
A Scalable Recoverable Skip List for
Persistent Memory on NUMA

Machines

by

Sakib Chowdhury

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

© Sakib Chowdhury 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Interest in recoverable, persistent-memory-resident (PMEM-resident) data structures
is growing as availability of Intel Optane Data Center Persistent Memory increases. An
interesting use case for in-memory, recoverable data structures is for database indexes,
which need high availability and reliability. Skip lists are a data structure particularly
well-suited for usage as a fully PMEM-resident index, due to their reduced amount of
writes from their probabilistic balancing in comparison to other index data structures like
B-trees.

The Untitled Persistent Skip List (UPSkipList) is a PMEM-resident recoverable skip
list derived from Herlihy et al.’s lock-free skip list algorithm. It is developed using a new
conversion technique that extends the RECIPE algorithm by Lee et al. to work on lock-
free algorithms with non-blocking writes and no inherent recovery mechanism. It does
this by tracking the current time period between two failures, or failure-free epoch, and
recording the current epoch in nodes when they are being modified. This way, an observing
thread can determine if an inconsistent node is being modified in this epoch or was being
modified in a previous epoch and now is in need of recovery. The algorithm is also extended
to support concurrent data node splitting to improve performance, which is easily made
recoverable using the extension to RECIPE allowing detection of incomplete node splits.

UPSkipList also supports cache-efficient NUMA awareness of dynamically allocated
objects using an extension to the Region-ID in Value (RIV) method by Chen et al. By
using additional bits after the most significant bits in an RIV pointer to indicate the object
in which the remaining bits are referenced relative to, chunks of memory can by dynamically
allocated to UPSkipList from multiple shared pools without the need for fat pointers, which
reduce cache efficiency by halving the number of pointers that can fit in a cache line. This
combines the benefits of both the RIV method and the dynamic memory allocation method
built into the Persistent Memory Development Kit (PMDK), improving both performance
and practicality. Additionally, memory manually managed within a chunk using the RIV
method can have its recovery after a crash deferred to the next attempted allocation by a
thread sharing the ID with the thread responsible for the allocation of the memory being
recovered, reducing recovery time for large pools with many threads active during the time
of a crash.

Comparison was done against the BzTree of Arulraj et al., as implemented by Ler-
sch et al., which has non-blocking, non-repairing writes implemented using the persistent
multi-word CAS (PMwCAS) primitive by Wang et al., and a transactional recoverable skip list
implemented using the PMDK. Tested with the Yahoo Cloud Serving Benchmark (YCSB),

iii

UPSkipList achieves better performance in write-heavy workloads at high levels of concur-
rency than BzTree, and outperforms the PMDK-based skip list, due to the PMDK-based
skip list’s higher average latency. Using the extended RIV pointers to dynamically allo-
cate memory resulted in a 40% performance increase over using the PMDK’s fat pointers.
The impact of NUMA awareness using multiple pools of memory compared with striping
a single pool across multiple nodes was found to only be a 5.6% decrease in performance.
Finally, recovery time of UPSkipList was found to be comparable to the PMDK-based skip
list, and 9 times faster than BzTree with 500K descriptors in its PMwCAS pool.

Correctness of UPSkipList and its conversion and recovery techniques were tested using
black-box recoverable linearizability analysis, which found UPSkipList to be free of strict
linearizability errors across 30 trials.

iv

Acknowledgements

I would like to thank Professor Golab, whose patience, guidance, and support has been
monumental in my ability to write my Master’s thesis. I would also like to thank the
University of Waterloo ECE Department for their relentless support, and the Ontario
Ministry of Universities and Colleges. I would also like to thank all of the essential workers
keeping Waterloo Region, Ontario, and Canada running during this time of crisis, without
whom I would not have been able to write this thesis from the safety of my home. Finally,
I would like to acknowledge that this thesis work, conducted at the University of Waterloo,
was done on the traditional territory of the Neutral, Anishnaabeg, and Haudenosaunee
Peoples. The University of Waterloo is situated on the Haldimand Tract, the land promised
to the Six Nations, which includes six miles on each side of the Grand River.

v

Dedication

To everyone.

vi

Table of Contents

List of Tables x

List of Figures xi

List of Algorithms xii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Thesis Organization . 3

2 Background 5

2.1 Persistent Memory . 5

2.1.1 Challenges . 6

2.1.2 Official Resources . 6

2.1.3 Performance Characteristics . 7

2.1.4 Memory Model . 8

2.2 Linearizability . 9

2.3 Key-Value Stores . 10

2.3.1 Implementation Comparison . 11

2.3.2 Skip List Operation . 12

vii

2.4 Synchronization and Concurrency . 13

2.4.1 Progress Conditions . 14

2.4.2 Blocking Synchronization . 14

2.4.3 Non-blocking Synchronization . 15

2.4.4 Transactions . 16

2.5 Memory Management . 16

2.5.1 Memory Allocation . 17

2.5.2 Memory Reclamation . 17

3 Literature Review 19

3.1 PMEM Programming Techniques . 19

3.2 Concurrent Skip Lists . 24

3.3 Memory Management . 27

4 Implementation 29

4.1 Design Overview . 29

4.1.1 Making a Lock-Free Skip List Recoverable 30

4.1.2 Limitations of RECIPE and NVTraverse Conversion Techniques . . 32

4.1.3 Conversion of Lock-Free Algorithms with Non-repairing, Non-Blocking
Writes . 35

4.1.4 Logging for Recoverable Memory Allocation 36

4.1.5 Recovery Time . 38

4.2 Data Structure . 38

4.3 Memory Management . 39

4.3.1 Persistent Pointers and NUMA Awareness 39

4.3.2 Coarse-grained memory allocation 40

4.3.3 Fine-Grained Memory Management 42

4.3.4 Memory Block Structure . 46

viii

4.4 Skip List Traversal . 46

4.4.1 Recovery . 49

4.5 Insertion and Updates . 52

4.5.1 Recoverable Node Splits . 59

4.5.2 Recovery . 61

4.6 Removals . 61

5 Evaluation 63

5.1 Methodology . 63

5.1.1 Environment . 63

5.1.2 Workloads . 64

5.2 Results and Discussion . 65

5.2.1 Throughput Comparison . 65

5.2.2 libpmemobj vs RIV Pointers . 69

5.2.3 NUMA-aware vs Striped Performance 70

5.2.4 Latency . 72

5.2.5 Recovery Time . 75

6 Correctness 77

6.1 Crash Testing . 77

6.1.1 Instrumentation . 78

6.1.2 Failure Injection . 78

6.2 Linearizability Analysis . 79

6.3 Results . 80

7 Conclusion 81

References 83

ix

List of Tables

2.1 Expected time complexity. n is the number of keys in the set. m is the num-
ber of elements returned by a range query. Hash-maps can be augmented
to have lower time complexity for range queries. 11

2.2 Worst-case time complexity. 12

5.1 Properties of YCSB workloads used for testing. 64

5.2 Performance impact of running UPSkipList on multiple pools with NUMA
awareness compared to running on a single, striped pool. 70

5.3 Median latency in microseconds for UPSkipList, BzTree, and the PMDK
lock-based skip list for each YCSB workload. 72

5.4 Recovery time for each data structure, average of 3 trials 76

x

List of Figures

2.1 Skiplist of height i, with n nodes on the bottom-most level. 13

4.1 Fault possible due to interrupted Insert operation that cannot be detected
during traversal. New node with key of “10” has not been linked in to the
abstract set, but has already been removed from the list of allocatable space,
leaving its memory unreachable and leaked. 33

4.2 Fault possible due to interrupted Insert operation that can be detected
during traversal. New node with key of “10” has been linked in to the
abstract set (white arrows) at level 0 and at level 1, but because of the
failure will not be reachable on higher levels. 33

4.3 Example of extended RIV persistent pointer, and lookup process. Objects
stored in chunks can be nodes or memory blocks. 41

5.1 Throughput comparison using YCSB benchmark workloads A and B for
UPSkipList, BzTree, and the PMDK lock-based skip list. 66

5.2 Throughput comparison using YCSB benchmark workloads C and D for
UPSkipList, BzTree, and the PMDK lock-based skip list. 67

5.3 Comparison of read-only throughput of UPSkipList with a single key per
node, using RIV pointers, with the lock-based skip list, using PMDK’s
libpmemobj fat pointers. 69

5.4 Throughput comparison of UPSkipList running on the striped device and
on multiple pools. 71

5.5 Latency at different percentiles for operations in each YCSB workload for
UPSkipList and BzTree. 73

5.6 Latency at different percentiles for operations in each YCSB workload for
UPSkipList and PMDK lock-based skip list. 74

xi

List of Algorithms

1 Function Persist(Array<Address> memoryAddresses) 31

2 Function CAS(Address memoryAddress, uint64 oldValue, uint64 newValue) . 31

3 Function LogChangeAttempt(Block allocatedBlock, Node bottommostPrede-
cessorNode, Key key) . 37

4 Function MakeLinkedObject(Node bottommostPredecessorNode, Array<Key>
keys, Array<Value> values, int newNodeHeight) 43

5 Function DeleteLinkedObject(Object object) 44

6 Function LinkInTail(int arenaNo, Memory Block newTail) 45

7 Function Traverse(Key t key, Array<Node> predNodes,
Array<Node> succNodes) . 47

8 Function ScanInternalKeys(Node currentNode, Key key) 48

9 Function Search(Key t key) . 49

10 Function CheckForRecovery(int level, Node currentNode, Array<Node> predNodes,
Array<Node> succNodes, recoveriesDone) 50

11 Function CheckForNodeSplitRecovery(Node currentNode) 51

12 Function CheckForInsertRecovery(int level, Node currentNode,
Array<Node> predNodes, Array<Node> succNodes) 51

13 Function Insert(Key key, Value value) . 54

14 Function Update(int keyIndex, Value t value, Node predNode) 55

15 Function CreateHeadSuccessor(Key t key, Value t value, Array<Node> predNodes,
Array<Node> succNodes) . 55

xii

16 Function InsertIntoExistingNode(Key key, Value value, Array<Node> predNodes,
Array<Node> succNodes, int splitCount) 56

17 Function LinkHigherLevels(Array<Node> predNodes,
Array<Node> succNodes,
Node newNode, int startingLevel, int newNodeHeight) 57

18 Function PopulateLevels(Array<Node> succNodes,
Node newNode, int startingLevel, int endingLevel) 58

19 Function PopulateNextPointers(Array<Node> succNodes,
Node newNode, int newNodeHeight) . 58

20 Function SplitNode(Key key, Value value, Array<Node> predNodes,
Array<Node> succNodes) . 60

xiii

Chapter 1

Introduction

In 2011, Marc Andreesen—software engineer, creator of Mosaic and Netscape, and modern-
day investor—proclaimed that “Software is eating the world” [4]. His observance was the
fact that all corporations, regardless of their primary service, are now effectively software
companies. As stated by Andreesen, Netflix, Spotify, and Amazon use software to ful-
fill their purpose of delivering movies, music, and books (as well as movies, music, and
everything else, in Amazon’s case) respectively, to consumers.

On the less obvious side of things, banks, grocery stores, restaurants, libraries, man-
ufacturers of physical goods like cars and airplanes, hospitals, and governments are all
software companies now too. Whether produced in-house or contracted out, they have
to make effective use of software at every level of operation to stay competitive and to
provide the features and services that modern-day consumers expect. They use it to man-
age customer and patient information, arrange curbside pickups and contactless deliveries,
catalogue inventories, analyze data, automate mechanical processes, and seemingly bend
the laws of physics. This all-consuming nature of software in every aspect of our lives is
not necessarily a good thing.

When software fails, bad things happen. The Boeing 737 MAX crashes and subsequent
global grounding was caused by a software engineering failure [48]. A poorly-run simulation
might fail to correctly predict the path of a hurricane in time to evacuate those in danger,
or detect cancer in a patient. On a less life-threatening, more inconvenient level, failure
at the wrong time could prevent a loved one from receiving an important message, a
shopping service to lose track of your goods and money, or simply prevent a company from
providing services to their customers for a number of hours. When they fail, these systems
that millions interact with at light-speed often have to be fixed on much more human

1

timescales.

As engineers, part of our job is to reduce this recovery time as much as possible. When
a system crashes or the power goes out, all data stored in volatile memory is lost, and has
to be reloaded from slower secondary storage by the CPU. With the introduction of cost-
effective non-volatile random access memory in the form of Intel Optane DC persistent
memory, the opportunity now exists to shorten the time reloading takes, and in some
applications remove the need for it entirely. The development of recoverable data structures
for applications using persistent memory is an ongoing area of research. Key questions
include what needs to be made persistent, how it is best persisted, and what trade-offs
result from making a data structure recoverable.

The answers to these questions vary from application to application, since different data
structures have different characteristics that need to be maintained for them to be useful,
such as scalability on multi-core and NUMA machines or rapid recovery in highly failure-
prone environments. This thesis will be investigating the right way to build a scalable
recoverable skip list on NUMA machines using persistent memory.

1.1 Motivation

Large sets of data for many different applications are usually kept in secondary storage.
Database systems use in-memory indexes, traditionally B+trees, to quickly search for
desired data without having to perform slow scans of the secondary storage. These indexes
are lost and have to be reloaded in the event of a crash or failure. Having to maintain
recent backups for this purpose requires resources as well. Persistent memory allows these
indexes to survive a power failure, and reduces the need for backing up for this purpose.
Then, recovery merely consists of repairing any operations that were in progress at the
time of the failure, returning the data structure to a consistent state so that operation can
resume.

Skip lists are better suited to be used as a data structure for persistent memory indexes
over traditional B+trees and hash tables for a variety of reasons. Balanced trees like
B+trees require rebalancing to maintain their performance invariants. Skip lists, while
having inferior worst-case performance, maintain the same average time complexity due to
their probabilistic nature, reducing the theoretical number of memory operations necessary.
This is beneficial because while comparable in performance, persistent memory has higher
latency than DRAM, so the cost of every memory access is higher. Skip lists, as well as
B+trees, also allow for the scanning of ranges of data falling within search limits, unlike

2

hash tables. It is due to these differences that skip lists become more attractive in-memory
index data structure as data centres begin to use persistent memory.

For these reasons, investigating how to effectively build skip lists is an important re-
search question, especially in this early stage of persistent memory’s adoption. The insight
gained, listed below in Section 1.2, is also applicable to building other recoverable data
structures; skip lists were chosen due to their interesting design and immediate potential
benefit to database applications.

1.2 Contributions

The research contributions of this thesis are as follows:

• Untitled Persistent Skip List (UPSkipList), a fully-PMEM-resident recoverable skip
list written in C++ for use with applications that run on persistent memory. Its
operations satisfy the correctness property of strict linearizability.

• An extension to RECIPE [47] that allows for the conversion of lock-free algorithms
with non-blocking writes that do not fix inconsistencies to be recoverable in persistent
memory.

• A memory management system for UPSkipList that allows the dynamic allocation of
multiple segments of memory in different memory pools with objects in the segments
referenced by a single word using an adaptation of the Region-ID in Value (RIV)
method [15], preventing loss of cache efficiency due to fat pointers, with recovery
deferred to the next attempted allocation by a thread after a crash failure

• An evaluation of the impact of NUMA-awareness using the RIV method to identify
pools on different nodes in contrast to striping a single pool across multiple NUMA
nodes on PMEM-resident data structure performance.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 contains background information regarding persistent memory, synchro-
nization, and data structures. Because of how recent the introduction of persistent

3

memory has been, it is beneficial to examine the strengths, weaknesses, and program-
ming challenges that it presents.

• Chapter 3 is a literature review of relevant research regarding recoverable data struc-
tures, recovery techniques, and concurrent skip lists.

• Chapter 4 details the implementation of UPSkipList, the recoverable skip list pre-
sented in this thesis.

• Chapter 5 evaluates the effectiveness of UPSkipList in comparison with BzTree [5],
and a transactional, lock-based skip list built using the Persistent Memory Develop-
ment Kit (PMDK) [23]. Evaluation is done in terms of both runtime performance
and recovery time.

• Chapter 6 details the correctness testing of UPSkipList to verify that no violations
of strict linearizability can be found.

• Chapter 7 concludes the thesis.

4

Chapter 2

Background

Due to the novel nature of persistent memory, it is beneficial to first examine what it is,
how it works (from a software engineering standpoint), and the techniques that have been
developed to take advantage of the benefits it provides over traditional dynamic random-
access memory (DRAM) and secondary storage.

2.1 Persistent Memory

Persistent memory (PMEM) is an emerging technology that provides byte-addressable
access to non-volatile storage using the processor’s load and store instructions. It does so
at latencies that are low enough that the CPU can simply wait for data to be read [58].

Compared to PMEM, traditional DRAM has lower latencies, but requires regular re-
freshing to prevent leakage from its memory cells erasing their contents, making it volatile.
This prevents data from surviving across reboots or system failures, unless it is transferred
to secondary storage. Unlike PMEM, however, DRAM is effectively infinitely rewritable,
while PMEM has a limited lifetime before wearing out [51].

Compared to secondary storage, PMEM offers latency that is orders of magnitude lower
than spinning-platter hard drives, and until recently, flash-based solid-state drives as well
[46, 49]. Regardless of latency, secondary storage accesses happen in blocks, which are
usually 4096 bytes in size. While both PMEM and secondary storage can be accessed by
having their contents memory-mapped so that an application in userspace can read and
write their contents the same way as DRAM, the block size and high latency reduce the

5

throughput of secondary storage in this application by an order of magnitude, especially
for random accesses [58].

2.1.1 Challenges

Using persistent memory presents unique challenges. Because data can now persist across
runs of the program, care must be taken to ensure the in-memory data can be returned to a
consistent, well-defined state in the event that an operation or program is interrupted and
restarted, similar but orthogonal to ensuring consistency in multiprocessing [22]. Through-
out this thesis, the process of returning data to a consistent state after a failure is referred
to as recovery.

In addition, no assumptions can be made as to what state information from the CPU
is available for recovery unless it is explicitly persisted to the memory, from the CPU
cache. While similar to writing to disk, the lack of a kernel call and byte-level instead of
block-level access makes persistence using PMEM much cheaper OS-wise and it becomes
more feasible to interleave persistence operations with data manipulation to allow recovery
[58]. As with all concurrent shared-memory systems, care must be taken to ensure data
is persisted and becomes visible to other threads in the right order to allow algorithms to
behave correctly. Memory fences and flush operations are used to prevent the processor or
compiler from reordering seemingly independent operations in a single thread of execution,
as required [58].

Finally, great care must be taken to prevent memory leaks and loss of ownership of
regions of memory. Rebuilding data structures “from scratch” after a crash is no longer an
opportunity to reclaim lost memory, and byte-level addressability means there is much less
metadata assigning ownership, unless such information is explicitly persisted or tracked
through the static layout of the structure itself [12]. Memory leaks in persistent memory
can effectively become permanent.

2.1.2 Official Resources

Intel, being the primary vendor of persistent memory and the processors that can use it,
has made available the Persistent Memory Development Kit (PMDK) [23] that contains
numerous libraries and utilities to ease the use of PMEM in C, C++, and Java, without
having to resort to inline assembly. Some of the libraries also provide solutions to the
problems of recovery and memory allocation.

6

The PMDK website also includes documentation and informal blog posts concerning
best practices, tips, and tricks when using the libraries. Libraries of note to this project in
the PMDK include:

• libpmemobj — a “transactional object store” that handles memory allocation for
objects denoted as PMEM-resident, and allows recoverability by wrapping memory
modifications in transactions that can be rolled back if necessary. It internally uses
libpmem to interface with memory.

• libpmemobjcpp—C++ bindings for libpmemobj, adding programming conveniences
like ”Resource Acquisition is Initialization” (RAII) and other useful idioms.

• libpmem — a library that provides a low-level platform-agnostic interface to PMEM.

The libpmemobj library is recommended as the starting point for developing applica-
tions that use PMEM [23], and, as explained in a later chapter, is used to establish the
baseline “naive” implementation of a PMEM-resident concurrent skip list. Limitations of
the naive method will become clear later in this thesis.

2.1.3 Performance Characteristics

The Non-Volatile Systems Laboratory at the University of California San Diego (UCSD)
has had early access to Intel Optane DC Persistent Memory and has published basic
performance measurements of it, compared to DRAM [46]. In their report, Izraelevitz et
al. found that in “app-direct” mode, which allows the PMEM to be used as a separate
persistent memory device with reads and writes done in userspace, the following relevant
performance measurements of the device were obtained, listed in Section 3 of the report:

• Random read latency is on average 305 ns for PMEM, compared to 81 ns for DRAM.
It is 3x slower.

• Random write latency, which they measured as temporal and non-temporal stores
of up to 256 bytes and includes flushing/persisting changes to PMEM, is on average
94 ns for PMEM, compared to 86 ns for DRAM. This low latency is for when data
reaches the persistent domain of the PMEM memory controller, which guarantees
persistence, regardless of whether it has been physically written to the PMEM.

7

• Random-access bandwidth is roughly 2.8 GB/s for loads and 1.5 GB/s for stores.
PMEM operations of less than 256 B, which is the device’s internal block size, waste
bandwidth, since the full 256 B will still be rewritten. This is despite the memory still
appearing as byte-addressable to the CPU. In comparison, DDR SDRAM performs
operations at 8 B “block” sizes, which is the smallest amount of memory addressable
by a 64-bit processor.

The insight gained from these benchmarks is that random accesses should be done with
contiguous data flushed and stored in 256 byte-aligned increments if possible, and that
cache fetches should be minimized, due to the high read latency. Cache write-back latency
is much more important for PMEM compared to DRAM because recoverable algorithms
have to ensure certain data is persisted before proceeding, rather than relying on them
being flushed when necessary. This is because a power failure will not force a flush to the
persistence domain in the same way that a concurrent access from another CPU might. As
such, the comparable performance for writes is promising. There is a trade-off resulting
from the write latency being hidden by the PMEM memory controller’s persistent domain,
however. The controller has limited bandwidth relative to the processor, and saturates
quickly at a low number of concurrent threads. This can be mitigated slightly by stor-
ing data simultaneously to multiple PMEM DIMMs, interleaving/striping it in a manner
similar to RAID arrays.

Izraelevitz et al. also detail the performance of applications modified to store their data
structures directly in PMEM, compared to persisting to disk. Depending on the effec-
tiveness of integration with the application, improvements in performance can vary wildly,
with up to 3.5x achieved with RocksDB, compared to 20% for Redis. Other applications
they tested typically fell somewhere in between those two extremes. There is a clear per-
formance benefit to switching to persistent memory to store recoverable data structures,
over storing data structures in DRAM and persisting using secondary storage.

These performance characteristics have also been confirmed by researchers at the Tech-
nical University of Munich and the University of Jena [62]. They too make the recommen-
dation to store to memory in 256-byte increments whenever possible.

2.1.4 Memory Model

In app-direct mode, persistent memory is accessed like a DRAM heap by a program but
allows the data to outlive the program’s runtime, like a file. Due to being in PMEM, the
data is able to survive a power failure. The memory model adopted for the development
of persistent-memory-resident recoverable applications works as follows [58]:

8

• The pool of memory holding the persistent heap of a program is managed as a file
by the operating system. The persistent memory module itself in app-direct mode is
seen by the OS as storage device that can hold these heaps and other files. It can be
written to using standard file system kernel-level calls.

• To allow the program to read and write from it the same way it would from DRAM,
the pool is memmapped into the program’s virtual address space in a non-deterministic
fashion. This means that any pointers in the pool that point to other portions of
the pool will have to potentially resolve to different virtual memory addresses upon
recovery.

• To allow an algorithm to recover, information will have to be persisted to the memory
regularly during normal operation. This means that it has to be written from the
CPU cache back to the memory itself, since the CPU cache is lost in the event
of a power failure. The program uses cache line flushes to persist the information
before continuing operation. Cache line writebacks have been added to the Intel x86
instruction set, allowing cache lines to be written back without evicting them from
the CPU cache, removing the need to fetch them again from memory. Though the
instruction can be used, this feature may not be fully implemented, with unconfirmed
reports that it does not evict cache lines on Ice Lake [10].

• As mentioned before, memory fences must be used to prevent out-of-order execution
from persisting modifications in the wrong order, so that concurrent accesses by other
processors can be synchronized correctly.

2.2 Linearizability

Correctness of a data structure’s implementation determines whether it reliably follows its
defined behaviour and never acts in an undefined manner.

Linearizability is a correctness condition for data structures concurrently accessed by
multiple processes. It removes the need to define and reason about complex concurrent
behaviours by allowing operations to be treated as though they instantly occur at a single
point in time, so that they can now be reasoned about as if they are done by a single
process in a sequential order [42].

The point in an algorithm where the operation is treated as “taking effect” by all
other operations is known as the linearization point. Strict linearizability does not allow

9

operations to take effect after a crash, with the crash acting as the “deadline” by which
all operations must have occurred, if they occur [2].

Recovery procedures may result in operations that were in-flight at the time of the crash
linearizing after post-crash operations, for example, if recovery results in the completion
of a lock-free operation that swaps out a value written after the crash. Recoverable lin-
earizability accounts for this possibility, relaxing the order in which cross-crash operations
are allowed to take effect [8]. This results in well-defined behaviours that can be treated
as sequential despite breaking the rules of strict linearizability.

Durable linearizability considers that real-world failures are full-system failures, and
that no pre-existing threads will return to complete operations after the crash. It allows
operations to take effect due to the work of any of the new threads [45], though this
adds complexity to algorithm design. In applications where new threads are able to reuse
the IDs of threads that existed prior to the crash, the program can treat them as pre-
existing threads recovering, allowing the use of recoverable linearizability instead of durable
linearizability as the algorithm’s correctness condition.

2.3 Key-Value Stores

Key-value stores, maps, or associative arrays are a data type that associate a value with
a key and store it in a set, allowing a lookup of that value using that key [44]. This is an
important abstraction useful for many applications, including dictionaries and indexes.

Key-value stores usually provide the following interface [54]:

• INSERT – adds a key-value association to the set. For the purposes of this thesis,
inserts may update and return an existing value associated with a key if it already
exists in the set.

• REMOVE – removes a key-value association from the set. Remove operations return
whether the key being removed existed in the set.

• CONTAINS – indicates whether the set contains a key. In most practical applications,
this operation returns the value associated with the key as well.

An additional feature useful for many applications is a range query. It requires that
the keys in the set are totally ordered, and can be defined as follows [54]:

10

• RANGE – return all keys in the set that fall within lower-bound and upper-bound
values. In practical applications, the values associated with the range are desired as
well.

For a range query to be linearizable, it must return values that all existed at the same
point in time during the range query, with no additional values. This means that if a value
is removed from the set after a range query has already seen it, this value must not be
returned if the range query is to linearize after its removal. Likewise, values added after
a range query could have seen them must be returned for range queries to be linearizable
after the values’ addition.

2.3.1 Implementation Comparison

There are several underlying data structures that are commonly used to implement a key-
value store abstract data type. These include linked lists [37], skip lists [57], B+trees
[19], and hash-maps [52], among others. The ones listed are the ones relevant to this
thesis, and they are chosen for a specific application depending on its time complexity
requirements. The time complexity, as determined for sequential implementations of these
data structures, for each of the operations is as follows:

linked list skip list B+tree hash-map
INSERT O(n) O(log(n)) O(log(n)) O(1)
REMOVE O(n) O(log(n)) O(log(n)) O(1)
CONTAINS O(n) O(log(n)) O(log(n)) O(1)
RANGE O(n) O(m+ log(n)) O(m+ log(n)) O(mn)

Table 2.1: Expected time complexity. n is the number of keys in the set. m is the number
of elements returned by a range query. Hash-maps can be augmented to have lower time
complexity for range queries.

B+trees provide rapid look-ups along with linear-time range queries. Hash-maps pro-
vide constant-time look-ups, at the expense of range queries [43]. Linked lists provide
linear-time look-ups and range queries, while skip lists provide rapid look-ups like B+trees
and still support linear-time range queries. Skip lists have inferior worst-case performance,
however, which is summarized in this table:

These worst-cases, however, are extremely unlikely, requiring the list to have degener-
ated into a linked list, as will be seen in studies done on skip lists in the next chapter.

11

linked list skip list B+tree hash-map
INSERT O(n) O(n) O(log(n)) O(n)
REMOVE O(n) O(n) O(log(n)) O(n)
CONTAINS O(n) O(n) O(log(n)) O(n)
RANGE O(n) O(n+m) O(m+ log(n)) O(mn)

Table 2.2: Worst-case time complexity.

2.3.2 Skip List Operation

Skip lists, developed by William Pugh in 1989, are key-value store data structures that
perform similarly to balanced trees without the need for explicit rebalancing [57]. It ac-
complishes this by using a multi-level structure where the probability that the next level
contains a link to the desired element increases by a factor of s, where s is the ratio be-
tween the number of elements on adjacent levels of the structure. Searches start at the
highest, sparsest levels of the structure, descending to the portion of the next level that
could contain the element whenever it determines the current level does not. This prob-
abilistic behaviour, which acts like a search tree in that a roughly (1/s)i portion of the
structure is narrowed down to with each traversal to the i-th level, does not need balancing
as long as the highest level a node is inserted into is chosen randomly, maintaining that
rough balance. This makes it well-suited for applications where balanced tree behaviour is
desired but with minimized writes, such as a PMEM-resident index.

Internally, a skip list can be thought of as a linked list of towers of varying heights,
with each level of a tower containing a pointer to the next tower that contains that level,
as seen in Figure 2.1. A search operation begins from the highest level of the head sentinel
node, following links on the same level until it finds a node with a value greater than the
desired node. This indicates that this level does not contain the node, and that the node is
contained on some lower level between the previous node and the next node on this level.
The search then goes to the previous node, moves down a level, and repeats the search
process.

An insert operation occurs like a search, but makes a note of the last node on each
level that it encountered before moving downwards. Once the height of the new node is
randomly determined, the new node is created and linked in at all levels up to its height, by
first linking it to its successor node on each level. Its predecessor nodes are then modified
to point to the new node, completing the insertion.

A remove operation first finds the node to be removed, and then proceeds like the
inverse of an insertion. All the nodes pointing to the node being removed are modified to

12

Figure 2.1: Skiplist of height i, with n nodes on the bottom-most level.

point to the nodes that this node points to.

A range or scan operation proceeds like a search, finding the first node that falls within
a range. Then, it collects all nodes on the bottom layer of the list until it reaches a node
that is not within the range, at which point it processes the collection and returns.

2.4 Synchronization and Concurrency

Concurrent execution of operations to achieve a linearizable behaviour requires the solution
of the mutual exclusion problem to prevent data race conditions or ensuring that threads
can cooperate without causing nonlinearizable behaviour. This can be achieved through
the use of various synchronization methods, which on shared-memory systems fall into the
categories of blocking, non-blocking, or transactional methods. Unless otherwise noted, all
content in this section references The Art of Multiprocessor Programming by Herlihy and
Shavit [41].

13

2.4.1 Progress Conditions

In concurrent settings, certain guarantees of progress are given to prevent all threads
concurrently accessing the same shared objects from becoming deadlocked or not making
progress. Wait freedom is a non-blocking progress condition that guarantees that every
thread finishes its operations in a finite number of steps. Lock freedom guarantees that at
least some thread is finishing its operations in a finite number of steps; it guarantees that
the system as a whole is making progress, though some threads are allowed to be starved.
This makes it a weaker condition that wait freedom. Lock freedom is also a non-blocking
condition.

Deadlock freedom is a progress condition that guarantees that if a thread is trying
to acquire a lock, some thread will succeed in acquiring the lock. Unlike non-blocking
conditions, it is also dependent on threads eventually unlocking the locks they have taken,
which is necessary to prevent deadlock. Systems with locks cannot be lock- or wait-free, as
a thread with a lock may block other threads without itself making progress, though they
can be deadlock-free, ensuring that given enough time and fairness progress can be made.

2.4.2 Blocking Synchronization

Blocking synchronization involves the communication of the use of a resource between
threads, with unavailability of that resource resulting in the requesting thread waiting, or
being blocked, until that resource is available. Care needs to be taken to avoid deadlock,
where a thread requesting multiple resources fails to acquire all of them, waiting on re-
sources acquired by other threads that are themselves waiting on resources acquired by the
first thread. Under heavy contention, most threads can end up continuously checking and
waiting for resources, drastically reducing performance.

Semaphore

Semaphores are among the simplest of synchronization primitives, requiring a counter
that signals to readers the number of rights to access to a resource that can be made.
When non-zero, access is claimed by decrementing the counter, and conversely, released by
incrementing the counter. When zero, a thread will wait for the counter to increase, upon
which it will try to decrement it to claim the resource. In all forms of synchronization, the
incrementing/decrementing of memory used for synchronization must be done atomically.

14

Mutexes

A mutex associated with a resource allows a thread to claim that resource by locking it,
and release its claim by unlocking it. If a thread goes to lock a mutex that is already locked,
then that thread waits for it to be unlocked before it can lock it and proceed into its critical
section of code that acts on the resource. Internally, a mutex can be implemented using a
binary semaphore. Unless explicitly allowed, a thread trying to lock a mutex that it has
already locked results in deadlock. To prevent this, a reentrant lock can be acquired by
a thread multiple times, and then released by that thread the same number of times to
unlock it.

Reader-writer locks

Reader-writer, or shared/exclusive locks, allow synchronization of a resource that can be
safely read by multiple threads but only written to by a single thread at a time. To read,
a thread must acquire a read lock on the resource, incrementing the number of readers of
the resource, which can only be done if there are no writers who have locked it exclusively,
in which case it waits for the resource’s write lock to be released. Once finished reading,
the reader releases its read lock and decreases the number of readers. A writer acquiring
access to a resource waits until there are no other writers having locked it, after which it
acquires the lock. It then waits for all readers to release the lock, during which time no
new readers that know of the writer can acquire access.

Trylocks

Trylocks blur the line between blocking and non-blocking synchronization slightly, by al-
lowing a thread to continue execution rather than waiting on a resource if it finds it to be
locked. However, they do not allow a thread to enter its critical section to manipulate that
resource, and simply let a thread perform other actions on other resources instead.

2.4.3 Non-blocking Synchronization

Non-blocking synchronization methods do not wait for a resource to become available,
and allow optimistic attempts to be made to access the resource instead. Hardware syn-
chronization primitives, that allow atomically modifying a memory address are necessary
to do so successfully. The compare-and-swap, or CAS primitive is an essential primitive

15

that allows a thread to read and modify a value in a memory address, and then write it
back provided that the current value in that address has not changed. If it has changed,
then the thread can try again, re-reading the value and attempting to change it until it
succeeds. Care still needs to be taken in algorithm design to ensure progress to prevent
operations requiring multiple CAS procedures from blocking each other, though greater
interleaving of operations is now possible. In addition, an algorithm can be made wait-free
by decoupling the progress of operations from the progress of the threads themselves, by
having any thread that comes across an in-progress operation help it to completion before
starting its own operation. In this way, non-blocking synchronization can avoid the pitfalls
of blocking synchronization, although at lower levels of contention it tends to result in
reduced performance due to increased overhead.

2.4.4 Transactions

Transactions offer an alternative way of thinking about operations. Rather than having a
thread enter a critical section, a thread will attempt to make changes to multiple memory
addresses until it succeeds, in which case the transaction commits, or fails, in which case
the transaction rolls back and the original values are restored. When two threads attempt
to perform transactions involving overlapping memory addresses, they conflict with each
other and cause either or both transactions to fail, requiring them to restart. Transactions
can be implemented in software using the aforementioned synchronization methods, or in
hardware, where the processor tracks which addresses are being accessed and automatically
aborts a transaction when a conflict occurs. Hardware transactions, while more performant
than software transactions, are difficult to use with persistent memory, as in practice the
flushing of a change from CPU caches to the persistent domain causes transactions to abort
[25].

2.5 Memory Management

In low-level programming languages like C++, dynamic memory management has to be
performed to allocate and deallocate memory to allow objects to survive beyond the scope
in which they are originally created [20]. Allocation claims a position on the heap for a
thread to write an object to, while deallocation returns memory used by an object to the
heap so that it may be reallocated. Dynamic memory management is important for data
structures that can hold an arbitrary amount of data, with new nodes in the structure
being allocated from the heap and linked to the structure. While allocation has to be done

16

explicitly, deallocation once all references to an object have been removed can be managed
automatically using various reclamation schemes [1].

2.5.1 Memory Allocation

Requesting memory from the allocator has to be done explicitly, with a new operator or
malloc function call. Internally, the allocator manages a portion of memory known as the
heap from which it removes the desired amount of memory and returns a pointer to it to
the requesting program. In a multithreaded context, care needs to be taken to ensure that
the allocator can safely allocate to multiple threads at the same time. The allocator’s main
objective in how it manages memory are to balance the overhead of managing the memory
with preventing fragmentation. General-purpose allocators must be able to allocate on
the order of both bytes and gigabytes. For applications where there are going to be many
allocations of only a few hundred bytes at a time, optimizations can be made to reduce
the overhead of general allocation by requesting a large chunk of memory and managing
allocations to it manually [61]. Common methods of doing this include the following:

• Linearly allocating memory with no deallocations by simply incrementing a pointer
to the next free memory address by the amount being allocated

• Including a header before each chunk of allocated memory indicating the size of the
allocation, to be used during deallocation to move back the pointer to the next free
memory address

• Dividing memory into equal-sized blocks linked together as a list

• Dividing memory into contiguous regions of free space linked together as a list, start-
ing off as a single region

While all these methods offer reduced time to allocate over malloc, they require man-
ually keeping track of free memory, increasing program complexity. However, when pro-
gramming without the availability of malloc as is done in persistent memory programming,
knowledge of these techniques can be valuable to improve performance over the fat-pointer-
based allocator in the PMDK. This is detailed in the next chapter, in Section 3.1.

2.5.2 Memory Reclamation

Reclaiming memory is easy in non-recoverable, lock-based data structures where locks to all
nodes pointing to the node to be removed can be acquired, their pointers removed, and the

17

node deallocated. For lock-free structures, and recoverable structures, memory reclamation
is more difficult because pointers to a node to be deallocated have to be changed without
locks, and references to the node may still be kept by other threads or recorded as part
of recovery information that will be used after a crash. Multiple methods of ensuring that
reachable memory is never reclaimed include:

• Tombstoning simply does not deallocate nodes to be deleted, and instead sets their
value to a “tombstone” indicating that the node logically does not exist and should
be ignored. This sidesteps the issue of garbage collection and removes it from the
scope of the problem, at the expense of never decreasing memory use by the program,
making it less suitable for production-ready applications.

• Reference counting tracks the number of references to an object, and upon the
number reaching zero, the object is allowed to be deleted. There is difficulty with
this technique in a recoverable context, however, as a reference count incremented
prior to the addition of a reference may be interrupted by a crash and left off by one,
preventing the object from being deallocated until repaired.

• Hazard pointers let threads indicate to the garbage collector that it has a reference
to an object, preventing that object from being deallocated until all threads relinquish
their references [53]. Hazard pointers have limitations that prevent them from being
useful for recoverable data structures, due to difficulty efficiently determining whether
no references to objects by other objects exist [11].

• Epoch-based reclamation, has threads indicate which epoch it removed an object
in to the reclaimer. Once all threads have moved on to a future epoch in which the
reclaimer can be sure no references exist to objects removed in this epoch, all these
objects can be removed [11].

18

Chapter 3

Literature Review

This chapter presents a literature review on concurrent skip lists, persistent-memory-
resident data structures and key-value stores, and techniques for building high-performance
concurrent skip lists.

3.1 PMEM Programming Techniques

Many different techniques have been developed in recent years to create recoverable data
structures, which a program can recover to a consistent state after a crash failure, given that
some or all of the data structure is stored in persistent memory. Different techniques offer
different tradeoffs between time required for recovery and overhead during runtime. The
ideal technique has minimal recovery time after a crash, and minimal hit to performance
during runtime, compared to a non-recoverable implementation of a data structure.

Wang et al. created the Persistent Multi-word CAS (PMwCAS) library [63] that imple-
ments Harris’ CASN operation [38]. The PMwCAS operation atomically changes multiple
addresses if they all contain expected values in a persistent memory environment while
preventing inconsistency in the event of a crash. It facilitates the conversion of lock-free
algorithms that already use CASN, also known as multi-word CAS (MwCAS), to be re-
coverable when run on persistent memory.

MwCAS works by installing pointers to per-operation descriptors to all relevant mem-
ory locations using CAS prior to writing the new values. MwCAS descriptors are structures
containing, for each location to be changed by the MwCAS, the expected value and new
value, along with metadata indicating the status of the operation. If any of these CAS

19

operations fail, the pointers that were successfully installed are replaced with the origi-
nal values backed up in the descriptor. If they all succeed, they are then changed from
the descriptor-pointer value to the expected value, preventing the intermediate inconsis-
tent state from being visible. PMwCAS makes multiple changes to MwCAS to make it
recoverable:

• One bit of a pointer is used to indicate whether it has been persisted using a flush
operation. Upon reading, if this bit is set, the reader will flush the cache line contain-
ing the pointer, and then unset the bit. This ensures that any writes dependent on
reads will not be persisted prior to those reads, preventing the read from being lost.
Once the bit is unset, the pointer will be flushed again eventually once its cache line
is evicted for any reason, with a crash prior to this simply meaning that the pointer
will be flushed and the bit unset again. The correct value will be read after a crash
regardless.

• A recovery function is implemented that returns the memory to a consistent state
after a failure, by completing CAS operations where all descriptor-pointers were
installed successfully, and rolling back CAS operations otherwise. A program calls
this function prior to resuming execution after a crash. The recovery process is
performed sequentially.

• Recoverable memory allocation is handled by an external allocator, while memory
allocated to PMwCAS but not yet reachable within the datastructure using PMwCAS
is kept track of using descriptors.

• Memory reclamation is handled using an epoch-based algorithm, and the data struc-
ture using PMwCAS to make memory unreachable can use metadata within a de-
scriptor to signal to PMwCAS to return memory to the allocator upon success or
failure. It is assumed by PMwCAS that memory marked as unreachable upon suc-
cess/failure of a PMwCAS operation will not be reachable via unchanged pointers in
the data structure.

This conversion shows an overhead of only 4-6% in realistic workloads.

The main limitation of the research by Wang et al. is that it was conducted prior
to widespread hardware availability of Intel Optane memory. This means that their ex-
perimental results for recoverability are done using flash-backed NVRAM with the same
latency characteristics as DRAM. Additionally, their recovery method does not allow oper-
ations to be processed while recovery is ongoing, and converted algorithms using multiple
single-word CAS operations may still leave memory in an inconsistent state after a failure.

20

Lee et al. have also developed a technique for converting existing DRAM lock-free algo-
rithms to be recoverable from PMEM, known as RECIPE [47]. Their method works on the
insight that many lock-free algorithms already have methods of recovering an inconsistent
state, for example due to an unsuccessful/restarted operation, to a consistent state. These
methods can often be used in the event of a failure to recover in-PMEM data structures
to a consistent state as well, so that execution can continue.

Lee et al. measured the performance of data structures using their techniques using the
Yahoo Cloud Services Benchmark (YCSB), which generates workloads resembling realistic
use cases in terms of distribution, key-value contents, and read-write ratio [24]. They found
that their data structures achieved up 1.6x the performance for integer keys of FAST &
FAIR, a B+ tree algorithm made for persistent memory, and up to 5x the performance
for string keys. They determine this is due to better cache efficiency and reduced number
of flushes in the converted algorithms. They believe the maturity of the algorithms being
converted contributes to their better performance, compared to the newly-developed FAST
& FAIR algorithm.

The limitation of their method is that it only applies to structures that meet any of
the following criteria:

• Updates are performed by a single atomic store, and reads are non-blocking. This
does not apply to skip lists, since insertions require the modification of several point-
ers, in order to maintain the skip list property.

• Writing operations fix inconsistencies when they are found, and both reads and writes
are non-blocking. This may apply to skip lists, depending on the algorithm used.

• Writing operations do not fix inconsistencies, and reads and writes must be non-
blocking and blocking, respectively. This may also apply to skip lists, depending on
the algorithm used.

Intel’s Persistent Memory Development Kit (PMDK) provides a transactional object
store known as libpmemobj that can be used to convert existing algorithms to be recov-
erable [22]. It works by following the same model as database software transactions to
achieve recoverability. Prior to modifying a memory range, a copy is made and stored in a
separate location. This way, if a failure occurs and a transaction that has not committed
was in progress, the original values can be restored, providing failure atomicity. Using
libpmemobj makes the creation and conversion of applications to recoverability very easy;
portions of the code that could leave the data structure in an inconsistent state if inter-
rupted by a crash merely have to be wrapped in a transaction. The transactions provided

21

by the PMDK do not prevent their memory ranges from being read before they commit,
however, so additional synchronization methods must be used if the application will also
be concurrent.

There are additional issues that this library presents when it comes to building high-
performance concurrent recoverable data structures:

• The library uses “fat pointers” to reference data stored in persistent memory. One
word is used to indicate which persistent memory pool contains the data pointed to,
and another is used to indicate the offset of the data from the start of the pool. This
reduces the number of pointers that can fit in a single cache line, increasing misses
and decreasing performance.

• There is additional overhead due to the need to copy all changed values prior to
modification. Although this is a general method that will work in most cases, this
write-amplification uses precious bandwidth and reduces the maximum theoretical
throughput below algorithms that do not use this method.

Due to its ease of implementation, a libpmemobj-based skip list is used as the baseline
recoverable skip list comparison, since it will be the method used by most developers
getting started building recoverable data structures.

Lersch et al. have conducted research evaluating B+tree-based recoverable indexes built
using various methods [50] on real hardware. This provides a good comparison as to what
works well and what does not. They have developed a benchmarking framework to evaluate
persistent memory indexes as well, whose design influenced the benchmarking done in this
thesis. The insight they gained through their experimentation agrees with that laid out in
the background section, namely that bandwidth is scarce and correctness is difficult. The
structures they compare include the following:

• wBTree, whose design is optimized to minimize cache line flushes and writes [17].
They do this by leaving nodes unsorted but reduce the performance impact of this
by using an indirection array to guide searches.

• NV-Tree, which enforces the consistency of leaf nodes but relaxes it for inner nodes
by not maintaining recovery information for them [64]. Upon recovery, leaf nodes are
consistent, and are used to rebuild the inner nodes.

• BzTree, which uses PMwCAS [63] to manage its data [5].

22

• FPTree, which stores inner nodes in DRAM, whose contents has to be rebuilt upon
recovery.

Their experiments show that FPTree and NV-Tree tend to have the best performance, due
to not enforcing PMEM consistency for inner nodes. wBTree tends to perform better in
single-threaded workloads than BzTree, due to its algorithm being designed specifically to
minimize flushes, instead of merely making the algorithm recoverable. wBTree does not
support multithreaded operation, however. Additionally, both FPTree and NV-Tree have
non-constant recovery time, unlike BzTree and wBTree.

Lepers et al. have developed KVell, a fast persistent key-value store for block devices
[49]. Though it does not operate on persistent memory, instead favouring fast block devices
like NVMe SSDs and Optane block devices, it provides insight into the modifications
that can be made to improve performance when moving from slower secondary storage to
faster secondary storage and in-between technology like PMEM. It also serves as a point
of comparison in investigating whether PMEM-resident indexes are worth the effort for
recoverability over block devices with comparable bandwidth.

Lepers et al. find that the CPU is the bottleneck for LSM key-value stores and B-
tree key-value stores. The key method they use to improve performance is to reduce
cross-core communication and synchronization, avoid sorting data when unnecessary, and
avoiding syscalls and unnecessary IO operations. Using PMEM in app-direct mode in place
of block devices will avoid syscalls, but algorithm design is still important to minimize
processor overhead and unnecessary IO operations. Some methods of doing this include
the indirection array method from wBTree [17], as previously mentioned.

David et al. have identified several techniques to implement recoverable lock-free concur-
rent data structures on PMEM in a log-free manner [28], similar to RECIPE [47] and PMw-
CAS [63]. This avoids the overhead of logging required for transactions, as in libpmemobj

[22], making it the first option to consider to improve performance over a libpmemobj-based
baseline implementation. As done in the RECIPE paper, David et al. focus on lock-free
data structures because they always keep the structure in a consistent state and so do not
inherently require logging.

The techniques they propose are as follows:

• link-and-persist – This method involves atomically changing and persisting a link,
using pointer tagging to fold a validity indicator [37] into the pointer, the same as in
PMwCAS [63].

23

• link cache – In this method, cache write-backs are batched together until they have
to be written for correctness. This reduces overhead by removing per-write latency
for writes that do not have to be immediately written by reducing the number of
fences necessary.

• NV-epochs – This is an epoch-based memory management scheme which, like PMw-
CAS, interfaces with an external persistent memory allocator, albeit with some non-
standard modifications. Unlike PMwCAS, which uses its descriptors to track and
recover unlinked memory owned by the data structure, NV-epochs uses a page table
to mark memory pages that may contain unlinked nodes, and verifies during recovery
if all nodes in that table are linked. Unreachable nodes are reclaimed.

David et al. also provide recoverable implementations of many data structures using their
techniques, including skip lists [29]. Their implementations are done using their custom
version of jemalloc designed to simulate persistent memory performance in volatile mem-
ory, with the modifications required for NV-epochs. Unfortunately, this means that testing
them on actual persistent memory is more difficult, requiring modifications to the external
persistent memory allocators.

3.2 Concurrent Skip Lists

There are many different ways of making skip lists safe under concurrent accesses, with
some ways having more potential in recoverable environments than others.

William Pugh proposed the first methods of allowing concurrent maintenance of skip
lists [56]. His method assumes that single-pointer writes are atomic, allowing reads to occur
concurrently to writes with no need for locks. Insertions and removals obtain locks on all
nodes to be modified prior to the modification. Inserted nodes cannot lead an optimistic
search off the list, so no special synchronization is needed there. Removed nodes, however,
can. Pugh avoids this issue by modifying nodes being removed to point back to their
predecessors on each level, such that a search will step back onto the previous node and
follow it to the next node that it was pointing at, forcing it to linearize after the removal.
The removal has to be done level-by-level until the height of a node is reduced to 1.

Herlihy et al. created a simpler lock-based skip list technique known as the lazy-skip-list
[40]. Without using pointer reversal, Herlihy’s skip list is easier to implement and prove
correct. This is achieved using the same technique as lazy-list algorithm of Heller et al.
[39], where a node is marked as logically deleted with an atomic operation, serving as the

24

linearization point of the deletion. Due to the multi-layer nature, an additional flag is
used to indicate when a node is valid, or “fully-linked”, upon insertion. Searches are done
optimistically, and can continue past marked nodes without worrying about being lead off
the list. This simplifies the ability to reason about and prove the list to be correct, and has
resulted in Herlihy’s lazy-skip-list algorithm becoming the starting point for most modern
lock-based skip list algorithms.

A highly popular lock-free skip list algorithm developed by Doug Lea is included in the
Java Concurrency Package [31]. It uses a technique developed by Fraser [34]. It works by
CASing pointers from a node to be deleted to a marker node, which serves to prevent the
former from being modified until it is physically removed from the list. To check if a node
is marked, a read simply checks the next node in the list.

Herlihy et al. have also developed a lock-free skip list algorithm [41], similar to Lea’s
[31], based on Fraser’s [34]. Instead of CASing pointers to a marker node to indicate logical
deletion, their algorithm uses an abstract AtomicMarkableReference object that supports
atomically changing its mark along with the address that it points at. This may internally
be implemented in various ways, including using pointer tagging, or a double-compare-and-
swap primitive if available. Elements are considered to be in the abstract set only if they
are linked at the bottom-most level, and logically-deleted nodes are removed by searches
as they traverse the list. This means that a node may be removed from lower levels by a
search while an insert is still linking the node with higher levels; as a result, both Herlihy’s
and Lea’s lock-free implementations transiently sacrifice the skip list property that higher
levels of the list are always contained within lower levels.

Fomitchev and Ruppert proposed an additional technique to improve the performance
of lock-free linked lists and skip lists [32]. Like Pugh [56], they use backlinks to lead a search
operation back onto the list when a node is being deleted, but in a lock-free context.

Regarding best practices for building performant concurrent and non-concurrent skip
lists, an article of note comes from the personal blog of open-source developer “Ticki” [60].
Although skip lists are quite simple, implementations with some poor design practices can
result in dramatically decreased performance in modern systems due to cache thrashing.
Ticki makes the observation that unless all levels of a tower are included in a single con-
tiguous region of memory, cache misses will occur while the processor fetches the next
level of the tower from elsewhere, instead of having it preloaded automatically. They make
additional suggestions to improve performance, as follows:

• Cache efficiency can be improved further by allocating memory pools for nodes,
instead of allocating for each node directly. Allocation of individual nodes is done

25

from the pool, ensuring that multiple nodes reside in a single page of memory that
can be accessed faster than multiple pages.

• Nodes can contain multiple values; nodes of height 1 can be discarded and have their
value added to the previous node, reducing the data fetched for height-1 nodes to
just their value.

• Height generation can be done more deterministically by tracking the frequency of
each possible height, and creating a new node with the height that has the lowest
frequency relative to how many nodes of that height are desired.

Although Ticki’s suggestions are for a single-threaded skip list, they can be implemented
for a concurrent skip list as well. Containing multiple values in a node requires adding
support for concurrent node splitting when a node becomes full.

Crain et al. have developed a lock-free skip list algorithm that reduces contention by
having a small number of background threads perform the construction of the towers, while
allowing normal insertion operations to return as soon as a node is linked at the bottom,
becoming a part of the abstract set [26]. This serves to reduce hot-spots of attempted
modifications to the upper levels of the list when multiple insertions are ongoing, preventing
them from being invalidated and having to retry.

Dick et al. have introduced a skip list with a rotating mechanism that replaces tow-
ers with wheels whose size is modified in constant time to deterministically preserve the
logarithmic time complexity [30]. This is similar to the rebalancing mechanism used to
reduce the height of balanced search trees [7], using a skip list structure instead of a tree
to avoid contention on the tree root that reducing the height of a regular balanced search
tree would have. This is a novel data structure that is not quite a skip list.

Daly et al. have built a skip list algorithm called NUMASK which is optimized for
non-uniform-access memory systems [27]. Their design not only mitigates the increased
latency of non-NUMA-local accesses, but manages to outperform SMP implementations
by taking advantage of the NUMA architecture. Their algorithm applies a modification
to an existing algorithm, in this case Crain et al.’s skip list [26] to make it NUMA-aware.
They duplicate the upper levels across NUMA nodes, having a per-node background thread
build up the navigation structure locally. This design is also amenable to a hybrid PMEM-
DRAM architecture, with copies of upper levels built up locally in the DRAM of each
NUMA node.

Chen et al. have developed a recoverable skip list called NV-Skiplist [16]. Their al-
gorithm uses a hybrid design with the bottom-most level stored in PMEM while higher

26

levels are stored in DRAM. While this speeds up performance, it increases recovery time,
due to having to rebuild the upper levels upon recovery. Additionally, their skip list was
not tested on real PMEM, due to its lack of availability when their work was published.
Recoverable skip lists have also been built using the previously mentioned PMwCAS [63]
and by David et al. using their log-free techniques [28], though both were also developed
prior to the availability of real PMEM.

3.3 Memory Management

Recoverable memory management requires that interrupted allocations and deallocations
can be detected and resolved after a crash failure, preventing memory leaks. The pre-
viously mentioned libpmemobj library offers recoverable dynamic memory allocation and
deallocation, either within its transactions or using its atomic API [22] and returns the fat
pointers discussed in Section 3.1. The transactional API manages interrupted allocations
the same way as all other interrupted memory modifications, by rolling them back upon
recovery, and is used like malloc. Atomic allocations using libpmemobj in C require the
user to provide a constructor function so that the allocator can either fully initialize the
object or reclaim memory after a crash. The C++ API provides the same interface for both
transactional and atomic allocations, as C++ objects have constructors already that can
be passed to both. Deallocations require explicitly calling destructors prior to deallocating
memory. Internally, allocated objects in libpmemobj are stored in a linked data structure
that can be iterated over, facilitating recovery if a failure occurs after an atomic allocation
but before the new object has been made reachable from the root. This of course adds
an O(n) step to the recovery process, where n is the number of elements in the allocated
object linked list.

NV-Heaps is a memory allocator that, like libpmemobj, provides recoverable allocation
through the use of a transactional allocation system. Unlike libpmemobj however, it only
allows referencing objects stored in the same storage pool, preventing the use of NUMA-
aware algorithms with multiple pools on different NUMA nodes.

For referencing memory locations in persistent memory, an alternative to fat pointers
is provided by Chen et al. [15]. By using the unused, most significant bits in a pointer on
64-bit systems, where only 48 bits are usable to address memory, they store the ID of the
region in which the data the pointer is referencing resides. This allows the use of multiple
regions without using fat pointers, opening up the ability to use multiple NUMA nodes
while maintaining the cache efficiency of smaller pointers.

27

Makalu is a memory allocator developed for recoverable allocation by Bhandari et al.
[9]. It has garbage collection and allows usage with simple analogues of malloc and free

calls. While very flexible and performant, its only limitation is that its recovery time is
dependent on the size of the heap being managed.

28

Chapter 4

Implementation

This chapter describes the design of UPSkipList and the considerations and tradeoffs that
went into its development. It describes the extension made to RECIPE [47] to convert
Herlihy et al.’s skip list algorithm [41], the mechanism used to defer recovery of failed mem-
ory allocations, and the memory management techniques used to enable NUMA awareness
without reducing cache efficiency. Testing of UPSkipList’s correctness is deferred for Chap-
ter 6.

4.1 Design Overview

The UPSkipList algorithm uses as a starting point the lock-free skip list design by Herlihy
et al. [41], which implements a concurrent and lock-free version of Pugh’s skip list [57].
The traversal operation in Herlihy et al.’s skip list algorithm is wait-free, always making
progress, while inserts and removals are lock-free. UPSkipList makes modifications to
Herlihy et al.’s algorithm not only to achieve the goals for a recoverable skip list as specified
below, but also to increase performance by allowing the storing of multiple keys in a
single node through the implementation of recoverable concurrent node splits. Due to
the addition of a lock for the purpose of node splits, insertions, updates, and removes
are no longer lock-free, but are deadlock-free, meaning that they cannot all block each
other from performing their operation. The effects of the modifications on the progress
conditions are specified in their respective sections., with deadlock-freedom ultimately
being maintained by UPSkipList. Skip lists storing multiple keys have previously been
developed by Platz et al. [55] and by Hillel et al. [6], though neither are recoverable.
Although the original algorithm is written in Java, UPSkipList is implemented in C++

29

due to low-level persistence libraries in the PMDK being written in C [23]. The use of
C++ allows for better examination of recoverable memory allocation techniques for lock-
free data structures, with the goals of practicality for both development and use, and
increasing performance, as defined below.

Practicality Requirements Practicality in this case is considered in terms of three
criteria:

1. The usability of the data structure in a program that may have many such data
structures stored within each pool of memory, regardless of the PMEM allocation
system used by that pool, with potentially multiple pools of memory

2. The ability to have the data structure memory-mapped in write mode to different
locations in multiple processes’ virtual memory at the same time, which is possible
in Linux

3. The ability to recover in constant time with respect to the size of the structure after
a failure, ensuring that uptime can be maintained in a failure-prone environment
regardless of the size of the data structure

The C++ memory model does not currently recognize the existence of non-serialized data
structures continuing past the runtime of a program [23]. As a result, numerous recoverable
data structures have been developed that use different techniques to manage memory
[15, 23, 12, 63, 9, 18], described in detail in Section 3.3.

4.1.1 Making a Lock-Free Skip List Recoverable

Multiple modifications had to be made to Herlihy et al.’s skip list to make it recoverable,
increase performance, and to work in persistent memory while meeting the practicality
requirements from Section 4.1.

Directly within the algorithm, cache flushes and memory fences have to be added after
writes to ensure that data has left the volatile domain and will survive power loss. This
is abstracted as the “persist” primitive, shown in Function 1. These changes do not affect
progress. Throughout this thesis, mutable objects are denoted using sans-serif text, while
immutable values are italicized. Additionally, := is used for assignment while = is reserved
for equality tests. Prior to the Intel Ice Lake architecture, the CLWB instruction, which
flushes and does not evict cache lines, is not implemented. CLWB is still able to be used in

30

Function 1: Persist(Array<Address> memoryAddresses)

Result: Persistence of cache lines covering memoryAddresses to memory outside
of cache as side effect

1 for cache lines covering addresses in memoryAddresses do
/* cache lines flushed within Persist() have no specified order;

use multiple Persist() calls to order them explicitly */

2 CLWB(cache line)

3 end
4 MemoryFence()

Function 2: CAS(Address memoryAddress, uint64 oldValue, uint64 newValue)

Output: True on successful swap, False if expected value is not found
5 atomic
6 if memory[memoryAddress] = oldValue then
7 memory[memoryAddress] := newValue
8 return True

9 else
10 return False
11 end

12 end

Function 1, however, as it is treated as CLFLUSHOPT by pre-Ice Lake architectures, which
flushes and evicts cache lines, adding latency to a future read of that cache line but still
working correctly.

In the PMDK on x86 processors, the memory fence is implemented as an SFENCE

instruction, which orders stores and flushes [23]. Unlike PMwCAS [63] and the log-free
techniques of David et al. [28], but like in RECIPE [47] and the PMDK [23], no marking is
used to indicate durability of a pointer to the reader, relying solely on the flush and fence
by the writer prior to dependent writes. The RECIPE paper showed that this is sufficient
to achieve the matching of store order between the CPU and persistent memory, which
they confirmed by tracking cache line flushes.

The recoverable conversion of Herlihy et al.’s lock-free skip list is built upon the “per-
sist” primitive, as mentioned, and the “compare-and-swap (CAS)” read-modify-write prim-
itive, shown in Function 2. CAS is extensively used, not just in the original lock-free al-
gorithm and its conversion, but also in the recoverable fine-grained memory allocator,

31

detailed in Section 4.3.3.

The addition of Persist at key points in the algorithm is not enough to achieve re-
coverability for the data structure. Interruption due to a crash failure during write or CAS
operations between Persist calls can leave data in an inconsistent state. A crash immedi-
ately after Persist is called can also result in not all addresses being persisted from being
flushed out of the volatile domain, also resulting in an inconsistent state. In both cases,
repair of an inconsistent data structure is done in different ways depending on how the
inconsistency can be detected.

A failure during allocation, deletion, and prior to the addition of a node to the abstract
set leaves memory unreachable to both the data structure and the allocator, resulting
in the leakage of memory. An example of this is shown in Figure 4.1. To prevent this
leakage, a logging technique, explained in Section 4.1.4, is used to allow runtime detection
of inconsistencies unreachable during traversal of the data structure. This method requires
the addition of a single cache flush prior to attempting the modification during failure-free
operation.

For inconsistencies that can be detected during traversal, added recovery methods are
used to restore invariants and consistency of the data structure, such as the average search
time complexity, finishing the splitting of a node, or to clean up links that have been
abandoned by a crashed process. Figure 4.2 shows an inconsistency possible in UPSkipList
that can be detected during traversal, where the new node had not been fully linked when
the crash occurred, but is reachable as part of the abstract set. The next pointers from its
predecessors will continue to point to its successors on higher levels instead of eventually
being linked with the new node, which will not occur now without intervention.

The technique used to recover from these inconsistencies is explained in the next Sec-
tions 4.1.2 and 4.1.3.

4.1.2 Limitations of RECIPE and NVTraverse Conversion Tech-
niques

The current state-of-the-art methods of converting lock-free algorithms to be recoverable,
RECIPE [47] and NVTraverse [35], have several limitations that prevent them from apply-
ing directly to Herlihy et al.’s lock-free skip list algorithm to achieve the requirements from
Section 4.1. They also do not deal with recoverable memory allocation or persistent point-
ers, which UPSkipList does, through the logging method (Section 4.1.4) and NUMA-aware
offset-based pointers (Section 4.3.1). While these methods and UPSkipList can support

32

Figure 4.1: Fault possible due to interrupted Insert operation that cannot be detected
during traversal. New node with key of “10” has not been linked in to the abstract set, but
has already been removed from the list of allocatable space, leaving its memory unreachable
and leaked.

Figure 4.2: Fault possible due to interrupted Insert operation that can be detected during
traversal. New node with key of “10” has been linked in to the abstract set (white arrows)
at level 0 and at level 1, but because of the failure will not be reachable on higher levels.

33

NUMA machines by running on PMEM devices striped across multiple DIMMS on sepa-
rate NUMA nodes, NUMA awareness using multiple pools allows for the implementation
of algorithms with NUMA-aware optimizations, like in [27], [59], and [13]. The conver-
sion method used for UPSkipList, while not automatic, fills the gaps left by RECIPE and
NVTraverse.

RECIPE requires that writes in a lock-free algorithm satisfy at least one of three prop-
erties [47], and prescribes a conversion method for the operations satisfying that property.
In a skip list, the write operations that need to be converted are updates, which change
the value associated with an existing key, and inserts, which insert a new key-value pair
into the structure. The first property states that modifications are applied using a single
atomic store to perform an update. Though this situation is trivial to make recoverable,
and applies to updates, insertions in Herlihy et al.’s lock-free skip list do not involve just
a single atomic store, and instead require the use of multiple atomic steps to perform the
operation.

The second and third properties require that writes are either non-blocking and repair
inconsistencies (i.e., help finish incomplete operations), or blocking and non-repairing.
Neither case applies to Herlihy et al.’s skip list algorithm. Writes do not fix inconsistencies
of insertions when they are found; they simply assume that another thread is taking care of
it. Reads only fix inconsistencies as part of the algorithm when removing links to logically-
deleted nodes. Writes are non-blocking as well, which prevents detection of inconsistent
nodes in need of repair by checking whether the nodes are locked, leaving RECIPE’s third
conversion method unusable for this algorithm.

To apply RECIPE’s third conversion technique, it is necessary to find a way to detect
when an inconsistency is due to a crash failure without having to check a DRAM-resident
lock. Although volatile locks can be added to Herlihy et al.’s algorithm for this purpose,
this would require that during recovery these locks be reinitialized and reassociated with
the nodes, making recovery time dependent on the size of the structure. The solution to
this problem is accomplished in UPSkipList using the technique described in Section 4.1.3.

Like RECIPE, NVTraverse applies to a class of algorithms, in this case formalized as
“traversal data structures”. In their technique, a skip list only counts as a traversal data
structure if the bottom-most linked list is considered the data structure, with all upper
layers treated as DRAM-resident auxillary entry points. This precludes the usage of their
technique for non-hybrid designs that only use PMEM, compared with hybrid designs that
use both DRAM and PMEM, preventing the achievement of practicality requirement 3 from
Section 4.1. Their technique’s automated conversion method also does not account for the
pointer differences required to reference objects that may be relocated in virtual memory

34

after a crash, as is possible in the PMEM programming model, precluding requirements 2
as well.

4.1.3 Conversion of Lock-Free Algorithms with Non-repairing,
Non-Blocking Writes

Although volatile locks can be added to Herlihy et al.’s algorithm to allow the detection
of incomplete operations using RECIPE, this would require that during recovery these
locks be reinitialized and reassociated with the nodes, making recovery time dependent on
the size of the structure. Instead, failure detection can be done using a method similar
to that proposed by Aguilera et al. using an epoch number associated with an object
whose consistency is being verified [3]. This method of failure detection is implemented
by Golab and Ramaraju to construct recoverable mutexes [36], and a form of it can be
seen implemented in BzTree [5] just for the detection of interrupted node resizes. Using an
epoch count to detect conditions is also used in other areas, including epoch-based memory
reclamation [33].

Each failure-free period is tracked using a monotonically increasing PMEM-resident
variable called the epochID. During creation or confirmation of consistency of a node, the
epochID of the node is set to match the current epoch. After a failure, the epochID of a
node will be out of date. Any thread that comes across it will know that there are no other
threads responsible for fixing any inconsistencies with that node, which would be the case
if the epochID did match the current epoch. This replaces the method used by RECIPE
to detect if a node’s inconsistencies will be repaired, which they do by checking for a held
lock [47]. When traversing the structure, an outdated epochID is first updated by a thread
trying to claim it so that it can restore consistency, preventing multiple threads from trying
to repair the same node.

With the ability to discern incomplete non-blocking writes from failed ones using only
PMEM-resident variables, it is now possible to follow the rest of the third RECIPE con-
version method to achieve recoverability by implementing recovery methods for these in-
consistencies. Helper mechanisms are added to repair inconsistencies, shown in Functions
10, 11, and 12, which are described in Section 4.4. While checking the epochID during
traversals does not impact wait-freedom, if it is outdated due to a crash and recovery is
started, the preservation of wait-freedom depends on the helper mechanisms.

35

4.1.4 Logging for Recoverable Memory Allocation

Logging for UPSkipList’s memory allocations requires only that modifications that will
leave memory unreachable if interrupted be logged, as all other issues can be detected
during traversal and recovered as in Section 4.1.3. The thread logging its allocation only
stores the latest log as well, overwriting previous ones and limiting the amount of space
required. This does not add much overhead due to a skip list insertion already requiring a
flush for every level that is modified in its lock-free algorithm, and due to the write latency
of real PMEM modules nearly matching that of DRAM [46].

The logging method used for UPSkipList is based on the assumption that the identity
of a thread performing operations does not change during an epoch. Prior to allocating
memory, a thread persists a log into a thread-specific area that indicates during which
epoch the allocation will be persisted, shown in the Insert operation in Function 4, line
38 using LogChangeAttempt detailed in Function 3. For all functions in this chapter, it is
assumed that the unique threadID of the thread calling the function, the NUMAnode the
thread is running on, and the current failure-free epochID are available. The persistence of
a log prior to modification is similar to how a descriptor is used in BzTree [5] to indicate
which links will be need to be changed to allocate memory, however in UPSkipList it is
done only for a single link.

Due to the log being thread-specific, the log reading and writing cannot be blocked by
other threads, leaving no impact on the deadlock-freedom of insertions, recoveries during
traversals, and removes. The traversal that occurs on lines 17 to 22 occurs without taking
any locks, and so like traversals in Herlihy et al.’s algorithm, cannot be blocked. In the
event that an allocated node is not reachable after a crash, the deletion of that node must
maintain deadlock-freedom to ensure UPSkipList’s logging is deadlock-free. This is covered
in Section 4.3.3.

Prior to the next modification log being written, this log is checked to see when the
last thread with this identity was attempting its operation (line 14). If the epoch of the
log is the same as the current one, the thread can be sure that the previous operation
was a success, since the thread must have finished the operation before it could have
moved on to the current operation, and the thread continues with overwriting the previous
log with the log for its next operation so that the next operation can be performed. If
the epoch was different, then the thread has to check whether the interrupted thread in
the previous epoch had managed to succeed in its operation. This can be seen in lines
17-22, where it navigates the abstract set from the pointer that must precede this node
(bottommostPredecessorNode) until the expected location of the key is found. If it is not
found, then it cleans up any unreachable memory that has not been reallocated (line 24)

36

Function 3: LogChangeAttempt(Block allocatedBlock, Node bottommostPrede-
cessorNode, Key key)

Data: Shared log structure logs
Result: In-place log creation, with incomplete allocations from past failure-free

epochs cleaned up
13 log := logs[threadID]
14 if log is initialized and log.epochID ̸= epochID then

/* check to see if the allocation and insertion by this thread in

the past epoch succeeded */

15 reachable := False
16 currentNode := log.bottommostPredecessorNode
17 while currentNode.keys[0] < log.key do

/* navigate bottom-most level of the skip list from this

pointer onwards until expected location of this key is found

*/

18 currentNode := currentNode.next[0].ToPointer()
19 if currentNode.keys[0] = log.key and currentNode = log.allocatedBlock

then
20 reachable := True
21 end

22 end
23 if not reachable then
24 DeleteLinkedObject(log.allocatedBlock)
25 end

26 end
27 logs[threadID] := NewLogEntry(allocatedBlock, bottommostPredecessorNode, key,

epochID)

28 Persist(logs[threadID])

37

and continues with its execution.

Using this method, after a whole-system-failure of k threads, O(k) recovery steps will
have to be taken for memory to regain its integrity, and space is only required for k logs.
This way, reclamation of unreachable memory due to a crash is deferred out of recovery
time and into the run time of the next operation. Since it is possible for a log to be less
than a cache line in length, allocations are able to achieve recoverability with the use of a
single additional cache line flush (line 28).

4.1.5 Recovery Time

Using the methods of this section, recovery time is reduced to the time necessary for the
program to reconnect to all of its pools, after which it can immediately resume servicing
requests, with inconsistencies repaired as identified during runtime. In this way, recovery
is not dependent on the size of the data structure.

4.2 Data Structure

UPSkipList’s node structure is similar to that of Herlihy et al.’s lock-free skip list, with
changes made to allow recoverability, hold multiple keys per node, and to allow recoverable
node splits. As previously mentioned in Section 4.1.3, an epochID is added to allow
detection of incomplete operations. To support multiple keys per node, the key field is
expanded into an array of keys stored contiguously, and the same is done with the values
field. A counter is added for the number of splits that the node has undergone, which is
used by the lock-free reads to confirm that the values and keys they read match. More
details on this process are provided in Section 4.4. Additionally, a reader-writer lock is
used to prevent updates to values from occuring while a node is being split. Details on
how this is made recoverable are provided in Section 4.5. Updates that do not require
a node split are concurrent with each other and reads, and building of the towers is still
performed without acquiring locks, limiting the time that a node spends write-locked to
the time required to transfer keys to a new, subsequent node during a node split. The
remaining fields are the same as in the lock-free skip list algorithm, though since marking
of deleted nodes is not used in UPSkipList, the pointers in the array of next node pointers
are not markable. Like Herlihy et al.’s algorithm, head and tail sentinel nodes are used as
starting and ending points for traversals.

38

For simplicity of development, each node and memory block is the same size, even
though most nodes will use a small fraction of the available space to store pointers. The
node size and memory allocator (Section 4.3.3) can be modified to reduce wasted space by
allowing variable size allocations.

4.3 Memory Management

4.3.1 Persistent Pointers and NUMA Awareness

In the PMEM programming model, the physical representations of data stored in PMEM
as files are memory mapped into the program’s address space [58]. Due to modern require-
ments like address space layout randomization, and changes in a program’s memory layout
over versions, the data cannot be expected to be mapped to the same base address each
time the data structure is used by a process, so pointers cannot be stored absolutely [15]
if the practicality requirement 2 is to be satisfied.

Existing solutions to this problem include storing pointers as offsets relative to the base
address of the pool, fat pointers using an additional word per pointer to store the ID of
the pool in which the offset is located [23], and the Region-ID in Value (RIV) method
[15]. Offsets do not allow the use of multiple pools memory mapped in at different base
addresses as is the case with multiple NUMA nodes. Fat pointers, while indicating which
pool of memory an offset is in, use multiple words per pointer, increasing bandwidth usage
and reducing cache efficiency due to fewer pointers fitting in a single cache line. The RIV
method, where the offset portion of a pointer is limited to the least significant bits, and the
most significant bits are used to indicate which segment of memory the offset is relative
to, is able to account for the limitations of offsets while not increasing the size of a pointer
and reducing performance. The trade-off is being limited to a fraction of the number of
pools; given that the 16 most-significant bits of addresses are unused on 64-bit x86 systems
and the need for just one pool per NUMA node, being able to address up to 216 pools is
sufficient for UPSkipList.

The RIV method is adapted here to allow both dynamic memory allocation of segments
from a shared pool of memory and to use multiple pools of memory across multiple NUMA
nodes. This allows a structure to be aware that it is scaling across multiple NUMA nodes,
which is not possible when NUMA support is achieved by striping a single pool across
multiple nodes. The benefit of this method is compared with striping in Chapter 5.

Multi-pool NUMA awareness is done using a two-stage lookup procedure, where the
top n bits of a pointer are used to denote the NUMA node/pool that the memory segment

39

is in, the middle m bits are used to denote the memory segment whose base the offset is
relative to, and the bottom 64−(m+n) bits are the offset of the object within the memory
segment. For UPSkipList, the top 16 bits that are already unused have been repurposed
to represent the NUMA node, though all 16 bits are only used due to having no other
purpose for them in this algorithm. If bits need to be reserved for pointer marking and
tagging, the number of bits used for the NUMA node could easily be reduced to 8 or 4
bits. Dynamic memory allocation of segments can be done with any method, and need
not return a pointer in RIV form. When using a single pool, whether on a single node or
striped, the NUMA node lookup procedure is omitted, while lookup using segments and
offsets within the single NUMA node is retained. As lookups are composed of reads and
pointer arithmetic, they cannot be blocked and do not affect progress conditions.

An example of the extended RIV lookup is shown in Figure 4.3. Once the ID of the
pool is determined, the next set of bits is used to determine which memory segment, or
“chunk” of the pool the offset is relative to, and its absolute base address is determined. To
obtain the virtual memory address where the object to be accessed is stored, the remaining
least-significant bits are added to that absolute address.

4.3.2 Coarse-grained memory allocation

UPSkipList supports two modes of operation:

1. All memory pools are preallocated to UPSkipList. Internally, UPSkipList will prepare
them by dividing each chunk into memory blocks and linking them together as a free
list prior to operation.

2. Memory pools are shared with other persistent data structures used by the program
and the space used by UPSkipList within the pool grows as required.

For mode 2, allocation is done at run-time as additional memory is required, allowing
immediate operation, and trading some performance on inserting new nodes for the ability
to grow and shrink the data structure size within the PMEM pool. For UPSkipList’s imple-
mentation, libpmemobj is used to allocate MiB-scale chunks as libpmemobj objects from a
pool of memory that can be shared among multiple structures in a single program, however
any persistent heap allocator can be used, regardless of how their pointers are represented.
Alternatively, a pool could be used that is only as big as the space required, which can
be grown when more space is required. This solution however has reduced performance,
as modifying the memory-mapped file requires system calls and the overhead those entail.

40

Figure 4.3: Example of extended RIV persistent pointer, and lookup process. Objects
stored in chunks can be nodes or memory blocks.

41

Once allocated to the program by libpmemobj, any data stored within the segments is the
data structure’s responsibility. The resulting fat pointers from the libpmemobj shared allo-
cation for each chunk are stored in an array in persistent memory. The absolute addresses
of the chunks within the current program’s address space, which do not change during a
run, are cached in an array in DRAM to allow quick lookups. During recovery, the cache
can be rebuilt as pointers are dereferenced, deferring it out of recovery and into when it
is actually needed. This way, recoverable coarse-grained allocation is achieved within a
NUMA node shared among multiple structures. This method can be extended to allow
relocation of chunks within a memory pool, by updating the absolute address cache when
safe.

4.3.3 Fine-Grained Memory Management

Memory within segments is managed manually by UPSkipList so that it can be referenced
using the RIV method, and to avoid the overhead from the general memory allocation
method, which is more expensive on PMEM than on DRAM, in favour of a data-structure-
specific one. It is divided into memory blocks that are linked together using a free list,
with each free block pointing to the next free block in the list. For recovery purposes, a
memory block also contains the failure-free epochID in which it was created. The allocator
for UPSkipList is shown in Function 4. When the pool of free blocks gets sufficiently low,
as on line 34, a new chunk is requested from the coarse-grained allocator and allocated
(line 35). UPSkipList relies on libpmemobj memory allocations to be at least deadlock-free
to prevent them from impacting its own deadlock-freedom in insertion operations. Upon
obtaining a new chunk, the requesting thread initializes it as a block allocator and adds
all the created memory blocks to multiple lock-free free lists, before linking it into the
allocator. These are all connected using the RIV method, meaning that each block in a
chunk on a NUMA node can point to blocks on chunks in different NUMA nodes, which
is useful when deallocating skip list nodes, for example after a failed insertion.

To reduce contention, threads on the same NUMA node will obtain new nodes to
initialize from separate free lists, known as arenas, for that NUMA node, with the arena
of each thread determined by the remainder after dividing its ID by the total number of
free lists (line 29).

Using UPSkipList’s logging method, before a node is removed from the free list, a log
is made by the thread indicating where this node will be linked in on success, as explained
in Section 4.1.4. In the event that a block logged from a previous epoch is found to be
unreachable, the DeleteLinkedObj function from Function 5, called in LogChangeAttempt

42

Function 4:MakeLinkedObject(Node bottommostPredecessorNode, Array<Key>
keys, Array<Value> values, int newNodeHeight)

Data: Array of headBlocks of the free lists for this node, numberOfArenas
arbitrarily chosen for the allocator

Output: Pointer to newNode constructed by MakeLinkedObject

29 arenaNo := threadID % numberOfArenas
30 allocated := False

31 while not allocated do
32 newBlock := headBlocks[arenaNo]
33 nextBlock := newBlock.next

34 if nextBlock = null then
35 AllocateNewChunk(newBlock)

/* Obtain a new chunk of memory blocks from the allocator,

convert it into a linked list of memory blocks, then link

its head in as the next block of newBlock */

36 continue

37 end

38 LogChangeAttempt(newBlock, bottommostPredecessorNode, keys[0])
/* crashes after this point will not leak memory because the log

will be checked and the unreachable memory will be found in a

future allocation */

39 allocated := CAS(headBlocks[arenaNo], newBlock, nextBlock)

40 end

41 Persist(headBlocks[arenaNo])

42 newNode := newBlock.InitializeAsNode(keys, values, newNodeHeight, epochID)

43 Persist(newNode)
44 return newNode

43

Function 5: DeleteLinkedObject(Object object)

Data: Array of tailBlocks of the free lists for currentNUMANode,
numberOfArenas arbitrarily chosen for the allocator

Output: Return of object to the allocator if not already done

45 arenaNo := threadID % numberOfArenas
46 if object is a node then
47 object.ConvertToMemoryBlock()

/* de-initialize the node to be deleted by zeroing it out and

preparing it to be linked back into the free list */

48 Persist(object)

49 else
50 if object = tailBlocks [arenaNo] then return
51 if object.next ̸= null then return

/* another thread must have observed it as the tail block for it

to now point to another block, so it was deleted successfully

*/
52 end
53 LinkInTail(arenaNo, object)

44

Function 6: LinkInTail(int arenaNo, Memory Block newTail)

Data: Array of tailBlocks of the free lists for currentNUMANode
Result: Linking of newTail in as the new tail of tailBlocks

54 while True do
55 currentTail := tailBlocks[arenaNo]
56 tailChanged := CAS(currentTail.next, null, newTail)
57 if tailChanged then break
58 if currentTail.epochID ̸= epochID then

/* tailBlocks[arenaNo] does not point to the tail due to a

failure; let’s help it along */

59 nextTail := currentTail.next
60 if CAS(tailBlocks[arenaNo], currentTail, nextTail) then
61 Persist(tailBlocks[arenaNo])
62 end

63 end

64 end
65 Persist(currentTail.next)
66 CAS(tailBlocks[arenaNo], currentTail, newTail)
67 Persist(tailBlocks[arenaNo])

45

from Function 3 line 24, is called again. DeleteLinkedObj is idempotent, allowing recovery
from a failed recovery. Composed of multiple steps that cannot be blocked, and with any
failed CAS being attempted until success, DeleteLinkedObj also achieves lock-freedom,
ensuring that it does not prevent any functions calling it from being lock-free themselves.
If the node is not reachable and has already been deallocated but not added to the free
list, which is checked on lines 50 and 51 of Function 5, the thread will continue recovery
from the last step performed until it succeeds.

Deallocation, reallocation, and failure prior to clearing the log entry is accounted for by
using additional metadata in the log entry. Prior to deallocating a block during recovery,
additional information in the log is used to verify that it was not successfully deallocated
and reallocated by a different thread. This prevents the incorrect behaviour of a thread
deallocating another thread’s block if a failure and reallocation has occurred. If a failure
occurs during the provisioning of a new chunk, the thread will see when it attempts its
next operation that the chunk being built was unsuccessfully linked in, clean it up, and
return it to the coarse-grained allocator.

4.3.4 Memory Block Structure

Individual memory blocks within a chunk are very simply structured. For the purposes of
this thesis, they are all the same size and large enough to contain a single node with the
maximum number of levels. They contain a persistent pointer to the next block in the free
list, and an identifier for the block itself. They also contain the epoch in which they were
generated, so that an interrupted memory allocation/deallocation can be recovered.

4.4 Skip List Traversal

Traversals in UPSkipList, shown in Function 7, have been modified from Herlihy’s algo-
rithm to add inconsistency detection and recoverability as explained in Sections 4.1.3 and
4.1.4. Modifications have also been made to support multiple keys in a single node and to
facilitate the checking of correctness of a search by tracking the number of splits a node has
undergone. Internal keys are stored unordered, save for the fact that all keys are greater
than the first key. To speed up searches when skip list nodes contain multiple keys, only
the first key in the node is used for finding the node containing the desired key using the
skip list traversal algorithm, shown on line 80 of Traverse in Function 7. This works
because all internal keys in a node are larger than the first key in the node, and smaller

46

Function 7: Traverse(Key t key, Array<Node> predNodes,
Array<Node> succNodes)

Output: in-place population of predNodes and succNodes, splitCount of current
node, keyIndex in node if key exists, True/False whether key was found,
levelFound at which key was found

68 recoveriesDone := 0, levelFound := notFound, keyIndex := −1
69 while True do
70 predecessorNode := root.head
71 for level from topLevel down to 0 do
72 currentNode := predecessorNode.next[level]
73 successorNode := currentNode.next[level]
74 while True do
75 if CheckForRecovery(level, currentNode, predNodes, succNodes,

recoveriesDone) then
76 recoveriesDone += 1
77 continue outer while loop at 69

78 end
79 currentSplitCount := currentNode.splitCount
80 if currentNode.keys[0] ≤ key then
81 splitCount := currentSplitCount
82 predecessorNode := currentNode; currentNode := successorNode
83 if currentNode.keys[0] = key then
84 keyIndex := 0, levelFound := level
85 break

86 end

87 else break

88 end
89 if level = 0 then
90 keyIndex := ScanInternalKeys(predecessorNode, key)
91 if keyIndex ̸= −1 then levelFound = 0

92 end
93 predNodes[level] = predecessorNode, succNodes[level] = currentNode
94 if keyIndex ̸= −1 then return ⟨ splitCount, keyIndex, True, levelFound ⟩
95 end
96 return ⟨ splitCount, keyIndex, False, levelFound ⟩
97 end

47

Function 8: ScanInternalKeys(Node currentNode, Key key)

Output: index of key in currentNode.keys if key exists
98 for keyIndex from 1 up to length(currentNode.keys) do

/* skip first element; it was checked in Traverse() */

99 if currentNode.keys[keyIndex] = key then
100 return keyIndex
101 end
102 return −1

103 end

than the first key in the next node, allowing internal keys to effectively be treated as an
additional level at the bottom of the skip list. The scan of the internal keys can be seen on
line 90, where the bottom-most keys are only scanned once the node that might contain
the desired key has been reached on the bottom-most level. If the key is found, the index
it was found at is saved so that the operation calling Traverse does not need to rescan the
keys itself. To further improve performance, the array of keys is positioned such that the
first key falls into the same cache line as additional metadata that has to be read anyway
during a traversal. The scanning cannot be blocked so it does not affect the lock-freedom
of Herlihy et al.’s algorithm.

The scanning process of internal keys is shown in Function 8. Storing internal keys
unordered saves on overhead during insertion, where if a key is found to not exist it can
be inserted using a single CAS operation to claim an empty slot in the node. For node sizes
on the order of hundreds of keys, the overhead of having to scan all keys was found to be
negligible compared to the time to find the node itself being magnitudes greater, due to
hardware fetching the additional cache lines when a sequential scan is detected.

For the operation calling Traverse to decide if the values it reads are correct, Traverse
records the number of splits that the current node has undergone prior to reading its first
key or internal keys. This way, it can compare the number of splits prior to Traverse

reading the keys in the node with the number of splits after it has read the keys in the
node, as shown in Search in Function 9 on line 110. If the value does not match, then a
split had occurred, the value is unreliable, and the traversal needs to be retried. Whether
the node is write-locked is also checked, since a value read at the time of returning that is
write-locked is also unreliable.

In the original algorithm, traversals make modifications to the skip list when they come
across any nodes marked for removal by snipping their links out of the level at which they

48

Function 9: Search(Key t key)

Output: value corresponding to key if it exists, notFound if it does not
104 while True do
105 ⟨ splitCount, keyIndex, keyExists, levelFound ⟩ := Traverse(key, predNodes,

succNodes)
106 if keyExists then
107 node := predNodes[levelFound]
108 if node.splitLock is write-locked then continue
109 value := node.values[keyIndex]
110 if node.splitCount ̸= splitCount then continue
111 return value

112 end
113 return notFound

114 end

have been found, one by one. To make snipping recoverable, the modification needs to
be persisted, with a flush happening immediately after the next pointer of the previous
node is replaced with the next one. Due to removals in UPSkipList simply tombstoning
the value for the key being removed in larger, multi-key nodes, described in Section 4.6,
this portion of Herlihy et al.’s algorithm has been omitted. Deleting nodes that are full of
tombstones would be beneficial and is a potential future improvement to UPSkipList.

4.4.1 Recovery

As mentioned in Section 4.1.3 and shown in Function 10, during runtime operation, each
node’s epochID is checked to determine whether any inconsistencies have to be repaired by
the observing thread (line 116). If the epochID matches that of the current run, then the
thread knows that either this node is consistent, or it will be made consistent by another
thread that’s still working on it, and does not bother checking for inconsistencies. There
is minimal overhead to checking this as it is contained in the same cache line as other
important metadata that need to be read regardless during traversal.

If the epochID does not match, the thread needs to clear any outdated metadata, shown
on line 122 where the reader count from the previous epoch is reset, and then claim the
right to check/repair that node by performing a CAS operation from the old epochID to
the new epochID (line 123). The metadata has to be reset prior to updating the epoch

49

Function 10: CheckForRecovery(int level, Node currentNode, Array<Node>
predNodes, Array<Node> succNodes, recoveriesDone)

Output: True if a recovery has been done, False otherwise
115 nodeEpoch := currentNode.epochID, recoveryNeeded := False
116 if nodeEpoch ̸= epochID then
117 if currentNode.splitLock is read- or write-locked then
118 oldReaderCount := currentNode.splitLock.GetReaderCount()
119 recoveryNeeded := True

120 end
121 if recoveriesDone = 0 or recoveryNeeded then
122 splitLock.DrainReaders(oldReaderCount)
123 if not CAS(currentNode.epochID, nodeEpoch, root.epochID) then
124 return False

125 end
126 CheckForNodeSplitRecovery()

127 CheckForInsertRecovery(level, currentNode, predNodes, succNodes)
128 return True

129 end

130 end
131 return False

so that the outdated state does not become visible to concurrent operations that assume
it is current. By having a single thread claim the node by updating the epoch, multiple
threads will not end up trying to repair the same node, and other threads can be sure
that any node they come across that has a current epochID has a thread that will fix any
inconsistencies in that node, letting it be treated the same as concurrent operations prior
to the failure. Threads that fail to claim a node for recovery continue with their original
operations, and are not blocked.

Once an old node has been claimed, the thread will now check to see whether it is
inconsistent (lines 126 and 127), and if so, it will repair it (Function 11 lines 133–147,
Function 12 line 151). Both these functions recover incomplete operations by completing
the missing steps. LinkHigherLevels on line 151 in Function 12 is used in Herlihy et al.’s
original algorithm, and therefore is lock-free. CheckForNodeSplitRecovery in Function
11 cannot be blocked either, proceeding to complete a split if the node in question is found
to be write-locked and then unlocking it. These functions releasing node split locks from a
previous failure-free epoch are crucial in maintaining the deadlock-freedom of UPSkipList

50

Function 11: CheckForNodeSplitRecovery(Node currentNode)

Result: currentNode in consistent state of either a failed or successful node split
132 if currentNode.splitLock is write-locked then
133 succNode := currentNode.next[0]
134 for keyIndex from 0 up to length(currentNode.keys) do
135 if currentNode.keys[keyIndex] = null then
136 currentNode.values[keyIndex] := tombstone
137 else
138 for succKeyIndex from 0 up to length(succNode.keys) do
139 if currentNode.keys[keyIndex] = succNode.keys[succKeyIndex] then
140 currentNode.keys[keyIndex] := null
141 currentNode.values[keyIndex] := tombstone

142 end

143 end

144 end

145 end
146 Persist(currentNode)
147 currentNode.WriteUnlock()

148 end

Function 12: CheckForInsertRecovery(int level, Node currentNode,
Array<Node> predNodes, Array<Node> succNodes)

Result: currentNode with levels linked up to its height
149 previousLevel := level + 1
150 if succNodes[previousLevel].key < currentNode.key then
151 LinkHigherLevels(predNodes, succNodes, currentNode, previousLevel,

currentNode.height)

152 end

51

during node splits, as otherwise threads would be blocked forever waiting for a split to
finish.

Every operation that may modify the skip list, which in this case is an insert or node
split, needs to have a method for checking their completeness added, as prescribed by
RECIPE [47]. As traversals are the first step in all other operations in a skip list, no
attempts at recovery have to be made outside of this operation. To all other operations,
this restores the expectation that any inconsistencies seen will eventually be repaired,
allowing traversals to forgo additional consideration and operate as before.

Preventing Low Throughput After Recovery

After a failure and recovery, all nodes will now be from the previous failure-free epoch,
and require updating their epochID and either have their consistency verified or made
consistent. Performing this for every node that a thread comes across immediately after
recovery can result in low post-recovery performance, in particular due to the need to flush
the update before moving on. An optimization can be made that a single skip list traversal,
if possible, will only attempt to repair k possible inconsistencies, either sequentially or at
random, where k can be as low as 1. Not all inconsistencies can have their recovery
deferred, however. Node splits, for example, must be repaired as soon as they are found,
due to their inconsistent contents making traversals invalid unless repaired. The deferral
of some recoveries is done in CheckForRecovery from Function 10, on line 121. This way,
given enough time, the structure will recover to a consistent state, as threads can be sure
that any missed, unclaimed inconsistencies will eventually be repaired at some point in the
future. UPSkipList lets traversals for the purpose of searches perform one recovery of an
incomplete insertion per operation, on the first unrecovered node they find. Incomplete
splits are still recovered whenever found.

4.5 Insertion and Updates

Herlihy et al.’s insertion algorithm requires minor modification to be made recoverable
using UPSkipList’s logging method from Section 4.1.4 and the extension to RECIPE from
Section 4.1.3. As explained in Section 4.1.4, when a thread is allocating a new node, which
is a modifying operation, it checks its log to see if its previous operation had succeeded
and was made visible, and if so, logs that it is doing a new allocation and continues. In
the event where the previous log indicates an insertion was attempted, it is considered a
“success” if the linking of the new node to the abstract set at the bottom-most level in

52

the expected location has succeeded. If this is the case, the current insertion continues
normally, without checking if the previous insertion’s node was built up to its full height,
since recovery for an incomplete node is handled in Traversal from Function 7, described
in Section 4.4. If the node is found to be unlinked, it is cleaned up and deallocated,
preventing the memory from being leaked.

Insert is shown in Function 13. The algorithm shown here is actually an “upsert”
operation, since it falls back to updating the value of a key if that key is found to already
exist. To facilitate storing multiple keys in a node, several modifications have been made
to Herlihy’s insertion algorithm. First, if the key is found to exist, a read lock is obtained
on the node and the split count is confirmed to match the count from the traversal; upon
failure, the operation is reattempted, as shown on line 159. In this case, this thread’s
progress has been prevented by another thread progressing in a way that this thread
cannot block, preventing deadlock. The read-lock prevents updates to an existing key
from being performed while a node split is occurring on the node containing it, which
could cause nonlinearizable behaviour. The update is performed on line 160 using Update

from Function 14, which attempts to CAS the current value to the new value and return
the current value until it succeeds, establishing a total order for all updates on the same
key. Updates can be done concurrently on different keys in a node.

If the key does not already exist, then an attempt is made to insert the key into the
node. Since the head node is just a sentinel node and does not store keys, instead of
inserting the key into this node a new node is created and inserted after it using Herlihy’s
existing algorithm, made recoverable, as shown in CreateHeadSuccessor in Function 15.
This maintains the lock-freedom of Herlihy’s existing algorithm. Flushes are added after
several steps to facilitate recovery. First, after allocating, the populated next pointers of
the new node in Function 18 have to be persisted before the node can be made reachable to
other threads. Since prior to the node being linked in these pointers are unreachable, and
since a failure at any point prior to the new node being made reachable will be reclaimed
by Function 3, the order of persistence does not matter and can be done with a single flush
on line 246. Next, a flush needs to be added after the linking at Function 15 line 190 and
also in Function 20 line 255, as in RECIPE. Finally, during the tower-building stage of
construction, in Function 17, all next pointers of predecessor nodes have to be individually
set and persisted from the bottom-most level up, which is done on lines 231 to 233. For
recovery purposes, the order in which they are persisted matters, as missing lower levels
in nodes that are not logically deleted are not permitted in Herlihy et al.’s algorithm.

If the node that was found is not the head node, then first an attempt is made to insert
into the node. This procedure is shown in Function 16. First, the thread acquires a read
lock and verifies that the split count has not changed from when it was read in Function 7,

53

Function 13: Insert(Key key, Value value)

Output: Existing value if updating, null if newly inserted
153 predNodes := []
154 succNodes := []
155 while True do
156 ⟨ splitCount, keyIndex, keyExists, levelFound ⟩ := Traverse(key, predNodes,

succNodes)
157 predNode := predNodes[0]
158 if keyExists then
159 if not predNode.ReadLock() or predNode.splitCount ̸= splitCount then

continue
160 oldValue := Update(keyIndex, value, predNodes[levelFound])
161 predNode.ReadUnlock()
162 return oldValue

163 end
164 if predNode = root.head then
165 if CreateHeadSuccessor(key, value, predNodes, succNodes) then
166 return null/* the key and value were newly inserted into a

newly created node, so return null */

167 else
168 continue
169 end

170 else
171 status := InsertIntoExistingNode(key, value, predNodes, succNodes,

splitCount)
172 if status = continue then continue
173 else if status = needSplit then SplitNode(key, value, predNodes,

succNodes)
174 else return status

175 end

176 end

54

Function 14: Update(int keyIndex, Value t value, Node predNode)

Output: existing value of key

177 while True do
178 oldValue = predNode.values[keyIndex]
179 if CAS(predNode.values[keyIndex], oldValue, value) then
180 Persist(predNode.values[keyIndex])
181 return oldValue

182 end

183 end

Function 15: CreateHeadSuccessor(Key t key, Value t value, Array<Node>
predNodes, Array<Node> succNodes)

Output: linking in of newNode after the head node on all levels, True/False on
whether it was successful

184 newNodeHeight := random integer from geometric distribution with p = 0.5
185 succNode := succNodes[0]
186 keys := [key, null, . . . , null]
187 values := [value, tombstone, . . . , tombstone]
188 newNode := MakeLinkedObject(head, keys, values, newNodeHeight, epochID)

189 PopulateNextPointers(succNodes, newNode, newNodeHeight)
190 linkedIn := CAS(head.next[0], succNode, newNode)
191 if linkedIn then
192 Persist (head.next[0])
193 else
194 DeleteLinkedObject(newNode)
195 return False

196 end
197 LinkHigherLevels(predNodes, succNodes, newNode, 1, newNodeHeight)
198 return True

55

Function 16: InsertIntoExistingNode(Key key, Value value, Array<Node>
predNodes, Array<Node> succNodes, int splitCount)

Output: status ∈ {continue, needSplit, oldValue} indicating whether the Insert
operation calling this function has to restart, split the node, or if key
and value have been inserted, in which case oldValue is returned

199 predNode := predNodes[0]
200 if not predNode.ReadLock() then return continue
201 if predNode.splitCount ̸= splitCount then
202 predNode.ReadUnlock()
203 return continue

204 end
205 for keyIndex from 0 up to length(predNode.keys) do
206 currentKey := predNode.keys[keyIndex]
207 if currentKey = key then
208 oldValue := Update(keyIndex, value, predNode)
209 predNode.ReadUnlock()
210 return oldValue

211 else if currentKey = null then
212 if CAS(currentKey, null, key) then
213 Persist(currentKey)
214 while True do
215 oldValue := predNode.values[keyIndex]
216 if CAS(predNode.values[keyIndex], oldValue, value) then
217 Persist(predNode.values[keyIndex])
218 predNode.ReadUnlock()
219 return oldValue

220 end

221 end

222 end

223 end

224 end
225 predNode.ReadUnlock()
226 return needSplit

56

Function 17: LinkHigherLevels(Array<Node> predNodes,
Array<Node> succNodes,
Node newNode, int startingLevel, int newNodeHeight)

Result: linking in of newNode on levels startingLevel up to newNodeHeight
227 for level from startingLevel up to newNodeHeight do
228 while True do
229 predecessorAtThisLevel := predNodes[level]
230 successorAtThisLevel := newNode.next[level]

231 linkedIn := CAS(predecessorAtThisLevel.next[level], successorAtThisLevel,
newNode)

232 if linkedIn then
233 Persist(predecessorAtThisLevel.next[level])

/* for correctness of the algorithm, it is important that

changes to next pointers at a level are persisted prior

to changes at higher levels */

234 else
235 succNodes := []
236 Traverse(newNode.key, predNodes, succNodes)

/* this will repopulate the arrays with more recent

information, correct at the time that the links were

followed by Traverse() */

237 PopulateLevels(succNodes, newNode, level, newNodeHeight)

238 end

239 end

240 end

57

Function 18: PopulateLevels(Array<Node> succNodes,
Node newNode, int startingLevel, int endingLevel)

Result: in-place population of newNode’s next pointers from startingLevel up to
endingLevel

241 for level from startingLevel up to endingLevel do
/* populate the next pointers of newNode */

242 successorAtThisLevel := succNodes[level]
243 newNode.next[level] := successorAtThisLevel

244 end

245 for level from startingLevel up to endingLevel do
246 Persist(newNode.next[level])
247 end

Function 19: PopulateNextPointers(Array<Node> succNodes,
Node newNode, int newNodeHeight)

Result: in-place population of all of newNode’s next pointers
248 PopulateLevels(succNodes, newNode, 0, newNodeHeight)

/* the next pointers of newNode contain pointers to its successors on

every level, from level 0 to its height */

58

as in Update from Function 14. Then, the thread scans all the keys until it finds an empty
slot. It is alright to insert into the first empty slot found without scanning to see if the key
exists in later filled slots in the node because the full scan was already done in Traverse,
and because multiple threads inserting into the same node will be fighting for the same
next empty slot, meaning that if the key is inserted by another thread, it will be found by
this one. An insertion first claims a slot by changing its key from empty to the new key.
It then updates the value. The linearization point of an insert is upon the persistence of
an updated value, with the expectation that another thread reading the value forces it to
be persisted by flushing it. If one thread changes the key but then another thread finds
that key and updates its value prior to the first thread, then the second thread has to be
treated as the inserting thread and the first thread becomes the updating thread. If while
doing the scan or after failing to claim a slot the slot contains a key that matches the key
to insert, this means that another thread beat this one to inserting the value, and this
thread falls back to performing an update.

If it is found that no room exists, then a node split is necessary. The read lock is released,
and the split is performed as shown in SplitNode in Function 20. Since the reader-writer
lock is only to prevent updates from occurring during a node split, releasing the read
lock to acquire the write lock is safe. Population of the predecessor and successor node
arrays occurred without acquiring the lock. To begin the split, the write lock is obtained to
prevent concurrent updates, since the node being split will be in an inconsistent state while
keys are being transferred and deleted. If the write-lock cannot be obtained, that means
that another thread is making progress with its insertion or update. This thread restarts
the insertion operation from the beginning. In this way, deadlock-freedom is maintained.
Then, a new node is created, and it is filled with all the key-value pairs where the key is
larger than the median key, with the median key becoming the first key of the new node.
Next, the node is linked in. To complete the split, all the key-value pairs copied over have
to be erased from the original node by replacing their keys with null and replacing their
values with tombstones. Once this is done, the write lock can be released, and the tower
for the new node can be built. A node split ends with the Insert function retrying from
the beginning, and inserting into the old node or the new node.

4.5.1 Recoverable Node Splits

Recovery from an interrupted node split requires checking to see if the successor to the node
being split contains any duplicate keys. In the event that the node split had progressed to
the point that the successor was inserted, then to complete the split requires finding and
deleting all duplicate keys from the prior node. If the successor had not been successfully

59

Function 20: SplitNode(Key key, Value value, Array<Node> predNodes,
Array<Node> succNodes)

Result: linking in of new node containing latter half of the keys of predecessor
node

249 predNode := predNodes[0]
250 if not predNode.WriteLock() then return
251 newNodeKeys := second half of sorted predNode.keys followed by null keys
252 newNodeValues := corresponding values to newNodeKeys from predNode followed

by tombstone values
253 newNode := MakeLinkedObject(predNode, keys, values, newNodeHeight,

root.epochID)

254 PopulateNextPointers(succNodes, newNode, newNodeHeight)
255 linkedIn := CAS(predNode.next[0], newNode.next[0], newNode)
256 if linkedIn then
257 Persist(predNode.next[0])
258 else
259 DeleteLinkedObject(newNode)
260 predNode.WriteUnlock()
261 return

/* if inserting the new node fails, simply return; the calling

Insert function will start over again from 155 regardless */

262 end
263 predNode.splitCount += 1
264 Persist(predNode.splitCount)
265 replace all keys in predNode that were moved to newNode with null
266 replace all values in predNode that were moved to newNode with tombstone
267 Persist(predNode)
268 predNode.WriteUnlock()
269 ⟨ splitCount, keyIndex, keyExists, levelFound ⟩ := Traverse(newNode.keys[0],

predNodes, succNodes)
270 LinkHigherLevels(predNodes, succNodes, newNode, 1, newNodeHeight)

/* the calling Insert function will now start over from line 155 */

271

60

inserted, then it will be cleaned up using UPSkipList’s logging method described in Section
4.1.4, and the scan will find no duplicate keys to erase. A check also has to be done to
ensure that keys being deleted were not only partially deleted; this is done by ensuring that
any null keys have their corresponding value slots filled with tombstones. The construction
of the tower of the split node is recovered using Function 12, and so does not have to be
dealt with here, since it will be detected and repaired.

4.5.2 Recovery

After addition to the abstract set by linking the node in by Insert in Function 15 on line
190 and Function 20 line 255, the thread in Herlihy’s algorithm proceeds to build up links
level by level until the top-most level for this node is reached, using Function 17. During
normal operation, any threads that come across an incomplete node can be sure that this
node is being built by another thread, and can move on. In the event of an interruption,
this is no longer the case, so a method is required such that traversals can detect that a
node is incomplete because it is not being built up, as explained in Section 4.1.3. This
is shown in Function 10. First, as mentioned in Section 4.4, nodes are checked to see
whether no other thread can be responsible for them, which will be the case if they were
last updated during the current epoch.

Since traversals start from the top down, if a node is first found from a previous epoch
at a level that is not its top level (line 126), then it must be incomplete and needs to be
built up. This is done using part of the existing Insert function, Function 17, which uses
the existing search results in Traverse and links in the node to the height it ought to be
at by swapping out the previous node’s next pointers at each higher level to point to this
one. In the event that this takes too long and things have changed, the search has to be
retried (line 236 in Function 17) up until it finds this node, as would be the case with an
insert.

4.6 Removals

Removals are done simply by replacing the removed value with a tombstone to indicate it
should be treated as removed. This allows them to be performed effectively as an update.
While the usage of tombstones is not the most practical, they greatly simplify the removal
of single keys within nodes by effectively returning the field of the key to an uninserted
state. If all keys in a node are deleted, the node has to be unlinked using Herlihy et al.’s

61

algorithm. Usage of a recoverable memory reclamation method to allow removals is a logical
next-step for this research. With recoverable memory reclamation, UPSkipList’s logging
(Section 4.1.4) and runtime failure detection (Section 4.1.3) can otherwise be applied as
easily for removals as it has been for insertions and updates. A log needs to be made prior
to removing a node from the abstract set and returning it to the allocator, and an integrity
check needs to be performed during traversal to ensure that next pointers marked during
a previous failure-free epoch are part of a remove that has been linearized, and so can be
snipped out safely.

The check for whether an insertion had succeeded will also need to be modified to
account for whether it did succeed and the inserted node was subsequently removed. If
reference counting is used for garbage collection, this can be done by counting the log as a
reference to the node, preventing its deletion and reallocation until the log is cleared. In
the event that an insertion has been found that is not linked in, the thread then simply
has to check whether the object it had attempted to insert in a past epoch has since been
removed, indicating that the insertion had completed successfully.

62

Chapter 5

Evaluation

Empirical evaluation of performance of UPSkipList was done to determine the effectiveness
of the techniques from Chapter 4, and to determine the impact of the tradeoffs of the de-
sign decisions. For performance testing, both runtime and recovery-time performance was
measured and compared against BzTree [5] and a libpmemobj-based [22] implementation
of a skip list, which are both recoverable index implementations. YCSB [24] was used to
generate workloads for the runtime and recovery tests.

5.1 Methodology

This section explains the environment in which testing was done, the description of each
test, and methodology used to perform each of them.

5.1.1 Environment

Performance testing was done on an 80-core, 4-socket Intel Xeon Gold 6230 machine with
768 GiB of DRAM and 3072 GiB of Intel Optane DC Persistent Memory. The machine
was running Ubuntu 20.04.2 LTS with 5.4.0-65-generic kernel. The program was compiled
using GCC 9.3.0 with optimization level O3. DRAM and PMEM are divided up equally
among all four NUMA nodes, with half of the PMEM on each node set up as a separate
device, and the other half on all nodes combined to form a single PMEM device striped
across all four nodes with a stripe size of 2 MB. The PMEM devices were formatted with
XFS with DAX enabled.

63

5.1.2 Workloads

The Yahoo Cloud Serving Benchmark (YCSB) [24] was used to generate workloads with
a representative fraction of writes and a realistic distributions of keys, with insert, up-
date, and read key-value pair operations. The workloads are described in Table 5.1, with
workload names and letters used interchangeably throughout this chapter. Workloads
with removes were not included because in UPSkipList removes are currently implemented
as an update that replaces a value with a tombstone, placing competing data structures
with removals that reclaim memory at a disadvantage for throughput. During testing, each
workload was memory-mapped into DRAM by the tester program, divided among threads,
and played back to perform the operations. This was done to remove the overhead of work-
load generation from the runtime of the test. The generated workloads used 100 million
key-value pairs. Threads were assigned to NUMA nodes in a round-robin manner, ensuring
an equal distribution across all nodes for all multiples of four threads. All physical cores
were filled out first, with remaining threads being assigned to hyperthread siblings.

Workload Name Read/Update/Insert Ratio Distribution
A Update-Heavy 50/50/0 Zipfian
B Read-Mostly 95/5/0 Zipfian
C Read-Only 100/0/0 Zipfian
D Read-Latest 95/0/5 Latest

Table 5.1: Properties of YCSB workloads used for testing.

For the purposes of this test, three data structure implementations were chosen, set
with the following parameters:

• UPSkipList, on both a single pool on the PMEM device striped across multiple nodes,
and on multiple pools with one on each node. Experiments were run, with 256 key-
value pairs per node, 32 levels, and 4 MiB chunk size for coarse-grained allocation.
These values were found to have the best performance through trial and error.

• BzTree, a PMwCAS-based index data structure, with parameters set the same as in
their original paper [5].

• A libpmemobj lock-based skip list converted from Herlihy’s lazy skip list using
PMDK’s recoverable transactions, on the striped device.

BzTree was chosen as a point of comparison because it has non-blocking writes with
blocking node-splits, just like UPSkipList. Its usage of PMwCAS removes the need to repair

64

inconsistencies by keeping them hidden from the program. The implementation of BzTree
used is by Lersch et al., who benchmarked index data structures on real persistent memory,
and found BzTree to perform the best of the PMEM-only data structures they tested [50].
Due to internal limitations of the PMwCAS library used by Lersch et al., this implementation
of BzTree does not support more than 120 threads. The lock-based libpmemobj skip
list was also used, as an example of what can be built using the transactional PMEM
programming techniques as prescribed by the PMDK [23]. It is adapted directly from
Herlihy’s lazy skip list [40], so does not store multiple keys per node. It also allows
comparison of the performance of libpmemobj’s fat pointer system with the extended-RIV
system used by UPSkipList.

Throughput testing measured performance by first pre-loading the data structure and
then running the workload for some time to warm up the caches and reach a steady level
of performance.

Recovery tests similarly involve preloading the structure and running operations on
it, with the addition of a crash at a random point, leaving any ongoing operations in an
incomplete state. After this, the test program is restarted and reconnects with the data
structure, recording the time it takes for the data structure to be able to respond to new
requests.

5.2 Results and Discussion

This section contains results of the tests from the previous section, discussion of why certain
data structures performed better than others, and evaluation of various design decisions.

5.2.1 Throughput Comparison

The results of throughput testing of the three data structures, all on the striped device,
are shown in Figures 5.1 and 5.2. Each point is the average of three runs, and error bars
indicate one standard deviation. These results show that our conversion technique results
in a recoverable data structure that is competitive with existing work. BzTree outperforms
UPSkipList at read-only workloads by on average 93% and read-latest workloads by on
average 56%, as seen in Figure 5.2. The reason for this is due to BzTree having a more
efficient lookup process inside nodes. In BzTree, after a node split, both nodes contain
sorted keys, while keys inserted between splits are stored unsorted in an overflow region.
BzTree’s lookup process takes advantage of this fact, using a binary search within the

65

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
number of threads

0

1

2

3

4

5

6

7

8

9

10

11

12
th

ro
ug

hp
ut

 (M
op

s/
se

c)

Update-Heavy (50% update, 50% read) Workload

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
number of threads

0

2

4

6

8

10

12

14

16

18

th
ro

ug
hp

ut
 (M

op
s/

se
c)

Read-Mostly (5% update, 95% read) Workload

UPSkipList BzTree PMDK lock-based

Figure 5.1: Throughput comparison using YCSB benchmark workloads A and B for UP-
SkipList, BzTree, and the PMDK lock-based skip list.

66

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
number of threads

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

th
ro

ug
hp

ut
 (M

op
s/

se
c)

Read-Only (100% read)) Workload

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
number of threads

0

2

4

6

8

10

12

14

16

18

20

th
ro

ug
hp

ut
 (M

op
s/

se
c)

Read-Latest (5% insert, 95% read) Workload

UPSkipList BzTree PMDK lock-based

Figure 5.2: Throughput comparison using YCSB benchmark workloads C and D for UP-
SkipList, BzTree, and the PMDK lock-based skip list.

67

sorted keys to attempt to find a key in O(log(n)) time. Failing this, BzTree does a linear
search on keys in the overflow region. UPSkipList currently maintains keys in an unsorted
manner, so it must do a linear search to find them. The sorting optimization can be
implemented in UPSkipList, due to similarity in the implementation of node splits.

In comparison, BzTree does poorly at higher update-to-read ratios, which is a result
matching that of Lersch et al. [50]. This result is shown in Figure 5.1, where BzTree under-
performs UPSkipList by 76% in update-heavy workloads and 3% in read-mostly workloads.
Similar to their observations, BzTree scales up to a point, after which performance falls
off, unlike when BzTree outperformed UPSkipList, where UPSkipList continued to scale,
albeit more slowly. The level of concurrency BzTree scales up to is inversely correlated
with the proportion of updates. The reason BzTree’s performance falls off is due to its
internal use of PMwCAS to perform its writes. Where UPSkipList manages to update a key
using a single CAS operation, a BzTree thread needs to use PMwCAS to change the key value
to ensure it does not interfere with a concurrent PMwCAS operation and can perform the
update safely. Reading descriptors and helping finish their operations requires interaction
with data structures internal to PMwCAS, which does not impact performance until reaching
a certain level of contention. This is a tradeoff of using PMwCAS to perform non-blocking
writes, which adds a potential bottleneck for some patterns of usage in exchange for sim-
pler algorithms and correctness. Adapting an existing, mature, non-recoverable algorithm
using RECIPE also provides simpler implementation and correctness, and the extension
to detect inconsistencies in algorithms with non-blocking, non-repairing writes reduces the
need to use external libraries that may add bottlenecks like PMwCAS.

Compared to the lock-based, libpmemobj-based skip list, UPSkipList outperforms it in
all scenarios, more than doubling its throughput, seen in Figures 5.1 and 5.2. This suggests
that when better performance is desired, adapting a lock-free algorithm using the extension
to RECIPE from Section 4.1.3 is more effective than using transactions to implement a
lock-based algorithm.

More interestingly, it can be seen that the libpmemobj skip list outperforms BzTree
at higher levels of concurrency at both the update-heavy and read-mostly workloads, as
shown in Figure 5.1. This is for the same reason that UPSkipList outperforms BzTree,
with BzTree’s performance falling due to its use of PMwCAS, which becomes a bottleneck
at higher concurrency. While libpmemobj skip list’s use of locks causes it to plateau in
performance due to contention above 100 threads in the update-heavy workload, the impact
due to contention is much lower than PMwCAS and suggests that when good performance
is required across a range of workloads, lock-based libpmemobj may indeed be a better
choice than lock-free PMwCAS.

68

5.2.2 libpmemobj vs RIV Pointers

An additional comparison can be done using the throughput results of the libpmemobj skip
list to determine the overhead of its pointer system. As mentioned before, libpmemobj uses
pointers that are two words wide, with the first word containing an identifier for the pool
and the second word containing the offset within that pool. Dereferencing these pointers
requires a lookup of the pool’s base address, just like for RIV pointers in UPSkipList, but
more importantly their double width reduces the number of nodes that can fit in cache by
roughly a factor of 2.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
number of threads

0

1

2

3

4

5

6

7

8

9

10

11

th
ro

ug
hp

ut
 (M

op
s/

se
c)

PMDK libpmemobj vs RIV Pointers

UPSkipList (single key) PMDK lock-based

Figure 5.3: Comparison of read-only throughput of UPSkipList with a single key per node,
using RIV pointers, with the lock-based skip list, using PMDK’s libpmemobj fat pointers.

Figure 5.3 shows the throughput comparison of the libpmemobj skip list and UP-
SkipList in a read-only workload. The read-only workload does not modify the skip list and
only involves following pointers, allowing the comparison of different pointer representation
methods implementing the same structure. To match the structure of the libpmemobj skip
list, UPSkipList is only storing a single key per node in this experiment. It can be seen
that the use of fat pointers by libpmemobj compared to RIV pointers used by UPSkipList
is detrimental to performance, achieving at most around 70% of the throughput due to the

69

reduced cache efficiency storing fewer pointers to the next nodes in the tower per cache
line.

5.2.3 NUMA-aware vs Striped Performance

When running on the striped device, only a single pool of memory is revealed to UP-
SkipList. While reads and writes are distributed across multiple NUMA nodes simply by
using the striped device, in this mode UPSkipList is not able to know anything about which
NUMA node any of its skip list nodes are stored on. Running with multiple pools, with
one on each node, UPSkipList is aware of which NUMA node each of its reads and writes
are interacting with, and manually ensures they are spread out to reduce load on any one
node. The purpose of this comparison is to examine the impact of NUMA awareness on
performance, as NUMA awareness allows the implementation of algorithms that can make
more accesses local than the 1/n limit that is possible on a device striped across n NUMA
nodes. This lower level of abstraction can allow better performance with a smarter algo-
rithm that strategically places data on the NUMA nodes that are accessing them the most,
and avoids accessing distant data if possible. Algorithms of this sort using skip lists exist
[27, 59], and are a logical next step to improve performance, given that NUMA-awareness
is not too expensive.

Figure 5.4 compares the throughput of UPSkipList running on the striped device with
UPSkipList running on multiple pools. It can be seen that the performance impact is
indeed very small across all workloads, averaging 5.6% as shown in Table 5.2, with the
greatest variation falling within the margins of error for both implementations. This sug-
gests that while striping is a great way to make non-NUMA-aware structures benefit from
running on NUMA machines, explicit awareness via the extended RIV pointer method is
a viable technique to allow the implementation of algorithms in persistent memory that
take advantage of NUMA locality to improve performance and scalability.

Workload A B C D Average
Throughput reduction 5.1% 5.6% 5.9% 6.0% 5.6%

Table 5.2: Performance impact of running UPSkipList on multiple pools with NUMA
awareness compared to running on a single, striped pool.

70

0 20 40 60 80 100 120 140 160
number of threads

0

2

4

6

8

10

12

th
ro

ug
hp

ut
 (M

op
s/

se
c)

Striped vs NUMA-Aware, Workload A

0 20 40 60 80 100 120 140 160
number of threads

0
2
4
6
8

10
12
14
16
18

th
ro

ug
hp

ut
 (M

op
s/

se
c)

Striped vs NUMA-Aware, Workload B

0 20 40 60 80 100 120 140 160
number of threads

0
2
4
6
8

10
12
14
16
18
20

th
ro

ug
hp

ut
 (M

op
s/

se
c)

Striped vs NUMA-Aware, Workload C

0 20 40 60 80 100 120 140 160
number of threads

0
2
4
6
8

10
12
14

th
ro

ug
hp

ut
 (M

op
s/

se
c)

Striped vs NUMA-Aware, Workload D

Striped UPSkipList NUMA-aware UPSkipList

Figure 5.4: Throughput comparison of UPSkipList running on the striped device and on
multiple pools.

71

5.2.4 Latency

Figures 5.5 and 5.6 show latency comparisons for UPSkipList and BzTree, and UPSkipList
and the PMDK lock-based skip list, respectively. Table 5.3 shows the median latency
in microseconds for each workload these data structures. Latency measurements were
done with 80 threads for each workload, and separated by operation, to understand which
operations were performing better than others.

For UPSkipList, in Figure 5.5, it can be seen that performance is very similar for
update-heavy, read-mostly, and read-only workloads for reads, with minimal change in
latency up to the 99th percentile, and 600µs of latency at the 99.99th percentile. For the
read-latest workload, it can be seen that the increased complexity of insert operations is
impacting the latency of reads, due to the numerous flushes they require causing reads to
have to fetch more cache lines from the memory. This results in a latency of 800µs at the
99.99th percentile. The increased complexity of inserts is also exhibited in the latency of
the inserts, which is higher for more operations compared to updates, with a noticeable
increase in latency at the 99th percentile and a maximum of about 500µs at the 99.99th
percentile.

Workload Operation UPSkipList BzTree PMDK skip list
Update-Heavy Reads 6.3 3.9 17.7
Update-Heavy Updates 9.0 9.4 21.2
Read-Mostly Reads 6.0 4.0 17.2
Read-Mostly Updates 8.2 10.4 20.7
Read-Only Reads 5.9 3.8 17.2
Read-Latest Reads 7.0 4.2 18.2
Read-Latest Inserts 12.1 16.4 36.3

Table 5.3: Median latency in microseconds for UPSkipList, BzTree, and the PMDK lock-
based skip list for each YCSB workload.

Comparing UPSkipList to BzTree, it becomes clear why BzTree’s performance suffers
greatly in update-heavy and read-mostly workloads. While its abstraction using PMwCAS

simplifies programming, it can be seen that update operations have up to an order of
magnitude worse latency in the worst case, which is also more common. This result matches
that of Lersch et al. [50]. The high latency of updates impacts read operations as well, with
their performance clearly decreased in the update-heavy workload compared to the read-
mostly workload, while UPSkipList’s reads appear unaffected by the update percentage.
Though the median latency of BzTree is shown to be lower than UPSkipList in Table

72

50% 90% 99% 99.9% 99.99%
0

1000
2000
3000

La
te

nc
y

(µ
s)

Reads

50% 90% 99% 99.9% 99.99%
Percentile

0
10000
20000
30000
40000

La
te

nc
y

(µ
s)

Updates

Update-Heavy Latency

50% 90% 99% 99.9% 99.99%
0

200
400
600

La
te

nc
y

(µ
s)

Reads

50% 90% 99% 99.9% 99.99%
Percentile

0
500

1000
1500
2000
2500

La
te

nc
y

(µ
s)

Updates

Read-Mostly Latency

50% 90% 99% 99.9% 99.99%
0

200
400
600

La
te

nc
y

(µ
s)

Reads
Read-Only Latency

50% 90% 99% 99.9% 99.99%
0

200
400
600

La
te

nc
y

(µ
s)

Reads

50% 90% 99% 99.9% 99.99%
Percentile

0
500

1000
1500

La
te

nc
y

(µ
s)

Inserts

Read-Latest Latency

UPSkipList BzTree

Figure 5.5: Latency at different percentiles for operations in each YCSB workload for
UPSkipList and BzTree.

73

50% 90% 99% 99.9% 99.99%
0

200
400
600

La
te

nc
y

(µ
s)

Reads

50% 90% 99% 99.9% 99.99%
Percentile

0
200
400
600

La
te

nc
y

(µ
s)

Updates

Update-Heavy Latency

50% 90% 99% 99.9% 99.99%
0

100
200
300
400
500

La
te

nc
y

(µ
s)

Reads

50% 90% 99% 99.9% 99.99%
Percentile

0
100
200
300
400
500

La
te

nc
y

(µ
s)

Updates

Read-Mostly Latency

50% 90% 99% 99.9% 99.99%
0

100
200
300
400
500

La
te

nc
y

(µ
s)

Reads
Read-Only Latency

50% 90% 99% 99.9% 99.99%
0

200
400
600

La
te

nc
y

(µ
s)

Reads

50% 90% 99% 99.9% 99.99%
Percentile

0
500

1000
1500
2000
2500

La
te

nc
y

(µ
s)

Inserts

Read-Latest Latency

UPSkipList PMDK lock-based

Figure 5.6: Latency at different percentiles for operations in each YCSB workload for
UPSkipList and PMDK lock-based skip list.

74

5.3, this is outweighed by the increased likelihood of worst-case performance, as seen with
BzTree’s latency increasing from the 90th percentile. Examination of the BzTree codebase
reveals that there is high contention on data structures internal to PMwCAS. The read-
only workload latency is lower for BzTree than for UPSkipList, which is expected due to
BzTree’s better performance, as seen in Figure 5.2, and the lack of interfering updates or
inserts. Although the worst-case latency is higher for BzTree in this workload, the median
latency of reads, as seen in Table 5.3 reveals that the median latency is noticeably lower,
explaining its improved performance. Finally, while inserts in the read-latest workload
have higher latency for BzTree compared to UPSkipList, their impact on reads is much
lower, which results in it outperforming UPSkipList for this workload.

The libpmemobj-based lock-based skip list’s latency results are shown in Figure 5.6.
While its performance is worse than UPSkipList for all workloads, the worst-case latency
is not higher than UPSkipList’s and is in fact lower for the update-heavy workload; rather
the reduction in performance appears to be due to higher average latency, with a noticeable
increase at both the 90th and 99th percentile compared to UPSkipList. Interestingly, the
performance of its reads is also not greatly impacted by insert operations in the read-latest
workload, showing the tradeoff of using lock-free insertions to improve performance at the
expense of reads being invalidated.

5.2.5 Recovery Time

Recovery time measurements for all data structures are shown in Table 5.4. Measurements
were done by running the test with a 100% insertion-based workload, which are more
likely to be interrupted due to their complexity. The tests were run with 80 threads,
preloaded with 100M keys, and interrupted after the workload began. Recovery time was
then measured as the time required for the driver program to reconnect with each data
structure’s pool and perform all necessary preparation steps until it is ready to respond to
new operations. The tests were run 3 times each, and the average recovery time is listed
in the table below.

It can be seen that both UPSkipList and the libpmemobj lock-based skip list require a
similar amount of time for recovery, with a sub-100 ms recovery time. This is expected, as
both only have to reconnect to their pool, and libpmemobj has to roll back any incomplete
transactions, of which there can be at most 80. The higher recovery time of UPSkipList
is due to its less optimized reconnection procedure, compared to the lock-based skip list’s
reconnection being handled by libpmemobj itself.

BzTree, however, has a much longer recovery time than both UPSkipList and the

75

libpmemobj-based skip list. This appears to be due to the time needed to reinitialize
the PMwCAS library, which is dependent on both the data structure size and the size of
the PMwCAS descriptor pool. With 500K descriptors, which is the same number that all
other tests in this chapter were run, recovery time is almost 10 times greater than both
UPSkipList and the lock-based skip list. With 100K descriptors, which is the same amount
used by Lersch et al. in their measurement of a recovery time of 186 ms, a recovery time
of 239 ms is achieved, which is close enough to match their performance and verify that
recovery time is dependent on the descriptor pool size. Unfortunately, running with only
100K descriptors results in the version of PMwCAS to constantly encounter garbage collection
errors, which is the reason why the larger pool size was used for the rest of the testing.
Recovery time for BzTree was not measured by the creators Arulraj et al. [5].

Structure UPSkipList BzTree
(500K desc.)

BzTree
(100K desc.)

libpmemobj Lock-Based

Recovery time 83.7 ms 760 ms 239 ms 55.5 ms

Table 5.4: Recovery time for each data structure, average of 3 trials

76

Chapter 6

Correctness

To detect and resolve any correctness issues in the implementation of UPSkipList’s algo-
rithm and recovery procedures, black-box linearizability testing was performed. Real power
failures were used to crash the system and require UPSkipList to recover from inconsistent
states. Analysis was done using the persistent synchronization primitive analyzer devel-
oped at the University of Waterloo [14], which checks for strict linearizability, necessitating
its choice over alternative correctness conditions. Using the analyzer, 32 logs of UPSkipList
with full power failures were analyzed and confirmed to be strictly linearizable.

6.1 Crash Testing

To be reasonably sure that UPSkipList is linearizable, crash tests were performed, logged,
and analyzed. The tests were done on the same 80-core, 4-socket Intel Xeon Gold 6230
machine with 3072 GiB of persistent memory used for evaluating performance. The pre-
crash portion of tests were done using a 100% insertion workload, both before and after the
crash. This workload was used due to its insertion of new keys allowing the revelation of
any linearizability errors within insertion, insert recovery, update, and read/traversal code,
covering all possible points of error. This includes removals, due to their implementation
being merely updating the value of a key with a tombstone.

77

6.1.1 Instrumentation

Due to the existence of full power failures, logging the start, end, and return values of
operations to DRAM is not enough. Instead, logging was done using the libpmemlog

library that is part of the PMDK [23]. Logging was done during both the preloading and
runtime phases of the testing, so that initial values are known and can be checked using
the analyzer to see if they are successfully found by later operations after a crash.

The analyzer requires that all written values be unique for each memory address so that
correctness can be checked across a crash boundary in the logs. Uniqueness was ensured
by using the logged start time of an operation as the insertion/update value.

6.1.2 Failure Injection

Linearizability analysis was done on logs generated during crash-free, simulated crash, and
real power failure crash trials. All tests followed the same pattern of prepopulating the
structure, running the workload either for a period of time or until a crash, reconnecting
with the structure, running the workload again for a period of time, and then dumping the
logs. Running the workload again after a crash causes it to update and re-read all of the
keys that it had previously read or written to, allowing the analyzer to check them and
determine if the correct values were found. To ensure that keys with interrupted operations
will be written to after a crash, a small keyspace size of 50,000 keys was used. Crash-free
tests served as a baseline, to ensure that without crashes the data structure appears to be
consistent across multiple runs when shutdown cleanly.

Simulated crash tests were done by waiting a period of time after starting the workload,
and then forcing the program to abnormally terminate by calling the std::abort function
which sends a SIGABRT to the process tree. This prevents the program from finishing
any operations in progress; however, cache lines will still be flushed by the kernel when
unmapping the PMEM pool and be made durable before a clean shutdown or another
execution of the program [21].

Full power failure crashes were performed to analyze the correctness of the data struc-
ture under the conditions which persistent memory and recoverable data structures are
supposed to mitigate. By power cycling the server using its separate management module,
the system does not have time to flush any cache lines that have not made it to the per-
sistent domain, allowing for possible linearizability errors during recovery due to missing
flushes in the implementation that would not be caught with simulated crashes.

78

While simulated crashes can be precisely timed, full power failures required the testing
program to signal to an external machine that it is ready to be crashed, which is then
initiated by the external machine by instructing the embedded Integrated Dell Remote
Access Controller (iDRAC) module in the server to power cycle the server. Connecting
to the external machine, initiating the power cycle, and the power cycle’s occurence was
found to require a variable amount of time between 3 and 10 seconds, causing the program
to generate an excess of logs that take time to analyze. This was mitigated by signalling
the crash to begin some time prior to the execution of the running phase of the test. Still,
this variability resulted in logs varying from 20 MB to 400 MB, with logs larger than 50
MB being ignored because their large size is due to excess runtime prior to the crash that
cannot contribute to revealing issues from interrupted operations.

6.2 Linearizability Analysis

The analyzer checks for strict linearizability of conditional swap operations by building
a directed graph of all operations, mapping their dependencies on concurrent and prior
operations and checking for cycles [14]. Crashes are handled by checking to see if inter-
rupted operations appear to have taken effect, and if so, inserting responses for them with
inferred values. Several other checks are performed as well to rule out other indications of
nonlinearizability in the graph.

While this analyzer was chosen due to its support of crash operations, it was built to
analyze logs containing CAS operations and not updates/inserts. Updates by UPSkipList
can be treated as successful CAS operations by modifying them to return the previous
value prior to the update, as UPSkipList uses CAS internally to update anyway until it
succeeds. Similarly, inserts by UPSkipList can be treated as swapping out an initial value,
which was arbitrarily chosen to be -1. Due to the use of the system time as the value being
inserted, there is no chance of this breaking during the runtime of the test, barring changes
to the system time. If the system time changes during a test, the results of that test can
be ignored.

The analyzer performs analysis in O(n log n) time, and in practical use is effectively
linear [14]. However, during testing it was found that it requires approximately 24 hours
to analyze 150 MB of logs, while multiple gigabytes of logs are generated by 80 threads
on a structure prepopulated with 100 million key-value pairs in less than a second. As a
result, multiple changes were made to the test setup to reduce the log size to a manageable
level. As previously mentioned, the key-value space was limited to 50,000 keys and only
prepopulated to 20,000 keys, both limiting the number of keys that will be accessed and

79

increasing the likelihood of linearizability errors with threads more likely to access the
same keys simultaneously. The number of threads was decreased from 80 to 20, which still
proved to successfully detect linearizability errors. Finally, the tests were run with a target
runtime of 100 milliseconds, though due to the unpredictable time to reboot the system
the tests occasionally still reached several seconds in length.

6.3 Results

Initial tests run without failures, as a sanity check, were found to be linearizable. To first
ensure that the analyzer will detect errors in the logs, logs were collected and manually
modified to introduce linearizability errors by changing several read values at random. All
of these errors were found by the analyzer and reported as nonlinearizable, which combined
with the unit and integration testing done on the analyzer confirmed that it will successfully
detect linearizability issues in logs containing crashes.

During the simulated crash tests, two linearizability errors were found by the an-
alyzer revealing bugs in the implementation of UPSkipList’s algorithm, again proving
the effectiveness of the analyzer. The first error was found in the implementation of
DrainReaders() used on line 122 in Function 10. It was using a write where it should
have been using a compare-and-swap, allowing multiple threads to try to recover the same
node, causing incorrect output. The second error found was in the testing program itself,
where the values output by the program as long types were being truncated to int values
occasionally. After fixing both these issues, the analyzer successfully found the simulated
crash tests of UPSkipList to be linearizable.

For full power failure crash tests, the inability to precisely time failures meant that
a much greater amount of tests had to be done to attempt to catch the program during
a flawed execution. A script was run to repeatedly restart the machine from a second
machine, following the procedure outlined in Section 6.1.2. The majority of the testing
time went to analyzing linearizability logs, which depending on how long the server took
to reboot took from around 10 minutes to 3 hours. Over night powercycle testing resulted
in the generation and analysis of 32 logs. All logs were found to be linearizable, with no
further issues detected.

80

Chapter 7

Conclusion

Due to the increasing dependence of society on technology and internet-based services,
maintaining uptime without sacrificing performance is more important than ever. Us-
ing the extension to RECIPE described in this thesis, a new class of algorithms that are
non-blocking and do not contain helping mechanisms can now easily be made recoverable,
allowing persistent memory to help increase uptime in more applications. Performance
can be further improved through effective persistent memory use in NUMA machines. By
adding NUMA awareness to PMEM data structures beyond simply striping the storage
pool across multiple nodes without drastically decreasing performance, the conversion and
use of NUMA-aware algorithms in persistent memory is now practical. Using the ex-
tended Region-ID in Value method that uses the most significant bits beyond those used
for addressing to allow referencing of memory in dynamically allocated objects, Recover-
able memory allocation using the extended RIV method can also be deferred to the next
attempted allocation of memory by a thread after recovery, reducing the time required
until the servicing of new requests after a failure.

UPSkipList, a recoverable PMEM-resident skip list that is both NUMA-aware and
implemented using the extension to RECIPE applied to Herlihy et al.’s lock-free skip
list algorithm, shows the effectiveness of these techniques in building recoverable data
structures in NUMA aware systems. Its performance beats that of BzTree in update-heavy
workloads, where BzTree is bottle-necked by its use of PMwCAS for recoverability, rather
than converting from an existing algorithm as was done with UPSkipList. UPSkipList
also achieves comparable latency to BzTree when BzTree is not bottle-necked. The use of
the extended RIV method of representing pointers shows performance improvements over
using libpmemobj pointers due to improved cache efficiency. The extended RIV method
also shows minimal overhead compared to striping the pool across multiple NUMA nodes,

81

opening the door to implementing fully NUMA-aware algorithms to achieve better NUMA
locality in the future. In addition, the use of the RECIPE extension in implementation
lends itself well to adding lock-free recoverable features to existing algorithms, with the
implementation of multiple keys per node requiring just the addition of a way to check
for inconsistency and a way to recover from this inconsistency when a node is found to
be outdated. UPSkipList has been tested with interruptions due to full power failures
to detect linearizability errors in its operation, with no errors detected across dozens of
failures.

As next steps, for practicality reasons it is necessary to implement garbage collection
in the extended RIV NUMA-aware memory allocation system, so that removes can be
fully implemented and empty nodes can be reclaimed. Performance improvements can be
achieved by implementing sorting of internal keys upon splitting a node, and performing
a binary search upon these keys when performing searches. Linearizable range queries
can be implemented to increase the usefulness of UPSkipList as an index data structure
for databases. Testing UPSkipList against more recoverable data structures and in real
database programs will give a better idea of how it compares to competition and the suit-
ability its techniques for real-world applications beyond those tested using YCSB. Investi-
gating the implementation of NUMA-aware techniques to improve locality of UPSkipList
using multiple pools instead of striping data is another possibility for performance im-
provement. Overall, UPSkipList and the techniques used in its implementation show lots
of potential for the future, with its contributions improving performance and reliability of
data structures stored in persistent memory.

82

References

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, USA, 2nd edition, 1996.

[2] Marcos K. Aguilera and Svend Frølund. Strict linearizability and the power of abort-
ing. Technical report, USA, 2003.

[3] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection and consensus
in the crash-recovery model. Distrib. Comput., 13(2):99–125, April 2000.

[4] Marc Andreessen. Why software is eating the world. 2011.

[5] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. Bztree:
A high-performance latch-free range index for non-volatile memory. Proc. VLDB
Endow., 11(5):553–565, January 2018.

[6] Hillel Avni, Nir Shavit, and Adi Suissa. Leaplist: Lessons learned in designing tm-
supported range queries. In Proceedings of the 2013 ACM Symposium on Principles
of Distributed Computing, PODC ’13, page 299–308, New York, NY, USA, 2013.
Association for Computing Machinery.

[7] R. Bayer and E. McCreight. Organization and maintenance of large ordered indices.
In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on Data
Description, Access and Control, SIGFIDET ’70, page 107–141, New York, NY, USA,
1970. Association for Computing Machinery.

[8] Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust Shared Objects for
Non-Volatile Main Memory. In Emmanuelle Anceaume, Christian Cachin, and Maria
Potop-Butucaru, editors, 19th International Conference on Principles of Distributed
Systems (OPODIS 2015), volume 46 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 1–17, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

83

[9] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. Makalu: Fast recov-
erable allocation of non-volatile memory. SIGPLAN Not., 51(10):677–694, October
2016.

[10] Hadi Brais. Intel’s clwb instruction invalidating cache lines, 2021.

[11] Trevor Alexander Brown. Reclaiming Memory for Lock-Free Data Structures: There
Has to Be a Better Way, page 261–270. Association for Computing Machinery, New
York, NY, USA, 2015.

[12] Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad Hedayati,
and Michael L. Scott. Understanding and optimizing persistent memory allocation.
Technical report, USA, 2020.

[13] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera. Black-
box concurrent data structures for numa architectures. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, page 207–221, New York, NY, USA, 2017.
Association for Computing Machinery.

[14] Diego Cepeda, Sakib Chowdhury, Nan Li, Raphael Lopez, Xinzhe Wang, and Wojciech
Golab. Toward Linearizability Testing for Multi-Word Persistent Synchronization
Primitives. In Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller, editors,
23rd International Conference on Principles of Distributed Systems (OPODIS 2019),
volume 153 of Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1–
19:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[15] Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng Shen, and Youfeng Wu. Efficient
support of position independence on non-volatile memory. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17,
page 191–203, New York, NY, USA, 2017. Association for Computing Machinery.

[16] Qichen Chen, Hyojeong Lee, Yoonhee Kim, Heon Young Yeom, and Yongseok Son.
Design and implementation of skiplist-based key-value store on non-volatile memory.
Cluster Computing, 22(2):361–371, 2019.

[17] Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main memory. Proc.
VLDB Endow., 8(7):786–797, February 2015.

[18] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. Nv-heaps: Making persistent objects fast and safe

84

with next-generation, non-volatile memories. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, page 105–118, New York, NY, USA, 2011. Association for
Computing Machinery.

[19] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, June 1979.

[20] C++ Reference Contributors. Low level memory management, 2018.

[21] Linux Kernel Contributors. mmap.c line 2680 - linux source code (v5.13.10), 2021.

[22] PMDK Contributors. libpmemobj(7) man page, 1.8 edition, 2020.

[23] PMDK Contributors. Persistent memory development kit, 2020.

[24] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, page 143–154, New York, NY, USA, 2010.
Association for Computing Machinery.

[25] Intel Corporation. Persistent memory faq, 2020.

[26] T. Crain, V. Gramoli, and M. Raynal. No hot spot non-blocking skip list. In 2013
IEEE 33rd International Conference on Distributed Computing Systems, pages 196–
205, 2013.

[27] Henry Daly, Ahmed Hassan, Michael F. Spear, and Roberto Palmieri. Numask: High
performance scalable skip list for numa. In DISC, 2018.

[28] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor Zablotchi. Log-free
concurrent data structures. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 373–386, Boston, MA, July 2018. USENIX Association.

[29] Tudor David and Igor Zablotchi. Concurrent lock-free data structures for non-volatile
ram, 2017.

[30] Ian Dick, Alan Fekete, and Vincent Gramoli. A skip list for multicore. Concurrency
and Computation: Practice and Experience, 29(4):e3876, 2017. e3876 cpe.3876.

[31] Doug Lea. Concurrentskiplistmap.

85

[32] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Pro-
ceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’04, page 50–59, New York, NY, USA, 2004. Association for Com-
puting Machinery.

[33] Keir Fraser. Practical lock-freedom. Technical report, University of Cambridge, Com-
puter Laboratory, 2004.

[34] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM Trans.
Comput. Syst., 25(2):5–es, May 2007.

[35] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch, and Erez Pe-
trank. Nvtraverse: In nvram data structures, the destination is more important than
the journey. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, page 377–392, New York, NY,
USA, 2020. Association for Computing Machinery.

[36] Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion: [extended ab-
stract]. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC ’16, page 65–74, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[37] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In
Proceedings of the 15th International Conference on Distributed Computing, DISC
’01, page 300–314, Berlin, Heidelberg, 2001. Springer-Verlag.

[38] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word compare-
and-swap operation. In Proceedings of the 16th International Conference on Dis-
tributed Computing, DISC ’02, page 265–279, Berlin, Heidelberg, 2002. Springer-
Verlag.

[39] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer,
and Nir Shavit. A lazy concurrent list-based set algorithm. In Proceedings of the
9th International Conference on Principles of Distributed Systems, OPODIS’05, page
3–16, Berlin, Heidelberg, 2005. Springer-Verlag.

[40] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple optimistic
skiplist algorithm. In Proceedings of the 14th International Conference on Structural
Information and Communication Complexity, SIROCCO’07, page 124–138, Berlin,
Heidelberg, 2007. Springer-Verlag.

86

[41] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[42] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[43] K. Higuchi and T. Tsuji. A linear hashing enabling efficient retrieval for range queries.
In 2009 IEEE International Conference on Systems, Man and Cybernetics, pages
4557–4562, 2009.

[44] Amazon Web Services Incorporated. What is a key-value database?, 2020.

[45] Joseph Izraelevitz, Hammurabi Mendes, and Michael Scott. Linearizability of per-
sistent memory objects under a full-system-crash failure model. volume 9888, pages
313–327, 09 2016.

[46] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. Basic performance measurements of the intel optane DC
persistent memory module. CoRR, abs/1903.05714, 2019.

[47] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. Recipe: Converting concurrent dram indexes to persistent-memory in-
dexes. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 462–477, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[48] Theo Leggett. Boeing 737 max lion air crash caused by series of failures. 2019.

[49] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. Kvell: The
design and implementation of a fast persistent key-value store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, SOSP ’19, page 447–461,
New York, NY, USA, 2019. Association for Computing Machinery.

[50] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Willhalm.
Evaluating persistent memory range indexes. Proc. VLDB Endow., 13(4):574–587,
December 2019.

[51] Chris Mellor. Cascade lake ap, optane persistent memory and endurance. 2019.

87

[52] Maged M. Michael. High performance dynamic lock-free hash tables and list-based
sets. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’02, page 73–82, New York, NY, USA, 2002. Association for
Computing Machinery.

[53] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, June 2004.

[54] Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In Proceedings
of the 27th International Symposium on Distributed Computing - Volume 8205, DISC
2013, page 224–238, Berlin, Heidelberg, 2013. Springer-Verlag.

[55] Kenneth Platz, Neeraj Mittal, and S. Venkatesan. Concurrent unrolled skiplist.
In 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), pages 1579–1589, 2019.

[56] William Pugh. Concurrent maintenance of skip lists. Technical report, USA, 1990.

[57] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, June 1990.

[58] Andy Rudoff. Persistent memory programming. USENIX ;login:, 42(2):34–40, 2017.

[59] S. Thomas, R. Hayne, J. Pulaj, and H. Mendes. Using skip graphs for increased numa
locality. In 2020 IEEE 32nd International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), pages 157–166, 2020.

[60] Ticki. Skip lists: Done right, 2016.

[61] Mariano Trebino. Custom memory allocators in c++ to improve the performance of
dynamic memory allocation, 2020.

[62] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons Kem-
per. Persistent memory i/o primitives. In Proceedings of the 15th International Work-
shop on Data Management on New Hardware, DaMoN’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[63] T. Wang, J. Levandoski, and P. Larson. Easy lock-free indexing in non-volatile mem-
ory. In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages
461–472, 2018.

88

[64] J. Yang, Q. Wei, C. Wang, C. Chen, K. L. Yong, and B. He. Nv-tree: A consistent
and workload-adaptive tree structure for non-volatile memory. IEEE Transactions on
Computers, 65(7):2169–2183, 2016.

89

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background
	Persistent Memory
	Challenges
	Official Resources
	Performance Characteristics
	Memory Model

	Linearizability
	Key-Value Stores
	Implementation Comparison
	Skip List Operation

	Synchronization and Concurrency
	Progress Conditions
	Blocking Synchronization
	Non-blocking Synchronization
	Transactions

	Memory Management
	Memory Allocation
	Memory Reclamation

	Literature Review
	PMEM Programming Techniques
	Concurrent Skip Lists
	Memory Management

	Implementation
	Design Overview
	Making a Lock-Free Skip List Recoverable
	Limitations of RECIPE and NVTraverse Conversion Techniques
	Conversion of Lock-Free Algorithms with Non-repairing, Non-Blocking Writes
	Logging for Recoverable Memory Allocation
	Recovery Time

	Data Structure
	Memory Management
	Persistent Pointers and NUMA Awareness
	Coarse-grained memory allocation
	Fine-Grained Memory Management
	Memory Block Structure

	Skip List Traversal
	Recovery

	Insertion and Updates
	Recoverable Node Splits
	Recovery

	Removals

	Evaluation
	Methodology
	Environment
	Workloads

	Results and Discussion
	Throughput Comparison
	libpmemobj vs RIV Pointers
	NUMA-aware vs Striped Performance
	Latency
	Recovery Time

	Correctness
	Crash Testing
	Instrumentation
	Failure Injection

	Linearizability Analysis
	Results

	Conclusion
	References

