of statistical inference is, given independent samples X1, ..., Xn

chosen uniformly from a fixed unknown distribution D ∈ F , to estimate some concrete
property Θ of the distribution D. The quality of this estimate can be measured according
to various metrics depending on the application requirements. The theoretical goal is to
give an estimator Θ̂ which, with high probability, uses few samples and is as close to the
truth as possible. Note that the estimator can depend on the model and the samples, but
obviously cannot depend on knowledge of the unknown distribution D.

The following are a few simple examples of statistical estimation problems.

Example 9.1.1 (Bernoulli Estimation). Given samples X1, ..., Xn ∼ Ber(p) from a Bernoulli
distribution, estimate the unknown bias p.
Output: The sample mean p̂ := 1

n

∑
i=1Xi is a natural high-quality estimator.

302

Example 9.1.2 (Gaussian Covariance Estimation). Given samples X1, ..., Xn ∼ N(0,Θ−1),
estimate the unknown precision matrix Θ ∈ Mat(d).

Output: The inverse sample covariance matrix Θ̂ :=
(

1
n

∑
i=1XiX

∗
i

)−1
is a natural high-

quality estimator for the precision matrix.

This Gaussian covariance estimation problem will be a running example throughout
this section. We study the precision matrix Θ instead of the covariance matrix as a small
notational convenience due to our choice of error measure and estimator.

In both the previous examples, our choice of estimator seemed quite intuitive given
the available information. In the following Section 9.2 on the matrix and tensor normal
models, there will not be such a clear choice. Therefore, in the next subsection, we present
a formal paradigm which describes a reasonable choice of estimator in general.

9.1.2 Maximum Likelihood Estimation

In this subsection, we will present the maximum likelihood method for statistical estima-
tion. This method does not come with general guarantees, and instead gives a recipe for
an estimator, the quality of which depends heavily on the application. In particular, we
will compute the maximum likelihood estimator (MLE) for Gaussian covariance estima-
tion, which will present some justification for our choice in Example 9.1.2. We re-iterate
that the MLE is not always a good estimator (and in fact is not even required to exist
in general), so the analysis in Section 9.1.4 gives the final justification for our choice of
estimator in Example 9.1.2.

The method is motivated by the following reasoning. Suppose we are given sample
X ∈ Rd from some unknown centered Gaussian distribution, and we guess that the true
distribution is N(0,Θ−1). According to Definition 2.5.7, the probability density function
(pdf) is given by

fΘ(x ∈ Rd) =

√
det(Θ)

(2π)d
exp

(
−1

2
x∗Θx

)
.

If fΘ(X) is small for our given sample X, then this sample was very unlikely, and in
some sense Θ is a bad guess. This inuition is formalized below.

Definition 9.1.3. Given samples X1, ..., Xn ∈ Rd from some unknown distribution in
F := {Dω}ω∈Ω, the likelihood function of guess θ ∈ Ω is

LX(θ) := fθ(X1, ..., Xn) =
n∏
i=1

fθ(Xi),

303

where fθ is the pdf of Dθ. We also consider the log-likelihood function `X(θ) := logLX(θ).

The maximum likelihood estimator (MLE) is the maximizer

θ̂ := arg max
ω∈Ω

L(ω).

It turns out that the estimator in Example 9.1.2 can be derived using this perspective.

Proposition 9.1.4. Given samples X1, ..., Xn ∈ Rd from an unknown centered Gaussian

distribution, the MLE is the inverse sample covariance Θ̂ :=
(

1
n

∑
i=1 XiX

∗
i

)−1
. This can

be computed as the solution to the following optimization problem:

arg min
Θ∈PD(d)

FX(Θ) :=

〈
1

n

n∑
i=1

XiX
∗
i ,Θ

〉
− log det(Θ).

Proof. By independence, the log-likelihood of Θ for samples X1, ..., Xn is just the sum of
log-likelihoods for each individual sample. So we compute

log fΘ(x) =
1

2
log det(Θ)− d

2
log(2π)− 1

2
x∗Θx

=⇒ `X(Θ) =
n

2
log det(Θ)− nd

2
log(2π)− 1

2

n∑
i=1

〈XiX
∗
i ,Θ〉.

The MLE is the maximizer of the function `X(Θ). We first perform some simplifying
transformations to more clearly show the similarity to scaling (Proposition 6.2.18). We
can drop the nd

2
log(2π) term, since it does not depend on Θ, and renormalize to find the

MLE as

arg min
Θ∈PD(d)

FX(Θ) :=
−2

n

(
`(Θ) +

nd

2
log(2π)

)
=

〈
1

n

n∑
i=1

XiX
∗
i ,Θ

〉
− log det(Θ),

where we have used the natural Frobenius (entrywise) inner product on Mat(d). We can
find the optimizer by solving for critical points:

0 = ∇ΘFX(Θ) =
1

n

n∑
i=1

XiX
∗
i −Θ−1 =⇒ Θ̂ =

(
1

n

n∑
i=1

XiX
∗
i

)−1

.

Note that this critical point is unique whenever the samples {X1, ..., Xn} are of full rank,
which occurs with probability 1 for n ≥ d. To prove that this is in fact the MLE, we can
show that it is the global minimizer of FX by computing the second derivative, and we
leave this folklore result to the reader.

304

This optimization formulation enjoys a certain linear invariance properties which will
be helpful for our analysis.

Proposition 9.1.5. For samples X1, ..., Xn ∈ Rd and A ∈ GL(d), let Yi := AXi. Then

FY (Θ) = FX(AΘA∗) + log det(AA∗).

As a consequence, Θ̂Y is the MLE for Y iff Θ̂X = AΘ̂YA
∗ is the MLE for X.

Proof. This is a simple change of variable calculation:

FY (Θ) =
1

n

n∑
i=1

〈YiY ∗i ,Θ〉 − log det(Θ)

=
1

n

n∑
i=1

〈XiX
∗
i , AΘA∗〉 − log det(AΘA∗) + log det(AA∗)

= FX(AΘA∗) + log det(AA∗),

where the first and third steps were by the definition of MLE given in Proposition 9.1.4, and
in the second step we used Y = AX and multiplicativity of det for invertible A ∈ GL(d).
For the the second statement, log det(AA∗) does not depend on Θ, so we can drop this
term without changing the optimizer.

We will use this invariance property in Section 9.1.4 to reduce to the case Θ = Id, where
we will be able to use tighter concentration bounds in our analysis.

9.1.3 Quality of Gaussian Covariance Estimator

There are many ways to measure how good an estimator is, and the particular choice
depends greatly on the application. One natural measure of error for Gaussian covariance
estimation is the following.

Definition 9.1.6. The relative Frobenius and operator error between A,B ∈ PD(d) is
defined

dF (A,B) = ‖Id −B−1/2AB−1/2‖F , dop(A,B) = ‖Id −B−1/2AB−1/2‖op.

Note that these measures are not symmetric, and so not strictly a metric or distance
measure. One reason for this choice is that these errors are scale-invariant. In fact, in the
next proposition we show that they satisfy a stronger linear invariance property.

305

Proposition 9.1.7. For A,B ∈ PD(d), d(A,B) = d(B−1/2AB−1/2, Id) where d denotes
both dF and dop. As a consequence, for X := logB−1/2AB−1/2,

‖X‖ ≤ 1 =⇒ d(A,B) = ‖Id − eX‖ ≤ 2‖X‖,

where ‖ · ‖ denotes ‖ · ‖F for d = dF and ‖ · ‖op for d = dop.

Proof. The first statement is clear by definition, and the second statement follows by a
simple Taylor approximation |ez−1| ≤ 2|z| for |z| ≤ 1 applied to the eigenvalues of X.

Intuitively, dF , dop give a multiplicative form of error between A,B. For example

dop(A,B) = sup
v∈Rd

|〈vv∗, Id −B−1/2AB−1/2〉|
‖v‖2

2

= sup
u∈Rd

|〈u,Bu〉 − 〈u,Au〉|
〈u,Bu〉

,

where the last line was a change of variable v = B1/2u. Therefore dop(A,B) ≤ ε implies a
multiplicative approximation of the quadratic form

∀u ∈ Rd : 〈u,Au〉 ∈ (1± ε)〈u,Bu〉.

This kind of approximation is common in the literature on Laplacian solvers and graph
sparsification (e.g. [87], [84]).

Another reason to measure error this way is that it approximates many other natural
statistical error measures such as total variation distance, KL-divergence, and Fisher-Rao
distance. Specifically, due to the linear invariance property shown above, all of these
measures are the same up to constant factors whenever any one of them is bounded by a
small constant.

Our results in Section 9.2 will rely on geodesic convex optimization which will give
strong bounds on the geodesic distance ‖X = logB−1/2AB−1/2‖ to the optimizer. We will
use the second property in Proposition 9.1.7 to show that this also implies strong bounds
on dF and dop.

9.1.4 Analysis of the MLE

In this subsection, we will give explicit sample complexity bounds for high quality Gaussian
covariance estimation by bounding the relative error of the MLE given in Proposition 9.1.4.
These results are standard in the literature, and are tight up to constant factors due to
folklore lower bounds discussed informally at the end of this subsection.

306

Theorem 9.1.8. Let X1, ..., Xn ∈ Rd be samples from Gaussian distribution N(0,Θ−1),

and let Θ̂ be the MLE for the precision matrix according to Proposition 9.1.4. For any
ε ≤ 1

10
such that n ≥ d

ε2
, the following error bounds are satisfied with probability at least

1− 2 exp(−Ω(ε2n)):

dop(Θ̂,Θ) . ε and dF (Θ̂,Θ)2 . dε2.

Proof. Our plan is to use the linear invariance of the MLE and distance measure to reduce
to the case when Θ = Id. The result will then follow from standard matrix concentration
results of Gaussian distributions as given in Theorem 2.5.12.

By Definition 2.5.7, X ∼ N(0,Θ−1) is distributed as Θ−1/2Y for standard Gaussian
Y ∼ N(0, Id). By Proposition 9.1.5, the MLE of X and Y are related as follows:

Θ̂Y = Θ−1/2Θ̂XΘ−1/2.

The error measures also satisfy a similar invariance according to Proposition 9.1.7:

d(Θ̂X ,Θ) = d(Θ−1/2Θ̂XΘ−1/2, Id) = d(Θ̂Y , Id).

Therefore, in order to prove the theorem, it is enough to show the error bound in the
case when Θ = Id. In this case, the sample covariance has spectrum concentrated close
to one. For t = ε

√
n, Theorem 2.5.12 gives the following bound with probability at least

1− 2 exp(−ε2n/2):

λmax

(
1

n

n∑
i=1

YiY
∗
i

)
=

(
σmax(Y)√

n

)2

≤

(
1 +

√
d+ ε

√
n√

n

)2

≤ 1 + 5ε,

where we applied Theorem 2.5.12 to the random matrix of Gaussian samples Y = [Y1, ..., Yn] ∈
Mat(d, n), and in the last step we used the assumption that n ≥ d/ε2 and ε ≤ 1

10
. Theo-

rem 2.5.12 also gives the following lower bound with the same probability:

λmin

(
1

n

n∑
i=1

YiY
∗
i

)
≥ 1− 5ε.

Therefore, when this event occurs, we can bound the error

dop(Θ̂Y , Id) =

∥∥∥∥∥∥
(

1

n

n∑
i=1

YiY
∗
i

)−1

− Id

∥∥∥∥∥∥
op

= max
{
|λ−1

max − 1|, |λ−1
min − 1|

}
≤ 10ε,

307

where the last step was by Taylor approximation | 1
1+x
− 1| ≤ 2|x| for |x| ≤ 1

2
along with

the assumption ε ≤ 1
10

. Similarly, we can calculate

dF (Θ̂Y , Id)
2 =

∥∥∥∥∥∥
(

1

n

n∑
i=1

YiY
∗
i

)−1

− Id

∥∥∥∥∥∥
2

F

≤
d∑
j=1

(λ−1
j − 1)2 ≤ d(10ε)2,

where the last step was again by the same Taylor approximation.

This is in fact best possible error bound up to constant factors. In fact, the sample
covariance is non-invertible for n < d samples so in this case we cannot have any constant
error estimator. Intuitively, if we rewrite the sample complexity requirement as nd & d2,
then the right hand side represents the degrees of freedom of the unknown precision matrix,
and the left hand side represents the information content of n samples of d-dimensional
vectors. This reasoning will also give heuristic lower bounds for sample complexity of the
matrix and tensor normal model in the following section.

9.2 Matrix and Tensor Normal Model

This section contains the main new sample complexity results for covariance estimation in
the matrix and tensor normal models. In Section 9.2.1, we will introduce the matrix and
tensor normal model as well as the maximum likelihood estimator and error measure used
for our new results. This model can be viewed as a generalization of the Gaussian model
of Example 9.1.2 to matrix and tensor-variate data and the MLE therefore reduces to an
optimization problem similar to Proposition 9.1.4. In Section 9.2.2, we discuss previous
results for this estimator as well as the the natural Flip-Flop algorithm used to compute
it in practice. Then, in Section 9.2.3, we state the new results in [36], proving the best-
known sample complexity results for the tensor normal model as well as the first rigorous
convergence analysis of the Flip-Flop algorithm. In Section 9.2.7, we state and prove two
slightly stronger results improving the sample complexity and error bounds, respectively.
This is accomplished by a reduction to the tensor scaling problem for random inputs as
we show in Section 9.2.4. Therefore, we can prove our new results using the analyses from
Chapter 7: specifically, we will show that when the number of samples is large enough,
these random inputs have small gradient in Section 9.2.5, and are strongly convex and
pseudorandom in Section 9.2.6.

308

9.2.1 Setup

In the previous section, we saw tight results for Gaussian covariance estimation. In this
section we will consider the case when our random data is in the form of a matrix or a
tensor. Explicitly, the data X is an element of the vector space RD := Rda ⊗ ... ⊗ Rdm

for some m ≥ 2. The discussion after Theorem 9.1.8 shows that for such distributions
N(0,Θ−1) with Θ ∈ PD(D) and no further assumptions on the covariance matrix, it is
information-theoretically impossible to get any reasonable estimator unless the number of
samples n satisfies n & D =

∏
a∈[m] da. To bypass this lower bound, we will consider the

following model which imposes a natural structural assumption on the covariance matrix,
and show that this reduces the required number of samples for a good estimator.

Definition 9.2.1 (Matrix and Tensor Normal Model). The tensor normal model with
m ≥ 2 and dimensions d1, ..., dm is the family of Gaussian distributions N(0,Θ−1) where

Θ = Θ1 ⊗ ...⊗Θm

with {Θa ∈ PD(da)}a∈[m]. When m = 2, this is known as the matrix normal model. The
tensor product structure RD = Rd1 ⊗ ...⊗Rdm is specified as part of the input to the model.

Note the decomposition is only unique up to scalars, so we use the convention

Θ = θ ·Θ1 ⊗ ...⊗Θm

where Θa ∈ SPD(da) for all a ∈ [m] (i.e. det(Θa) = 1 for all a ∈ [m]), and θ = det(Θ)1/D

is the scalar normalization factor.

This allows us to formally define the statistical estimation problem below.

Definition 9.2.2 (Covariance Estimation for Matrix and Tensor Normal Model). Given
samples X1, ..., Xn ∼ N(0,Θ−1) where Θ = θ · Θ1 ⊗ ... ⊗ Θm with Θa ∈ SPD(da), find

estimator Θ̂ := θ̂ · Θ̂1 ⊗⊗ Θ̂m such that

max
{
|θ̂ − θ|, max

a∈[m]
d(Θ̂a,Θa)

}
≤ δ

for chosen precision δ according to error measure dop or dF given in Definition 9.1.6. A

weaker requirement is d(Θ̂,Θ) ≤ δ.

The above estimation question can be split into a two parts: the theoretical goal is to
find an estimator with provably low error using as few samples as possible; the algorithmic

309

goal is to compute a good estimator given a fixed set of samples. Both of these are with
high probability over the random samples.

In the Gaussian model in Example 9.1.2, the inverse sample covariance matrix was a
natural estimator which had optimal error. In the tensor setting, this is not even a feasible
solution as the sample covariance matrix will almost surely not factorize into a tensor
product of the required dimensions. If n < D = d1 · ... · dm, the sample covariance will not
be invertible. But each tensor factor Θa can be described by O(d2

a) entries, so the total
number of unknown parameters is

∑
a∈[m] d

2
a.

One may also think of each random sample Xi as taking values in the set of d1×· · ·×dm
arrays of real numbers. There are m natural ways to “flatten” Xi to a matrix: for example,
we may think of it as an element of Rd1 ⊗ Rd2d3...dm , i.e. a matrix with columns in Rd1

indexed by (j2, ..., jm). In the tensor normal model, the d2d3...dm = D
d1

many columns are
each distributed as a Gaussian random vector with covariance proportional to Θ1. In an
analogous way we may flatten it to a da × D

da
for any a ∈ [m]. As such, the columns of the

a-th flattening can be used to estimate Θa up to a scalar.

As such, another natural estimator is the set of marginals

∀a ∈ [m] : Θ̂a :=

(
Tra

[
1

n

n∑
i=1

XiX
∗
i

])−1

.

By properties of Gaussian concentration, this estimator has very good error properties
when the true covariance is ID. But in general, this could result in an estimator with very
high variance. This is because the columns of the flattenings are not independent and may
be arbitrarily correlated. The MLE decorrelates the columns to obtain rates like those one
would obtain if the columns were independent.

Before presenting this estimator formally, we give an intuitive derivation of the Flip-
Flop algorithm that is used to compute it in practice. Say we are in the setting of the matrix
normal model with X1, ..., Xn ∼ N(0,Θ−1

L ⊗ Θ−1
R) so that Xi = Θ

−1/2
L YiΘ

−1/2
R for random

matrix Yi independent standard Gaussian entries, where we used Xi ∈ Mat(dL, dR) '
RdL⊗RdR by abuse of notation. Now assume that we know ΘR. Scaling our samples by this
factor, we observe that XiΘ

1/2
R is distributed as Θ

−1/2
L Yi, which has independent columns

y1, ..., ydR ∼ N(0,Θ−1
L). Therefore, we can simply use the inverse sample convariance of

the left marginal to estimate the remaining tensor factor ΘL, as shown in Section 9.1.4.

In general, we do not know ΘR exactly, so we do not have access to a distribution with
independent columns for any marginal. The Flip-Flop algorithm uses our current iterate as
the best guess and performs the same procedure, updating one factor at a time. Explicitly,

310

if our current guess is ΘR, then we can update our current guess for ΘL to the sample
covariance of the left marginal of the scaled samples {XiΘR}i∈[n]. For the general tensor
normal model, in each step the flip flop algorithm chooses one of the dimensions a ∈ [m]
and uses the a-th flattening of the samples to update Θa.

It turns out that this procedure converges to the MLE [31], which is defined by the
optimization formulation below.

Proposition 9.2.3. For samples X1, ..., Xn ∈ RD where RD = Rd1 ⊗ ...⊗Rdm and m ≥ 2
according to Definition 9.2.1 of the tensor normal model, the MLE Θ̂ := θ̂ · Θ̂1 ⊗ ...⊗ Θ̂m

is given by the minimizer of the function

FX(θ,Θ1, ...,Θm) :=
θ

nD

〈 n∑
i=1

XiX
∗
i ,⊗a∈[m]Θa

〉
− log θ. (9.1)

over all θ > 0 and {Θa ∈ SPD(da)}a∈[m].

Proof. The matrix and tensor normal models are a subset of the family of Gaussian dis-
tributions, so the pdf and the likelihood function are still of the same form:

`X(Θ) =
n

2
log det(Θ)− 1

2

n∑
i=1

〈XiX
∗
i ,Θ〉

as calculated in Proposition 9.1.4. Substituting in Θ = θ · Θ1 ⊗ ... ⊗ Θm, and applying
some simple transformations gives

FX(Θ) :=
−2

nD
`X(Θ) =

〈
1

nD

n∑
i=1

XiX
∗
i ,Θ

〉
− 1

D
log det

(
θ ·Θ1 ⊗ ...⊗Θm

)
=

〈
1

nD

n∑
i=1

XiX
∗
i ,Θ

〉
− 1

D

(
log θD +

∑
a∈[m]

log det(Θa)
D/da

)

=

〈
1

nD

n∑
i=1

XiX
∗
i ,Θ

〉
− log θ,

where the first step was because det(θ·Θ1⊗...⊗Θm) = θD det(Θ1)D/d1 ... det(Θm)D/dm which
can be shown inductively using Fact 2.4.1, and in the last step we used that log det(Θa) = 0
by our convention Θa ∈ SPD(da).

311

The above should look very familiar. In fact this is almost exactly the Kempf-Ness
function for tensor scaling given in Definition 6.2.9 on input X as fX(Θ) = 〈ρX ,Θ〉, and
we will formalize this connection between the MLE and the tensor scaling solution in
Section 9.2.4. Therefore, if we can show that input X satisfies the strong convergence
conditions of the analyses in Chapter 7, we can derive strong bounds on the MLE in terms
of the geodesic distance bounds for the tensor scaling solution.

In Section 9.2.4, we will explicitly show the connection between the MLE and tensor
scaling and show how to reduce to the case Y ∼ N(0, ID). This will allow us to use
properties of Gaussian concentration to show that the input to the tensor normal model
satisfies the fast convergence conditions in Chapter 7 with high probability.

9.2.2 Previous Work

In this subsection, we discuss previous results for the matrix and tensor normal mod-
els. These are quite natural assumptions for tensor data, and therefore there are many
heuristics and algorithms used in practice. Though there has been a large volume of work
on estimating the covariance in the matrix and tensor normal models under further as-
sumptions like sparsity and well-conditionedness, some fundamental questions concerning
estimation without further assumptions were still open prior to our work. As a natural
heuristic to find a good estimator, the Flip-Flop algorithm (see Definition 8.4.1) was pro-
posed and studied for the matrix normal model by [31] and [99]. The authors also showed
the MLE converges to the true distribution when the number of samples n goes to ∞.
The algorithm was naturally extended to the tensor setting in [68] and [69], but without
a convergence analysis. Here we will be interested in non-asymptotic rates. In [92], it was
shown that three steps of the Flip-Flop algorithm for the matrix normal model output an
estimator with bounded error dF . (d2

1 + d2
2)/n in expectation, though they did not give

bounds for the individual tensor factors. The same authors showed tighter error bounds
when the covariance matrix satisfied additional sparsity assumptions. But for the general
tensor normal model, there were no known results on high probability error bounds prior
to our work in [36].

Even characterizing the existence of the MLE for the matrix and tensor normal model
has remained elusive until recently. Améndola, Kohn, Reichenbach, and Seigal in [4] pro-
posed a framework of statistical models known as Gaussian group models. This allowed
them to relate natural existence questions about the MLE for these models to algebraic
problems about group orbits (discussed in Section 6.1.2). In the special cases of matrix
and tensor normal models, these are exactly related to the operator and tensor scaling

312

problems studied in Chapter 7 (as well as the line of works [38], [19], [20]). Independently
from [4], Franks and Moitra [35] used our analysis of frame and operator scaling in [63] to
give nearly optimal sample complexity bounds for Tyler’s M-estimator for elliptical distri-
butions, which is the MLE for the matrix normal model under the additional assumption
that the second factor is diagonal.

Recently, using the connection to the left-right action, Derksen and Makam [29] were
able compute exact sample size thresholds for the existence of the MLE of the matrix
normal model. Subsequently Derksen, Makam, and Walter [30] used similar algebraic
techniques to compute the exact sample threshold for the tensor normal model.

In the context of operator scaling, Gurvits [45] showed much earlier that the flip-flop
algorithm converges to the matrix normal MLE whenever it exists. As a special case of
the analyses of [19] and [20] for tensor scaling, it can be shown that the number of flip-flop
steps to obtain a gradient of magnitude δ in the log-likelihood function for the tensor and
matrix normal model is polynomial in the input size and 1/δ.

It was observed by Wiesel [100] that the negative log-likelihood exhibits a certain variant
of convexity known as geodesic convexity. This will be key to both our sample complexity
and algorithmic results.

9.2.3 Main Results

In this work, we are able to achieve high probability error bounds for the individual tensor
factors when the number of samples is slightly above the existence thresholds recently
shown in [29] and [30]. Further, we are also able to analyze the natural Flip-Flop algorithm
using techniques from strong geodesic convex optimization, in order to show exponential
convergence to the MLE.

We present a version of our main result in order to give an overview of our proof
strategy. This is improved in two ways in Section 9.2.7.

Theorem 9.2.4. Let X1, ..., Xn ∈ RD be samples from the tensor normal model RD :=
Rd1 ⊗ ... ⊗ Rdm with m ≥ 2 and distribution N(0,Θ−1) with Θ := θ · Θ1 ⊗ ... ⊗ Θm for

Θa ∈ SPD(da) for each a ∈ [m]. If nD & d2
max

ε2
for some ε2 .

(
poly(m)

∑
a∈[m] da

)−1

, then

the MLE Θ̂ := θ̂ · Θ̂1 ⊗ ...⊗ Θ̂m according to Proposition 9.2.3 satisfies

dF (Θ̂,Θ)2 . Dmε2

with probability at least 1− k2 exp(−Ω(dmin)).

313

Further, in this event, for any δ2 .
(

poly(m)
∑

a∈[m] da

)−1

, the Flip-Flop algorithm

in Definition 8.4.1 applied to tensor input X outputs estimator ΘT such that dF (ΘT , Θ̂) .√
D · δ for some iteration

T . mε2
∑
a∈[m]

da +m log
1

δ
√∑

a∈[m] da
.

Proof Overview. We first use invariance properties of the MLE and relative error shown
in Section 9.2.4 to reduce the optimization problem to tensor scaling with random input
Y ∼ N(0, ID). In order to give strong bounds on the tensor scaling solution, our plan is
to apply the convergence analysis of Theorem 7.1.16.

In Proposition 9.2.7 we use Gaussian concentration to bound the gradient, and in
Proposition 9.2.8 we apply Pisier’s theorem to show that x is Ω(1)-p-strongly convex ac-

cording to Definition 7.1.7. Both of these occur with high probability when nD & d2
max

ε2

is large enough. This allows us to apply Theorem 7.1.16 to bound on the optimal scaling
‖Z∗‖p, which can then be translated to a bound on the relative error dF (Θ̂, ID).

For the algorithmic guarantees, we first use the robustness property of strong convexity
shown in Theorem 7.3.14 to show that x∗ = eZ∗/2 · x is also Ω(1)-p-strongly convex. This
implies that fPx is Ω(1)-geodesically strongly convex at p∗ by Lemma 7.1.8. Then, we can
apply Theorem 8.4.8 to bound the number of iterations required for ‖∇ log fPx (pT)‖p . δ,

which can again be translated to a bound on the relative error dF (ΘT , Θ̂).

These are the first such non-asymptotic guarantees for the tensor normal model without
any additional structural assumptions, as well as the first rigorous convergence analysis of
the Flip-Flop algorithm, explaining its performance in practice. The sample complexity
results should be compared to the heuristic lower bound nD &

∑
a∈[m] d

2
a, where the right

hand side refers to the degrees of freedom in the tensor normal model, and the left hand
side is the “information content” of n samples Xi ∈ RD. Therefore, the above theorem
applied with 1

ε2
≈ poly(m)

∑
a∈[m] da gives a tight error bound for the tensor normal model

that requires only poly(m)dmax factor more samples than the lower bound.

In Section 9.2.7, we give two improvements of this result: in Theorem 9.2.10, we are able
to weaken the requirement on ε in order to improve the best-known sample complexity by a
factor of d

Ω(1/m)
max ; and in Theorem 9.2.13 we are able to refine the error bounds for the same

sample complexity requirement by analyzing the tighter dop measure for each individual
part a ∈ [m]. Both of these theorems come with the same algorithmic guarantees. We

314

also give a near-optimal improvement for sample complexity and dop error for the matrix
normal model in Theorem 9.2.11.

9.2.4 Reduction to Tensor Scaling

In this subsection, we will make clear the relation between scaling and the MLE for tensor
normal model. We also discuss natural invariance properties of the MLE and our error,
which will later allow us to reduce the error analysis to the simpler Θ = ID case. In
this simpler setting, we can use tighter results from Gaussian concentration, similar to our
analysis in Section 9.1.4 for the Gaussian model.

From this point, fix scaling group G = (SL(d1), ..., SL(dm)) with associated polar P :=
(SPD(d1), ..., SPD(dm)) and infinitesimal vector space p := ⊕a∈[m]spd(da). We will consider
the relation between the MLE in Proposition 9.2.3 and the Kempf-Ness function fP given
in Definition 6.2.9 for G-tensor scaling.

Lemma 9.2.5. Consider tensor tuple X = {X1, ..., Xn} ∈ (RD)n with RD = Rd1⊗...⊗Rdm.
For x := 1√

nD
X, let P = (SPD(d1), ..., SPD(dm)) be the polar scaling group according to

Definition 6.2.3. Then, the function FX given in Proposition 9.2.3 and the Kempf-Ness
function fPx given in Definition 6.2.9 are related as follows: for any fixed (Θ1, ...,Θm) ∈
(SPD(d1), ..., SPD(dm)),

inf
θ>0

FX(θ,Θ1, ...,Θm) = 1 + log fPx (Θ1, ...,Θm),

with optimizer θ−1 = fPx (Θ1, ...,Θm).

As a consequence, the MLE for X is related to optimizer p∗ := arg minp∈P f
P
x (p) by

θ̂−1 = fPx (p∗) and ∀a ∈ [m] : Θ̂a = p(a)
∗ .

Proof. We first rewrite the MLE of X in terms of the Kempf-Ness function for x := 1√
nD
X:

FX(Θ) =
θ

nD
〈
n∑
i=1

XiX
∗
i ,⊗a∈[m]Θa〉 − log θ = θ · fPx (Θ1, ...,Θm)− log θ,

where in the first step we substituted Proposition 9.2.3 for FX , and the last step was by
Definition 6.2.9 of the Kempf-Ness function with ρx = 1

nD

∑n
i=1XiX

∗
i .

315

Letting ν := fPx (Θ1, ...,Θm) for brevity, we solve for the optimizer of this univariate
function simply as

0 = ∂θ(θ · ν − log θ) = ν − 1

θ
=⇒ θ∗ =

1

ν
.

Since ∂2
θ (θ · ν − log θ)|θ∗ = θ−2

∗ > 0, this is the global minimum. Substituting this into FX
gives the value

inf
θ>0

FX(θ,Θ1, ...,Θm) = θ∗ · ν − log θ∗ = 1 + log fPx (Θ1, ...,Θm),

where the last step was by θ∗ = 1
ν

and the definition of ν.

This implies the second statement, as we can optimize FX over Θ = θ · Θ1 ⊗ ... ⊗ Θm

by first finding the optimizer p∗ := arg minp∈P f
P
x (p) and then choosing the appropriate

minimizing scalar θ̂.

We can now use that fx is geodesically convex on its domain P as shown in Propo-
sition 6.2.18(1). It can be shown more directly that FX is also geodesically convex, and
this is the approach taken in [36]. We choose to study fx because we can analyze it us-
ing the results in Chapter 7, and further because it enjoys slightly stronger multiplicative
robustness properties than FX . and because

Below, we collect a few invariance properties of the MLE and error measures which will
allow us to reduce our analysis to the case Θ = ID.

Proposition 9.2.6. Consider samples X1, ..., Xn ∼ N(0,Θ−1) from the tensor normal
model with Θ = θ · Θ1 ⊗ ... ⊗ Θm for Θa ∈ SPD(da) for each a ∈ [m]. Let Yi := Θ1/2Xi

such that Y ∼ N(0, ID).

1. The MLE functions for X and Y are related by

FY (Θ′) = FX(Θ1/2Θ′Θ1/2) + log det(Θ).

As a consequence, Θ̂Y is the MLE for Y iff Θ̂X = Θ1/2Θ̂Y Θ1/2 is the MLE for X.

2. For any a ∈ [m] and relative error d = dop or d = dF :

d(Θ̂a
X ,Θa) = d(Θ̂a

Y , Ia).

316

3. Given Γ = γ · Γ1 ⊗ ... ⊗ Γm with γ > 0 and Γa ∈ SPD(da) for each a ∈ [m], and

similarly Ψ = ψ ·Ψ1⊗ ...⊗Ψm, if | log(γ−1ψ)| ≤ 1 and ‖ log Γ
−1/2
a ΨaΓ

−1/2
a ‖op ≤ 1 for

each a ∈ [m], then the relative error is bounded by

dF (Ψ,Γ)2 ≤ 4D

(
| log γ−1ψ|2 +

∑
a∈[m]

‖ log Γ
−1/2
a ΨaΓ

−1/2
a ‖2

F

da

)
.

Proof. Item (1) follows from the same calculations as Proposition 9.1.5, since the ten-
sor normal model is also comprised of Gaussian distributions, and item (2) follows from
Proposition 9.1.7 applied to each part.

For item (3), let z := log(γ−1ψ) and Za := log Γ
−1/2
a ΨaΓ

−1/2
a for each a ∈ [m] so that

Γ−1/2ΨΓ−1/2 = ez · eZ1 ⊗ ...⊗ eZm . Then we can bound

dF (Ψ,Γ)2 =

∥∥∥∥ID − ez · eZ1 ⊗ ...⊗ eZm
∥∥∥∥2

F

≤ 4

∥∥∥∥z · ID +
∑
a∈[m]

Ia ⊗ Za
∥∥∥∥2

F

= 4z2‖ID‖2
F + 4

∑
a∈[m]

‖Ia‖2
F‖Za‖2

F = 4D
(
z2 +

∑
a∈[m]

‖Za‖2
F

da

)
,

where the first step was by Definition 9.1.6 of dF and Γ−1/2ΨΓ−1/2 = ez · eZ1 ⊗ ... ⊗ eZm ,
the second step was by Taylor approximation |ex − 1| ≤ 2|x| for |x| ≤ 1

2
applied to the

eigenvalues of eZ , the third step was by the orthogonality of the terms as Za ∈ spd(da) =⇒
〈Ia, Z(a)〉 = 0 for each a ∈ [m] according to Definition 2.1.10, and in the final step we used
‖ID‖2

F = D for the identity on RD and ‖Ia‖2
F = D

da
for the identity on ⊗b 6=aRdb .

In order to apply the analyses of Chapter 7, we would like to show that random inputs
are nearly balanced and satisfy either the strong convexity or pseudorandom property.
Just as in the proof of Theorem 9.1.8, we can use items (1) and (2) of Proposition 9.2.6 to
reduce to the case where Θ = ID. Therefore, in the next two sections, we will use Gaussian
concentration to show that random inputs Y ∼ N(0, ID) satisfy the fast convergence
properties required to apply the tensor scaling analyses in Chapter 7.

9.2.5 Bounding the Gradient

In this subsection we will bound the initial gradient of the Kempf-Ness function for random
Gaussian inputs X ∼ N(0, ID). As shown in the proof outline of Theorem 9.2.4, this will be

317

used along with strong convexity or pseudorandomness in order to give geodesic distance
bounds on the optimizer of fx, which will then imply strong error bounds on the MLE by
Lemma 9.2.5.

Note that the geodesic gradient in Proposition 7.1.3 for tensor scaling input x ∈ V K is
exactly the marginals of ρx up to a scalar shift. Therefore, in order to bound the gradient of
our random Gaussian input, we can follow the analysis of Theorem 9.1.8 and use Gaussian
concentration to give spectral bounds on the marginals.

Proposition 9.2.7. Consider samples X1, ..., Xn ∼ N(0, ID) with RD = Rd1 ⊗ ... ⊗ Rdm.

For any a ∈ [m] and any 0 < ε ≤ 1
10

, if nD ≥ d2
a

ε2
, the following bound holds with probability

at least 1− 2 exp(−ε2 nD
2da

):

1− ε
da

Ia �
1

nD
Tra

[
n∑
i=1

XiX
∗
i

]
� 1 + ε

da
Ia.

As a consequence, with probability at least 1−2(m+1) exp(− ε2nD
2dmax

), the tensor x := 1√
nD
X

has size |s(x) − 1| ≤ 3ε, is 8ε-G-balanced according to Definition 6.2.4, and satisfies the
gradient bound ‖∇x‖2

p ≤ 64m · ε2 for P = (SPD(d1), ..., SPD(dm)) where ∇x = ∇fPx (IV) is
given in Proposition 7.1.3 with respect to P = (SPD(d1), ..., SPD(dm)).

Proof. For each Xi ∈ RD = Rda ⊗ (⊗b6=aRdb), we consider the flattening {Yi1, ..., YiN} of
N = D

da
columns in Rda as described in Section 2.4.1. We concatenate these flattenings

into the random matrix Y := {Yi1, ..., YiN}ni=1 ∈ Mat(da, nN), and since X1, ..., Xn ∼
N(0, ID), Y has independent standard Gaussian entries. This allows us to apply the matrix

concentration bound in Theorem 2.5.12 with t = ε
√

nD
/
da to show that with probability

at least 1− exp(−t2/2) = 1− 2 exp(−ε2 nD
2da

),

λmax

(
1

nD
Tra

[
n∑
i=1

XiX
∗
i

])
= λmax

(
1

nD

n∑
i=1

N∑
j=1

YijY
∗
ij

)
= σmax

(
1√
nD
{Yij}i∈[n],j∈[N]

)2

≤

(√
nD/da +

√
da + ε

√
nD/da√

nD

)2

≤ 1 + 5ε

da
,

where the first step was by considering each Xi = {Yi1, ..., YiN}, in the second step we
rewrote the maximum eigenvalue in terms of the maximum singular value of the random
Gaussian matrix Y ∈ Mat(da,

nD
da

), in the third step we applied the singular value upper

318

bound of Theorem 2.5.12 to Y with t = ε
√

nD
da

, and in the final step we used the assumption

nD & d2
a

ε2
and ε ≤ 1

10
. The analogous bound λmin ≥ 1− 5ε follows by a similar calculation.

To show the second statement, we first rewrite the size of x as a chi-square variable:

s(x) =
1

nD

n∑
i=1

‖Xi‖2
2 =

1

nD
χ(nD),

where the last step was by X ∼ N(0, ID) and Definition 2.5.9. Note that 1
nD

Eχ(nD) = 1,
so we can use concentration to show

Pr
[
|s(x)− 1| ≥ 3ε

]
≤ Pr

[
|χ(nD)− nD| ≤ 3εnD

]
≤ 2 exp(ε2nD),

where we applied Theorem 2.5.11 with θ = εnD and the assumption ε ≤ 1
10

.

Now recall that x is ε-G-balanced according to Definition 6.2.4 iff

∀a ∈ [m] : ‖∇(a)
x ‖op = ‖daρ(a)

x − s(x)Ia‖op ≤ s(x)ε,

where we used Proposition 7.1.3 to substitute in the formula for the gradient. By the
two-sided spectral bounds on X calculated in the first statement, we can simply apply the
union bound over all marginals to show

‖∇(a)
x ‖op = ‖daρ(a)

x − s(x)Ia‖op ≤ ‖daρ(a)
x − Ia‖op + |s(x)− 1|

≤

∥∥∥∥∥ danD Tra

[
n∑
i=1

XiX
∗
i

]
− Ia

∥∥∥∥∥
op

+ |s(x)− 1| ≤ 8ε,

where the second step was by the triangle inequality, in the third step we used the definition
x = 1√

nD
X as well as Definition 6.2.2 of the marginals ρ

(a)
x , and the final step was by

combining the bound on |s(x)− 1| ≤ 3ε with the spectral bound on X derived above.

9.2.6 Strong Convergence Properties

In this subsection, we show that the tensor scaling problem on standard Gaussian inputs
satisfies the strong convexity and pseudorandom conditions with high probability when
the number of samples is large enough. Specifically, we will show in Proposition 9.2.8 that
it satisfies the spectral condition given in Definition 7.1.9, and in Theorem 9.2.9 we will
show it satisfies the ∞-expansion condition given in Definition 7.4.4. Each of these will

319

allows us to use the strong convergence analyses of Chapter 7. We defer the proofs of these
statements to Section 9.3.

Recall that we are in the setting of vector space V = ⊗a∈[m]Rda and scaling group
G = (SPD(d1), ..., SPD(dm)) with associated polar (P, p) according to Definition 6.2.3. We
first show that the random input 1√

nD
X for X ∼ N(0, ID) satisfies the spectral condition

given in Definition 7.1.9.

Proposition 9.2.8. For random Gaussian tensors X1, ..., Xn ∼ N(0, ID) with RD =
Rd1 ⊗ ... ⊗ Rdm and m ≥ 2, x := 1√

nD
X satisfies the λ-p-spectral condition according

to Definition 7.1.9 for λ . dmax√
nD

with probability at least 1−m2 exp(−Ω(dmin)).

The proof relies on a powerful theorem of Pisier [80] and is given in Section 9.3.1. The
trace method technique used in [80] lifts straightforwardly to our tensor setting, but as
an artifact, we do not manage to get failure probability which has inverse exponential
dependence in the number of samples. We can combine this with the gradient bound of
Proposition 9.2.7 to show that x is strongly convex by Proposition 7.1.10. This will allow
us to apply Theorem 7.2.16 and Theorem 7.3.12 to give our best known sample complexity
results for the MLE in Section 9.2.7.

We can also show x satisfies the ∞-expansion condition with high probability. Note
that the sample requirement for this result is larger by a dmax factor, but we do manage to
get inverse exponential dependence of the failure probability in n.

Theorem 9.2.9. For random Gaussian tensors X1, ..., Xn ∼ N(0, ID) with RD = Rd1⊗...⊗
Rdm and m ≥ 2, if nD & m2d3

max, then x := 1√
nD
X satisfies the λ-(p,∞)-expansion condi-

tion according to Definition 7.4.4 for λ . 1
m

with probability at least 1−m2 exp(Ω(nD
m2dmax

)).

This result is proved Section 9.3.2 using Gaussian concentration and a net argument.
Combined with the gradient bound in Proposition 9.2.7, we will use Lemma 7.4.5 to trans-
late this to the pseudorandom condition, which will allow us to apply the pseudorandom
convergence analysis of Theorem 7.2.26 and show strong bounds on dop for each part of
the MLE.

In the following Section 9.2.7, we carry out the proof outline of Theorem 9.2.4 using the
above strong convergence properties to give our sample complexity results and algorithmic
guarantees using the analyses of tensor scaling given in Chapter 7.

320

9.2.7 Improved Results and Proofs

In this subsection, we apply the analyses from Chapter 7 to prove stronger error bounds
on the MLE for the matrix and tensor normal model. We also apply the framework of
Chapter 8 to show that the Flip-Flop algorithm converges quickly to the MLE. We will use
the gradient bounds of Section 9.2.5 and the strong convergence properties of Section 9.2.6.

We first use strong convexity and the analysis of Theorem 7.2.16 to improve the con-
straint on ε given in Theorem 9.2.4 as well as give refined error bounds in terms of dop.

Theorem 9.2.10. Consider random tensors X1, ..., Xn ∈ RD = Rd1⊗ ...⊗Rdm with m ≥ 3
that are sampled according to the unknown distribution N(0,Θ−1) from the tensor normal
model with Θ := θ ·Θ1⊗ ...⊗Θm where θ > 0 and Θa ∈ SPD(da) for each a ∈ [m]. For any

ε . (m2 ·
√
mdmax

1−1/2m
)−1, if nD & d2

max

ε2
, then the MLE Θ̂ := θ̂ · Θ̂1 ⊗ ... ⊗ Θ̂m satisfies

θ̂ ∈ (1±O(ε))θ,

dF (Θ̂,Θ)2 . Dmε2, and ∀a ∈ [m] : dop(Θ̂a,Θa) . ε
√
mda

1− 1
2m

with probability at least 1−O(m2) exp(−Ω(dmin)).

Also in this event, for any δ2 .
(
m2
∑

a∈[m] da

)−1

, the Flip-Flop algorithm outputs

estimator ΘT := θT · (ΘT)1 ⊗ ...⊗ (ΘT)m such that dF (ΘT , Θ̂)2 . D · δ2 for some iteration

T . m2ε2
∑
a∈[m]

da +m log
1

δ
∑

a∈[m] da
.

Proof. We follow the plan laid out in the proof overview of Theorem 9.2.4.

First, rewrite Yi = Θ1/2Xi so that Y1, ..., Yn ∼ N(0, ID). This allows us to relate the

MLE Θ̂X = Θ1/2Θ̂Y Θ1/2 by Proposition 9.2.6(1) and the relative distance for d = dop or
d = dF by

d(Θ̂X ,Θ) = d(Θ−1/2Θ̂XΘ−1/2, ID) = d(Θ̂Y , ID),

where we used the equivariance property of relative error given in Proposition 9.1.7. There-
fore, from this point on we assume that Θ = ID so our samples are distributed according
to Y1, ..., Yn ∼ N(0, ID). We emphasize that this step is only for analysis, and knowledge
of the true parameter Θ is not required in order to compute the estimator for our input X.

Now consider y := 1√
nD
Y , and let p∗ := arg minp∈P f

P
y (p) be the optimizer of the Kempf-

Ness function given in Definition 6.2.9. By Lemma 9.2.5, the MLE Θ̂ := θ̂ · Θ̂1 ⊗ ...⊗ Θ̂m

321

can be written as

θ̂ = fPy (p∗)
−1, and ∀a ∈ [m] : Θ̂a = p(a)

∗ . (9.2)

In order to bound the relative error d(Θ̂, ID), our plan is use the convergence results of
Theorem 7.3.21, which requires the input y to be nearly G-balanced according to Defini-
tion 6.2.4 and strongly convex according to Definition 7.1.7.

First, we use Proposition 9.2.7 to show |s(y) − 1| ≤ O(ε). Technically, the conditions
of Theorem 7.3.21 require the input to have size s(y) = 1, so we should normalize y before
we apply this analysis. We ignore this normalization in the remainder, as this only has
negligible O(ε) effect on all relevant quantities. Therefore, Proposition 9.2.7 shows that y is

O(ε)-G-balanced since nD & d2
max

ε2
. Next, we apply Proposition 9.2.8 to show y satisfies the

λ-p-spectral condition according to Definition 7.1.9 with λ ≤ O(ε). By the union bound,
both of these events occur simultaneously with failure probability at most

m exp
(
− Ω(ε2nD/dmax)

)
+m2 exp(−Ω(dmin)) ≤ O(m2) exp(−Ω(dmin)),

where the last step was by the assumption ε2nD & d2
max ≥ d2

min. We can now apply
Proposition 7.1.10 to show that y is α-p-strongly convex for

α ≥ s(y)(1−O(ε))− (m− 1)λ ≥ 1−O(m · ε),

where in the first step we applied Proposition 7.1.10 to O(ε)-G-balanced input y with size
s(y) ≥ 1−O(ε), and the final step was by the bound λ ≤ O(ε) calculated above.

We can explicitly lower bound α√
e
≥ 1−O(m·ε)√

e
≥ 1

2
with ε � 1

m2 , which allows us to
verify the condition of Theorem 7.3.21:

α2

√
e
≥ Ω(1) & m2 · ε

√
mdmax

1− 1
2m & m2 · ε

√
mdmax

1−α/
√
e

m ,

where the first step was by the lower bound α√
e
≥ 1

2
, the second step was by our assumption

ε . (m2
√
mdmax

1− 1
2m)−1, and in the last step we used the lower bound α√

e
≥ 1

2
for the

exponent of dmax. Therefore, we can apply Theorem 7.3.21 to find G-balanced scaling
y∗ := p

1/2
∗ · y = eZ∗/2 · y. In the sequel, we will use the conclusions on size and the scaling

solution to bound the relative error for the MLE.

First note that Theorem 7.3.21(2) bounds the scaling solution by

∀a ∈ [m] : ‖Z(a)
∗ ‖op .

ε
√
mda

1− 1
2m

α
. ε
√
mda

1− 1
2m ≤ 1

2
,

322

where we used the lower bound α ≥ Ω(1) in the second step and the assumption ε
√
mda

1− 1
2m .

1 in the last step. According to Eq. (9.2), this allows us to bound the relative error of the
individual tensor factors of the MLE by

dop(Θ̂a, Ia) = ‖eZ
(a)
∗ − Ia‖op ≤ 2‖Z(a)

∗ ‖op . ε
√
mda

1− 1
2m ,

where the first two steps were by Proposition 9.1.7 with dop, and the final step was by the

bound ‖Z(a)
∗ ‖op ≤ ε

√
mda

1− 1
2m in Theorem 7.4.11(2) as derived above.

In order to bound the relative error dF , we first need to bound the scalar term θ̂ =
fPy (p∗)

−1. This is accomplished by Theorem 7.3.21(3), which bounds

log
fPy (IV)

fPy (p∗)
= log

s(y)

s(y∗)
≤ − log

(
1− O(m · ε2)

α

)
≤ O(m · ε2), (9.3)

where the first step was by Definition 6.2.9 of the Kempf-Ness function with y∗ = p
1/2
∗ · y,

the second step was by the size lower bound in Theorem 7.3.21(3), and the final step used
the lower bound α ≥ Ω(1) and Taylor approximation − log(1 − x) ≤ 2x the argument
mε2 � 1 as ε� 1

m2 . We derived the lower bound s(y) ≥ 1−O(ε) above, so this shows

|θ̂ − 1| = |fPy (p∗)
−1 − 1| . | log s(y∗)| . ε+m · ε2 . ε,

where in the first step we substituted θ̂ = fPy (p∗)
−1 by Eq. (9.2), in the second step we

used the Taylor approximation |ex − 1| ≤ 2|x| for |x| ≤ 1
2
, in the third step we applied the

lower bound s(y) ≥ 1 − O(ε) and s(y∗) ≥ s(y)(1 − O(m · ε2)), and the final step was by
the assumption ε� 1

m2 .

Now, we use the fact that Theorem 7.4.11(2) bounds the scaling solution by

‖Z∗‖2
p .

m · ε2

α2
. m · ε2,

where we used the lower bound α ≥ Ω(1). According to Eq. (9.2), this allows us to bound
the relative error of the MLE by

dF (Θ̂, ID)2 . D

(
| log θ̂|2 +

∑
a∈[m]

‖Za‖2
F

da

)
= D

(
| log s(y∗)|2 + ‖Z∗‖2

p

)
. m · ε2,

where the first step was by Proposition 9.2.6(3), the second step was by Eq. (9.2) and
Definition 7.1.2 of ‖ · ‖p, and the final step was by the bounds | log s(y∗)| . ε and ‖Z∗‖2

p .
m · ε2.

323

Now we will show algorithmic convergence of the Flip-Flop algorithm from Defini-
tion 8.4.1 to the MLE. By Proposition 8.4.3, the Flip-Flop algorithm is actually a descent
method for the Kempf-Ness function fPy with starting point p0 = IV producing iterates
{pt ∈ P}t≥0. By Lemma 9.2.5, we can translate this to a sequence of estimators

θt = fPy (pt)
−1 and ∀a ∈ [m] : (Θt)a = p

(a)
t . (9.4)

We can view these iterates as a descent sequence converging to the optimizer of the likeli-
hood function FY in Proposition 9.2.3. Therefore, these iterates converge to MLE Θ̂ and
not necessarily to the true value Θ = ID. Below, we show that the relative error between
Θ̂ and Θt converges exponentially.

We first observe that y∗ = p
1/2
∗ ·y is α∗-p-strongly convex with α∗ ≥ α√

e
≥ 1

2
by item (4) of

Theorem 7.3.21, where the last step was by the lower bound α ≥ 1−O(m · ε) and ε� 1
m2

calculated above. By Lemma 7.1.8, this is equivalent to fPy being α∗ ≥ 1
2
-geodesically

strongly convex at p∗ according to Definition 6.2.13. Therefore, letting δ0 :=
α∗/fPy (p0)√∑

a∈[m] da
,

we can apply Theorem 8.4.8 with parameter δ to show that its conclusions hold by iteration

T .
m

δ2
0

· log
fPx (p0)

fPx (p∗)
+ fPx (p0) · m

α∗
log

δ0

δ

.
fPy (p0)2

α2
∗
·m

∑
a∈[m]

da ·mε2 + fPx (p0) · m
α∗

log
α∗/f

P
y (p0)

δ
√∑

a∈[m] da

. m2ε2
∑
a∈[m]

da +m log
1

δ
√∑

a∈[m] da
,

where we substituted δ0 :=
α∗/fPy (p0)√∑

a∈[m] da
and used the following bounds: log

fPy (p0)

fPy (p∗)
. m · ε2

by Eq. (9.3), α∗ ≥ 1
2
, and fPy (p0) = s(y) ≤ 1 +O(ε).

To translate this to a relative error bound on ΘT , we note that Theorem 8.4.8(2) gives

log
θ−1
T

θ̂−1
= log

fPy (pT)

fPy (p∗)
≤ log

(
1− fPy (pT)

e · δ2

2α∗

)−1

. δ2,

where in the first step we substituted in θ̂ = fPy (p∗)
−1 from Eq. (9.2) and θT = fPy (pT)−1

from Eq. (9.4), the second step was by rearranging the function lower bound in The-
orem 8.4.8(2), and in the final step we used the bounds fPy (pT) ≤ s(y) ≤ 1 + O(ε),

324

α∗ ≥ 1
2
, and the Taylor approximation − log(1− x) ≤ 2x for |x| ≤ 1

2
. Further, if we define

ZT := log(p
−1/2
∗ pTp

−1/2
∗), then Theorem 8.4.8(3) gives the geodesic distance bound

‖ZT‖p = ‖ log(p−1/2
∗ pTp

−1/2
∗)‖p ≤ fPy (pT)

e · δ
α∗

. δ,

where again in the last step we used fPy (pT) ≤ s(y) ≤ 1 +O(ε) and α∗ ≥ 1
2
.

Using Eq. (9.2) and Eq. (9.4), we can translate these geodesic bounds to a bound on
the relative error, as

dF (ΘT , Θ̂)2 . D

(
| log(θ̂−1θT)|2 + ‖ZT‖2

p

)
. Dδ2,

where the first step was by Proposition 9.2.6(3), the second step was by Eq. (9.4) for ΘT

and Θ̂ as well as the definitions ZT := log(p
−1/2
∗ pTp

−1/2
∗), and the final step was by the

bounds | log(θ̂−1θT)| . δ2 and ‖ZT‖p . δ derived above.

At this point, we can set the parameter ε ≈ (poly(m)·
√
dmax

1−1/2m
)−1 in Theorem 9.2.10

which allows us to take n ≈ poly(m)d
3−1/2m
max /D samples and prove tight relative error

bounds for dF . This improves on Theorem 9.2.4 by a factor of d
1/2m
max in sample complexity

as well as the fact that we can bound the dop error measure. Further, by the discussion after
Theorem 9.1.8, even estimating a single marginal requires n ≥ Ω(d2

max/D) many samples,

so this result is d
1−1/2m
max factor away from optimal.

In the m = 2 case of the matrix normal model, this can be further improved by applying
our analysis of strongly convex operator scaling in Theorem 7.3.12 instead of the strongly
convex tensor scaling analysis of Theorem 7.3.21. Since this is the only change, we omit the
proof. By the discussion after Theorem 9.1.8, no estimator can have constant error bounds
even for a specific marginal for nD < d2

max. Therefore, the following result is optimal up
to poly log d factors.

Theorem 9.2.11. Let X1, ..., Xn ∈ RD = Rd1 ⊗ Rd2 be samples from the matrix normal
model with distribution N(0,Θ−1) for Θ := θ · Θ1 ⊗ Θ2 with θ > 0,Θ1 ∈ SPD(d1),Θ2 ∈
SPD(d2). For any ε2 . 1

log2 dmin
, if nD & d2

max

ε2
, then the MLE Θ̂ := θ̂ · Θ̂1 ⊗ Θ̂2 satisfies

θ̂ ∈ (1±O(ε))θ,

dF (Θ̂,Θ)2 . Dε2, and max
{
dop(Θ̂1,Θ1), dop(Θ̂2,Θ2)

}
. ε log dmin

with probability at least 1− 4 exp(−Ω(dmin)).

325

Further, in this event, for any δ2 . 1
dmax

, the Flip-Flop algorithm outputs estimator ΘT

such that dF (ΘT , Θ̂)2 . D · δ2 for some iteration

T . ε2(d1 + d2) + log
1

δ
√
d1 + d2

.

Remark 9.2.12. Due to the use of the trace method in Theorem 9.3.1, both of the above
theorems can only achieve exp(−Ω(dmin)) failure probability. In section 4 of [36], we
are able to improve this to exp(−Ω(ε2n/dmax)) failure probability by a different approach.
Specifically, the proof uses a version of Cheeger’s inequality for the matrix normal model to
strong convexity. The technique is similar to the approach of [35], and it is an interesting
open question to find a similar approach to prove strong convexity for higher order tensors.

Our final result uses the pseudorandom analysis of Theorem 7.2.26 to give optimal
bounds on the relative operator norm error dop for each individual part when the number
of samples is large enough.

Theorem 9.2.13. Let X1, ..., Xn ∈ RD = Rd1 ⊗ ...Rdm be samples from the tensor normal
model with m ≥ 2 and distribution N(0,Θ−1) with Θ := θ·Θ1⊗...⊗Θm with Θa ∈ SPD(da).

For any ε . 1
m2 , if nD & max{d

2
max

ε2
,m2d3

max}, then the MLE Θ̂ := θ̂ · Θ̂1⊗ ...⊗ Θ̂m satisfies

θ̂ ∈ (1±O(ε))θ,

dF (Θ̂,Θ)2 . Dmε2, and max
a∈[m]

dop(Θ̂a,Θa) . ε

with probability at least 1−O(m2) exp(−Ω(ε
2nD

2dmax
)).

Also in this event, for any δ2 .
(
m2
∑

a∈[m] da

)−1

, the Flip-Flop algorithm outputs

estimator ΘT such that dF (ΘT , Θ̂)2 . D · δ2 for some iteration

T . m2ε2
∑
a∈[m]

da +m log
1

δ
√∑

a∈[m] da
.

Proof. The proof of the relative error bound for the MLE is quite similar to Theorem 9.2.4
and Theorem 9.2.11 so we focus on the parts that are different.

We rewrite Yi = Θ1/2Xi and use property (1) and (2) of Proposition 9.2.6 to reduce
our analysis to the case Θ = ID without loss of generality. Then we define y := 1√

nD
Y

326

and consider p∗ := arg minp∈P f
P
y (p) the optimizer of the Kempf-Ness function given in

Definition 6.2.9, which by Lemma 9.2.5, translates to the MLE

θ̂ = fPy (p∗)
−1, and ∀a ∈ [m] : Θ̂a = p(a)

∗ . (9.5)

In order to bound the relative error d(Θ̂Y , ID), our plan is use the convergence re-
sults of Theorem 7.4.11, which requires the input y to be nearly G-balanced according to
Definition 6.2.4 and p-pseudorandom according to Definition 7.2.17. By the assumption

nD & d2
max

ε2
, we can apply Proposition 9.2.7 to show |s(y) − 1| ≤ O(ε) and (ignoring the

O(ε) factors caused by normalization) that y is O(ε)-G-balanced with probability at least
1−2(m+1) exp(− ε2nD

2dmax
). Next, by the assumption that nD & m2d3

max, we can apply Theo-
rem 9.2.9 to show y satisfies the λ-(p,∞)-expansion condition according to Definition 7.4.4
for λ . 1

m
. By the union bound, both of these events occur simultaneously with failure

probability at most

m exp
(
−Ω(ε2nD/dmax)

)
+m2 exp

(
−Ω(nD/m2dmax)

)
≤ O(m2) exp

(
−Ω(ε2nD/dmax)

)
,

where the last step was by the assumption ε . 1
m2 . We can now apply Lemma 7.4.5 to

show that y is γ-p-pseudorandom for

e−γ ≥ s(y)(1−O(ε))− λ ≥ 1−O(ε)−O(1/m) ≥ e−O(1/m),

where the first step was by Lemma 7.4.5, the second step was by our bounds on |s(y)−1| ≤
O(ε) ≤ O(1

m2) and λ ≤ O(1
m

), and the final step was by the bound 1− z ≥ e−z for z ≥ 0.

Since y is O(ε)-G-balanced for ε � 1
m2 and γ-p-pseudorandom with γ . 1

m
, the first

three conclusions of Theorem 7.4.11 give scaling y∗ := p
1/2
∗ ·y = eZ∗/2 ·y which is G-balanced

and satisfies

max
a∈[m]

‖Z(a)
∗ ‖op . ε, and s(y∗) ≥ s(y)(1−O(mε2)).

By Proposition 6.2.18(2), this implies that p∗ = arg minp∈P f
P
y (p), and therefore we can use

Lemma 9.2.5 and Eq. (9.5) to give relative error bounds for the individual tensor factors:

dop(Θ̂a, Ia) = ‖eZ
(a)
∗ − Ia‖op ≤ 2‖Z(a)

∗ ‖op . ε,

where the first step was by Definition 9.1.6 of dop, the second step was by Proposition 9.1.7,
and the final step was by the bound in Theorem 7.4.11(2).

Item (4) of Theorem 7.4.11 shows that y∗ is Ω(1)-strongly convex, so the remainder of
the proof of fast algorithmic convergence is the same as in the proof of Theorem 9.2.10.

327

We conjecture that the error bound dop(Θ̂a,Θa) . ε is achieved for any ε ≤ 1
poly(m)

when nD & d2
max

ε2
. Note that if true, this would be the optimal sample complexity (up to

poly(m) factors), as there is a matching lower bound nD & d2
a

ε2
even for the simpler problem

of estimating a single marginal Θa.

9.3 Expansion of Random Tensors

In this section, we prove the strong convergence properties of random tensors given in
Section 9.2.6. In Section 9.3.1, we use a powerful theorem of Pisier [80] to show that random
Gaussian inputs satisfy the spectral condition given in Definition 7.1.9. In Section 9.3.2,
we use Gaussian concentration and a net argument to show that our random inputs satisfy
the ∞-expansion condition given in Definition 7.4.4.

9.3.1 Spectral Condition via Pisier’s Theorem

In this subsection, we present the proof of Proposition 9.2.8. This follows from a result
of Pisier [80], whose original theorem dealt with square matrices and gave slightly weaker
probabilistic guarantees than Theorem 9.3.1 stated below. We adapt this result to give
exponentially small error probability for random rectangular matrices.

Theorem 9.3.1 (Pisier [80]). Let A1, . . . , AN , A be independent n ×m random matrices
with independent standard Gaussian entries. For any t ≥ 2, with probability at least
1− t−Ω(m+n), ∥∥∥∥∥

(
N∑
i=1

Ai ⊗ Ai

)
◦ Π

∥∥∥∥∥
op

≤ O
(
t2
√
N(m+ n)

)
,

where Π denotes the orthogonal projection onto the traceless subspace of Rm⊗Rm, that is,
onto the orthogonal complement of vec(Im).

We emphasize that these minor modifications follow readily from the arguments in [79],
[80]. We state the proof below for completeness and claim no originality.

We first explain how Theorem 9.3.1 implies the spectral condition in Proposition 9.2.8
for our random inputs.

328

Proof of Proposition 9.2.8. By Lemma 7.3.10, for fixed a 6= b ∈ [m] we can write the
spectral condition in terms of

‖Φ(ab)
x ‖0 = sup

Y ∈spd(da)

sup
Z∈spd(db)

〈Y,Φ(ab)
x (Z)〉

‖Y ‖F‖Z‖F
≤ sup

Z∈spd(db)

‖Φ(ab)
x (Z)‖F
‖Z‖F

= ‖Φ(ab)
x ◦QI⊥b

‖F→F

where the first step was by Definition 7.3.7 of ‖·‖0, the second step was by Cauchy-Schwarz,
and in the final step we use Definition 7.3.7 of ‖ · ‖F→F as well as the fact that QI⊥b

is a

contraction with image spd(db).

We want to rewrite this in terms of the natural representation of Φ
(ab)
x so that it resem-

bles Theorem 9.3.1. Note that any tensor xi ∈ RD = (Rda ⊗ Rdb) ⊗ (⊗c6∈{a,b}Rdc) can be

naturally identified with the tuple of N = D
dadb

columns {x(ab)
ij ∈ Rda⊗Rdb} for j = 1, ..., N .

Therefore we can rewrite the marginal

ρ(ab)
x = Trab

[
n∑
i=1

xix
∗
i

]
=

n∑
i=1

N∑
j=1

(x
(ab)
ij)(x

(ab)
ij)∗,

following the partial trace calculation as in the example in Eq. (2.9). Then, letting

x
(ab)
ij ∈ Rda ⊗ Rdb → Aij := Mat(x

(ab)
ij) ∈ Mat(da, db) gives the Kraus operators of Φ

(ab)
x by

Definition 2.4.4. Therefore, we can rewrite Definition 7.1.9 as

‖Φ(ab)
x ‖0 ≤ ‖Φ(ab)

x ◦QI⊥b
‖F→F =

∥∥∥∥∥
(

n∑
i=1

N∑
j=1

Aij ⊗ Aij

)
◦QI⊥b

∥∥∥∥∥
op

,

where the first step was by the calculation above, and in the final step we used Defini-
tion 2.4.6 to translate to the natural representation. Since x = 1√

nD
X, we have that each

entry of Aij is i.i.d. from N(0, 1
nD

). So we apply Theorem 9.3.1 to show

‖Φ(ab)
x ‖0 ≤

∥∥∥∥∥
(

n∑
i=1

N∑
j=1

Aij ⊗ Aij

)
◦QI⊥b

∥∥∥∥∥
op

. t2
(da + db)

√
nN

nD
.
da + db√
nD

1√
dadb

,

where in the final step we substituted n = da, m = db, t = 2, and N = D
dadb

into The-

orem 9.3.1. This verifies that x satisfies the characterization in Lemma 7.3.10(1) of the
λ-pab-spectral condition with λ . da+db√

nD
with probability exp(−Ω(da + db)), so the theorem

follows by a union bound over all a 6= b ∈ [m].

329

Remark 9.3.2. Note that the failure probability can be improved at the cost of worse
spectral condition by choosing t larger. But the parameter t is only the base of the exponent
so this does not give exp(−Ω(nD)) failure probability. This is in contrast to Theorem 9.2.9
which gives better failure probability but only works when nD & d3

max instead of the nD &
d2

max condition of Proposition 9.2.8.

In the remainder we present the proof of Theorem 9.3.1. The argument consists of a
symmetrization trick, followed by the trace method. We first state some relevant bounds
on Gaussian random variables.

We will often use the following estimate of the operator norm of a standard Gaussian
n×m random matrix A (see Theorem 5.32 in [94]),

E‖A‖op ≤
√
n+
√
m. (9.6)

Theorem 9.3.3. Let A be a centered Gaussian random variable that takes values in a
separable Banach space with norm ‖·‖. Then ‖A‖ satisfies the following concentration and
moment inequalities with parameter σ2 := sup{E〈X,A〉2 | ‖X‖∗ ≤ 1}, where ‖ · ‖∗ denotes
the dual norm:

∀t > 0: P
(∣∣‖A‖ − E‖A‖

∣∣ ≥ t
)
≤ 2 exp

(
−Ω(t2)

σ2

)
, and

∀p ≥ 1: E‖A‖p ≤ (2E‖A‖)p +O(σ
√
p)p. (9.7)

Proof. The first statement on concentration is exactly Theorem 1.5 in [77]. For the second,
we consider the random variable X := 1

σ
(‖A‖ − E‖A‖). Then the equivalence in Lemma

5.5 of [94] gives the moment bound(
E|X|p

)1/p

=
1

σ

(
E
∣∣∣‖A‖ − E‖A‖

∣∣∣p)1/p

≤ O(
√
p).

The moment bound in the theorem now follows by rearranging as

E‖A‖p = E
(
E‖A‖+ σX

)p
≤ 2p

(
(E‖A‖)p +O(σ

√
p)p
)
,

where the last step was by the simple inequality (a+ b)p ≤ 2p(|a|p + |b|p).

Below, we calculate the σ2 parameter in Theorem 9.3.3 with regards to our random
matrix setting.

330

Corollary 9.3.4. Let A be an n×m matrix with independent standard Gaussian entries
Aij ∼ N(0, 1). Then ‖A‖op satisfies the conclusions of Theorem 9.3.3 with σ2 = 1.

Proof. Note that the dual norm of ‖ · ‖op is the trace norm ‖ · ‖1 by Proposition 2.1.17,
hence the concentration parameter can be estimated as

σ2 = sup
{
E〈X,A〉2 | ‖X‖1 ≤ 1

}
= sup

{
‖X‖2

F | ‖X‖1 ≤ 1
}

= 1,

where in the first step we used that random variable 〈X,A〉 has the same distribution as
‖X‖FA11 by orthogonal invariance of Gaussian variables, and in the second step we used
that ‖ · ‖F ≤ ‖ · ‖1 with equality attained for example by X = E11.

We will also use the multi-argument Hölder inequality given in Theorem 2.1.18:∣∣∣∣∣Tr

p∏
i=1

Ai

∣∣∣∣∣ ≤
p∏
i=1

‖Ai‖p, (9.8)

where ‖ · ‖p = ‖ · ‖Sp denotes the Schatten-p-norm according to Definition 2.1.16 and p ∈ N
with p ≥ 1 by assumption.

Proof of Theorem 9.3.1. The operator we want to control has entries which are dependent
in complicated ways. We first begin with a standard symmetrization trick to linearize the
random operator (compare the proof of Lemma 4.1 in [80]). A single entry of Ai ⊗ Ai is
either a product gg′ of two independent standard Gaussians, or the square g2 of a single
standard Gaussian. In expectation, we have Egg′ = 0 and Eg2 = 1, so

E

(
N∑
i=1

Ai ⊗ Ai

)
= N vec(In) vec(Im)T =⇒ E

(
N∑
i=1

Ai ⊗ Ai

)
◦ Π = 0,

as Π projects orthogonal to vec(Im). Therefore we may add an independent copy: let
B1, . . . , BN be independent n ×m random matrices with standard Gaussian entries that
are also independent from A1, . . . , AN . Then,(

N∑
i=1

Ai ⊗ Ai

)
◦ Π = EB

(
N∑
i=1

Ai ⊗ Ai −
N∑
i=1

Bi ⊗Bi

)
◦ Π

and hence, for any p ≥ 1,

EA

∥∥∥∥∥
(

N∑
i=1

Ai ⊗ Ai

)
◦ Π

∥∥∥∥∥
p

op

≤ EA,B

∥∥∥∥∥
(

N∑
i=1

Ai ⊗ Ai −
N∑
i=1

Bi ⊗Bi

)
◦ Π

∥∥∥∥∥
p

op

331

by Jensen’s inequality applied over EB for function ‖·‖pop, which is convex as it is the com-
position of norm ‖·‖op with the convex and nondecreasing function x→ xp for p ≥ 1. Now
note (Ai, Bi) has the same joint distribution as (Ai+Bi√

2
, Ai−Bi√

2
) by orthogonal invariance, so

the right-hand side is

E

∥∥∥∥∥1

2

(
N∑
i=1

(Ai +Bi)⊗ (Ai +Bi)−
N∑
i=1

(Ai −Bi)⊗ (Ai −Bi)

)
◦ Π

∥∥∥∥∥
p

op

= E

∥∥∥∥∥
(

N∑
i=1

Ai ⊗Bi +
N∑
i=1

Bi ⊗ Ai

)
◦ Π

∥∥∥∥∥
p

op

≤ 2p E

∥∥∥∥∥
N∑
i=1

Ai ⊗Bi

∥∥∥∥∥
p

op

,

where in the last step we use ‖Π‖op ≤ 1 since it is an orthogonal projection, and use the
triangle inequality along with the fact that A ⊗ B and B ⊗ A are identically distributed.
Thus, we have proved that

E

∥∥∥∥∥
(

N∑
i=1

Ai ⊗ Ai

)
◦ Π

∥∥∥∥∥
p

op

≤ 2p E

∥∥∥∥∥
N∑
i=1

Ai ⊗Bi

∥∥∥∥∥
p

op

. (9.9)

Note that we no longer have the projection, but all products are now independent. Next we
use the trace method to bound the right-hand side of Eq. (9.9). That is, we approximate
the operator norm by the Schatten p-norm for a large enough p and control these Schatten
norms using concentration of moments of Gaussians (compare the proof of Theorem 16.6
in [79]). For any q ≥ 1,

E

∥∥∥∥∥
N∑
i=1

Ai ⊗Bi

∥∥∥∥∥
2q

2q

= ETr

 ∑
i,j∈[N]

ATi Aj ⊗BT
i Bj

q

=
∑

i,j∈[N]q

ETr
(
ATi1Aj1 · · ·A

T
iqAjq ⊗B

T
i1
Bj1 · · ·BT

iqBjq

)
=

∑
i,j∈[N]q

ETr
(
ATi1Aj1 · · ·A

T
iqAjq

)
ETr

(
BT
i1
Bj1 · · ·BT

iqBjq

)
,

where the first step was by Definition 2.1.16 of the Schatten norms, and the last step
was by independence of {Ai} and {Bi}. Observe that the expectation of a product of
independent standard Gaussian random variables is always nonnegative. Thus the same is

332

true for ETr(ATi1Aj1 · · ·A
T
iqAjq), so we can upper bound the sum term by term as∑

i,j∈[N]q

ETr
(
ATi1Aj1 · · ·A

T
iqAjq

)
ETr

(
BT
i1
Bj1 · · ·BT

iqBjq

)
≤

∑
i,j∈[N]q

ETr
(
ATi1Aj1 · · ·A

T
iqAjq

)
E
(
‖Bi1‖2q‖Bj1‖2q · · · ‖Biq‖2q‖Bjq‖2q

)
≤ E

∑
i,j∈[N]q

Tr
(
ATi1Aj1 · · ·A

T
iqAjq

)
E
(
‖B1‖2q

2q

)
=

(
E‖

N∑
i=1

Ai‖2q
2q

)(
E‖A‖2q

2q

)
= N q

(
E‖A‖2q

2q

)2
.

In the first step we used Hölder’s inequality (9.8) for the Schatten norm. The second step
holds since {Bi} are all mutually independent for i 6= j so we can bound each term in

the product by E‖Bi‖k2q ≤ (E‖Bi‖2q
2q)

k
2q by Jensen’s inequality and collect all terms for the

product which has total degree 2q. For the third step, the equality of the first term is by
expanding out the sum and considering Definition 2.1.16 of the Schatten-norm, and the
equality in the second is because the Bi have the same distribution as A. In the last step,
we used that

∑N
i=1Ai has the same distribution as

√
NA. Accordingly, we have proved

E

∥∥∥∥∥
N∑
i=1

Ai ⊗Bi

∥∥∥∥∥
2q

op

≤ E

∥∥∥∥∥
N∑
i=1

Ai ⊗Bi

∥∥∥∥∥
2q

2q

≤ N q
(
E‖A‖2q

2q

)2 ≤ N qm2
(
E‖A‖2q

op

)2

, (9.10)

where in the third inequality we used that A ∈ Mat(n,m) has rank ≤ m, and therefore
‖A‖2q

2q ≤ m‖A‖2q
op. To bound the right-hand side, we use Theorem 9.3.3 applied to the

random variable A in the Banach space Mat(n,m) with the operator norm ‖·‖op. We have
σ2 = 1 as computed in Corollary 9.3.4, so we can bound the expectation by

E

∥∥∥∥∥
(

N∑
i=1

Ai ⊗ Ai

)
◦ Π

∥∥∥∥∥
2q

op

≤ (4N)qm2
(

(2E‖A‖op)2q + (C
√
q)2q

)2

.

where C > 0 is a universal constant implied by the big-O notation in Eq. (9.7). We can
use Eq. (9.6) to bound the first term E‖A‖op ≤

√
m +

√
n, so choosing q = 2(m + n), we

can upper bound the mean by

E

∥∥∥∥∥
(

N∑
i=1

Ai ⊗ Ai

)
◦ Π

∥∥∥∥∥
2q

op

≤ 4m2
(

(max{2, C})2 · q ·
√

4N
)2q

.

333

Finally, we can use Markov’s inequality to see that, for C ′ =
√

2 max{2, C}, the event∥∥∥∥∥
(

N∑
i=1

Ai ⊗ Ai

)
◦ Π

∥∥∥∥∥
op

≤ (C ′t)2 · (m+ n) ·
√

4N (9.11)

holds with failure probability at most

4m2

(
(max{2, C})2 · q ·

√
4N

(C ′t)2 · (m+ n) ·
√

4N

)2q

≤ 4m2t−2q ≤ t−Ω(m+n),

where the first step was by our choice of q = 2(m+n) and of C ′ =
√

2 max{2, C}, and the
final inequality was by the fact that t ≥ 2, so the 4m2 term can be absorbed at the cost of
slightly changing the constant in the exponent.

9.3.2 Net proof of ∞-Expansion

In this subsection, we prove Theorem 9.2.9 showing random Gaussian tensors satisfy the
(p,∞)-expansion condition of Definition 7.4.4 with high probability. In Theorem 9.2.13,
this is combined with the gradient bound in Proposition 9.2.7 to show that the input is
pseudorandom, which allows us to apply the fast convergence analysis of Theorem 7.2.26.

The proof uses a slightly non-standard net argument for which we need the following
claim.

Claim 9.3.5. Let Bop := {Z ∈ spd(d) | ‖Z‖op ≤ 1} be the unit ball of ‖ · ‖op in the
subspace spd(d) = {X ∈ H(d) | Tr[X] = 0}. Consider the subset of vertices S described
in Fact 2.6.4, i.e. if d is even then S consists of elements P − (Id − P) where P is an
orthogonal projection of rk(P) = d

2
, and if d is odd then S consists of elements P−Q where

both P and Q are orthogonal projections with rk(P) = rk(Q) = bd
2
c such that PQ = 0, i.e.

their ranges are disjoint.

For every η > 0, there is an η-net N ⊆ S with respect to the operator norm such
that |N | ≤ (1 + 2η−1)d

2/2. Explicitly, for every Z ∈ S, there exists Z ′ ∈ N such that
‖Z − Z ′‖op ≤ η.

Proof. We follow the proof of Lemma 4.10 in [78] given as Fact 2.6.3 in this thesis. Consider
N ⊆ S to be a maximal η-packing of S with respect to ‖ · ‖op according to Definition 2.6.2,
i.e. for every pair Z,Z ′ ∈ N , ‖Z−Z ′‖op ≥ η. Note that by maximality, this is automatically

334

an η-net of S, as any point not covered by N could be added to the packing, contradicting
maximality. Let Np be a maximum cardinality η-packing of H(d) with respect to ‖ · ‖op.
Then we can bound

|N | ≤ |Np| ≤ (1 + 2η−1)d
2/2,

where the first step was because S ⊆ H(d) so N is an η-packing for H(d), and the final
step was by Fact 2.6.3 applied with dim(H(d)) = d2

2
.

For the remainder of the proof, we will focus on the case of even db so that Sb consists
of P − (Ib − P) where P is an orthogonal projection in H(db) with rank rk(P) = db

2
. This

is to reduce clutter, and the calculation is similar for the odd case.

With this net, we prove the bound on ∞-expansion of random Gaussian tensors.

Proof of Theorem 9.2.9. We will prove the stronger statement that for any a 6= b ∈ [m] and

any λ > 0 such that nD & d2
a+dad2

b

λ2 , x satisfies the λ-(pa←b,∞)-expansion condition with
failure probability at most exp(−Ω(λ2nD/da)). The theorem follows by setting λ = O(1

m
)

and taking a union bound over all pairs a 6= b ∈ [m].

Fix a 6= b ∈ [m] and recall that according to Definition 7.4.4, the (pa←b,∞)-expansion

condition is given in terms of a supremum over inner products 〈ρ(ab)
x , ξξ∗⊗Z〉 for unit vectors

ξ ∈ Sda−1 and elements of Bop := {Z ∈ spd(d) | ‖Z‖op ≤ 1}. Further, by Fact 2.6.4, the
maximum is achieved at some element of Sb as described in Claim 9.3.5. Our plan is to
use concentration of chi-square variables along with a net argument over Sda−1 and Sb in
order to bound the supremum.

In order to show concentration, first consider a fixed ξ ∈ Sda−1 and Z = P−(Ib−P) ∈ Sb
where P and Ib−P both orthogonal projections of H(db) with rank rk(P) = rk(Ib−P) = db

2
.

We will show that the inner product terms with P and Ib − P both concentrate around a
common mean, which allows us to bound the difference Z = P − (Ib − P). So for a fixed
projection P of rank rk(P) = db

2
, we can rewrite the term we want to bound as

〈ρ(ab)
x , ξξ∗ ⊗ P 〉 =

1

nD

n∑
i=1

〈ξξ∗ ⊗ P ⊗ Iab, XiX
∗
i 〉,

where we used Definition 6.2.2 of the marginal ρ
(ab)
x for x = 1√

nD
X. Since X1, ..., Xn ∼

N(0, ID) are all independent, we can rewrite this in terms of a chi-square random variable
1
nD
χ(nD

2da
) according to Definition 2.5.9 as ξξ∗ ⊗ P ⊗ Iab is an orthogonal projection of

335

rank rk(ξξ∗) rk(P) rk(Iab) = 1 · db
2
· D
dadb

= D
2da

, so its spectrum is in {0, 1}. Note that

Eχ(nD
2da

) = nD
2da

by Definition 2.5.9, so we show concentration for any 0 < λ ≤ 1:

Pr

[
|2da〈ρ(ab)

x , ξξ∗ ⊗ P 〉 − 1| ≥ 4λ

]
≤ Pr

[∣∣∣χ(nD
2da

)
− nD

2da

∣∣∣ ≥ 2λ
nD

da

]
≤ exp

(
− λ2nD

2da

)
,

where we plugged θ = λ2
√

2nD
da

into Theorem 2.5.11 and used λ2 ≤ λ ≤ 1.

Now consider an ηa-net Na ⊆ Sda−1 with respect to ‖ · ‖2 and consider an ηb-net of Sb
with respect to ‖ · ‖op. Choosing ηa = 1

9
, ηb = 1

3
, we can bound the size by Fact 2.6.3 and

Claim 9.3.5 respectively:

|Na| ≤ (1 + 2η−1
a)da ≤ e3da and |Nb| ≤ (1 + 2η−1

b)d
2
b/2 ≤ ed

2
b .

Now we can apply the union bound to show

Pr
[

sup
ξ∈Na

sup
Z∈Nb

|da〈ρ(ab)
x , ξξ∗ ⊗ Z〉| ≥ 4λ

]
≤
∑
ξ∈Na

∑
Z=P−(Ib−P)∈Nb

Pr
[

max
{
|da〈ρ(ab)

x , ξξ∗ ⊗ P 〉|, |da〈ρ(ab)
x , ξξ∗ ⊗ (Ib − P)〉|

}
≥ 2λ

]
≤ (|Na|)(2|Nb|) exp

(
− λ2nD

2da

)
≤ 2 exp

(
3da + d2

b − λ2nD

2da

)
,

where the first step was by the union bound over all ξ ∈ Na and both P and Ib − P for
Z = P − (Ib − P) ∈ Nb, in the second step we applied the concentration bound for each
individual unit vector and projection calculated above, and in the final step we used the

bounds |Na| ≤ e3da and |Nb| ≤ ed
2
b . Note that this is only non-trivial when nD & da(da+d2

b)

λ2 .

Now assume we are in the event where the above bound holds for every ξ ∈ Na and
P, Ib − P for Z ∈ Nb. In order to bound the supremum over all Sda−1 and Bop := {Z ∈
spd(db) | ‖Z‖op ≤ 1}, we use an approximation argument. We proceed one argument at a

time, so first consider fixed Z and note that we can rewrite 〈ρ(ab)
x , ξξ∗⊗Z〉 = 〈ξξ∗,Φ(ab)

x (Z)〉
by Proposition 2.4.5. This allows us to apply Lemma 2.6.5 with Hermitian Φ

(ab)
x (Z) and

ηa-net Na to show

sup
ξ∈Sda−1

〈ρ(ab)
x , ξξ∗⊗Z〉 = ‖Φ(ab)

x (Z)‖op ≤ (1−2ηa−η2
a)
−1 sup

ξ∈Na
〈ξξ∗,Φ(ab)

x (Z)〉 ≤ 3

2
〈ρ(ab)
x , ξξ∗⊗Z〉,

where the first step was by definition of ‖ · ‖op, the second step was by the approximation
argument in Lemma 2.6.5, and in the final step we substituted in ηa = 1

9
and again used

Proposition 2.4.5 to translate back to ρ
(ab)
x .

336

Similarly, fix ξ ∈ Sda−1 and consider Z := arg maxY ∈Bop〈ρ
(ab)
x , ξξ∗ ⊗ Y 〉. By Fact 2.6.4

applied to the vertices of Bop, we can assume Z ∈ Sb. Further, by the property of ηb-net Nb,
we can decompose Z = Z ′+Z ′′ with Z ′ ∈ Nb and Z ′′ ∈ ηbBop, i.e. Tr[Z ′′] = Tr[Z−Z ′] = 0
and ‖Z ′′‖op ≤ ηb. Here, we crucially used that the optimizer must be in Sb, so that we
can approximate it using an element of Nb ⊆ Sb. This gives a quantitative improvement
for the net argument as the inner product term involving elements of Sb have much better
concentration properties than those with an arbitrary element of Bop. Then, we bound

〈ρ(ab)
x , ξξ∗ ⊗ Z〉 = 〈ρ(ab)

x , ξξ∗ ⊗ (Z ′ + Z ′′)〉 ≤ sup
Y ′∈Nb

〈ρ(ab)
x , ξξ∗ ⊗ Y ′〉+ ηb sup

Y ∈Bop

〈ρ(ab)
x , ξξ∗ ⊗ Y 〉.

Since Z is the maximizer over Bop, we can rearrange this to give

sup
Y ∈Bop

〈ρ(ab)
x , ξξ∗ ⊗ Y 〉 ≤ (1− ηb)−1 sup

Y ∈Nb
〈ρ(ab)
x , ξξ∗ ⊗ Y 〉. (9.12)

Combining both approximation arguments, we can bound the supremum by

sup
ξ∈Sd−1

sup
Z∈Bop

〈ρ(ab)
x , ξξ∗ ⊗ Z〉 ≤ (1− 2ηa − η2

a)
−1(1− ηb)−1 sup

ξ∈Na
sup
Z∈Nb
〈ρ(ab)
x , ξξ∗ ⊗ Z〉 ≤

(3

2

)(3

2

)
4λ,

where the first step was by our two approximations above, in the second step we substituted
ηa = 1

9
, ηb = 1

3
, and in the final step we used the bound derived above for the supremum

over Na, Nb. Since Bop is symmetric around the origin, this verifies Definition 7.4.4 of
9λ-(pa←b,∞)-expansion, and we are done by the union bound over all a 6= b ∈ [m].

337

Chapter 10

Conclusions and Future Work

In this thesis, we studied problems from the scaling framework and leveraged the perspec-
tive of geodesic convex optimization [20] in order to give stronger analyses of instances
satisfying certain strong convexity and pseudorandom conditions. This allowed us to unify
the work of [62], [63], and [36] for special cases of these problems as well as improve many
of the bounds.

The main motivations for our improved scaling analyses were the Paulsen problem in
frame theory and the tensor normal model in statistics. For the Paulsen problem, we were
able to follow and refine the smoothed analysis approach of [62] by randomly perturbing
the input frame, and then showing fast convergence for the frame scaling problem with
high probability. We believe this kind of regularization technique to fast convergence is a
general approach to scaling problems that is of independent interest.

For the tensor normal model, we generalized our matrix scaling analysis to higher
order tensors, and gave strong bounds on the scaling solution for inputs satisfying strong
convexity or pseudorandom conditions. We then showed that computing the maximum
likelihood estimator for the tensor normal model could be reduced to solving a tensor
scaling problem on random instances which satisfied these fast convergence conditions
with high probability. Therefore, our main results in this section were to show sample
complexity and error bounds for the general tensor normal model that nearly matched the
known lower bounds for the much simpler Gaussian model.

We were also able to leverage the analysis of Franks and Moitra [35] for geodesic con-
vex optimization algorithms to prove exponential convergence guarantees for the scaling
problems above. Therefore, we were able to prove that natural iterative algorithms can

338

be applied to make our results for the Paulsen problem and the tensor normal model
constructive.

The set of scaling problems studied in this thesis are just a small sampling of the
general framework for scaling presented in [20]. We believe that this perspective of scaling
and geodesic convex optimization will have many more applications throughout theoretical
computer science, and we hope the techniques presented in this thesis will be of use for
analyzing more difficult problems in this area. Below, we present some general directions
for future research.

• The previous approaches of [16] and [23] for the Paulsen problem involved fixing one
of the two balanced conditions (Parseval or equal-norm according to Definition 4.1.2),
and then applying some procedure to fix the other condition. It turns out that both
of these procedures remain within a natural group orbit of the input frame, and
therefore can be profitably understood using the perspective of group scaling. This
allows us to give a principled derivation of the results in [16] and [23], and hopefully
will suggest new algorithms for the general scaling framework.

• We can generalize the Paulsen problem to any problem in the scaling framework.
Given any group scaling setting and a nearly balanced input, measure the distance
to the nearest balanced input. The operator version of the Paulsen problem is a
natural next step for applying our smoothed analysis and scaling techniques. Here,
we present a very similar problem which is motivated by fundamental problems in
numerical linear algebra. Recall that a matrix A ∈ Cn×n is diagonalizable iff it can be
written A = V DV −1 for some invertible V and diagonal D. In this case, the columns
of V, V −1 are the eigenvectors of the matrix acting on the left and right, respectively,
and are non-unique in general. Diagonalization is a fundamental operation used as a
subroutine in innumerable applications, and in practice it is only performed to some
required precision. The condition number, defined below, gives a natural measure of
the robustness of the diagonalization procedure to error in the input.

κ(A) := inf
A=V DV −1

‖V ‖op‖V −1‖op.

It is therefore natural to ask whether a given input A can be made robust to noise
by a small perturbation.

Question 10.0.1. For any A ∈ Cn×n with ‖A‖op ≤ 1, is there a nearby B := A+E
such that κ(B) is small?

339

The recent works of [8], [9], [55] show that a small perturbation suffices in order
to achieve a polynomial condition number. This leaves open the regime where the
condition number of the output B is close to 1. We observe that the quantity κ
can be seen as a bound on the solution to a scaling problem, specifically the action
g ∈ SL(n) → gAg−1. Therefore, we can hope to use the techniques developed for
the Paulsen problem to give new regularization theorems and a refined analysis of
Question 10.0.1 when the input is close to normal.

Conjecture 10.0.2. Given matrix A ∈ MatC(n) such that ‖A‖2
F = 1 and ‖AA∗ −

A∗A‖op ≤ ε
n

, for any δ & ε, there is a perturbation B = A+ E such that

‖E‖2
F . δ and κ(B) .

ε

δ
.

• The constructive procedures given in Section 8.5 for the Paulsen problem in the worst
case relied on a random perturbation in order to guarantee fast convergence. There
are many applications of scaling (including the diagonalization procedure above), for
which deterministic algorithms are required. It is therefore an interesting questions
whether the smoothed analysis strategy proven in Chapter 5 can be replaced with a
deterministic one while maintaining the strong convergence properties of the output.

• While the tensor normal model in Definition 9.2.1 is a natural assumption for tensor
valued data that is used in pratice, it is merely the simplest such assumption that
can be profitably used to reduce sample complexity. In Chapter 9, we were able
to analyze the MLE for this model only because of its strong connection to the
tensor scaling problem (Definition 6.2.5), and specifically the Kempf-Ness function
in Definition 6.2.9 which gave a geodesically convex formulation for this problem.
It would be interesting to see whether these techniques can be generalized to even
slightly more complex statistical models. For example, the covariance matrix can be
assumed to be of the form Θ =

∑K
k=1 Θk where each Θk = ⊗a∈[m]Θ

k
a respects the

tensor product structure. Similarly, the input distribution could be assumed to be a
mixture of a small number of distributions from the tensor normal model.

• The works of Bürgisser et al. [19], [20] are especially amazing because they simul-
taneously give a foundation to analyze a huge swath of problems from the scaling
framework. Of these, tensor scaling is one of the simplest settings where efficient
algorithms are not known in the worst case. The algorithms of [19] and [20] actually
apply to the much more general problem of moment polytope membership testing,
albeit with much worse parameters of convergence. It would be interesting to see

340

how far the techniques in this thesis can be pushed, and for which problems it is
possible to give natural sufficient conditions for beyond worst-case results.

• Even more generally, the scaling framework has recently given much motivation for
geodesic convex optimization. This is a natural optimization setting in its own right
which can be seen as an extension of the known tractability results for convex opti-
mization. We believe it is an interesting future direction to develop general-purpose
algorithms for the geodesic setting.

341

References

[1] Genevera I Allen and Robert Tibshirani. Transposable regularized covariance models
with an application to missing data imputation. The Annals of Applied Statistics,
4(2):764, 2010.

[2] Z. Allen-Zhu, Y. Li, R. Oliveira, and A. Wigderson. Much faster algorithms for
matrix scaling. In 2017 IEEE Symposium on Foundations of Computer Science
(FOCS). IEEE, 2017.

[3] Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson.
Operator scaling via geodesically convex optimization, invariant theory and polyno-
mial identity testing. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing (STOC), 2018.

[4] Carlos Améndola, Kathlén Kohn, Philipp Reichenbach, and Anna Seigal. Invariant
theory and scaling algorithms for maximum likelihood estimation. arXiv preprint
arXiv:2003.13662, 2020.

[5] M. Appleby, S. Flammia, G. McConnell, and J. Yard. SICs and algebraic number
theory. Foundations of Physics, 47, 2017.

[6] Michael Atiyah. Convexity and commuting Hamiltonians. Bulletin of the London
Mathematical Society, 14, 1982.

[7] Sheldon Axler. Linear Algebra Done Right. Springer, 1997.

[8] Jess Banks, Archit Kulkarni, Satyaki Mukherjee, and Nikhil Srivastava. Gaus-
sian regularization of the pseudospectrum and Davies’ conjecture. arXiv preprint
arXiv:1906.11819, 2020.

342

[9] Jess Banks, Jorge Garza Vargas, Archit Kulkarni, and Nikhil Srivastava. Overlaps,
eigenvalue gaps, and pseudospectrum under real Ginibre and absolutely continuous
perturbations. arXiv preprint arXiv:2005.08930, 2020.

[10] Frank Barthe. On a reverse form of the Brascamp-Lieb inequality. Inventiones
mathematicae, 134(2), 1998.

[11] N. Berline and M. Vergne. Hamiltonian manifolds and moment map. 2011.

[12] Rajendra Bhatia. Matrix Analysis. Springer, 1997.

[13] Rajendra Bhatia. Positive Definite Matrices. Princeton University Press, 2007.

[14] E. Bierstone and P. Milman. Semianalytic and subanalytic sets. Inst. Hautes Etudes
Sci. Publ. Math., 67, 1988.

[15] Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral gap.
Combinatorica, 26, 2006.

[16] Bernhard G. Bodmann and Peter G. Casazza. The road to equal-norm Parseval
frames. Journal of Functional Analysis, 258(2):397–420, 2010.

[17] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

[18] Peter Bürgisser, Matthias Christandl, Ketan Mulmuley, and Michael Walter. Mem-
bership in moment polytopes is in NP and coNP. SIAM Journal on Computing, 46,
2017.

[19] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi
Wigderson. Efficient algorithms for tensor scaling, quantum marginals, and moment
polytopes. In 2018 IEEE Symposium on Foundations of Computer Science (FOCS),
2018.

[20] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi
Wigderson. Towards a theory of non-commutative optimization: geodesic 1st and
2nd order methods for moment maps and polytopes. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 845–861. IEEE,
2019.

343

[21] Peter Bürgisser, Yinan Li, Harold Nieuwboer, and Michael Walter. Interior-point
methods for unconstrained geometric programming and scaling problems. arXiv
preprint arXiv:2008.12110, 2020.

[22] Jameson Cahill and Peter Casazza. The Paulsen problem in operator theory. Oper-
ators and Matrices, 2013.

[23] Peter G. Casazza, Matthew Fickus, and Dustin G. Mixon. Auto-tuning unit norm
frames. Applied and Computational Harmonic Analysis, 32(1):1–15, 2012.

[24] Peter G. Casazza and Gitta Kutyniok, editors. Finite Frames: Theory and Applica-
tions. Birkhauser Basel, 2013.

[25] P.G. Casazza. The Kadison-Singer and Paulsen problems in finite frame theory.
Finite frames: theory and applications, 2013.

[26] Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix
scaling and balancing via box constrained Newton’s method and interior point meth-
ods. In 2017 IEEE Symposium on Foundations of Computer Science (FOCS). IEEE,
2017.

[27] M. Cuturi. Sinkhorn distances: lightspeed computation of optimal transport. In 26th
International Conference on Neural Information Processing Systems (NIPS), 2013.

[28] E. B. Davies. Approximate diagonalization. Journal of Matrix Analysis Applications,
2007.

[29] Harm Derksen and Visu Makam. Maximum likelihood estimation for matrix normal
models via quiver representations. arXiv preprint arXiv:2007.10206, 2020.

[30] Harm Derksen, Visu Makam, and Michael Walter. Maximum likelihood estimation
for tensor normal models via castling transforms. arXiv preprint arXiv:2011.03849,
2020.

[31] Pierre Dutilleul. The MLE algorithm for the matrix normal distribution. Journal of
Statistical Computation and Simulation, 64(2):105–123, 1999.

[32] K. Dykema and N. Strawn. Manifold structure of spaces of spherical tight frames.
International Journal of Pure and Applied Mathematics, 28, 2006.

[33] Hamza Fawzi and James Saunderson. Lieb’s concavity theorem, matrix geometric
means, and semidefinite optimization. arXiv preprint arXiv:1512.03401, 2016.

344

[34] Jürgen Förster. A linear lower bound on the unbounded error probabilistic commu-
nication complexity. Journal of Computer and System Sciences, 65, 2002.

[35] Cole Franks and Ankur Moitra. Rigorous guarantees for Tyler’s M-estimator via
quantum expansion. arXiv preprint arXiv:2002.00071, 2020.

[36] Cole Franks, Rafael Oliveira, Akshay Ramachandran, and Michael Walter. Logarith-
mic sample complexity for dense matrix and tensor normal models. arXiv preprint
arXiv:2110.07583, 2021.

[37] Cole Franks and Philipp Reichenbach. Barriers for recent methods in geodesic opti-
mization. In 36th Computational Complexity Conference (CCC), 2021.

[38] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. A de-
terministic polynomial time algorithm for non-commutative rational identity testing.
arXiv preprint arXiv:1511.03730, 2015.

[39] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. Algo-
rithmic and optimization aspects of Brascamp-Lieb inequalities, via operator scaling.
Geometric and Functional Analysis, 28, 2018.

[40] V. Georgoulas, J. Robbin, and D. Salamon. The moment-weight inequality and the
Hilbert-Mumford criterion. arXiv preprint arXiv:1311.0410, 2018.

[41] V. Guillemin and R. Sjamaar. Convexity Properties of Hamiltonian Group Actions.
AMS, 2005.

[42] V. Guillemin and S. Sternberg. Convexity properties of the moment mapping. In-
ventiones mathematicae, 67, 1982.

[43] V. Guillemin and S. Sternberg. Convexity properties of the moment mapping. ii.
Inventiones mathematicae, 77, 1984.

[44] L. Gurvits and A. Samorodnitsky. A deterministic polynomial-time algorithm for
approximating mixed discriminant and mixed volume. In 32nd Annual ACM Sym-
posium on Theory of Computing (STOC), 2000.

[45] Leonid Gurvits. Classical complexity and quantum entanglement. Journal of Com-
puter and System Sciences, 2004.

[46] Linus Hamilton and Ankur Moitra. The Paulsen problem made simple. In Innova-
tions in Theoretical Computer Science (ITCS), 2019.

345

[47] Moritz Hardt and Ankur Moitra. Algorithms and hardness for robust subspace
recovery. In 26th Annual Conference on Learning Theory (COLT), 2013.

[48] G. H. Hardy, J. E. Littlewood, and G. Pòlya. Inequalities. Cambridge University
Press, 1988.

[49] R.B. Holmes and V.I. Paulsen. Optimal frames for erasures. Linear Algebra and its
Applications, 2004.

[50] Max Hopkins, Daniel Kane, Shachar Lovett, and Gaurav Mahajan. Point location
and active learning: Learning halfspaces almost optimally. In e 59th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2020.

[51] Alfred Horn. Doubly stochastic matrices and the diagonal of a rotation matrix.
American Journal of Mathematics, 76, 1954.

[52] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, 2013.

[53] James Humphreys. Introduction to Lie Algebras and Representation Theory.
Springer-Verlag, 1972.

[54] M. Idel. A review of matrix scaling and Sinkhorn’s normal form for matrices and
positive maps. arXiv preprint arXiv:1609.06349, 2016.

[55] Vishesh Jain, Ashwin Sah, and Mehtaab Sawhney. On the real Davies’ conjecture.
arXiv preprint arXiv:abs/2005.08908, 2020.

[56] Ilya Kachkovskiy and Yuri Safarov. Distance to normal elements in C∗-algebras of
real rank zero. Journal of the American Mathematical Society, 29, 2016.

[57] B. Kalantari and L. Khachiyan. On the complexity of nonnegative-matrix scaling.
SIAM Journal on Matrix Analysis and Applications, 18, 1997.

[58] George Kempf and Linda Ness. The length of vectors in representation spaces. In
Knud Lønsted, editor, Algebraic Geometry, pages 233–243, Berlin, Heidelberg, 1979.
Springer Berlin Heidelberg.

[59] Frances Kirwan. Convexity properties of the moment mapping. iii. Inventiones
mathematicae, 77:547–552, 1984.

346

[60] V. M. Kravtsov. Combinatorial properties of noninteger vertices of a polytope in a
threeindex axial assignment problem. Cybernetics and Systems Analysis, 43, 2007.

[61] R. A. Kunze. Lp Fourier transforms on locally compact unimodular groups. Trans-
actions of the American Mathematical Society, 89, 1958.

[62] T.C. Kwok, L.C. Lau, Y.T. Lee, and A. Ramachandran. The Paulsen problem,
continuous operator scaling, and smoothed analysis. In Symposium on Theory of
Computing (STOC). ACM, 2017.

[63] T.C. Kwok, L.C. Lau, Y.T. Lee, and A. Ramachandran. Spectral analysis of matrix
scaling and operator scaling. SIAM Journal of Computing, 50, 2021.

[64] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model
selection. Ann. Statist., 28(5):1302–1338, 10 2000.

[65] Eugene Lerman. Gradient flow of the norm squared of a moment map.
L’Enseignement Mathématique, 51, 2004.

[66] Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly
polynomial algorithm for matrix scaling and approximate permanents. Combinator-
ica, 20(4):545–568, 2000.

[67] László Lovász and Santosh Vempala. The geometry of logconcave functions and
sampling algorithms. Random Structures & Algorithms, 30(3):307–358, 2007.

[68] Ameur M Manceur and Pierre Dutilleul. Maximum likelihood estimation for the
tensor normal distribution: Algorithm, minimum sample size, and empirical bias and
dispersion. Journal of Computational and Applied Mathematics, 239:37–49, 2013.

[69] Kanti V Mardia and Colin R Goodall. Spatial-temporal analysis of multivariate
environmental monitoring data. Multivariate environmental statistics, 6(76):347–
385, 1993.

[70] P. Milgrom and I. Segal. Envelope theorems for arbitrary choice sets. Econometrica,
70, 2010.

[71] Gary L. Miller, Noel J. Walkington, and Alex L. Wang. Hardy-Muckenhoupt bounds
for Laplacian eigenvalues. arXiv preprint arXiv:1812.02841, 2018.

[72] Ketan Mulmuley. Geometric complexity theory v: Efficient algorithms for Noether
normalization. Journal of the American Mathematical Society, 20, 2017.

347

[73] David Mumford, John Fogarty, and Frances Kirwan. Geometric Invariant Theory.
Springer, 1994.

[74] Tom Needham and Clayton Shonkwiler. Symplectic geometry and connectivity of
spaces of frames. Advances in Computational Mathematics, 2021.

[75] Yuri Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Springer Publishing Company, 2014.

[76] E. E. Osborne. On pre-conditioning of matrices. Journal of ACM, 7, 1960.

[77] Gilles Pisier. Probabilistic methods in the geometry of Banach spaces. Letta G.,
Pratelli M. (eds) Probability and Analysis, 1206, 1986.

[78] Gilles Pisier. The volume of convex bodies and Banach space geometry. Cambridge
University Press, 1989.

[79] Gilles Pisier. Grothendieck’s theorem, past and present. Bulletin of the American
Mathematical Society, 49(2):237–323, 2012.

[80] Gilles Pisier. Quantum expanders and geometry of operator spaces. Journal of the
European Mathematical Society, 16(6):1183–1219, 2014.

[81] Mark Rudelson and Roman Vershynin. Hanson-Wright inequality and sub-gaussian
concentration. Electron. Commun. Probab., 18, 2013.

[82] Jean-Pierre Serre. Lie Algebras and Lie Groups. Springer, 1964.

[83] Richard Sinkhorn. A Relationship Between Arbitrary Positive Matrices and Doubly
Stochastic Matrices. The Annals of Mathematical Statistics, 35(2):876 – 879, 1964.

[84] Daniel Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 2011.

[85] Daniel Spielman, Nikhil Srivastava, and Adam Marcus. Interlacing families i: Bipar-
tite Ramanujan graphs of all degrees. Annals of Mathematics, 182, 2015.

[86] Daniel Spielman, Nikhil Srivastava, and Adam Marcus. Interlacing families iv: Bi-
partite Ramanujan graphs of all sizes. SIAM Journal on Computing, 47, 2015.

[87] Daniel Spielman and Shang-Hua Teng. Nearly linear time algorithms for precondi-
tioning and solving symmetric, diagonally dominant linear systems. SIAM Journal
of Matrix Analysis and Applications, 2014.

348

[88] Damian Straszak and Nisheeth Vishnoi. Maximum entropy distributions: Bit com-
plexity and stability. arXiv preprint arXiv:1711.02036, 2019.

[89] Wei Sun, Zhaoran Wang, Han Liu, and Guang Cheng. Non-convex statistical op-
timization for sparse tensor graphical model. Advances in Neural Information Pro-
cessing Systems, 28, 2015.

[90] Terence Tao. Topics in random matrix theory. American Mathematical Society, 2012.

[91] J.A. Tropp, I.S. Dhillon, R.W. Heath Jr., and T. Strohmer. Designing structured
tight frames via an alternating projection method. IEEE Transactions on Informa-
tion Theory, 51, 2005.

[92] Theodoros Tsiligkaridis, Alfred O III Hero, and Shuheng Zhou. On convergence
of Kronecker graphical lasso algorithms. IEEE Transactions on Signal Processing,
61(7), 2013.

[93] Joran van Apeldoorn, Sander Gribling, Yinan Li, Harold Nieuwboer, Michael Walter,
and Ronald de Wolf. Quantum algorithms for matrix scaling and matrix balancing.
arXiv preprint arXiv:2011.12823, 2021.

[94] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027, 2010.

[95] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications
in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 2018.

[96] Martin Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cam-
bridge University Press, 2019.

[97] N. R. Wallach. Geometric Invariant Theory: Over the Real and Complex Numbers.
Springer, 2017.

[98] John Watrous. The Theory of Quantum Information. Cambridge University Press,
2018.

[99] Karl Werner, Magnus Jansson, and Petre Stoica. On estimation of covariance ma-
trices with Kronecker product structure. IEEE Transactions on Signal Processing,
56(2):478–491, 2008.

349

[100] Ami Wiesel. Geodesic convexity and covariance estimation. IEEE Transactions on
Signal Processing, 60(12):6182–6189, 2012.

[101] Shuheng Zhou. Gemini: Graph estimation with matrix variate normal instances.
The Annals of Statistics, 42(2):532–562, 2014.

[102] A. Zygmund. Trigonometric series. Cambridge University Press, 2002.

350

Appendix A

Supplementary Proofs

A.1 Lower Bound Example for the Paulsen Problem

The exponent of ε is best possible due to the following example.

Example A.1.1 (Example 9 in [23]). For a fixed θ ∈ [0, π] (small enough) consider the
following frame U ∈ Mat(2, 4):

U :=

(
cos(2θ) cos(2θ) 0 0
sin(2θ) − sin(2θ) 1 1

)
.

It can be shown that the nearest doubly balanced frame to U is

V :=

(
cos(θ) cos(−θ) sin(−θ) sin(θ)
sin(θ) sin(−θ) cos(−θ) cos(θ)

)
.

Therefore, U is an equal-norm ε-Parseval frame with ε . sin2 θ such that the minimum
distance from U to a doubly balanced frame is ‖V − U‖2

F & sin2 θ & ε.

We will show the bounds for the example via the following three claims.

Claim A.1.2. U is an equal-norm ε-Parseval frame with ε . sin2 θ.

Proof. U is clearly equal-norm by construction. To show the Parseval condition, we calcu-
late outer products to show

4∑
j=1

uju
∗
j = 2

(
cos2(2θ) 0

0 1 + sin2(2θ)

)
=⇒ ‖UU∗ − 2I2‖op = 2 sin2(2θ) ≈ 8 sin2(θ),

351

where the last approximation is sin(2θ) = 2 sin(θ) cos(θ) ≈ 2 sin(θ), when θ ≤ 1
4

is small.

Claim A.1.3. Any doubly balanced frame V ∈ Mat(d, n) for d = 2, n = 4 must be the
union of two orthonormal bases.

Proof. The claim follows by some straightforward (tedious) calculations. We assume, by a
change of basis if necessary, that V is of the following form

(v1, v2, v3, v4) =

(
1 α β γ

0
√

1− α2
√

1− β2
√

1− γ2

)
,

for some α, β, γ ∈ [−1, 1]. By assumption V V ∗ = 2I2, so the top left entry of this equation
gives the constraint

2 = 1 + α2 + β2 + γ2 =⇒ γ2 = 1− α2 − β2,

so we can write v4 = (±
√

1− α2 − β2,
√
α2 + β2). By the bottom right entry, we get

2 = (1− α2) + (1− β2) + (1− γ2) = 2− α2 − β2 + α2 + β2,

which is a redundant equation. The off diagonal entries give the equation

0 = α
√

1− α2 + β
√

1− β2 + γ
√

1− γ2

±
√

(1− α2 − β2)(α2 + β2) = α
√

1− α2 + β
√

1− β2

(1− α2 − β2)(α2 + β2) = α2(1− α2) + β2(1− β2) + 2αβ
√

(1− α2)(1− β2)

−2α2β2 = 2αβ
√

(1− α2)(1− β2).

Note that if either α = 0 or β = 0, we are done since (v1, v2) or (v1, v3) is an orthonormal
basis, so in order for the frame to be Parseval, the other pair must be as well. So we can
continue by canceling 2αβ from both sides to show

−αβ =
√

(1− α2)(1− β2) ⇐⇒ α2β2 = 1− α2 − β2 + α2β2,

which shows γ2 = 1 − α2 − β2 = 0. So (v1, v4) is an orthonormal basis, and therefore so
must the other pair be.

Claim A.1.4. The nearest doubly balanced frame to U is

V :=

(
cos(θ) cos(−θ) sin(−θ) sin(θ)
sin(θ) sin(−θ) cos(−θ) cos(θ)

)
,

and the distance is ‖V − U‖2
F & sin2 θ.

352

Proof. If {(v1, v2), (v3, v4)} are the bases, then for small θ the distance ‖V − U‖2
F will be

Ω(1) since one of (u1, v1) or (u2, v2) will be nearly orthogonal. Since u3 = u4 we can assume
wlog that {(v1, v3), (v2, v4)} are the pairs of orthonormal bases, and so the nearest doubly
balanced V is of the form

V :=

(
cos(φ) cos(ψ) − sin(φ) sin(ψ)
sin(φ) − sin(ψ) cos(φ) cos(ψ)

)
.

Since u3 = u4 and u1, u2 are symmetric across the x-axis, we can for now consider

‖v1 − u1‖2
2 + ‖v3 − u3‖2

2 = 2(1− 〈v1, u1〉) + 2(1− 〈v3, u3〉)
= 4− 2(cos(φ) cos(2θ) + sin(φ) sin(2θ)− 0 + cos(φ)),

where in the first step we used that all vectors are unit norm. To minimize the distance,
we would like to maximize the term in paranthesis, so we continue

cos(φ)(1 + cos(2θ)) + sin(φ) sin(2θ) = cos(φ)(1 + cos2(θ)− sin2(θ)) + 2 sin(φ) sin(θ) cos(θ)

= 2 cos(θ)(cos(φ) cos(θ) + sin(φ) sin(θ)),

which is maximized when φ = θ. Arguing symmetrically for ‖v2−u2‖2
2 + ‖v4−u4‖2

2 we get
that the nearest doubly balanced frame to U is the following:

V :=

(
cos(θ) cos(−θ) sin(−θ) sin(θ)
sin(θ) sin(−θ) cos(−θ) cos(θ)

)
.

We can lower bound this distance by just considering the last two vectors:

‖V − U‖2
F ≥ ‖v3 − u3‖2

2 + ‖v4 − u4‖2
2 ≥ 2 sin2(θ).

Putting these claims together, we see that U is an ε-doubly balanced frame for which
the nearest doubly balanced frame V satisfies the distance bound ‖V −U‖2

F & ε. Therefore,
the distance function p(d, n, ε) in Conjecture 4.1.4 must depend linearly on ε, and the ε2

results of [16] and [23] cannot hold for general d, n.

A.2 Tightness of Commutative Robustness

Here we show that the function e−‖(X,Y)‖∞ in Lemma 3.2.4 cannot be improved in general.

353

Example A.2.1. Consider A := 1√
dn
Jdn ∈ Mat(d, n) where J is the all-ones matrix. Then

A is 1-strongly convex according to Definition 3.2.1.

On the other hand, for any S ∈
(

[d]
d/2

)
, consider diagonal scaling X ′ := diag(1S − 1S)

with Tr[X ′] = |S| − |S| = 0 and ‖X‖op = ‖1S − 1S‖∞ = 0. Then the scaling B := eX
′
A is

at most e−2‖X′‖op = e−2-strongly convex.

Proof. Recall that by Definition 3.2.1, to show strong convexity we would like to lower
bound the following quadratic form for every (X, Y) ∈ t:

∂2
δ=0fA(δX, δY) =

d∑
i=1

n∑
j=1

|Aij|2(Xi + Yj)
2

=
1

dn

d∑
i=1

X2
i

n∑
j=1

1 +
2

dn

d∑
i=1

n∑
j=1

XiYj +
1

dn

n∑
j=1

Y 2
j

d∑
i=1

1

=
1

d

d∑
i=1

X2
i +

2

dn

(
d∑
i=1

Xi

)(
n∑
j=1

Yj

)
+

1

n

n∑
j=1

Y 2
j = ‖(X, Y)‖2

t ,

where the first line was by Definition 3.2.1, the second was by definition Aij = 1/
√
dn, and

the cross-term in the final step vanished because (X, Y) ∈ t so
∑d

i=1Xi =
∑n

j=1 Yj = 0.

To upper bound the strong convexity of B = eX
′
A, consider arbitrary (X, 0) ∈ t such

that Xi∈S = 0. Then we calculate

∂2
δ=0fB(δX, δY) =

∑
i∈S

n∑
j=1

e2|Aij|2(Xi + Yj)
2 +

∑
i 6∈S

n∑
j=1

e−2|Aij|2(Xi + Yj)
2

=
e−2

dn

d∑
i=1

n∑
j=1

(Xi + Yj)
2 +

e2 − e−2

dn

∑
i∈S

n∑
j=1

e2|Aij|2(Xi + Yj)
2

=
e−2

d

d∑
i=1

X2
i + 0 = e−2‖(X, Y)‖2

t ,

where the first line was by our choice of scaling X ′ = 1S−1S, and in the third line the first
term was calculated above and the second term vanishes by our choice Xi∈S = Yj∈[n] = 0.

Note that ‖δ‖∞ = 1, and the same argument can be applied by interchanging the roles
of d, n. Therefore Definition 3.2.1 is tight in general.

354

It is clear that A is doubly balanced. By the convex formulation for matrix scaling in
Proposition 3.1.10, this implies s(B) ≥ s(A). This means that this also provides robustness
in terms of α/s.

This also gives the same lower bound for robustness of pseudorandom property, i.e.
shows that Lemma 3.3.4 is tight.

A.3 Alternate Scaling Algorithm

Here we prove the well-known properties of the alternate scaling algorithm in Eq. (4.2) for
nearly doubly balanced frames.

Fact A.3.1 (Restatement of Fact 4.1.5). For any input frame U ∈ Mat(d, n) with s(U) =
1, the two transformations

ũj :=
uj√
n‖uj‖2

, ũj :=

(
d

n∑
j=1

uju
∗
j

)− 1
2

uj (A.1)

produce the equal-norm and Parseval frames which are nearest to U .

Further, if U is ε-doubly balanced for ε ≤ 1
3
, then in both cases Ũ is 3ε-doubly balanced

and satisfies the distance bound
‖Ũ − U‖2

F ≤ ε2.

Proof. The fact that the transformations satisfies the equal-norm and Parseval condition
is easily verified:

Ũ Ũ∗ =

(
d

n∑
j=1

uju
∗
j

)− 1
2

UU∗

(
d

n∑
j=1

uju
∗
j

)− 1
2

=
1

d
Id,

‖ũj‖2
2 =

‖uj‖2
2

n‖uj‖2
2

=
1

n
,

where the two lines correspond to the left and right normalizations respectively.

To show that these are the nearest such frames, we use the following claim which is a
simple application of the triangle inequality.

355

Claim A.3.2. Let x ∈ Rm and x̃ := x
‖x‖2 ∈ S

m−1. Then

inf
y∈Sm−1

‖y − x‖2 = ‖x̃− x‖2 =
∣∣∣‖x̃‖2 − ‖x‖2

∣∣∣.
Now consider any equal norm frame V ∈ Mat(d, n) with size s(V) = 1 and note

‖V − U‖2
F =

n∑
j=1

‖vj − uj‖2
2 ≥

n∑
j=1

‖ũj − uj‖2
2 = ‖Ũ − U‖2

F ,

where the inequality was by the claim above applied to x =
√
nuj.

To show the statement for the left normalization, assume without loss of generality that
UU∗ is diagonal, and let V be an arbitrary Parseval frame of size s(V) = 1. This implies
in particular that for all i ∈ [d] : ‖e∗iV ‖2

2 = 1
d
. Therefore, we can again use the claim to

bound the distance

‖V − U‖2
F =

d∑
i=1

‖e∗iV − e∗iU‖2
2 ≥

d∑
i=1

‖e∗i Ũ − e∗iU‖2
2 = ‖Ũ − U‖2

F ,

where the inequality was again by the claim above applied to x =
√
de∗iU and the fact that

UU∗ was diagonal so Ũ is exactly the row-normalization in the standard basis.

Now assume that U ∈ Mat(d, n) is ε-doubly balanced. Then we can bound the distance
of the right normalization as

‖Ũ − U‖2
F =

n∑
j=1

‖ũj − uj‖2
2 =

n∑
j=1

(‖ũj‖2 − ‖uj‖2)2 ≤ n

n
(1−

√
1± ε)2 ≤ ε2,

where we used the fact that U is ε-nearly equal norm in the third step, and the final
inequality was by Taylor approximation |

√
1 + x− 1| ≤ |x| for |x| ≤ 1

2
.

Further, Ũ is equal norm by definition, so we show it is nearly Parseval.

Ũ Ũ∗ =
n∑
j=1

uju
∗
j

n‖uj‖2
2

� UU∗

1− ε
� 1 + 3ε

d
Id,

where we used that U is ε-doubly balanced and Taylor approximation on 1+x
1−x for |x| ≤ 1

3
.

The lower bound is shown similarly by reversing inequalities.

356

The distance to the left normalization can be bounded the same way. Assume again
that UU∗ is diagonal without loss of generality. Then

‖Ũ − U‖2
F =

d∑
i=1

‖e∗i Ũ − e∗iU‖2
2 ≤

d

d
(1−

√
1± ε)2 ≤ ε2,

where we used the fact that U is ε-Parseval in the second step, and the final inequality
was by Taylor approximation.

Further, Ũ is Parseval by definition, so we show it is nearly equal norm.

‖ũj‖2
2 = 〈uj, (dUU∗)−1uj〉 ≤

‖uj‖2
2

1− ε
≤ 1 + 3ε

n
,

where we used that U is ε-doubly balanced and Taylor approximation on 1+x
1−x for |x| ≤ 1

3
.

The lower bound is shown similarly.

A.4 Robustness of Strong Convexity

The following example shows that there can be no multiplicative robustness bound for
non-commutative scalings. This example was found during joint work with Cole Franks,
Rafael Oliveira, and Michael Walter [36].

Example A.4.1. Consider input V :=

(√
2 1

1
√

2

)
and let G = (SL(2), ST (2)) act by

left-right scaling, along with polar P = (SPD(2), ST+(2)) and infinitesimal vector space
p = spd(2) ⊕ st+(2) according to Definition 6.2.3. Then V is Ω(1)-p-strongly convex, but
V −1V = I2 is not α-p-strongly convex for any α > 0.

Before we prove these facts about p-strong convexity, note that V −1 is a bounded scaling
of V which destroys p-strong convexity, so multiplicative robustness is impossible for strong
convexity under non-commutative scalings.

Proof. To show V is strongly convex as a frame, consider arbitrary element (X, Y) ∈
p = spd(2) ⊕ st+(2), which can be specified by orthogonal basis of eigenvectors: u =
(cos θ, sin θ), v = (− sin θ, cos θ), and x, y ∈ R:

X = xuu∗ − xvv∗ = x

(
cos2 θ − sin2 θ 2 sin θ cos θ

2 sin θ cos θ sin2 θ − cos2 θ

)
= x

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
357

and Y = y(E11 − E22). θ ∈ [0, 2π], x, y ∈ R gives every element of p = spd(2)⊕ st+(2).

∂2
η=0fV (eηX ⊗ eηY) =

∥∥∥∥x(√2 cos 2θ + sin 2θ cos 2θ +
√

2 sin 2θ√
2 sin 2θ − cos 2θ sin 2θ −

√
2 cos 2θ

)
+

(√
2 −1

1 −
√

2

)
y

∥∥∥∥2

F

= 2x2(2 cos2 2θ + sin2 2θ + 2 sin2 2θ + cos2 2θ) + 6y2 + 2xy(4 cos 2θ − 2 cos 2θ)

= 6(x2 + y2) + 4xy cos 2θ ≥ 4(x2 + y2) = 4
(‖X‖2

F

2
+
‖Y ‖2

F

2

)
where we used Lemma 3.1.9 to calculate the second order derivative in the first step, in
the second step we plugged in our definitions of X, Y , the third step was by ‖A + B‖2

F =
‖A‖2

F + ‖B‖2
F + 2〈A,B〉, the remaining steps used various trignometric identities as well

as | cos 2θ| ≤ 1, |2xy| ≤ x2 + y2, and the final step was once again by our choice of X, Y
with ‖X‖2

F = 2x2, ‖Y ‖2
F = 2y2. Since (X, Y) ∈ p was arbitrary, this verifies that V is

4-p-strongly convex according to Definition 4.2.11.

To show I2 is not strongly convex, we consider direction X = E11 − E22 and Y =
E22 − E11 = −X:

∂2
η=0fI2(eηX ⊗ eηY) = ‖XI2 + I2Y ‖2

F = 0,

where the first step was by the formula in Lemma 3.1.9.

Note that V � 0 and det(V) = 1 so the scaling V −1 ∈ SPD(2), i.e. restricting scalings
to P does not improve non-commutative robustness.

A.5 Strong Convexity and Size

In this section, we discuss some relations between strong convexity and size.

Proposition A.5.1. For matrix tuple A ∈ Mat(d, n)K, if A is α-strongly convex according
to Definition 3.2.1, then

α ≤ s(A).

Proof. Recall that according to Definition 3.2.1, strong convexity is given by the following
variational formula:

α = inf
(X,Y)∈t

∂2
η=0fA(ηX, ηY)

‖(X, Y)‖2
t

.

358

We can write out the second derivative explicitly as

∂2
η=0fA(ηX, ηY) =

d∑
i=1

n∑
j=1

K∑
k=1

|(Ak)ij|2(Xi + Yj)
2

=
d∑
i=1

ri(A)X2
i +

d∑
i=1

n∑
j=1

K∑
k=1

|(Ak)ij|2(2XiYj) +
n∑
j=1

cj(A)Y 2
j ,

where the first step is by Lemma 3.1.9, and the second step was by collecting terms and
using Definition 3.1.1 of row and column sums.

To bound the diagonal terms, let i ∈ arg mini′∈[d] ri(A) and define X = Eii − 1
d
Id so

that Tr[X] = 1− d
d

= 0. Then we can bound the diagonal term

d∑
i′=1

ri′(A)X2
i =

(d− 1)2 − 1

d2
ri(A) +

1

d2

d∑
i′=1

ri′(A) ≤ (d− 1)2 − 1

d2

s(A)

d
+
s(A)

d2
≤ s(A)

d

d∑
i′=1

X2
i′ ,

where in the first step we used the definition of X = Eii − 1
d
Id, in the second step we

bounded the first term by mini′∈[d] ri′(A) ≤ 1
d

∑d
i′=1 ri′(A) = s(A)

d
and the second term by

Definition 3.1.1 of size, and the final step was once again by definition of X.

Similarly, let j ∈ arg minj′∈[n] cj(A) and define Y = Ejj − 1
n
In so that Tr[Y] = 0, and

in total (X, Y) ∈ t. Combining with the same calculation for Y , we get

d∑
i′=1

ri′(A)X2
i′ +

n∑
j′=1

cj′(A)Y 2
j′ ≤ s(A)

(1

d

d∑
i′=1

X2
i′ +

1

n

n∑
j′=1

Y 2
j′

)
= s(A)‖(X, Y)‖2

t ,

where in the last step we used Definition 3.1.11 of ‖ · ‖t.
Finally, assuming the cross-term is non-positive by replacing X → −X if necessary,

d∑
i=1

n∑
j=1

K∑
k=1

|(Ak)ij|2(2XiYj) ≤ 0.

So combining all the terms gives the proposition:

α ≤
∂2
η=0fA(ηX, ηY)

‖(X, Y)‖2
t

≤
∑d

i′=1 ri′(A)X2
i′ +

∑n
j′=1 cj′(A)Y 2

j′ + 0

‖(X, Y)‖2
t

≤ s(A).

359

We can simply generalize this to arbitrary tensor scaling.

Proposition A.5.2. Let V = ⊗a∈[m]Va be a tensor product of inner product spaces of
dimension dim(Va) = da and consider scaling group (G,P, p) according to Definition 6.2.3.
Then for any input tuple x ∈ V K that is α-p-strongly convex according to Definition 7.1.7,

α ≤ s(x).

Proof. Consider arbitrary commutative subgroup (Ta ⊆ Ga, Tb ⊆ Gb) and its associated in-
finitesimal vector space t. Assume x is α-p-strongly convex, and we apply Proposition A.5.1
to this subspace:

α := inf
Z∈p

〈ρx, Z2〉
‖Z‖2

p

≤ inf
(X,Y)∈t

〈ρ(ab)
x , (X ⊗ Ib + Ia ⊗ Y)2〉

‖(X, Y)‖2
t

≤ s(x),

where the first step was by Definition 7.1.7 of p-strong convexity, in the second step we
restricted to the subspace t ⊆ p and used the fact that on this subspace ‖ · ‖p = ‖ · ‖t, and
the final step was shown in the proof of Proposition A.5.1.

This shows that the all-ones matrix A := 1√
dn
J ∈ Mat(d, n) is maximally strongly

convex with respect to its size according to Proposition A.5.1. Explicitly, s(1√
dn
J) = 1,

and for any (X, Y) ∈ t:

∂2
η=0fA(ηX, ηY) =

d∑
i=1

n∑
j=1

(Xi + Yj)
2

dn
=

d∑
i=1

X2
i

d
+ 0 +

n∑
j=1

Y 2
j

n
= ‖(X, Y)‖2

t ,

where the first step was by Lemma 3.1.9 of the second derivative; in the second step the
cross term vanished by the calculation below:

d∑
i=1

n∑
j=1

XiYj =

(
d∑
i=1

Xi

)(
n∑
j=1

Yj

)
= 0

by the defining condition of (X, Y) ∈ t according to Definition 3.1.5; and in the final step we
used Definition 3.1.11 of ‖·‖t. Since (X, Y) ∈ t was arbitrary, this verifies Definition 3.2.1 of
α = 1-strong convexity. Therefore, for this A = 1√

dn
J , the inequality in Proposition A.5.1

is tight as α = s(A).

360

	Introduction
	The Paulsen Problem
	Tensor Normal Model in Statistics
	Scaling Framework
	Applications of Scaling
	Solution to the Paulsen problem
	Error bounds for the Tensor Normal Model

	Organization

	Preliminaries
	Linear Algebra
	Vector Spaces
	Linear Operators
	The Spectral Theorem
	Trace and Determinant
	Positive Operators
	Isometries
	Projections
	The Polar Decomposition
	Norms and Inequalities

	Linear Algebraic Groups and Structure
	Classical Groups
	Torus Groups
	Lie Groups and Lie Algebras (Primer)
	Calculus for Positive Definite Operators

	Convex Analysis
	Univariate Convex Functions
	Convex Functions on Vector Spaces

	Quantum Information
	Tensor Products and Quantum Marginals
	Quantum States and Quantum Maps
	Representations of Quantum States and Maps

	Concentration Inequalities
	Independent and Sub-Exponential Distributions
	Gaussian and Chi-square Distributions
	Hanson-Wright Inequality

	Nets and Approximation Arguments

	Matrix Scaling Improvement
	Matrix Scaling and Convexity
	Matrix Scaling
	Convex Formulation/Kempf-Ness Function
	Gradient Flow

	Strongly Convex Setting
	Strong Convexity
	Maintaining Strong Convexity
	Monotonicity and Improved Analysis

	Pseudorandom Setting
	Pseudorandom property and Convexity
	Lift to Frame and Operator Scaling

	Paulsen Problem Revisited
	Introduction
	Frame Theory Background
	Previous Work
	The Dynamical System Approach

	Improved Scaling Approach
	The Frame Scaling Problem
	Previous Approach by Frame Scaling
	Reduction to Matrix Scaling

	Distance Analysis for Matrix Scaling
	Kempf-Ness Equivalence
	Strong Convexity Analysis
	Pseudorandom Analysis

	Average Case Analysis
	Solution to the Paulsen Problem

	Smoothed Analysis of the Paulsen Problem
	Random Frames
	Perturbation Argument for small n
	Perturbation Process
	Error
	Pseudorandom Condition
	Putting it Together

	Perturbation Argument for Large n
	Perturbation Process
	Error
	Pseudorandom Condition
	Putting it Together

	Geodesic Convexity and Scaling
	Background on Scaling
	The Moment Map
	Geometric Invariant Theory
	Kempf-Ness Equivalence
	Optimization for Scaling

	Tensor Scaling and Geodesic Convex Formulation
	Tensor Scaling Problem
	Kempf-Ness Function
	Calculus for Positive Definite Operators
	Geodesic Convex Formulation for Tensor Scaling

	General Scaling Reductions

	Tensor Scaling
	First Analysis of Strongly Convex Tensor Scaling
	Geodesic Gradient
	Geodesic Gradient Flow
	Strong Convexity
	Strong Convergence Bound

	Improvement through Commutative Gradient Flow
	Simplified Setup for Commutative Tensors
	Strongly Convex Analysis
	Pseudorandom Analysis

	Non-Commutative Robustness
	Robustness of Frame Pseudorandomness
	Tensor Pseudorandomness
	Strong Convexity for Operators
	Strong Convexity for Tensors

	Relation between Strong Convexity and Pseudorandomness

	Algorithms for Geodesic Convex Optimization and Scaling
	Previous Work
	Sinkhorn's Algorithm for Matrix Scaling
	Algorithms for Strongly Convex Matrix Scaling
	Algorithms for Geodesic Strongly Convex Optimization and Tensor Scaling
	Algorithms for the Paulsen Problem and Frame Scaling

	Maximum Likelihood Estimator for the Tensor Normal Model
	Statistical Background
	Statistical Inference
	Maximum Likelihood Estimation
	Quality of Gaussian Covariance Estimator
	Analysis of the MLE

	Matrix and Tensor Normal Model
	Setup
	Previous Work
	Main Results
	Reduction to Tensor Scaling
	Bounding the Gradient
	Strong Convergence Properties
	Improved Results and Proofs

	Expansion of Random Tensors
	Spectral Condition via Pisier's Theorem
	Net proof of -Expansion

	Conclusions and Future Work
	References
	APPENDICES
	Supplementary Proofs
	Lower Bound Example for the Paulsen Problem
	Tightness of Commutative Robustness
	Alternate Scaling Algorithm
	Robustness of Strong Convexity
	Strong Convexity and Size

