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Abstract

As Unmanned Aerial Vehicles (UAVs) become viable for more applications, pose esti-
mation continues to be critical. All UAVs need to know where they are at all times, in
order to avoid disaster. However, in the event that UAVs are deployed in an area with
poor visual conditions, such as in many disaster scenarios, many localization algorithms
have difficulties working.

This thesis presents Visual Inertial Loop-closing Direct Sparse Odometry (VIL-DSO)
a visual odometry method as a pose estimation solution, combining several different al-
gorithms in order to improve pose estimation and provide metric scale. This thesis also
presents a method for automatically determining an accurate physical transform between
radar and camera data, and in doing so, allow for the projection of radar information into
the image plane. Finally, this thesis presents Extended Visual-Inertial Loop Closing Direct
Sparse Odometry (EVIL-DSO), a method for localization that fuses visual-inertial odom-
etry with radar information. The proposed EVIL-DSO algorithm uses radar information
projected into the image plane in order to create a depth map for odometry to directly
observe depth of features, which can then be used as part of the odometry algorithm to
remove the need to perform costly depth estimations.

Trajectory analysis of the proposed algorithm on outdoor data, compared to differential
GPS data, shows that the proposed algorithm is more accurate in terms of root-mean-
square error, as well as having a lower percentage of scale error. Runtime analysis shows
that the proposed algorithm updates more frequently than other, similar, algorithms.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) and other robots were once solely ideas in science fic-
tion. In recent years, however, they have become relatively commonplace due to wider
availability and lower cost in acquiring both the robots themselves, and the sensors that
are crucial for them to be useful. This has led to UAVs being used with a wide variety
of sensors, in a wide variety of applications. Accurate estimation of the pose of the Un-
manned Aerial Vehicle (UAV) is required across almost all applications, which has also
contributed to developments in odometry and Simultaneous Localization and Mapping
(SLAM) algorithms to accomplish this task.

A wide variety of sensors have been used in odometry and Simultaneous Localization
and Mapping (SLAM) algorithms. Some have used laser range finders [82], others have
used Light Detection and Ranging (LiDAR) [30], or Inertial Measurement Unit (IMU)
and GPS based approaches [24]. Camera based approaches have also had great success,
particularly with UAVs, due to the relatively low cost, size, and weight of the sensor.
Cameras are also frequently used as part of the sensor loadout for a wide variety of UAV
applications other than localization, such as surveying, aerial filming and photography, or as
a navigational aid for other vehicles. This incentivizes the use of cameras for localization,
instead of mounting an extra sensor. For these reasons, cameras are frequently used in
algorithms for pose estimation, such as in Visual Odometry (VO). A single camera on its
own, however, cannot be used for certain aspects, such as direct depth estimation, and can
have difficulty in areas with low textured areas and fast maneuvers. With a single camera,
it is also impossible to estimate a real world scale between features. For these reasons, it
is frequently combined with one or more other sensors.

Frequently, a camera is combined with an IMU in order to provide accurate short term
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motion estimation, as well as to add an inertial component to optimization, which allows
for scale estimation. Other sensors can also be used to augment this approach, which allows
for each sensor to add its unique strengths to the method. Radar can be used for direct
measurement of depth information of points, as well as for more accurate information in
lower textured areas.

This thesis presents a method for using radar, IMU, and camera information in tandem,
in order to produce an accurate estimation of the current robot pose, and an accurate map
of the surrounding area. In particular, it focuses on the estimation of pose for UAVs, using
sensors that are commonly used in existing UAV applications.

1.1 Motivation

In general, pose estimation and mapping for robotics is extremely important. Accurate
mapping, in fact, is tied closely to accurate pose estimation; a robot can’t map the area
around it accurately if it doesn’t know where it is and what its orientation is within that
environment. These techniques can be can be used in a wide variety of applications, such
as in remote infrastructure inspection, search and rescue, and defense.

In remote infrastructure inspection, precise estimation of a robot’s pose is important,
as they frequently work in GPS-deprived environments, and have to localise solely based
on their surroundings. Similarly, mapping and inspection is useful for getting useful data
from drones that are performing inspections. Infrastructure inspection can be performed in
a variety of conditions, but places a premium on accurate information gathering, as missed
fault or crack can cost millions of dollars to fix if it is left for too long. In extreme cases,
as with dams and bridges, infrastructure failure can cost lives, and so it is imperative that
the data available be as accurate as possible. It is for this reason that we turn to fusions of
multiple sensors, such as radar and camera, in order to provide the robust and informative
data needed for inspection, and reduce uncertainty inherent in each individual sensor.

In defense applications, mapping can also be used for a wide variety of tasks. Mapping
of terrain before an operation can be extremely useful to inform personnel about what
sorts of hazards they could face over the course of their work, and establish what sorts of
dangers are present. Live mapping during an operation can also allow for localisation of
threats to personnel quickly and accurately, potentially saving their lives.

Pose estimation and mapping are especially important for time sensitive applications,
such as search and rescue. Natural disasters can completely change the environments that
they occur in, rendering any existing maps and information about the environment useless,
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while also creating situations in which timely operation is essential in order to save lives.
A matter of minutes can make a significant difference, as statistics show that 93 percent of
avalanche victims can survive if found and dug out within 15 minutes, while the survival
rate drops to 30 percent at 35 minutes[17]. It is also crucial to have information about
areas affected by natural disaster, such as the types of terrain, or a reconstructed surface,
in order to inform ground teams, ground robots, and rescue efforts in general, to aid in
both damage mitigation and human rescue efforts as necessary.

Many existing algorithms using purely visual methods have significant sources of error
that can accumulate throughout the process. Error can accumulate via simple calculation
error, or through drift from the ground truth. In visually difficult areas, there can also
be a failure to detect and track points, resulting in a loss of tracking and a total failure
of the method. Methods that include IMU can add robustness to lower texture areas,
but also add their own error source in the form of IMU drift. Purely visual methods also
have difficulty calculating depth, as point tracking and depth calculations are difficult, and
stereo vision is impossible on a standard drone at high altitudes, as the cameras would
need to be several meters apart to enable stereo vision.

Natural disaster and defense scenes also frequently include adverse visual conditions.
These can include low texture variation, fog, shifting rubble, low light, rain, or even flooded
water, that prevent purely visual point selection can have great difficulties in selecting and
tracking points. mmWave radar, on the other hand, is unaffected by a adverse visual
conditions, and can allow for a greater range of operational conditions than purely visual
odometry can. In addition, it allows for additional sensory opportunities, such as for the
detection of humans through objects, and the measurement of heart rate and breathing[6].

Radar is also more accurate at depth estimation, and cheaper as well. The lower price
should allow for more accurate pose estimation and greater robustness in the system for all
applications, while still being at lower cost than other, completely camera based systems.

This research is therefore motivated towards creating pose estimation methods that are
more robust to changing visual conditions, as well as more accurate depth estimation. The
purpose of this is to support operations in difficult, changing conditions, such as disaster
scenarios and defense applications.

1.2 Problem Statement

VO performs poorly in visually difficult areas on the whole. Radar ignores most conditions
that cause difficulty for visual sensors, but it is rarely used alongside visual sensors. Cali-
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bration between camera and radar in both azimuth and elevation is difficult, and there is
no currently accepted technique for doing so. Radar also has difficulty processing terrain
in many signal processing methods, which can lead to difficulty in using it as a standalone
processing method.

This thesis will hence focus on developing solutions to address the problem of VO using
UAVs in visually difficult areas, specifically with an aim at reducing error due to depth
estimation, and improving estimation of scale. This thesis also aims to minimise the cost
of VO, and allow for accurate estimation of pose at longer distance and higher altitudes
from the ground.

1.3 Contributions

This thesis presents a method for calibrating radar and camera information, by using
nonlinear optimization methods to determine a best fit transform between the two sensors.
This thesis also presents an extension to existing methods by calibrating for a radar in
both azimuth and elevation.

Current literature presents methods for visual-inertial odometry and loop closing visual
odometry, but no methods for combining the two together short of a full SLAM solution.
This thesis provides a method for combining visual inertial and loop closure together, in
order to create more accurate visual odometry, and includes results on both datasets and
acquired data.

Finally, this thesis presents a method for augmenting visual odometry information with
the use of radar. Firstly, it uses the calibrated radar information to augment the depth
estimation of points, thereby increasing the accuracy of the scale estimation in the visual
inertial odometry, and therefore increasing the accuracy of the pose. Furthermore, it can
be used to select points and perform assocations even under difficult visual conditions,
such as in low light conditions or under adverse weather, such as fog. This method is then
verified through simulation and experimental results.

1.4 Outline

This thesis will present state-of-the-art techniques and relevant background information in
Chapter 2. Chapter 3 describes the visual odometry method to be augmented using radar.
Chapter 4 describes the method used for radar-camera calibration, and results for the
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accuracy in calibration. Chapter 5 described the process of augmenting visual odometry
with radar. Chapter 6 presents the conclusions of this thesis, as well as recommendations
for future work.
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Chapter 2

Review and Background

In this chapter, we will go over necessary background information for the presentation of
the proposed visual odometry methods, such as factor graph optimization and radar signal
processing. We also discuss previous research efforts in visual odometry, mapping and
localization with radar, and methods for fusing the two sensors that have been previously
researched.

2.1 Factor graph optimization

Many dynamic systems can be modelled using Markov chains, in which possible states are
entirely dependent on previous states in the system. In pose estimation for robotics, the
states to be observed are x ∈ R6. In a a hidden Markov model, the states are assumed to be
not directly observable, and therefore they must be inferred from the noisy measurements
z ∈ Rn, which can be directly observed. The set of states xt from all timesteps is noted as
X, and the set of all observations is represented by Z. The observations Z are obviously
dependent on the hidden states X, which leads to the conditional probability formulation
P (Z|X). As an example of what such a model can look like, Figure 2.1 shows a hidden
Markov Model represented as a Bayesian network, where the task is to determine the
hidden state sequence (x1, x2, x3) for measurements z1, z2, z3 that minimises the posterior
probability P (z1, z2, z3|x1, x2, x3).

This system can also be represented using a factor graph. A factor graph is a bipartite
graph with vertices representing factors and variables. Variables represent the unknown
states to be estimated, while factors represent probabilistic information on those variables
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x1 x2 x3

z1 z2 z3

Figure 2.1: A Hidden Markov Model modeled as a Bayesian network

f0(x1)

x1

f1(x1, x2)

x2

f1(x2, x3)

x3 Factors

Variables

Figure 2.2: A Hidden Markov Model modelled as a factor graph

that is gained from the observations. Edges can only exist between factors and variables,
to connect each factor to the variables that the factor provides information on. The same
bayesian network as before is illustrated in Figure 2.2.

The value of the graph is defined as

f(X) =
∏
i

fi(xi). (2.1)

The goal is to estimate the subset of state variables xi ∈ X that maximizes the value of the
graph, and by extension, maximizes the probability of receiving the given measurements
Z. This yields the maximum a posteriori probability state as

XMAP = arg max
X

∏
i

fi(xi). (2.2)

The state estimates required for this are generated through optimization methods. The
residual function r(xi, zi) of the factor graph can be used to determine the cost function
for optimization. For example, a simple residual function is

r(xi, zi) = h(xi)− zi, (2.3)

where h(x) is the sensor model that maps states X to measurements Z. The goal of
the estimation is to find the values of X such that the likelihoods of observations Z are
maximized, as in

p(Z|X) ∝ exp

(
−1

2
||hi(xi)− zi||2Σi

)
. (2.4)
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where Σi is the known covariance matrix and || · ||Σi
is the Mahalanobis norm. Since

the logarithm of Equation 2.4 is monotonic, maximizing the probability is equivalent to
minimizing the negative log-likelihood function and dropping the 1

2
factor, which results in

XMAP = arg min
X

∑
i

||hi(xi)− zi||2Σi
. (2.5)

This is equivalent to minimizing the sum of nonlinear least squares. The cost function is
then defined as

g(X) :=
∑
i

||hi(xi)− zi||2Σi
. (2.6)

Optimizing this cost function yields an estimate for the entire sequence of states X,
which tends to yield a smoother trajectory, as opposed to methods which only estimate
the current state. This problem is commonly solved using Gauss-Newton optimization or
Levenberg-Marquardy optimization.

2.2 Camera

2.2.1 Visual odometry methods

In general, VO methods can be seperated into 4 different categories, defined by 2 different
qualities. In all formulations of the VO problem, a probabilistic model that takes mea-
surements Z as input is used, which then computes an estimate of the actual value X,
typically using a maximum likelihood approach of some kind to maximise the probability
of obtaining the actual measurements. Where the types of models differ is how much of
the available sensor data they use, and how exactly they use it. This leads to a separation
of algorithms based on whether they are dense or sparse, and direct or indirect.

Direct vs. Indirect

Indirect methods proceed in 2 steps. The first step is pre-processing the raw camera data
in some form. This typically takes the set of extracting a set of keypoints, in the form
of features of some kind, which can then be used as noisy measurements in a model to
determine camera position. It can also take the form of established correspondences using
dense optical flow, or methods that extract and match geometric primitives, such as lines
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or corners. Indirect methods optimize a geometric error, as the quantities observed are
geometric in nature.

Direct methods, on the other hand, work directly using the raw sensor data provided
from the sensor itself. They optimise a photometric error, as the camera sensor itself is a
photometric sensor.

Dense vs. Sparse

Dense methods use all pixels available in the two dimensional image plane, whereas sparse
methods use a selected set of independent points(traditionally corners.) Semi-dense meth-
ods exist as well, which use a large subset of largely connected, well constrained points of
the image, but do not use the complete surface.

Dense and sparse methods also differ in their use of geometric priors. In sparse methods,
points are regarded as conditionally independent from each other, and no geometric priors
are used in optimisation. In dense and semidense methods, the connectedness of the region
of points used is exploited to form a geometric prior, favoring smoothness. Geometric priors
are actually required in order to make a dense world model observable [74] [67] [88]

All 4 possible combinations of these methods exist in the literature. There are also
hybrid methods, which do not fit neatly into any of these categories, such as [21]. Relevant
methods are described in sections subsection 2.2.2 and subsection 2.2.3.

2.2.2 Existing Visual odometry methods

Most relevant to this thesis are direct, sparse algorithms, such as the Direct Sparse Odom-
etry (DSO) family of algorithms. These methods are keyframe based, sparse methods that
include dynamic marginalization to improve the accuracy of estimation[14]. Later addi-
tions have also added inertial sensors, to add real world scale to the estimation [92], known
as Visual Inertial Direct Sparse Odometry (VI-DSO), as well as loop closure, to reduce
the drift error inherent in estimation from purely visual and inertial measurements [22],
known as Loop Closing Direct Sparse Odometry (LDSO). Another version of DSO added
stereo capabilities [94]; however, stereo vision is unusable from higher altitudes, requiring
cameras to be several meters apart at 100m of altitude. This is thus disregarded as a
possible solution for direct depth estimation. DSO has also been augmented with deep
learning techniques to perform virtual stereo depth estimation, known as Deep Virtual
Stereo Odometry (DVSO), and shown in [98]. Other methods have used fisheye cameras
to create an omnidirectional view [60].
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Many other visual odometry methods have been developed, however. Among the most
notable is [21], which uses a semi-direct formulation for optimization, but otherwise uses a
keyframe based approach. The originator of the keyframe based approach used by many of
these methods was [52], who originally used the nonlinear optimisation model for odometry,
as opposed to the filter based approaches of the past, and it was further improved by [65].

Depth estimation is a problem of great interest in visual odometry. Some methods
combine visual methods with LiDAR for improved depth estimation, such as [26] [25] [103],
which has the disadavantage of requiring LiDAR. LiDAR can be heavy, power intensive,
and often less accurate and robust than radar. Similarly, others have attempted the use of
RGB-D camera systems, which can directly measure depth, with algorithms such as [45]
[58] [42] [108] [43]. RGB-D systems can be flooded out easily in outdoor applications due to
ambient infrared light, and are both expensive and power hungry. They also lose accuracy
at longer distances. For these reasons, we disregard RGB-D cameras as a suitable sensor
for use in this method.

Other methods use deep learning techniques to attempt to estimate depth directly from
images. DVSO [98] is one example of this, but there are many others, including [57], which
augments [21] with depth prediction, as well as [59] [76] [99] [93] [53] [102], which all use
some form of depth estimation to augment their visual odometry systems. These systems,
however, add significant extra computational cost to the odometry system, which may not
always be feasible if the computation is to be performed on the UAV, as opposed to on a
base station. Additionally, these methods often have difficulties if datasets are unavailable
for the type of terrain the UAV will be flying over. It is both computationally simpler and
more reliable to simpler measure the depth directly.

2.2.3 Existing Visual SLAM methods

Visual SLAM methods are frequently used in autonomous vehicles as a whole, but are
less frequently used in UAV applications, due to their more demanding computational re-
quirements. While VO methods generally only optimise pose in a local window, SLAM
solutions optimise both the trajectory and the measured points points globally, simulta-
neously optimally mapping the space and using that map to localize the robot. Visual
odometry measures points, but does not consider them as variables to be jointly optimised
with the poses. This leads to a more accurate, but much more computationally expensive
estimation in SLAM methods.

Visual SLAM methods can also be categorized as direct, indirect, sparse, or dense,
similar to VO methods. ORB-SLAM [63] and its successor, ORB-SLAM2 [64], are sparse,
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indirect methods, which are the most commonly used types of SLAM system, along with
systems like monoSLAM [10] and PTAM [46]. Dense, indirect methods, like [77], or [90],
using geometric priors and geometric error to optimise. Dense, direct methods also exist,
with methods like DTAM [67] and the predecessor to it [88] using a combination of geo-
metric priors and photometric error. Direct, sparse SLAM methods, however, are few in
number, with most direct, sparse methods being VO methods instead of SLAM.

2.3 Radar

2.3.1 Signal processing methods

For this project, a FMCW radar operating in the 77-81 GHz band is used. High frequency
FMCW has several benefits, including simple transmitters, excellent range resolution, and
resistance to interference, all of which are crucial to operation with UAVs. With FMCW
radar, signal processing begins with a Fourier Transform being performed on the returns
detected from each receiving antenna on the radar, in order to determine absolute ranges
from each antenna. The results of the Fourier Transforms are then run through a Direction
of Arrival (DoA) algorithm, in order to determine an accurate estimate of the angle from
which obstacles are detected. This can then be used, in combination with the ranges from
the Fourier Transforms, to determine Cartesian coordinates for targets.

The full mathematical breakdown of the signal processing methods used and FMCW
radar can be found in A.

2.3.2 Existing Radar Mapping Methods

Historically, existing radar based mapping methods are satellite based methods, which use
the principal of interferometry. Interferometry is a technique that combines waves with
the same frequency, using the principle of superposition, in order to intentionally cause
interference, and extract meaningful data from the resulting interference. This allows for
useful information to be obtained because when two waves of the same frequency are
combined using superposition, the resulting wave is a function of the phase difference
between the two waves, which can be used to calculate data like time of flight or distance
travelled, and can give a highly accurate reading. This technique has been in use for several
decades [27] [101] [80] for use in topographical measurements. However, in more recent
years, other techniques have become more common, as satellite mapping is frequently used
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for other applications, such as mapping ice cover, flooding, forests, and other environmental
concerns.

2.3.3 Existing Radar SLAM methods

Radar based SLAM frequently uses different algorithms than modern camera based sys-
tems. Many systems use an Extended Kalman Filter (EKF) based approach, with varying
signal processing approaches, such as [50] which used doppler radar to detect points and
then used an EKF SLAM method on landmarks extracted from the doppler. A group
from Korea used EKF methods as well, but used W-band radar instead of doppler radar
[48]. A group from LASMEA, France, used FMCW radar, which is used in this thesis,
and is described in detail in Appendix A, in order to perform SLAM using an EKF, and
also usesdthe Fourier Mellin transform in order to ignore data association and do efficient
matching [23]. Similar results can be seen with [51], who used simulated FMCW radar as
well.

Not all radar SLAM methods are EKF based methods, however. There are still some
methods that use graph based optimisation methods. A group from Daimler AG used land-
marks determined from radar points in a graph based optimisation method and achieves
good results in a parking lot setting [81]. Another group used radar scans directly and
matched them using an Iterative Closest Point (ICP) method, then put those matches into
a factor graph to achieve results better than more advanced radars with more dense point
clouds [31].

Recent methods appear to focus primarily on EKF based methods, with some graph
based methods. However, a few other methods have been used. One group used a novel
framework with an augmented state vector that used the radar cross sections of the de-
tected objects in order to perform SLAM [37]. On the other hand, [61] uses a normal
distribution transform to perform SLAM and also compares it to data from a LiDAR us-
ing the same algorithm, finding the radar to be slightly less accurate, though noting that
the original radar sensor was less accurate as well. Notably, however, none of these methods
or experimental results have been tested on a UAV.

2.4 Radar-camera fusion

Radar camera fusion has been performed in some applications before, but always using
ground based vehicles. A frequent use of radar-camera calibration is in Detection and
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Tracking of Moving Objects (DATMO), in which the ability of a radar to directly measure
velocity can be of great use. Frequently, such algorithms use radar as a method to direct
the attention of a camera to a given area, or extract features that can be used to augment
visual tasks, such as in [33], [33], [39], or [96], where features detected by the radar are used
to augment object classification via a neural net, or in [44] [87] [5] [71], where radar is used
to augment camera based tracking of objects, including pedestrians and vehicles. Other
approaches have more recently begun to incorporate neural nets, in order to perform the
classification. CenterFusion [66] is an approach that detects center points using camera
data with a neural net first, then associating radar tracks with them using a frustrum based
method. Another group used neural networks that take both camera and radar data at the
same time in order to detect obstacles in a two dimensional plane, and used novel neural
network training techniques to improve the accuracy of their fusion [68]. Occasionally radar
and camera are also fused in different ways, such as using detection of movement with radar
to direct security cameras to areas that need extra attention[41]. All of these methods,
however, are focused on object detection, classification, and tracking, which leads them to
use a lot of similar fusion methods. None of them focus on localization of a robot, which
by necessity, requires a different approach. More data is needed for accurate localization
than is needed for accurate object detection, which leads our approach to other techniques
detailed later.

Besides DATMO, the most common use of radar and camera calibration is for textured
surface reconstruction. Our review of the available literature has come up with several
methods by which this may be performed. A group in France [12] uses an approach based
on sensor geometry and measurement of three dimensional features, which is extended in
[13]. Meanwhile, [47] uses a mmWave multiview scanner in order to take measurements,
and uses structure from motion techniques in order to create a textured representation
of the environment, as well as estimate the pose of the scanner. However, both of these
techniques are solely for ground based surface estimation; neither of them have been tested
on a UAV.

2.5 Summary of previous methods

In summary, none of the existing methods solve the problem stated in Section 1.2. Several
methods of monocular VO exist, but few of them work for UAVs. Of those that do, the
only algorithms that work with UAVs have their own problems, including lack of depth
perception, lack of scale estimation, and lack of any good way to estimate depth. They also
are not robust to any difficult visual conditions. Stereo algorithms are insufficient for the
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task, as the distance between cameras needed for depth perception quickly becomes too
great to be feasibly mounted on a drone. Radar algorithms on their own do not allow for
the same level of accuracy as purely visual methods, due to difficulty in associating points
in radar data. Theoretically, radar-camera fusion should be more accurate than either
radar or camera localization on their own. It should also allow for more robust odometry.
However, no efforts have been made to perform this localization. This is what this thesis
aims to do, in order to solve the problem outlined in Section 1.2.
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Chapter 3

Visual Inertial Odometry method

3.1 Overview

In order to augment visual odometry with radar, as this thesis proposes, we first require a
base visual odometry method to augment. Visual odometry is frequently used for robotics
applications that don’t have the computational resources to use a full SLAM system. In
order to make our augmented version as accurate as possible, it is helpful to have a solution
that is reasonably accurate even without radar augmentation.

In this section of the thesis, we present the VO method to be augmented, known as
VIL-DSO. It uses a keyframe based, sliding window optimisation framework, similar to the
framework used in [52], [64], and [22], among others. VIL-DSO is built from LDSO[22]
and includes inertial measurements from an IMU, which are tied to the keyframes of the
system, as well as loop closure for reducing drift error. It is composed of three primary
threads: the coarse tracker, the local optimizer, and the global optimiser. These threads,
as well as the required initialization, are summarised below, as are the results of VIL-DSO,
which are comparable or better than state-of-the-art VO and SLAM algorithms.

3.2 Initialization and Pre-integration of the IMU

Before any optimisation can occur, a number of key parameters related to the IMU need
to be estimated. These include the gyroscope and accelerometer biases, as well as the
magnitude of gravity and scale, which is defined as the ratio between distances in the
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Figure 3.1: Main threads in VIL-DSO
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16



odometry reference frame and the world reference frame. The initial estimate for gravity is
determined by using the first 30 measurements from the IMU, before any visual information
is used. The scale is initially assumed to be 1.0, while the initial estimates for biases,
denoted as the vector b0, are set to each be 0.0. These are only initial estimates, and will
be included in joint optimisation later on.

IMU data is almost always generated at a much higher rate than camera data. In order
to generate individual transforms that can be associated with keyframes, the IMU data is
preintegrated using a constant acceleration model, using the manifold method developed
in [20]. These individual transforms can then be used to represent all IMU readings taken
between consecutive frames or keyframes, depending on where the information is being
used.

3.3 Key frame and Point Management: The Coarse

tracker

After initialization of the IMU, each frame input into the odometry program passes through
a number of steps to determine if it will be used as a keyframe, and added to the sliding
window used for local optimisation.

3.3.1 Coarse Tracking

Each frame is first tracked using the coarse tracker relative to the latest keyframe. This
allows for tracking in between keyframes, where it isn’t efficient to perform a full local
optimisation. It also provides an initial estimate for the local window optimization to start
at.

The coarse tracker first projects all active points into the current keyframe and dilates
them. It then uses conventional direct image alignment between the latest frame and the
latest keyframe, during which the scale is fixed. This alignment uses multi-scale pyramid
representation and a constant motion model. Inertial residuals are calculated from IMU
preintegration and included between subsequent frames. After each completion of the local
optimization, a new keyframe is generated, and the coarse tracker is reinitialized using the
scale, gravity, biases, and velocities as references. Resulting poses from the coarse tracker
are used as initial estimates for local optimisation.
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3.3.2 Key Frame Generation

Keyframe generation is performed with new frames after coarse tracking is complete. If a
weighted summation of the following criteria exceeds a predefined threshold, then a new
keyframe is generated:

1. The Field of View (FoV) changes significantly, as measured by the mean square
optical flow from the last keyframe to the latest frame,

f :=

(
1

n

n∑
i=1

||p− p′||2
) 1

2

, (3.1)

where n is the number of frames sinces the last keyframe, p is the vector of estimated
points in the image frame, and p′ is the vector of projections of those points using
the current inverse depth estimate. . This projection is performed using

p′ = Pc(RP
−1
c (p, dp) + t), (3.2)

where Pc is the projection from R3 into the image plane using pinhole camera param-
eters c, P−1

c is the back projection from the image plane into R3 , dp is the current
inverse depth estimate, and R and t are the estimated rotation and translation ma-
trices between the last keyframe and latest frame.

2. The translation of the camera causes occlusion of the points, which is indicated by
the mean flow without rotation. This quantity is defined as ft, the mean optical flow
with only translation, and calculate it as

ft :=

(
1

n

n∑
i=1

||p− p′t||2
) 1

2

, (3.3)

where p′t is the warped point position calculated using Equation 3.2 with R = I3x3,
determining the mean optical flow without accounting for rotation.

3. There is significant change in brightness, as indicated by a relative brightness factor
between the keyframe and the current frame,

a := |log(eaj−aitjt
−1
i )|, (3.4)

where ti and tj are the exposure times of the last keyframe and current frame re-
spectively, and aj and ai are the current estimates of our scalar affine brightness
parameters, which are jointly optimized as part of the local optimization thread.
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The weighted summation of the three above criteria is defined as

b := wff + wftft + waa (3.5)

where wf , wft , and wa are the relative weights, with the only constraint wf , wft , wa > 0.
If b exceeds a preset threshold, a new keyframe is generated. The threshold is defined as
Tkf = 1.

After the above weighted criteria check, an additional check against IMU timestamps is
calculated. If the time between the current frame IMU timestamp and the latest keyframe
IMU timestamp exceeds an arbitrary threshold, in this case set to 0.45 seconds, and b
exceeds a second threshold Timu, then a new keyframe is taken. Timu = 0.45 and is also
arbitrarily defined.

This section includes several different parameters that can be tuned and are which all
can effect the performance of the algorithm. However, [14] performed an analysis of the
effects of changes in each of these parameters. In order to tune these parameters for the
experiments described in Chapter 5, the parameters there were used as a starting point,
and a simple gradient descent was used to optimise them for our specific experiments.

3.3.3 Point selection

A limited number of points are used for estimation, in order to reduce redundancy and
make computation faster. In each keyframe, a number of point candidates are proposed
by uniform random selection, arbitrarily set to be 1500. Points are then selected from the
point candidates by use of 2 different methods. The first method is the method originally
proposed by DSO [14], which uses a gradient filter to detect points with high gradients,
while the second method uses the easy to compute Shi-Tomasi score[83] to detect corners.
This method uses a mix of the two methods in order to allow higher accuracy when corners
can be detected using the Shi-Tomasi score, while also still allowing for robustness in lower
texture areas with the DSO point selection strategy.

The points are then tracked through subsequent keyframes, with the different poses of
the frames being used to form an estimate of the depth, as well as determine the variance
of that estimate. The process of forming the estimate involves minimising the error in
the depth estimation, based on the matching of the points in previous keyframes. Our
replacement to this depth estimation is described in Section 5.1.
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3.3.4 Marginalisation

Marginalisation is used to remove old states, in order to reduce the complexity of calcula-
tions while retaining some prior information about previous states. The criteria to decide
if certain data is marginalized or not is based on frame and pose data. Once the data from
a frame is marginalised, associated factors are removed from the factor graph, and a new
factor is formed to act as a prior for the window. Marginalisation is completed using the
Schur complement.

The criteria for marginalization, as detailed in [14], are listed below, where I1 is the
current keyframe:

1. Keep the latest two keyframes, I1 and I2.

2. Marginalize a keyframe if it shares less than 5% of its points shared with I1.

3. Marginalize a keyframe if the number of keyframes exceeds the set threshold, NI . A
distance score between keyframes is calculated to select the frame to remove,

s(Ii) =
√
d(i, 1)

∑
j∈[3,n]\{i}

(d(i, j) + ε)−1, (3.6)

where d(i, j) is defined as the Euclidean distance in R3 between the estimated poses
of keyframes Ii and Ij, defined as ||ti − tj||2 where ti and tj are the R3 estimated
positions of each keyframe, and ε is a small constant.

4. Marginalize all points that are no longer in the FoV, across all frames.

5. Marginalize all points for which the host frame is marginalized.

These marginalisation criteria work for all variables. Marginalized information is re-
tained as priors for future optimization for all variables in the current window that are
connected to older states, with the sole exception of scale. In order to handle this, [92]
introduces the idea of dynamic marginalization, which maintains multiple marginalization
factors that are calculated and maintained, and are reset when the scale estimate deviates
significantly. The three factors used are:

1. Mvisual, which contains only scale independent information generated from visual
information, and includes no IMU data.

2. Mcurr, which contains all information since the last frame was marginalized.
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3. Mhalf , which contains only recent states with similar scale estimates to the most
recent estimate.

When the current scale deviates significantly from the scale estimate at the latest
marginalized prior, the priors are reset by setting Mcurr equal to Mhalf and Mhalf equal
to Mvisual. This results in the optimization always retaining some information from prior
states regarding the scale estimate.

3.4 Optimization in the Local Window: Pose Estima-

tion

In the local window thread, we create a factor graph to minimise photometric error be-
tween keyframes, by optimizing energy residuals as in [14]. This is calculated in a sliding
window to allow for easier computation. Frames and points that leave the field of view
are marginalized. The remaining keyframes form a window, local to the current keyframe,
where the associated poses are optimised.

The factor graph shown in Figure 3.3 shows how error terms used in the optimization
are created. Error terms are generated between the host keyframe of a point and every
keyframe that shares that point. As an example, Ep13 is the error term generated by Point
1(P1), which is hosted by keyframe 1 and overlapped with keyframe 3. Further definition
of these error terms can be found in [14]. Blue edges are between points and their host
keyframes, while red edges are between points and other overlapping keyframes.

The sum of the energy residuals represents the photometric error for all the keyframes
and points represented in the factor graph. This is defined [14] as

Ephoto :=
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj, (3.7)

where i iterates over all keyframes F in the local window, p iterates over all points P in
keyframe i, and j iterates over all keyframes in which the point p is visible. Optimization of
the graph is performed using initial estimates from the coarse tracking thread, as described
in section Section 3.3, and optimised using the Gauss-Newton algorithm.

To add metric scale to the optimization, however, more terms must be added to the
factor graph. As in [92], the factor graph must also include pose, IMU biases, velocity,
gravity direction, and scale, in addition to visual information. Factors are generated using
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Figure 3.3: Structure of the bundle adjustment factor graph from DSO, from [14].
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the inertial and visual measurements are used to generate factors relating the unknown
variables, using the known probabilistic information. The resulting factor graph is shown
in Figure 3.4.
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Figure 3.4: Factor graph for VI-DSO [92].
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3.5 Optimization in the Global Window: Loop Clo-

sure

Each of the estimated poses for the keyframes are calculated in a local window. However,
this doesn’t take into account for when the UAV revisits previous locations. When the
UAV revisits other areas, the information can be used to reduce drift error by utilizing
loop closure. Instead of using the the local sliding window, loop closure uses all available
keyframes, in a global window. The factors between keyframes in the global pose graph are
calculated from relative poses that were determined from the pose estimates in the local
sliding window.

In order to first detect loop closure, the ORB [79] descriptors are calculated from each
keyframe. These should be repeatable due to to how the LDSO point selection uses the
Shi-Tomasi score to ensure that points are corners. These descriptors are then packed into
a Bag of Words (BoW), which helps to store the data compactly. Whenever a new keyframe
is generated, matching point candidates are proposed by referencing the BoW. When there
are enough matches, a loop is detected and a transformation between the matched frames
is calculated. This transformation is used to generate an edge in the global pose graph, as
demonstrated in Figure 3.5.

The edge consists of a transform between the reference frame and the current keyframe
being matched. First, let P = {pi} be the reconstructed features in the reference keyframe,
taken from the BoW and with inverse depth dpi

, and let the matched features in the current
keyframe be Q = qi with D being the sparse inverse depth map created by projecting points
in the current sliding window into the current keyframe being matched. Because D is a
sparse map, some features have depth associated with them, while others have only pixel
positions. Let Q1 ⊆ Q be the features without depth estimates, and Q2 = Q \ Q1 be the
features with depth estimates. Using all of these, a pose estimate between the reference
and current keyframe Scr can now be computed by minimising the energy function

Eloop :=
∑
qi∈Q1

w1||ScrP
−1
c (pi,dpi

)− P−1
c (qi,dqi

)||2+∑
qj∈Q2

w2||Pc(ScrP
−1
c (pj,dpj

))− qj||2,
(3.8)

where P−1
c and Pc are defined as before, and w1 and w2 are weights to balance out

different measurement units.
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Figure 3.5: A representation of loop closure in a factor graph.

3.6 Summary of contribution

In this chapter, we presented a VO algorithm that includes visual and inertial information,
to be augmented by radar information in future steps. VIL-DSO gives accurate localization
in ideal circumstances, and also uses easily associated, repeatable features. However, it has
no means of accurate depth estimation, as it is only a monocular system, and has significant
error built into estimations of scale. This makes it ideal to augment with radar information.
The method for augmenting it will be presented in the following two chapters.
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Chapter 4

Radar-Camera Calibration

This chapter deals with the problem of determining the rigid transform between a radar
sensor and a camera sensor, in order to directly detect depth and augment the visual
odometry presented in Chapter 3. Most existing camera-radar calibration methods only
use 2 dimensions, and ignore any information along the z-axis. The method presented here
also presents a novel technique for use of points along the z-axis. This section also goes
into detail about how the calibrated points are turned into a depth map, which can then
be used to augment visual odometry.

4.1 Calibration Methodology

The method used, broadly speaking, determines a transformation to map a three-dimensional
point in space to a point on the image plane of the camera. It is similar to extrinsic cali-
bration methods for camera pose estimation [70]. For this method, the coordinate systems
of the respective sensors are defined as in Figure 4.1. The calibration can then be modelled
with the following equation:

q̃ = K[R t]p̃, (4.1)

where p̃ = [x, y, z, 1]t and q̃ = [u, v, 1]t are the homogeneous coordinates of p and q,
respectively. Normally, with a 2 dimensional radar, z = 0, but as we are considering the
three-dimensional radar case, we also consider height in this equation. In Equation 4.1, K
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Figure 4.1: The coordinate systems used in calibration [70].

is the camera intrinsic matrix, obtained via calibration, and defined as−kufx s u0

0 kvfy v0

0 0 1

 (4.2)

As in [13], we consider s, the skew parameter, to be negligible, and therefore s = 0.
The matrix [R t] is known as the extrinsic matrix, and defines the rigid spatial transform
between the 2 sensors. It consists of the rotation matrix as

R = RzRyRx (4.3)

Rx =

1 0 0
0 cos θx sin θx
0 − sin θx cos θx

 ,Ry =

cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy

 , (4.4)

Rz =

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1

 , (4.5)

and the translation vector as
t = [tx, ty, tz]

T (4.6)

The transformation is clearly defined by the six variables

w = [θx, θy, θz, tx, ty, tz], (4.7)
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which can then be used as the optimization variables in a nonlinear optimization problem
with the following objective function:

min
w

N∑
i=1

‖q̃i −K[R t]p̃i‖2
2 (4.8)

This optimisation problem is aimed at minimising the pairwise error between radar
points and camera points, by minimising the error in the transform. pi and qi are paired
points, describing a three dimensional point and the corresponding point on the image
plane. The points are typically spread at an variety of distances and angles from the
sensors being calibrated. After obtaining a resulting w, an arbitrary radar point target
can then be mapped onto an image, or by inverting the transformation to get

[R t]−1K−1q̃ = p̃, (4.9)

an image point can be mapped to a radar point, or a point on a generated surface in the
radar coordinate frame.

4.2 Calibration Results

In order to determine the quality of calibration, a simple experiment is devised. Camera
calibration was conducted via OpenCV and a checkerboard, in order to determine the
intrinsic matrix K. In order to obtain data for the calibration, a radar and camera were
each affixed to a board to create a rigid transform. A series of steel targets were set up
and covered with paper, in order to make them easy to detect using conventional computer
vision methods. The targets were placed at a variety of heights and distances from the
radar and camera, to allow for many points to improve optimizations. They were set up
in 4 different configurations, with one configuration being used for calibration, and the
remaining three being used for evaluation.

In order to evaluate the quality of calibration, an equation must be defined for calibra-
tion error. The calibration error for N pairs of points is defined as

1

N

N∑
i=1

d(q̂i,qi), (4.10)

where d is the Euclidean distance on the image plane between 2 points, defined as ||q̂−qi||2,
and q̂i is an image coordinate mapped from pi by the estimated image. This compares
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Table 4.1: Radar Camera Calibration methods compared between 2 and 3 dimensions

Method N r=4 N r=5 N r=6 N r=7 N r=8 N r=16

2 Dimensions: - - 3.370 3.263 3.194 2.942
3 Dimensions: 3.523 3.421 3.351 3.312 3.205 2.997

the distance between an actual image coordinate of a target, and the projected image
coordinate from a radar point, in order to evaluate the quality of the calibration performed.

The calibration was carried out, and then compared to results from [70], which calibrate
for radar points in 2 dimensions. These results are used to show that there is no significant
loss in calibration accuracy in the transition from 2 dimensions to 3. As can be seen
from the results in 4.1, the results are basically indistinguishable in accuracy from the 2
dimensional case, meaning this method is an accurate and acceptable method for radar-
camera calibration.

4.3 Depth map creation

After calibration has occurred, radar points can be projected into the camera space. How-
ever, this alone is not sufficient to augment the visual odometry method proposed. The
radar point cloud is sufficiently sparse that features in any given image are unlikely to
exactly match a radar point, and doing point to pixel association at runtime is costly and
difficult to implement well. In order to avoid this problem, the radar information will be
formed into a depth map. An example depth map is shown in Figure 4.2.

In order to determine the depth of individual pixels, each radar point must first be
input into Equation 4.9, to determine where in the image the point is. Each of these points
was mapped onto an identically sized image to the input image, which is the base for the
depth map. Next, piecewise linear interpolation was performed between all adjacent points
in order to fill out the rest of the depth map. This allows for pixelwise association between
a depth and a feature in the original image.
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Figure 4.2: A depth map, displayed next to an actual picture [2]

4.3.1 Optimisation of depth map creation

Interpolating between each point, for each frame of data, is obviously an expensive oper-
ation. However, it also isn’t necessary to interpolate between all points at every frame.
The movement of the drone is approximately known at each time step, as a result of the
preintegration of the IMU that is performed regularly. As a result, instead of fully recal-
culating at each new image, the approximate transform generated by pre-integrated IMU
data is performed on the point cloud. New points are then projected onto the depth map,
and in any area in which the depth map is not defined as a result of the transformation,
the piecewise linear interpolation is performed again.

Additionally, occasionally during testing, there were issues with the point cloud becom-
ing too sparse, and the resulting depth map being inacccurate. In order to combat this,
during the piecewise linear interpolation, a check was added to calculate distance between
adjacent points. If points are too far apart, the region between them is considered to be
unknown, and is set to have a depth of zero. This lets the odometry know that the depth
for that pixel is invalid, and any point candidates that use the depth in that area are
considered to be invalid, and are not kept.

4.4 Summary

In this chapter, we present a method for calibrating radar information with camera images,
by projecting radar information onto the plane of an image. This allows for the creation
of a sparse depth map for each image. This can, in turn, be used to associate pixels and
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features with an absolute depth. This can be used in visual odometry methods in order to
improve accuracy, as is demonstrated in Chapter 5.
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Chapter 5

Visual Odometry with Radar
Augmentation

The VIL-DSO method has been introduced, as has the method of radar-camera calibration,
which allows the projecting of depth information onto images from the camera. Together,
this information allows for the augmentation of the visual odometry method presented
in Chapter 3. In this chapter, we present a method for augmenting the data used for
VIL-DSO with radar depth information to create Extended Visual-Inertial Loop Closing
Direct Sparse Odometry (EVIL-DSO). We also show that the augmentation of VIL-DSO
with radar information both improves the accuracy of the visual odometry algorithm, and
allows for more frequent updates of the estimated pose.

5.1 Modified point selection strategy and coarse tracker

In order to augment the data efficiently, the point selection stategy used for VIL-DSO must
be adjusted. The basic point selection method selects from all parts of the image, selecting
a certain number of points from individual regions in the image, but using the entirety
of the image. The modified point selection strategy restricts the regions used for point
candidate selection to the regions of the image where the FoV of the radar and camera
overlap and depth information is available, which can be determined by only taking into
account pixels for which a depth value has been added. This allows for an initial estimate
of depth to be added to the point as soon as possible.

Once the tracking of points begins, however, point candidates that have already been
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generated do not necessarily require further radar information to improve the depth esti-
mation. As a result, when coarse tracking is establishing correspondences between points,
the entire image is used for tracking points, in order to keep tracking as robust as possible.
If depth information is available for the point after tracking in subsequent frames, then the
new depth information is included in the estimate using an extended Kalman Filter. Oth-
erwise, depth information is left unchanged, as opposed to using the Levenberg Marquardt
optimization on each point in order to maximize energy residuals and better estimate the
depth that is performed in VIL-DSO.

5.2 Experiment design

To test the proposed algorithm, we use a set of 3 data sequences, with a total flight time
of 12 minutes. The radar and camera are attached to the bottom of the UAV used, with
a fixed translation between them. The UAV used had a D-GPS unit, the data from which
is used as ground truth for the purposes of this experiment. Data collected is then used to
compare EVIL-DSO against other visual odometry and SLAM systems, including ORB-
SLAM2, VIL-DSO, VI-DSO, and DVSO. All comparisons were done offline, not in real
time.

Sequence 1 is a flight at approximately 1.5 m/s, moving in squares over the terrain at
a constant altitude. Figure 5.1 shows a general overhead view of the path taken by the
UAV during the sequence. At each corner in the sequence, the UAV paused for about 1
second before turning and continuing the path. Sequence 1 was designed to allow maximum
opportunity for loop closure.

Sequence 2 is a flight at approximately 2 m/s, in which the altitude remains constant
after takeoff at 30m. Unlike in sequence 1, the UAV does not stop at any point. Figure 5.3
shows an overview of the path taken. Sequence 2 was created as a medium difficulty
sequence, with minimal opportunity for loop closure. Sequence 2 was also useful for testing
robustness of the tracking algorithm.

Sequence 3 is a flight at approximately 4m/s, where the altitude varies between 20m and
45m above the ground. Sequence 3 was created specifically to test the depth estimation of
EVIL-DSO against other algorithms, and examine what effects that may have on accuracy.
Sequence 3 also intentionally includes almost no opportunity for loop closure, and yaws
randomly throughout the flight, up to a full 360 degree rotation of the camera. It does
this in an attempt to make accurate point matching and depth estimation as difficult as
possible. A bird’s eye view of the trajectory in the x-y plane is shown in Figure 5.4.
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Figure 5.1: An overview of the path taken in sequence 1.

Figure 5.2: A plot of the velocity in sequence 1.
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Figure 5.3: An overview of the path taken in sequence 2.
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Figure 5.4: An overview of the path taken in sequence 3.
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Figure 5.5: A plot of the altitude over time in sequence 3.
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5.3 Experimental Results

All measurements in this section are calculated as the mean of 10 runs of each sequence,
unless otherwise noted.

5.3.1 Accuracy

In this section, we compare multiple state of the art VO and SLAM algorithms to the
performance of EVIL-DSO, using trajectory alignment and analysis techniques from [106].
All algorithms are compared using the data provided from the D-GPS data from the UAV
as ground truth to calculate three different metrics. The first is the translation Root Mean
Square Error (RMSE), defined as the root mean square error between the ground truth
trajectory and the calculated trajectory from EVIL-DSO. The second is the percentage
scale error, which is defined as the RMSE between the estimated scale at each pose and
the actual scale. The final metric is the RMSE between ground truth and calculated
trajectory after the calculated trajectory is aligned to the ground truth and scaled using
the ground truth scale estimate. This is referred to as the ground truth scaled error, or
gt-scaled. In order to give a more accurate comparison, global optimization is disabled
for ORB-SLAM. Note that DVSO was trained with data from the 2019 IEEE GRSS Data
Fusion contest[7]. The results are summarised in Table 5.1.

EVIL-DSO has noticeably lower scale error than other options, as a result of the use of
radar in point selection. With augmented point selection, scale error becomes negligible,
as rather than point depth being measured at an arbitrary scale, where a conversion scale
must then be estimated, the point scale is almost exactly the real scale. This allows for a
more accurate estimation, as can be seen from the table.

5.3.2 Runtime efficiency

In order to measure runtime efficiency, 2 different metrics are considered. The first is the
time it takes to perform initial tracking and depth estimation. After initial tracking of an
input frame, a rough estimate of a pose can be calculated based off of the last optimized
pose, so the rough estimate can be used The second is the frequency of optimized updates
from the local window optimization common to all of these algorithms, which gives the
most update to date, optimized current pose. In order to measure these estimates, each of
the three sequences was run 10 times, and the measured times for each frame and optimized
pose update were averaged together.
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Table 5.1: Visual odometry and SLAM methods compared

Method Sequence S1 S2 S3

VI-DSO
Translation RMSE (m) 0.075 0.145 0.517

Translation gt-scaled (m) 0.066 0.057 0.448
Scale RMSE (%) 1.1 2.0 5.4

VIL-DSO
Translation RMSE (m) 0.067 0.097 0.111

Translation gt-scaled (m) 0.047 0.062 0.073
Scale RMSE (%) 1.2 1.8 3.8

DVSO
Translation RMSE (m) 0.075 0.084 0.102

Translation gt-scaled (m) 0.072 0.070 0.082
Scale RMSE (%) 0.5 0.8 3.2

EVIL-DSO
Translation RMSE (m) 0.065 0.064 0.074

Translation gt-scaled (m) 0.068 0.063 0.069
Scale RMSE (%) 0.3 0.2 0.5

VI-ORB-SLAM
Translation RMSE (m) 0.075 0.084 0.087

Translation gt-scaled (m) 0.049 0.062 0.067
Scale RMSE (%) 0.5 0.8 1.5

All runtime analysis is performed using an Intel NUC 8 computer, using an i5-8295U
processor with 8Gb of ram and running Ubuntu version 16.04, in order to test how EVIL-
DSO can run on a computer that could actually work on a drone. Signal processing for
the radar is performed using the onboard digital signal processing of the radar. This does
result in slightly higher latency between triggering of the sensors and input of that data
to the VO algorithm, but the throughput of the algorithm itself remains unaffected. The
results for both point selection and local window optimization are presented in Table 5.2.

EVIL-DSO has a noticeably faster point intialization rate than any of the other options.
This is because VIL-DSO and VI-DSO both perform individual Levenberg Marquardt
optimizations on each point in order to update the depth information, DVSO has to perform
inference on the image to extract depth information, and VI-ORB-SLAM has to extract
features and then perform tracking and depth estimation. EVIL-DSO performs none of
those steps, instead directly observing the depth and allowing for faster updating of the
depth information.

The optimized pose update rate of EVIL-DSO is sligtly faster than the rates for VI-
DSO and VIL-DSO, as the optimization converges slightly faster with the better initial
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Table 5.2: Runtime analysis results for various SLAM and VO algorithms.

Method Optimization Metric Update rate(Hz)

VI-DSO
Point initialization 14.21

Optimized pose 4.54

VIL-DSO
Point initialization 14.02

Optimized pose 4.32

DVSO
Point initialization 17.03

Optimized pose 5.32

EVIL-DSO
Point initialization 17.18

Optimized pose 5.95

VI-ORB-SLAM
Point initialization 13.06

Optimized pose 5.05

estimates for points and pose.

5.4 Summary

In this section, we presented EVIL-DSO, a method which uses VO techniques combined
with radar information in order to perform localization. This method is shown to be more
accurate than previous efforts using only visual-inertial information, and has significantly
lower scale error, as a result of the fusion of different sensors. This method is also shown
to be more efficient than other methods on an example of a computer that could feasibly
be mounted on a UAV, in terms of how quickly new information can be processed, and
how often optimized poses can be obtained from the system.
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Chapter 6

Conclusion

In this thesis, a method augmenting visual odometry with radar information is presented,
with the resulting algorithm being EVIL-DSO. The presented algorithm combines previous
work in visual odometry together, implementing loop closure and visual inertial informa-
tion, and combining it with radar information to produce a robust algorithm that allows
for direct observation of depth.

The experimental results of EVIL-DSO show that the proposed algorithm has lower
RMSE translational error than state of the art options for visual odometry. It also con-
sumes fewer computational resources, making it ideal for deployment on UAVs. It also
functions without GPS data, making it ideal for either indoor or outdoor scenarios for any
application, including search and rescue.

6.1 Recommendations

The use of radar in EVIL-DSO should allow for more robust performance even in poor
visual conditions. However, due to issues with waterproofing and flight safety with the
currently available UAVs, this has not been tested. Given adequate waterproofing and
safety measures, EVIL-DSO should be tested in adverse visual conditions such as rain and
snow, in order to verify this hypothesis.

Surface reconstruction using visual odometry as a basis has been explored as a topic
before, frequently with [74] and [21] as the algorithms used. However, algorithms such as
the one proposed in [74] grow more accurate with both more accurate pose estimations and
more accurate estimations of depth. Reconstruction of scenes using sensor fusion methods
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from UAVs has yet to be explored, and EVIL-DSO provides an excellent foundation to
explore that space, along with related topics such as aerial semantic segmentation of terrain.

The points generated by the algorithm also form a point cloud when considered all
together. This point cloud is highly accurate, and could allow for explorations into topics
such as surface modelling of terrain from a UAV, potentially opening the door to ground
vehicles navigating based off of surfaces examined and modelled by UAVs.
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Appendix A

Radar Signal Processing

In this section, we present details about the type of radar used, and the radar signal
processing methods used in order to create a point cloud approximation.

A.1 Frequency Modulated Continuous Wave Radar

The type of radar used for this experiment is known as FMCW. It emits a radar pulse of
continuous linearly increasing frequency, known as a chirp. Upon receiving a return signal,
the difference between the frequency currently being emitted and the frequency of the
received signal are compared, and the difference between them can be used to determine
the distance of the object that the radar reflected off of, according to the formula

R =
c0|∆f |

2df
dt

. (A.1)

The rate of frequency increase over time is known, as is c0, the speed of light. This allows
for a precise measurement of range, and is the basic formula on which FMCW radar is
based. A single pulse is normally known as a chirp, and chirps are typically organised into
frames.

In practice, a FMCW radar is normally implemented using sine waves of increasing
frequency, with a circuit schematic similar to the one shown in Figure A.1. The inputs to
the mixer are typically two sine waves, defined as

x1 = sin[w1t+ φ1], x2 = sin[w2t+ φ2], (A.2)
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and with the output of the mixer being

xout = sin[(w1 − w2)t+ (φ1 − φ2)]. (A.3)

xout is also known as the Intermediate Frequency (IF) signal, If a Fast Fourier Transform
(FFT) is performed on the IF, then the resulting function would have peaks at frequencies
corresponding to distances of detected objects from the radar as depicted by Equation A.1.
This signal tends to have many peaks, however, as a result of noise in both detections and
circuitry. This necessitates some form of threshold, to determine which peaks correspond
to objects, and which ones are only noise. The method used for this thesis is discussed in
Section A.2.

Figure A.1: A single output, single output FMCW radar [4].

FMCW radar has two distinct advantages for UAV applications. Firstly, the use of
frequency modulation allows for extremely precise measurements. FMCW radar has a
minimal measurable range comparable to the largest wavelength of the transmitted wave.
In this thesis, the wavelength used varies from 77 to 81 GHz, so the minimal measurable
range is approximately 0.3cm. Second, outside of the actual mixing and receiving at
the radar antenna, all the signal processing involved is performed at a significantly lower
frequency than the transmitted wavelength, which allows for significantly less complex
circuitry and lower power consumption in the signal processing itself.

A.2 Object Detection using Radar

As mentioned before, a threshold is needed to determine what is noise, and what is an
object. The naive implementation is to set a static threshold, but that is clearly not ideal,
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as the level of noise present can change depending on the environment. A more robust
approach is the use of CFAR detection, which uses an adaptive threshold, defined as

T = αPn, (A.4)

where α is a scaling factor known as the threshold factor, and Pn is the estimate of noise
power. In order to use CFAR detection, the signal must first be divided into cells. These
cells are then individually tested to see if they represent a target or not.

The power of a set number of cells around the Cell Under Test (CUT) are averaged in
order to determine the noise estimate Pn. These cells are known as training cells. However,
a few cells on either side of the CUT are not included in this average, in order to keep the
estimate from being effected by the CUT. These cells are known as guard cells.

Figure A.2: A diagram illustrating CFAR estimation. [1]

As part of the process of performing CFAR detection, a parameter known in literature
as the desired false alarm rate Pfa must also be specified. Note that this isn’t necessarily
exactly the probability that any detection will be a false alarm, but is instead more of a
tuning parameter, tuned to determine the sensitivity of the system to noise. We use Pfa

to calculate

α = N(P
−1
N

fa − 1), (A.5)

where N is the number of training cells used, which then can be used with Equation A.4
in order to calculate the threshold for the cell under test.
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A.3 Angle of Arrival Estimation

All of the work shown thus far has been specifically for single transmitter and single receiver
models. These are simple, but don’t give anything beyond a range. In order to calculate a
precise position in three dimensions, more information is needed. Specifically, both azimuth
and elevation angles must be determined. For this purpose, the radar used in this thesis has
4 Receiving (Rx) antenna, and 3 Transmit (Tx) antenna. The angle can then be estimated
by receiving the reflected signal from the obstacle using multiple receivers, spaced apart
with a constant distance d. The arriving signal will then be delayed by dsin(θ) at each
antenna, which causes a phase shift of

2πd sin(θ)

λ
. (A.6)

This can then be used to estimate an angle in a single plane. An example is shown in
Figure A.3. Using antennae spaced both vertically and horizontally, the process can be
repeated to obtain a second estimated angle, to represent an elevation angle. With two
angles and a range, we can employ basic trigonometry to determine coordinates for each
detected object, and use that information to form a point cloud.

Figure A.3: A diagram illustrating the geometry used for estimating an angle θ. [4]
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Glossary

OpenCV Open Computer Vision. A widely used collection of computer vision algorithms
consolidated into a single software package. 28
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