
Novel Paradigms in Physics-Based
Animation: Pointwise Divergence-Free Fluid
Advection and Mixed-Dimensional Elastic

Object Simulation

by

Jumyung Chang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Jumyung Chang 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Tamar Shinar
Associate Professor, Dept. of Computer Science and Engineering,
University of California, Riverside

Supervisor(s): Christopher Batty
Associate Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Member: Stephen Mann
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Member: Justin Wan
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Sander Rhebergen
Associate Professor, Dept. of Applied Mathematics,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any re-
quired final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis consists of research material written for publication where Jumyung Chang was
the lead author under the supervision of Dr. Christopher Batty and in collaboration with
Dr. Eitan Grinspun, Dr. Fang Da, and Dr. Vinicius Azevedo.

Research presented in Chapter 5–6, and 10–13 largely consists of contribution and results
sections adapted from (Chang et al., 2019) and (Chang et al., 2021), respectively. Chapter
1–4, 7–9, and 14 consist of a combination of sole-authored content by Jumyung Chang and
paraphrased material from (Chang et al., 2021, 2019), adapted to the structure of a PhD
thesis.

For the first part of the thesis (Chapter 2–6), Dr. Fang Da, Dr. Christopher Batty, and
Dr. Eitan Grinspun proposed the idea of frame-based energies using a conformal mesh,
and I devised and completed the connection energies under the supervision of Dr. Eitan
Grinspun and Dr. Christopher Batty. For the second part of the thesis (Chapter 7–13), Dr.
Vinicius Azevedo and Dr. Christopher Batty proposed the idea of pointwise divergence-
free interpolation in uniform grids in 2D. I extended the coverage to include cut-cells, 3D,
and exact boundary enforcement in collaboration with Dr. Vinicius Azevedo under the
supervision of Dr. Christopher Batty.

iv

Abstract

This thesis explores important but so far less studied aspects of physics-based ani-
mation: a simulation method for mixed-dimensional and/or non-manifold elastic objects,
and a pointwise divergence-free velocity interpolation method applied to fluid simulation.
Considering the popularity of single-type models e.g., hair, cloths, soft bodies, etc., in
deformable body simulations, more complicated coupled models have gained less attention
in graphics research, despite their relative ubiquity in daily life. This thesis presents a
unified method to simulate such models: elastic bodies consisting of mixed-dimensional
components represented with potentially non-manifold simplicial meshes. Building on
well-known simplicial rod, shell, and solid models, this thesis categorizes and defines a
comprehensive palette expressing all possible constraints and elastic energies for stiff and
flexible connections between the 1D, 2D, and 3D components of a single conforming sim-
plicial mesh. For fluid animation, this thesis proposes a novel methodology to enhance
grid-based fluid animation with pointwise divergence-free velocity interpolation. Unlike
previous methods which interpolate discrete velocity values directly for advection, this
thesis proposes using intermediate steps involving vector potentials: first build a discrete
vector potential field, interpolate these values to form a pointwise potential, and apply
the continuous curl to recover a pointwise divergence-free flow field. Particles under these
pointwise divergence-free flows exhibit significantly better particle distributions than di-
vergent flows over time. To accelerate the use of vector potentials, this thesis proposes
an efficient method that provides boundary-satisfying and smooth discrete potential fields
on uniform and cut-cell grids. This thesis also introduces an improved ramping strategy
for the “Curl-Noise” method of Bridson et al. (2007), which enforces exact no-normal-flow
on the exterior domain boundaries and solid surfaces. The ramping method in the thesis
effectively reduces the incidence of particles colliding with obstacles or creating erroneous
gaps around the obstacles, while significantly alleviating the artifacts the original ramping
strategy produces.

v

Acknowledgements

First of all, I would like to thank my supervisor, Christopher Batty. I sincerely appreciate
all your help: your engagement and interest in my research helped me stay motivated
throughout my studies. Your brilliant ideas and academic advice kept my research go-
ing whenever I floundered in a sea of unresolved issues. You have been a very friendly,
approachable, and trustworthy mentor; I respect your opinions not just in the field of
academia, and I remember knocking on your office door numerous times before I made big
decisions.

I also would like to thank Eitan Grinspun and Vinicius Azevedo. Your insightful advice
has been always inspiring, and reminded me how deep and wide the field is.

I would like to thank my committee members, Stephen Mann, Justin Wan, Sander
Rhebergen, and Tamar Shinar for taking the time to read my thesis and providing insightful
feedback.

I would like to thank my colleagues at the Computational Motion Group: Ryan Goldade,
Yu Gu, Michael Honke, Nathan King, Jade Marcoux-Ouellet, Tümay Özdemir, Jonathan
Panuelos, Yipeng Wang, and Omar Zarifi (alphabetical order). I miss the old days when
we would hang out in the office, and have chats about anything including research ideas
and life.

I will also miss hanging out with my comrades in the Scientific Computing lab on a
daily basis. I still vividly remember, if any of us said “C&D”, we formed a platoon and
marched down to coffee places for a break.

I would like to thank the Computer Graphics lab. The presentations by great people
in weekly meetings have exposed me to diverse and up-to-date research topics and details
in the general field of computer graphics, which I would have missed otherwise.

I would also like thank the Simulation team at NVIDIA and Weta Digital. I learned
very distinctive industrial skills from the teams, and met and worked with great people.

Finally, special regards to my family; I can never express how grateful I am to my
family for their constant support.

vi

Dedication

For my wife, Stacey.

vii

Table of Contents

List of Figures xii

List of Tables xv

1 Introduction 1

I A Unified Simplicial Model for Mixed-Dimensional and Non-
Manifold Deformable Elastic Objects 4

2 Introduction 5

3 Related Work 9

3.1 (Manifold) Single-Type Elastic Models . 9

3.1.1 Elastic Rods . 9

3.1.2 Elastic Shells and Solids . 10

3.2 Non-Manifold Single-Type Elastic Models 12

3.3 Unified Non-Manifold Elastic Models . 12

3.4 Specialized Elastic Model Coupling . 13

3.5 Constraint-Based Coupling . 14

viii

4 Elastic Energies for Single-Type Models 15

4.1 Discrete Elastic Rods . 16

4.2 Discrete Elastic Shells and Solids . 19

4.2.1 Dihedral Bending for Shells . 20

5 Connecting Single-Type Models 21

5.1 Point Connections . 22

5.1.1 Twisting Energy . 23

5.1.2 Bending Energy . 25

5.1.3 Choosing Coordinate Frames at Vertices 26

5.2 Curve Connections . 29

5.3 Surface Connections . 33

6 Results 34

II Curl-Flow: A Novel Divergence-Free Velocity Interpolation
Method in Fluid Animation 42

7 Introduction 43

8 Related Work 47

8.1 Fluid Simulation Methods . 47

8.1.1 Grid-Based Eulerian Methods . 47

8.1.2 Lagrangian Methods . 49

8.2 Divergence-Free Fields . 50

8.2.1 Vector Potentials . 50

8.2.2 Dual Stream Functions . 53

8.2.3 Vortex Methods . 53

8.2.4 Matrix-Valued Radial Basis Functions 53

ix

8.2.5 Divergence-Free Finite Element Methods 54

8.2.6 Direct Interpolation of Finite Volume Solutions 55

8.2.7 Subdivision Schemes . 55

9 Preliminaries 56

9.1 The Equations of Fluids . 56

9.2 Pressure Projection . 57

9.2.1 Boundary Conditions . 60

9.3 Vector Potentials . 62

9.3.1 Applications of Vector Potentials in Graphics 63

9.4 Advection . 65

10 Problem Setting 72

11 Curl-Flow Interpolation In 2D 77

11.1 Uniform Grids in 2D . 78

11.1.1 Recovering Discrete ψ . 78

11.1.2 Interpolating ψ . 79

11.2 Cut-Cells in 2D . 80

11.2.1 Recovering Discrete ψ . 80

11.2.2 Interpolating ψ . 81

11.2.3 A Curl-Noise Enhancement for Exact 2D Boundary Enforcement . . 81

12 Curl-Flow Interpolation In 3D 85

12.1 Uniform Grids in 3D . 85

12.1.1 Recovering a Vector Potential by Parallel Sweeping 88

12.1.2 Boundary Conditions and Gauge Correction 88

12.1.3 Interpolation . 90

12.2 Cut-Cells in 3D . 91

x

12.2.1 Parallel Sweeping with 3D Cut-Cells 91

12.2.2 Approximate Gauge Correction with 3D Cut-Cells 93

12.3 Exact Boundary Enforcement in 3D . 93

12.3.1 Closed Exterior Domain Boundaries 93

12.3.2 Solid Obstacles . 95

13 Results and Discussion 98

13.1 Particle Distribution Comparisons in 2D 98

13.2 Particle Distribution Comparisons in 3D 105

13.3 Smoke Simulations and Performance . 107

13.4 Vector Potential Reconstruction Comparisons 110

13.5 Convergence of Curl-Flow Velocity Interpolation 113

14 Conclusions 116

14.1 Unified Elastic Objects . 116

14.2 Curl-Flow . 117

References 120

xi

List of Figures

2.1 The set of possible connections among elastic models in a general 3D sim-
plicial mesh. 6

2.2 A simplicial object decorated with many connection types. 7

4.1 Elastic energy models for rods and shells. 17

5.1 Different point connection types. 22

5.2 A rod-shell point connection with coordinate frames. 23

5.3 Point connection angle updates using parallel transport. 24

5.4 Bending at a point connection. 26

5.5 Twisting axis m3 choices for a shell at a rod-shell point connection. 27

5.6 Jellyfish: An alien jellyfish species composed of rod, shell, and solid compo-
nents joined by point connections. 28

5.7 Influence of twisting axis choice. 28

5.8 Different curve connection types. 29

5.9 General curve connection. 31

5.10 A comparison between the computed angle δ using direct and incremental
updates. 31

5.11 Surface connection types. 33

6.1 Toy ball: A ball-and-spring toy composed of three point-connected parts. . 35

6.2 Sticky hands: Rubber children’s toys modeled as non-manifold meshes com-
prised of rod and shell components. 35

xii

6.3 Nylon frisbee: A circular frisbee composed of a shell with different rod
embeddings along its boundary. 36

6.4 Toy tunnel: A falling cylindrical triangle mesh behaves differently with its
elements labeled as pure cloth as compared to cloth with embedded rod
segments. 37

6.5 Umbrella: An umbrella closed, open, and shown with only the wireframe
rod-edges rendered. 37

6.6 Sandwich composite: By identifying several layers of faces within the tetra-
hedral mesh as stiff shells, the two same volumetric solids present totally
different behaviors. 38

6.7 Anglerfish: The anglerfish model is composed of 3D tetrahedra (body, light
ball), 2D triangles (fins), and 1D rods (antenna) connected by both point
and curve connections. 39

6.8 Comparison between single- and mixed-dimensional models. 40

7.1 Effect of interpolants on particle distribution in 3D. 44

9.1 Operator splitting approach to the incompressible Navier-Stokes equations. 57

9.2 Fluid discretization in 2D. 59

9.3 Fluid discretization in 3D. 60

9.4 Air cells surrounded by water cells. 64

9.5 Curl-Noise ramping. 66

9.6 Semi-Lagrangian advection. 68

9.7 Velocity transfer between particles and grid. 68

9.8 Direct velocity interpolation. 71

10.1 Pointwise divergence comparison. 73

10.2 Effect of pointwise divergence on particle distribution. 75

10.3 Direct incompressible velocity interpolation vs. Curl-Flow. 76

11.1 Discretization of velocity and stream Function in 2D. 78

11.2 Parallel sweeping of discrete stream function in 2D. 79

xiii

11.3 Interpolating ψ in uniform grid . 79

11.4 Interpolating ψ in cut-cell . 81

11.5 Ramping comparison . 82

11.6 Additive vs. multiplicative ramping. 83

11.7 2D flow near solids. 84

12.1 Discretization of velocity and vector potential in 3D. 86

12.2 Parallel Sweeping of Discrete Vector Potential in 3D 87

12.3 Gauge correction boundary conditions. 89

12.4 Gauge correction. 89

12.5 Adapting parallel sweeping to cut-cells. 92

12.6 Exact boundary enforcement. 94

12.7 Flow past a sphere. 97

13.1 Smooth obstacle comparison. 99

13.2 Jagged obstacle comparison. 100

13.3 Dynamic 2D flow comparison. 101

13.4 Particle count distribution in sub-cells . 104

13.5 Dynamic 3D fluid flow in a wind tunnel past a sphere. 106

13.6 A smoke plume simulation with a solid object shaped like ∇×. 107

13.7 A smoke plume simulation with a dragon-shaped solid. 108

13.8 A plume of particles using Curl-Flow. 110

13.9 Deforming elastic membrane test from (Bao et al., 2017). 112

13.10Convergence of velocity interpolation. 114

xiv

List of Tables

4.1 Summary of notations. 15

6.1 Simulation statistics. 41

7.1 Summary of notations. 43

13.1 Average computational time per timestep for a smoke plume simulation with
a solid object shaped like the curl operator (∇×). 109

13.2 Average computational time per timestep for a smoke plume simulation with
a dragon-shaped solid. 109

13.3 Average computational time per timestep for discrete ψ construction. . . . 111

13.4 Average computational time for constructing ψ, within the code of Bao et al.
(2017) for an immersed deforming membrane. 113

13.5 Data for convergence test of Figure 13.10. 113

xv

Chapter 1

Introduction

The importance of artistic skills and engineering support are well balanced in visual effects.
Engineers and researchers provide increasingly advanced and diverse tools over time; artists
utilize these tools to produce results closest to their goals, whether they desire photorealism
or to achieve a certain aesthetic. However, not all features that artists would want are
available, so laborious manual manipulation by artists is often required to obtain results
due to unsupported features. Taking a physics-based animation as an example, simulating
highly deformable materials with a large number of elements (e.g., vertices, triangles, etc.)
would be challenging if not supported by a tool. Artists may not want to prescribe the
motion of smoke via a myriad of particles or other complex representations, nor would
they likely want to control each vertex of a garment mesh to simulate a wrinkled motion
every frame. This preference is not only because the work is time-consuming, but also
because it is often difficult to know a plausible motion in the absence of valid real-world
reference footage of the specific scenario (which may not even be possible to capture).
This highlights the importance of simulation research in visual effects. With the progress
in simulation research and tool development over roughly the past two decades, complicated
smoke or cloth motions are now made possible via computational tools incorporated into
standard visual effects software such as Houdini, Maya, Blender, etc. Nevertheless, there
are still many areas of unsupported features and limitations of existing techniques, which
complicate or impede their use for certain tasks. This thesis therefore addresses two such
challenging simulation problems, where manual manipulation is almost infeasible: one in
the context of deformable elastic object animation and one in the context of fluid animation.
By developing new, more powerful numerical simulation capabilities for visual effects, this
thesis contributes to the creation of animation software that empowers artists to more
easily achieve their artistic visions.

1

In Part I of the thesis, elastic objects with mixed-dimensional components and/or non-
manifold connection types are presented. Elastic objects have been popular subjects in
graphics, and we often categorize them based on their dimensionality (i.e., 1D, 2D, 3D)
as objects with different dimensionality are subject to different specialized types of forces
or energies. For example, 1D models are subject to stretching, twisting, and bending, 2D
models can have planar deformation and bending, and 3D models only exhibit volumetric
deformation. Hair strands, cloths or clothes, and rubber or flesh would be representative
examples in each dimension, respectively, which we often see in movies or games. The
importance of each single-type model is obvious, but each can only represent a subset of
elastic materials: purely 1D, 2D, or 3D materials. Many real-world objects are comprised of
an interconnected blend of different types, and cannot naturally or efficiently be expressed
with just one type alone. Leveraging the single-type models, this thesis aims to provide
the missing connection strategies between different single-type models. Using similar ideas,
this thesis further considers non-manifold connections such as two triangles connected by a
joint vertex. The resulting computational framework offers a flexible and unified approach
to physics-based simulation of 3D elastic objects of any shape, topology, and dimensional
type.

Part II of the thesis addresses incompressible fluid flows. In fluid animation, incom-
pressible flows are typically assumed; since most fluids we see in everyday life undergo
a negligible amount of compression, and the computational cost and complexity to sim-
ulate compressible flows are viewed as significant drawbacks in light of often negligible
visual improvements the compression provides. Incompressibility is also directly related
to volume conservation of the fluid, as it implies the volume should be strictly unchang-
ing. However, most existing fluid animation techniques enforce incompressibility only at
a coarse scale dictated by the resolution of the underlying grid used to discretize the fluid
equations. This thesis instead aims to enforce incompressibility at every scale, through a
novel pointwise divergence-free interpolation procedure. The drawbacks of divergent in-
terpolation can be demonstrated by inspecting the behaviors of passive particles moving
with an interpolated velocity field: i.e., seeding particles uniformly in the domain, moving
them with the pointwise velocity obtained by the divergent interpolation, and checking
the particle distribution over time. Divergent interpolation will lead to divergent velocity
fields, and consequently, the divergent fields would generate or accelerate particle cluster-
ing or vacancy. In the presence of solid obstacles, the drawbacks of previous interpolation
approaches often stand out even more conspicuously. These drawbacks result from treating
particle collisions against solids through simple post-processing: e.g., particles are pushed
back to the surface of the solid upon collision. This simple strategy of “putting out fires”
removes the most immediate visual artifacts of fluid particles piercing solid objects, but

2

cannot recover a natural flow near the solid (e.g., flows wrapping tightly around a solid)
and the artificial position correction can cause additional undesirable particle clumping.
This thesis aims to ensure that the resulting incompressible, interpolated fluid velocity
fields are also boundary-respecting, thereby dramatically reducing the number of spurious
collisions between flowing particles and solid obstacles.

3

Part I

A Unified Simplicial Model for
Mixed-Dimensional and

Non-Manifold Deformable Elastic
Objects

4

Chapter 2

Introduction

Most numerical methods for elastic deformable bodies in computer graphics have focused
on objects that exhibit a single uniform type or effective dimensionality: 1D rods, 2D
shells, or 3D volumetric solids. Here, the term shell refers to a flexible thin structure
where the ratio of width to thickness is large. Simulating such objects as 3D solids is an
inefficient option due to their structural degeneracy in one dimension, thus a specialized
model is typically used for such thin structures. Also, shells in the simulation context
are not limited to hard surfaces but they contain general thin and elastic materials, thus
often referred as elastic shells. A popular example in graphics that uses shell models for
simulation would be cloths or clothes. Likewise, elastic rods refer to deformable curves
embedded in 3D space, which can stretch, twist, and bend. This term does not imply the
stiffness of the material but rather the (effective) dimensionality. Hair strands and threads
are often simulated using rod models.

Although such single-type models have consistently been popular topics in simulation,
many common objects possess either non-manifold connections between parts of possibly
differing dimensions, or embedded features where a lower dimensional object passes through
a higher-dimensional one. Examples include wires or rods threaded through tents, kites, or
umbrellas; molded rubber and plastic objects composed of smoothly connected components
of varying shape and thickness; tendons embedded in flesh or skin wrapped around muscle;
and sandwich-structured composites, in which volumes of a soft low-density material are
sandwiched between sheets of a stiffer material like aluminum.

Our aim is to characterize and develop a comprehensive palette of mixed-dimensional
and/or non-manifold connection types for such elastic objects represented by a single con-
forming simplicial mesh. We use the term simplicial mesh to mean a mesh comprised

5

Figure 2.1: The set of possible connections among elastic models in a general
3D simplicial mesh. Dashed: single-type. Yellow: shared vertex. Grey: shared edge.
Green: shared face. (The connections in the grayed-out cells have been left blank as they
are identical to their symmetric counterparts in the top-right.)

6

rod-solid (P)

shell-solid (C)

solid-solid (P)

shell-solid (P)

rod-shell (C)

rod-shell (P)

shell-solid (S)

solid-solid (C)

rod-solid (C)

Figure 2.2: A simplicial object decorated with many connection types. Purple
indicates solid tetrahedra, blue indicates shell triangles, and green indicates rod edges. (P),
(C), and (S) mean Point, Curve, and Surface connection, respectively.

of 1-,2-, and 3-simplices, which are line segments, triangles, and tetrahedra, respectively.
Also, we interpret conforming to mean that two components are connected exactly along
shared simplices (i.e., shared vertices, edges, and/or faces). Figure 2.1 catalogs all the
basic pairwise manifold and non-manifold connections that can arise on such a mesh; these
can also be “stacked” to handle higher valence connections.

To express the deformation of components of a particular dimensionality, we lever-
age existing models. Specifically, we adopt Bergou’s (time-parallel) discrete elastic rods
(Bergou et al., 2010), Grinspun’s discrete shells with hinge-based bending (Grinspun et al.,
2003) and linear elastic stretching (Gingold et al., 2004), and St. Venant-Kirchhoff tetra-
hedral elastic solids (O’Brien and Hodgins, 1999). Other choices are possible, but these are
well-studied, widely adopted, and provide a balance of accuracy, simplicity, and efficiency.

While the space of possible connections is large (Figure 2.1) we distinguish three fam-
ilies: point (vertex) connections, curve (edge) connections, including rods embedded into
shells and solids, and surface (face) connections, of which a shell embedded in a solid is
the only example. This categorization reduces the conceptual and implementation com-
plexity of methodically developing a unified model. For each case, we describe both hard
constraints and soft elastic joints by constructing appropriate reference coordinate frames
and measuring deformations in the available modes. Our implementation and evaluations
focus on the elastic case for its greater expressivity.

Our primary contribution is the design of a unified framework for arbitrary simplicial

7

deformable objects. The design of appropriate forces hinges on the ability to perform accu-
rate comparisons between neighboring simplices’ orientations, and two enabling technical
contributions are particularly critical. First, we argue that joints in elastic rods provide a
natural analog for non-manifold point connections. We therefore expand the application of
parallel transport from rods to the task of measuring relative deviation in general simplices’
reference frames. Second, we observe that large accumulated rotations can lead to sudden
spurious jumps in potential energy at point or curve connections when relative angle de-
viations wrap around in the space of angles. We propose a new incremental angle-update
strategy that resolves this issue.

By augmenting standard single-dimensional models with these new capabilities and
making judicious design choices, we assemble a comprehensive system for animating sim-
plicial deformable objects. An end-user only needs to model an object’s non-manifold
and/or mixed-dimensional geometric mesh and specify its behavior by decorating sim-
plices with model (rod, shell, solid) and connection types. This provides a simple, flexible,
and powerful paradigm for modeling diverse deformable objects, which we demonstrate in
a variety of application scenarios.

8

Chapter 3

Related Work

Our elastic coupling strategy leverages existing single-type solvers and provides a com-
plete set of connections between single-type models. In this chapter, we review popular
approaches for each single-type model in graphics, followed by previous coupling strategies
that mainly focus on specific types of connections.

3.1 (Manifold) Single-Type Elastic Models

3.1.1 Elastic Rods

Stretching of rods is either disallowed (inextensible) or treated with a spring-like approach.
However, handling twisting and bending of rods requires a representation of the orientation
of the rod along its length, in addition to a representation of spatial position. It is typical
to assign a local (explicit or implicit) coordinate frame to each point on the rod’s curve
called the material frame, and track how it changes. We briefly review popular rod models
in graphics with their coordinate frames.

Cosserat Rods

Since Pai (2002) introduced Cosserat theory of elastic rods, which is a special case of more
general Cosserat continua, Cosserat rods have been heavily used in graphics to simulate
rods or hair strands. Bertails et al. (Bertails, 2009; Bertails et al., 2006) extended the model
to simulate curly hair by using piecewise helical rods or Super-Helices. These methods rely

9

on implicit representations of the centerline which needs to be recovered every frame by
integrating the rod’s curvature from one end. Instead, Spillmann and Teschner (2007) used
explicit representations of the centerline. Their tangential axis of the rod’s coordinate frame
is not aligned with the rod’s centerline; thus, they impose additional constraints to match
the tangential axis to the rod’s centerline.

Bishop Frame

The Bishop frame is physically the most relaxed frame, in the sense of having minimal
twist along the rod’s centerline. Bergou et al. (2008) used a material frame that follows
the centerline by using the Bishop frame as a reference frame and using the angular devi-
ation from the Bishop frame to represent the material frame. Consequently, this approach
resolves the issue of following centerlines by construction. The Bishop frame evolves in
space along the rod using parallel transport. For better efficiency, this space-parallel ref-
erence frame was replaced by a time-parallel reference frame using a time-space analogy;
the reference frame on each edge evolves in time (Bergou et al., 2010; Kaldor et al., 2010).

Others

Rods can be simulated in other various frameworks inheriting the advantages and disad-
vantages of the framework with their own energy formulations. For example, mass spring
models (McAdams et al., 2009; Plante et al., 2002; Rosenblum et al., 1991; Selle et al.,
2008b) and position-based dynamics (Angles et al., 2019; Umetani et al., 2014) are valid
and popular alternatives. They are in general relatively simple and efficient, but they often
have limitations in the fidelity of the simulation results.

3.1.2 Elastic Shells and Solids

The elastic behaviors of a deformable object both in 2D and 3D are often specified by a
hyperelastic energy density which is a function of deformation gradient (Kim and Eberle,
2020; Sifakis and Barbic, 2012). In general, this approach reflects the behavior of real
materials more accurately as the volumetric body can change its shape in more complex
ways in comparison with simpler models such as mass-spring methods (Choi and Ko, 2002;
Provot, 1995). Also, it overall provides improved mesh-independence and convergence
to analytical solutions under refinement. Thus, we use FEM-based energy models, and
especially choose St.Venant-Kirchhoff model for 3D solids (O’Brien and Hodgins, 1999),

10

and a linear elastic constitutive model for 2D cloths (Gingold et al., 2004). As our work
primarily focuses on the coupling between models, different energy models can also be
adapted. Other popular models in graphics are briefly introduced in the paragraphs below.
Also, for 2D shells only, additional bending effects must be considered since the energies
above account only for in-plane deformations like stretching and shearing. A simple and
popular choice for bending is a hinge-based energy model using dihedral angles (Bridson
et al., 2003; Grinspun et al., 2003), and we use the Discrete Shells bending energy (Grinspun
et al., 2003).

Baraff’s model

Since Baraff and Witkin (1998) introduced a constraint-based method with implicit time-
stepping in cloth simulation, their method has been particularly popular in graphics. Pixar
and Walt Disney Animation Studios also use their model in many films (Eberle, 2018;
Tamstorf et al., 2015). The energy function of Baraff and Witkin (1998) is similar to the
stretching term, ||G||2F , of the St.Venant-Kirchhoff energy but they use a square root of
the strain for the stretch forces. Here, G refers to the Green’s strain tensor. The same
logic can be applied to position-based dynamics models in both 2D and 3D (Müller et al.,
2014). Although Baraff and Witkin (1998) did not explicitly use hyperelastic energies, it
was later proven that their model is equivalent to the use of an anisotropic hyperelastic
strain energy (Kim, 2020).

Corotated Model

A corotated model is a popular linear model that has been consistently adapted in graphics
(Bender and Deul, 2013; Chao et al., 2010; McAdams et al., 2011). What makes a corotated
model different from a typical linear elastic model is its rotational invariance. Corotational
models often came with different descriptions or even different names (Etzmuß et al., 2003;
Irving et al., 2004; Müller et al., 2002), but they all aimed to remove rotational artifacts
in a linear model. Therefore, they have an additional cost for factoring out rotation
in the deformation gradient. They can be further modified in different ways for better
computational cost (Kugelstadt et al., 2018), better robustness (Stomakhin et al., 2012),
etc.

11

Neo-Hookean

The Neo-Hookean model is a popular nonlinear hyperelastic model which is in general
more suitable for large deformation than linear models. The most common version was
introduced by Bonet and Wood (2008). This model is especially immune to excessive
compression: the energy density contains a logarithmic term, (log(J))2, where J is the
determinant of the deformation gradient, representing volume changes of the model. Under
excessive compression where J is small, the logarithmic term exhibits a large energy to
cancel out the compression. There exist many other versions (Bower, 2009; Wang and
Yang, 2016), and relatively recently, Smith et al. (2018) proposed a stable Neo-Hookean
model that is more robust to extreme inversions and rotations and better preserves the
volume of the material than previous methods.

3.2 Non-Manifold Single-Type Elastic Models

Unlike the (manifold) models in the preceding section (Section 3.1), single-type models
can also have a non-manifold shape, i.e., more than two rod segments connected by a
joint vertex, more than two shell faces connected by a joint edge, two shells or two solids
connected by a joint vertex, etc. Spillmann and Teschner (2009) generalized their CoRDe
elastic rod model to non-manifold (T-junction) rod configurations to represent Cosserat
nets, and Bertails et al. (2006) used non-manifold joints within the super-helices model for
branching tree structures. Pérez et al. (2015) used the notion of a connection edge, which
acts as a counterpart of an edge representing all the other edges at a point connection.
Similarly, Cirak and Long (2011) considered non-manifold shells in which multiple surfaces
share an edge or sequence of edges. These higher-valence connections can be handled by
our framework, but are not our primary focus.

3.3 Unified Non-Manifold Elastic Models

Autodesk’s Nucleus platform (Stam, 2009) and position-based dynamics (Macklin et al.,
2014; Müller and Chentanez, 2011; Müller et al., 2007) are the approaches most concep-
tually similar to ours. These approaches use non-manifold mesh structures augmented
with various constraints and/or shape-matching mechanisms to approximate elastic defor-
mations of objects, including rods (Kugelstadt and Schömer, 2016; Umetani et al., 2014);
however, they place a reduced emphasis on accuracy compared to the standard continuum

12

mechanics-based approaches that we build upon, and they do not consider elastic bending
and twisting at point connections outside the context of pure rods.

Dispensing with an explicit mesh, Martin et al. (2010) proposed a meshless elastic
model known as elastons. Their approach can model continuous elastic bodies, but it is
complex, is slower than the classic single-type models we build on, and does not address
the more general connections and embeddings we consider. Specifically, the elastons model
assumes a smooth body of material, whereas our method supports (1) singular point or
segment connections with stiffness independent of the connected materials, and (2) em-
bedded structures that allow sharp jumps in stiffness and the ability to disable twisting
and/or bending coupling at connections. These features can straightforwardly support
diverse behaviors for the same geometry (e.g., see our frisbee, toy tunnel, and sandwich
composite examples in Figures 6.3, 6.4, 6.6.)

Moreover, the computational overhead of the mesh-free setting generally exceeds that
of existing mesh-based alternatives. A more efficient alternative was proposed by Faure,
Gilles, and co-workers (Faure et al., 2011; Gilles et al., 2011), which assigns sparse local
coordinate frames to points on the object and uses modified shape functions to construct
a continuum mechanics formulation for elasticity. However, this method assumes a volu-
metric representation of the solid and does not consider rods and shells.

Zhu et al. (2015; 2014) explored the simulation of liquids on non-manifold simplicial
meshes. Our work is distinct in that we focus on purely elastic solids rather than fluids.
In addition, their lower-dimensional models (i.e., threads and sheets) neglect bending and
twisting effects altogether, which play a critical role in the distinctive behaviors of elastica.

3.4 Specialized Elastic Model Coupling

Instances of mixed-dimensional interactions, similar in spirit to our work, have been con-
sidered in a number of special cases. Li et al. (2014) used impulses to couple cloth and rods
to model an umbrella. Chentanez et al. (2009) modeled prostate brachytherapy by cou-
pling embedded elastic rod-based needles to a tetrahedral solid with Lagrange multipliers
that allow sliding. Rémillard and Kry (2013) coupled a much higher resolution shell-based
skin model to a lower-resolution volumetric simulation to accurately model skin wrinkling
effects. Bergou et al. (2008) used Lagrange multipliers to affix a rigid body to the end of a
rod with matching orientation. The position-based rod model of Umetani et al. (2014) sup-
ports attaching a rod’s endpoint to frames, triangles, or rigid bodies. Xu et al. (2018) used
equality constraints on the twisting angles to connect different pairs of wire pieces. Pérez

13

et al. (2017) proposed a computational design framework for Kirchhoff-Plateau surfaces
using a cloth model augmented with elastic rods embedded in the plane of the cloth. We
aim to develop a more broadly applicable unified framework. In engineering, joint or inter-
face elements have been proposed for finite element methods to connect different materials
across interfaces, often for shell-shell or solid-shell surface contacts (similar to our embed-
ded models). For example, this approach has been used in geomechanics for modeling
joints or fractures in rock structures (Beer, 1985; Schellekens and De Borst, 1993).

3.5 Constraint-Based Coupling

We assume that the elastic object to be modeled consists of a single conforming simplicial
mesh. A typical alternative is to model each single-dimensional component in isolation
and introduce specialized position and/or orientation constraints to tie components back
together in a desired fashion; such constraints could be enforced by either Lagrange mul-
tipliers (Platt and Barr, 1988) or penalty methods (Witkin et al., 1988) (i.e., “hard” or
“soft” constraints). For example, simple spring forces have long been used to model joint
forces and/or joint limits in the context of articulated rigid bodies (Isaacs and Cohen,
1987; Wilhelms, 1987). Such an approach can be highly flexible: meshes need not even
be geometrically conforming and constraints can be tailored to particular tasks. However,
this strategy introduces some mesh redundancy and may be more complex than necessary
for many common elastic body scenarios. Our mixed-dimensional elastic coupling energies
can be interpreted as particular instances of penalty methods for enforcing coupling of
coordinate frames, although the coupling of positions is guaranteed implicitly through the
use of a single conforming mesh. Tournier et al. (2015) recently presented a method that
conceptually unifies elasticity and constraints in order to handle constrained systems in a
stable fashion; we expect that this technique could be beneficially applied alongside the
elastic connection energies that we propose. Another coupling approach, related to La-
grange multipliers, is to directly “bind” or “embed” some particles such that their motion
is driven strictly by that of a parent (Sifakis et al., 2007; Twigg and Kacic-Alesic, 2010);
this can also be interpreted as a kind of reduced coordinate model, in that the positions of
bound particles are described only in relation to their parent object’s vertices or reference
frame, rather than as truly independent degrees of freedom. In our unified representa-
tion, all vertices belong to a single conforming simplicial mesh, so no explicit binding is
necessary.

14

Chapter 4

Elastic Energies for Single-Type
Models

e edge vector
rα rod’s reference directors (α ∈ {1, 2, 3}). r3 refers to the director along rod’s

centerline.
mα rod’s material directors (α ∈ {1, 2, 3}). m3 refers to the director along rod’s

centerline.
m rod’s twist between two adjacent edge segments
κ rod’s discrete material curvature
G Green’s strain tensor
φ deformation map
F deformation gradient
J determinant of deformation gradient
Ψ energy density of a shell or a sold
X undeformed vertex position
x current (deformed) vertex position
λ, µ Lamé’s first and second parameter
Y Young’s modulus
ν Poisson’s ratio
h shell’s thickness

Table 4.1: Summary of Notations

In this chapter, we briefly review elastic energies for each single-type model (i.e., 1D

15

rods, 2D shells, and 3D solids) that we intend to couple in the next chapters. Interestingly,
as the dimension of the model increases (i.e., rods to shells to 3D solids), the number of
types of energies each model is subject to decreases. 1D rod segments are subject to elastic
stretching, bending, and twisting but for 2D manifold triangles, there are only in-plane
membrane deformation and out-of-plane bending between triangles. A 3D tetrahedral
mesh solely has per-tetrahedron deformation; two adjacent tetrahedra connected by a face
do not generate additional motions such as bending between triangles for the shell case.
For 1D rods, per-segment motion is a fairly simple one dimensional stretching but the other
two motions (i.e., bending and twisting) are relatively hard to express. For 2D and 3D
models, more complicated elementwise (i.e., per triangle or per tetrahedron) deformation
occurs, but they can be generalized to the same expressions except with different dimen-
sionality. Thus, we group the energy models for shells and solids together with additional
explanations for bending which happens only for 2D shells.

Given the energy models in each dimension, we can express the corresponding forces f
by taking a negative gradient of the potential energies E,

f = −∂E
∂x

. (4.1)

The vertex positions of elastic objects are updated by using the forces with a time inte-
gration scheme. We specifically adapt the famous (semi-)implicit time integration method
popularized in graphics by Baraff and Witkin (1998), which enables taking large steps
stably: (

M−∆t2
∂fn

∂x

)
∆xn+1 = ∆tMvn + ∆t2fn

xn+1 = xn + ∆xn+1.

(4.2)

Here, M is the mass matrix, ∆t is the timestep, f is the force vector, x is the position
vector, and v is the velocity vector. Two differences of (4.2) from the original formulation
are, first, we solve for ∆x not ∆v, and second, we ignore the damping terms in the original
formulation but use the Stokes-Rayleigh analogy to derive the damping forces (Batty et al.,
2012; Bergou et al., 2010).

4.1 Discrete Elastic Rods

In the discrete setting, rods are treated as piecewise linear segment meshes (Figure 4.1(a)).
In this section, we assume the discrete rod has n + 1 segments and n joint vertices. We

16

ej
rj3

rj1

rj2
mj

1

mj
2 θj

(a) Elastic rods

F

F

X0

X1 X2

x0

x1

x2

(b) Elastic shells

ej

n1

n2
θj

(c) Hinged-based bending

Figure 4.1: Elastic Energy Models. (a) Elastic rod configuration. rjα is a reference
director and mj

α is a material director on the jth edge. rj3 is along the edge vector ej.
The shaded region (grey) represents a plane perpendicular to rj3. The material directors
can be obtained by rotating the reference directors by θj around the edge vector ej. (b)
Deformation gradient of one triangle within an elastic shell. X0, X1, and X2 are vertex
positions in the rest (undeformed) configuration, and x0, x1, and x2 are the vertex positions
in the current (deformed) configuration. The edge vectors in the rest configuration are
mapped to the ones in the current configuration by deformation gradient F. (c) Bending
configuration using a dihedral angle between two triangles. n1 and n2 represent the normal
vectors of the triangles and θj is the angle between them.

17

use ej for the jth edge segment (0 ≤ j ≤ n), xi to indicate the ith vertex position, and ej

to represent the edge vector of ej, ej = xj+1 − xj.

The first and simplest elastic energy in rods is a stretching energy. Using the model of
Bergou et al. (2010), the stretching energy is given by

Es =
1

2

n∑
j=0

kjs
(
εj
)2∣∣ēj∣∣, (4.3)

where j refers to an edge index, overlines denote rest state quantities, ks is the stretching

stiffness, |e| is the edge length, and ε means the relative axial strain, εj = |ej |
|ēj | − 1. For

rods, the elementwise deformation occurs in one direction which simplifies the strain and
the corresponding stretching energy compared to shells or solids. Unlike a twisting and
bending energy, the stretching energy is contained in each edge and the orientation of each
edge is not considered in computation.

For twisting and bending energies, the orientation needs to be considered and the
orientation is represented by the angle deviation from a reference frame around the edge
vector (Figure 4.1(a)). The frame that displays the actual orientation of the edge segment
is called a material frame. Here, each frame has three orthonormal basis vectors called
directors (e.g., reference directors, material directors), and we use rjα and mj

α (α ∈ {1, 2, 3})
to denote the reference directors and material directors on the jth edge, respectively. Note
that the third reference director rj3 and the third material director mj

3 are identical; they
are along the edge vector ej. There are different choices possible for the reference frame.
One can choose the geometrically most natural reference frame (Bishop frame) (Bergou
et al., 2008) or using a space-time analogy, one can choose a natural frame in time (Bergou
et al., 2010; Kaldor et al., 2010). We use the time-parallel reference frame for efficiency.
With this time-parallel reference frame, the amount of twist between (i− 1)th edge and ith

edge can be expressed as mi = ∆θi + ri, where ∆θi = θi − θi−1, θi is the angle between
the reference frame and material frame on the ith edge, and ri represents the twist of the
reference frames between the edges. The corresponding twisting energy is

Et =
1

2

n∑
i=1

kt i
(mi − m̄i)

2

l̄i
(4.4)

where kt i is the twisting stiffness, l̄i is the Voronoi length associated to the joint vertex
between ei−1 and ei.

The bending energy is measured by using a discrete material curvature κ:

Eb =
1

2

n∑
i=1

1

l̄i
(κi − κ̄i)TKb i(κi − κ̄i) (4.5)

18

where Kb i is the bending stiffness tensor. Using the method of Bergou et al. (2010, 2008),
the discrete curvature vector κ at a particular vertex along the centerline is

κi =
1

2

i∑
j=i−1

(
(κb)i ·mj

2,−(κb)i ·mj
1

)T
(4.6)

where (κb)i =
2ri−1

3 ×ri3
1+ri−1

3 ·ri3
. Thus, the discrete curvature essentially depends on the joint angles

between the edges. The material properties (e.g., Young’s modulus, shear modulus) and
the shape of the rod (e.g., cross-section area, major and minor radii of ellipse) are folded
into the stiffness coefficients for simplicity. (Refer to the work of Bergou et al. (2010) for
the full formulation of the stiffness coefficient.)

4.2 Discrete Elastic Shells and Solids

Unlike a simple axial strain in rods, shells and solids present more complicated elementwise
deformation. To capture such deformation, we use the concept of deformation map and
deformation gradient from continuum mechanics. A deformable object can be characterized
by the time-dependent deformation map φ(X, t) from the position in the undeformed
(rest) configuration, X, to the one in the deformed (current) configuration, x, or x =
φ(X, t) (Figure 4.1(b)). The Jacobian of the deformation map, or deformation gradient F,
effectively captures local deformation of a material or how small displacement in the rest
configuration is mapped to the corresponding displacement in the current configuration.

F =
∂φ(X, t)

∂X
=
∂x(X, t)

∂X
(4.7)

In the discrete setting, the usage of F is straightforward: for the triangle in Figure 4.1(b),
each edge corresponds to the small displacement in (4.7)

x1 − x0 = F(X1 −X0)

x2 − x0 = F(X2 −X0)
(4.8)

or in the matrix form
Dc = FDr (4.9)

where Dr = [X1 − X0 | X2 − X0] and Dc = [x1 − x0 | x2 − x0]. Even for a triangle in
3D, we still use a planar rest configuration, i.e., X0,X1,X2 ∈ R2, and consequently the

19

deformation gradient F is a 3× 2 matrix. The third edge is linearly dependent on the
other two, thus omitted. For a tetrahedron, a simple modification to the triangle model is
required: one additional equation is added to (4.8) as there are four corner vertices, i.e.,
x3−x0 = F(X3−X0), where X3 and x3 are the position of the new (fourth) vertex in the rest
and current configuration. Also, the rest configuration is in R3 which makes the dimensions
of the deformation gradient F 3× 3. Given the deformation gradient F = DcD

−1
r , we can

adapt different FEM-based energy functions by plugging in the deformation gradient to the
energy models. For a solid, we use a St.Venant-Kirchhoff material which can be written as

Ψ(F) = µ||G||2F +
λ

2
tr2G (4.10)

where λ and ν are Lamé’s first and second parameter, and G is a quadratic Green’s strain,

G = 1
2

(
FTF − I

)
. For a shell, we use an isotropic linear elastic model (Gingold et al.,

2004)

Ψ(F) =
1

2

Y h

(1− ν2)
((1− ν)Tr(G2) + ν(TrG)2) (4.11)

where Y is Young’s modulus, ν is Poisson’s ratio, and h is the thickness of the shell. Note
that Ψ(F) is an energy density, thus it must be multiplied by the area of a triangle or the
volume of a tetrahedron to get the final energy formulation for each element.

4.2.1 Dihedral Bending for Shells

For shells, an additional energy must be applied to capture the bending behavior. We use
a simple and efficient dihedral bending model of Grinspun et al. (2003).

Eb =
1

2

∑
j

kjb(θ
j − θ̄j)2

(4.12)

where j refers to the edge index between two adjacent triangles, kb is the bending stiffness,
θ is the angle between the two triangles, and θ̄ is the angle at the rest state. Again, we fold
the material properties and the shape of the triangles into the stiffness coefficient kb. (Refer
to the work of Grinspun et al. (2003) and Batty et al. (2012) for the full expression.)

20

Chapter 5

Connecting Single-Type Models

Having described all of the single-type models, we return to the question of how to treat
connections among them to model complex non-manifold simplicial structures. We con-
sider each of the three basic connection types in turn: shared point, shared curve, and
shared surface. Such connections may be treated as either stiff/hard constraints, in which
the initial relative orientation of the two components remains unchanged, or as soft elas-
tic connections, which allow modeling of flexibly deforming joints. Our discussion and
evaluation focuses on the latter elastic penalty-like scenario, since it enables more general
deformations and introduces interesting modeling challenges. However, in the case of truly
“hard” constraints, a Lagrange multiplier formulation is often preferable, so our discussions
will briefly touch on this variation.

21

5.1 Point Connections

Figure 5.1: Different Point Connection Types. From left to right: rod-shell, rod-solid,
shell-shell, shell-solid, and solid-solid coupling at a joint vertex.

We begin with point connections, of which there are five cases: rod-shell, rod-solid, shell-
shell, shell-solid, and solid-solid (Figure 5.1). Despite this variety, we handle them consis-
tently: we construct coordinate frames for each side of a connection at the shared point,
and design appropriate deformation energies based on the change in their relative config-
urations. The main technical hurdle arises in accurately measuring these changes.

Since our geometry is a single conforming mesh, there is no need to explicitly enforce
positional coincidence of shared vertices; their shared degrees of freedom implicitly yield
ball-joint behavior in the absence of additional forces. This leaves only deviations in ori-
entation to consider. For hard constraints, we can simply constrain the axes (or directors)
of one coordinate frame to be fixed with respect to the other, by requiring fixed dot prod-
ucts. Denoting the two coordinate frames with their director vectors, {m1,m2,m3} and
{n1,n2,n3} (e.g., Figure 5.2), we have the constraintmT

1

mT
2

mT
3

 [n1,n2

]
−

mT
1

mT
2

mT
3

 [n1,n2

]
= 0 (5.1)

where overlines denote rest state quantities. Constraining only two directors, n1 and n2,
suffices because the third is orthogonal.

For softer elastic connections, a first obvious choice would be to form an elastic po-
tential by squaring the left side of (5.1) and multiplying by a stiffness parameter. This is
undesirable for two reasons. First, this choice cannot support accumulated twisting angles
that exceed π; in such a case, the joint will suddenly begin rotating in the opposite di-
rection, since this is the quickest path to realigning the directors, despite the fact that it

22

m3

m2

m1

n1 n2

n3

Figure 5.2: A rod-shell point connection with coordinate frames. The dashed line
represents the shell’s twisting axis.

actually further increases the true net twist. Second, this formulation does not explicitly
separate twisting and bending deformations into orthogonal modes, which implies that
their stiffness parameters cannot be assigned independently. Our experience suggests that
the ability to separately control bending and twisting behavior is a feature that artists find
useful. Therefore, we instead took inspiration from the dynamics of elastic rods.

5.1.1 Twisting Energy

Twisting energy is accumulated when the two sides of a point connection become twisted
with respect to their undeformed relative configurations. While a rod inherently possesses
a centerline around which twisting is measured, shell and solid models do not. To ensure a
compatible interface we must construct appropriate twisting axes and associated coordinate
frames, but we temporarily defer this discussion to Section 5.1.3.

For now, consider two simplices sharing a single vertex, with associated orthonormal
coordinate frames, {m1,m2,m3} and {n1,n2,n3}, where the simplices’ centerlines (rods)
or chosen twisting axes (shell, solid) are assumed to lie along m3 and n3, respectively, as
in Figure 5.2. Unfortunately, these two axes will not necessarily be mutually aligned, so
the twist angle cannot be correctly measured by simply examining the change in angle
between their perpendicular directors, m1 and n1. Instead, we adapt ideas from the elastic
rods of Bergou et al. (2008).

Recall that discrete parallel transport applies the minimal rotation about the binormal
that keeps a tangent vector tangential to the implied curve, as we move from one segment to
the next. By parallel transporting the perpendicular director m1 into the other coordinate
frame, we find a vector mPT

1 which can be safely compared to n1 to determine the actual

23

m1

m3m2

n1

n3mPT
1

δ

(a) Direct angle update. A subsequent
post-processing step is required to ensure
the correct angle increment is determined
(Incremental I).

m1

m3m2

m′1 n1

n3m′PT
1

∆δ

δold

(b) Incremental angle update (Incremental
II).

Figure 5.3: Point connection angle updates using parallel transport.

twist angle, δ (Figure 5.3a). Given the angle δ, we define the point’s twisting energy as

Et =
1

2
kt(δ − δ)2, (5.2)

where δ is the deformed angle, δ is its undeformed counterpart, and kt is the twisting
stiffness coefficient. Since the parallel transport operation is perfectly reversible, the choice
of which simplex coordinate frame to start from is arbitrary.

Remark This energy is intentionally defined to be concentrated at the singular non-
manifold point, rather than as an integral over a local region. This allows for greater
consistency and flexibility for general deformable connections. Specifically, we prefer that
a point connection: (1) yield consistent deformation behavior independent of the resolu-
tion (length/area/volume) of incident simplices; (2) support an arbitrary choice of stiffness
independent of the incident material type(s). (By contrast, point-based models such as
Elastons (Martin et al., 2010) require uniform material behavior across all (implied) di-
mension transitions.)

Incremental angle update The remaining shortcoming of this approach is that if the
angle deviation δ is (re-)computed directly from the coordinate frames at each step, the
resulting angle (and energy) will suffer from discontinuous jumps as δ wraps around in
the space of angles; for example, the relevant trigonometric functions cannot naturally
distinguish π from 3π based on the current coordinate frames alone. Prior rod-only models
do not typically suffer from this issue due to their choice of twist representation, such

24

as quaternions or persistent scalar twisting angles (Bergou et al., 2008; Spillmann and
Teschner, 2007). The absence of this information in general simplices necessitates our new
approach.

We propose two possible incremental angle update schemes that can overcome this by
instead solving for only the incremental change in δ, while properly accounting for parallel
transport:

• Incremental I: After performing the direct angle update (Figure 5.3a), one can
apply an additional post-processing step to circumvent the discontinuous angle jumps.
Instead of using the computed angle directly, we first add (or subtract) the multiple
of 2π that yields the closest angle to the angle from the previous time step.

• Incremental II: Alternatively, one can pre-rotate the director (m1) by the previous
accumulated angle (δold), before parallel transporting to compare with the other
director. Consider the twisting angle at a rod-shell connection as an example (Figure
5.3b). Before parallel transporting m1 to the other frame, we rotate m1 around m3

by δold to yield m′1, as shown in Figure 5.3b. We then apply parallel transport to
get (m′1)PT , and compute the angle increment as the angle between (m′1)PT and n1.
This process yields an update to δ of

δ = δold + arctan2((m′1)PT · n2, (m′1)PT · n1). (5.3)

The above methods work equally well and share the same mild limitation: the angle
increment cannot exceed π on a single timestep. We use the first approach (Incremental
I) in all the examples.

5.1.2 Bending Energy

Bending also measures an angle deviation, but in the directions orthogonal to twisting. To
calculate the bending force, we track the degree to which the second coordinate frame’s
twisting axis, n3, deviates from its rest state in the first coordinate frame. Let d be defined
as

d = (n3 ·m1,n3 ·m2,n3 ·m3) (5.4)

which is simply the second frame’s twisting axis n3 expressed in the first coordinate frame.

25

m1

m2

m3

d

d

ω

Figure 5.4: Bending at a point connection. When expressed in the other coordinate
frame (green) the twisting axis is denoted by d and compared with its rest state counter-
part, d, to determine the bending angle ω.

The angle difference between d and its undeformed counterpart d gives the bending
angle ω, as illustrated in Figure 5.4. Consequently, the bending energy has the form

Eb =
1

2
kbω

2. (5.5)

We do not treat the angle update for ω incrementally because unlike twisting there is
no single axis around which this bending occurs, i.e., d can deviate from d in multiple
directions.

5.1.3 Choosing Coordinate Frames at Vertices

Applying our twisting and bending energies at a point requires defining appropriate or-
thonormal coordinate frames at the shared vertex, with their third director aligned along
the centerline (rods) or along an appropriately chosen twisting axis (shells and solids).
For rods, the natural coordinate frame is its inherent material frame. For shells or solids,
twisting axes could be chosen by the user to enable various behaviors. We suggest some
natural choices below.

Shells

For a shell, the point connection may either be on the shell’s outer boundary (Figure 5.5a)
or in the interior (Figure 5.5b). For the shell boundary case, we set the twisting axis,
m3, to be the tangent vector that bisects the total angle formed by all the incident shell
triangles, in their rest configuration (Figure 5.5a). The triangle’s normal can be used as
m1, and the remaining vector m2 is determined from the cross-product of the other two.

26

m1m2

m3

(a) Boundary point.

m1

m3

(b) Interior point.

Figure 5.5: Twisting axis m3 choices for a shell at a rod-shell point connection.

For the shell interior case, we define the twisting axis m3 to be the vertex normal of the
triangle mesh, which is a function of the one-ring of vertices around the point. A second
director m1 can be found by taking one edge of an incident triangle and projecting out
its component along m3; their cross-product provides m2. Using only a single edge in this
case can slightly bias the behavior with respect to that edge, in the sense that only changes
in that edge influence m1 and m2. If this bias is deemed undesirable, it can be avoided
by simply creating a duplicate twisting energy for each incident edge, and re-scaling the
stiffness coefficients to compensate. (Since bending involves only the single n3 vector on
one side, this issue is absent for the bending energy, except when both sides are shells or
solids.)

Solids

For the solid case, two natural options present themselves. The first is to compute a surface
vertex normal as the twisting axis, and connect it to the single tetrahedron penetrated by
that vector; this approach is essentially a 3D extension of the shell boundary approach of
Figure 5.5a. The second possibility is to mimic the shell interior case, where the solid’s
exterior triangulation takes the place of the shell triangulation. From an implementation
standpoint, the former is more attractive since the stencil involves only one simplex on
each side, whereas the latter involves the whole one-ring of triangles.

Remark The choices above yield behavior that is, by design, analogous to elastic rods
in the manner in which twisting propagates between elements. While this is a natural
choice, it is important to understand its effect. Consider a shell joined at an angle to a rod

27

Figure 5.6: Jellyfish: An alien jellyfish species composed of rod, shell, and solid compo-
nents joined by point connections.

Figure 5.7: Influence of twisting axis choice: when the rod is rotated, our proposed
twisting axis causes the shell to rotate in a manner analogous to an elastic rod, i.e., about
its own centerline (left). An alternative would be to use the rod’s axis for the shell frame,
which leads to different behavior (right).

(Figure 5.7). Under the approach outlined above, rotating the rod will cause the shell to
rotate about its own twisting axis, akin to elastic rods or bevel gears that meet at an angle,
rather than, for example, rotating about the centerline of the rod. If the latter option were
desired, one could construct the coordinate frame for the shell based on the rod, though
this would be inconsistent with the behavior of regular rod-rod connections.

28

5.2 Curve Connections

Figure 5.8: Different Curve Connection Types. From left to right: embedded rod-
shell, embedded rod-solid, shell-solid, and solid-solid coupling at a shared edge.

A curve connection between two models can arise in several cases: two solids sharing a
surface curve, a solid sharing a surface curve with a shell’s boundary or interior, or a rod
embedded within either the boundary or the interior of a shell or solid (Figure 5.8). Our
assumption of a unified conforming mesh ensures that both sides of the joint share the
exact same curve edges; therefore, no relative tangential sliding can occur. Furthermore,
we do not need to penalize deformations of the shared curve itself, since these can be
directly handled by adding a rod model, if such a behavior is desired. Therefore the only
relevant deformation mode at the shared curve is relative rotation of the two sides around
the curve. Our conforming mesh immediately guarantees hinge-like behavior by default; in
the embedded rod case, this manifests as free rotation within its containing shell or solid,
like a tent pole through a fabric sleeve (see e.g., Figure 6.3, middle). Thus, our conforming
mesh can be a useful modeling choice in its own right, but if we do wish to penalize relative
deformations around the edge, we need an appropriate energy. We assume that coordinate
frames for each side of the joint are chosen such that m3 and n3 are aligned along the
shared curve (unlike point connections). We defer a detailed discussion of coordinate
frame construction to Section 5.2.

For a hard constraint, the relative orientation of the coordinate frame directors per-
pendicular to the curve should not drift over time; that is, the dot products should be
constant, using mT

1

mT
2

mT
3

n1 −

mT
1

mT
2

mT
3

n1 = 0. (5.6)

where again overline notation indicates rest configuration quantities. As described for point

29

connections, however, simply squaring the left side of this expression does not provide a
robust elastic energy, if we wish to support large accumulated deformations (e.g., a shell
rotating around a rod by more than π radians). We therefore introduce an angle-based
elastic energy to penalize relative rotational deformation between frames around a shared
axis. We determine the angle δ between m1 and n1 (Figure 5.9) and use it to construct
a quadratic energy that is integrated along the length of the shared curve. Letting δ be
the desired rest angle and kb the stiffness of the connection, the resulting smooth energy
integral is ∫

C

1

2
kb(δ − δ)2, (5.7)

where C is a shared curve between two models. Similar to the point connection case,
we prioritize consistency and flexibility by assigning this energy an independent stiffness
parameter and concentrating it on the singular non-manifold curve. That is, the potential
is integrated only along the curve’s length, rather than over some local finite volume.

Discretization

Discretizing the energy in (5.7) along the relevant edges of our discrete simplicial mesh, we
arrive at a bending-like energy that is a sum over the edges comprising the curve,

Eb =
∑
i

1

2
kb‖ei‖

(
δi − δi

)2

, (5.8)

where the superscript i indicates the index of the edge, and ‖ei‖ indicates the length of
the edge ei. It remains only to define and construct the angle δi. Since we assumed that
m3 and n3 are mutually aligned along the shared curve, we only need to measure the angle
between m1 and n1:

δ = arctan2(n1 ·m2,n1 ·m1). (5.9)

The approach above will still suffer from discontinuous jumps in angle unless an incremental
approach is adopted. As described in Section 5.1, we have two choices of incremental
update. The first approach (Incremental I) can be applied in the same way as in the point
connections: calculate the angle δ näıvely, and then apply a post-processing step to find the
true angle. To use the second approach (Incremental II), we again pre-rotate the director
m1 with the previous angle (δold) and compare it with n1 to get the angle increment.
This is conceptually consistent with our point connection treatment, but simpler because
parallel transport is not needed.

30

m1

m2 m3

n1

n2 n3

δ

Figure 5.9: Curve Connection: Two frames with axes m3 and n3 aligned along the
shared edge are compared by examining the angle between m1 and n1.

rest direct incremental

δ

(frame)

(rad)

π

0
−π
−2π
−3π
−4π
−5π

Figure 5.10: A comparison between the computed angle δ using direct and in-
cremental updates, for a green rod with a large prescribed rotational velocity
embedded in a blue shell, under the given rest configuration (left). We hold the
shell vertices fixed for the frames preceding the dashed line while the rod rotates to store
up energy. The direct update does not capture the correct angle between the rod’s material
director (yellow) and the shell’s normal vector, so when we release the constrained vertices
(vertical dashed line), the shell does not rotate correspondingly. However, the incremen-
tal update (red) remembers the history of the deformation, and therefore the shell shows
proper angular acceleration to untwist the object at the connection.

31

As a concrete illustration of our incremental updates, we initialize a rod edge in a single
shell triangle with the rest angle δ̄ set to 0 radians as shown in Figure 5.10, left. In the
test scenario, we constrain the movement of the shell for the early frames and later release
it, while the rod is prescribed to rotate with a constant angular velocity throughout. We
observe the values of δ as we rotate the rod while applying the elastic forces described
above. As in Figure 5.10, right, we see that the direct angle updates (green curve) show
unphysical sudden jumps and the direct updates are also unaware of the accumulated
bending angle (i.e. 3π deformation is regarded as π). By contrast, our incremental update
(red curve) exhibits smooth changes in δ and it tracks the complete angular deformation.

Choosing Coordinate Frames at Edges

The coordinate frame for a rod is simply its material frame; m3 is the vector along the
(shared) centerline curve. For shells, a coordinate frame can be constructed by setting m3

as the unit tangent vector along the shared edge. We define m1 as the normal vector at the
edge, which may be either the normal of a single triangle for shell boundary edges, or the
average normal of two incident triangles for interior edges. The cross-product yields m2.

For solids, there are two situations to consider. First, for a solid with an embedded rod,
we construct an independent energy for each triangle from the set of tetrahedra incident on
the shared edge to minimize bias that would arise in coupling only a single rod-tetrahedron
pair. As such, the necessary coordinate frames are constructed for each individual triangle
in the same manner as for the shell boundary case above. Second, for a solid sharing a
surface curve with a shell or another solid, we use the exterior surface triangulation to
construct the coordinate frame, as we did for the interior case of the shell. That is, m3

lies along the edge, m1 is the average edge normal from the two incident triangles, and the
cross-product is again used to find m2.

32

5.3 Surface Connections

Figure 5.11: Surface Connection Types: there is a single case where a triangle (red) is
embedded on the surface of a tetrahedron (blue).

The final case, in which two different models share a surface, arises only when a shell
is embedded within or on the surface of a solid object. The shell imposes its additional
stretching, shearing, and bending forces on the surface shared with the solid. Since our
framework assumes a single conforming mesh (without sliding), this type of connection is
trivial: we label the appropriate simplices as standard shell or solid elements, and apply
their associated forces to the vertices as usual. Unlike point or curve connections, no
remaining degrees of freedom exist.

Now that we have all the connection energies between single-type models, we can sum
up and apply the energies in a numerical simulation for our conformal mesh in the same
manner as for single-type meshes, as discussed at the start of Chapter 4 (e.g., equations
4.1 and 4.2). We solved the resulting nonlinear systems using a standard Newton solver
with conjugate gradient for the inner linear solves, although it would be interesting to
explore alternatives for greater efficiency (Li et al., 2019). We employed Bridson’s collision
detection and resolution strategy (Bridson et al., 2002).

33

Chapter 6

Results

All of the animation examples that follow were computed on a 2.8 GHz Intel Core i7
processor. Single-threaded performance data is listed in Table 6.1; however, there likely
remain significant opportunities for optimizing our prototype implementation, as our focus
is primarily on the flexibility of the system rather than speed. Moreover, since cross-
dimensional connections typically comprise a small subset of the domain compared to
single-type regions, our modifications are unlikely to be a bottleneck unless the elastic
coupling at the connection is far stiffer than the surrounding material.

Each example is constructed by first designing a single non-manifold geometric mesh,
and then tagging simplices and simplex-pairs with model types and connection types,
respectively.

Note that the coverage of our method is different from the previous coupling approaches
between different simplicial meshes. The previous methods only cover a small subset of
the couplings (e.g., rigid-body attachment to a rod (Bergou et al., 2008)), while we present
a complete set of coupling energies that allows simulating any shapes of objects (Figure
2.2).

Didactic Examples Our supplemental video includes several animations that exercise
the various connection types in isolation. For each connection type, a scenario is shown
with and without the associated energy being applied, to highlight the behavior that it
assigns to the simplicial mesh. Figure 2.2 shows a scenario where a single complex non-
manifold simplicial mesh is assigned many individual connection types. In the video, the
tetrahedron on the right end is scripted to rotate, leading the entire shape to rotate, bounce,
and deform elastically

34

Figure 6.1: Toy Ball: A ball-and-spring toy composed of three point-connected parts.
The behavior is different with proper point connection energies (left) in comparison with
the one without any coupling energies (right). In the latter case, the sphere collapses to
the ground.

Figure 6.2: Sticky Hands: Rubber children’s toys modeled as non-manifold meshes com-
prised of rod and shell components.

35

Figure 6.3: Nylon Frisbee: A circular frisbee composed of a shell with different rod em-
beddings along its boundary. We prescribe an axial rotation of two sides of the boundary
curve (red), and observe the resulting behavior. Left: Without a rod. Middle: With a ro-
tationally uncoupled embedded rod (green). Right: With a rotationally coupled embedded
rod.

Toy Ball In the basic example of Figure 6.1, a single mesh is used to represent three
distinct components that have been point-connected together: rod (spring), shell (plat-
form/suction cup), and solid (ball). With properly connecting the three distinct compo-
nents, we can simulate a springy-ball toy (left), but in the absence of any coupling energies,
the sphere collapses to the ground (right).

Sticky Hands The sticky hand toy example of Figure 6.2 shows an elastic object com-
posed of a single material featuring rod-like and shell-like parts joined through stiff point
connections.

Jellyfish Our alien jellyfish example (Figure 5.6) consists of components of various di-
mensions representing the tentacles, eye stalks, eyeballs, and thin body of the jelly fish.
To animate it, we prescribe the motion of the body, and allow the various appendages to
deform freely.

Nylon Frisbee Our nylon frisbee model (Figure 6.3) is comprised of a shell with stiff
rubber rim (rod), to illustrate three distinct possible behaviors designed by decorating a
simple circular mesh geometry with different materials and connections. We rotate the red
region of the rod, and observe the effect of the rod on the interior cloth. In the absence
of the rod, the shell hangs limply (left). With the rod added but not rotationally coupled

36

Figure 6.4: Toy Tunnel: A falling cylindrical triangle mesh behaves differently with its
elements labeled as pure cloth (pink) as compared to cloth with embedded rod segments
(blue and yellow).

Figure 6.5: Umbrella: An umbrella closed, open, and shown with only the wireframe
rod-edges rendered. The rod sub-component of the mesh contains non-manifold triple-
junctions.

to the cloth (middle), the rod can freely rotate so that the only effect on the cloth is
through the deformation induced along the free section of the rod, that is, it no longer sags
unsupported. With our rotational coupling added (right), the rod is instead glued to the
cloth such that its rotation induces direct (bulging) deformations on the connected cloth,
as expected. Depending on the intended scenario, any of these three may be the desired
behavior; thus our method provides significant additional flexibility to the artist or user,
while using the exact same underlying mesh.

Toy Tunnel In Figure 6.4 we construct a children’s toy tunnel from a cylindrical cloth
(shell) mesh by labeling a subset of its existing edges as connected rods in a spiral pattern.
Compared to a piece of pure cloth, the version with embedded rods clearly better captures
the desired spring-like behavior.

37

Figure 6.6: Sandwich composite: By identifying several layers of faces within the tetra-
hedral mesh as stiff shells, the two same volumetric solids present totally different behaviors.

Umbrella Figure 6.5 shows a rendered umbrella, and a separate visualization of the
rod edges of the umbrella alone. Here we see that in addition to embedded rods through
the umbrella’s cloth shell, the rod structure itself also contains non-manifold triple-joints,
which our framework supports straightforwardly.

Sandwich Composite Figure 6.6 shows the effect of stiff shells embedded within a softer
solid volume, by labeling several layers of the tetrahedral mesh’s interior triangular faces
to be stiff shells.

Anglerfish Our cartoon anglerfish example of Figure 6.7 contains both point connections
and curve connections. The body of the anglerfish is composed of 3D tetrahedra, while
fins (2D) and an antenna (1D) are connected to the body forming a curve connection and
a point connection, respectively. At the end of the antenna, a light-emitting ball (3D) is
attached via another point connection.

Continuous Uniform Objects While we focus on more arbitrary elastic connections
where the components on either side of the connection may have entirely distinct properties,
our framework can also plausibly model smoothly continuous objects consisting of a single
material. For example, if a thick solid block gradually narrows to become quite thin, at
some point along its length it might be better represented as a thin shell with identical
Lamé parameters.

38

Figure 6.7: Anglerfish: The anglerfish model is composed of 3D tetrahedra (body, light
ball), 2D triangles (fins), and 1D rods (antenna) connected by both point and curve con-
nections. The head motion is prescribed and the rest of the body’s motion is induced by
our elastic energies.

This can be conveniently modeled by ensuring that the connection point/curve has no
discontinuous kink in the implied continuous geometry; i.e., the point connection twist-
ing axes or curve connection planes are aligned on both sides. We treat this with a high
stiffness connection so that the components’ relative configurations remain essentially un-
changed (this contrasts with the softer elastic joints with potentially nonzero rest angles
used elsewhere). This amalgamates the two incident elements into a smoothly interfacing
super-element. While this yields a “flat” connection, it is no different than a flat triangle;
both their regions of influence naturally shrink under refinement to approximate smooth
behavior. (For a coarse mesh, if the resulting “flat” region is deemed too large relative to
the surrounding elements, the two elements comprising this super-element could simply be
modeled as half the size). In addition to simplicity, an advantage of this approach is that
while the material parameters and thickness/diameter of each single-type model must be
set to correspond, there is no need to tune the connection’s stiffness parameter to precisely
match as well; it is simply acting as a strong penalty constraint rather than an elastic en-
ergy. Of course, if an elastic object is simulated with models of different dimensions (i.e.,
a thin solid object can be treated as either a 3D solid model with a small thickness or a
2D shell model), they might not behave perfectly consistently, depending on the choice of
the single-type physical models, their discretizations, and/or the level of mesh refinement.
However, as long as the two separate models have matching behaviors, connecting them
with the method above does not damage the apparent homogeneity of the material. In
Figure 6.8 we simulate a thin solid object with a 3D solid model, 2D shell model, and com-
binations of the two models by connecting the two half-length models with high stiffness.

39

Frame 1 Frame 35 Frame 70 Frame 1000

(a) Pure 3D solid model

Frame 1 Frame 35 Frame 70 Frame 1000

(b) Pure 2D shell model

Frame 1 Frame 35 Frame 70 Frame 1000

(c) Half solid(left)-half shell(right) model

Frame 1 Frame 35 Frame 70 Frame 1000

(d) Half shell(left)-half solid(right) model

Figure 6.8: Comparison between single- and mixed-dimensional models (red: solid
model, blue: shell model). Our method smoothly connects two different-dimensional mod-
els of the same material while preserving uniform behavior.

40

Scene #vertices #rod edges #shell faces #tetrahedra #frames Total time (s)

Toy ball 229 203 96 226 1300 218.301

Sticky hands (purple) 200 19 292 - 1000 115.605

Sticky hands (red) 200 19 292 - 1000 200.095

Sticky hands (green) 200 19 292 - 1000 212.095

Sticky hands (blue) 200 19 292 - 2000 221.073

Jellyfish (single) 1465 1273 - 454 200 528.271

Nylon frisbee 289 64 512 - 700 24.8301

Umbrella 3168 198 6144 - 600 4364.83

Sandwich composite 395 - 1510 600 5000 1311.2

Table 6.1: Simulation Statistics

The observed behaviors are qualitatively indistinguishable.

41

Part II

Curl-Flow: A Novel Divergence-Free
Velocity Interpolation Method in

Fluid Animation

42

Chapter 7

Introduction

u velocity vector
f external forces
ψ vector potential
H harmonic vector field: curl-free and divergence-free
u, v, w x-, y-, and z-component of velocity vector
ρ fluid density
p pressure
µ dynamic viscosity
ψ stream function
h grid cell width and height (and depth in 3D)
∆t simulation timestep
τ viscous shear stress tensor

Table 7.1: Summary of Notations

The assumption of incompressibility is pervasive in computer animation of fluids. Since
compressive effects are imperceptible in many (but not all) visually relevant liquid and gas
scenarios, neglecting fast-moving compression waves is often justified in practice and yields
significant efficiency gains. Mathematically, incompressibility implies that the fluid veloc-
ity field u should be divergence-free: ∇ · u = 0. Popular staggered grid-based schemes
rely on this assumption, using finite difference, finite volume, or discrete exterior calculus
ideas, combined with Lagrangian or semi-Lagrangian advection methods, to transform the
continuous incompressible flow equations into discrete, computable algorithms (Bridson,

43

(a) Particles. (b) Particle trajectories.

Figure 7.1: Effect of Interpolants on Particle Distribution in 3D: The results of
identical, initially uniform particle distributions advected through the same 5 × 5 × 5
discretely incompressible field for 300 frames using different velocity interpolants. In each
trio, left is standard trilinear velocity interpolation, center is monotonic cubic velocity
interpolation (Fritsch and Carlson, 1980), and right is our Curl-Flow method. The coloring
indicates the per-particle local density estimate, with yellow/white being highest density.
Standard velocity interpolants lead to undesirable severe clustering and spreading, while
our pointwise incompressible Curl-Flow interpolation preserves close to uniform particle
distributions over long time periods.

2015). This fertile mathematical soil has sprouted diverse numerical tools for visual simu-
lation of drifting cigarette smoke, coiling honey, crashing ocean waves, and more (Enright
et al., 2002; Fedkiw et al., 2001; Larionov et al., 2017), which are widely integrated into
industrial software like Houdini, Cinema4D, and Blender. Yet despite the widespread use
of grid-based incompressible flow animation techniques, the pointwise velocity vector fields
they provide are not, in the strictest sense, incompressible.

To elucidate this statement, we distinguish discrete incompressibility from its continu-
ous counterpart. Under a finite volume approach, the discrete velocity components stored
at cell face midpoints will indeed satisfy discrete incompressibility: the flux across each
cell’s boundary sums to zero. However, interpolation is often required to provide point-
wise velocity values everywhere in the simulation domain, to support popular Lagrangian
and semi-Lagrangian discretizations of advection for density, velocity, temperature, pas-
sive tracer particles, and so on (Jiang et al., 2015; Stam, 1999; Zhu and Bridson, 2005).
Applying basic polynomial interpolants to discretely incompressible grid data affords no
guarantee that the interpolated velocity fields will be pointwise analytically incompressible,
and in practice they are not.

Spurious compressibility has non-negligible implications. Advecting particles through

44

vector fields with artificial sources and sinks damages volume conservation and causes
uniformly distributed particles to clump and spread. Alternatively, reducing discretization
error by significantly increasing grid resolution fails to address the root cause and is too
costly regardless: simulation time scales cubically or worse with grid resolution. Irregular
solid boundaries further exacerbate the issue because standard grid-based interpolants are
essentially oblivious to obstacles; obstacle-aware cut-cell interpolants (Azevedo et al., 2016)
improve enforcement of the no-normal-flow condition at the cost of worsening compression
artifacts.

To guarantee an analytically divergence-free interpolated velocity field by construction,
we instead form the velocity field u from the curl (∇×) of a second vector field, ψ, known
as a vector potential :

u = ∇×ψ. (7.1)

Incompressibility is thus enforced by a basic vector calculus identity,

∇ · u = ∇ · ∇ ×ψ = 0. (7.2)

We exploit this relationship in the discrete and continuous settings to ensure pointwise
incompressibility through three steps:

1. Given discretely incompressible fluid velocity values, construct corresponding discrete
vector potential values.

2. Interpolate the discrete vector potential values to yield a pointwise vector potential
field.

3. Take the analytical curl of the interpolated vector potential field to yield a pointwise
incompressible velocity field.

Bao et al. (2017) proposed this three-step recipe in deriving discrete delta functions for
the immersed boundary method to support weakly coupled fluid-structure interaction in
computational fluid dynamics. However, their method is limited to perfectly uniform
rectangular domains (i.e., no irregular boundaries) with periodic boundary conditions.
Even so, their potential reconstruction approach requires the solution of a costly vector
Poisson problem, making it several times more expensive than pressure projection in a
standard fluid solver.

We extend this conceptual framework to be practical for animation applications in
two and three dimensions by overcoming several theoretical and algorithmic challenges,
including enabling more efficient recovery of discrete vector potentials, enforcing exact

45

no-flow or prescribed flux boundary conditions for exterior boundaries, and, especially,
providing pervasive support for irregular cut-cell solid obstacles. We refer to our approach
as the Curl-Flow method.

Our divergence-free interpolation method for staggered grid fluid animation includes
the following specific technical contributions:

• A more efficient strategy to recover the discrete vector potential field corresponding
to a given discrete velocity field, based on a new parallel sweeping technique and a
gauge correction approach.

• An additive ramping strategy for improved free-slip boundaries in the “Curl-Noise”
method of Bridson et al. (2007).

• Application of this ramping method during interpolation to enforce divergence-free,
exact no-normal-flow conditions on axis-aligned exterior domain boundaries and ir-
regular (cut-cell) solids in both 2D and 3D.

46

Chapter 8

Related Work

8.1 Fluid Simulation Methods

Depending on the application, the Navier-Stokes equations have been solved with different
primary variables, e.g., stream functions (2D) or vector potentials (3D), velocities, and vor-
ticities, with different representations of fluid, e.g., particles, grids, and meshes. Different
combinations form different simulation methods and our method is based on grid struc-
tures for fluid representation and velocities (with pressure) as a primary variable, which
has been the prevalent choice for fluid animation in graphics.

8.1.1 Grid-Based Eulerian Methods

Techniques for fluid simulation are often categorized into being either Eulerian or La-
grangian. Loosely speaking, Eulerian refers to approaches where the fluid data is stored in
a stationary grid or mesh, with quantities at those locations updated to reflect the local
fluid properties as it flows past. By contrast, Lagrangian refers to methods where the
fluid data is stored on particles or meshes that move dynamically along with the flow.
Certain hybrid techniques involve elements of both. Grid-based Eulerian methods are
often favoured in fluid simulation in graphics and computational fluid dynamics (CFD)
communities, and their easiness in enforcing global incompressibility contributes to their
popularity. In particular, a staggered grid (Foster and Metaxas, 1996; Harlow and Welch,
1965) and the operator splitting approach (Bridson et al., 2007; Chorin, 1968; Stam, 1999)
have been widely adapted in the graphics community. Using this basic premise with nec-
essary modifications, the early work of Stam (1999) has been steadily enhanced until now:

47

the methods for solving each part of the Navier-Stokes equations (e.g., pressure projection,
advection, viscosity, etc.) have been developed independently or in a combined manner.
As our primary focus is obtaining divergence-free velocity interpolation using discretely
divergence-free fields, the most relevant parts are advection and projection. We describe
numerical techniques for these stages in Chapter 9, and summarize recent related work
below.

For advection, the semi-Lagrangian scheme (Stam, 1999) has been commonly used due
to its stability and simplicity. However, accumulated interpolation errors during the ad-
vection steps cause excessive numerical dissipation. To alleviate the numerical damping,
higher order accurate schemes and/or secondary particles have been introduced. Fed-
kiw et al. (2001) used higher order (cubic) interpolation methods in space and reduced
overshooting problems. The overshooting behaviors can be fully eliminated using the
method of Fritsch and Carlson (1980). As an alternative to such monotonic cubic ap-
proaches, Weighted Essentially Non-Oscillatory (WENO) schemes can also be used (Kim
et al., 2013). The back and forth error compensation and correction method (BFECC) of
Dupont and Liu (2003) effectively increases the order of accuracy both in time and space
to the second order by advecting the solution forward and backward in time to estimate
and correct error. The MacCormack scheme (Selle et al., 2008a) obtains the same order
of accuracy using a reduced number of advection steps (three to two) thus computation-
ally more attractive. Also, long-term backtracing (Qu et al., 2019; Sato et al., 2018a)
can ease the incremental numerical damping caused by repeated interpolation under semi-
Lagrangian schemes. Alternatively, secondary particles have been heavily used in graphics.
Zhu and Bridson (2005) used a linear combination of the Particle-in-Cell (PIC) method
(Harlow and Welch, 1965) and the Fluid-Implicit-Particle (FLIP) method (J.U.Brackbill
and H.M.Ruppel, 1986), and their approach has been prevailing for the advection step in
fluid simulation. The Zhu-Bridson method has been further improved for better accuracy
and less numerical damping by augmenting each particle with locally affine (Ding et al.,
2020; Jiang et al., 2015), or polynomial (Fu et al., 2017) approximations to the grid veloc-
ity. These approaches all interpolate the velocity directly, and do not consider the presence
of absence of divergence.

For pressure projection, the divergent terms in the Helmholtz-Hodge decomposition
are projected away to get a divergence-free velocity field by solving a Poisson problem.
Starting from the underlying theory, the projection method has improved and branched
out for better accuracy, less computational cost, and broader applications. Fluid fractions
(in a cell or on a face) were introduced in the solve (Batty et al., 2007; Ng et al., 2009) to
better capture the flow with solid obstacles. We employ this approach in our work. These
cut-cell methods are further expanded upon to simulate fluid flows with thin obstacles

48

(Azevedo et al., 2016) and/or thin liquid surfaces (Chen et al., 2020). Different enhanced
structures have been introduced for speed-up such as octrees (Aanjaneya et al., 2017;
Losasso et al., 2006, 2004; Setaluri et al., 2014) and tiles (Goldade et al., 2020). While each
individual component of fluid simulation has been developed and improved within its own
methodology, there have also been notable improvements by combining these individual
components. Advection-reflection solver (Narain et al., 2019; Zehnder et al., 2018) reduces
energy dissipation with minimal modifications (mostly reordering) of the traditional project
and advect framework, resulting in better preservation of fine level details of smoke. Mullen
et al. (2009) used a purely Eulerian advection method solved simultaneously with pressure
to preserve the kinetic energy of fluids over long time periods. Similarly, pressure and
viscosity steps can be combined: Larionov et al. (2017) solved them together in a single
step and reproduced the coiling instability that was not possible with previous grid-based
approaches.

Though our method uses velocities (with pressure) as a primary variable of the simula-
tion, stream function (2D) or vector potential (3D) (Hou and Wetton, 2009; Yu and Tian,
2019), and vorticities (Elcott et al., 2007; Mullen et al., 2009) are also valid choices for
grid-based methods.

8.1.2 Lagrangian Methods

Smoothed Particle Hydrodynamics (SPH) is a representative Lagrangian method that has
rivaled Eulerian methods for many years in graphics. Ever since Müller et al. (2003) in-
troduced SPH to fluid animations, it has been steadily adapted and improved like the
grid-based methods. Although particle-based methods have advantages in their intuitive
representations (e.g., analogy to molecules), and especially the exact mass conservation
during advection, it has limitations regarding solving the physics equations accurately: the
pioneering work by Müller et al. (2003) uses repulsion forces to approximate incompressibil-
ity, which can cause visible compression or “bouncing” artifacts. Consequently, there has
been subsequent work focusing on reducing spurious divergence, e.g., weakly compressible
SPH (Becker and Teschner, 2007), predictive-corrective SPH (Solenthaler and Pajarola,
2009), divergence-free SPH (Bender and Koschier, 2015). Akinci et al. (2012) further
made thin solid obstacles (i.e., a single layer of particles) possible in the SPH framework,
which makes the SPH framework more flexible. The coverage of SPH is expanding just
like grid-based methods: we can simulate incompressible elastic solids (Peer et al., 2017),
rigid bodies (Gissler et al., 2019), snow (Gissler et al., 2020), and even ferrofluids (Huang
et al., 2019) using SPH.

49

There are other particle-based methods, for example, De Goes et al. (2015) used vol-
umetric parcels that partition the fluid domain using a power diagram to better preserve
fluid volume.

One can also use an explicit representation of the fluid surface (e.g., triangle meshes)
and move the explicit surfaces over time (Keeler and Bridson, 2015; Pfaff et al., 2012).
The explicit surface representation can be advantageous for preserving fine-level details
and simulating thin liquid volumes, but remeshing is required as meshes often become
tangled or ill-shaped (Brochu and Bridson, 2009; Da et al., 2014).

8.2 Divergence-Free Fields

8.2.1 Vector Potentials

Recovering Discrete Vector Potentials

A few vector potential-based Eulerian or hybrid solvers have been proposed in the fluid
animation literature, but most operate solely in the discrete realm and require solving a
costly vector Poisson equation. Elcott et al. (2007) solved a vector Poisson problem to
recover the vector potential from vorticity within a simplicial discretization of the vorticity
equation, whereas Ando et al. (2015) developed a vector Poisson-based alternative to the
standard grid-based pressure projection. Notably, Ando et al. (2015) suggested employing
vector potential interpolation as interesting future work. Similarily, Sato et al. also recover
the vector potential from a velocity field in fluid control applications (Sato et al., 2021,
2015) by solving the vector Poisson equation. Our proposed vector potential reconstruction
strategy offers a significantly more efficient solution, finding the desired potential at essen-
tially the cost of a single scalar Poisson solve if the input velocity field is divergence-free,
or two otherwise, even in the presence of cut-cell boundaries.

For 2D flow visualization, Biswas et al. (2016) recovered the discrete (scalar) stream
function from velocity data and used marching squares to construct streamlines. They
proposed an axis-based sweeping approach for 2D stream function recovery; our proposed
sweeping approach generalizes this idea to irregular cut-cell boundaries and three dimen-
sional vector potentials.

More generally, discrete vector field (Hodge) decomposition techniques have long been
of interest in graphics (Tong et al., 2003). Recently, more elaborate five-component discrete
decompositions were considered by Poelke and Polthier (2016) for piecewise constant vector

50

fields on 3D triangulated surfaces and by Zhao et al. (2019) for face and edge-based tetra-
hedral discrete vector fields, including various choices of gauge and boundary conditions.
These approaches also determine the potentials directly from the vector field via a vector
Poisson solve (and in the five-component case, further require solving eigenproblems).

Gauge Conditions

The methods most similar to ours are those that use explicit vector potentials. Since the
vector potential for a given velocity field is not unique, various gauge conditions are used to
select a particular potential from this null space. The gauge choice provides one dimension
along which to categorize the schemes discussed below. Another is whether they apply
a local approach to find the vector potential, based on a cell-by-cell (possibly branching)
traversal, or find a simultaneous global solution by solving a linear system. We straddle
these categories: our parallel sweeping approach is a fast cell-by-cell scheme that yields
an initial potential, which we correct with a relatively inexpensive scalar Poisson solve to
ensure smoothness by enforcing the Coulomb gauge, ∇ ·ψ = 0. Furthermore, beyond our
innovations in the uniform grid setting, our work is unique in considering interior solid
geometry via cut-cells.

The Coulomb gauge condition, which picks out a unique smooth vector potential by
enforcing the potential to be divergence-free, is perhaps the most common gauge and has
been used in graphics, (e.g., (Ando et al., 2015)). The implicit gauge condition used in
our 3D parallel sweeping method is conceptually similar to that of Ravu et al. (2016), who
sought to directly construct spline-based vector potentials. Like our initial vector potential
construction, they set the ψz component to zero. However, their overall approach differs
in that (a) their velocity and vector potential degrees of freedom are colocated at nodes,
(b) they directly seek the coefficients of continuous cubic spline functions rather than
edge-based discrete vector potential values (hence four times as many unknowns), and (c)
compared to our fast parallel sweeping, they solve an expensive global linear system to find
the many required coefficients.

Another implicit gauge condition falls out from the tree-cotree approach, explored for
edge-based finite element methods by Albanese and Rubinacci (1990) on grids and Manges
and Cendes (1995) on meshes. This global approach determines a spanning tree of an
edge-based grid or mesh which one can safely set to zero, in order to explicitly eliminate
the null space of the matrix representing the discrete curl operator. This idea has natural
connections to the traversal patterns of cell-by-cell approaches.

Bao et al. (2017) proposed a divergence-free interpolation strategy on uniform staggered

51

grids that reconstructs a discrete vector potential field from velocities, to improve coupling
and reduce volume conservation errors in Peskin’s classic immersed boundary (IB) method
(Peskin, 2002). (IB uses smeared delta functions for approximate coupling with solids,
rather than the sharp cut-cell approach we advocate.) However, similar to methods in
graphics (Ando et al., 2015; Tong et al., 2003), they recover the vector potential under
the Coulomb gauge using a vector Poisson system; they also assume periodic boundary
conditions, which are undesirable for many graphics applications, highlighting non-periodic
domains as important future work. Their restriction to a perfect uniform grid with periodic
boundaries decouples the vector problem into three scalar Poisson solves that they treat
via the fast Fourier transform (FFT). Our method recovers the same potential with an
efficient sweep process and just one scalar Poisson solve, which can likewise be done by
FFT in the periodic case. For the actual interpolation on uniform grid regions, they use
tensor-product B-spline kernels similar to ours. Casquero et al. (2018) also address the
immersed boundary method on uniform grids, but like Evans and Hughes (2013) and in
contrast to Bao et al. (2017), they perform the entire simulation using divergence-free
B-spline basis functions rather than post-processing staggered grid data.

Silberman et al. (2019) also adopt a staggered uniform grid configuration and seek
a discrete edge-based vector potential, with the primary aim of interconverting between
electromagnetics solvers based on a vector potential A and a magnetic field B = ∇ ×
A. They propose a cell-by-cell flooding strategy that is sequential in nature and more
costly than ours. Specifically, our axis-based sweeping safely assumes zero values in the
z-component; this reduces the computation needed per cell, the total number of unknowns
(by one third), and the number of special cases, while enabling a solution based on easily
parallelized 1D sweeps. Like us, they use a Poisson-based gauge correction to subsequently
enforce the Coulomb gauge, but like Bao et al. (2017) they support only uniform grids
and simple boundary conditions to allow solution by FFTs. Silberman et al. (2019) also
suggest an alternative “global linear algebra” approach that is loosely similar to the vector
Poisson method of Ando et al. (2015) in that it both removes divergence and recovers a
potential satisfying the Coulomb gauge; they observe that this method has worse scaling
than their flood-then-correct approach.

Pointwise Divergence-Free Fields Using Vector Potentials

The Curl-Noise method (Bridson et al., 2007) uses a continuous vector potential for proce-
dural design of animated divergence-free vector fields. Divergence-free sub-grid turbulence
models subsequently built on these ideas (Kim et al., 2008; Schechter and Bridson, 2008).
Incidentally, Schechter and Bridson (2008) also used (but did not present or describe) a

52

divergence-free hybrid constant-linear velocity interpolant (see their supplemental videos
at time 2:18-2:27, left), which we show can be derived from bilinear stream function in-
terpolation. This is the only prior instance of divergence-free grid-based interpolation in
computer animation of which we are aware. Vector potentials have also been used in
geometry processing for shape interpolation (Eisenberger et al., 2018).

8.2.2 Dual Stream Functions

Just like the velocity fields obtained by applying curl to the stream functions or vector po-
tentials are divergence-free, there is another similar way to build such divergence-free fields
branching from the same root: the cross product of two gradient functions is divergence-
free by construction. This can be simply verified: for scalar functions λ, µ and φ, if we
define the vector potential as ψ = λ∇µ − ∇φ, then the corresponding velocity becomes
u = ∇×ψ = ∇λ×∇µ. This approach is often called dual stream functions (Frewer et al.,
2014; Li and Mallinson, 2006). In fluid animation, DeWolf (2006) used the dual stream
function approach to generate divergence-free noise for turbulence, and in geometry pro-
cessing, Von Funck et al. (2006) used it for volume-preserving deformation for use in 3D
modeling of shapes.

8.2.3 Vortex Methods

Like our work, Lagrangian vorticity-based simulation methods also employ a secondary
vector variable to construct analytically divergence-free velocity fields; specifically, velocity
is computed from vorticity via the Biot-Savart law. These methods come in many forms,
including Lagrangian particles (Park and Kim, 2005), filaments (Angelidis and Neyret,
2005), sheets (Brochu et al., 2012; Pfaff et al., 2012), and bubbles (Da et al., 2015); closely
related boundary integral/element (surface-only) methods similarly offer divergence-free
fields by construction (Da et al., 2016). Model-reduced fluid simulation methods based on
Laplacian eigenfunctions can offer pointwise divergence-free fields by using analytical basis
functions (Cui et al., 2018; De Witt et al., 2012), albeit in restricted domains (e.g., boxes).

8.2.4 Matrix-Valued Radial Basis Functions

An alternative divergence-free interpolation strategy for mesh-free point data is provided
by McNally (2011) and Lowitzsch (2005), who exploit matrix-valued radial basis func-
tions (RBF) and properties of the vector Laplacian. They apply the double-curl operator

53

(∇∇T −∇2I) to a scalar RBF making the interpolant generate smooth and divergence-free
fields. Note that the matrix-valued RBF implicitly satisfies the Coulomb gauge condition.
Although this mesh-free method offers divergence-free fields, it struggles to enforce bound-
aries precisely and, more critically, we found it to be far more costly, since it requires a
global solve to simultaneously determine coefficients for all of the radial basis functions.
Using global kernels induces a fully dense system, and substituting local kernels also has
limitations: a sufficient support radius is needed to avoid local oscillations but also makes
the system matrix unattractively dense. The matrix-valued RBF also requires colocated
vector velocity data and each sample has three DOFs which can further scale up the size
of the system matrix.

8.2.5 Divergence-Free Finite Element Methods

In applied mathematics, a wide range of discontinuous Galerkin (DG) and other non-
conforming finite element schemes have been developed to offer pointwise divergence-free
fields, often by adopting carefully designed incompressible basis functions on each element
(e.g., (Cockburn et al., 2004; Lehrenfeld and Schöberl, 2016; Rhebergen and Wells, 2018)).
However, such methods tend to have a more complex implementation and do not naturally
integrate with standard approaches in fluid animation; moreover, they possess pervasive
field discontinuities at element borders by their nature, which can be problematic for vi-
sual applications. Guzmán and Neilan (2014) tackled the rather more challenging task of
designing a fully conforming/continuous Stokes finite element method yielding divergence-
free solutions on 3D tetrahedra. Doing so required a specialized finite element basis con-
sisting of a combination of cubic polynomials and divergence-free rational functions, and
due to the construction’s complexity the authors note that “practical significance of the
proposed elements may be questionable”. In isogeometric analysis, Evans and Hughes
(2013) developed an exactly divergence-free Navier-Stokes simulation framework based on
geometrically mapped rectangular B-spline grids; approaches in this vein require complex
mesh construction for non-trivial domains, in contrast to the simpler and more efficient
cut-cell techniques often preferred in animation. In fact, all of the approaches above would
necessitate replacing the entire Navier-Stokes simulator, while ours provides a convenient
plug-in upgrade to the advection phase of industry-standard visual effects methods. Thus,
somewhat closer to our approach are methods that post-process flow solver solutions to
exactly recover a divergence-free velocity field. For example, Linke (2012) converted the
solution of a staggered triangulated discretization into a strictly divergence-free field in
terms of Raviart-Thomas elements. Lederer et al. (2017) proposed a velocity reconstruc-
tion operator that maps discretely divergence-free fields of Taylor-Hood and mini elements

54

to exactly divergence-free ones, and suggested using their method as a postprocessing of
the discrete solution in the conclusion. However, like the DG methods discussed above, the
resulting finite element spaces (i.e., velocity fields) are not continuous between elements.

8.2.6 Direct Interpolation of Finite Volume Solutions

In a computational fluid dynamics context, Jenny and colleagues (Jenny et al., 2001; Meyer
and Jenny, 2004) derived 2D divergence-free node-based velocity interpolants for uniform
grids and demonstrated that these offer improved particle distributions in particle-in-cell
schemes. In geodynamics, Wang et al. (2015) developed the 3D extension, and Pusok et al.
(2017) adapted it to face-based data by first averaging to the nodes. These approaches
augment multilinear interpolants with correction terms that upgrade them to satisfy point-
wise incompressibility. In astrophysics (magnetohydrodynamics), Balsara (2001, 2004) pro-
posed similar divergence-free vector field reconstruction strategies based on local piecewise
quadratic fitting on each cell or tetrahedron. In this strategy, one presupposes a polynomial
basis and uses the divergence-free condition to determine constraints on it. Nearby vector
field values or derivatives are used to solve for the coefficients. Balsara (2009) later pre-
sented an extension of this approach to Cartesian grid WENO schemes. These approaches
do not consider cut-cell geometries, and exhibit kinks between cells.

The approaches above do not require recovering a vector potential at all. On the other
hand, the recovered fields exhibit pervasive discontinuities between cells, and to achieve a
given order of accuracy or support a particular geometry, they must be carefully designed
on a case-by-case basis. Our choice to instead recover and exploit an explicit discrete
vector potential makes it comparatively straightforward to derive generalizations to higher
order accuracy, global continuity/smoothness, or different element shapes, using standard
interpolation techniques, including spline interpolants and mesh-free methods. Having the
vector potential available can also enable useful fluid control tools (Sato et al., 2021, 2015).

8.2.7 Subdivision Schemes

Subdivision schemes based on discrete exterior calculus consider how to preserve key prop-
erties of discrete differential operators on triangulated surface meshes undergoing mesh
refinement (De Goes et al., 2016; Wang et al., 2006). These papers focus on surfaces and
do not consider volumetric uniform grids or polyhedral cut-cells. More fundamentally,
they achieve pointwise incompressibility only in the limit of infinite refinement. It would
be interesting to explore whether these ideas can be adapted to general polyhedra.

55

Chapter 9

Preliminaries

In this chapter, we briefly review grid-based fluid simulation methods which our work
is based on. Since our method specifically focuses on the advection step in grid-based
methods, and assumes the input velocity fields are discretely divergence-free (which is
typically achieved in the pressure projection step), the advection and projection steps are
mainly addressed. Also, our method leverages secondary variables called stream functions
in 2D, or vector potentials in 3D, for pointwise divergence-free interpolation, so we review
the usage of discrete and continuous vector potentials in graphics.

9.1 The Equations of Fluids

The incompressible Navier-Stokes equations have the form

∂u

∂t
= −u · ∇u +

f

ρ
− ∇p

ρ
+
∇ · τ
ρ

,

∇ · u = 0,

τ = µ
(
∇u + (∇u)T

)
,

(9.1)

where u is velocity, f is external forces, p is pressure, τ is the viscous shear stress tensor,
ρ is fluid density, and µ is dynamic viscosity. Given the non-linear characteristics of the
advection term (−u ·∇u), each term in (9.1) is often solved independently (Bridson, 2015;
Chorin, 1968; Stam, 1999): applying external forces, solving for pressure and viscosity
in one step (Larionov et al., 2017) or in different steps (Batty and Bridson, 2008), and
advecting fluid as shown in Figure 9.1.

56

advection external forces pressure 
(+ viscosity)

∂u

∂t
= −u · ∇u

∂u

∂t
=

f

ρ

∂u

∂t
= −∇p

ρ

(
+
∇ · τ
ρ

)
∇ · u = 0

Figure 9.1: Operator splitting approach to the incompressible Navier-Stokes
equations.

The Navier-Stokes equations without the viscosity term are called the Euler equations:

∂u

∂t
= −u · ∇u +

f

ρ
− ∇p

ρ
(9.2)

and we use the Euler equations throughout the thesis for simplicity, but adding viscosity
or additional forces does not affect our method as they are solved in a separate step. This
leaves us with just two steps, discussed further below: advection, which transports the fluid
velocity along with the flow itself, and pressure projection, so called because it projects
the velocities to be incompressible.

In Algorithm 1, the pseudocode for simulating such inviscid fluids is provided. To
use our Curl-Flow method, one needs to replace previous particle advection approaches
(line 8) to our method (line 5, 6). Our Curl-Flow method can also be applied to velocity
advection (line 10), but we only use it for advecting passive particles to isolate the effects
of interpolation for comparison (Section 10, second paragraph). This algorithm can be
further extended to incorporate other grid quantities (except grid velocity), viscous fluids,
etc.: just like in Algorithm 1, only the advection steps differ from existing methods.

9.2 Pressure Projection

Using the Helmholtz-Hodge decomposition, a vector field can be decomposed into three
terms,

u = ∇θ +∇×ψ + H. (9.3)

57

Algorithm 1: Pseudocode for Simulating Inviscid Fluids.

1 for each timestep do
2 apply external forces . gravity, buoyancy, etc.
3 perform pressure projection . enforce discrete incompressiblilty
4 if using Curl-Flow . using our Curl-Flow method
5 build desired interpolant
6 advect particles with our interpolant

7 else . using previous methods
8 advect particles using direct velocity interpolantion
9 end

10 advect velocity (semi-Lagrangian)

11 end

where the first term (∇θ) is curl-free (i.e., zero curl), the second term (∇×ψ) is divergence-
free (i.e., zero divergence), and the third term (H) is harmonic which is both curl-free and
divergence-free. There are two complementary ways to obtain divergence-free fields:

• find the divergence-free components in (9.3) directly, or

• find the divergent component first (i.e., ∇θ), and subtract the divergent field from
the input field, i.e., udiv−free = u−∇θ.

They may sound similar but the system of equations and variables are completely
different in the discrete setting. The latter is used in this section, while the former is
addressed in the following section (Section 9.3). Considering only the velocity change due
to pressure, we have

∂u

∂t
= −∇p

ρ
, (9.4)

and if we discretize (9.4) in time using forward Euler, we obtain

un+1 = un −∆t
1

ρ
∇p.

(9.5)

This indeed has the shape of subtracting the divergent part in (9.3) from the input field un,
where

(
∆t1

ρ

)
p corresponds to θ. Intuitively, the pressure gradient, ∇p, acts as a force to

58

enforce the divergence-free condition (∇ · un+1 = 0). To find such p (or θ), the divergence-
free condition is applied to (9.5):

∆t

ρ
∇ · ∇p = ∇ · un (9.6)

which forms a scalar Poisson equation. For simplicity, we first consider the spatial dis-
cretization for a uniform Cartesian grid in 2D. We discretize the Poisson equation (9.5) in
space using centered finite differences with the sample locations in Figure 9.2, left:

∆t

ρh2
(pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − 4pi,j) =

1

h
(ui+ 1

2
,j − ui− 1

2
,j + vi,j+ 1

2
− vi,j− 1

2
).

(9.7)

Here, h is the width of each grid cell, which we assume to be a square (a cube in 3D), ∆t
is a simulation timestep, ρ is the density of the fluid, and p, u, and v are the samples of
pressure, x- and y-component of velocity, respectively. The subscripted indices indicate the
row/column positions within the grid; integer indices correspond to cell centers, with half-
integer indices used for face locations. In 3D, we have different sample locations but used
the same subscripted index convention (Figure 9.3, left). In this way, the discretization in
2D naturally extends to 3D with additional modifications due to z-directional components.

∆t

ρh2
(pi+1,j,k + pi−1,j,k + pi,j+1,k + pi,j−1,k + pi,j,k+1 + pi,j,k−1 − 6pi,j,k) =

1

h
(ui+ 1

2
,j,k − ui− 1

2
,j,k + vi,j+ 1

2
,k − vi,j− 1

2
,k + wi,j,k+ 1

2
− wi,j,k− 1

2
)

(9.8)

ui+ 1
2
,jui− 1

2
,j

vi,j+ 1
2

vi,j− 1
2

pi,j
h

h

hy

hx

ls

Vs

Figure 9.2: Fluid Discretization in 2D. Left: pure fluid cell. Right: fluid cell partially
filled by a solid obstacle (blue). Vs refers to the velocity flux on the solid boundary.

59

pi,j,k ui+ 1
2
,j,k

vi,j+ 1
2
,k

wi,j,k++ 1
2

Vs

Af

Ar

At
As

Figure 9.3: Fluid Discretization in 3D. Left: pure fluid cell. Right: fluid cell clipped
against a solid obstacle. Ar, At, Af , and As are the area of the right, top, front, and solid
face, respectively. Vs refers to the velocity flux on the solid boundary.

9.2.1 Boundary Conditions

Ignoring two-way interactions between fluids and dynamically simulated solids, which is
outside of the scope of our work, there are two typical boundary conditions depending on
what forms the interface.{

un+1 · n = usolid · n, fluid-solid boundary

p = 0, free surface

As our primary target of simulation is smoke, we omit the free surface condition that is
imposed at the interface between a liquid and air. The solid boundary condition describes
the free-slip condition: the fluid velocity component in the normal direction (un+1 · n)
is forced to match that of the solid obstacle (usolid · n) while fluid can freely slip in the
tangential direction. As a side note, enforcing this condition on the pressure projection
implies fluids at the interface do not penetrate into or cleave solid obstacles, but only in the
discrete setting. When using pointwise velocities (e.g., by interpolating discrete velocity
samples), this can easily be violated: fluid particles easily pierce solid obstacles thus extra
treatments are required. As a simple remedy, the penetrated particles are often pushed
back to the surface, but we highlight a potential problem of this simple approach and
propose an improved solution (Section 11.2.3, 12.3.2).

For the cells where solid obstacles cut through, or cut-cells (Figure 9.2, right), the
Poisson equation (9.7) requires additional modifications to incorporate the influence of the
solid. The solid geometry is obtained from marching cubes (marching squares in 2D) of

60

a solid level set. We use the divergence theorem to effectively enforce the incompressible
condition in the presence of solid obstacles:∫∫

A

∇ · u dA =

∫
C

u · dn

where A is a region in the plane whose boundary is a closed curve C. Using the divergence
theorem, the discrete divergence in the example of Figure 9.2, right, becomes

[∇ · u](i,j) =
1

h2

(
− hxvi,j− 1

2
− hui− 1

2
,j + hvi,j+ 1

2
+ hyui+ 1

2
,j − lsVs

)
. (9.9)

Thus for the cut-cells, the right hand side of the Poisson equation (9.6) can be obtained
by plugging un into (9.9). The left hand side can also be computed in a similar manner
by putting ∇p in place of u in (9.6) with necessary modifications:

[∇ · ∇p](i,j) =
1

h2

(
− hx

pi,j − pi,j−1

h
− (pi,j − pi−1,j) + (pi,j+1 − pi,j) + hy

pi+1,j − pi,j
h

)
.

This coincides with the finite volume approach of Ng et al. (2009). This approach naturally
extends to 3D; we can simply use the 3D version of the divergence theorem,∫∫∫

V

∇ · u dV =

∫∫
S

u · dS

where V is a solid region and S is the boundary surface of V . Like the 2D case, the discrete
divergence in the case of Figure 9.3, right, can be defined as

[∇ · u](i,j,k) =
1

h3

(
− h2ui− 1

2
,j,k − h2vi,j− 1

2
,k − h2wi,j,k− 1

2

+ Arui+ 1
2
,j,k + Atvi,j+ 1

2
,k + Afwi,j,k+ 1

2
+ AsVs

) (9.10)

where Ar, At, Af , and As refer to the area of right, top, front, and solid face, respectively,
and Vs is the normal flux on the solid face. Similarly to the 2D case, we can discretize the
Poisson equation (9.6) for cut-cells using (9.10). The expressions for the cut-cells can be
viewed as a generalization for the regular cell cases: they roll back to the equations for the
regular cells in the absence of solid obstacles. Having solved the resulting linear system
for pressure, we determine the new discretely incompressible velocity field by evaluating
(9.5), un+1 = un − ∆t1

ρ
∇p. Note that when we refer to a vector field as “discretely

incompressible” or “discretely divergence-free”, it means that (9.9) or (9.10) evaluates to
zero.

61

9.3 Vector Potentials

As alluded to in the previous section (Section 9.2), there are different ways of enforcing
discrete incompressibility. In this section, we use a different approach from the previous
section: we find divergence-free fields directly using a variable called a vector potential
(or ψ) in 3D, or a stream function (or ψ) in 2D, instead of finding the pressure values
and subtracting the pressure gradients from the original field. Since we assume a simply
connected closed domain with static boundaries, the harmonic component in (9.3) will be
zero, thus a vector field can be decomposed as

u = ∇θ +∇×ψ. (9.11)

(If a nonzero harmonic field is required, e.g., a high-genus geometry, one needs to pre-
compute and reinject the harmonic part (Elcott et al., 2007).) Now the complementary
relation between the pressure (or θ) and the vector potential is more obvious, and the
divergence-free vector field can be written as udiv−free = ∇×ψ. To find such ψ, we apply
the curl operator to (9.11):

∇× (∇×ψ) = ∇(∇ ·ψ)−∇2ψ = ∇× u. (9.12)

Since the solution ψ is the inverse curl of udiv−free, there exists an infinite number of
solutions, thus additional gauge conditions are required to uniquely define ψ. Perhaps the
most popular choice for the gauge is the Coulomb gauge, ∇ ·ψ = 0, which gives a smooth
ψ field. With this condition, (9.12) is further simplified to a vector Poisson problem,

∇2ψ = −∇× u. (9.13)

Note that in (9.13), whether the input field u is divergence-free is not important; the
divergent term in (9.11) vanishes with the curl operator.

Ando et al. (2012) arrived at the same results by solving a minimization problem

argmin
ψ

∫
Ω

1

2
||u−∇×ψ||2dV +

1

2
(∇ ·ψ)2dV, (9.14)

where we assume a uniform density of fluid for simplicity. The first term is about finding
ψ where ∇ × ψ is as close to u as possible. The second term is a regularizer to remove
the null space in the first term. The regularizer encodes the Coulomb gauge condition. If
we discretize (9.14), take the derivative with respect to ψ, and set it to zero, we obtain a
linear system

([∇×]T [∇×] + [∇·]T [∇·])[ψ] = [∇]2[ψ] = [∇×]T [u]

62

where [·] means discrete terms (a matrix or a vector). We assume the grid cells are pure
fluid cells (i.e., smoke in regular cells) for simplicity, but we can easily adapt this method
to consider volume fractions of the fluid in each cell. In general, the vector Laplacian of
∇2ψ in Cartesian coordinates reduces to the much simpler form:

∇2ψ = (∇2ψx,∇2ψy,∇2ψz) (9.15)

which enables solving for each component of ψ independently unless other constraints (e.g.,
boundary conditions) tie them together.

9.3.1 Applications of Vector Potentials in Graphics

In this section we briefly review two closely related papers in graphics that make use of
either discrete or continuous vector potentials.

Liquid Simulations Using Discrete Vector Potentials

Ando et al. (2015) used a discrete vector potential method to simulate liquids with bubbles.
With the same method, one can simulate incompressible smoke also, but when it is applied
to liquids it yields a special effect: despite solving only for variables on or inside the liquid
volume, the volume of the ambient air or bubbles are automatically preserved. The volume
conservation comes from having ψ samples at the surface of the bubbles or (closed) air
regions: the net flux of the encapsulated bubbles are enforced to be zero (Figure 9.4). The
ψ samples at the surface effectively capture the volume-preserving motions of the bubbles
such as the glugging effect of liquid flowing through the neck of a bottle or watercooler.
Although the pressure-based methods do not give such effects when naively used, the
use of a (variation of) vector Poisson solve makes this method less attractive due to its
computational cost. Furthermore the vector Poisson solve cannot be decomposed into three
independent scalar Poisson solves due to their boundary conditions which makes the size
of the linear system approximately three times larger than a scalar Poisson solve.

Procedural Design of Turbulent Fluid Using Continuous Vector Potentials

Bridson et al. (2007) used a continuous vector potential for procedural design (as opposed
to physical simulation) of random and divergence-free vector fields, which is referred to as
the Curl-Noise method. Vector potentials are a great ingredient to build divergence-free

63

air

water

Figure 9.4: Air cells (white) surrounded by water cells (blue). The red circles at
the nodes represent ψ samples in 2D. Even though the interior nodes in the air do not have
the degrees of freedom of ψ, the ψ values on the interface ensures the total volume of the
encapsulated air cells is preserved.

velocity fields but they are relatively unwieldy to control in comparison with directly con-
trolling velocities. Therefore, Bridson et al. further provided ways to process or prescribe
velocity fields using vector potentials to achieve specific behaviors such as obtaining a rigid
body motion and making velocity fields not penetrate solid obstacles. Our exact solid
boundary enforcement (Section 11.2.3, 12.3.2) stems from their ramping strategies toward
a solid obstacle, where the normal velocity is enforced to be zero on the solid surface.
Taking the 2D case as an example, the velocity recovered from the curl of ψ is

u =

(
∂ψ

∂y
,−∂ψ

∂x

)
= ∇ψ⊥ (9.16)

where (·)⊥ means a 90◦ rotation. Since the normal velocity is determined by ∇ψ in the
tangential direction, they proposed modulating ψ with a ramp to a constant value of zero
along the solid boundary (Figure 9.5(a)),

ψ′(x) = α(x)ψ(x), (9.17)

where α is a smooth function, α = ramp(d(x)/d0), d0 is an influence radius, and d(·) is the
distance to the surface. We adopt Bridson’s ramp function

ramp(r) =

1, if r ≥ 1

15

8
r − 10

8
r3 +

3

8
r5, if − 1 < r < 1

− 1, if r ≤ −1

64

and use the width of a grid cell for d0 in the examples of Figure 9.5. Although this
approach effectively prevents boundary-penetrating velocity fields, it has two potential
problems: first, setting the target ψ value blindly to zero on all boundaries can distort
the velocity field. In Figure 9.5, the value of ψ along the left and right boundaries varies
from 0 to 0.5 (bottom to top) to simulate a horizontal flow. Applying ramping on top of
this field, to force ψ to match the target value of zero on the boundary, can detrimentally
change the flow in both direction and magnitude (Figure 9.5(b)). Assuming we know the
desired target value ψt (see Section 11.2.2), we can modify the ramping function (9.17) as

ψ′(x) = α(x)ψ(x) + (1− α(x))ψt(x), (9.18)

to ramp to ψt instead of zero. Knowing the function for the target ψt, the major source
of the velocity distortions goes away. Taking a closer look, one can notice the ramping
function (9.18) modifies the value of ψ by multiplying by a smooth function α (followed by
adding an additional term if ψt is not zero). This ramping strategy effectively constrains
the normal velocity on the solid surface, but at the same time, it steepens and flattens
the curve of ψ in the normal direction, leaving unnatural patterns of velocity magnitude
toward the solid obstacle. Figure 9.5(c) is the plot of the velocity magnitude where yellow
represents large values in magnitude while red means zero magnitude. In this figure, the
ramping pattern near the solid or exterior boundary is pronounced: see the bands of yellow
near the boundaries followed by red regions. The unramped velocity fields in (d) do not
display such patterns, which proves that the unnatural patterns are from the ramping
scheme (although the unramped fields also do not fully respect the boundary). The same
problems also arise in 3D. We introduce improved ramping strategies for both 2D and 3D
in Sections 11.2.3, 12.3.

9.4 Advection

The advection part in the Euler equations (9.2) is

∂q

∂t
+ u · ∇q = 0, (9.19)

where u is a divergence-free velocity field and q is any scalar (e.g., density) or vector (e.g.,
velocity) quantity to be advected. For a typical smoke simulation, there are two quantities
to be advected: the velocity field itself, as part of the Euler or Navier-Stokes equations, and
the smoke/soot representation used for visualization, typically either particles or a scalar
density field. The need for divergence-free velocity fields is obvious; we would not want to

65

t

n
ψ

Solid

(a) (b)

(c) (d)

Figure 9.5: Curl-Noise Ramping: (a) Curl-Noise ramping enforces the value of ψ to be
zero on the solid boundary. The ramping effectively enforces zero gradient in the tangential
direction, but the curve of ψ in the normal direction is flattened at the ends and steepened
in the middle. (b) Original Curl-Noise ramping with the target value of zero applied to a
steady rightward flow. Red trails represent flow in the reverse (-x) direction. The constant
inflow/outflow rate is described by a vertical linear stream function value from 0 to 0.5
from bottom to top. Naively ramping to zero distorts the direction and magnitude of the
flow although the velocity field remains boundary-respecting. (c) The velocity magnitude
plot with a correct (nonzero) target ψt from a solver. The magnitude increases from red to
yellow. Modifying the target value to correct one in this way removes the artifacts shown in
(b). However, there remains a pronounced unnatural pattern in ∇ψ (or velocity) near the
solid and exterior domain boundary. (d) The same velocity magnitude plot but without
ramping. This comparison indicates the spurious patterns in (c) are from the ramping
scheme.

66

gain or lose the volume (or other quantities) of the fluid during advection for incompressible
fluids. Thus, when using a Chorin-style advection-projection scheme (Bridson et al., 2007;
Chorin, 1968; Stam, 1999), it is often preferred to place advection immediately after the
projection step, so the quantities can flow under a divergence-free velocity field. Semi-
Lagrangian type schemes have been particularly popular for advection as they provide
unconditional stability unlike explicit Eulerian time integration schemes (e.g., forward
Euler or upwinding schemes). To update the grid quantity qG at the grid position xG
during the advection step, we first backtrace the trajectory from xG by one timestep to
find the hypothetical departure position xD that lands at xG according to the given velocity
field. Just like a Lagrangian approach, we assume the quantity does not change during the
advection step, so we can simply copy the quantity at xD (qnD) to the quantity at the grid
xG (qn+1

G), and consequently, (9.19) is trivially satisfied. However, since the quantity lies
only on the grid (e.g., cell centers, cell faces, cell vertices, etc.) we do not know the value of
the quantity at an arbitrary position xD which necessitates interpolating the nearby grid
quantities. So this is an Eulerian method using the Lagrangian framework for backtracing,
thus semi-Lagrangian (Figure 9.6). With a simple forward Euler time discretization for
the backtrace, the quantity at the grid is updated as

qn+1
G = interpolate(qnG, xG −∆tun(xG)). (9.20)

We can further improve the backtracing in (9.20): one can use higher order Runge-Kutta
schemes (e.g., RK2, RK3, RK4, etc.) to more accurately trace the quantity in time. Like-
wise one can use higher order interpolation methods in space (e.g., cubic) while reducing or
avoiding potential overshooting problems (Fedkiw et al., 2001; Fritsch and Carlson, 1980).
Alternatively, one can use high order accurate upwind methods such as WENO schemes
(Kim et al., 2013), or take multiple backward and forward advection steps (Kim et al.,
2007, 2005; Selle et al., 2008a) to reduce error.

Yet another popular strategy is to use secondary particles for velocity advection. A
widely used method is a linear combination of Particle-in-Cell (PIC) method and Fluid-
Implicit-Particle (FLIP) method (Zhu and Bridson, 2005). When using these particle-based
advection methods, we need to transfer the quantities such as velocities back and forth
between the grid and the particles, because the underlying physics is computed on a grid.
In Figure 9.7, the particle velocities are transferred to the grid (unG), since the subsequent
steps are performed on the grid (e.g., applying external forces and pressure projection).
Once we apply the forces, the grid velocities are updated (un+1

G) and transferred back
to the particles (un+1

P) to advect. In PIC, the final particle velocities (un+1
P) are simply

interpolated from the final grid velocities (un+1
G), while in FLIP, the grid velocity increments

(un+1
G − unG) are interpolated to the particles, and added to the previous particle velocities

67

qn+1
G (xG)

qnD(xD)

Figure 9.6: Semi-Lagrangian Advection: To update the grid quantity at xG, first back-
trace the position where xG would be in the previous frame using the underlying velocity
field. Then copy the (interpolated) value of qnD(xD) to qn+1

G (xG).

(a) unP (b) unG (c) un+1
G (d) un+1

P

Figure 9.7: Velocity Transfer between Particles and Grid. (a) initial particle ve-
locities. (b) grid velocities transferred from particle velocities. (c) final grid velocities
after applying all forces (e.g., external forces, pressure force, etc.). (d) updated particle
velocities transferred back from the grid velocities.

68

(unP). This increment is done to avoid the blurring out of velocity and resulting artificial
dissipation due to repeated interpolation in PIC. In practice, PIC and FLIP are combined
with a regularization parameter α (typically α ≈ 0.98) to balance the overly noisy behavior
of FLIP with the over-smoothing of PIC.

un+1
P = (1.0− α) · uPIC + α · uFLIP , α ∈ [0, 1] (9.21)

Once the velocities are returned to the particles, the particles passively flow with the (in-
terpolated) background velocity fields (un+1

G). The conversion is typically done by using a
kernel function. For simplicity, assuming particle quantities are being transferred to the
grid in 2D, let us denote the kernel function for the grid index (i, j) as Ni,j(x). For higher
(than one) dimensional interpolation, we use multiplication of one dimensional kernel func-
tions (Steffen et al., 2008),

Ni,j(xP) = N

(
1

∆x
(xp − xi)

)
N

(
1

∆y
(yp − yj)

)
, in 2D, (9.22)

where N represents a one-dimensional kernel function, xP = (xp, yp), (xi, yj) refers to the
grid sample location, and ∆x and ∆y are the width and height of the grid cell, respectively.
The choice ofN depends on the application. A linear kernel is often used for fluid simulation
while quadratic or cubic functions are preferred in the Material-Point-Method (MPM)
(Jiang et al., 2016), as it uses∇Ni,j(x) to compute elastic forces and discontinuous∇Ni,j(x)
causes unwanted jumps in the forces. In our interpolation method, we also use the quadratic

69

kernel to ensure continuous ∇×Ni,j(x) (see Section 10). The shape of the kernels are:

Nlinear(x) =

{
1− |x|, if 0 ≤ |x| < 1

0, otherwise

Nquadratic(x) =

3

4
− |x|2, if 0 ≤ |x| < 1

2

1

2

(
3

2
− |x|

)2

, if
1

2
≤ |x| < 3

2

0, otherwise

Ncubic(x) =

1

2
|x|3 − |x|2 +

2

3
, if 0 ≤ |x| < 1

1

6

(
2− |x|

)3

, if 1 ≤ |x| < 2

0, otherwise.

(9.23)

With the kernel functions (9.23), we can transfer a quantity from particles to grid in
a weighted average manner. For example, the x component of the velocity, u, on the
staggered grid becomes

ui+ 1
2
,j =

ΣpupNi+ 1
2
,j(xP)

ΣpNi+ 1
2
,j(xP)

, (9.24)

where up is the x component of the particle velocity.

Based on the discussion above, we can see that many modern advection schemes are
tightly related to interpolation of grid data: to obtain the pointwise velocity at an arbitrary
point in the domain as required to trace particle trajectories, we need to interpolate nearby
grid velocities. However, these existing advection schemes have a potential problem: in-
terpolating the discrete velocity samples fails to preserve the incompressibility constraint,
even if the grid data satisfies it. To see the problem with standard interpolants, we define
a linear interpolation function lerp(a, b, t) = (1 − t)a + tb and construct the bilinearly
interpolated velocity at a point P = (x, y) (see Figure 9.8) as

u(x, y) = lerp(lerp(u0, u1, αu(x)), lerp(u2, u3, αu(x)), βu(y))

v(x, y) = lerp(lerp(v0, v1, αv(x)), lerp(v2, v3, αv(x)), βv(y))
(9.25)

70

u0

u2

u1

u3

αu

βu

v0

v2

v1

v3

αv

βv

P

Figure 9.8: Direct Velocity Interpolation: To compute a pointwise velocity at point
P in a staggered velocity grid, one (bilinearly) interpolates the nearby velocity samples
component by component.

where the α and β functions return edge fractions (0 ≤ α, β ≤ 1) for the data indicated by
their subscripts. This interpolated velocity is not analytically divergence-free in general:

∇ · u =
lerp(u1 − u0, u3 − u2, βu(y)) + lerp(v2 − v0, v3 − v1, αv(x))

h
6= 0

(9.26)

where the grid cell width h appears due to the derivatives of α and β. We present improved
divergence-free interpolation schemes in Section 11.2.3, which will in turn lead to improved
advection behavior.

71

Chapter 10

Problem Setting

In this chapter, we present the problems of direct velocity interpolation which produces
divergent pointwise velocity as shown in (9.26). We build on a standard staggered grid-
based fluid solver for the incompressible Euler equations (Bridson, 2015; Fedkiw et al.,
2001) as reviewed in the preceding chapter. We represent solids using node-based level
sets, leading to simple marching cubes cut-cells. For cut-cell pressure projection, we use
the finite volume Poisson stencil of Ng et al. (2009). For velocity advection, we use semi-
Lagrangian backtracing with multilinear interpolation and third order Runge-Kutta.

We develop a new velocity interpolant for use during advection. Common advection
discretizations use semi-Lagrangian (Stam, 1999) or Lagrangian (Zhu and Bridson, 2005)
methods that trace trajectories through the flow and require interpolation to query velocity
at arbitrary locations. We focus on advecting passive particles, rather than velocity or other
variables affecting the dynamics; this lets us use identical simulated discrete velocity fields
in our evaluations, isolating the effects of incompressible interpolation.

Advection occurs after incompressibility enforcement (i.e., pressure projection) so that
u is (discretely) divergence-free. Discrete velocity components are placed at grid face
centers, so the discrete divergence-free condition is∑

faces f

Afuf = 0, (10.1)

where Af is face area and uf is the face’s outward oriented normal velocity component (see
Section 9.2 for details).

The simplest standard approach applies bilinear interpolation on each staggered velocity
component, but the resulting vector field’s analytical divergence is nonzero in general

72

(a) Interpolated velocity fields using standard bilinear (left), linear Curl-Flow (middle),
and quadratic Curl-Flow (right).

(b) Corresponding pointwise divergence plots (units: 1/s)

.

Figure 10.1: Pointwise Divergence Comparison: Left: Bilinear interpolation of dis-
cretely divergence free velocity data on a 3×3 grid. The red box in (a) highlights a spurious
sink. Middle: Linear Curl-Flow interpolation is perfectly divergence-free, but has piece-
wise constant components that induce kinks. Right: Quadratic Curl-Flow interpolation is
divergence-free and smooth.

73

(Section 9.4). Figure 10.1, left column, gives an illustration; advecting uniformly sampled
particles through this field (Figure 10.2, top row), a sink region absorbs a large number
of particles while many more cluster into large and small rings (Bridson et al. (2007) call
these “gutters”). Unfortunately, neither higher order interpolants (Figure 10.2, middle row)
nor using node-based/colocated velocity data resolve these issues, since such interpolants
remain divergence-oblivious. We use staggered multilinear interpolation as our baseline
direct velocity interpolant throughout the thesis, unless stated otherwise.

The middle and right columns in Figure 10.1 show the velocity and pointwise divergence
fields using the linear and quadratic variants of our approach, respectively, developed in
the next section. Since the linear case exhibits velocity kinks we prefer the quadratic, but
neither contain sinks or sources and their pointwise divergence fields are exactly zero.

Direct incompressible velocity interpolation As discussed in Section 8.2.6, sev-
eral existing approaches aim for divergence-free interpolation (or “conservative velocity
interpolation”) using velocity data directly, rather than using intermediate potentials. In
particular, Jenny et al. (2001) and Balsara (2001) used the same staggered grid layout as
us (and in practice yield identical fields to one another). Although these methods also
produce pointwise incompressible fields within each cell, velocity kinks are visible between
cells due to their piecewise construction and use of the minmod limiter (Jenny et al., 2001),
unlike our (quadratic) Curl-Flow method (Figure 10.3).

74

(a) Bilinear velocity interpolation

(b) Bicubic velocity interpolation

(c) Curl-Flow interpolation

Figure 10.2: Effect on Particle Distribution: Initially uniform particles advected
through a static 2D vector field on a 3 × 3 grid. Frames 1, 100, 200, and 300 are shown
from left to right. (a) With direct bilinear velocity interpolation, particles become heavily
clustered leaving large empty voids in the flow. (b) With higher order direct velocity in-
terpolation (monotonic cubic (Fedkiw et al., 2001; Fritsch and Carlson, 1980)), clustering
and spreading remain significant. (c) With our Curl-Flow interpolation using a quadratic
kernel, particles remain much more uniformly distributed, as expected.

75

(a) (b) (c)

Figure 10.3: Direct Incompressible Velocity Interpolation vs. Curl-Flow. (a) Dis-
crete and discretely divergence-free velocity field to interpolate. (b) Direct incompressible
velocity interpolation (Balsara, 2001; Jenny et al., 2001). The velocity field inside each
cell is incompressible, but discontinuities between cells are pronounced. (c) Curl-Flow
interpolation is pointwise incompressible and smooth both inside and across cells.

76

Chapter 11

Curl-Flow Interpolation In 2D

In this chapter, we present how to use our Curl-Flow method in 2D, which produces
pointwise divergence-free velocity. In 2D, velocity u has two components, u and v, and
the vector potential has only one scalar component, ψz, called the stream function and
denoted by non-bolded ψ. The relationship (7.1) simplifies to

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

That is, u = ∇ψ⊥ as shown in (9.16). To discretize, we place ψ samples at cell vertices
(Figure 11.1) and assume ψ varies linearly along edges. Figure 11.1(c) diagrams the rela-
tionship between two nodal ψ values and the normal component of velocity, vn, on their
shared edge eij having unit tangent eij and length l. The gradient theorem,∫

eij

∇ψ(r) · dr = ψ(xj)− ψ(xi), (11.1)

discretized on each edge, gives the relationship

ψj − ψi
l

= ∇ψ · eij = ∇ψ⊥ · e⊥ij = vn(n · e⊥ij). (11.2)

Since e⊥ij is oriented, unit length, and matches n up to a sign flip, the dot product simply
determines the sign.

77

ψ0 ψ1

ψ2 ψ3

ul

vb

ur

vt

(a)
ψ0 ψ1

ψ2

ψ3 ψ4

ul

vb

ur

vt

vn

(b)
ψi(xi, yi)

n

ψj(xj, yj)

vn

l

(c)

Figure 11.1: Discretization in 2D: Red squares represent discrete velocity samples and
blue circles represent discrete stream function samples. (a) A uniform grid cell. (b) A
cut-cell induced by clipping with a solid object. (c) The relationship between edge normal
velocity and stream function samples. For this case, vn = −(ψj − ψi)/l.

11.1 Uniform Grids in 2D

11.1.1 Recovering Discrete ψ

For a single uniform grid cell as in Figure 11.1(a), equation 11.2 leads to

ul =
ψ2 − ψ0

h
, ur =

ψ3 − ψ1

h
,

vb = −ψ1 − ψ0

h
, vt = −ψ3 − ψ2

h
,

(11.3)

consistent with finite differences on (9.16). We seek ψi satisfying the given velocities.
These equations have a 1D null space: constant offsets of all ψi do not change the ve-
locities. (Physically, discrete incompressibility ensures one flux is the negated sum of the
others, implying one equation is linearly dependent.) We select a unique solution by ar-
bitrarily setting ψ0 = 0. We determine the other ψi by traversing the cell’s edge graph,
computing each subsequent ψ value from its predecessor on the edge and the edge’s velocity
component. Discrete incompressibility ensures discrete integrability, i.e., looping back to
ψ0 gives a consistent result.

This graph traversal is also effective when applied to an entire uniform grid of cells,
thereby avoiding a traditional (and costly) global Poisson solve for ψ based on (7.2). Any
ordering suffices, but we aim to maximize parallelism. As proposed by Biswas et al. (2016)
and illustrated in Figure 11.2, we initially set ψ0 = 0, and sweep vertically to obtain all the
ψ values at x = x0 (i.e., ψ1 = ψ0 + hu0 and so on). We then sweep horizontally, in parallel,
to obtain all remaining ψ values. This approach is compatible with any standard exterior

78

ψ0

ψ1

ψ2

u1

u0

ψ0

ψ3v0

Figure 11.2: Parallel Sweeping efficiently recovers a 2D uniform grid discrete stream
function field. Left: First, sequentially compute all ψ values at x = x0, starting from
ψ0 = 0 and sweeping in the y direction. Right: Next, compute the remaining ψ values by
sweeping in the x direction in parallel.

domain boundary conditions (inflow/outflow/open/closed), since it only needs the velocity
data. Section 11.2 presents our proposed extension of this method to cut-cell irregular
solids.

11.1.2 Interpolating ψ

ψ0 ψ1

ψ2 ψ3

α(x)

β(y)

(x, y)

Figure 11.3: Interpolating ψ
in uniform grid

Interpolation of the grid ψ values provides an analytical
stream function at every point. Applying the analytical curl,
we obtain a velocity field which is pointwise divergence-free
by construction. For example, for bilinear interpolation (re-
ferring to the inset figure),

ψ(x, y) = lerp(lerp(ψ0, ψ2, β(y)), lerp(ψ1, ψ3, β(y)), α(x)),

u(x, y) =
lerp(ψ2 − ψ0, ψ3 − ψ1, α(x))

h
= lerp(ul, ur, α(x)),

v(x, y) = − lerp(ψ1 − ψ0, ψ3 − ψ2, β(y))

h
= lerp(vb, vt, β(y)),

(11.4)
where lerp(a, b, t) = (1 − t)a + tb and the rightmost equal-
ities follow from (11.3). In this specific case, the analytical

divergence is clearly zero because it exactly equals the finite difference divergence:

∇ · u =
ur − ul + vt − vb

h
= 0. (11.5)

79

Notably, the derivatives in the curl operator inherently induce a difference in polynomial
degree between axes: here, velocity components are piecewise constant in one axis and
piecewise linear in the other, introducing undesired tangential discontinuities between cells
(Figure 10.1, middle).

Fortunately, because we have the discrete ψ field at hand, we can recover velocity
continuity simply by upgrading the interpolation to a higher polynomial degree (Figure
10.1, right). Although many choices are possible, we adopt the quadratic dyadic B-spline
kernels popular in material point methods (Jiang et al., 2016; Steffen et al., 2008). The
quadratic kernels are sufficiently smooth, their analytical curl is straightforward to derive,
and they possess relatively small stencils for efficiency. Bao et al. (2017) similarly used
tensor-product B-splines to construct regularized Dirac delta functions in their divergence-
free immersed boundary method.

On 2D uniform grids, a velocity interpolant constructed in this way will conveniently
reduce back to a simple function of the original discrete u, v velocities, as seen in (11.4),
eliminating the need for explicit ψ values. This occurs because, in 2D, each velocity
component is defined by a single derivative of ψ and the associated null space is a constant
shift. However, deriving simple and general direct incompressible velocity interpolants in
this way becomes unwieldy or impossible in the presence of cut-cell geometry and especially
in 3D, where each velocity component depends on two vector potential components and
the null space is nontrivial.

11.2 Cut-Cells in 2D

11.2.1 Recovering Discrete ψ

Considering cut-cell solids during stream function reconstruction requires accounting for
truncated grid edges and non-axis-aligned “cut edges”. Applying (11.2) we get an update
rule for sweeping through such edges:

ψi+1 = ψi + li,i+1vi,i+1(e⊥i,i+1 · ni,i+1). (11.6)

For static (zero velocity) solids, the recovered ψ will be constant on the surface, i.e., an
isocontour along which particles should slide in a free-slip manner. Static obstacles also
preserve the simplicity of parallel sweeping: nodal stream function values at the entry and
exit point of a grid line through a solid obstacle are identical.

80

11.2.2 Interpolating ψ

ψs

ψt

ψt
Figure 11.4: Interpolating ψ
in cut-cell

Cut-cell solids cause the nodal ψ values (blue in the inset)
to no longer lie in a convenient uniform grid, thereby com-
plicating interpolation. One could use moving least squares
(MLS) interpolation based on ψ data in some neighborhood,
but MLS requires solving small dense linear systems and
computing the necessary analytical derivatives is nontrivial
(Huerta et al., 2004). Instead we extrapolate ψ values to
uniform grid nodes inside the solid (i.e., ψs in the inset) and
use quadratic B-spline kernels as in the uniform grid case.
This extrapolation can be done in various ways, such as us-
ing MLS or simply copying (e.g., from ψt to ψs), assuming
discrete flux is zero on interior solid edges (dashed lines);
we adopt the latter for simplicity. At the outer axis-aligned
domain boundaries, the quadratic stencil is likewise miss-
ing data samples, so we extrapolate an additional uniform

layer of ψ samples outside the domain. However, regardless of these extrapolation and
interpolation choices near boundaries, the no-normal-flow condition is so far enforced only
approximately; we propose an additional correction below.

11.2.3 A Curl-Noise Enhancement for Exact 2D Boundary En-
forcement

To ensure that the interpolated ψ will be strictly constant along the polygonal boundary for
static obstacles, we adapt ideas from the Curl-Noise method (Bridson et al., 2007). That
method modulates the existing ψ value near obstacles, forcing it to zero on the boundary
by multiplying against a smooth ramp function based on boundary proximity. Defining
d0 as an influence radius (we use h), d(·) as the distance to the surface, and ramp(·) as
Bridson’s ramp function, the necessary correction is the product ψ′(x) = αψ(x), where
α = ramp(d(x)/d0). We further modify the original ramping strategy to remove dramatic
spurious flow deviation (Figure 9.5(b)) using a desired target boundary value:

ψ′(x) = αψ(x) + (1− α)ψt. (11.7)

(See Section 9.3.1 for details.) However, the initial multiplication still appreciably damages
the normal derivatives of ψ. Since u = ∇ψ⊥ implies (u · t)t = ∂ψ

∂n
, where t is the boundary

81

tangent vector, this induces undesired tangential damping, acceleration, or no-slip behavior
(Figure 9.5(c)).

We propose a novel purely additive ramping procedure that instead enforces ψt by
computing and adding a compensating offset. The required offset is determined by inter-
polating the existing ψ at the closest boundary point and subtracting it from ψt. Letting
cp(·) be a function returning the closest boundary point, we modify ψ as:

ψ′(x) = ψ(x) + (ψt − ψ(cp(x)))(1− α). (11.8)

0 0.5 1
-0.5

0

0.5

1

original ψ
multiplicative ramping
additive ramping

Figure 11.5: Ramping comparison

This expression ramps the full correction pre-
cisely on at the boundary (d(x)/d0 = 0) and blends
it smoothly off at the edge of the influence region
(d(x)/d0 = 1). The inset shows an example input
ψ curve (black), and the result after using multi-
plicative (red) and our additive (green) ramping
to ψt = 0. Both methods correct the value, but
additive ramping better preserves the derivative
near the boundary and thus yields more faithful
free-slip flow (Figure 11.6, top half). When query-
ing velocity, as we did for the interpolation ker-
nels, we use the analytical curl to determine this
added contribution. Note that our ramping ap-
proach with polygonal solid/exterior boundaries
can introduce discontinuities in velocity near the
boundaries. This is because the recovered velocity
u′ = ∇ψ′⊥ contains ∇α term from (11.8), and ∇α
is not continuous over different edge segments in general. Despite the discontinuities, our
Curl-Flow method produces boundary-respecting and divergence-free flows, and because
the required ψ correction is typically small, the discontinuities are often not perceptible in
practice.

We apply this ramping strategy to both exterior domain boundaries and solid surfaces.
For a static solid or closed domain boundary, ψt is a constant value since the normal flux on
the boundary is zero. For prescribed velocity inflow/outflow or open exterior boundaries,
the ψ endpoint values differ (e.g., ψc0 , ψc1). One could set the ramping target value ψt to
the linearly interpolated value of ψc0 and ψc1 at the closest point to achieve desired constant
flow in the normal direction across that edge. However, we opted not to apply ramping for
such domain boundaries, since exact enforcement there is not as visually critical.

82

(a) (b)

Figure 11.6: Additive vs. Multiplicative Ramping: A steady rightward flow with
boundary ψt value adjustment. Left: Particles with speed-dependent trail lengths. Right:
Velocity magnitudes. Top half: Our additive ramping exactly satisfies the boundary with
no apparent damping of free-slip velocities. Bottom half: Despite modifying Bridson’s
multiplicative ramp to target the correct ψt value, tangential damping occurs along the
bottom wall and near the solid, since ∂ψ/∂n is damaged. Note the more pronounced
banding in the bottom magnitude plot.

Figure 11.7 compares direct (bilinear) velocity interpolation vs. our Curl-Flow method
(with additive ramping boundary correction) on a steady flow past a disk. To approximate
free-slip near solids for the direct case, we extrapolate fluid velocities to grid samples inside
the solid (Houston et al., 2003; Rasmussen et al., 2004).

83

(a) (b) (c)

Figure 11.7: Flow Near Solids: Particle trajectories flowing from bottom to top under a
fixed (steady state) flow past a solid disk in 2D. Grid resolution: 30×15. (a) Direct velocity
interpolation induces spurious trailing gaps, when trajectories colliding with the solid are
terminated. (b) With the same velocity interpolant, projecting penetrating particles back
to the surface does not significantly help divergent trajectories to “close up” and unwanted
particle clumping occurs. (c) Our Curl-Flow method better respects solid boundaries and
produces less spurious empty space behind the solid. Notice the trajectories are simply
isocontours of the 2D ψ field.

84

Chapter 12

Curl-Flow Interpolation In 3D

In this chapter, we extend the 2D Curl-Flow method to 3D. In three dimensions, the
scalar stream function ψ is replaced by the vector potential ψ = (ψx, ψy, ψz); each velocity
component is now dictated by the interactions of two ψ components’ derivatives (e.g.,
u = ∂ψz/∂y − ∂ψy/∂z). This interaction complicates boundary enforcement, especially
for irregular geometry. The curl operator also possesses a multi-dimensional null space,
necessitating enforcement of a gauge condition to find an appropriate unique ψ.

12.1 Uniform Grids in 3D

We place vector potential components on cell edges and velocity normal components on cell
faces (Ando et al., 2015; Bao et al., 2017; Elcott et al., 2007) (Figure 12.1). Given discretely
divergence-free face velocities, we seek corresponding edge vector potential values.

Considering only static obstacles, we assume that the input axis-aligned exterior do-
main boundaries have zero normal velocity, and we use a constant value (i.e., 0) for the
tangential components of boundary ψ, or ψtan, to enforce zero pointwise normal velocity
when interpolated. (See Section 12.3 for details.) Thus, the continuous problem we are
solving is

∇×ψ = u in Ω,

ψtan = 0 on ∂Ω,
(12.1)

with u given and ψ unknown. The flux across a given surface, in terms of the vector

85

ψy0

ψy1

ψz0

ψz1

u

Figure 12.1: Discretization in 3D: Discrete vector potential samples are located on
cell edges (circles) and velocity samples are on cell faces (squares). Red, green, and blue
represent x, y, and z components, respectively.

potential, is ∫∫
S

u · dS =

∫∫
S

(∇×ψ) · dS =

∫
C

ψ · dr, (12.2)

where S is an oriented smooth surface, C is the oriented boundary curve of the surface,
and r is the boundary tangent direction. (The second equality holds by Stokes’ theorem.)
Discretizing (12.2) with midpoint quadrature for the single face in Figure 12.1, right, we
have

ufh
2 =

∑
e∈E

ψe · (hee) = h(ψy0 + ψz1 − ψy1 − ψz0), (12.3)

where h is a cell width and ee is the oriented unit vector along an edge. (Finite differences
on (12.1) yields the same.) Equation 12.3 relates four unknown edge ψe values to one face
uf velocity. Stacking the equations for all grid faces yields a global sparse linear system.

Equation 12.1 is an inverse curl problem with infinitely many solutions, e.g., one cell
has a seven-dimensional null space: 12 edge ψe and five linearly independent face uf (the
sixth is redundant by incompressibility). We select a unique solution using the popular
Coulomb gauge condition (with our boundary condition), which enforces zero divergence
of the vector potential (∇ ·ψ = 0). The Coulomb gauge offers maximal smoothness of the
ψ field, which will be attractive for interpolation.

Direct application of the Coulomb gauge condition yields

∇× (∇×ψ) = −∇2ψ = ∇× u, (12.4)

i.e., a vector Poisson problem for ψ, around three times larger than the pressure projection
(e.g., (Ando et al., 2015)). Fortunately, unlike Ando et al., our discrete velocities are already

86

0

0

0

0

x

y

z

0

0

0 0

x

y

z

ψy0
ψy1

ur

x

y

z

ψx0

ψx1

vt

x

y

z

Figure 12.2: Parallel Sweeping in 3D: Top-left: Set all ψz values to be zero. Top-right:
Compute satisfying ψx and ψy values at z = zmin. In this example they are all set to zero.
Bottom-left: Starting from ψy values at z = zmin, we can compute all ψy values in the entire
domain in one sweep using the relation ψy1 = ψy0 − hur. Bottom-right: Starting from ψx
values at z = zmin, we can compute all ψx values in the entire domain in one sweep using
the relation ψx1 = ψx0 + hvt.

incompressible, enabling us to to solve (12.1) much more efficiently. Observe that

u = ∇×ψ = ∇× (ψ +∇φ) = ∇×ψ′, (12.5)

where φ is an arbitrary scalar field. Since ∇×∇φ is always zero (a vector calculus iden-
tity), defining ψ′ = ψ + ∇φ gives another valid vector potential field. Leveraging this
characterization of the null space, we propose a two step approach. First, find a valid but
arbitrary ψ field through an efficient parallel sweeping scheme (Section 12.1.1), like our
2D method. Second, modify this ψ field to satisfy the Coulomb gauge ∇ · ψ = 0 and our
boundary condition ψtan = 0 using a carefully constructed φ (Section 12.1.2).

87

12.1.1 Recovering a Vector Potential by Parallel Sweeping

Our first goal is to efficiently find a velocity-consistent discrete vector potential field on
a box-shaped domain, irrespective of boundary conditions or gauge choice. Our proposed
fast 3D parallel sweeping strategy is illustrated in Figure 12.2.

1. Set ψz = 0 (or a constant) everywhere in the domain (Figure 12.2, top-left). This is
safe because the remaining two components (ψx, ψy) still suffice to represent any set
of three velocity components (u, v, w) (Ravu et al., 2016).

2. Compute velocity-satisfying vector potential values for the z = zmin boundary plane.
Assuming zero boundary normal flux, we can simply set all ψx and ψy values to zero
(Figure 12.2, top-right). For different boundary conditions (e.g., nonzero normal
flux), boundary ψ values need to be modified, accordingly.

3. Compute the remaining vector potential values by parallel sweeping. Equation 12.3
and ψz = 0 give ψy1 = ψy0 − hu (Figure 12.2, bottom-left), and likewise ψx1 = ψx0 + hv
(Figure 12.2, bottom-right). In this manner, the values of ψxn and ψyn , along with
the discrete velocities, dictate ψxn+1 and ψyn+1 as we sweep across the entire domain.
Each 1D line of variables can be computed independently.

At the conclusion of this process the discrete velocity condition (12.3) is met on all grid
faces, ψz = 0 everywhere, and we have zero ψx and ψy values on all the outer boundaries,
except the z = zmax boundary plane.

Next, we would like to modify this ψ to enforce the desired gauge and boundary con-
ditions.

12.1.2 Boundary Conditions and Gauge Correction

To satisfy the boundary condition ψtan = 0, we first construct a corrective discrete scalar
field φBC , which is defined at nodes of cells so components of the discrete ∇φBC coincide
with edge-based vector potential components. The desired boundary condition ψ′tan = 0
gives

ψ′tan = ψtan +∇φBC = 0 on ∂Ω. (12.6)

Given ψtan, already known from parallel sweeping, we must find φBC on boundary nodes.
Furthermore, since our sweeping process ensured that the only nonzero boundary ψtan

values left to be eliminated are ψx and ψy on the z = zmax plane, finding nonzero φBC

88

φ2 φ3ψx1

φ0 φ1 ψx0

ψy0
ψy1

z = zmax

Figure 12.3: Gauge Correction Boundary Conditions: We construct ∇φBC to up-
date boundary ψ components to satisfy no-normal-flow. Black/white circles, black/white
diamonds, and purple diamonds represent known vector potential values, pinned φ values,
and unknown φ values, respectively. Unknown φ values are computed from the pinned or
previously computed φ values (φ1 = φ0 − hψx0 , φ3 = φ2 − hψx1).

Figure 12.4: Gauge Correction: A uniform grid scalar Poisson solve is used to find
a nodal scalar field φ (purple diamonds). Adding ∇φ to the vector potential values, ψx
(red disks), ψy (green disks), and ψz (blue disks), satisfies the Coulomb gauge condition,
∇ ·ψ′ = ∇ · (ψ +∇φ) = 0.

89

values only on z = zmax suffices. We set the outer boundary loop of nodal φBC values on
this plane (black/white diamonds in Figure 12.3) to zero, and compute the interior φBC
values in the plane by traversing the interior edges using φnext = φprev − hψe.

Adding ∇φBC directly to ψ (including any interior edges touching the nonzero φ val-
ues) would satisfy our exterior boundary condition without breaking consistency between
the discrete u and ψ. However, the (arbitrary) gauge of the resulting field offers no
guarantees on the presence or absence of large, discontinuous jumps (Silberman et al.,
2019). Thus, while applying interpolation and the analytical curl will yield some pointwise
divergence-free velocity field, its observed pointwise behavior can be irregular depending on
interactions between the discrete data jumps and componentwise interpolants, because ve-
locity is determined by differences of vector potential component derivatives. Fortunately,
enforcing the Coulomb gauge condition ∇·ψ = 0 on the interior will provide an optimally
smooth vector potential field for interpolation.

Defining a new global nodal φ field, we apply a gauge correction similar to Silberman
et al. (2019) (although they consider different boundary conditions designed to enable
a Fourier-based solution that cannot handle interior solids). The Coulomb condition is
∇·ψ′ = ∇· (ψ+∇φ) = 0, giving a node-based scalar Poisson problem for φ with Dirichlet
boundary conditions:

∇ · ∇φ = −∇ ·ψ in Ω,

φ = φBC on ∂Ω.
(12.7)

After solving for φ we update the vector potential with ψ′ = ψ +∇φ.

12.1.3 Interpolation

Our choice for 3D uniform grid interpolation is a natural generalization from 2D: we apply
low order dyadic spline kernels, separately on each staggered component of ψ, choosing
their polynomial degrees to avoid velocity kinks as follows. The curl operator applied to
one component of ψ (e.g., ψx) involves its partial derivatives in the other two axes (e.g.,
∂/∂y and ∂/∂z). Therefore to ensure the resulting velocity is at least (piecewise) linear in
all directions, we use a mix of linear and quadratic kernels (in our ψx example, linear x,
quadratic y and z). Uniformly quadratic or higher order interpolants would also suffice, in
exchange for higher cost.

90

12.2 Cut-Cells in 3D

The interference of cut-cell solid objects requires adaptations to our sweeping and gauge
correction steps, and a modified interpolation strategy to exactly enforce the desired bound-
ary behavior.

12.2.1 Parallel Sweeping with 3D Cut-Cells

By carefully removing redundant DOFs and choosing traversal orders, we efficiently ob-
tained valid ψ values on the uniform grids. With the interference of cut-cells, we encounter
a different number and different directions of vector potentials on a face, thus a different
traversal rule is required. For this purpose, we further assume that the solid portion of
partial cut-edges (e.g., two axis-aligned edges of the three purple edges in Figure 12.5(a))
have zero vector potential on the edge. Setting these two values to zero effectively enforces
the vector potential on the diagonal edge to zero for the static solid. By pinning such
DOFs, we can safely apply parallel sweeping as before.

For example, since we assumed zero values for the purple edges, we discretize the top
face in Figure 12.5(a), left, according to (12.2) as

vtAWt = hψz0 + l0ψx1 − l1ψz1 − hψx0 (12.8)

where vt is the velocity normal component on the top face, A = h2 is the area of a regular
(non-cut) cell face, the li are the lengths of partial fluid edges, and Wt is the fluid area
fraction of the top face.

This face-centric approach extends to cover all geometries of axis-aligned cut-faces (i.e.,
the marching squares cases). In Figure 12.5(b), consider that the original top face consists
of a fluid part (nonzero flux) and a solid part (zero flux). These two (sub-)faces imply two
equations,

vtAWt = l0ψz0 + l2ψx1 − l1ψz1 − hψx0 ,
0 = l2ψx1 − hψ′x1 .

(12.9)

where the second equation relies on assigning zero to the two short purple edges. Therefore,
we can find ψx1 and ψ′x1 via sweeping. The second equation in (12.9) can be omitted if we
do not use ψ′x1 .

This approach can be viewed as “stretching” fluid edges. We can obtain the same
discrete formulation as (12.8) and (12.9), if we lengthen cut fluid edges to the regular ones
but scale down the vector potential values such that the edge lengths times vector potential

91

hl0

l1
ψz0 ψz1

ψx0

ψx1

ψz0
ψ′z1

ψx0

ψ′x1

(a) Purple triangle (left) is collapsed to the purple point (right)
and the new ψ′ values in regular cells are length fractions times the
original ψ values (ψ′x1 = l0

hψx1 , ψ′z1 = l1
hψz1).

h

l0

l1

l2

ψz0
ψz1

ψx0

ψx1

ψx′1

ψ′z0
ψ′z1

ψx0

ψ′x1

(b) Two purple edges (left) are collapsed (right) and the ψ values
are rescaled accordingly (ψ′z0 = l0

hψz0 , ψ′z1 = l1
hψz1 , ψ′x1 = l2

hψx1).

Figure 12.5: Adapting Parallel Sweeping to Cut-Cells: Fluid cut-edges are converted
to uniform edges by assigning zero ψ to solid purple edges and (conceptually) collapsing
them, enabling uniform grid sweeping to proceed.

92

values remain the same. Likewise, the velocity flux across the partial face area is the same
as the scaled (down) velocity flux across the entire face area. Using the approaches above,
our parallel sweeping method provides both ψ values on the non-regular faces (e.g., ψx1 ,
ψz1) and ψ′ values on the conceptually uniform faces (e.g., ψ′x1 , ψ

′
z1

).

12.2.2 Approximate Gauge Correction with 3D Cut-Cells

Applying gauge correction is more difficult with polyhedral cut-cell solids, since discrete
vector potential components can correspond to arbitrary, rather than Cartesian, directions;
this could potentially be handled with a polyhedral PDE solver, e.g., mimetic finite differ-
ences (Lipnikov et al., 2006). However, interpolating the resulting edge components would
also be unwieldy and, as we saw in 2D, will nevertheless still require an additional correc-
tion to fully respect the boundary (i.e., at the pointwise level). We therefore enforce the
gauge in a simple but approximate manner: we use the “stretched” vector potentials and
conceptually uniform faces determined above (Figure 12.5), and perform gauge correction
as before on the entire uniform grid, including through the interior of solids by assuming
zero flux on interior solid faces. This provides gauge-corrected (i.e., smooth) axis-aligned
ψ values everywhere, which we use for B-spline kernel interpolation as in the uniform case.

12.3 Exact Boundary Enforcement in 3D

As in 2D, we propose an additive ramping-based approach for exact boundary enforcement
method in 3D, applied as a correction to the approximate values produced by grid inter-
polation. The 3D adaptation requires caution in treating the interacting ψ components.

12.3.1 Closed Exterior Domain Boundaries

The domain exterior consists of axis-aligned planes with two tangential components of
ψ lying on each boundary plane (Figure 12.6(a)). Recall that for a u-face, the flux is
determined by ψy and ψz through u = ∂ψz

∂y
− ∂ψy

∂z
. To achieve zero flux everywhere on

the plane, these terms must precisely cancel: we set the discrete ψy and ψz values to
zero for simplicity, and consequently ramp the pointwise ψy and ψz values to zero as a
particle approaches the border. (A less careful choice of the ramp values can badly distort
the velocity, as seen in Figure 9.5(b).) Since we apply ramping to each component of
ψ independently, this ramping strategy is identical to the 2D case (Section 11.2.3). The

93

ψy0

ψy1

ψz0

ψz1

cp(x)

x

∂Ω

(a) Exterior boundary

ψ0

ψ1

ψ2

cp(x)
x

∂S

(b) Solid boundary

Figure 12.6: Boundary enforcement: The black and red disks represent a particle
near the boundary and its closest point on the boundary, respectively. (a) For planar
exterior boundaries, the discrete ψ values (e.g., ψy0 , ψy1 , ψz0 , ψz1) are zero by our boundary
conditions, and the relevant axis components (ψy(x) and ψz(x)) are ramped to zero for
exact enforcement. (b) For triangulated solids, we first find discrete ψ values at the
triangle vertices (e.g., ψ0, ψ1, ψ2) which imply a perfectly tangential surface velocity,
under barycentric ψ interpolation. When querying velocities, we ramp the full ψ vector
towards this interpolated surface ψ at the closest point.

94

extension to open domain boundaries can be done similarly to the 2D case. For example,
to prescribe u velocities on the x boundary, we can use linear ψz values in y direction on
the boundary, while keeping ψy values to zero. This becomes identical to the ramping in
2D: we apply ramping to ψz only to the closed boundaries.

12.3.2 Solid Obstacles

Although we use the solid geometry obtained from marching cubes for pressure projection
and ψ reconstruction on the grid, we use the original triangle mesh (with a similar res-
olution to the simulation grid) for ramping. This is to avoid ramping toward ill-shaped
or even near-degenerate triangles (i.e., point-like, or edge-like) that marching cubes can
create.

A key component of exact boundary enforcement with ramping is the proper choice
of target ψ values (i.e., ψt) on the solid surface. Specifically, ψt should produce a zero
normal velocity,

u · n = (∇×ψt) · n = 0, (12.10)

where n represents the solid normal vector. For exterior boundaries, we used constant
values which trivially satisfies (12.10) as discussed in Section 12.3.1. However, one cannot
find a single constant vector ψt that precisely compensates the existing (spatially varying)
ambient interpolated ψ on the solid; moreover, an arbitrary choice of ψt can still severely
distort the tangential velocities, even if it satisfies (12.10).

We instead leverage the characteristics of barycentric coordinates: the gradient of the
barycentric interpolant is constant, thus ∇× ψt yields a constant velocity (per triangle).
Therefore, an appropriate choice ofψ at the triangle vertices (ψ0, ψ1, ψ2 in Figure 12.6(b)),
can satisfy (12.10), exactly and continuously. At the same time, we wish to minimize the
perturbation of the velocity field induced by ramping, which we can do by encouraging the
discrete ψi values at triangle vertices to be as close to the ambient ψ (i.e., the interpolated
pointwise ψ before applying ramping) as possible. This yields an equality constrained
quadratic minimization problem:

argmin
y

1

2
(y −ψamb)

T (y −ψamb)

subject to

(
∇×

∑
i∈{0,1,2}

wiyti

)
· nt = 0 for t ∈ T,

where T is a set of (connected) solid triangles, wi are the barycentric coordinates of the
ith vertex, ti is the global vertex index of the ith vertex in the tth triangle, nt is the

95

triangle normal, and ψamb is a stack of the ambient ψ values at the triangle vertices
(before ramping). If we write the constraints as Ay = 0, the optimality condition gives
rise to the linear system [

I AT

A 0

] [
y
λ

]
=

[
ψamb

0

]
(12.11)

or AATλ = Aψamb. We can find the discrete ψi at the solid vertices via y = ψamb−ATλ.
For ramping, ψt can be queried by interpolating y in the closest triangle using barycentric
interpolation.

The final modified pointwise ψ with ramping is

ψ′(x) = ψ(x)− (1− α(x))(ψ(cp(x))−ψt(cp(x))). (12.12)

Again, we use cp(x) to represent the closest point on the solid triangles and α(x) =
ramp(d(x/d0)) for a smooth transition toward ψt. Here, d0 is the influence radius (h
in our case), and d(·) is the distance to the closest point cp(x). We employ a standard
smoothstep function for ramp(·) in 3D, but other smooth functions would also suffice. This
approach is similar to (11.8) in 2D, but ψt is no longer a constant function of x, since we
use barycentric interpolation, and we ramp all three components of ψ. The corresponding
divergence-free free-slip velocity is

u′(x) = ∇×ψ′(x) = u(x)

+∇α(x)× (ψ(cp(x))−ψt(cp(x)))

− (1− α(x))∇× (ψ(cp(x))−ψt(cp(x))).

(12.13)

Due to barycentric interpolation, ∇×ψt(cp(x)) in (12.13) is constant per triangle, allowing
for exact zero flux on the solid surface. This piecewise constant term can add additional
discontinuities in velocity to the existing discontinuities from ∇α (Section 11.2.3). Since
the surface is triangulated and its velocity is piecewise constant, there will necessarily be
velocity discontinuities when the closest triangle changes near solid obstacles; we found
this to be a reasonable tradeoff for incompressibility and precise boundary satisfaction.

To illustrate the improved behavior of 3D Curl-Flow with cut-cells, we simulate a flow
past a solid sphere with a fixed velocity field (Figure 12.7), and release a single planar
layer of passive particles. With trilinear advection, many of the particles collide with the
obstacle, leaving a large gap in the particle field. With Curl-Flow, the particles instead
flow more naturally around the obstacle.

The pseudocode for constructing discrete ψ is given in Algorithm 2. This corresponds
to building desired interpolants (line 5) in the fluid simulation pipeline of Algorithm 1.

96

Frame 50 100 150 300

Direct
Velocity

Interpolation
(Halt)

Direct
Velocity

Interpolation
(Push)

Curl-Flow
(Halt)

Figure 12.7: Flow Past A Sphere: A layer of particles travels left to right under a steady
state flow field past a sphere; particles are halted at the back wall for illustration. Grid
resolution: 40× 20× 20. Top: direct velocity interpolation, with colliding particles frozen
upon contact. Middle: direct velocity interpolation, but with colliding particles projected
out of the obstacle at each step. Bottom: Curl-Flow interpolation, with colliding particles
frozen upon contact. Direct velocity interpolation (top, middle) produces worse results
than Curl-Flow (bottom), regardless of how particle collisions are handled. Notice the
large gap in particles on the back wall.

Algorithm 2: Building Discrete ψ.

parallel sweeping for initial ψ construction . Section 12.1.1, 12.2.1
enforcing exterior domain boundary condition . Section 12.1.2
applying gauge correction . Section 12.1.2, 12.2.2
computing ψ at solid triangle vertices . Section 12.3.2

97

Chapter 13

Results and Discussion

To consistently compare our Curl-Flow method against (divergence-oblivious) direct ve-
locity interpolation (i.e., bi/trilinear unless otherwise noted) while isolating the effects of
interpolation, we always use the same simulation settings, changing only the interpolation
of velocity used for passive particle tracing. Velocity advection uses basic semi-Lagrangian
(Stam, 1999) with multilinear velocity interpolation, unless stated otherwise. Only particle
advection differs, even for time-dependent (unsteady) flows. When a particle incorrectly
penetrates a solid object due to poor quality velocity fields, large timesteps, or insuffi-
ciently accurate path integration, a typical choice is to “resolve” the collision by projecting
the particle back out of the solid, although this exacerbates clumping. To highlight such
errors, we freeze penetrating particles in place, forever, unless otherwise indicated.

Simulation timings were gathered on a 2.8 GHz, 4-Core Intel Core i7 processor for
Tables 13.1 and 13.4, and an 8-core, Apple M1 processor for Tables 13.2 and 13.3.

13.1 Particle Distribution Comparisons in 2D

2D Curl-Flow is particularly attractive because it does not require the linear solve needed
for gauge correction in 3D. The earlier 2D results of Figures 9.5(b), 10.2, 11.6, and 11.7
used static velocity fields for illustration. Below, we consider time-evolving simulations
and again observe how our approach affects passive particle motions and the resulting
distributions.

In Figure 13.3, we initially seed the particles with blue noise sampling and advect the
particles under a dynamic flow on a coarse 20 × 20 grid. Here, we supply an upward

98

Frame 20 50 80

Direct
Velocity

Interpolation
(60× 20)

Curl-Flow
(60× 20)

Direct
Velocity

Interpolation
(180× 60)

Curl-Flow
(180× 60)

Figure 13.1: Smooth Obstacle Comparison: Particles undergoing a time-dependent
horizontal flow past a circular object. Particles colliding with objects are halted in place for
illustration. Regardless of the grid resolution, direct velocity interpolation creates spurious
gaps (cyan), but our Curl-Flow interpolation tightly follows the solid object significantly
reducing the gaps in the flow (dark blue).

99

Frame 20 40 60 100

Direct
Velocity

Interpolation
(50× 25)

Curl-Flow
(50× 25)

Direct
Velocity

Interpolation
(150× 75)

Curl-Flow
(150× 75)

Figure 13.2: Jagged Obstacle Comparison: Particles in a time-dependent horizontal
flow with jagged solid objects. Curl-Flow interpolation (cyan) tightly follows the jagged
obstacle, leaving significantly fewer gaps than when using direct velocity interpolation
(dark blue).

100

(a) Bilinear velocity interpolation

(b) Curl-Flow interpolation

Figure 13.3: Dynamic 2D Flow Comparison: Initially uniform particles advected
through a dynamic 2D vector field on a 20 × 20 grid. Frames 1, 50, 100, and 150 are
shown from left to right. Particle distribution remains more uniform with our Curl-Flow
method.

velocity at the bottom-center of the domain and random velocities (noise) in the entire
domain in each frame. The resulting particle distribution is more uniform with our Curl-
Flow method. To better quantify this effect, we conceptually lay a finer grid of sub-cells
over the domain and count the number of particles per sub-cell in the last frame (frame
150) of the same example, where 3 × 3 sub-cells form a single grid cell (Figure 13.4).
Here, the x-axis indicates the number of particles in a sub-cell, and the y-axis denotes
the number of the sub-cells that have the specified number of particles. Initially, most
sub-cells contain 6–8 particles, and the distribution spreads over time from the center. In
Figure 13.4, the graph for direct velocity interpolation does not decay from the center as
rapidly as Curl-Flow, indicating less uniform particle distribution. At the extreme ends,
there are 50 empty sub-cells and a sub-cell that contains excessive number of particles (137
particles).

In the Smooth Obstacle test of Figure 13.1 (top half), we observe particles under a
dynamic horizontal flow past a large circular solid on a coarse 60× 20 grid. Spurious gaps

101

102

103

Figure 13.4: Particle Count Distribution in Sub-cells: The number of particles in
sub-cells is counted in the last frame (frame 150) of the example in Figure 13.3. The width
of the sub-cells is 1/3 of the cell width. The x-axis indicates the number of particles in
a sub-cell, and the y-axis represents the number of the sub-cells that have the specified
number of particles. The graph for direct velocity interpolation shows a wider range of
particle counts per sub-cell, indicating less uniform particle distribution as shown in Figure
13.3.

104

in the initially dense particle sampling quickly arise with direct velocity interpolation. Curl-
Flow precisely obeys the boundary while being strictly incompressible, thus dramatically
reducing the presence of gaps in the flow. Because interpolation errors depend on cell size,
tripling the grid resolution (Figure 13.1, bottom half) proportionally reduces the gap size,
but incurs significant cost and such errors persist for any finite resolution.

Our Jagged Obstacle test shows the same effect for non-smooth geometry: Figure 13.2
shows a test case with two nearby jagged solid objects in a horizontal flow. With direct
velocity interpolation, significant gaps arise behind the obstacle and near high curvature
features; Curl-Flow significantly reduces these artifacts.

13.2 Particle Distribution Comparisons in 3D

Although the interaction of three vector potential components somewhat increases the
complexity and computational cost of 3D Curl-Flow, we nevertheless obtain a pointwise
divergence-free and boundary respecting flow.

Static Flow In A Box To illustrate the effects of incompressibility at a fine scale,
Figure 7.1 compares our full Curl-Flow method (including boundary ramping) against
direct velocity interpolants with both (componentwise) trilinear and monotonic tricubic
(Fedkiw et al., 2001; Fritsch and Carlson, 1980), as these are relatively common choices in
fluid animation. The data is a static and coarse 5×5×5 discretely incompressible staggered
grid discrete vector field. The direct interpolants quickly exhibit clustering and thinning
out of particles, leaving visibly low densities in some regions and denser ring-like patterns
in others. By contrast, the Curl-Flow result remains remarkably uniformly distributed for
the length of the animation, with no particle resampling, perturbation, or other remedies
applied.

Dynamic Wind Tunnel At a larger scale, analogous to the 2D case of Figure 13.1, we
compare Curl-Flow to direct velocity interpolation under a 3D dynamic horizontal flow
past a sphere (Figure 13.5 shows the particles in a narrow slice plane). Although our
particles are purely passive, for illustration we seed them throughout the domain at a
density representative of typical particle-in-cell schemes, i.e., 8 per cell (Zhu and Bridson,
2005). The particle distribution soon becomes non-uniform when using direct velocity
interpolation, but with our Curl-Flow interpolation the particle distribution remains more
uniform, regardless of grid resolution.

105

Frame 50 100 150 200

Direct
Velocity

Interpolation
(40× 20× 20)

Curl-Flow
(40× 20× 20)

Direct
Velocity

Interpolation
(80× 40× 40)

Curl-Flow
(80× 40× 40)

Figure 13.5: Dynamic 3D Fluid Flow in A Wind Tunnels Past A Sphere: A slice-
plane view of particles undergoing a time-dependent horizontal flow past a spherical object
in 3D. The color of the particles represents the particle densities: the density increases from
red to yellow. Particles colliding into objects are halted in place for illustration. Regardless
of the grid resolution, direct velocity interpolation creates spurious gaps, while our Curl-
Flow interpolation tightly follows the solid object, significantly reducing the gaps in the
flow and maintaining better particle distribution. The bright yellow regions around the
solid obstacle highlight the large number of collisions incurred without using Curl-Flow.

106

Frame 60 120 200

Direct
Velocity

Interpolation

Curl-Flow

Figure 13.6: A Smoke Plume Simulation with A Solid Object Shaped like “∇×”.
Only a thin slice of smoke is visualized and the obstacles not rendered to better present the
boundary behaviors. (The shape of the obstacles are shown at the bottom-right corner.)
In the direct velocity interpolation case, a large number of particles erroneously collide
with the solid leaving the dense smoke outline around the solid.

13.3 Smoke Simulations and Performance

We consider two rising smoke plume scenarios with different obstacles: a simple object
shaped like the curl operator (∇×) (Figure 13.6) and a more complex dragon-shaped
obstacle (Figure 13.7). We use a 1503 and 1803 grid respectively, and the smoke particle
counts steadily increase up to 4M. The smoke particles are splatted to a grid for rendering
in both examples. Penetrating particles are halted upon collision and these particles do
not vanish to highlight the collision. In both examples, Curl-Flow shows better boundary-
respecting behavior: direct velocity interpolation yields a dense smoke outline from the hit
particles around the solid.

Our ramping method enforces a pointwise boundary-respecting velocity field under

107

Frame 60 120 180

Direct
Velocity

Interpolation

Curl-Flow

Figure 13.7: A Smoke Plume Simulation with A Dragon-Shaped Solid. Half
the domain is cut off for better visualization. Curl-Flow method shows better boundary-
respecting behavior: the outline of dense smoke from hit particles is conspicuous in the
direct velocity interpolation case.

Curl-Flow, but particles advected with discrete timesteps can still collide with solid ob-
stacles, especially under a fast dynamic flow and/or with a complex solid. For the smoke
examples, we apply substepping to (only) particle advection to partially ameliorate this
innate problem, constraining the timestep so that particles cannot move more than half
of a grid cell width per substep. We further use additional substepping upon collision: if
a particle hits a solid obstacle, the particle is slightly pushed back from the hit position
(10% of the distance the particle moved) and completes a new partial substep from that
point for the remaining time. We use this extra substep only once, and if the particle still
collides after the extra substep, the particle halts at the hit position. Using even more sub-
steps would further reduce collisions, at the cost of increasing computational time. With
direct velocity interpolation we likewise performed basic substepping, but since its vector
field is not boundary-respecting, the additional post-collision substepping did not reduce
collisions, so we did not use it. In both cases, if the particle lies inside the obstacle after a

108

Pressure
Projection (s)

Grid ψ
Construction (s)

Solid ψ
Construction (s)

Particle
Advection (s)

Total (s)

Direct Velocity
Interpolation

28.816 – – 0.64722 31.174

Curl-Flow 28.896 20.944 0.20970 6.4323 58.437

Table 13.1: Average computational time per timestep for a smoke plume simulation with
a solid object shaped like the curl operator (∇×) (Figure 13.6). Grid resolution: 1503,
#solid triangles: 21,568, #solid vertices: 10,788.

Pressure
Projection (s)

Grid ψ
Construction (s)

Solid ψ
Construction (s)

Particle
Advection (s)

Total (s)

Direct Velocity
Interpolation

27.902 – – 1.214 31.788

Curl-Flow 27.459 20.158 0.241 8.935 59.407

Table 13.2: Average computational time per timestep for a smoke plume simulation with a
dragon-shaped solid (Figure 13.7). Grid resolution: 1803, #solid triangles: 43,872, #solid
vertices: 21,936.

(sub)step, it is frozen in place.

To demonstrate Curl-Flow’s practicality, these smoke plume tests were carried out by
implementing our method into Houdini’s smoke solver (Pyro), with appropriate modifica-
tions (e.g., we use cut-cell methods for pressure projection). Unlike the prior examples, we
use a MacCormack scheme (the default in Houdini) for velocity advection. In both exam-
ples, Curl-Flow shows superior boundary-respecting behavior: fewer incidents of particle
collision with solid obstacles are observed. Compared to standard interpolation, Curl-Flow
pays the additional cost of finding discrete vector potentials on the regular grid and on
solid vertices. As is evident from Tables 13.1 and 13.2, the net cost on these scenarios was
about twice the standard approach. The decision to make this cost-quality tradeoff will be
application-dependent, but we consider it worthwhile for scenarios where particle density
and boundary fidelity are paramount.

The dominant additional computational expense is enforcing the Coulomb gauge con-
dition. Although this is much faster than the vector Poisson solve of Ando et al., it
still requires solving the scalar Poisson equation (12.7), for which we used standard con-
jugate gradient. Particle advection also contributes to the cost, because Curl-Flow has

109

Frame 15 Frame 30 Frame 60 Frame 120

Figure 13.8: A Plume of Particles Using Curl-Flow : Four different ψ construction
methods are adapted in Curl-Flow to produce the rising particle plume scene. All four
methods yield identical results, with different computational costs (Table 13.3).

a larger stencil size for interpolation (quadratic vs. linear), and our ramping strategy re-
quires additional operations, e.g., finding the closest point on the solid, evaluating a second
interpolation, etc. This cost will be heavily dependent on the number of particles being
advected, and could become the bottleneck for massive particle counts. We expect that
interpolation could be further optimized. Most importantly, the particle advection can be
done in a fully parallel manner. Genuinely passive particles can also often be traced in an
entirely parallel post-process, after simulation completes.

To find the vector potential values at the solid vertices (“Solid Ψ Construction” in the
Table), we used a direct solver since the system matrix in (12.11) can be ill-conditioned.
Nevertheless, the cost of solving (12.11) is relatively small: we can solve it for each closed
solid obstacle independently, the solid obstacles only cover part of the simulation domain,
and the degrees of freedom lie only on the solid surfaces rather than throughout the volume.

13.4 Vector Potential Reconstruction Comparisons

Several alternative, but more costly, methods to reconstruct edge-based vector potential
fields from face-based velocity (or magnetic) fields have previously been proposed (Ando
et al., 2015; Bao et al., 2017; Sato et al., 2015; Silberman et al., 2019). Since those methods
mostly do not handle cut-cell obstacles, to fairly compare computational costs we consider
a flow in an empty box domain. We adapted the methods of Ando et al. and Silberman et
al. into our framework as replacements for the ψ reconstruction step, as discussed further
below. We consider the combined cost of pressure projection and ψ reconstruction for each

110

Pressure
Projection (s)

Initial ψ
Construction (s)

Gauge
Correction (s)

Total ψ
Construction (s)

Vector Poisson
Dimensionally-Coupled

- - - 69.599

Vector Poisson
Componentwise

- - - 42.960

Pressure Projection
+ Gauge Correction

17.809 3.398 13.054 34.261

Ours: Pressure Projection
+ Gauge Correction
+ Parallel Sweeping

17.825 0.024 11.895 29.744

Table 13.3: Average computational time per timestep for discrete ψ construction on the
1503 grid simulation of Figure 13.8.

method in Table 13.3, since Ando et al. achieve both simultaneously. Despite the different
computational costs, the solutions are numerically consistent (Figure 13.8).

Comparison to Ando et al. (2015): The method of Ando et al. solves a single,
dimensionally-coupled vector Poisson problem to recover ψ directly from a divergent ve-
locity field, avoiding a separate pressure projection step. We modified this approach to
consider our exterior domain boundary conditions (Section 12.3.1). As shown in Table 13.3,
its computational cost (topmost row) is expensive compared to our method (bottommost
row): about 2.34× slower for the 1503 grid of Figure 13.8. Unless boundary conditions
tie them together (as is often the case), the dimensionally-coupled vector Poisson equation
can be decoupled into three independent scalar Poisson equations for efficiency. Applying
this special case optimization to our test case, the decoupling gives a speedup (about 62%
faster) as compared to solving the coupled vector Poisson equation (Table 13.3, second
row), but still about 1.44× slower than ours.

Comparison to Silberman et al. (2019): The reconstruction method of Silberman
et al. is most similar to ours: their method recovers the desired vector potential from an
initially divergence-free input vector field (albeit in the electromagnetic setting), using a
cell-by-cell construction of an initial vector potential followed by Poisson solve-based gauge
correction. Silberman et al. assumed the absence of boundary conditions to enable solution
by FFT. We adapted this basic idea into our framework by considering our desired bound-
ary conditions and using the same linear solver (conjugate gradient). Like our method,
the net cost is two scalar Poisson solves (projection, gauge correction) plus the cost of

111

Frame 0 Frame 15 Frame 30 Frame 60

Figure 13.9: Deforming elastic membrane test from (Bao et al., 2017) : A spherical
membrane immersed in fluid is deformed with an initial velocity and surface tension returns
it to a spherical shape. We replace Bao’s vector Poisson solve with our ψ construction
method. It produces identical results to the original method, but our construction is faster
(Table 13.4).

the initial ψ construction (Table 13.3, third row). However, as compared to our sweeping
approach, the initial cell-by-cell ψ construction of Silberman et al. is slower because it is
inherently serial and it finds all three components of ψ rather than the two needed by our
scheme. It also requires more complicated case-by-case code: it first constructs 12 edge
values on a cell, and then adjusts them for consistency depending on how many neighbor
cells have previously been processed. In practice, the cost of our parallel sweeping strategy
is two orders of magnitude faster than Silberman et al. (Table 13.3, third column), and
essentially negligible compared to pressure projection or gauge correction. Overall, the
(adapted) method of Silberman et al. (2019) is 1.15× slower than ours; we emphasize that
they also did not handle our boundary conditions nor interior obstacles.

Comparison to Bao et al. (2017): Bao et al. use a vector potential in their immersed
boundary method to reduce volume error caused by velocity interpolation and force spread-
ing on the regular grid. Like Silberman et al. (2019) they assume a divergence-free input
field, but like Ando et al. (2015) they solve a vector Poisson equation. They assume peri-
odic boundaries and solve using the FFT. Their provided code further exploits the lack of
obstacles to decompose the vector problem into three scalar Poisson problems. For a fair
comparison, we used their (MATLAB) code and replaced only the discrete ψ construction
step with our method. While the vector Poisson solve is not a bottleneck in their problem
domain, our method nevertheless gives a speedup for ψ construction of around 2.5× as
shown in Table 13.4.

While our application is fluid velocity interpolation, vector potential reconstruction has
already been used in graphics (for fluid control (Sato et al., 2021, 2015) and visualization

112

ψ construction time (s)

Bao et al. (2017) 2.3239 ×10−3

Curl-Flow 0.9397 ×10−3

Table 13.4: Average computational time for constructing ψ, within the code of Bao et al.
(2017) for an immersed deforming membrane. For the “Curl-Flow” comparison, we replace
only the ψ construction part.

Grid Resolution 162 322 642 1282 2562 5122

Direct Velocity
Interpolation (L∞)

3.733e-02
(–)

9.554e-03
(1.966)

2.396e-03
(1.996)

5.927e-04
(2.015)

1.412e-04
(2.070)

2.824e-05
(2.322)

Curl-Flow (L∞)
3.787e-02

(–)
1.073e-02
(1.819)

4.789e-03
(1.165)

1.845e-03
(1.376)

5.050e-04
(1.870)

4.183e-05
(3.594)

Table 13.5: Data for convergence test of Figure 13.10: error and the order of convergence
(within parentheses) are measured using a L∞ norm under grid refinement. Both direct
(bilinear) velocity interpolation and Curl-Flow interpolation yield similar convergence.

(Biswas et al., 2016)) as well as electromagnetics and other fields. Our new approach
can thus offer immediate speedups in all of these domains. e.g., potentially more than
doubling the speed of the most expensive step in the recent method of (Sato et al., 2021),
even without adopting more elaborate optimizations (e.g., multigrid, GPU implementation,
etc.)

13.5 Convergence of Curl-Flow Velocity Interpolation

Since our Curl-Flow interpolation method uses intermediate vector potentials rather than
directly interpolating grid velocities, it is reasonable to ask if it is a valid interpolant at all;
that is, does the resulting continuous field converge? We study this question by evaluating
how well our interpolated field agrees with an input analytically divergence-free field under
refinement. Since the input to interpolation should be a discretely divergence-free velocity
field defined on the staggered grid, we first sample grid velocities from the input analytical
field, enforce discrete incompressibility on them via pressure projection, apply the chosen
interpolation scheme (at a much finer sampling of points), and evaluate their error with

113

(a) Analytical solution

25 27 29

grid resolution

2 14

2 12

2 10

2 8

2 6

er
ro

r

Direct velocity interpolation
Curl-Flow interpolation

(b) L∞ norm

Figure 13.10: Convergence of Velocity Interpolation: We sample discrete grid ve-
locities from the analytically divergence-free field of (a), enforce discrete incompressibility,
interpolate using direct (bilinear) velocity interpolation and Curl-Flow interpolation, and
measure the error. Both methods show approximately second order convergence. The error
data is provided in Table 13.5.

114

respect to the input. For the analytically divergence-free field, we use the velocity field

u(x, y) = (sin(2πx)cos(2πy),−cos(2πx)sin(2πy)),

shown in Figure 13.10(a). Since we use a quadratic kernel for Curl-Flow interpolation, we
often need to query the samples outside the domain. We linearly extrapolate ψ values to
the samples outside the domain for the convergence test. Direct (bilinear) velocity inter-
polation yields second order convergence, and Curl-Flow also shows similar convergence
(while additionally providing exact incompressibility) (Figure 13.10).

115

Chapter 14

Conclusions

We have presented novel approaches for pointwise divergence-free fluid advection and uni-
fied elastic object simulation. These topics have been barely studied in graphics, but they
are of importance as they provide necessary or desired features that increase the versatility
and quality of animation results that effects artists can achieve. Also, our proposed ap-
proaches require minimal modifications to industrially prevalent solvers so they have the
potential to be easily adopted into existing animation software. Specifically, our elastic
coupling strategies do not depend on any particular single-type solvers and they are de-
signed to integrate naturally with familiar methods for single-type solvers. Our new fluid
interpolation method only influences one component of the entire fluid simulation pipeline,
which is the advection step, thus the remaining parts of the solvers can be left untouched.

14.1 Unified Elastic Objects

We have presented an expressive and practical approach for designing and simulating di-
verse non-manifold and mixed-dimensional elastic objects that effectively leverages well-
studied continuum models of single-dimensional elastica. The user simply models an ob-
ject’s desired geometry with a single conforming possibly non-manifold simplicial mesh,
and then labels its simplices with model and connection types to achieve the desired target
behavior.

Our assumption of a conforming mesh limits us to situations in which the two sides
of a connection (or the connection itself) cannot slide relative to the bodies. In previous
work, Chentanez et al. (2009) explored a method to allow a Lagrangian rod to slide while

116

constrained within a tetrahedral mesh, and Weidner et al. (2018) enabled smooth sliding
of Lagrangian cloth relative to contact points; these and related Eulerian-on-Lagrangian
simulation concepts (Fan et al., 2013) may prove useful in tackling this challenge. The
conforming mesh assumption also disallows connections in the interior of an element, such
as a rod endpoint joined at the middle of a shell triangle.

We adopted three specific single-type elastic models for rods, shells, and solids. We ex-
pect that other options would integrate equally well, since our coupling connections place
few limits on the chosen models beyond requiring simplicial meshes. Similarly, extending
the single-type models with additional features or constitutive laws (e.g., strain limit-
ing, incompressibility, plasticity) would be largely orthogonal to the proposed approach.
However, designing connections which themselves have exotic elastoviscoplasticity or angle
limits may be interesting to consider in future.

Another exciting avenue to explore is the extension of our framework to mixed-dimensional
liquids, analogous to work on viscous sheets and threads (Batty et al., 2012; Bergou et al.,
2010). While non-manifold simplicial liquid models have been suggested (Zhu et al., 2015,
2014), an approach along the lines of our framework could naturally support the charac-
teristic twisting and bending forces (and associated buckling and coiling effects) of viscous
and non-Newtonian sheets and threads, which Zhu et al. omitted. Naturally this would
require incorporating mixed-dimensional dynamic remeshing, as Zhu et al. (2014) have
previously demonstrated.

Despite the attractive simplicity of our point, curve, and surface connections and the
commonality among the various energies, the construction of appropriate coordinate frames
near connections nevertheless involves special cases that depend on the particular configu-
ration. It is interesting to consider whether it may be possible to find an even more concise
set of “atomic” stencils or energies that can be re-assembled to recover all possible models
and couplings, thereby further streamlining the methodology. Finally, our approach also
reveals some user interface challenges: geometric modeling tools for general non-manifold
objects are less well-studied than for surface meshes, and achieving the desired deforma-
tion behavior by tagging simplices with model and connection types remains a somewhat
labor-intensive process.

14.2 Curl-Flow

Large time steps in particle trajectory integration, poorly enforced boundaries, and (option-
ally) inadequate pressure solver tolerances have long been known to cause density/volume

117

drift in grid-based fluid animation; accordingly, a host of post-compensation strategies have
been developed (Ando et al., 2012; Kugelstadt et al., 2019; Sato et al., 2018c; Takahashi
and Lin, 2019). However, we believe our work is the first in computer graphics to identify
divergent velocity interpolation as another contributing factor. Our Curl-Flow interpo-
lation framework, tailored to plug into popular grid-based cut-cell fluid animation tools,
addresses this issue by globally guaranteeing pointwise divergence-free velocities. The
resulting flows offer better long-term particle distributions and natural motions around
obstacles. We believe our work opens a previously unexplored dimension in the design of
advection schemes for fluid animation; our method’s current limitations suggest exciting
questions for investigation.

We considered only static obstacles. It is straightforward to support nonzero boundary
fluxes during vector potential reconstruction; however, the Lagrangian nature of obstacle
motion raises intriguing questions about collision-safe time integration of trajectories, es-
pecially for intermediate substeps of Runge-Kutta. A deforming mesh strategy that carries
the potential with it is a possible avenue. Similarly, we have only discussed grid domains
that are either fully open, fully closed, or “wind-tunnel”-like. More general boundary condi-
tions would be an obvious extension, including free surface boundaries for liquid animation
where our method could improve volume conservation.

We focused on the effects of incompressible interpolation on passive particle trajecto-
ries. However, our stronger enforcement of the continuity equation might also offer visual
benefits for advection of the velocity field itself and/or grid-based scalar fields like tem-
perature or density. Because particles remain better distributed, we likely will not have
to frequently resample to avoid empty regions that do not get assigned valid velocities
(Maljaars et al., 2018).

A minor drawback of Curl-Noise-based boundary treatments is that, though always in-
compressible, they can yield velocity discontinuities when the closest polygon facet changes.
Also, when ramping ψ towards solid surfaces, we sought a minimal perturbation to ψ and
found that this criterion yields visually natural results. However, different criteria could
be applied (e.g., controlling ∇×ψt) to the optimization.

While not an issue for passive particle advection, interpolation of higher order than
linear can yield overshooting. Using this method for velocity advection will neccessitate
adopting some form of limiting. Simple velocity clamping as done by Selle et al. (2008a) is
straightforward, but sacrifices incompressibility. A more attractive option may be to fall
back to the linear variant of Curl-Flow in offending regions, preserving incompressibility
at the cost of localized kinks.

Lastly, because of the high cost and limited controllability of fluid simulations, the

118

ability to edit simulations in an efficient post-process remains highly desirable (Pan et al.,
2013; Sato et al., 2018b). Our vector potential-based boundary correction approach, as
well as the work of Sato et al. (2021, 2015), suggests that exploiting vector potentials may
enable other fast, divergence-free editing capabilities by combining vector potential-based
procedural tools with vector potential-based simulation tools.

119

References

Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis.
2017. Power diagrams and sparse paged grids for high resolution adaptive liquids. ACM
Transactions on Graphics 36 (07 2017), 1–12. https://doi.org/10.1145/3072959.

3073625

Nadir Akinci, Markus Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner. 2012. Versatile
rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics (TOG) 31
(2012), 1 – 8.

R. Albanese and G. Rubinacci. 1990. Magnetostatic field computations in terms of two-
component vector potentials. Internat. J. Numer. Methods Engrg. 29, 3 (March 1990),
515–532. https://doi.org/10.1002/nme.1620290305

Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. A stream function solver for liquid
simulations. ACM Transactions on Graphics 34, 4 (jul 2015), 53:1–53:9. https://doi.

org/10.1145/2766935

Ryoichi Ando, Nils Thurey, and Reiji Tsuruno. 2012. Preserving fluid sheets with adap-
tively sampled anisotropic particles. IEEE transactions on visualization and computer
graphics 18, 8 (2012), 1202–1214.

Alexis Angelidis and Fabrice Neyret. 2005. Simulation of smoke based on vortex filament
primitives. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation. ACM, 87–96.

Baptiste Angles, Daniel Rebain, Miles Macklin, Brian Wyvill, Loic Barthe, J P Lewis,
Javier Von Der Pahlen, Shahram Izadi, Julien Valentin, Sofien Bouaziz, and Andrea
Tagliasacchi. 2019. VIPER: Volume Invariant Position-based Elastic Rods. Proceedings
of the ACM on Computer Graphics and Interactive Techniques (2019). https://doi.

org/10.1145/3340260

120

https://doi.org/10.1145/3072959.3073625
https://doi.org/10.1145/3072959.3073625
https://doi.org/10.1002/nme.1620290305
https://doi.org/10.1145/2766935
https://doi.org/10.1145/2766935
https://doi.org/10.1145/3340260
https://doi.org/10.1145/3340260

Vinicius C Azevedo, Christopher Batty, and Manuel M Oliveira. 2016. Preserving geometry
and topology for fluid flows with thin obstacles and narrow gaps. ACM Transactions on
Graphics (TOG) 35, 4 (2016), 97.

Dinshaw S Balsara. 2001. Divergence-free adaptive mesh refinement for magnetohydrody-
namics. J. Comput. Phys. 174, 2 (2001), 614–648.

Dinshaw S Balsara. 2004. Second-order-accurate schemes for magnetohydrodynamics with
divergence-free reconstruction. The Astrophysical Journal Supplement Series 151, 1
(2004), 149.

Dinshaw S Balsara. 2009. Divergence-free reconstruction of magnetic fields and WENO
schemes for magnetohydrodynamics. J. Comput. Phys. 228, 14 (2009), 5040–5056.

Yuanxun Bao, Aleksandar Donev, Boyce E Griffith, David M McQueen, and Charles S
Peskin. 2017. An Immersed Boundary method with divergence-free velocity interpolation
and force spreading. Journal of computational physics 347 (2017), 183–206.

David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceed-
ings of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). ACM, New York, NY, USA, 43–54. https://doi.org/10.1145/

280814.280821

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational frame-
work for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3 (2007), 100.

Christopher Batty and Robert Bridson. 2008. Accurate Viscous Free Surfaces for
Buckling, Coiling, and Rotating Liquids. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Dublin, Ireland) (SCA
’08). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 219–228. http:

//dl.acm.org/citation.cfm?id=1632592.1632624

Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete
viscous sheets. ACM Trans. Graph. (SIGGRAPH) 31, 4 (2012), 113.

Markus Becker and Matthias Teschner. 2007. Weakly Compressible SPH for Free Surface
Flows. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation 9, 209–217. https://doi.org/10.1145/1272690.1272719

G. Beer. 1985. An isoparametric joint/interface element for finite element analysis. Inter-
nat. J. Numer. Methods Engrg. 21, 4 (1985), 585–600.

121

https://doi.org/10.1145/280814.280821
https://doi.org/10.1145/280814.280821
http://dl.acm.org/citation.cfm?id=1632592.1632624
http://dl.acm.org/citation.cfm?id=1632592.1632624
https://doi.org/10.1145/1272690.1272719

Jan Bender and Crispin Deul. 2013. Adaptive cloth simulation using corotational finite
elements. Computers & Graphics 37, 7 (2013), 820–829. https://doi.org/10.1016/

j.cag.2013.04.008

Jan Bender and Dan Koschier. 2015. Divergence-Free Smoothed Particle Hydrodynamics.
https://doi.org/10.1145/2786784.2786796

Miklos Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010.
Discrete viscous threads. ACM Trans. Graph. (SIGGRAPH) 29, 4 (2010), 116.

Miklos Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun.
2008. Discrete elastic rods. ACM Trans. Graph. (SIGGRAPH) 27, 3 (2008), 63.

Florence Bertails. 2009. Linear time super-helices. Computer Graphics Forum (Eurograph-
ics) 28, 2 (2009), 417–426.

Florence Bertails, Basile Audoly, Marie-Paule Cani, Frédéric Leroy, Bernard Querleux, and
Jean-Luc Lévêque. 2006. Super-helices for predicting the dynamics of natural hair. ACM
Trans. Graph. (SIGGRAPH) 25, 3 (jul 2006), 1180–1187. https://doi.org/10.1145/

1141911.1142012

Ayan Biswas, Richard Strelitz, Jonathan Woodring, Chun-Ming Chen, and Han-Wei Shen.
2016. A scalable streamline generation algorithm via flux-based isocontour extraction. In
Proceedings of the 16th Eurographics Symposium on Parallel Graphics and Visualization.
69–78.

Javier Bonet and Richard D. Wood. 2008. Nonlinear Continuum Mechanics for Finite
Element Analysis (2 ed.). Cambridge University Press. https://doi.org/10.1017/

CBO9780511755446

Allan Bower. 2009. Applied Mechanics of Solids. 1–795 pages. https://doi.org/10.

1201/9781439802489

Robert Bridson. 2015. Fluid Simulation for Computer Graphics, Second Edition. Taylor
& Francis.

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions,
contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (2002),
594–603.

122

https://doi.org/10.1016/j.cag.2013.04.008
https://doi.org/10.1016/j.cag.2013.04.008
https://doi.org/10.1145/2786784.2786796
https://doi.org/10.1145/1141911.1142012
https://doi.org/10.1145/1141911.1142012
https://doi.org/10.1017/CBO9780511755446
https://doi.org/10.1017/CBO9780511755446
https://doi.org/10.1201/9781439802489
https://doi.org/10.1201/9781439802489

Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-Noise for Procedural
Fluid Flow. ACM Trans. Graph. 26, 3 (July 2007), 46–es. https://doi.org/10.1145/

1276377.1276435

Robert Bridson, Sebastian Marino, and Ronald Fedkiw. 2003. Simulation of clothing with
folds and wrinkles. In Symposium on Computer Animation. Eurographics Association,
28–36.

Tyson Brochu and Robert Bridson. 2009. Robust Topological Operations for Dynamic
Explicit Surfaces. SIAM J. Scientific Computing 31 (01 2009), 2472–2493. https:

//doi.org/10.1137/080737617

Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke animation with
vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. Eurographics Association, 87–95.

Hugo Casquero, Yongjie Jessica Zhang, Carles Bona-Casas, Lisandro Dalcin, and Hector
Gomez. 2018. Non-body-fitted fluid–structure interaction: Divergence-conforming B-
splines, fully-implicit dynamics, and variational formulation. J. Comput. Phys. 374
(2018), 625–653.

Jumyung Chang, Vinicius C. Azevedo, and Christopher Batty. 2021. Curl-Flow: Point-
wise Incompressible Velocity Interpolation for Grid-Based Fluids. CoRR abs/2104.00867
(2021). arXiv:2104.00867 https://arxiv.org/abs/2104.00867

Jumyung Chang, Fang Da, Eitan Grinspun, and Christopher Batty. 2019. A Unified Sim-
plicial Model for Mixed-Dimensional and Non-Manifold Deformable Elastic Objects.
Proc. ACM Comput. Graph. Interact. Tech. 2, 2, Article 11 (July 2019), 18 pages.
https://doi.org/10.1145/3340252

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A Simple Geometric
Model for Elastic Deformations. 29, 4 (2010). https://doi.org/10.1145/1778765.

1778775

Yi-Lu Chen, Jonathan Meier, B. Solenthaler, and V. C. Azevedo. 2020. An extended cut-
cell method for sub-grid liquids tracking with surface tension. ACM Transactions on
Graphics (TOG) 39 (2020), 1 – 13.

Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K. Hauser, Ken
Goldberg, Jonathan R. Shewchuk, and James F. O’Brien. 2009. Interactive simulation

123

https://doi.org/10.1145/1276377.1276435
https://doi.org/10.1145/1276377.1276435
https://doi.org/10.1137/080737617
https://doi.org/10.1137/080737617
https://arxiv.org/abs/2104.00867
https://doi.org/10.1145/3340252
https://doi.org/10.1145/1778765.1778775
https://doi.org/10.1145/1778765.1778775

of surgical needle insertion and steering. ACM Trans. Graph. (SIGGRAPH) 28, 3 (2009),
88.

Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but Responsive Cloth. ACM Trans-
actions on Graphics 21 (07 2002). https://doi.org/10.1145/1198555.1198571

Alexandre Joel Chorin. 1968. Numerical Solution of the Navier-Stokes Equations. Math.
Comp. 22, 104 (1968), 745–762. http://www.jstor.org/stable/2004575

Fehmi Cirak and Quan Long. 2011. Subdivision shells with exact boundary control and
non-manifold geometry. Int. J. Numer. Methods Eng. 88, 9 (2011), 897–923.

Bernardo Cockburn, Fengyan Li, and Chi-Wang Shu. 2004. Locally divergence-free discon-
tinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 2 (2004),
588–610.

Qiaodong Cui, Pradeep Sen, and Theodore Kim. 2018. Scalable laplacian eigenfluids. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 87.

Fang Da, Christopher Batty, and Eitan Grinspun. 2014. Multimaterial Mesh-Based Surface
Tracking. ACM Trans. on Graphics (SIGGRAPH 2014) (2014).

Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double bubbles
sans toil and trouble: Discrete circulation-preserving vortex sheets for soap films and
foams. ACM Transactions on Graphics (TOG) 34, 4 (2015), 149.

Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016.
Surface-only liquids. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–12.

Fernando De Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016. Subdivision
exterior calculus for geometry processing. ACM Transactions on Graphics (TOG) 35, 4
(2016), 1–11.

Fernando De Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun.
2015. Power particles: an incompressible fluid solver based on power diagrams. ACM
Transactions on Graphics (TOG) 34, 4 (2015), 50:1–50:11.

Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid simulation using Laplacian
eigenfunctions. ACM Transactions on Graphics (TOG) 31, 1 (2012), 10.

Ivan DeWolf. 2006. Divergence-free noise. Technical Report. Technical report, Martian
Labs., 2005.

124

https://doi.org/10.1145/1198555.1198571
http://www.jstor.org/stable/2004575

Ounan Ding, Tamar Shinar, and Craig Schroeder. 2020. Affine particle in cell method
for MAC grids and fluid simulation. J. Comput. Phys. 408 (2020), 109311. https:

//doi.org/10.1016/j.jcp.2020.109311

Todd F. Dupont and Yingjie Liu. 2003. Back and forth error compensation and correction
methods for removing errors induced by uneven gradients of the level set function. J.
Comput. Phys. 190, 1 (2003), 311–324. https://doi.org/10.1016/S0021-9991(03)

00276-6

David Eberle. 2018. Better collisions and faster cloth for Pixar’s Coco. 1–2. https:

//doi.org/10.1145/3214745.3214801

Marvin Eisenberger, Zorah Lähner, and Daniel Cremers. 2018. Divergence-Free Shape
Interpolation and Correspondence. arXiv preprint arXiv:1806.10417 (2018).

Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007. Sta-
ble, circulation-preserving, simplicial fluids. ACM Transactions on Graphics (TOG) 26,
1 (2007), 4.

Douglas Enright, Stephen Marschner, and Ronald Fedkiw. 2002. Animation and rendering
of complex water surfaces. ACM Transactions on Graphics (TOG) 21, 3 (2002), 736–
744.

Olaf Etzmuß, Michael Keckeisen, and Wolfgang Straßer. 2003. A Fast Finite Element
Solution for Cloth Modelling. In Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications (PG ’03). IEEE Computer Society, USA, 244.

John A Evans and Thomas JR Hughes. 2013. Isogeometric divergence-conforming B-splines
for the unsteady Navier–Stokes equations. J. Comput. Phys. 241 (2013), 141–167.

Ye Fan, Joshua Litven, David I. W. Levin, and Dinesh K. Pai. 2013. Eulerian-on-
Lagrangian simulation. ACM Trans. Graph. (SIGGRAPH) 32, 3 (2013), 22.

François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K. Pai. 2011. Sparse
meshless models of complex deformable solids. ACM Trans. Graph. (SIGGRAPH) 30,
4 (2011), 73.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke.
In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 15–22. https://doi.org/

10.1145/383259.383260

125

https://doi.org/10.1016/j.jcp.2020.109311
https://doi.org/10.1016/j.jcp.2020.109311
https://doi.org/10.1016/S0021-9991(03)00276-6
https://doi.org/10.1016/S0021-9991(03)00276-6
https://doi.org/10.1145/3214745.3214801
https://doi.org/10.1145/3214745.3214801
https://doi.org/10.1145/383259.383260
https://doi.org/10.1145/383259.383260

Nick Foster and Dimitris Metaxas. 1996. Realistic Animation of Liquids. CVGIP: Graphical
Model and Image Processing 58 (01 1996), 471–483.

Michael Frewer, Martin Oberlack, and Vladimir Grebenev. 2014. The Dual Stream Func-
tion Representation of an Ideal Steady Fluid Flow and its Local Geometric Structure.
Mathematical Physics Analysis and Geometry 17 (03 2014). https://doi.org/10.

1007/s11040-014-9138-5

F. N. Fritsch and R. E. Carlson. 1980. Monotone Piecewise Cubic Interpolation. SIAM J.
Numer. Anal. 17, 2 (1980), 238–246.

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A Poly-
nomial Particle-in-cell Method. ACM Trans. Graph. 36, 6, Article 222 (Nov. 2017),
12 pages. https://doi.org/10.1145/3130800.3130878

Benjamin Gilles, Guillaume Bousquet, François Faure, and Dinesh K. Pai. 2011. Frame-
based elastic models. ACM Trans. Graph. 30, 2 (2011), 15.

Yotam Gingold, Adrian Secord, Jefferson Y. Han, Eitan Grinspun, and Denis Zorin. 2004.
A discrete model for inelastic deformation of thin shells. Technical Report. New York
University. 12 pages.

Christoph Gissler, A. Henne, S. Band, A. Peer, and M. Teschner. 2020. An implicit
compressible SPH solver for snow simulation. ACM Transactions on Graphics (TOG)
39 (2020), 36:1 – 36:16.

Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner. 2019.
Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling. ACM Transactions
on Graphics 38 (01 2019), 1–13. https://doi.org/10.1145/3284980

Ryan Goldade, Mridul Aanjaneya, and Christopher Batty. 2020. Constraint bubbles and
affine regions: reduced fluid models for efficient immersed bubbles and flexible spatial
coarsening. ACM Transactions on Graphics 39 (07 2020). https://doi.org/10.1145/

3386569.3392455

Eitan Grinspun, Anil N. Hirani, Peter Schröder, and Mathieu Desbrun. 2003. Discrete
shells. In Symposium on Computer Animation. Eurographics Association, 62–67.

Johnny Guzmán and Michael Neilan. 2014. Conforming and divergence-free Stokes ele-
ments in three dimensions. IMA J. Numer. Anal. 34, 4 (2014), 1489–1508.

126

https://doi.org/10.1007/s11040-014-9138-5
https://doi.org/10.1007/s11040-014-9138-5
https://doi.org/10.1145/3130800.3130878
https://doi.org/10.1145/3284980
https://doi.org/10.1145/3386569.3392455
https://doi.org/10.1145/3386569.3392455

Francis H. Harlow and J. Eddie Welch. 1965. Numerical Calculation of Time Dependent
Viscous Incompressible Flow of Fluid with Free Surface. The Physics of Fluids 8, 12
(1965), 2182–2189. https://doi.org/10.1063/1.1761178

Thomas Hou and Brian Wetton. 2009. Stable Fourth Order Stream-Function Methods for
Incompressible Flows with Boundaries. Journal of Computational Mathematics 27 (07
2009). https://doi.org/10.4208/jcm.2009.27.4.012

Ben Houston, Chris Bond, and Mark Wiebe. 2003. A unified approach for modeling com-
plex occlusions in fluid simulations. In ACM SIGGRAPH 2003 Sketches & Applications.
1–1.

Libo Huang, Torsten Hädrich, and Dominik Michels. 2019. On the accurate large-scale
simulation of ferrofluids. ACM Transactions on Graphics 38 (07 2019), 1–15. https:

//doi.org/10.1145/3306346.3322973

Antonio Huerta, Yolanda Vidal, and Pierre Villon. 2004. Pseudo-divergence-free element
free Galerkin method for incompressible fluid flow. Computer Methods in Applied Me-
chanics and Engineering 193, 12 (2004), 1119 – 1136. https://doi.org/10.1016/j.

cma.2003.12.010 Meshfree Methods: Recent Advances and New Applications.

Geoffrey Irving, J. Teran, and Ronald Fedkiw. 2004. Invertible finite elements for robust
simulation of large deformation. In SCA ’04.

Paul M Isaacs and Michael F Cohen. 1987. Controlling dynamic simulation with kinematic
constraints. ACM SIGGRAPH 21, 4 (1987), 215–224.

P Jenny, SB Pope, M Muradoglu, and DA Caughey. 2001. A hybrid algorithm for the joint
PDF equation of turbulent reactive flows. J. Comput. Phys. 166, 2 (2001), 218–252.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4
(2015), 51.

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle.
2016. The material point method for simulating continuum materials. In ACM SIG-
GRAPH 2016 Courses. 1–52.

J.U.Brackbill and H.M.Ruppel. 1986. FLIP: a method for adaptively zoned, particle-in-cell
calculuations of fluid flows in two dimensions. J. Comput. Phys. 65, 2 (1986), 314–343.

127

https://doi.org/10.1063/1.1761178
https://doi.org/10.4208/jcm.2009.27.4.012
https://doi.org/10.1145/3306346.3322973
https://doi.org/10.1145/3306346.3322973
https://doi.org/10.1016/j.cma.2003.12.010
https://doi.org/10.1016/j.cma.2003.12.010

Jonathan M. Kaldor, Doug L. James, and S. Marschner. 2010. Efficient yarn-based cloth
with adaptive contact linearization. ACM SIGGRAPH 2010 papers (2010).

T. Keeler and R. Bridson. 2015. Ocean waves animation using boundary integral equations
and explicit mesh tracking. In SCA ’14.

Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac. 2007.
Simulation of bubbles in foam with the volume control method. ACM Transactions on
Graphics (TOG) 26, 3 (2007), 98–es.

ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. 2005. FlowFixer:
Using BFECC for Fluid Simulation. In Eurographics Workshop on Natural Phenomena,
Pierre Poulin and Eric Galin (Eds.). The Eurographics Association. https://doi.org/

10.2312/NPH/NPH05/051-056

Theodore Kim. 2020. A Finite Element Formulation of Baraff-Witkin Cloth. Computer
Graphics Forum 39 (12 2020), 171–179. https://doi.org/10.1111/cgf.14111

Theodore Kim and D. Eberle. 2020. Dynamic deformables: implementation and production
practicalities. ACM SIGGRAPH 2020 Courses (2020).

Theodore Kim, Jerry Tessendorf, and Nils Thürey. 2013. Closest Point Turbulence for
Liquid Surfaces. 32, 2 (2013). https://doi.org/10.1145/2451236.2451241

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet Turbulence
for Fluid Simulation. ACM Trans. Graph. 27, 3 (Aug. 2008), 1–6. https://doi.org/

10.1145/1360612.1360649

Tassilo Kugelstadt, Dan Koschier, and Jan Bender. 2018. Fast Corotated FEM using
Operator Splitting. Computer Graphics Forum (SCA) 37, 8 (2018).

Tassilo Kugelstadt, Andreas Longva, Nils Thurey, and Jan Bender. 2019. Implicit Density
Projection for Volume Conserving Liquids. IEEE Computer Architecture Letters 01
(2019), 1–1.

T. Kugelstadt and E. Schömer. 2016. Position and orientation based Cosserat rods. In
Symposium on Computer Animation. 169–178.

Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational stokes: a unified
pressure-viscosity solver for accurate viscous liquids. ACM Transactions on Graphics
(TOG) 36, 4 (2017), 101.

128

https://doi.org/10.2312/NPH/NPH05/051-056
https://doi.org/10.2312/NPH/NPH05/051-056
https://doi.org/10.1111/cgf.14111
https://doi.org/10.1145/2451236.2451241
https://doi.org/10.1145/1360612.1360649
https://doi.org/10.1145/1360612.1360649

Philip L Lederer, Alexander Linke, Christian Merdon, and Joachim Schoberl. 2017.
Divergence-free reconstruction operators for pressure-robust Stokes discretizations with
continuous pressure finite elements. SIAM J. Numer. Anal. 55, 3 (2017), 1291–1314.

Christoph Lehrenfeld and Joachim Schöberl. 2016. High order exactly divergence-free
hybrid discontinuous Galerkin methods for unsteady incompressible flows. Computer
Methods in Applied Mechanics and Engineering 307 (2016), 339–361.

Faming Li, Xiaowu Chen, Lin Wang, and Qinping Zhao. 2014. Canopy-frame interactions
for umbrella simulation. Computers and Graphics 38 (2014), 320–327.

Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M. Kaufman.
2019. Decomposed Optimization Time Integrator for Large-Step Elastodynamics. ACM
Trans. Graph. (SIGGRAPH) 31 (2019).

Zhenquan Li and Gordon Mallinson. 2006. Dual stream function visualization of flows
fields dependent on two variables. Computing and Visualization in Science 9, 1 (2006),
33–41. https://doi.org/10.1007/s00791-006-0015-z

Alexander Linke. 2012. A divergence-free velocity reconstruction for incompressible flows.
Comptes Rendus Mathematique 350, 17-18 (2012), 837–840.

Konstantin Lipnikov, Mikhail Shashkov, and Daniil Svyatskiy. 2006. The mimetic finite
difference discretization of diffusion problem on unstructured polyhedral meshes. J.
Comput. Phys. 211, 2 (2006), 473–491.

Frank Losasso, Ronald Fedkiw, and Stanley Osher. 2006. Spatially adaptive techniques for
level set methods and incompressible flow. Computers & Fluids 35, 10 (2006), 995–1010.
https://doi.org/10.1016/j.compfluid.2005.01.006

Frank Losasso, Frederic Gibou, and Ronald Fedkiw. 2004. Simulating water and smoke
with an octree data structure. ACM Trans. Graph. 23 (08 2004), 457–462. https:

//doi.org/10.1145/1015706.1015745

Svenja Lowitzsch. 2005. Matrix-valued radial basis functions: stability estimates and ap-
plications. Advances in Computational Mathematics 23, 3 (2005), 299–315. https:

//doi.org/10.1007/s10444-004-1786-8

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2014. Unified
particle physics for real-time applications. ACM Trans. Graph. (SIGGRAPH) 33, 4
(2014), 153.

129

https://doi.org/10.1007/s00791-006-0015-z
https://doi.org/10.1016/j.compfluid.2005.01.006
https://doi.org/10.1145/1015706.1015745
https://doi.org/10.1145/1015706.1015745
https://doi.org/10.1007/s10444-004-1786-8
https://doi.org/10.1007/s10444-004-1786-8

Jakob Maljaars, Robert Labeur, and Matthias Möller. 2018. A hybridized discontinuous
Galerkin framework for high-order particle-mesh operator splitting of the incompressible
Navier-Stokes equations. J. Comput. Phys. 358 (04 2018). https://doi.org/10.1016/

j.jcp.2017.12.036

J.B. Manges and Z.J. Cendes. 1995. A generalized tree-cotree gauge for magnetic field
computation. IEEE Transactions on Magnetics 31, 3 (may 1995), 1342–1347. https:

//doi.org/10.1109/20.376275

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross.
2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. (SIG-
GRAPH) 29, 4 (2010), 39.

Aleka McAdams, Andrew Selle, Kelly Ward, Eftychios Sifakis, and Joseph Teran. 2009.
Detail Preserving Continuum Simulation of Straight Hair. ACM Trans. Graph. 28 (07
2009). https://doi.org/10.1145/1531326.1531368

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. Efficient Elasticity for Character Skinning with
Contact and Collisions. 30, 4 (2011). https://doi.org/10.1145/2010324.1964932

Colin P McNally. 2011. Divergence-free interpolation of vector fields from point val-
ues—exact div-B= 0 in numerical simulations. Monthly Notices of the Royal Astro-
nomical Society: Letters 413, 1 (2011), L76–L80.

DW Meyer and P Jenny. 2004. Conservative velocity interpolation for PDF methods.
In PAMM: Proceedings in Applied Mathematics and Mechanics, Vol. 4. Wiley Online
Library, 466–467.

Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun. 2009.
Energy-Preserving Integrators for Fluid Animation. ACM Trans. Graph. 28, 3, Article
38 (July 2009), 8 pages. https://doi.org/10.1145/1531326.1531344

Matthias Müller and Nuttapong Chentanez. 2011. Solid simulation with oriented particles.
ACM Trans. Graph. (SIGGRAPH) 30, 4 (2011), 92.

Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cutler.
2002. Stable Real-Time Deformations. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/545261.545269

130

https://doi.org/10.1016/j.jcp.2017.12.036
https://doi.org/10.1016/j.jcp.2017.12.036
https://doi.org/10.1109/20.376275
https://doi.org/10.1109/20.376275
https://doi.org/10.1145/1531326.1531368
https://doi.org/10.1145/2010324.1964932
https://doi.org/10.1145/1531326.1531344
https://doi.org/10.1145/545261.545269

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-Based Fluid Simula-
tion for Interactive Applications. Fluid Dynamics 2003, 154–159.

Matthias Müller, Nuttapong Chentanez, Tae Kim, and Miles Macklin. 2014. Strain Based
Dynamics. https://doi.org/10.2312/sca.20141133

Rahul Narain, Jonas Zehnder, and B. Thomaszewski. 2019. A Second-Order Advection-
Reflection Solver. Proc. ACM Comput. Graph. Interact. Tech. 2 (2019), 16:1–16:14.

Yen Ting Ng, Chohong Min, and Frédéric Gibou. 2009. An Efficient Fluid-solid Coupling
Algorithm for Single-phase Flows. J. Comput. Phys. 228, 23 (Dec. 2009), 8807–8829.

James F. O’Brien and Jessica K. Hodgins. 1999. Graphical modeling and animation of
brittle fracture. In SIGGRAPH. ACM Press/Addison-Wesley Publishing Co., 137–146.

D. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models.
Computer Graphics Forum 21 (2002).

Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive
localized liquid motion editing. ACM Transactions on Graphics (TOG) 32, 6 (2013),
1–10.

Sang Il Park and Myoung Jun Kim. 2005. Vortex fluid for gaseous phenomena. In Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation.
ACM, 261–270.

Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2017. An Implicit
SPH Formulation for Incompressible Linearly Elastic Solids: Implicit Elastic SPH Solids.
Computer Graphics Forum 37 (12 2017). https://doi.org/10.1111/cgf.13317

Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational de-
sign and automated fabrication of kirchhoff-plateau surfaces. ACM Trans. Graph. (SIG-
GRAPH) 36, 4 (jul 2017), 1–12. https://doi.org/10.1145/3072959.3073695

Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal,
Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible
Rod Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages. https:

//doi.org/10.1145/2766998

131

https://doi.org/10.2312/sca.20141133
https://doi.org/10.1111/cgf.13317
https://doi.org/10.1145/3072959.3073695
https://doi.org/10.1145/2766998
https://doi.org/10.1145/2766998

Charles S Peskin. 2002. The immersed boundary method. Acta numerica 11 (2002),
479–517.

Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for animat-
ing fluids. ACM Transactions on Graphics (TOG) 31, 4 (2012), 112.

Eric Plante, Marie-Paule Cani, and Pierre Poulin. 2002. Capturing the Complexity of Hair
Motion. Graphical Models 64, 1 (Jan. 2002), 40–58. https://doi.org/10.1006/gmod.

2002.0568 submitted Nov. 2001, accepted, June 2002.

John C Platt and Alan H Barr. 1988. Constraint methods for flexible models. SIGGRAPH
22, 4 (1988), 279–288.

Konstantin Poelke and Konrad Polthier. 2016. Boundary-aware Hodge decompositions for
piecewise constant vector fields. Computer-Aided Design 78 (2016), 126–136.

Xavier Provot. 1995. Deformation Constraints in a Mass-Spring Model to Describe Rigid
Cloth Behavior.

Adina E Pusok, Boris JP Kaus, and Anton A Popov. 2017. On the quality of velocity
interpolation schemes for marker-in-cell method and staggered grids. Pure and Applied
Geophysics 174, 3 (2017), 1071–1089.

Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient
and Conservative Fluids Using Bidirectional Mapping. ACM Trans. Graph. 38, 4, Article
128 (July 2019), 12 pages. https://doi.org/10.1145/3306346.3322945

Nick Rasmussen, Douglas Enright, Duc Nguyen, Sebastian Marino, Nigel Sumner, Willi
Geiger, Samir Hoon, and Ronald Fedkiw. 2004. Directable photorealistic liquids. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation. 193–202.

Bharath Ravu, Murray Rudman, Guy Metcalfe, Daniel Lester, and Devang Khakhar. 2016.
Creating analytically divergence-free velocity fields from grid-based data. J. Comput.
Phys. 323 (07 2016). https://doi.org/10.1016/j.jcp.2016.07.018

Olivier Rémillard and Paul G. Kry. 2013. Embedded thin shells for wrinkle simulation.
ACM Trans. Graph. (SIGGRAPH) 32, 4 (2013), 50.

Sander Rhebergen and Garth N Wells. 2018. A hybridizable discontinuous Galerkin method
for the Navier–Stokes equations with pointwise divergence-free velocity field. Journal of
Scientific Computing 76, 3 (2018), 1484–1501.

132

https://doi.org/10.1006/gmod.2002.0568
https://doi.org/10.1006/gmod.2002.0568
https://doi.org/10.1145/3306346.3322945
https://doi.org/10.1016/j.jcp.2016.07.018

Robert E. Rosenblum, Wayne E. Carlson, and Edwin Tripp III. 1991. Sim-
ulating the structure and dynamics of human hair: Modelling, render-
ing and animation. The Journal of Visualization and Computer Anima-
tion 2, 4 (1991), 141–148. https://doi.org/10.1002/vis.4340020410

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/vis.4340020410

Syuhei Sato, Yoshinori Dobashi, and Theodore Kim. 2021. Stream-Guided Smoke Simula-
tion. ACM Transactions on Graphics (TOG) 40, 4, Article 161 (2021).

Syuhei Sato, Yoshinori Dobashi, and Tomoyuki Nishita. 2018b. Editing fluid animation
using flow interpolation. ACM Transactions on Graphics (TOG) 37, 5 (2018), 1–12.

Syuhei Sato, Yoshinori Dobashi, Yonghao Yue, Kei Iwasaki, and Tomoyuki Nishita. 2015.
Incompressibility-preserving deformation for fluid flows using vector potentials. The
Visual Computer 31, 6 (2015), 959–965.

Takahiro Sato, Christopher Batty, Takeo Igarashi, and Ryoichi Ando. 2018a. Spatially
adaptive long-term semi-Lagrangian method for accurate velocity advection. Computa-
tional Visual Media (8 2018), 1–8. https://doi.org/10.1007/s41095-018-0117-9

Takahiro Sato, Christopher Wojtan, Nils Thuerey, Takeo Igarashi, and Ryoichi Ando.
2018c. Extended narrow band FLIP for liquid simulations. In Computer Graphics Forum,
Vol. 37. Wiley Online Library, 169–177.

Hagit Schechter and Robert Bridson. 2008. Evolving sub-grid turbulence for smoke anima-
tion. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation. Eurographics Association, 1–7.

J. C. J. Schellekens and René De Borst. 1993. On the numerical integration of interface
elements. Internat. J. Numer. Methods Engrg. 36, 1 (1993), 43–66.

Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008a.
An unconditionally stable MacCormack method. Journal of Scientific Computing 35,
2-3 (2008), 350–371.

Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008b. A mass spring model for
hair simulation. ACM Trans. Graphics SIGGRAPH. ACM Trans. Graph. 27 (08 2008).
https://doi.org/10.1145/1360612.1360663

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: a
sparse paged grid structure applied to adaptive smoke simulation. ACM Trans. Graph.
33 (2014), 205:1–205:12.

133

https://doi.org/10.1002/vis.4340020410
https://doi.org/10.1007/s41095-018-0117-9
https://doi.org/10.1145/1360612.1360663

Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: A prac-
titioner’s guide to theory, discretization and model reduction. ACM SIGGRAPH 2012
Courses, SIGGRAPH’12 (08 2012). https://doi.org/10.1145/2343483.2343501

Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ron Fedkiw. 2007. Hybrid simulation
of deformable solids. In Symposium on Computer Animation. 81–90.

Zachary J. Silberman, Thomas R. Adams, Joshua A. Faber, Zachariah B. Etienne, and Ian
Ruchlin. 2019. Numerical generation of vector potentials from specified magnetic fields.
J. Comput. Phys. 379 (2019), 421 – 437. https://doi.org/10.1016/j.jcp.2018.12.

006

Breannan Smith, Fernando Goes, and Theodore Kim. 2018. Stable Neo-Hookean Flesh
Simulation. ACM Transactions on Graphics 37 (03 2018), 1–15. https://doi.org/

10.1145/3180491

B. Solenthaler and R. Pajarola. 2009. Predictive-corrective incompressible SPH. In SIG-
GRAPH 2009.

Jonas Spillmann and Matthias Teschner. 2007. CORDE: Cosserat rod elements for the
dynamic simulation of one-dimensional elastic objects. In Symposium on Computer An-
imation. 63–72.

Jonas Spillmann and Matthias Teschner. 2009. Cosserat nets. IEEE TVCG 15, 2 (2009),
325–338.

Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 121–128. https://doi.org/10.1145/311535.

311548

Jos Stam. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. In
Computer-Aided Design and Computer Graphics. 1–11.

Michael Steffen, Robert M Kirby, and Martin Berzins. 2008. Analysis and reduction of
quadrature errors in the material point method (MPM). International journal for nu-
merical methods in engineering 76, 6 (2008), 922–948.

Alexey Stomakhin, Russell Howes, Craig Schroeder, and Joseph M. Teran. 2012. Energet-
ically Consistent Invertible Elasticity. Eurographics Association, Goslar, DEU.

134

https://doi.org/10.1145/2343483.2343501
https://doi.org/10.1016/j.jcp.2018.12.006
https://doi.org/10.1016/j.jcp.2018.12.006
https://doi.org/10.1145/3180491
https://doi.org/10.1145/3180491
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/311535.311548

Tetsuya Takahashi and Ming C Lin. 2019. A geometrically consistent viscous fluid solver
with two-way fluid-solid coupling. In Computer Graphics Forum, Vol. 38. Wiley Online
Library, 49–58.

Rasmus Tamstorf, Toby Jones, and Steve McCormick. 2015. Smoothed Aggregation
Multigrid for Cloth Simulation. ACM Transactions on Graphics 34 (10 2015), 1–13.
https://doi.org/10.1145/2816795.2818081

Yiying Tong, Santiago Lombeyda, Anil N Hirani, and Mathieu Desbrun. 2003. Discrete
multiscale vector field decomposition. ACM transactions on graphics (TOG) 22, 3 (2003),
445–452.

Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and Francois Faure. 2015. Stable
constrained dynamics. ACM Trans. Graph. (SIGGRAPH) 34, 4 (2015), 132.

Christopher D. Twigg and Zoran Kacic-Alesic. 2010. Point cloud glue: Constraining simu-
lations using the Procrustes transform. In Symposium on Computer Animation. 45–54.

Nobuyuki Umetani, Ryan Schmidt, and Jos Stam. 2014. Position-based elastic rods. ,
21–30 pages. https://dl.acm.org/citation.cfm?id=2849522

Wolfram Von Funck, Holger Theisel, and Hans-Peter Seidel. 2006. Vector field based shape
deformations. In ACM Transactions on Graphics (TOG), Vol. 25. ACM, 1118–1125.

Hongliang Wang, Roberto Agrusta, and Jeroen van Hunen. 2015. Advantages of a conserva-
tive velocity interpolation (CVI) scheme for particle-in-cell methods with application in
geodynamic modeling. Geochemistry, Geophysics, Geosystems 16, 6 (2015), 2015–2023.

Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the
GPU. 35, 6 (2016). https://doi.org/10.1145/2980179.2980236

Ke Wang, Yiying Tong, Mathieu Desbrun, and Peter Schröder. 2006. Edge subdivision
schemes and the construction of smooth vector fields. ACM Transactions on Graphics
(TOG) 25, 3 (2006), 1041–1048.

Nicholas J. Weidner, Kyle Piddington, David I. W. Levin, and Shinjiro Sueda. 2018.
Eulerian-on-lagrangian cloth simulation. ACM Trans. Graph. (SIGGRAPH) 37, 4 (jul
2018), 1–11. https://doi.org/10.1145/3197517.3201281

Jane Wilhelms. 1987. Using dynamic analysis for realistic animation of articulated bodies.
IEEE Computer Graphics and Applications 7, 6 (1987), 12–27.

135

https://doi.org/10.1145/2816795.2818081
https://dl.acm.org/citation.cfm?id=2849522
https://doi.org/10.1145/2980179.2980236
https://doi.org/10.1145/3197517.3201281

Andrew Witkin, Kurt Fleischer, and Alan Barr. 1988. Energy constraints on parameterized
models. In SIGGRAPH. 225–232.

Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2018. Bend-it: Design and
Fabrication of Kinetic Wire Characters. ACM Trans. Graph. 37, 6, Article 239 (Dec.
2018), 15 pages. https://doi.org/10.1145/3272127.3275089

P. Yu and Zhen Tian. 2019. A high-order compact scheme for the pure streamfunction
(vector potential) formulation of the 3D steady incompressible Navier-Stokes equations.
J. Comput. Phys. 382 (04 2019). https://doi.org/10.1016/j.jcp.2018.12.027

Jonas Zehnder, Rahul Narain, and B. Thomaszewski. 2018. An advection-reflection solver
for detail-preserving fluid simulation. ACM Transactions on Graphics (TOG) 37 (2018),
1 – 8.

Rundong Zhao, Mathieu Desbrun, Guo-Wei Wei, and Yiying Tong. 2019. 3D Hodge decom-
positions of edge-and face-based vector fields. ACM Transactions on Graphics (TOG)
38, 6 (2019), 1–13.

Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. 2015. Codimensional non-Newtonian
fluids. ACM Trans. Graph. (SIGGRAPH) 34, 4 (2015), 115.

Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codimen-
sional surface tension flow on simplicial complexes. ACM Trans. Graph. (SIGGRAPH)
33, 4 (2014), 111.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 965–972.

136

https://doi.org/10.1145/3272127.3275089
https://doi.org/10.1016/j.jcp.2018.12.027

	List of Figures
	List of Tables
	Introduction
	I A Unified Simplicial Model for Mixed-Dimensional and Non-Manifold Deformable Elastic Objects
	Introduction
	Related Work
	(Manifold) Single-Type Elastic Models
	Elastic Rods
	Elastic Shells and Solids

	Non-Manifold Single-Type Elastic Models
	Unified Non-Manifold Elastic Models
	Specialized Elastic Model Coupling
	Constraint-Based Coupling

	Elastic Energies for Single-Type Models
	Discrete Elastic Rods
	Discrete Elastic Shells and Solids
	Dihedral Bending for Shells

	Connecting Single-Type Models
	Point Connections
	Twisting Energy
	Bending Energy
	Choosing Coordinate Frames at Vertices

	Curve Connections
	Surface Connections

	Results

	II Curl-Flow: A Novel Divergence-Free Velocity Interpolation Method in Fluid Animation
	Introduction
	Related Work
	Fluid Simulation Methods
	Grid-Based Eulerian Methods
	Lagrangian Methods

	Divergence-Free Fields
	Vector Potentials
	Dual Stream Functions
	Vortex Methods
	Matrix-Valued Radial Basis Functions
	Divergence-Free Finite Element Methods
	Direct Interpolation of Finite Volume Solutions
	Subdivision Schemes

	Preliminaries
	The Equations of Fluids
	Pressure Projection
	Boundary Conditions

	Vector Potentials
	Applications of Vector Potentials in Graphics

	Advection

	Problem Setting
	Curl-Flow Interpolation In 2D
	Uniform Grids in 2D
	Recovering Discrete
	Interpolating

	Cut-Cells in 2D
	Recovering Discrete
	Interpolating
	A Curl-Noise Enhancement for Exact 2D Boundary Enforcement

	Curl-Flow Interpolation In 3D
	Uniform Grids in 3D
	Recovering a Vector Potential by Parallel Sweeping
	Boundary Conditions and Gauge Correction
	Interpolation

	Cut-Cells in 3D
	Parallel Sweeping with 3D Cut-Cells
	Approximate Gauge Correction with 3D Cut-Cells

	Exact Boundary Enforcement in 3D
	Closed Exterior Domain Boundaries
	Solid Obstacles

	Results and Discussion
	Particle Distribution Comparisons in 2D
	Particle Distribution Comparisons in 3D
	Smoke Simulations and Performance
	Vector Potential Reconstruction Comparisons
	Convergence of Curl-Flow Velocity Interpolation

	Conclusions
	Unified Elastic Objects
	Curl-Flow

	References

