
A Flexible Ultralight Hardware
Security Module for EPC RFID Tags

by

Ahmed Ayoub

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

© Ahmed Ayoub 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Arash Reyhani-Masoleh
Professor, Dept. of Electrical and Computer Engineering,
Western University

Supervisor: Mark Aagaard
Associate Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Members: Guang Gong
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Hiren Patel
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: Martin Karsten
Associate Professor, Cheriton School of Computer Science,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Due to the rapid growth of using Internet of Things (IoT) devices in daily life, the need
to achieve an acceptable level of security and privacy for these devices is rising. Security
risks may include privacy threats like gaining sensitive information from a device, and
authentication problems from counterfeit or cloned devices. It is more challenging to add
security features to extremely constrained devices, such as passive Electronic Product Code
(EPC) Radio Frequency Identification (RFID) tags, compared to devices that have more
computational and storage capabilities.

EPC RFID tags are simple and low-cost electronic circuits that are commonly used in
supply chains, retail stores, and other applications to identify physical objects. Most tags
today are simple “license plates” that just identify the object they are attached to and
have minimal security. Due to the security risks of new applications, there is an important
need to implement secure RFID tags. Examples of the security risks for these applications
include unauthorized physical tracking and inventorying of tags. The current commercial
RFID tag designs use specialised hardware circuits approach. This approach can achieve
the lowest area and power consumption; however, it lacks flexibility.

This thesis presents an optimized application-specific instruction set architecture (ISA)
for an ultralight Hardware Security Module (HSM). HSMs are computing devices that pro-
tect cryptographic keys and operations for a device. The HSM combines all security-related
functions for passive RFID tag. The goal of this research is to demonstrate that using an
application-specific instruction set processor (ASIP) architecture for ultralight HSMs pro-
vides benefits in terms of trade-offs between flexibility, extensibility, and efficiency. Our
novel application specific instruction-set architecture allows flexibility on many design lev-
els and achieves acceptable security level for passive EPC RFID tag. Our solution moves
a major design effort from hardware to software, which largely reduces the final unit cost.

Our ASIP processor can be implemented with 4,662 gate equivalent units (GEs) for 65
nm CMOS technology excluding cryptographic units and memories. We integrated and
analysed four cryptographic modules: AES and Simeck block ciphers, WG-5 stream cipher,
and ACE authenticated encryption module. Our HSM achieves very good efficiencies
for both block and stream ciphers. Specifically for the AES cipher, we improve over a
previous programmable AES implementation result by 32×. We increase performance
dramatically and increase/decrease area by 17.97/17.14% respectively. These results fulfill
the requirements of extremely constrained devices and allow the inclusion of cryptographic
units into the datapath of our ASIP processor.

iv

Acknowledgements

First and foremost, I would like to praise and thank God who has granted countless
blessing, knowledge, and opportunity to me so that I have been finally able to accomplish
this thesis.

I would like to express my sincere appreciation to my supervisor, Professor Mark Aa-
gaard for his tremendous support, guidance, encouragement and patience during my study
at University of Waterloo. I have learned a lot from his vast experience and technical
knowledge. Without his continuous support for my research and my personal life, this
thesis would not have been possible.

I would like to express my appreciation to Professor Guang Gong for her support, and
guidance. Many thanks for discussions, explanations, and clarifications during communi-
cations security lab (ComSec) seminars. I would like to thank my committee members,
Professor Hiren Patel, Professor Martin Karsten, and Professor Arash Reyhani-Masoleh.
For their time, good questions, and valuable comments.

I would like to give special thanks to all my colleagues and friends during my PhD stud-
ies. Special thanks to Nusa Zidaric, Gangqiang Yang, Bo Yang, Marat Sattarov, Jenny
Yu, and all other past and present members of the ComSec lab.

Also, thanks to my former supervisors at Cairo University Professor Serag El-Din Habib,
and Professor Hossam Fahmy who guided me through my BSc and MSc and taught me
how to keep learning, be more productive and develop on the personal level.

I would like to express my gratitude to my parents Nagwa, and Abdelmordy. Without
their encouragement, I would never reach to this point. All of my accomplishments through
my life have been realized by endless love and support of them. Thanks to my sister Nahla
and my brother Mohammad for their support and unconditional love.

Last but not least, I would like to express my deepest appreciation to my wife Hoda,
my son Hamza, and my daughter Yasmine for their cooperation, sacrifices, and friendship
during my PhD journey. Their love and friendship are great gifts in my life.

v

Dedication

This thesis is dedicated to my family, friends, and all the people who helped me to get
this work done.

vi

Table of Contents

List of Tables xii

List of Figures xiv

List of Abbreviations xvi

1 Introduction 1

2 Background 6

2.1 Security and Cryptography . 6

2.1.1 Symmetric-key cryptography . 10

2.1.1.1 Stream ciphers . 10

2.1.1.2 Block ciphers . 11

2.1.1.3 Mode of operations in block ciphers 12

2.1.1.4 Pseudorandom number generators 14

2.1.1.5 Hash functions . 15

2.1.2 Lightweight cryptography . 16

2.1.3 Physical security . 18

2.1.4 Hardware security module . 19

2.1.4.1 Secure Hardware Extension 20

2.1.4.2 Payment Card Industry Data Security Standard 20

vii

2.1.4.3 Trusted Execution Environment 21

2.1.4.4 Trusted Platform Module 22

2.1.5 Security validations standards . 22

2.1.5.1 FIPS 140-2 . 22

2.1.5.2 Common criteria . 23

2.2 Digital Hardware Circuits . 25

2.2.1 Digital hardware circuits design approaches 25

3 EPC RFID Systems 27

3.1 RFID standards . 27

3.2 RFID system components and overall behaviour 29

3.2.1 Types of RFID tags . 29

3.2.1.1 power supply source . 30

3.2.1.2 Frequencies, Coupling method 31

3.2.1.3 Overall behaviour . 33

3.3 EPC RFID tag specifications . 35

3.3.1 RFID Tag reading range and Power 35

3.3.2 RFID Tag speed and response time 35

3.3.3 RFID tag microchip and memory banks 36

3.3.4 Reader stages/commands and Tag states: 37

3.3.4.1 Tag states: . 38

3.3.4.2 Reader commands: . 40

3.4 The EPC tag requirements . 41

3.4.1 Functional Requirements: . 42

3.4.2 Security Requirements: . 42

3.4.3 Performance Requirements: . 42

3.4.4 Area Requirements: . 43

3.4.5 Power Requirements: . 44

viii

3.5 Related Work . 44

3.5.1 Security for RFID tags . 44

3.5.2 Hardware architectures for RFID tags 46

3.5.2.1 Software-based approach 46

3.5.2.2 Specialized hardware approach 47

3.5.2.3 ASIP-based approach . 47

4 System level design 48

4.1 Top-level design . 48

4.2 The EPC tag digital baseband responsibilities 50

4.3 The interaction between the HSM and the CM 55

5 The HSM Architecture 59

5.1 The overall architecture . 59

5.2 Instruction-set architecture . 61

5.3 Instruction Formats . 62

5.3.1 Register Format (R-type) . 62

5.3.2 First Immediate format (I1-type) 65

5.3.3 Second Immediate format (I2-type) 66

5.4 Instruction format design decisions . 66

5.4.1 Three-operand vs. two-operand ISA architectures 67

5.4.2 Stack-based vs. register-based ISA architectures 67

5.4.3 Variable length instructions vs. fixed length instructions 68

5.5 The ASIP HSM features . 68

5.5.1 Interrupt driven control . 69

5.5.2 Input/output operations . 70

5.5.3 Instruction-set extension . 73

5.5.4 Accelerated mode support . 78

ix

5.5.5 Instruction fetch unit and control stack 78

5.5.6 Special-purpose registers . 79

5.5.7 Memory management unit (MMU) 80

6 Results and Evaluations 83

6.1 HSM architecture and results . 83

6.2 Other work results . 85

6.3 Comparison between our ASIP and Plos’s and Groß’s processor architectures 87

6.4 Cryptographic algorithms implementation results 92

6.4.1 Area considerations, ROM efficiency, and encryption/decryption ef-
ficiency . 94

6.4.2 AES block cipher . 96

6.4.3 Block ciphers: Present and Simeck 101

6.4.4 Stream ciphers: Trivium and WG-5 105

6.4.5 ACE authenticated encryption module 108

7 Conclusion and Future Work 113

7.1 Conclusion . 113

7.2 Future works . 115

7.2.1 Implementation of more security services 115

7.2.2 Security validations . 115

7.2.3 The communication module architecture 116

References 117

APPENDICES 126

x

A EPC commands 127

A.1 NAK command . 127

A.2 Query command . 128

A.3 QueryRep command . 129

A.4 QueryAdjust command . 130

A.5 ReqRN command . 131

A.6 Lock command . 132

A.7 Select command . 133

A.8 Read command . 135

A.9 Write command . 136

B Instruction-set architecture 137

B.1 Memory/move instructions . 137

B.2 Arithmetic instructions . 138

B.3 Branch instructions . 138

B.4 Output instructions . 139

B.5 Custom instructions . 139

xi

List of Tables

2.1 The difference between the three hardware architectures 26

3.1 RFID operating frequencies and characteristic 32

3.2 T1 timing and available clock cycles . 43

4.1 Responsibilities in the communication module and the HSM 53

4.1 Responsibilities in the communication module and the HSM 54

5.1 The meaning and the encodings of the supported instructions 63

5.2 Examples of custom instructions encodings and meanings 64

5.3 Output instructions . 73

5.4 Custom cryptographic instruction assembly code examples for different options 76

5.5 Branch/control instructions . 79

5.6 Permission bits structure example . 82

6.1 The chip area results for the ASIP design components 84

6.2 The related work implementation results 86

6.3 The chip area results . 88

6.4 The selected cryptographic algorithms properties 93

6.5 Encryption/decryption operations efficencies for some cryptographic algo-
rithms . 95

6.6 AES Block encryption operation results in our ASIP HSM 97

xii

6.7 Synthesis results of some AES algorithm implementations 98

6.8 AES Block encryption operation results in the related work 100

6.9 Synthesis results of some block ciphers implementations 101

6.10 Block encryption/decryption operation results 103

6.11 Encryption/decryption operation results using Simeck 32/64 on our ASIP
HSM . 105

6.12 Synthesis results of some stream ciphers implementations 106

6.13 Stream encryption/decryption operation results 107

6.14 Encryption/decryption operation results using WG-5 on our ASIP HSM . . 108

6.15 Loading/initialization execution time for ACE in our ASIP HSM 109

6.16 Encryption/decryption operation results for ACE in our ASIP HSM . . . 110

6.17 ACE instruction options in our ASIP HSM 111

6.18 Area results for ACE using our ASIP HSM 112

xiii

List of Figures

2.1 CIA triad . 7

2.2 Symmetric-key cryptography system . 7

2.3 Overview of cryptanalysis . 9

2.4 General structure of the stream/block cipher 11

2.5 General structure of the stream cipher . 11

2.6 One round function in block cipher . 12

2.7 Block cipher structures . 13

2.8 ECB encryption mode . 13

2.9 CBC encryption mode . 14

2.10 CTR encryption mode . 15

3.1 RFID system components . 30

3.2 Command-response communication protocol 34

3.3 Reader stages and tag states . 38

4.1 Tag device components . 49

4.2 Tag digital baseband architecture . 52

4.3 ACK command operations division between the CM and the HSM 56

4.4 ACK command operations division between the CM and the HSM 58

5.1 The microarchitecture datapath for the ASIP HSM 60

5.2 R-type instruction format . 65

xiv

5.3 I1-type instruction format . 65

5.4 I2-type instruction format . 66

5.5 The input/output interface signals . 69

5.6 R0 input register control logic . 71

5.7 R1 output register control logic . 73

5.8 The input/output interface for a cryptomodule 74

5.9 The included Simeck cipher in the ASIP processor 75

5.10 The cryptomodule interface connections 77

6.1 Our ASIP processor area components . 89

6.2 Plos’s processor area components . 90

6.3 HSM implementations using different cryptomodules 91

xv

List of Abbreviations

AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
ALU Arithmetic Logic Unit
ASIP Application Specific Instruction-set Processor
CBC Cipher Block Chaining mode
CC Common Criteria Standard
CM Communication Module
Command EPC standard command
CRC Cyclic Redundant Check
CTR Counter mode
DES Data Encryption Standard
ECB Electronic CodeBook mode
EPC Electronic Product Code
EPCglobal Electronics Product Code Global Incorporated
FIPS Federal Information Processing Standards
FSM Finite State Machine
GE Gate Equivalent
GPP General-Purpose Processor
HASH Hash function
HF High Frequency
HSM Hardware Security Module
IEC International Electrotechnical Commission
Instruction What the user writes in assembly code
ISA Instruction Set Architecture
IRQ Interrupt Request
ISO International Organization for Standardization
ISR Interrupt Service Routine
IoT Internet of Things

xvi

IV Initialization Vector
LF Low Frequency
NIST National Institute of Standards and Technology
NRE Non-recurring engineering
NVM Non Volatile Memory
PCI-DSS Payment Card Industry Data Security Standard
PRSG Pseudo Random Sequence Generator
PRNG Pseudo-Random Number Generator
RAM Random Access Memory
RF Radio Frequency
RFID Radio-frequency identification
RISC Reduced Instruction-set Computer
RN16 16-bit random number
ROM Read Only Memory
SHA Secure Hash Algorithm

sLiSCP
Simeck-based Permutations for Lightweight Sponge
Cryptographic Primitives

SPN Substitution-Permutation Network
SHE Secure Hardware Extension
SOC System-on-chip
TEE Trusted Execution Environment
TID Tag Identification
TPM Trusted Platform Module
UHF Ultra High Frequency

xvii

Chapter 1

Introduction

The Internet of Things (IoT) is a worldwide network that contains billions of intercon-
nected physical devices. This network enables these devices to collect and exchange data.
New applications require security and privacy with minimal possible cost. Radio Frequency
Identification (RFID) is one of the technologies that is used to implement IoT applications.

RFID systems are widely used to perform automated identification for physical devices
using radio frequency signals. Typically, an RFID system consists of three components: a
tag, a reader and a back-end database. The tag is a microchip connected with an antenna,
which can be attached to an object as the identifier of the object. The RFID reader com-
municates with the RFID tag using radio waves. The main advantage of RFID technology
is the automated identification that promises changes across a wide range of business ac-
tivities and aims to add new functionalities to systems that currently use bar codes.

One of the most popular RFID protocols is the EPC Class 1 Gen 2 standard. An
Electronic Product Code (EPC) is a unique number that is stored in an EPC tag. Most
tags today are simple “license plates” that just identify the object they are attached to,
and have only minimal security. Due to the security risks of the new applications, there
is an important need to implement cryptographically secure EPC tags. At the same time,
adding these services is a significant challenge because of the strict cost, power consump-
tion, and area limitations for the EPC tags.

1

This thesis presents an optimized application-specific instruction set processor (ASIP)
for an ultralight Hardware Security Module (HSM). HSMs are physically separated com-
puting devices that protect cryptographic keys and provide cryptographic operations for a
device. We choose EPC tags as a prototype device. The HSM combines all security-related
functions for an EPC tag. The goal of this research is to demonstrate that using an ASIP
architecture for ultralight HSMs provides benefits in terms of trade-offs between flexibil-
ity, extensibility, and efficiency. Our ASIP processor can be implemented with 4,662 gate
equivalent units (GEs) for 65 nm CMOS technology excluding cryptographic units and
memories. We integrated and analysed four cryptographic modules: Simeck block cipher,
WG-5 stream cipher, AES cipher, and ACE authenticated encryption module. We used
existing implementations that can be easily plugged in our HSM. We increase performance
dramatically and increase area by a small amount in comparison to previous works on
adding cryptographic functions to EPC tags.

The main research questions for this thesis can be stated as follows: how feasible is
using HSM design for such constrained devices such as EPC tags? And, how effective is
using a flexible ASIP-based architecture for EPC tags? HSMs are typically implemented
as extension cards or appliances for compute servers and other large, high systems. We
have not seen a HSM design for constrained devices as EPC tags that have very limited
hardware resources and power consumption. The other gap that we try to fill is adding
high level of flexibility to EPC tags by using an ASIP architecture. This flexibility has
many benefits in terms of simplicity of the design process to support different applications
and to produce different tag models in one fabrication process.

Current EPC tag designs use two approaches: the specialised hardware approach, and
the software-based approach. The specialised hardware approach can achieve the lowest
area and power consumption and the highest performance for EPC tag designs, however it
lacks flexibility and extensibility. The design process in this approach takes a long time and
is relatively expensive. On the contrary, the designs that use the software-based approach
are much slower and consume more energy. The main advantages of using software-based
approach is the high flexibility and the relatively short time to market. The proposed
ASIP-based approach can achieve a balance between rich functionality, low cost chips,
high performance, and reasonable security requirements as well as high level of flexibility.

The ASIP-based design approach can be almost as efficient as the specialised hard-
ware approach. The ASIP-based approach adds more hardware components and power
consumption compared to the specialised hardware approach. However, ASIP processors

2

are designed for specific functions and include only the necessary hardware units. This
results in low chip size and low power consumption, similar to that of specialised circuit
designs. ASIP architecture allows flexibility and extensibility for EPC tags. In this thesis,
flexibility is meant to be the ability to add cryptographic modules into the ASIP processor.
The added cryptographic modules can be then accessed using custom instructions. Ex-
tensibility is the ability to write different software programs using same or different added
cryptographic modules. In other words, extensibility is the ability to implement different
tag models by writing different software programs.

Our proposed ASIP architecture for EPC tags has the potential to reduce the unit cost
of tags with rich functionality. Compared to specialised hardware approach, the major
part of the design effort in the ASIP-based approach is moved from the hardware (i.e.
relatively expensive) to the software (cheap). This reduces the non-recurring cost (NRE).
The ASIP-based approach allows large scale production by combining more than one tag
model in one fabrication process. These tag models have same hardware components but
they behave differently according to the included software programs.

The hardware development cost can be amortized over an extremely large number of
tag units sold. Hence, the tag unit cost is reduced. The following example shows the
potential effect of using the ASIP-based approach on the final unit cost. Suppose that
the whole development cost is one million dollars. To get an amortized development cost
of 0.1 dollars per tag, 10 millions tag units have to be produced. This does not include
the manufacturing cost or profit, which also need to be included in the total price of the tag.

Today’s license plate tags are simple; they don’t have unique features for different ap-
plications. Many applications can use the same tag so it is possible to have demand for 10
millions or more license plate tags. Rich functionality leads to the need for different tag
models (i.e. same hardware but different software programs) for different applications. It
is possible to combine more than one tag model in one fabrication process to produce the
same large number of tags using the ASIP-based approach.

The contributions of this thesis are listed as follows:

1. Introducing the idea and demonstrating the feasibility of creating an HSM that sat-
isfies the constraints of RFID tags. Previous efforts to add security features to RFID
tags have integrated the security functionality with the normal functionality. Our
system architecture separates the HSM from the standard functionality.

3

2. Developing an ASIP architecture for an ultralight HSM that is significantly more effi-
cient in performance vs. area than previous efforts to add security to RFID tags. Our
HSM achieves very good efficiencies for both block and stream ciphers. Specifically
for the AES cipher, we improve over a previous programmable AES implementation
result by 32×.

3. Demonstrating that our ASIP architecture provides significant flexibility in plugging
in a variety of cryptographic modules with minimal effort. Our ASIP instruction
set provides customizable instruction for different ciphers and our micro-architecture
provides a flexible but standardized interface to cryptographic modules. The cost of
incorporating a cryptographic module into our HSM ranges from an area overhead
of 2.37% and 40 lines of assembly code for the AES cipher to 10.39% overhead and
109 lines of code for the ACE authenticated cipher.

4. Demonstrating that our ASIP architecture provides significant extensibility in adding
new functionality to the HSM. Adding support for authenticated encryption did not
require any changes to the HSM instruction set or architecture.

5. In addition, the novel features of our HSM include:

• Two registers in the register file are used for input/output operations, these
registers allow for different serial/parallel loading modes.

• The accelerated mode support; the ASIP can repeat the execution of one in-
struction multiple times without using a branch or loop instruction.

• Implicit operations can be run after writing some value to the status register or
to the accelerated mode/output counter register.

• The integration of extended hardware units is done by using a generic interface.
It may be required to design a wrapper for the added unit if its interface is not
same as the used generic interface. The other traditional way for integrating a
unit uses an intermediate standard bus to interact with the added unit.

• An efficient instruction set optimized for HSMs. The instruction set doesn’t in-
clude some common operations in most processors like multiplications and cryp-
tographic operations. The main purpose of our ASIP processor is to move data
between the memory, the input/output interface, and the extended hardware
modules. Complex cryptographic computations are performed by the extended
modules.

4

The rest of the thesis is organized as follows. Chapter 2 provides a background for the
related topics and gives a review of the related works focused on secure implementations
and lightweight security protocols for passive RFID tags. Chapter 3 discusses the system
level architecture for the proposed tag design and explains the functions and the interface
of each design’s component. Chapter 4 provides a detailed description for the proposed
ASIP HSM micro-architecture and its instruction-set architecture. Chapter 5 discusses the
obtained results for our design and compares them to the other designs results followed by
a conclusion and future works in Chapter 6.

5

Chapter 2

Background

2.1 Security and Cryptography

Security is the protection of the computer systems and its information from unauthorized
access, disclosure, disruption, modification, inspection, recording or destruction. It is gen-
eral term used with any form of data such as: electronic form, or physical form.

FIPS 199 Standard for Security Categorization of Federal Information and Information
Systems by National Institute of Standards and Technology (NIST) [76] lists confidentiality,
integrity, and availability as three security objectives for information and information sys-
tems, the three basic security objectives are known as the CIA triad as shown in Figure 2.1.

The FIPS-199 standard defines the confidentiality as preserving authorized restrictions
on information access and disclosure, including means for protecting personal privacy and
proprietary. In other words, a loss of confidentiality or privacy is the unauthorized dis-
closure of information. The integrity is defined as guarding against improper information
modification or destruction, and includes ensuring information non-repudiation and au-
thenticity. Availability is defined as ensuring timely and reliable access to and use of
information.

The privacy and authentication of information are two security problems which cryptog-
raphy studies and solves. The first term “privacy” can be achieved by encryption process
which transforms a plaintext, the data in its original form, into a ciphertext. The func-
tion that transforms a plaintext message to a ciphertext message is called a cipher. The

6

Confidentiality

Integrity Availability

Figure 2.1: CIA triad

plaintext message afterwards could be recovered by the process of decryption. The second
problem that cryptography solves is authentication. Message “authentication” means that
the received message is actually sent by the true sender. Figure 2.2 shows a symmetric-key
cryptography system that the cipher and the decipher has the same secret key.

Encryption Decryption

Key Key

plaintext ciphertext plaintext

insecure channel

Figure 2.2: Symmetric-key cryptography system

The classical cryptanalysis is a reverse function of cryptography, which studies methods
for obtaining the meaning of encrypted information, without access to the secret informa-
tion such as the secret keys. The method that tries to break a crypto-system is called
an attack. The attacks in the classical cryptanalysis are classified into four scenarios de-
pending on the adversary capabilities. The adversary may eavesdrop the communications

7

among the entities, this attack is called Ciphertext-Only Attack (COA). For all wireless
communication systems, the adversary has this capability to intercept communications
among the different entities.

The second scenario is when the adversary has access to a limited number of pairs
of plaintext and its corresponding ciphertext, this type is called Known-Plaintext Attack
(KPA). The adversary has more opportunity to succeed by knowing more plaintext cipher-
text pairs. In the third attack scenario (CPA), the adversary has the ability to generate
a sequence of plaintexts of its choice and it has access to their corresponding ciphertexts.
The last one is the most powerful model, called Chosen-Ciphertext Attack (CCA). In this
attack model, the adversary can choose arbitrary ciphertext and have access to plaintext
decrypted from it, it also can choose arbitrary plaintext and have access to the resulting
ciphertext encrypted from it.

Another type of cryptanalysis relies on implementation attacks in which the attacker
has physical access to a crypto-system such as smart cards, USB tokens, and RFID tags.
This physical access may be gaining information from the implementation (i.e. side-channel
attack), manipulating with the device to provoke an error (i.e. fault attack), or even spying
on inner components of the chip (i.e probing attack).

The implementation attacks can be categorized according to their mechanical invasive-
ness or the attackers capabilities: non-invasive attacks, semi-invasive attacks, and invasive
attack. Non-invasive attacks are considered usually as low-cost cryptanalysis which ob-
serve or manipulate with the device without physical harm. Semi-invasive attacks are
more expensive than non-invasive attacks but the semiconductor chip is de-packaged but
internal structure remains same as before. Invasive attacks are the most expensive method,
the attacker has unlimited capabilities to extract information from chips and understand
their functionality using expensive equipments. The different categories for cryptanalysis
is shown in Figure 2.3. The focus of this thesis is on the hardware design for the HSM
and demonstrating that the proposed ASIP architecture is more efficient than previous
solutions. Security analysis is outside the scope of this thesis.

Modern cryptography is divided into two typical types: Symmetric-key cryptography
and Public-key cryptography. In Symmetric-key cryptography, the sender and the receiver
share the same secret key. This key is called symmetric key shared between the two parties.
Public-key cryptography is a cryptographic system that uses two different keys; a public

8

Cryptanalysis

Classical
cryptanalysis

Implementation
Attacks

Brute-force
Attacks

Mathematical
Analysis

Reverse
Engineering

Micro-probing

Fault
Injection

Side-channel
Analysis

Attacker capabilities:

- Non-invasive Attacks
- Semi-invasive Attacks
- Invasive Attacks

Attacker capabilities:

- COA
- KPA
- CpA
- CCA

Figure 2.3: Overview of cryptanalysis

key and a private key. In case of encryption/decryption processes, a public key is used
for encryption and a private key that is used for decryption. The public key is known to
everybody but the private key is known only to the owner (as in the decryption entity) or
to the owner and the third-trusted party that may generate it.

Both cryptography types have some advantages and disadvantages. The main advan-
tage in symmetric-key cryptography is the speed and less complexity compared to public-
key cryptography. The public-key cryptography involves intensive computations so it is
not feasible for EPC tags due to area and power constraints. The key management in
public-key cryptography is much easier compared to symmetric-key cryptography as the
public key is known by everyone and could be shared within an insecure channel. The key
in the symmetric-key cryptography should kept secret while transferring to any party.

9

One system may have many keys used for different cryptographic algorithms such as
encryption/decryption key, and authentication/verification key. In symmetric-key cryp-
tography, there are shared secret key for encryption/decryption algorithm and there is
another shared secret authentication key for the authentication algorithm. On the other
hand, a different keys pair is used for the authentication or in the digital signature algo-
rithm, the public authentication key is used for signing while the private authentication key
is used for the verification process. The public key could be shared and known by everyone.

In some systems, both cryptography types are used to combine the advantages from
both types. Public key cryptography is used for the key establishment and symmetric-key
exchange while symmetric key cryptography is used for the communications. In general,
the symmetric key cryptography is used when performance is required as in the wireless
communication systems.

This thesis uses only lightweight symmetric-key ciphers that are suitable for extremely
constrained devices. Both block and stream ciphers have been used. AES is used in this
thesis for benchmarking reasons to compare the efficiency to previous solutions. The generic
kind of our solution allow for implementing different cryptographic mode of operations in
software.

2.1.1 Symmetric-key cryptography

Symmetric-key ciphers are implemented as either block ciphers or stream ciphers. A block
cipher encrypts input in blocks of plaintext, examples of the block lengths are 128-bit or
256-bit block lengths. A stream cipher enciphers instantaneously one-bit or a small number
of bits such as 8-bit. Figure 2.4 shows a general structure of the stream/block cipher.

2.1.1.1 Stream ciphers

Stream ciphers is one kind of symmetric-key ciphers where a small number of plaintext
bits is encrypted instantaneously (i.e. bit by bit or byte by byte). The general structure of
the stream ciphers is shown in Figure 2.5. The keystream generator generates a keystream
sequence depending on the seed or the input key. The key could be the initial state of the

10

Block Cipher

Key

plaintext ciphertext

Figure 2.4: General structure of the stream/block cipher

feedback shift register, the input key is random. The ciphertext bit Ci is the XOR result
between the input plaintext bit mi and the keystream bit at a certain time i.

Keystream
Generator

m
i

c
i

key

keystream

Figure 2.5: General structure of the stream cipher

2.1.1.2 Block ciphers

In general, the block cipher consists of two parts: round function and key schedule as
shown in Figure 2.6. The round function is iterated multiple times in order to increase
the unpredictability between the plaintext and the ciphertext. More rounds increase this
unpredictability but it increases the total time to output the ciphertext as well. The key

11

schedule is used for generating new round key ki for each round function iteration.

There are two common architectures (structures) for the round function in block ci-
phers: the substitution permutation network (SPN) and Feistel network.

Round function

msgi

Key Schedule

msgi+1

kiInput Key

Figure 2.6: One round function in block cipher

The SPN structure consists of three typical layers: adding the round key, substitution
layer, and permutation layer. The well-known example of SPN structure is Advanced En-
cryption scheme (AES)[22]. In the Feistel Network, the right half output comes directly
from the left half input, the left half output is the XORed result of right half input and
the output of the function F with inputs of the left half input and the Round-Key. One of
the common block cipher that uses Feistel network structure is DES which is invented by
IBM[33].

2.1.1.3 Mode of operations in block ciphers

The block ciphers have fixed input/output size, the cipher encrypt one block at time. In
case of arbitrary length for the input message, block ciphers mode of operations describe
how repeatedly to apply a ciphers’s single block operation securely to transfer arbitrary
length data larger than a block.

Many mode of operation for the block ciphers have been introduced. ECB or Electronic
codebook mode is the simplest mode. In ECB mode, the message is divided into blocks

12

RoundKey

ki

Right half inputLeft half input

Right half inputLeft half input

F

Input

Output

RoundKey

Substitution

Permutation

(a) Feistel Network (b) SPN

Figure 2.7: Block cipher structures

and each block is encrypted separately as shown in Figure 2.8. The main drawback of
this mode that the repeated plaintext blocks are encrypted into repeated ciphertext blocks
however it is easy to implement this mode of operation either in software or in hardware.
This mode of operation is not secure under chosen plaintext attack (CPA).

Enc Enc Enc

m
0

m
1 m

n-1

c
0 c

1 c
n-1

Figure 2.8: ECB encryption mode

Cipher Block Chaining (CBC) mode is another mode of operation that add some ran-

13

domization to the encryption algorithm. This leads to get different ciphertext blocks even
the same plaintext blocks are repeated. This mode requires generating new random initial
vector (IV) every new long message, this IV is sent in clear with the ciphertext blocks. It
is most suitable to be implemented in software as every new plaintext message waits the
previous ciphertext block to be XORed with it before being encrypted as shown in Figure
2.9.

Enc Enc Enc

m
0

m
1 m

n-1

c
0 c

1 c
n-1

IV

Figure 2.9: CBC encryption mode

The counter mode ((CTR) combined the benefits of ECB and CBC modes of operation,
it generates the next keystream block by encrypting the successive values of a “counter”.
The “counter” is a sequence of incremented blocks that is initialized by Nonce random
block. It is easy to be implemented in software or software, both encryption and decryp-
tion modes use the same encryption module (Enc) as shown in Figure 2.10. The Nonce is
chosen randomly every new long message.

2.1.1.4 Pseudorandom number generators

Pseudorandom number generator (PRNG) is another important cryptographic module, the
main function generates a sequence of random numbers. The generated sequence is not
truly random as it is completely determined by the input key or the seed. This because that
the function of PRNG is deterministic function. The generated sequence by the PRNG is

14

Enc Enc Enc

m
0

m
1 m

n-1

c
0 c

1 c
n-1

Nonce Nonce+1 Nonce+n-1

Figure 2.10: CTR encryption mode

distinguishable from a truly random number sequence.PRNGs are used to generate random
numbers such as Nonce or IV or any required random number by a specific application.
Also, PRNGs are used to generate keystream random sequence for the stream ciphers.

2.1.1.5 Hash functions

Hash function is another cryptographic module that is used to verify that a certain message
maps to a specific hash value. In general, hash functions maps data of arbitrary size to a
fixed size short bit string. The hash function is called one-way function as it is infeasible
to invert.

Examples of hash function module include: MD5[82], SHA1[88], SHA2[38], SHA3[25].
Not all hash function modules are suitable for low-area low-power devices. Hence, there is
a need to use lightweight hash modules, some lightweight hash function module examples
include: Quark[11], PRESENT-based[17], PHOTON[47], Lightweight Keccak[57].

15

2.1.2 Lightweight cryptography

Lightweight cryptography is a cryptographic algorithm or protocol tailored for implemen-
tation in constrained environments including RFID tags, sensors, contactless smart cards.
It targets systems that require a balance between security, cost, performance tradeoffs. In
general, it is easy to optimize two of them but it is difficult to consider all of them [26].

In hardware implementations, chip size and energy consumption are two important
measures that evaluate the lightweight properties. In software, the smaller code/RAM
size is better for lightweight applications. ASIP design is divided between hardware and
software, so all of these parameters are considered in our design with support of adequate
security.

There are two main approach for implementing lightweight ciphers. The first approach
develops hardware optimized implementations for standardized algorithms such as AES and
DES block ciphers. The second approach is to design new ciphers suitable for lightweight
cryptographic applications.

Several lightweight block cipher algorithms have been introduced such as PRESENT
[16], CLEFIA [87]. Various compact hardware implementations of AES have been imple-
mented in [65, 48, 36, 34]. A slight modification of DES cipher causes the appearance of
lightweight DESXL cipher [74]. SIMON and SPECK [14] are two recent lightweight block
ciphers.

Also some lightweight stream ciphers have been introduced as ECRYPT II eSTREAM
project [83], Grain [50], Trivium [19], lightweight WG stream ciphers (WG-5[5], WG-7[62],
WG-8[32]). Hummingbird [28] is another lightweight cipher that has a hybrid structure of
block cipher and stream cipher.

Lightweight hash functions have been introduced such as Quark [11], PRESENT-based
[17]. The standard hash functions such as MD5 and SHA-1 are not suitable for RFID tags
due to their large hardware utilization.

PRESENT is an ultra-lightweight block cipher that achieves the required balance be-
tween security and hardware efficiency. The block size is 64-bit and the key size can be

16

80-bit or 128-bit. The non-linear layer is based on a single optimized 4-bit S-box. A prob-
lem with block collisions has appeared with block size 64-bit if they are used with large
amounts of data [15]. Therefore implementations need to make sure that the amount of
data encrypted with the same key is limited and re-keying is properly implemented.

Simon is a family of lightweight block ciphers released by the NSA. Simon has been
optimized for performance in hardware implementations, while its sister algorithm, Speck,
has been optimized for software implementations [14]. Simeck[91] combines the good de-
sign components from both SIMON and SPECK, in order to devise even more compact
and efficient block ciphers. Simeck[91] has 10 instances depending on the input block size
and number of key words. Simeck32/64, Simeck48/96, Simeck64/128 are some examples
of instances have 4 key words and input block size 16, 24 , 32 respectively.

Simeck instances [91] are smaller than the similar ones of hardware-optimized cipher
SIMON in terms of area and power consumption using same technology. Some security
evaluations of Simeck have been done with respect to many traditional cryptanalysis meth-
ods, including differential attacks, linear attacks, impossible differential attacks, meet-in-
the-middle attacks, and slide attacks. Overall, all of the instances of Simeck can satisfy
the area, power, and throughput requirements in passive RFID tags.

Grain is a stream cipher submitted to eSTREAM project in 2004 [50]. Grain is designed
primarily for restricted hardware environments. It accepts an 80-bit key and a 64-bit IV.
The specifications do not recommended a maximum length of output per (key, IV) pair. A
number of potential weaknesses in the cipher have been identified and corrected in Grain
128a which is now the recommended cipher to use for hardware environments providing
both 128 bit security and authentication.

Trivium is a lightweight stream cipher designed to provide a flexible trade-off between
speed and gate count in hardware, and reasonably efficient software implementation [19].
Trivium was submitted to the Profile II (hardware) of the eSTREAM competition, and
has been selected as part of the portfolio for low area hardware ciphers by the eSTREAM
project. It generates up to 264 bits of output from an 80-bit key and an 80-bit IV. The
cipher itself consists of three NLFSRs. Trivium shows remarkable resistance to cryptanal-
ysis for its simplicity and performance, recent attacks leave the security margin looking
rather slim.

17

The WG stream cipher family [67] is fast stream ciphers. The original WG is a syn-
chronous stream cipher submitted to the ECRYPT call. The general WG structure uses
a word-oriented linear feedback shift register (LFSR) and a filter function based on the
Welch-Gong (WG) transformation. Several instances of them have been explored in hard-
ware, such as WG-29, WG-16, WG-7, and WG-5. The lightweight WG stream ciphers,
WG-5, WG-7, and WG-8 have been proposed for the resource constrained environments.
The lightweight WG ciphers can be used in protecting communication in these constrained
devices, such as ensuring data confidentiality and performing entity authentication.

The WG cipher has been designed to produce keystream with guaranteed randomness
properties such as: balance, long period, large and exact linear complexity, 3-level ad-
ditive autocorrelation, and ideal 2-level multiplicative autocorrelation. It is resistant to
Time/Memory/Data tradeoff attacks, algebraic attacks and correlation attacks [66].

2.1.3 Physical security

Physical security is a barrier to prevent unauthorized physical access to a device. Phys-
ical security should resist access, detect, respond, and/or provide evidence of tampering
attempts at a later audit. A combination of tamper evidence, response or resistance can
be used to create sufficiently strong level of protection to thwart many attacks.

In tamper detection, the device is designed so that it detects tamper attempts are hap-
pening. For example, an internal circuit can monitor extremes in the current or electrical
properties to indicate a possible tamper event in the device. Tamper response refers to
the defensive action taken by the device when tamper occurs. Tamper response typically
takes actions such that the security assets in the system are not compromised. For ex-
ample, making the device non-operational. Tamper evidence refers to auditing or logging
the occurrence of a tamper event in the device. The device may have tamper log with
more details which further actions can be taken. Tamper resistance is the ability of the
device to detect and defend against a threat. The threat may be done by either normal
users through normal interfaces or others with physical access to the device. For example,
encryption of the sensitive information.

18

2.1.4 Hardware security module

Hardware Security Module (HSM) is a dedicated computing device that protects cryp-
tographic keys and other security assets. It also provides all security services such as
encryption/decryption, authentication, and digital signing services. Hardware Security
Modules have to be validated for security by one of the security evaluations like FIPS
140-2 [77] or Common Criteria (CC)[1]. HSMs safeguard the cryptographic infrastructure
by managing, generating, and storing cryptographic keys inside a protected device.

Including all secure assets in a separate device provides some benefits such as protecting
the keys from memory scraping, and protecting the keys from physical theft. Beside these
benefits, using hardware rather than software accelerates the cryptographic processing and
insures the compliance with security validation evaluations. An HSM can have multiple
levels of security and it can possess protection mechanisms to protect against tampering.
In general, it works just like any other processing hardware but it is optimized for crypto-
graphic algorithms and secured more thoroughly against physical security threats as well
as logical security threats.

HSMs typically could be appliances, cards, or silicon chips. HSMs can be employed in
any application that uses cryptographic keys and needs this type of physical protection.
Examples of systems that use a HSM include: Card payment system HSMs; SSL, DNS,
online banking; mobile payment and verbal banking; smart meters; medical devices; pass-
ports, identity cards, electronic passports; credit cards.

There are several specifications/standards in different industries for hardware protected
security. The main goal for these specifications is to put a collection of characteristics of
hardware mechanisms that are useful to certain industries and to their applications. For
example, SAE J3101 [2] is a standard in automotive industry that puts some guidelines
for implementing hardware security in ground vehicles. The guidelines cover hardware
security related topics such as secure boot, secure storage, secure execution environment,
access control, and authentication.

The same concept of including all secure assets in a separate zone has appeared in
different names for various applications. Examples include:

• Secure Hardware Extension (SHE)

19

• Payment Card Industry Data Security Standard (PCI-DSS)

• Trusted Execution Environment (TEE)

• Trusted platform Module (TPM)

2.1.4.1 Secure Hardware Extension

Secure Hardware Extension (SHE) [31] is a specification that defines a set of functions that
allows a secure zone (i.e. secure extension within a micro-controller unit) to exist within
any electronic control unit installed in a vehicle. It was developed by Escrypt for Audi and
BMW via the Hersteller Initiative Software (HIS) group. The secure zone features include
storage and management of security keys, authentication, encryption and decryption al-
gorithms that can access through software. Although the standard originated within the
German automotive industry, it has since become an open standard accepted at the global
level.

The E-safety Vehicle Intrusion proTected Applications (EVITA) has developed a set
of guidelines for the design, and the verification of security architectures for automotive
electronic control units. EVITA defines the overall functionality of three different hardware
security module approaches: full, medium and light. Moreover, it specifies an elaborate
set of functions and their parameters for managing security keys as well as encryption and
decryption operations.

2.1.4.2 Payment Card Industry Data Security Standard

The Payment Card Industry Data Security Standard (PCI-DSS) [52] defines a set of logical
and physical security compliance standards for HSMs specifically for the payments indus-
try. It becomes a fundamental requirement for various payment processes, including PIN
processing, card verification, card production, ATM interchange, cash-card reloading and
key generation.

A payment platform must address some physical security and logical security require-
ments. Physical security requirements include:

• Tamper-detection and response mechanisms.

20

• Resilience to abnormal environmental and operating conditions.

• Protection of sensitive data within the device.

• Preventing disclosure of sensitive information by external monitoring techniques.

• Protection of cryptographic keys inside the device, even if the security boundary is
breached.

To be PCI HSM compliant, A HSM software must address the following logical security
requirements:

• Resilience against unexpected command sequences or operating modes.

• Secure firmware management.

• Strong authentication prior to running sensitive services.

• Secure key management and key separation to prevent misuse and eliminate exposure
of sensitive data and PINs

• Secure audit trail

2.1.4.3 Trusted Execution Environment

Trusted Execution Environment (TEE) is typically offered to provide a secure hardware
area in microprocessors. Usually it is built for commercial processors that supports com-
plex operating systems as linux. It guarantees code and data loaded inside to be protected
with respect to confidentiality and integrity. The Open Mobile Terminal Platform (OMTP)
puts a set of defined threats that the TEE resists against[43]. It also puts two level of secu-
rity; the first security level, Profile 1, was targeted against only software attacks and while
Profile 2, was targeted against both software and hardware attacks. ARM TrustZone [3]
TEE is an implementation of the TEE standard.

TEE retains its own hardware unique keys, stored in fuses. These keys are referred
as “endorsement keys” or “provisioned secrets” which are embedded directly into the chip
during manufacturing. The keys can be used to derive and secure other keys which can be
used to uniquely identify the device.

21

2.1.4.4 Trusted Platform Module

Trusted Platform Module (TPM) is also known as ISO/IEC 11889 standard. It was speci-
fied by the Trusted Computing Group (TCG) and then it was standardized by International
Organization for Standardization (ISO) and International Electrotechnical Commission
(IEC) in 2009 [53] as ISO/IEC 11889, the current version is TPM 2.0[44].

TPM is a dedicated microprocessor designed to secure hardware through integrated
cryptographic keys. TPM is usually used in PCs, laptops, mobile phones, and network
equipment. Currently TPM is used by nearly all PC and notebook manufacturers.

The TPM allows for hardware-based cryptographic operations. Security functions can
leverage the TPM for random number generation; the use of symmetric, asymmetric, and
hashing algorithms; and secure storage of cryptographic keys and message digests. It en-
sures that no unintended users gain access to secret data by either stealing a device or via
a software attack or brute force attack.

2.1.5 Security validations standards

For applications or devices that include cryptography, U.S. and Canadian federal govern-
ment agencies are required to use a cryptographic products that has been FIPS 140 (Federal
Information Processing Standards) validated or Common Criteria validated. Most Com-
mon Criteria protection profiles rely on FIPS validation for cryptographic security.

2.1.5.1 FIPS 140-2

FIPS 140 series are U.S. government computer security standards that specify requirements
for cryptography modules. Within the FIPS 140-2 (or 140-1) validations, there are four
possible security levels for which a product may receive validation:

1. Security Level 1 provides the lowest level of security. It specifies basic security re-
quirements for a cryptographic module.

2. Security Level 2 improves the physical security of a Level 1 cryptographic module
by adding the requirement for tamper evident coatings or seals, or for pick-resistant
locks.

22

3. Security Level 3 requires enhanced physical security, attempting to prevent the in-
truder from gaining access to critical security parameters held within the module.

4. Security Level 4 makes the physical security requirements more stringent, and re-
quires robustness against environmental attacks.

The security level of a particular device does not last forever. It is possible that a low
cost attack will be found in the future when the attack tools become cheaper or available
at second-hand.

FIPS 140 imposes requirements in different areas such as: cryptographic module specifi-
cation, cryptographic module ports and interfaces, roles/services and authentication, finite
state model, physical security, operational environment, cryptographic key management,
electromagnetic interference/compatibility, self-tests, design assurance, and mitigation of
other attacks. FIPS 140 standards define many tests that may be used to evaluate certain
features in a system. For example, a particular part of FIPS 140-1 standard deals with
statistical randomness tests such as: the monobit test, the pokers test, the runs test, and
the long run test.

FIPS 140-3 [37] is a new version of the standard which is currently under development.
In the first draft version of the FIPS 140-3 standard, NIST introduced a new software se-
curity section, one additional level of assurance (Level 5) and new Simple Power Analysis
(SPA) and Differential Power Analysis (DPA) requirements.

Although the FIPS standards are developed by the US federal government, they are
widely used as standards to specify the security requirements. Many companies acquire
FIPS validation to comply with international standards. The FIPS validation will ensure
that the proposed product or services meet the requirements standardized by a reputable
organization and will make them competitive and open new markets.

2.1.5.2 Common criteria

The Common Criteria (CC) for Information Technology Security Evaluation is an inter-
national standard for computer security certification. The current version is 3.1 release 5.
The computer system users, vendors, and testing laboratories participate in using Com-
mon Criteria by different ways. Computer system users can specify their security functional

23

and assurance requirements, vendors can then implement and/or make claims about the
security attributes of their products and testing laboratories can evaluate the products to
determine if they actually meet the claims. Common Criteria evaluations are performed on
computer security products and systems, these systems may be software and/or hardware
products.

The evaluation serves to validate claims made about the system. The evaluation must
verify the system’s security features. The claims are identified in some documents that are
used as a part of the certification process. The protection profile (PP) is the document
that is created by a user and provides an implementation independent specification of in-
formation assurance security requirements. Another document, that identifies the security
properties of the system, is security target (ST) document. The CC 3.1 defines it as an
implementation-specific statement of security needs for a specific identified system so it is
provided by the vendor of the product. The individual security functions are specified in
security functional requirements (SFRs) document.

The evaluation process also tries to establish the level of confidence through two qual-
ity assurance processes: security assurance requirements (SARs), and evaluation assurance
level (EAL). SARs describe the measures taken during development and evaluation of the
product to assure compliance with the claimed security functionality. The requirements
may vary from one evaluation to the next. EAL has numerical rating that describes the
depth of an evaluation. The increasing assurance levels reflect added assurance require-
ments that must be met to achieve Common Criteria certification. The intent of the higher
levels is to provide higher confidence that the system’s principal security features are re-
liably implemented. The EAL level does not measure the security of the system itself, it
simply states at what level the system was tested.

The objectives of the Common Criteria agreement are to ensure that evaluations of IT
products are performed to consistent standards and to improve the availability of security-
enhanced IT products. It continuously improves, through the different versions, the effi-
ciency and cost-effectiveness of the evaluation and certification/validation process for IT
products.

24

2.2 Digital Hardware Circuits

2.2.1 Digital hardware circuits design approaches

In general, digital hardware circuits designs are divided into two basic approaches: the
general-purpose approach, the special purpose approach. The general-purpose approach
relies on hardware circuits like general-purpose processors or microprocessors that provide
a fixed set of functionality (i.e. the instruction set of a microprocessor). On the other
hand, the special-purpose approach involves design for a specific application. Specialised
hardware circuits or application-specific instruction set processors are two hardware archi-
tectures that are used to design circuits in this approach.

The instruction set for general-purpose processor (GPP) must be general enough to
support general applications. The general-purpose processor compiler should offer compi-
lation for all programs. The main purpose of using general-purpose processors is getting
the highest possible flexibility, they are designed to execute multiple applications and per-
form multiple tasks. So it is expensive especially for small devices that are designed to
perform a specific task.

On the contrary, specialised hardware circuits provide the best performance, area, and
power consumption but on the other side, they provide poor or no flexibility and exten-
sibility. Any required modification needs the whole design and manufacturing process to
start again, so the time-to-market is relatively high compared to GPP and ASIP-based
designs.

In between of GPPs and specialised hardware circuits, there are application-specific
instruction set processors. An application-specific instruction set processor (ASIP) is a
processor which is customized for a certain application. It combines the benefits of the flex-
ibility, and programmability as close to the general-purpose CPUs or the general-purpose
processors (GPP) and the low silicon cost, low power consumption, and the performance
as close to specialised circuits.

The hardware of ASIP and the instruction-set are designed together for one special
application. ASIP designer thinks about the application and cost first. At the same time,
ASIPs have reasonable flexibility. ASIP instruction-set is specifically designed to acceler-
ate the most used functions for an application. Some operations that needs an extensive

25

Table 2.1: The difference between the three hardware architectures

Feature General-purpose Application-
specific

specialised hard-
ware

processor instruction-set pro-
cessor

circuits

Flexibility Excellent Good Poor
Power consumption Relatively large Medium Small
Silicon Area Relatively high Low Lowest
Performance Depends on

the application
(mostly Low)

High Highest

Energy Efficiency/speed Low High Highest
Design Effort System level More on system

level
Hardware

Hardware Design Small Large Very large
Software Design Large Large None
Time-to-market Lowest Relatively low High
Cost Mainly on Soft-

ware
System-on-chip
(SOC), Hw/Sw

Volume sensitive

Usage Very wide Wide Limited

computation capabilities, as cryptographic functions, may need a dedicated hardware to
perform it. ASIP allows adding dedicated hardware circuits which are accessed by special
instructions. ASIP architecture is designed and optimized to implement the assembly in-
struction set with minimum hardware cost. The goal of an ASIP design is to reach high
performance over silicon, over power consumption, as well over the design cost with rea-
sonable level of flexibility. Table 2.1 summarizes the differences between the three digital
hardware architectures.

26

Chapter 3

EPC RFID Systems

Radio-frequency identification (RFID) is a technology which the physical devices have
an automated identification using Radio-frequency signals. In the last years, the RFID
technology has found its way into our daily life such as supply chain management, home
automation, e-cards, auto-mobiles, identification systems, ubiquitous and pervasive com-
puting. The total RFID market was $10.1 billion in 2015 and it was expected to rise to
$13.2 billion in 2020 [23]. Electronic Product Code (EPC) standards define the specifica-
tions of the tag and its communication protocols set by EPCglobal group. Different classes
and generations were proposed, the last version is Class 1, Generation 2, Version 2.1 [40].
This chapter presents background information on Electronics Product Code (EPC) tags
presented.

3.1 RFID standards

There are several RFID standards including ISO 18000 and EPCglobal standards. The
standards are used to define the operations and the communication protocols between the
RFID system components. These standards enable manufacturers to make products for
large scale. It also enables products from different manufacturers to operate or work to-
gether.

There are two main organizations that make standards for RFID systems:

• ISO, International Standards Organization

27

• EPCglobal, Electronics Product Code Global Incorporated

The ISO/IEC 18000 series of standards deals with air interface protocol. The stan-
dards use five frequency bands for communication between the RFID system components.
ISO/IEC 18000-2 standard uses 135 KHz for communication (low-frequency tags). It de-
fines the air interface protocol, commands, and methods for detecting and communicating
with one tag among several tags or so-called anti-collision. ISO/IEC 18000-3 standard
uses frequency of 13.56 MHz for communication (high frequency tags). It defines same fea-
tures in ISO/IEC 18000-2 standard but it adds definitions for physical layer, and collision
management. ISO/IEC 18000-4 tags have frequency of 2.45 GHz for communication with
the reader. The tags that conform this standard are mainly used for item management
applications. It supports two mode of operations for tags: passive tags, or battery assisted
tags.

ISO/IEC 18000-6 standard defines the communication protocol, commands between
the reader and the tag, collision arbitration schemes for passive RFID system operating
within 860-960 MHz frequency range (UHF). The standard describes three types A, B,
and C. Type C is equivalent to EPCglobal Gen2 standard. ISO 14443 standard defines
the operations for tags operating at 13.56 MHz using near-field inductive coupling. The
tags in this standard are mainly used for identification cards. Typical applications in-
clude identity, security, payment, and access control. The read distance range is about
10 centimetres (3.94 inches). ISO 15693 standard has greater distance range compared to
ISO 14443. The maximum read distance is 36 to 60 inches. This standard is used for con-
trolling entry to a parking garage, airline baggage tracking, and supply chain management.

EPCglobal/GS1 Gen2 standard [29] was developed by EPCglobal, Inc. in 2004, which
is now GS1, and was approved as ISO 18000-6C in July 2006. It defines air interface
protocol for tags operating within the frequency range of 860–960 MHz. There are several
new features compared to ISO standards:

1. Ability to change encoding according the noise in the environment.

2. Three modes for reader operations: single, multi, and dense environment.

3. Tag population management.

4. Longer kill and access passwords, 32-bit passwords.

28

5. Forward link data protection.

6. Four sessions for tag inventory.

7. Faster data transmission rate up to 640 Kbps.

8. Improved tag memory and programmability

3.2 RFID system components and overall behaviour

Typically, RFID systems consist of RFID devices or so called tags, RFID readers or in-
terrogators, and backend database networks as shown in Figure 3.1. An RFID tag is a
simple and low-cost electronic device that is attached to a physical object for wireless
data transmission. It transmits data over the air in response to interrogation by an RFID
reader. An RFID reader is a more powerful device (transceiver). Many readers can then
connect to a network that acts as a data processing subsystem and database. Both reader
and back-end server are powerful enough to handle the overhead introduced by performing
strong cryptographic protocols. RFID tags usually have constrained capabilities in every
aspect of computation, communication and storage due to the extremely low production
cost and available power.

The reader starts the communication between the reader and the tag, and it follows
a command/response pattern for communication, where the reader sends a command and
the tag responds. As shown in Figure 3.2, each tag contains RF analog frontend, digital
baseband. The RF part is used to perform two-way communication with the reader and
harvest energy from the reader’s signal. The digital baseband is used to process all the
commands and data. The tag has up to four memories: EPC memory, TID (Tag Identifica-
tion) memory, reserved memory, and user memory, the first three memories are mandatory
while the user memory is optional.

3.2.1 Types of RFID tags

RFID tags can be classified based on many factors such as: power supply source, frequencies
and coupling method,

29

Reader

Tag

Tag

Tag

Backend
Database

Insecure
channel

Secure
channel

Figure 3.1: RFID system components

3.2.1.1 power supply source

Based on the tag’s functionality, EPCglobal standard classifies RFID tags into four different
classes:

1. Class 0 and 1:

• Passive identity tags (usable range of 3 meters)

• Backscatter (interrogator speaks first)

• Lowest cost

2. Class 2:

• Passive identity and memory tags (usable range of 3 meters)

• Programmable

• Backscatter (interrogator speaks first)

• Security

30

• Lowest cost

3. Class 3:

• Battery assisted passive tags

• More functionality on chip – memory, sensors, etc

• Backscatter (interrogator speaks first)

• 100 meter range

• Moderate cost

4. Class 4:

• Active battery tags (tags transmit carrier)

• Active transmission (permits tag-talks-first operating modes)

• 100 meter range

• High cost

Based on the powering method, an RFID tag may be passive (classes 0, 1, and 2), i.e.
it does not have any power source of its own and derives its power from the RFID reader,
active (class 4), i.e. it has its own power source (battery) and can initiate communication
with reader, or semi-passive (class 3), i.e. it has its own power source but does not initiate
communication with readers.

In passive tags, the received RF signal is rectified and the RF component is filtered to
get DC voltage. The power control circuit in turn regulates and powers the circuits. Data
from the reader is also extracted in the process using a demodulator and decoder. These
tags use backscatter modulation to talk back to the reader. An active tag has a local power
source, which also powers a transmitter. A semi-passive tag still uses the backscatter com-
munication for talking back to the reader.

3.2.1.2 Frequencies, Coupling method

Wireless data transmission RFID systems use wide frequency range (125 KHz to 2.45 GHz).
Table shows the main characteristics depending on the frequency band. The four main fre-
quency bands are: low frequency (LF), high frequency (HF), ultra-high frequency (UHF),

31

Table 3.1: RFID operating frequencies and characteristic

Frequency band LF HF UHF Microwave

Frequencies 125-134 KHz 13.56 MHz 865-956 MHz 2.45 GHz
Reading range up to 0.5 m up to 1.5 m up to 7 m up to 10 m
Data transfer rate Low High Medium Medium
Coupling method Near field Near field Far field Far field
Applications animal identi-

fication
contactless
payment
systems,
ticketing,
and library
systems

toll collection,
logistics, and
supply-chain
management

toll collection
and baggage
identification

and microwave. A main difference between LF and HF system to UHF and microwave
systems is the way how the coupling between the reader and the tag is realised.

LF and HF systems use near-field coupling, where the wavelength is greater than the
size of the tag antenna and the reading distance. The reader generates a magnetic field
which induces an electric current in the tag’s antenna. For the communication to the reader
the tag changes the impedance of its antenna coil and the resulting change of current drawn
can be detected by the reader. The maximum reading range of these systems is limited
from a few cm up to at most 1.5 m. Power constraints to passive tags are lower and they
have to deal with less interference from other readers or EM sources.

UHF and microwave systems operate in the far field where the wavelength is smaller
than the average reading distance. Data transmission from tag to reader is done by chang-
ing the reflection coefficient of the tag antenna and the difference in reflection of the
continuous EM waves is detected by the reader (backscatter). UHF systems allow higher
data rates and read ranges but these systems have to cope with lower power supply of the
tag, higher interference from other systems at similar frequencies and are more sensitive
to reflection/disturbance from obstacles near the reader.

Operating ranges of RFID systems depend on various factors. Active tags do not need
a reader RF field because of their independent power supply and usually enable higher

32

read ranges. Reading ranges from passive tags depend mainly on their power consumption
and frequency range. Ultra-high frequency systems with far-field coupling enable greater
operating ranges than inductive coupled systems that work in the near field only.

3.2.1.3 Overall behaviour

The EPC number has up to 496-bit size used for unique identification for the tag and it is
stored in the EPC memory. The TID memory stores the unique tag identification number
set by the manufacturer. Kill and access passwords are stored in the Reserved memory.
The fourth memory is the user memory which is an optional memory for extending func-
tionality of tags. Reader database contains the EPC numbers and the associated passwords
of all tags.

According to the EPC C1 G2 standard, the reader has two states: inventory and access.
The tag has five states: ready, reply, acknowledged, open, and secure as shown in Figure
3.2. The inventory and access protocol is executed as follows. The reader sends a Query
command to the tag, and the tag replies with a 16-bit random number (RN16). After
the reader receives the RN16, it sends an ACK command with the same RN16 to the tag.
Then the tag sends the EPC number and Protocol Control (PC) bits, which comprise some
protocol parameters such as EPC number length, to the reader if the RN16 it received is
correct. Upon receiving it, the reader sends a ReqRN command with the same RN16 to
the tag, the tag will reply with a new 16-bit random number called (Handle) to the reader
after checking the correctness of the old RN16. After the reader receives the RN16 Handle,
the reader may request the tag to execute one of the access commands with the previous
Handle. Access commands include Read, Write, Kill, Lock and many other commands.
The tag will execute the command and will reply with a new Handle after checking the
correctness of the previous Handle.

33

Inventory
Ready/

Arbitrate

Reply

Acknowledged

Open/Secure

Access

Reader Tag

Query

RN16

ACK || RN16

PC||EPC||CRC

ReqRN||RN16

Handle

AccessCmd||Handle

Data|| Handle

Figure 3.2: Command-response communication protocol

At the access command execution, the tag is either in Open state or in Secure state.
Transferring from Open state to Secure state is done using ACCESS command after check-
ing the correct 32-bit access password. Then, the tag ends up in the secure state and
responds with the same Handle that the tag received. The reader can disable the tag for-
ever using KILL command after checking the correct 32-bit kill password. KILL command
transfers the tag to kill state, at this state the tag does not respond to the reader anymore.

Although the 32-bit access and kill passwords are two security features of the EPC
tag device, they can be broken easily if the attacker has the ability to eavesdrop on the
communication between the reader and the tag. As a result of that, the second version of
the EPC C1 G2 standard adds some optional security requirements such as: Authenticate,
SecureComm, AuthComm, KeyUpdate commands. AUTHENTICATE command allows
the RFID to perform entity/mutual authentication between the reader and the tag. The

34

SECURECOMM allows a secure communication between the reader and the tag. These
commands are optional commands that are specified by 8-bit Cryptographic Suite Indica-
tor (CSI) using CHALLENGE or AUTHENTICATE commands.

3.3 EPC RFID tag specifications

An RFID tag is a wireless transmitter/receiver attached to a product. In general, it con-
sists of a small microchip with an RF antenna, basic functional capabilities and limited
memory. Each RFID tag includes an Electronic Product Code (EPC) which serves as a
unique identifier (ID) for the physical object to which the tag is attached.

3.3.1 RFID Tag reading range and Power

EPC Class 1 Gen 2 RFID tags are low-cost passive write-many read-many tags that have
a minimum memory of 256 bits, with possible extension to more tag memory. Ultra-High
Frequency (UHF) Range is used for EPC tags. UHF range has frequencies from 860 MHz
to 960 MHz which the read ranges of UHF systems are relatively large compared to High-
Frequency and Low-Frequency distance ranges. Typical read ranges of UHF systems are
3 to 8 m. UHF is a good compromise between reading speed, distance, multiple tags han-
dling and cost [12]. Important applications for UHF systems are toll collection, logistics,
and supply-chain management.

The primary concern in passive RFID systems is the limited power that is available for
the tags. Tags draw their energy from the electromagnetic field of a reader and use internal
capacitors to buffer the energy to perform computations. The available energy depends
thereby on various factors such as the distance to the reader, the size of the antenna, the
operating frequency, and the field-strength of the reader.

3.3.2 RFID Tag speed and response time

Tags have to answer the reader within a specific response time. This time is usually very
short, i.e., 15-250 us for EPC Gen2 tags (nominal range). The responses time are defined

35

in the standard and it depends on the Reply type the received command, other parameters
in the standard. There are three tag reply response time options defined by the standard:
Immediate, Delayed, and In-process response time.

The Reader-to-Tag bit rate is in the range of 26.7 kbps to 128 kbps assuming equiprob-
able data but the Tag-to-Reader bit rate is in the range of 5 kbps to 640 kbps.

3.3.3 RFID tag microchip and memory banks

The microchip consists of an analog front-end and a digital part. The analog front-end is
responsible for demodulating the incoming data, extracting the clock signal, and modulat-
ing the response data. The analog front-end also extracts the power from the RF field. The
digital part interprets the received data, performs the required actions (e.g. write data),
and generates appropriate responses. Complexity of the digital part and functionality pro-
vided by it largely varies. At the upper end there are contactless smart cards, followed by
sensor-enabled tags in the middle, and low-cost tags at the lower end.

RFID tag has four distinct memory banks which are known as tag memory. The
memory banks are:

• Reserved Memory contains the kill and access passwords, the kill/access pass-
word size is 32 bits. If the kill/access passwords are not implemented, the default
value is zero. Zero-valued kill/access passwords means that read/write operations
are permanently locked.

• EPC Memory contains StoredCRC, StoredPC, EPC. The EPC code number iden-
tifies the object to which the tag is attached.

• TID Memory contains an 8-bit ISO/IEC 15963 allocation class identifier. It also
contains some information for a reader to identify the custom commands and the
optional features that a tag supports.

• USER Memory is optional memory that may be partitioned into one or more files,
the file encoding should be defined either as in GS1 EPC Tag Data Standard or as
in ISOIEC 15961 and 15962.

36

3.3.4 Reader stages/commands and Tag states:

Tag states are: Ready, Arbitrate, Reply, Acknowledged, Open, Secured, and Killed states.
The defined commands by the standard and whether they are mandatory or not and their
reply types are shown in the following table:

Command Length (bits) Mandatory (Y/N)? Reply Type

QueryRep 4 Yes Immediate
ACK 18 Yes Immediate
Query 22 Yes Immediate
QueryAdjust 9 Yes Immediate
Select > 44 Yes None
NAK 8 Yes Immediate
Req RN 40 Yes Immediate
Read >57 Yes Immediate
Write >58 Yes Delayed
Kill 59 Yes Delayed
Lock 60 Yes Delayed

Access 56 No Immediate
BlockWrite > 57 No Delayed
BlockErase > 57 No Delayed
BlockPermalock > 66 No Immediate & Delayed
ReadBuffer 67 No Immediate
FileOpen 52 No Immediate
Challenge > 48 No None
Authenticate > 64 No In-process
SecureComm > 56 No In-process
AuthComm > 42 No In-process
Untraceable 62 No Delayed
FileList 71 No In-process
KeyUpdate > 72 No In-process
TagPrivilege 78 No In-process
FilePrivilege 68 No In-process
FileSetup 71 No In-process

On the other side, the reader manages tag population using three stages: Select, In-
ventory, and Access stages. In Select stage, the reader chooses a tag population, all tags

37

in close to the reader are involved in this stage. The reader may use Select command to
select one or more tags based on value in tag memory. Challenge command may be used to
challenge one or more tags based on the supported cryptographic suite and authentication
type by the tag. This stage comprises Select and Challenge commands.

In Inventory stage, the reader identify individual tags by transmitting a Query com-
mand. One or more tags may reply, the reader detects a single tag reply then requests
the tag’s EPC number. The third stage is starting the communicating with as identified
tag, this stage is called Access stage. The reader may read, write, lock, or kill the tag.
All security-related operations such as authenticating the tag are involved in this stage.
Figure 3.3 shows the different reader stages and the tag states.

Select

Inventory

Access

Ready

Arbitrate
Reply

Aknowledged

Open

Secured

Killed

TagsReader

State

Figure 3.3: Reader stages and tag states

3.3.4.1 Tag states:

The tag states are described as following:

1. Ready state: Ready state can be viewed as a “holding state” for energized tags that
are neither killed nor currently participating in an inventory round. Upon entering
an energizing RF field a tag that is not killed shall enter ready.

38

If the tag receives a Query command matching parameters as specified in the stan-
dard, the tag changes the state to Arbitrate state if the slot counter is non-zero or
to Ready state if the slot counter is zero.

2. Arbitrate state: can be viewed as a “holding state” for tags that are participating
in the current inventory round but whose slot counters hold non-zero values.

Each time the tag receives a QueryRep command with matching parameters as spec-
ified in the standard, the tag decrements the slot counter. The tag transitions to
Reply state when its slot counter reaches zero.

3. Reply state: Upon entering reply a tag shall backscatter an RN16. If the tag
receives a valid acknowledgement (ACK command) then it shall transition to the
Acknowledged state.

4. Acknowledged state: A tag re-backscatter a reply depending on the flags values
stored in a tag as stated in the standard. In general, the reply consists of these
parameter fields: PC/XPC, full/truncated EPC, and calculated CRC for the first
two fields. A tag in Acknowledged state may transition to any state except Killed
state depending on the received command. For example, if a tag in the Acknowledged
state receives a valid ACK command containing the correct RN16 then it shall re-
backscatter the reply and it stays in the same Acknowledged state. If a tag in the
Acknowledged state fails to receive a valid command within a specific time T2(max)
then it shall return to Arbitrate state.

5. Open state: Open state could be viewed as a non-secure Read/write state. It
allows executing some access commands as: Read, Write, Lock commands. A tag in
Acknowledged state transitions to Open state when it receives an Req RN command
with correct RN16 and correct non-zero access password.

6. Secured state: Secured state could be viewed as a secure Read/write state. It allows
executing some access commands as: Read, Write, Lock commands after receiving a
correct access password with Access command.

7. Killed state: Kill state permanently disables a tag. Upon entering the Killed state,
a tag shall notify the reader that the kill was successful and shall not respond to a
reader thereafter. Killed tags shall remain in the killed state under all circumstances,
and shall immediately enter Killed state upon subsequent power-ups. Killing a tag
is irreversible. A tag is entered the Killed state upon receiving either a successful
password-based Kill sequence or a successful authenticated Kill sequence.

39

3.3.4.2 Reader commands:

Some important reader’s commands are described as following:

• Select stage commands:

– Select command allows a reader to select a particular tag population prior
to inventorying. Upon receiving a Select a not-killed tag returns to the ready
state, evaluates the criteria, and depending on the evaluation may modify the
indicated SL or inventoried flag.

– Challenge command allows a reader to instruct multiple tags to simultaneously
yet independently pre-compute and store a cryptographic value or values for use
in a subsequent authentication. The generic nature of the Challenge command
allows it to support a wide variety of cryptographic suites.

• Inventory stage commands:

– Query command initiates and specifies an inventory round. Query command
contains a slot-count parameter Q. Upon receiving a Query participating tags
pick a random value in the Q range (0, 2Q−1), inclusive, and load this value into
their slot counter.

– QueryAdjust command adjusts Q (i.e. the number of slots in an inventory
round) without changing any other round parameters.

– QueryRep instructs tags to decrement their slot counters and, if slot=0 after
decrementing, to backscatter an RN16 to the reader.

– ACK command may be issued by a reader to cause a single tag to backscatter
its EPC. Adter correct ACK command (i.e. correct RN16), the tag replies by
the reply that consists of these parameter fields: PC/XPC, full/truncated EPC,
and calculated CRC as specified in the standard.

– NAK: A tag that receives a NAK shall return to the Arbitrate state without
changing its inventoried flag, unless the tag is in Ready or Killed states.

• Access stage commands:

– Req RN instructs a tag to backscatter a new RN16.

– Read allows a reader to read part or all of a tag’s Reserved memory, EPC
memory, TID memory, or the currently open file in User memory.

40

– Write command writes 16 bits (one word) at a time, using link cover-coding to
obscure the data during Reader-to-Tag transmission. A Write command does
not alter the tag state.

– Kill command allows a reader to permanently disable a tag using one of the kill
procedures (password-based kill sequence, optional authenticated-kill sequence).

– Lock command may be issued to lock/unlock the kill password, access pass-
word, EPC memory bank, TID memory bank, or File 0 of user memory. If
the passwords are locked or permanently locked then they are unwriteable and
unreadable by any command and usable only by a Kill or Access command. If
EPC memory, TID memory, or File 0 are locked or permanently locked then
they are unwriteable but readable, except for the L and U bits in EPC memory.

– Access is an optional command which allows a reader to transition a tag from
the Open state to the Secured state or to remain in secured if the tag is already
in the secured state.

– Authenticate command is an optional command that allows a reader to per-
form tag, reader, or mutual authentication. The generic nature of the Authen-
ticate command allows it to support a variety of cryptographic suites. The CSI
parameter (Cryptographic Suite Indicator) specified in an Authenticate com-
mand selects one cryptographic suite from among those supported by the tag.

– AuthComm command is an optional command that allows authenticated com-
munications from Reader-to-Tag by encapsulating another command and typ-
ically also a MAC in the AuthComm’s message field. The cryptographic suite
indicated by the CSI in the Authenticate or Challenge that preceded the Auth-
Comm specifies message and reply formatting.

– SecureComm command is an optional command that allows encrypted com-
munications from Reader-to-Tag by encapsulating another, encrypted command
in the SecureComm’s message field. A tag may encrypt and/or include a MAC
in its reply.

3.4 The EPC tag requirements

RFID tags usually have constrained capabilities in every aspect of computation, commu-
nication and storage due to the extremely low production cost. In this section, the RFID
tag requirements are discussed.

41

3.4.1 Functional Requirements:

The primary functionality of the EPC Gen2 protocol is for fast and efficient tag identifica-
tion across a range of operating environments. The tag microchip is responsible to perform
the physical interaction between the reader and the tag, and to perform the logical operat-
ing procedures and commands defined by the standard. At least the mandatory commands
defined by the standard have to be implemented.

3.4.2 Security Requirements:

The real-life applications necessarily require reasonable security and privacy levels with
minimal possible cost. Authors in [84, 55] list some of the main risks, which require using
cryptographically secure RFID tags, as follows: tag impersonation, information leakage,
privacy concerns such as physical tracking of persons, and tag forgery.

The EPC G2 standard defines so called “cryptographic suites” that allows the system
designer to add security services depending on the application needs. The following security
services are chosen to be supported in the proposed design to provide general security
functionalities:

• Random number generation

• Data encryption/decryption of the communication between the reader and the tag.

• Data encryption/decryption of the data stored in the memory

• Mutual authentication

3.4.3 Performance Requirements:

The standard specifies data rate range of 5-640 kbps for Tag-to-Reader Communication
and range of 26.7-128 kbps for Reader-to-Tag communication. The chosen frequency for
the digital baseband microchip part is 2 MHZ, using 2 MHz clock frequency allows rea-
sonable throughput for passive tags [29, 92]. The throughput range using this frequency
is between 1/400 to 1/3 bit per clock cycles. The maximum throughput is less than 1 bit

42

Table 3.2: T1 timing and available clock cycles

Tari Time (µ Sec) T1 Time (µ Sec) Available clock
cycles

6.25 39.06 78
12.5 78.125 156
25 187.5 375

per clock cycles and this rate could be achieved using such extremely low power devices.

Tags have to answer the reader within specific response times. This times are usually
very short, i.e., 15-250 µs for EPC Gen2 tags (nominal range). The responses time are
defined in the standard and it depends on the reply type the received command, other
parameters in the standard. There are three tag reply response time options defined by
the standard: immediate, delayed, and in-process response time.

The reader begins a command by issuing a preamble that defines the length of the logic
0 and logic 1 symbols. The length of the logic 0 symbol is referred to as Tari, which is a
fundamental timing parameter for communications.

The Tari value determines the amount of time the tag has to begin its response to the
reader after the reader has completed the last symbol in its command to the tag. This time
is referred to as T1 time for an immediate tag reply response time. The following Table
3.2 shows the T1 timing for the minimum Tari value of 6.25µs, the maximum Tari value
of 25µs, and a commonly used Tari value of 12.5µs. The clock frequency of the digital
baseband operates on 2 MHz.

3.4.4 Area Requirements:

The area a chip depends on many factors, these factors include the required security level,
intended market, cost of fabrication and size of production.

43

The RFID tag has to be small, extremely cheap chip as it will be attached to a physical
object and is used to identify and store information about the object. A rule of thumb [84]
sets that the hardware implementation for the cryptographic circuitry in the RFID tag
must be under 2000 GEs, including the cryptographic primitives and supported memory
banks.

3.4.5 Power Requirements:

RFID tags are passive devices which they receive energy from signal emitted by reader.
A passive device should not consume more than 30-50 µWatts of energy [84]. The power
usage for the digital baseband part should be less than 1−10µW average with peaks below
3µW and 30µW respectively [84]. Thus, at 2MHz, peaks should be below 1.5µW/MHz
to 15µW/MHz. Tags typically do not perform operations unrelated to communication
during the communication phase due to the lack of power harvesting.

3.5 Related Work

The related work is divided into two sections: security for RFID tags, and hardware ar-
chitectures for RFID tags. Many security protocols are proposed to bring cryptographic
security to RFID tags. These protocols include using traditional cryptographic standards
such as AES, or using lightweight cryptographic primitives. The hardware architectures
for RFID tags can be implemented as follows: using specialised hardware circuits, using
software implementations, and using co-processors. Detailed comparisons of our HSM to
other research on adding cryptographic functions to EPC tags are in Sections 6.3 and 6.4.

3.5.1 Security for RFID tags

Many hardware cipher designs and security protocols have been proposed to bring cryp-
tographic security to RFID tags. Many symmetric schemes are used to implement differ-
ent security functions in RFID tags as Data Encryption Standard (DES)[33], Advanced
Encryption Standard (AES)[22], Present[16], International Data Encryption Algorithm
(IDEA)[60], etc. A low-area and low-power AES encryption engine is proposed in [18].
Reyhani-Masoleh et al. [79] proposed a single construction of AES combined S-box/inverse

44

S-box that is shared between the encryption and decryption data paths of the AES. Their
design is smaller and faster than Canright’s design[20] and is suitable for low-area AES
designs. Yu et al. [93] designed some low-area and low-energy lightweight implementa-
tions for AES and PRESENT that are suitable for EPC RFID tags. Some authentication
protocols using AES are proposed in [71, 68, 39, 34].

Public-key algorithms require large amount of computation, making it hard to be used
for low-cost RFID tags. However some papers proposed public-key algorithms to be used
in RFID systems. In [56, 6, 41, 58], RFID authentication based on elliptic curve cryptog-
raphy is proposed. In [46], RFID security protocol based on RSA e-signature is applied in
e-ticket. Arbit et al. [9] proposed two low-resource implementations of a 1,024-bit Rabin
encryption variant in software and in hardware. Their implementation has a data-path
area of 4,184 GEs, an encryption time of 180 ms and an average power consumption of
11 µW, these results fulfils the design requirements for passive RFID tags. Hinz et al.
[51] showed their implementation of the RAMON cryptographic suite. This suite uses the
Rabin-Montgomery (RAMON) public-key scheme to authenticate tags against the readers.
In [78, 90, 13], the authors used elliptic Curve Cryptography (ECC) to implement security
functions in RFID tags. The area of these public-key scheme designs are usually large. For
example, the area of public key based secure identification protocol with different field sizes
range from 8,582 GEs to 10,933 GEs[13], which is much more than areas of symmetric-key
ciphers used in our HSM.

Adding security in such constrained devises as RFID tags are challenging. Many hard-
ware designs are proposed to be suitable for the passive RFID tags that need optimized
hardware implementations, good power management, and strong security capabilities as in
[5, 91, 4, 94]. These lightweight ciphers are used to build different hardware models for our
ASIP HSM. Ertl et al. [30] presented a design of the digital part of a security enhanced
UHF RFID tag that conforms EPC Gen2 standard. The tag provides a mutual authenti-
cation functionality based on challenge-response protocol. In [61], the authors designed a
system-on-chip UHF RFID tag IC for secure RF identification applications based on EPC
Gen2 standard. They introduced some efficient power management techniques including
a low voltage band-gap, a low drop-out regulation with a bias-boosted gain stage, and an
adaptive DC limiter. In [86], the authors provides a battery-free platform for sensing and
computation that is powered by UHF RFID reader signal conforming EPC Class-1 Gen-1
standard. They used a fully programmable 16-bit MSP430 micro-controller for the com-
putations. In [69, 72] papers, novel secured lightweight mutual authentication protocols
are proposed. Both protocols operate under the EPC Class-1 Gen-2 standard.

45

In order to prevent unauthorized access to the data on the tag or to clone tags by
copying the unique identifier (EPCvalue) from one tag to another, a variety of lightweight
security extensions for the EPC Gen2 standard have been proposed. Some lightweight
security protocols and engines are proposed to reduce the complexity of computations and
to make it more convenient for the passive RFID tags. In [24, 89] , the communication be-
tween the readers and tags are verified with the Cyclic Redundancy Check (CRC) function.
Hummingbird algorithm was proposed in 2009, which is a special cryptgraphic algorithm
suitable for RFID security [27]. In [63], the authors designed a digital baseband with AES
cryptography engine, and the power consumption is optimized. In [80], an RFID Baseband
Processor is designed and it can operate sensors. These protocols can be implemented in
hardware or in software. They can be added into our HSM as extended hardware units.

3.5.2 Hardware architectures for RFID tags

There are different ways to implement RFID tag devices. The most conventional way
is to use a specialised hardware circuits. Specialised circuits contain cryptographic func-
tion units and control unit circuits. The great advantage that this approach guarantees
best silicon area, lowest power consumption, and best performance. However, there are two
main problems: specialised hardware circuits provide poor or non-existent flexibility, and it
needs large design efforts which increases the time-to-market compared to other solutions.
Because of these two problems, many other architectures could be used to compensate
these two drawbacks. The other two architectures that support flexibility for tag devices
are to use software-based architecture (i.e. using general-purpose processors or embedded
systems processors) or to use application-specific instruction-set processors. The following
sections show some related works that have different architectures.

3.5.2.1 Software-based approach

Plos et al.’s RFID tag design [73] is one of the designs that is implemented using the
software-based approach. The authors used a fully synthesizable 8-bit micro-controller
that performs, in addition to the communication protocol, various cryptographic algo-
rithms all in software. More discussions and evaluations for their design are discussed in
Sections 6.3 and 6.4. Sample et al.’s RFID tag design [85] uses a fully programmable 16-
bit MSP430 micro-controller for the computations but their design lacks security features.

46

The authors focus on building complete passive RFID platform called WISP to perform
temperature sensing operations. Their software can be described on three levels: packet
decoding and encoding, state and power management, and application layer protocol for
encoding sensor data. The WISP platform was used in [21] to implement RC5 encryption
in a passive RFID tag conforming the EPC UHF C1 Gen1 standard. They show that
WISP has enough computational power to implement RC5 cryptosystem. However, their
experimental platform exceeds the EPC UHF C1 Gen1 tags in terms of computing power
and storage. The designs in this category are much slower and consume more energy com-
pared to the other approaches. The main advantages of using the software-based approach
is the high flexibility and the relatively short time to market.

3.5.2.2 Specialized hardware approach

Ertl’s [30] and Fu’s [39] designs are another RFID tag designs that use the specialized
circuits approach. Ertl et al.’s main goal was to enhance security for passive RFID tags.
The digital part of their security-enhanced tag including AES and Grain modules can be
implemented with 12,000 GEs (without the non-volatile memory). Fu et al.’s RFID tag [39]
performs both protocol handling and authenticating protocol using AES. The whole tag
beseband design fits in 26,944 GEs. In general, the specialized circuits approach designs
have the lowest area and power consumption and the highest performance for EPC tag
designs, however it lacks flexibility and extensibility.

3.5.2.3 ASIP-based approach

Similar to our work, Groß et al. [42] use ASIP-based approach. Groß et al. implemented
symmetric-key algorithms on a constrained 8-bit micro-controller. The authors analyzed
the three block ciphers: Present, SEA, and XTEA. The area overhead for these ciphers
is between 519 to 1,021 GEs (9.8% to 19.3% of the 8-bit micro-controller area). More
discussions and evaluations for their design are discussed in more details in Sections 6.3
and 6.4. The ASIP-based approach allows for division of the functions between hardware
and software. Even the hardware design for the processor is designed to work effectively
with the desired application. This approach achieves balance between high flexibility and
high security with low cost and high performance designs.

47

Chapter 4

System level design

The tag chip contains analog RF frontend, and digital baseband. The RF part is used
to perform two-way communication with the reader and harvest energy from the reader’s
signal. The digital baseband is used to process all the commands and data. In our design,
the digital circuit part are divided into two modules: the communication module (CM),
and the hardware security module (HSM). This chapter discusses in details the functions
and the responsibilities of both modules and how each module interacts with the other
module. We designed and implemented the HSM module.

4.1 Top-level design

The digital circuit part in the RFID tag interprets the received demodulated data, per-
forms the required actions (e.g. write data), and generates the appropriate responses. In
our design, the digital circuit part are divided into two modules as shown in Figure 4.1:
the communication module (CM), and the hardware security module (HSM). The CM is
responsible for decoding the incoming commands, performing all non-security related op-
erations, and encoding the replies from the second module (HSM) but the HSM performs
all security related operations including read/write accesses to the memory.

48

Analog
frontend

Digital
baseband

Communication
module

HSM

Processor

Instruction
memory

Figure 4.1: Tag device components

49

The division in CM and HSM has many benefits in terms of security. All security
related functions and data are isolated in HSM module. The whole memory that stores all
sensitive data and keys is accessed directly only by the HSM module. Furthermore, the
division allows for more efficient implementations of hardware/software countermeasures
against related implementation attacks like side channel attack, and gives more control in
power consumption compared to that in stand-alone module architecture. The overhead
hardware circuits or software codes to implement these countermeasures are limited only
to the secure part. This saves area in hardware, power consumption, and even execution
time. Side channel attack is one example of the related non-invasive attacks that aims at ex-
tracting sensitive data from a hardware structure by measuring physical characteristics like
power, electromagnetic emission time delay. The division in two modules makes it harder
for an adversary to gain sensitive data stored in the memory like secret cryptographic keys.

Our HSM module uses flexible ASIP-based architecture. The ASIP-based approach
can achieve balance between rich functionality, low cost chips, and reasonable security
requirements. The current passive RFID tag designs use the dedicated hardware circuits
approach. This approach can achieve the lowest area and power consumption for RFID
tag designs; however, it lacks flexibility. On the contrary, a system that uses the software-
based approach is much slower and consumes more energy. However, the main advantages
of this approach is the high flexibility and the relatively low time to market compared to
other approaches.

4.2 The EPC tag digital baseband responsibilities

The digital part of the tag microchip is responsible for interpreting the received data then
performing the required actions (e.g. writedata), and generating appropriate responses.
In our design, the digital baseband is divided into hardware security module (HSM) and
communication module.

The received input is interpreted and decoded using the communication module to
identify the received command and its associated data, then the communication module
sends a command to the HSM using interrupt vector connected between the communi-
cation module and the HSM. The HSM uses ASIP architecture so it acts as a processor
which some interrupt service routine are written in the main memory, these interrupt ser-
vice routines implement different actions required by the tag device. The required action

50

is performed using the HSM and the required response fields are forwarded to the com-
munication module that combines or encodes them to generate the final response with the
calculated CRC field as required for some commands.

An example of Query command sent from Reader to tag and tag’s reply is shown in
figure 4.2. The tag in figure 4.2 shows the digital part only. The Reader sends a Query
command that initiates an inventory round. The tag picks a random number and sends it
back to the Reader. The CM module decodes the received Query command. It processes
all non-security related functions and sends an interrupt request (IRQ9) to the HSM. The
HSM updates the program counter to a certain location according to the corresponding
stored address to IRQ9 in the interrupt vector table. The start address of this interrupt
service routine (ISR) is labelled in figure 4.2 as (Req RN16). This ISR generates a 16-bit
random number using custom instruction prsg.run. The generated random number is sent
to the CM through output register r1.

51

HSM

Query

Tag

RN16

IRQ9

Comm. module

RN16

01:
01:
 .
 .
 .
09: Req_RN16

Interrupt table

Req_RN16:
 .
 .
 prsg.run r1, r3

U-Code

PRSG

TagReader

Ready/
Arbitrate

Query

RN16

RF

Figure 4.2: Tag digital baseband architecture

The responsibilities in the tag are divided between the communication module and the
HSM. The following table 4.1 summarizes the responsibilities in each module.

52

Table 4.1: Responsibilities in the communication module
and the HSM

Command The communication module The HSM

Shared tasks - Decoding the received EPC
commands

- Reading/writing the data param-
eters from/to the data memory

- Encoding the final response
- Processing the non-security re-
lated operations

- Sending the processed security re-
lated parameters to the CM

- Sending IRQs to the HSM

Select - Asserting/Deasserting SL or in-
ventoried flags

- Reading data from the specified
memory

- Forwarding Mask to HSM - Comparing the read data to Mask
- Verifying CRC16

Query - Verifying CRC5 - Loading/setting (Q) parameter
- Picking a random value between 0
to 2Q−1

- Generating new random sequence
bits RN16

QueryAdjust - Loading/adjusting (Q) parameter
QueryRep - Generating new random sequence

bits RN16
Req RN - Verifying CRC16 - Verifying RN16

- generating reply CRC16 - Generating new random sequence
bits RN16

Ack - Forwarding RN16 to HSM - Verifying RN16
- Reading Pc, EPC from the tag
memory
- Generating new Handle bits

Access - Verifying CRC16 - Verifying Handle
- Forwarding Handle to HSM - Checking access password
- Forwarding access password to
HSM

- Generating new Handle

- Generating reply CRC16 - Transitioning to the Secure/Open
state

Read - Verifying CRC16

53

Table 4.1: Responsibilities in the communication module
and the HSM

- Forwarding the memory bank
number to HSM

- Verifying Handle

- Forwarding the starting pointer
to HSM

- Reading data from the specified
memory

- Forwarding the wordcount to
HSM

- Sending data

- Forwarding Handle to HSM - Generating new Handle
- Generating reply CRC16
- Sending data to the analog
front-end

Write - Verifying CRC16 - Verifying Handle
- Forwarding the starting pointer
to HSM

- Writing data to the specified mem-
ory

- Forwarding the data to be writ-
ten
- Forwarding Handle to HSM - Generating new Handle
- Generating reply CRC16

Kill - Verifying CRC16 - Verifying Handle
- Forwarding Handle to HSM - Checking Kill password
- Forwarding Kill password to
HSM

- Generating new Handle

- Generating reply CRC16 - Transitioning to the Killed state
Authenticate - Verifying CRC16 - Setting the CSI option

- Forwarding CSI parameter to
HSM

- Performing required authentica-
tion action

AuthComm - Verifying CRC16 - Verifying the message and its
MAC

- Decoding the encapsulated com-
munication command

- Performing the encapsulated com-
mand action

SecureComm - Verifying CRC16 - Decrypting the encrypted message
- Forwarding the encrypted mes-
sage

- performing the encapsulated com-
mand action

As shown in table 4.1, there are shared tasks that are performed with some or all of

54

the received EPC commands. The CM is responsible for decoding the received EPC com-
mands and generating the corresponding interrupt requests to the HSM and forwarding
the security related parameters to the HSM module. All non-security related operations
are performed in the CM module. For example, some EPC commands require a reply that
has a cyclic redundancy check (CRC). The CRC number generation is performed by the
CM in our design.

The HSM is responsible for performing all security related operations as checking or ver-
ifying the received access/kill passwords or RN16 number. The generation of new RN16 or
Handle is performed also in the HSM module. The HSM could include one or more crypto-
modules that are used for performing cryptographic functions, these modules are accessed
using the custom instructions that extend the supported instructions in the ASIP HSM.
cryptographic functions could include random sequence generation, encryption/decryption,
and hash function generator. The HSM also performs all read/write memory accesses and
manage the accesses to the data memory depending on the security state.

4.3 The interaction between the HSM and the CM

The type of operations inside each module, the HSM and the CM, as well as the level of
dependency between these operations in each module determine how the communication
between the two modules is. Figure 4.3 shows an example of some operations performed by
the HSM and some other operations performed by the CM for ACK EPC command. ACK
command is used to transition to “Acknowledged” state. For valid ACK command, tag
has to receive the last correct random number RN16. The green blocks in Figure 4.3 refer
to the security related operations performed by the HSM. The other parts of the flowchart
(blue blocks) are performed by the CM. The CM controls the command execution. Each
green block means new interrupt request sent from the CM to the HSM. Any interaction
with the memory is done by the HSM.

55

Figure 4.3: ACK command operations division between the CM and the HSM

56

The communication protocol between the two modules inside the tag upon receiving
ACK command is shown in Figure 4.4. The CM starts decoding the two-bit ACK com-
mand, then it sends an interrupt request called “read cmd” to read some data parameters
from the data memory. Each data parameter requires sending new “read cmd” IRQ from
the CM to the HSM. The HSM starts loading the related parameters then sends them
out to the CM. Then the CM sends the received RN16 (received from the Reader) to the
HSM, it is noted that the maximum data rate for the Reader-to-Tag communication is
128 Kbit/sec which means throughput of 1/16 bit/clock cycle. The CM then sends new
interrupt request to the HSM at clock cycle number 257 after sending all 16-bit RN16 to
check whether this received RN16 matches the correct previous RN16 generated by the
HSM itself. The HSM checks and replies with the check result, if it matches, it replies with
correct RN16 to direct the CM to continue one of the execution paths. The CM checks
the data parameters it has then ask the HSM to send one of the ACK reply sequences.

57

0

StoredPC84:09

rd_cmd8StoredPC9
0

6

Start ACK ISR
and load StoredPC
then send StoredPC
to the CM

7

XPC_w1815:09

load XPC_W1
then send it
to the CM

RN168159
16

RN168149
32

RN16809
256

chk_rn16257

chk received
RN16 with the
correct RN16

258
259
260

Correct_RN1681:09 261

266

271

263
264
265

Read the ack
reply 81 responce9

snd ack rply1

272
EPC831:169

380

rd_cmd8XPC_w19
8 8

10
9

EPC815:09

HSMCM

Figure 4.4: ACK command operations division between the CM and the HSM

58

Chapter 5

The HSM Architecture

This chapter discusses both the instruction-set architecture and the micro-architecture
for our ASIP HSM. The instruction-set includes general instructions such as arithmetic
instructions and special instructions such as custom instructions to access the extended
hardware units. The chapter also discusses the micro-architecture features for our ASIP
processor.

5.1 The overall architecture

Our ASIP processor uses reduced instruction set computing (RISC) architecture that has
fixed instruction length of 14 bits and three instruction formats and has a single-cycle
instruction implementation. The ASIP processor is able to perform general operations
as well as special operations using the included hardware units. The added units can be
accessed by custom instructions defined by the system designer at the design level phase
(i.e. before fabrication), this adds more functionalities to the ASIP processor by only inte-
grating the required units into the ASIP’s datapath. The ASIP micro-architecture design
is customized to minimize the hardware area complexity of the overall EPC tag device.
The RISC architecture used in our ISA simplifies the instruction decoding hardware design.

59

RAM

R0

R1

Register
file

addr

idata

odata

+
Interrupt Vector

Table pc
ROM

INT_VEC

Data_in

Data_out

ALU

addr

Stack

IRQ

inst

Writeback MUX

Cryptomodules

Instruction Fetch

Instruction Decode

Figure 5.1: The microarchitecture datapath for the ASIP HSM

The code program of the EPC tag is divided into small code programs called interrupt
service routines (ISRs). An ISR starts executing when the CM interrupts the ASIP HSM,
the CM sends IRQ to start execution of some code program in the instruction memory. As
shown in Figure 5.1, when the CM sends an interrupt request, the program counter (pc) is
updated to point to the start address of the intended ISR. An instruction is fetched every
clock cycle and the program counter is incremented as long as there is no branch control

60

instructions such as BEQ and JMP instructions.

Our ASIP processor architecture has some novel features, these features can be sum-
marised as follows:

• Two registers in the register file are used for input/output operations, these registers
allow for different serial/parallel loading modes.

• The accelerated mode support; the ASIP can repeat the execution of one instruction
multiple times.

• Implicit operations can be run after writing some value to the status register or to
the accelerated mode/output counter register.

5.2 Instruction-set architecture

The instruction set architecture (ISA) is a key design decision for the ASIP processor de-
sign. It is a primary goal for the passive tag designs to lower the overall implementation
costs. We chose fixed-length instructions in our ISA, because it makes decoding circuit
much simpler. Variable length instructions provide more compact code size but add more
complexity to the decoding circuit and make organizing variable-length instructions in the
ROM memory much harder. Our ASIP has two-operand architecture, this reduces the
instruction length compared to that one in three-operand architecture. However, three-
operand architecture gives more flexibility to use different source and destination registers.
But it is more important to keep the instruction length as small as possible because this
length affects the overall program ROM size. The chosen instruction length of 14-bits to
cover all supported instructions. It is important to keep the instruction length as small
as possible because this length affects the program ROM size. The instruction length de-
pends on the number of instruction fields and their sizes, the number of operations, and the
number of supported addressing modes. 14-bits are the least number that can be used for
the instruction length to cover all supported instructions. Three instruction formats are
used in our ASIP: Register-type (R-type), Immediate-1-type (I1-type), Immediate-2-type
(I2-type).

From high level perspective, the ASIP HSM has to perform some general operations
as well as some dedicated or special operations such as random number generation or

61

encryption/decryption. Hence, the ASIP instruction set requires the following types of
instructions: move instructions, arithmetic instructions, jump/branch instructions, output
instructions, custom instructions, and special control instructions. LD, ST instructions are
used to move data between data memory and registers while MOV instruction is used to
move data between registers. Arithmetic and logical instructions like ADD and AND instruc-
tions are needed for data manipulations. LDL is used to set the lowest significant 8 bits of a
register by an immediate value. SHL and SHR are logical shift one-bit location instructions
while SHL8 and SHR8 are shift eight-bit location instructions. SHL8 and SHR8 are used with
output operations in R1 register. SHL8 is commonly used to set the most significant 8-bits
of a register after LDL instruction. BSR is an instruction used to call a subroutine while
RTS is used to return from a subroutine. JMP, BEQ, and BNEQ are jump/branch instructions
for control flow and PUT is an explicit output instruction to output the contents in R1 to
the output interface signal. CUSTOM.XXX as shown in Table 5.1 is just an example of the
custom instructions that a system designer can add. The custom instruction(s) can have
up to 16 options. The supported instructions are shown in Table 5.1.

5.3 Instruction Formats

There are three instruction formats supported in our ISA:

• Register format (R-type)

• First Immediate format (I1-type)

• Second Immediate format (I2-type)

5.3.1 Register Format (R-type)

There are two operand fields in this format, one field for the destination register and one
of the source registers and the other operand field is for an optional another source reg-
ister. The instruction of this format is divided into four fields: 2-bit opcode, 4-bit funct
field (funct field is used to define an instruction or operation.), 4-bit destination register
rd (used also as a source register), 4-bit second source register rs.

62

Table 5.1: The meaning and the encodings of the supported instructions

Instruction Instruction
format

Encoding Meaning

LD R-type 00.1110 Load from the data memory (RAM)
ST R-type 00.1111 Store to the data memory (RAM)
LDL I2-type 10 Load immediate 8-bit value to a regis-

ter
MOV R-type 00.0110 Moving register content to a register
ADD R-type 00.0000

Arithmetic and logic operations (add,
subtract, bitwise and, bitwise inclusive
OR, bitwise exclusive OR, bitwise
negation)

SUB R-type 00.0001
AND R-type 00.0010
OR R-type 00.0011
XOR R-type 00.0100
NOT R-type 00.0101
SHL R-type 00.1001 Arithmetic shift operations (logical

left-shift, logical right-shift, logical
left-shift 8 bit locations, logical
right-shift 8 bit locations)

SHR R-type 00.1000
SHL8 R-type 00.1011
SHR8 R-type 00.1010
BEQ I1-type 11.0010 Conditional branch (if equal, if not

equal, if less than)BNEQ I1-type 11.0011
JMP I1-type 11.0000 Unconditional jump
BSR I1-type 11.1100 Branch to subroutine
RTS I1-type 11.1101 Return from subroutine
PUT I1-type 11.0110 Output data
CUSTOM.XXX R-type 01.xxxx Custom instruction

63

Table 5.2: Examples of custom instructions encodings and meanings

Instruction Instruction
format

Encoding Meaning

wg.run R-type 01.0100 WG-5 stream cipher encryp-
tion/decryption

wg.prsg R-type 01.1000 Pseudo-random sequence genera-
tor

wg.init R-type 01.0010 WG-5 stream cipher initialization
wg.ldkiv R-type 01.0001 WG-5 stream cipher load key/IV

simeck.run R-type 01.1100 Simeck block cipher encryp-
tion/decryption

simeck.ldkey R-type 01.1101 Simeck block cipher load key
simeck.lddata R-type 01.1110 Simeck block cipher load data

ace.ldh R-type 01.0000 Ace load high 32 bits and read
word0

ace.rdw1 R-type 01.0001 Ace read word1
ace.rdw2 R-type 01.0010 Ace read word2
ace.rdw3 R-type 01.0011 Ace read word3
ace.ldl R-type 01.0100 Ace load low 32 bits
ace.ldm R-type 01.0101 Ace load mode of operation and

control bits
ace.run R-type 01.0110 Ace run operation

aes.ldkd R-type 01.0101 AES load key/data
aes.ldm R-type 01.0110 AES load mode of operation
aes.run R-type 01.0100 AES run operation
aes.rd R-type 01.0111 AES read data

64

 opcode rr sd

13 12 8 4

funct

0

Figure 5.2: R-type instruction format

An example of instruction that uses this format is ADD instruction. The following code
shows the assembly code for addition operation:

add rd, rs

Where rd is the first source register and the destination register and rs is the second
source register.

The instructions that use R-type format are: ADD, SUB, AND, OR, XOR, NOT,
MOV, LD, ST, SHL, SHR, SHL8, and SHR8 instructions and the custom instructions.

5.3.2 First Immediate format (I1-type)

In this format, there is one immediate value of 8 bits. The instruction of this format is
divided into three fields: 2-bit Opcode, 4-bit funct field, 8-bit immediate (imm8) as shown
in Figure 5.3.

 opcode imm8

13 12 8 0

funct

Figure 5.3: I1-type instruction format

The instructions that use I1-type format are BEQ, BNEQ, JMP, BSR, RTS, PUT
instructions. The following code shows an example of an assembly code using BEQ in-
struction:

beq imm8

65

Where imm8 is 8-bit signed immediate, the imm8 range is between -128 to 127. It will
be added to the current pc to branch to the new added address in case of correct condition
check or to the next instruction address in the other case.

5.3.3 Second Immediate format (I2-type)

In this format, there is one destination register and one immediate value. The instruction
of this format is divided into three fields: 2-bit Opcode, 4-bit destination register rd, 8-bit
immediate (imm8) as shown in Figure 5.4.

 opcode imm8

13 12 8 0

rd

Figure 5.4: I2-type instruction format

The only instruction that uses I2-type format is LDL instruction.

The following code shows an example of an assembly code for loading an immediate
value imm8:

ldl rd, imm8

Where rd is the destination register and, imm8 is 8-bit data to be loaded into the lower
byte of the destination register rd. The load lower byte instruction (LDL) in the above
assembly code has the meaning of

rd = {rd[15 : 8], imm8}

5.4 Instruction format design decisions

Choosing the instruction formats is one of the important design decisions that affects on
the whole program memory size and the overall performance.

66

5.4.1 Three-operand vs. two-operand ISA architectures

In two-operand ISA architecture, one of the two source operands (input operand) has the
same register address as the destination operand (output operand). Registers in the regis-
ter file are used mainly to store data temporarily. The data contents in these registers are
used to feed other computational blocks either in the ALU or in the added cryptomodules.
The following code shows an ADD instruction that uses two-operand architecture. R5 is the
first source operand that is used also for the destination. R3 is the second source operand.
The addition result will be written in R5 register and will replace the old content in R5

register (that is used for calculating the result).

ADD R5, R3; R5 = R5 + R3

The main benefit of using this two-operand architecture is reducing the number of
fields in the instructions. Hence, reducing the program memory (ROM) size. In our
implementation, using the two-operand ISA architecture saves about 22% of the overall
instruction memory size of the three-operand ISA architecture. The main disadvantage
of the two-operand architecture is losing some flexibility to keep the value of one source
register without change. This may be a problem if there are many functions that require
accesses to the same variables. The three-operand architecture will be much faster in this
case because it keeps these variables in the register file then it will be used directly without
new loads from the memory. This type of variables dependency is not the case in our
system so two-operand architecture works well.

5.4.2 Stack-based vs. register-based ISA architectures

The advantage of a stack-based ISA is using short instruction words compared to that
in a register-based ISA. There are not source and destination registers in a stack-based
ISA. The awkward way of moving and manipulating data in a stack will add more clock
cycles (i.e. more time) and will add more instructions (i.e. more instruction lines) to the
program memory. There might not be a big saving in the program memory size. The
most disadvantage is adding time overheads for all operations in the ASIP HSM. This time
overheads make it hard to meet the latency requirements for EPC tags.

67

5.4.3 Variable length instructions vs. fixed length instructions

The main advantage of fixed length instructions with uniform formats is that decoding the
instructions is obviously simpler. Instructions are aligned in the ROM memory as each
instruction has one memory location and has same size as all instructions. A new instruc-
tion is fetched every clock cycle. The program counter is incremented every cycle (except
when executing control flow instructions) independent of the instruction type. In variable
length instructions, the advantage is larger code density. This may improve the code size
of the program memory. Instruction length can be set according to frequency of use. For
example, less encoding bits are given to most frequent instructions. However, fetching a
single instruction can be more complex since the start of the instruction is likely to not be
aligned. So buffering and shifting logics are needed. This adds complexity to the fetching
and the decoding units. If the maximum instruction length is 16, the cost of these buffering
and shifting logics would be a 14-bit register for instruction buffering (i.e. 50 GEs) and
16 15:1 multiplexers (i.e. 500 GEs). The granularity of the program counter for variable-
length instructions would add more complexity to the decoding circuit. For example, it
may be: 8-bits, 4-bits, or 2-bits. Because of the complexity of the fetch/decode circuits
and the low probability of significant benefits, we chose to use a conventional fixed-length
ISA.

5.5 The ASIP HSM features

The ASIP processor features can be summarized as follows:

• Instruction-set extensions.

• Implicit input/output operations.

• Explicit output instructions.

• Accelerated mode support.

• Interrupt driven control technique.

• Program code isolation by dividing it into interrupt service routines (ISRs).

• Memory banks hardware protection using passwords.

• Configurable physical addresses and memory spaces.

68

5.5.1 Interrupt driven control

Interrupt driven control technique is used to allow the CM to send a command to the
ASIP HSM. The EPC Gen2 standard uses challenge response protocol, which means the
reader sends an EPC command then the tag responds with a reply. In our architecture,
the command is received and decoded by the CM then the CM sends an interrupt request
to the ASIP HSM with or without associated data. Once the ASIP HSM is interrupted, it
performs the required program and it responds with the appropriate data replies through
data out signal and/or cmd signal. Wr en, ack, out en, and full signals control the com-
munication between the CM and the HSM. The input/output interface signals are shown
in Figure 5.5.

Figure 5.5: The input/output interface signals

69

The software program in the ASIP HSM is divided into sub-programs called interrupt
service routines (ISRs). The following interrupt service routines have been implemented
in the ASIP HSM:

• Verify the access password

• Verify the kill password

• Verify the 16-bit random number

• Generate 16-bit random number

• Generate arbitrary-length random number

• Save/restore state

• Read data word

• Read sequence of words

• Write data word

• Compare sequence of data

• Load keys / initialize the WG cipher

• Encrypt/decrypt using WG cipher

• Encrypt/decrypt using Simeck cipher

• Mutual authentication

5.5.2 Input/output operations

Registers R0 and R1 are used as input/output registers to receive or send data from/to the
CM. The data in input has a path to R0 input register. R0 has special controls that allow
three different ways for write operation:

1. Shift and rotate.

2. Shift logical left and write 1-bit to the least significant bit.

70

3. Parallel load (normal write operation as in all other registers).

4. Parallel load from the data input.

we

data_in

sel1, sel0

rd(Msb)

sel2

. . .

.
data_1b

data_wb

. . .

. .

Figure 5.6: R0 input register control logic

These different write options in R0 register are adopted for the ASIP HSM operation
needs. The first option (shift-left and rotate) allows the ASIP cryptographic module to
perform an operation on a single bit (1-bit) from R0 without using an explicit shift in-
struction in throughput of 1. This could be done by enabling what is called “accelerated
stream mode” (this mode is described in more details in Section 5.5.4).

The second option is the serial input operation. In this option, 1-bit input data is
written from the data in input to the least significant bit R0[0] and shift-left. This option
is needed to write a new input data stream from the CM module. A serial write operation
from the data in input is performed when the sp input or the serial parallel input status
bit is high and as long as wr en is high and ready signal is high.

The CM module is able to send 1-bit data when the ready signal is high. The default
value of ready output signal is high as long as R0 has not been filled with 16-bit input
data. This is monitored by IP CNTR counter that has a default initial value of 16, the
counter is decremented as long as there is an input operation and no read operation. ready
signal goes low when IP CNTR reaches the value of Zero. A Read operation from R0 resets
IP CNTR counter by the initial value of 16.

71

The third option is the normal write operation when R0 is the destination register of
any instruction. The contents in R0 could be accessed by a cryptomodule to perform 1-bit
operation in “accelerated stream mode” as in the second option.

The fourth option allows for a parallel load for R0 register from the parallel data input.
This operation is done automatically when the ready signal is high and the sp input status
bit is low. The sp input status bit is a bit that direct the load operation type in R0 register
(i.e. serial or parallel load operations). A parallel write operation from the data in input
is performed as long as wr en is high and ready signal is high.

The read operation is done independently of the input or write operations. Any in-
struction that has R0 as a source register could access the data content in R0. In other
words, there is no special input instruction to read input data. The sequence of the data
input and the program execution that may read contents in R0 is controlled by the CM.

R1 output register has also special controls that allow other write operations. The
output register R1 is either accessed explicitly using the output instruction PUT as shown
in Table 5.3, or implicitly by using R1 as a destination register in an instruction. In both
options, R1 register could be loaded in serial or in parallel depending on the value of sp out
status bit in the status register. R1 has two different ways for write operation:

1. Serial load and shift left.

2. Parallel load (normal write operation as in all other registers).

These different write options allow easy handling for the input or output data. For
example, a stream cipher that takes its input from the serial data in input and sends the
result to the serial data out output and it repeats 16 times. This operation can be done with
enabling so called “accelerated mode” (described in Section 5.5.4) for this cryptographic
instruction that performs this stream encryption operation. The different write operations
to R0 or R1 registers allow flexible use of the special features in our ASIP processor. For
example, our ASIP can decrypt a stream of data input bits and store the result in R1

register in accelerated mode (i.e. throughput of one bit per cycle).

72

we

sel1 sel1sel1

data_out

data_wb. .

. ..

.

. . .

. . .

. . .

Figure 5.7: R1 output register control logic

Table 5.3: Output instructions

Instruction Assembly Semantics

PUT ldl r1, imm8 r1[7 : 0] = imm8

PUT #8 OPCNTR ← 8
While (OPCNTR > 0)
{R1 ← R1 << 1
OPCNTR ← OPCNTR - 1 }

Any R-type inst mov r1, rs r1 = rs

5.5.3 Instruction-set extension

The ASIP micro-architecture allows instruction extensions to the instruction-set architec-
ture. The operations of these extended instruction are performed by the added hardware
units. In our ASIP HSM, some hardware cryptomodules are added. Complex crypto-
graphic functions could be performed in hardware in less number of clock cycles compared
to that in software (i.e. without using cryptomodules). The ASIP allows the system pro-
grammer to access these included cryptomodules using simple instructions called custom

73

instructions. These instructions have reserved encodings for the extended operations. The
added units are chosen to perform the required security functions for the EPC tag. The
EPC G2 standard defines so called “cryptographic suites” that allows the system designer
to add security services depending on the application needs.

The following security functions are chosen to be supported in this ASIP design:

• Random number generation.

• Data encryption/decryption of the communication between the reader and the tag.

• Data encryption/decryption of the data stored in the memory.

A cryptographic interface is used as a general interface for any added unit. This gen-
eral interface makes it easy to include cryptomodules into the processors datapath. The
general cryptographic interface, as shown in Figure 5.8, includes: two 16-bit input data,
16-bit output data, enable, input mode, output write enable.

Cryptographic
unit

mode

enable

odata

clk

16

4

idataA idataB
16 16

Figure 5.8: The input/output interface for a cryptomodule

An intermediate circuit called “cryptomodule wrapper” might be required to enable
one operation in one module. In other words, this cryptomodule wrapper translates the

74

input/output signals of the general cryptomodule interface to the the input/output signals
of the added cryptomodule. The design of these wrappers usually are simple. For example,
the designed hardware wrapper for Simeck cipher consume less than 3% of the total area
of Simeck cryptomodule as shown in Figure 5.9.

Figure 5.9: The included Simeck cipher in the ASIP processor

Our architecture allows up to 16 operations for the added cryptomodules. A funct field
is part of R-type instruction format that is used to define an instruction or operation.
The funct field is decoded from a custom instruction and forwarded to the mode input of
all added cryptomodules. Each operation in any of the added cryptomodules is given an
encoding value (i.e. a value from 0 to 15). A received funct field value will enable one
operation in one of the added modules according to the assigned encoding values for these
operations. The output from this module is sent to the write-back unit that may write it
into the register file. The writeback unit uses the hardware output signal wr en from a
cryptomodule to write the data out value into a destination register. The function of this
wr en output signal is determined by the system designer whom chooses the operations
that write into a destination register.

This general interface allows easy integration for the added cryptomodules. The run-
ning operation has to be single-cycle operation so a full access is given to the program
code to control the execution of the included modules and to control the sequence of the
cryptographic operations. Table 5.4 shows assembly code examples as well as the semantics

75

for some instruction examples in this group.

The instruction set architecture design assumes that it does not know the operations
in these cryptomodules. In other meaning, the ISA allows the system programmer to
access these modules. It is the system programmer responsibility to use the appropriate
instructions depending on the required functions/operations. In our ISA, we use a general
instruction interface to use one input operand and one output operand that allows the
processor to access the cryptomodules.

CRYPTO.XXX Rd, Rs; Rd ← crypto function(Rd,Rs)

In the following Table 5.4, it shows an example of different operations that may be used
by a custom instructions called CRYPTO.

Table 5.4: Custom cryptographic instruction assembly code examples for different options

Instruction
option

Assembly Semantics

CRYPTO.INIT CRYPTO.INIT crypto module.mode ← #init crypto module
crypto module.i valid ← 1
crypto module.data in ← Rs (Data on data in
isn’t used by the cryptomodule in this option)

CRYPTO.LOAD CRYPTO.LOAD

R3

crypto module.mode ← #load crypto module

crypto module.data in ← R3

crypto module.i valid ← 1
CRYPTO.RUN CRYPTO.RUN

R4, R3

crypto module.mode ← #run crypto module

crypto module.data in ← R3

crypto module.i valid ← 1

Although the assembly code ignores the use of Rs and Rd in the first option (INIT)
as shown in Table 5.4, Rs which is specified in the instruction field will be transferred
to the cryptomodule data input interface. The enabled cryptomodule could use this data

76

on its data in depending on the operation. The data on the data out is written into the
destination register Rd regardless there is a valid output data or not.

Crypto

operation

Rd Rs

Instruction
Category

Cryptographic
primitive

data_inA

mode

i_valid

data_out

clk rst

Register
File

Control
logic

RdataAWdata

RaddWadd

data_inB

RdataA

RdataB

functOpcode

Figure 5.10: The cryptomodule interface connections

As shown in Figure 5.10, there is a field in the cryptographic instruction that deter-
mines the internal operation inside the cryptomodule. There may be one or more used

77

cryptomodules, the “Cryptographic operation” field is hardwired connected to the mode
for the cryptomodule(s). The value of this field enables one operation in only one primitive
that shares the same “instruction category” field value. So it works as module enable or
as select operation. The important point here is that valid mode value as well as valid
valid in input signal are both required to enable the operation in one cryptomodule.

5.5.4 Accelerated mode support

Our ASIP processor supports so called “accelerated mode”. In the “accelerated mode”, the
ASIP can repeat the execution of one instruction multiple times. This execution behaviour
is common in the EPC tag operations. For example, sending stream of bits to the data
output port or generating random number using a stream cipher. The throughput of 1 bit
per cycle for EPC tags is suggested by [84] paper. There are many benefits of using the
accelerated mode. The accelerated mode reduces the software program size by writing the
accelerated instruction only once. Another way of writing repeated operations is using a
loop.

In the accelerated mode, the same operations done in one iteration are performed in one
clock cycle instead of three. This process can be done by setting R14 accelerated counter
register using LDL instruction. The following instruction is performed multiple times as set
by the LDL instruction. The PC is not incremented until the accelerated counter reaches
zero. The accelerated mode works with other special features in the ASIP processor. For
example, if the following instruction has destination of R1 output register, the ASIP loads
R1 in serial or in parallel depending on the serial/parallel bit value in R15 status register.
This instruction can be any of arithmetic or custom cryptographic instructions.

5.5.5 Instruction fetch unit and control stack

The instruction fetch unit is responsible for updating the program counter (PC) register.
The PC is initialized from the interrupt vector table when an interrupt request is received.
The PC increments as long as it doesn’t reach the end of an ISR or there is no branch
or call subroutine instruction. The program can call a function at any-time. Hence, the
instruction fetch unit has a control stack. We have found that a stack size of 3 is sufficient
for the ISRs that we have written. The stack size can be easily increased in the hardware

78

Table 5.5: Branch/control instructions

Instruction Assembly Semantics

BNEQ BNEQ #12 if Zero flag == 0 then
pc ← pc + 12

else
pc ← pc +1

JMP JMP #− 15 pc ← pc - 15

BSR BSR R6 Stack[sptr] ← pc
sptr - -
pc ← r6

RTS RTS sptr ++
pc ← Stack[sptr]

design process without affecting the ISA or other aspects of the hardware.

The branch/jump instructions update the PC to a new address. These instructions use
pc-relative addressing mode to update the program counter. The new pc is calculated by
the ALU by adding the current pc with the sign-extended immediate value in a branch
control instruction. These instructions can be divided into two categories: decision making
instructions, and call subroutine instructions. The instructions in the first category allow
the ASIP processor to take decisions and branch to a certain execution path. This category
includes BEQ, BNEQ, and JMP instructions. The second category is called “call subroutine”
instructions category that allows the processor to jump directly to a subroutine and to
return from a subroutine. There are two instructions in this category: BSR, and RTS

instructions. Table B.3 shows assembly code examples as well as the semantics of some
instructions in this group.

5.5.6 Special-purpose registers

The register file is divided into general-purpose registers and special-purpose registers.
Registers R2 to R13 are used as general-purpose registers. Registers R0 and R1 are used as
input/output registers to receive or send data from/to the CM. R14 register is used as a
counter for the accelerated mode or for the output operation. R15 register is status register.

79

R14 is used as a counter set by the programmer for the accelerated mode operations or
for the output operations. It can be set using explicit output instruction PUT. It can be
set using LDL instruction for the accelerated mode operation for the following instruction
that is performed after LDL instruction. R15 status register includes status bits: tamper-
detection bits, serial/parallel flag, secure bit, accelerated mode bit, internal/external write
mode bit, memory bank bits, write enable bit, data input ready bit, and data output ready
bit. Some status bits are accessed by the programmer and some other bits are written only
by the ASIP processor control unit. Tamper-detection bits are set automatically by the
ASIP processor if any of tampering attempts is detected. For example, counting mismatch
memory passwords more than a certain limit or triple modular redundancy (TMR) fault
is detected for the important registers in the register file as described in the following
paragraph. The different tamper-detections circuits and the action responses (i.e. tamper
resistance levels) are left as future work.

Some special registers are protected against fault injection attack by using TMR fault
tolerant technique. This is implemented by repeating the hardware resources and the
operations for these registers two more times. The TMR hardware control circuit masks
faults using voting outcomes for the three repeated register units. This technique is used
with the input register R0 and the output register R1 and the status register R15. Using
this technique for all registers is expensive as it adds two register units beside the voting
hardware logics to the protected register unit. Hence, the most sensitive and important
registers are chosen to be protected against fault injection attack.

5.5.7 Memory management unit (MMU)

The EPC Gen2 standard defines four distinct memory banks for data organization, which
are known as tag memory. The four memory banks are: Reserved, EPC, TID, and USER.
The Reserved memory contains the 32-bit kill and access passwords. EPC memory con-
tains EPC code number. The EPC code number identifies the object to which the tag
is attached. TID memory contains an 8-bit ISO/IEC 15963 allocation class identifier.
It also contains some information for a reader to identify the custom commands and the
optional features that a tag supports. USER memory is optional memory that may be par-
titioned into one or more files. The system designer defines the data stored in this memory.

The memory management unit (MMU) is responsible for mapping or translating logical
addresses sent by the reader to physical addresses for the actual data locations in the RAM

80

memory in the tag. The tag and the reader use the logical addresses, which conform to
the standard in their communications to access the data in the tag memory. The physical
memory organization is set by the system designer whom is able to configure the starting
addresses of these memory banks and the memory banks sizes using a dedicated small
memory. This adds more flexibility for memory organization even after fabrication.

The MMU also provides a memory protection by matching the received internal pass-
words sent by the control unit and by controlling read/write accesses in different conditions.
Each of the memory banks has its own stored password, which has to be matched with the
received password from the control unit. Each memory bank has its own access rights. We
divided the memory accesses into three categories: internal read/write accesses, external
secure read/write accesses, and external open read/write accesses. Internal read/write ac-
cesses are used for the operations executed inside the HSM and do not include input/output
operations. While external read/write accesses are the read/write operations that involve
input/output operations. The access may be granted or denied depending on the access
type (i.e. read or write), the access condition (i.e. internal or external), the security state
bit, and the memory bank.

The permission bits for the different memory access type/condition are configurable
using a small dedicated memory. Table 5.6 shows an example of the permission bits struc-
ture for the memory banks. For example, passwords in the Reserved memory bank can
not be read externally (i.e. sent to the reader) regardless of the security state bit value
but it may be read to execute password check operation, which is an internal operation in
the ASIP HSM. In our implementation, The USER memory bank are divided into three
sections in our implementation. Each section has its own permission bits. As shown in the
example, UsrHigh memory section has more read/write constraints compared to that in
UsrMED and UsrLOW memory sections. The starting physical addresses for the memory
banks/sections are also configured by the system designer and stored in the same dedicated
memory used for the permission bits.

81

Table 5.6: Permission bits structure example

Access type Pwd EPC TID User High User Medium User Low

Internal access
rd X X X X X X
wr × × × X X X

Secure external
access

rd × X X X X X
wr × × × X X X

Open external
access

rd × X X × X X
wr × × × × × X

82

Chapter 6

Results and Evaluations

This chapter shows and evaluates the implementation results for our work. First, it dis-
cusses the synthesis results for our work and compares these results with the related other
works that use different design approaches. Then, a detailed comparison for the archi-
tectures of some works that use programmable approach is explained. Finally, a detailed
comparisons for the performance, and the optimality score results for different crypto-
graphic algorithms implementations on these programmable works is discussed.

6.1 HSM architecture and results

Our ASIP HSM can be implemented with 4,662 gate equivalent units (GEs) for 65 nm
CMOS process technology. This result excludes the memories (i.e. the data memory, and
the instruction memory) and the added cryptomodules. Table 6.1 shows the detailed area
results for the ASIP components. The register file has the largest portion in the area
utilization between the ASIP components. The register file consumes 2,584 GEs (about
55.4% of the overall area).

Another implementation, using 11 16-bit registers, can be implemented with 3,860 GEs.
This implementation result shows that changing only the register file size, from 16 to 11
registers, reduces the overall area by 802 GEs (17.2% reduction of the overall area of the
16x16 implementation). Register file size is considered as flexible parameter that is deter-
mined by a system designer. It depends on maximum number of used registers in written

83

subroutines. Our implementation can support up to 16 registers. These synthesis results
are done with Synopsis Design Compiler using Synopsis CMOS65nm technology library.

Table 6.1: The chip area results for the ASIP design components

Component Area
[GEs]

Percentage

Control unit and memory
controller

1,488 31.9%

ALU 590 12.7%
Register file (16x16) 2,584 55.4%

Total area 4,662 100.0%

The ALU supports 10 arithmetic 16-bit operations. The control unit contains instruc-
tion fetch unit, instruction decode unit, write-back unit, and memory management unit.
The instruction fetch unit can update the program counter using different ways. Two small
memories are used by the instruction fetch unit: Interrupt vector table, and control stack
(3 registers). The interrupt vector table is customized to support only the number of imple-
mented interrupt service routines (ISRs), 11 ISRs are used in this design. The instruction
decode unit can decode the supported 20 instructions beside extended instructions using
three instruction formats. The register file can have up to 16 16-bit registers. 4 registers
are combined with some logic circuits to perform special operations (i.e. input/output
operations, accelerated mode, and updating the status bits).

The overall implementation for the ASIP HSM was verified on hardware and software
levels by running 11 security-related ISRs in the passive RFID EPC tag. The software
program was written in assembly language for the ASIP HSM. A custom assembler tool
has been implemented to transform code from assembly language to machine code. The
overall software code for the security-related functions fits in 448 Bytes in the ROM mem-
ory. 11 ISRs have been implemented with average 22 lines of code for each ISR.

To demonstrate the flexibility of our apprach, we used cryptographic modules imple-
mented by others as standane units. AES was implemented by Yu et al. [94, 93], Simeck

84

was implemented by Yang et al. [91], WG-5 was implemented by Aagaard et al. [5], and
ACE was implemented by Aagaard et al. [4].

6.2 Other work results

The related work designs can be categorized into three groups: 1) a software-based ap-
proach, 2) a specialized hardware approach, and 3) an ASIP-based approach. In the soft-
ware based approach, the communication protocol as well as the cryptographic algorithms
are implemented all in software using general purpose processors. The second group of de-
signs use specialized hardware circuits to perform tag functions including communication
protocol and cryptographic algorithms. The ASIP-based approach divides tag functions
between software and hardware. Table 6.2 shows some related work synthesis results for
the three groups and main design features in each work.

Plos’s[73] and Sample’s[85] designs are RFID tag designs that use software-based ap-
proach. The authors in [73] used a fully synthesizable 8-bit micro-controller that performs,
in addition to the communication protocol, various cryptographic algorithms all in soft-
ware. They analysed the block ciphers AES, SEA, Present and XTEA as well as the stream
cipher Trivium. Their micro-controller can be implemented within less than 5,600 GEs ex-
cluding the ROM. The ROM contains the program of up to 4,096 instructions (i.e. 8,182
bytes) and is realized as look-up table in hardware. Sample et al.’s RFID tag design[85]
uses a fully programmable 16- bit MSP430 micro-controller for the computations but their
design lacks security features. The authors focus on building complete passive RFID plat-
form called WISP to perform temperature sensing operations. Their design provides over
8 kBytes of flash memory, 256 Bytes of RAM.

Ertl[30], Fu[39], Ricci[80], and Man[63] designs are RFID tag designs that use special-
ized circuits approach. Ertl et al.’s[30] main goal was to enhance security for passive RFID
tags. The digital part of their security-enhanced tag including AES and Grain modules
can be implemented with 12,000 GEs (without the non-volatile memory). The tag pro-
vides mutual authentication functionality based on a challenge-response protocol and the
Advanced Encryption Standard (AES). The stream cipher Grain is used for generating
cryptographically secure random numbers during the authentication procedure. The area
of AES and Grain modules together are 6,150 GEs in [30].

85

T
ab

le
6.

2:
T

h
e

re
la

te
d

w
or

k
im

p
le

m
en

ta
ti

on
re

su
lt

s

R
ef

er
en

ce
th

is
w

or
k

G
ro

ß[
42

]
P

lo
s[

73
]

S
am

p
le

[8
5]

E
rt

l[
30

]
F

u
[3

9]
R

ic
ci

[8
0]

M
an

[6
3]

d
es

ig
n

m
et

h
o
d

A
S
IP

-b
as

ed
so

ft
w

ar
e-

b
as

ed
sp

ec
ia

li
ze

d
h
ar

d
w

ar
e

op
er

at
io

n
se

cu
ri

ty
p
ro

to
co

l
&

se
cu

ri
ty

p
ro

to
co

l
&

se
cu

ri
ty

p
ro

to
co

l
p
ro

to
co

l
an

d
se

cu
ri

ty

te
ch

n
ol

og
y

(n
m

)
65

13
0

35
0

N
A

18
0

18
0

18
0

18
0

ar
ea

(m
m

2
)

0.
03

8
N

A
N

A
M

S
P

43
0

N
A

0.
14

9
0.

20
5

0.
44

6

ar
ea

(G
E

s)
4,

66
2B

5,
30

0
5,

60
0B

N
A

12
,0

00
26

,9
44

N
A

N
A

S
ec

u
ri

ty
ci

r-
cu

it
ry

(G
E

s)
S
im

ec
k

77
4

W
G

5
1,

25
8

A
E

S
2,

20
5

A
C

E
4,

94
0

S
E

A
51

9
X

T
E

A
60

8
P

re
se

n
t

1,
02

1

so
ft

w
ar

e
so

ft
w

ar
e

6,
15

0
4,

95
2

0.
10

6
m
m

2

N
A

m
em

or
y

si
ze

P
ro

to
co

l
h
an

d
li
n
g

2,
14

2B

≤
8,

19
2B

R
O

M
8K

B
F

la
sh

N
A

N
A

N
A

13
6

b
it

s

44
8B

R
O

M
12

8B
R

A
M

R
O

M
+

C
ry

p
to

-
gr

ap
h
ic

al
go

ri
th

m
co

d
e

25
6B

R
A

M

cr
y
p
to

gr
ap

h
ic

al
go

ri
th

m
W

G
5
-8

0
S
im

ec
k
-6

4
P

re
se

n
t-

80
S
E

A
-9

6
A

E
S
-1

28
P

re
se

n
t-

80
N

A
A

E
S
-1

28
G

ra
in

-8
0

A
E

S
-1

28
A

E
S
-1

28
A

E
S
-1

28

A
E

S
-1

28
A

C
E

X
T

E
A

-1
28

S
E

A
-9

6
X

T
E

A
-1

28
T

ri
v
iu

m
-8

0

A
N

A
:

N
ot

av
ai

la
b
le

B
W

it
h
ou

t
h
ar

d
w

ar
e

ex
te

n
si

on
s

an
d

w
it

h
ou

t
m

em
or

ie
s.

86

Fu et al.’s RFID tag [39] performs both protocol handling and authenticating protocol
using AES. The whole tag beseband design fits in 26,944 GEs. The circuit area of AES
module is 4952 GEs. In [80], an RFID Baseband is designed. The authors integrated AES
primitive aimed at secure data transmission. The overall area of ISO 18000-6C RFID base-
band is 380 µm× 540µm, whereas AES engine requires 380µm× 280 µm (i.e. about 6,000
GEs). In [63], the authors designed a digital baseband with AES cryptography engine, and
various low power design techniques are proposed to reduce the power consumption of the
baseband of the passive tag. The area of their baseband system is 0.446mm2.

Groß et al.’s [42] uses ASIP-based approach. Groß et al. implemented symmetric-key
algorithms on an 8-bit micro-controller. This micro-controller is the same one used in [73].
The authors analysed the block ciphers SEA, Present and XTEA as well as the stream
cipher Trivium. They implemented software implementations without using hardware ex-
tensions (i.e. additional hardware units) and some other implementations using hardware
executions. The micro-controller for a 130nm CMOS process technology has area of about
5,300 GEs without program ROM. For a 130nm CMOS technology, encryption and de-
cryption operation of Present-80 can be implemented with overhead costs of 1,000 GEs,
SEA-96 and XTEA with around 600 GEs. After Groß’s[42] and Plos’s work[73], there has
not been new work that has focussed on programmable architectures to add ciphers to
EPC tags. Most of the work has been on either new ciphers [59], [49] or protocols for
authentication and other security services such as in [10], and [68].

6.3 Comparison between our ASIP and Plos’s and

Groß’s processor architectures

This section presents a detailed comparison of our HSM to the work that is most simi-
lar to ours: Plos’s software based approach and Groß’s ASIP based approach. The 8-bit
micro-controller used in Plos’s, and Groß’s designs is based on a reduced instruction-set
computer (RISC) architecture with separate program and data memories. The instruction
memory has a 16-bit word size while the data memory has an 8-bit word size. The program
memory contains the program of up to 4096 instructions. Our customized processor also
uses a RISC architecture with separate program and data memory. We have different word
sizes for the memories. Our instruction width is 14-bit while the data memory has a 16-bit
word size. The maximum instruction memory size based on our ISA is 216 instructions.
However, our data and instruction memories are scalable so their sizes could be adjusted

87

as needed.

The register file hierarchy is similar in our design and Plos’s design. The register file in
both designs contains a set of general-purpose registers and special-purpose registers. Size
of the register file is flexible. Plos’s processor has up to 61 general purpose registers and 3
special-purpose registers: an accumulator register (ACC) for advanced data manipulation,
a status register (STATUS) that gives information about the status of the ALU, and a
program-counter register (PCH) for addressing the higher 4 bits of the program counter.
Some general purpose registers are used for advanced data manipulation (6 AMBA bus
registers, IO register for direct signals). Our processor has up to 16 registers. Up to 12 of
them are general purpose registers and 4 special-purpose registers. Special purpose regis-
ters contain two registers for input/output operations, one register used as a counter for
accelerated/output operations, and the STATUS register.

Register file has the largest portion in the area utilization for our ASIP design and
for the Plos’s processor. As shown in Table 6.3 and in Figures 6.1 and 6.2, register file
consumes 4,582 GEs in Plos’s design; 81.7% of the total area, while it consumes 2,584
GEs; 55.4% of the total area in our design. The large number of registers used in Plos’s
design explains these results; they need all of these registers as their implementation for
cryptographic algorithms are all done in software.

Table 6.3: The chip area results

Our ASIP design Plos’s design
Component Area

[GEs]
Percentage Area

[GEs]
Percentage

Control unit and memory
controller

1,488 31.9% 747 13.4%

ALU 590 12.7% 265 4.7%
Register file (16x16) 2,584 55.4% 4,582 81.9%

Total area 4,662 100.0% 5,594 100.0%

Another noted difference is the control unit area in both designs. Our ASIP design
consumes 1,488 GEs comparing to 747 GEs for Plos’s design. The main reason is that

88

our design uses some hardware countermeasures to resist against relative implementation
attacks. For example, our design has memory management unit that supports some access
control mechanisms to secure accesses to the memories. Plos’s does not support these
mechanisms and the main work for security is performing cryptographic functions either
in software or in both (software, and hardware).

Figure 6.1: Our ASIP processor area components

89

Figure 6.2: Plos’s processor area components

Our design usually has smaller program size compared to Plos’s or Groß’s designs. This
is clearly understood when we talk about the Plos’s design as it uses only software approach
(i.e. all functions are implemented in software) but what about Groß’s design? In Groß’s
design, the hardware extensions they use are mainly to support a sub-operation of a cryp-
tographic operation. For example, the authors use Sbox and Perm hardware extensions
and use these modules to build Present-80 block cipher. In contrast, our design uses a
complete cryptographic module and the ASIP is responsible to operate cycle-by-cycle for
the added cryptographic module. Usually this way reduces the program size especially
when using loops or accelerated mode operation. However, it may cost more hardware
area compared to smaller modules that perform sub-operations only. This kind of added
hardware extensions affects the number of temporary variables used by the processor. We
have fewer registers compared to Plos’s and Groß’s designs.

Another noted difference between our design and the Groß’s design: Groß’s design uses
a custom interface for each extended hardware they added into their design. For example,
8-bit data input/output interfaces are used in s-box hardware unit for Present-80 block
cipher and 8x8-bit data input/output interfaces are used in permutation hardware unit
Present-80 block cipher. Each extended module is accessed by a separate instruction. In
our design, a general interface is used for all included hardware modules. This general

90

interface allows more flexibility to add hardware modules in such easy manner. The only
needed effort to add a hardware module to our ASIP is to design a hardware wrapper that
enables the module’s operations when it is called by a custom instruction. More details
about hardware extensions are discussed in Section 5.5.3.

The flexibility in our design allows for adding different cryptographic modules depend-
ing on system’s need. Figure 6.3 shows the total areas for different HSM implementations.
The design variable here is the added cryptographic modules. The overhead is varying
from 13.3%, in case of adding Simeck module only, to 106.6%, in case of adding both ACE
and WG-5 modules.

Figure 6.3: HSM implementations using different cryptomodules

Plos’s micro-controller supports 36 instructions. All instructions are executed within a
single clock cycle, except control-flow operations which require two clock cycles. Instruc-
tions are executed within a two-stage pipeline that consists of a fetch and a decode/execute
step. In our design we support 20 instructions with up to 16 extended operations using the
added hardware extension modules. Our design uses a single clock cycle for all instructions
including the extended instructions.

The instruction operations categories are similar in our design and in Plos’s microcon-
troller (i.e. logical, arithmetic, control flow, cryptographic instruction). However, there are

91

some differences. In Plos’s micro-controller, the authors implemented various instruction
options as separate instructions with distinct encoding. For example, some instructions
have register to register operations. Some other instructions handle data coming from a
constant or a register with data in the accumulator (ACC) register. Another example,
they implemented some branch operation with an arithmetic operation in one instruction.
These various options explain the large number of instructions compared to that in our
design. In our design, various options of some instructions are implemented by checking
only status register bits. For example, there are various ways of reading external data
using the input register R0 (i.e. serial/parallel input operations). These serial/parallel
input options can be set easily by writing to the serial/parallel status bit in the STATUS
register.

6.4 Cryptographic algorithms implementation results

This section compares the performance, and the optimality/operations efficiency results
for different cryptographic algorithms implementations on programmable devices, i.e. pro-
cessors, for passive RFID tags. This section gives an overview for the operations in each
cryptographic algorithms and shows the area overhead due to programs written in the ROM
memory or due to adding hardware extensions to perform some operation in hardware. It
discusses also the achieved improvements in the performance and the optimality results for
comparable cryptographic operations. At the end, it shows and explains some results for
different message lengths for some cryptographic modules added to our design. A variety
of different block and stream ciphers have been used in previous research efforts and in our
work. Different ciphers offer different tradeoffs in security, area, and performance. In this
section, we show that we can easily and efficiently incorporate different lightweight block
and stream ciphers into our HSM. Comparing results between different ciphers does not
enable a direct comparison of optimality, as a general trend, the resulting optimality for
our HSM is significantly better than other research efforts using lightweight ciphers. For
direct comparison of optimality results with other research efforts, we also incorporated
AES into our HSM. We chose AES, because it is widely used in benchmarking, even though
it is not lightweight and so might be a poor choice for most applications of EPC RFID
systems.

Plos et al. analysed the block ciphers AES, SEA, Present and XTEA as well as the
stream cipher Trivium. AES uses a substitution-permutation network (SPN) and works
on a fixed block size of 128 bits and has a key length of 128 bits and it uses 10 rounds.

92

Present has been integrated in the ISO/IEC 29192-2 standard for lightweight cryptography
in 2012. It uses a substitution-permutation network (SPN) and it supports key sizes of
80 and 128 bits and is applied on plain-text blocks with a length of 64 bits. Trivium is a
hardware-oriented stream cipher. Trivium follows a very simple design strategy and allows
to generate up to 264 bits of key stream from an 80-bit initial value (IV) and an 80-bit
secret key. Trivium operates on a 288-bit internal state, which needs to be initialized first
before generation of the key stream is started. Table 6.4 compares some properties like
key/message sizes and number of rounds of the selected cryptographic algorithms in Plos’s
work, Groß’s work, and our work. Plos’s implementations of AES-128, Present-80, and
Trivium are faster than on 8-bit commercial micro-controller platforms (AVR [81] [26],
PIC [45], 68HC08 [54], and 8051 [54] [70] micro-controllers). Except in the case of AES,
their implementations are also the most compact ones. The encryption and decryption
efficiency results are also much better compared to the other platforms[73].

Table 6.4: The selected cryptographic algorithms properties

Work Algorithm Cipher
type

Key size
(bits)

Block
size
(bits)

of rounds

Plos[73]
AES block 128 128 10
Present block 80 64 31
Trivium stream 80 - 128 for 128-bit

message

Groß
[42]

Present block 80 64 31
SEA block 96 96 93
XTEA block 128 64 32

Our
work

AES block 128 128 10
Simeck block 64 32 32
WG-5 stream 80 - 128 for 128-bit

message
ACE AEAD 128 64 128

Groß et al. [42] choose the block ciphers SEA, Present and XTEA. They implemented
software implementations without using hardware extensions (i.e. additional hardware
units) and some other implementations using hardware executions. For example, Present-
80 encryption/decryption operation consists of 31 substitution-permutation network (SPN)

93

rounds. The substitution layer of the SPN can be implemented with a single 4-bit S-box
that is sequentially applied on the 16 × 4-bit block of the state. In the permutation layer,
the state bits are mixed bitwise in a regular way. They implemented the substitution S-box
operation and the permutation operation in both software and hardware. The hardware
units are accessed using dedicated extended instructions.

In our work, we choose the block ciphers AES and Simeck, the stream cipher WG-5,
and the Authenticated encryption ACE. Simeck combines the good design components
from both SIMON and SPECK, in order to devise even more compact and efficient block
ciphers. Simeck 32/64 has block size of 32 bits and key size of 64 bits. Each block encryp-
tion/decryption operation needs data and key loading at the beginning. The initialization
phase including data/key loading is repeated with new data/key every block operation.
The WG-5 cipher has been designed to produce keystream with guaranteed randomness
properties such as: balance, long period, large and exact linear complexity, 3-level ad-
ditive autocorrelation, and ideal 2-level multiplicative autocorrelation. It is resistant to
Time/Memory/Data tradeoff attacks, algebraic attacks and correlation attacks. The WG-
5 CIPHER has an 80-bit secret key and 80-bit Initialization vector. ACE aim to have a
permutation that can achieve a balance between hardware cost and software efficiency for
both hashing and AEAD functionalities. ACE is a 320-bit permutation and a generalization
of sLiSCP [7] and sLiSCP-light [8] permutations with five 64-bit blocks.

6.4.1 Area considerations, ROM efficiency, and encryption/de-
cryption efficiency

Table 6.5 is an example of the type of table used throughout Section 6.4 to compare re-
sults. The processor areas are not considered in efficiency calculations since the processor
including the register file may be reused for other tasks such as other cryptographic op-
erations or protocol handling tasks. The area used in efficiency calculations is referred in
Table 6.5 as “additional area for cryptographic algorithms”. In our implementation, this
area includes both the ROM area and the extended cryptographic module area. But in
Plos’s design, this area includes only ROM area to implement such algorithm (i.e. GEs
used in ROM to write a program for an algorithm). This area in case of Plos’s results
are generated using the synthesis tool after realizing into look-up tables. In case of our
work, we used an estimated ROM area efficiency of 3.11 bits/GE to get estimated numbers
of GEs for our programs. This ROM efficiency is the least used efficiency number com-
pared to the other related work (i.e. more gate equivalents for same stored amount of bits).

94

Table 6.5: Encryption/decryption operations efficencies for some cryptographic algorithms

Work Alg. Code
Size
(bytes)

ROM
Area
(GEs)

Additional
area for
a crypto-
graphic
algo-
rithm
(GEs)

Msg.
size

Enc.
clock
cy-
cles

Enc. ef-
ficiency
(10−7

·bits/
GEs.
cycles)

Dec.
clock
cy-
cles

Dec. ef-
ficiency
(10−7

· bits/
GEs.
cycles)

Plos[73]
Present 920 1399 1399 64 28062 16.3 60427 7.6
Trivium 332 754 754 128 85697 19.8 85697 19.8
AES 1704 2911 2911 128 5064 86.8 8226 53.5

Our
ASIP
HSM

Simeck 44 114 888 64 107 6735.7 107 6735.7
WG-5 16 42 1300 128 135 7293.4 135 7293.4
AES 70 180 2385 128 249 2155.3 - -
ACE 34 86 4940 128 292 887.4 292 887.4

In Plos’s design, the encryption/decryption execution times shown in Table 6.5 are
considered for one block message in block ciphers (i.e. 128-bits for AES, and 64-bits for
Present) and they are measured for generating 128-bit keystream for Trivium stream ci-
pher. To be able to compare these results, the execution times for our work shown in
Table 6.5 are calculated for same message sizes for similar chosen ciphers in Plos’s work.
i.e. 128 bits for Simeck block cipher, 64 bits for WG-5 stream cipher, 128 bits for AES
block cipher, and 128 bits for ACE authenticated encryption module.

In order to determine the efficiency of an implementation, a message size in bits is
divided by the product of execution time in clock cycles and additional area for a cryp-
tographic algorithm in GEs. Table 6.5 shows that although our design uses additional
hardware modules for performing cryptographic algorithms, it achieves very good efficien-
cies for both block and stream ciphers. The encryption performance for AES block cipher
is improved over Plos’s design by 27× and the encryption optimality is improved by 32×.

95

6.4.2 AES block cipher

AES is a standard cipher that is widely deployed to add security to many systems. How-
ever, it may not be the best option to be used for constrained devices as in EPC tags.
The reason is that the relatively large power consumption of AES operations may not be
suitable for extremely constrained devices as in EPC tags. We added AES for benchmark-
ing reasons to show how effective our design is compared to other related work that use
AES for security either in software or in hardware. We added a hardware instance of 8-bit
Quark-AES implemented by Yu et. al. [94]. In Quark-AES architecture, every encryption
function (AddRoundkey, SubBytes, ShiftRows, MixColumns) is performed serially, requir-
ing only 16 clock cycles in a single AES round. The S-box used in Yu’s implementation is
same as Mathew’s S-box [64]. Yu’s AES implementation offers the benefits of low latency,
single S-box instance, and no requirement to reorder inputs or outputs externally.

96

Table 6.6: AES Block encryption operation results in our ASIP HSM

Standalone
Yu’s Quark-
AES[94]

Quark-AES in
our ASIP HSM

Block size (bits) 128 128
Key size (bits) 128 128
Program size (bytes) - 70
Program size (GEs) - 180
ROM area efficiency
(bits/GE)

- 3.11

Processor area without
memories & extensions
(GEs)

- 4662

Cryptographic module
Hardware cost (GEs)

2154 2205

Total chip area 2154 7047
Execution time for en-
cryption operation (cy-
cles)

216 249

Performance (bits/cycle) 0.59 0.51
Optimality score (10−7

bits/cycles·GE)
2751.1 729.5

Table 6.6 shows the encryption operation results in the standalone Yu’s Quark-AES[94]
and in our ASIP HSM after integrating an instance of Yu’s AES into our ASIP processor.
We didn’t run decryption operations in our ASIP HSM. The wrapper for AES has been
implemented using 51 GEs. The overall number of encryption code lines is 40 instructions
(i.e. 70 bytes). We have only 33 clock cycles overhead to perform one block (128 bit) en-
cryption operation in our ASIP HSM. This overhead is 15.3% of the encryption execution
time for the standalone implementation. The optimality score has been decreased to 729.5
(10−7 bits/cycles·GE) for our ASIP processor while it is 2751.1 (10−7 bits/cycles·GE) for
the standalone implementation. The reason of this decrease is the area overhead added
because of the ASIP HSM itself (i.e. 4662 GEs) and the AES wrapper (i.e. 51 GEs) and
the clock cycles overhead (i.e. 33 clock cycles) taken to operate Quark-AES by our ASIP
processor.

97

We compare our results for Quark-AES cipher to the results in the other related work
that have AES for security operations for EPC tags. These work include Plos’s work[73],
Ertl’s work, and Fu’s work. As discussed before, Plos’s design is a RFID tag design that
uses software-based approach. While Ertl’s[30], and Fu’s[39] designs are RFID tag designs
that use specialized circuits approach. The hardware cost of implementing some AES block
ciphers are shown in Table 6.7. The table compares the synthesis results for implementing
these AES ciphers on our work, Plos’s design work, and using other dedicated hardware
AES modules. As mentioned before, the areas shown in Table 6.7 for our work includes
both the area of the program written in the ROM utilized as a look-up table, and the
extended hardware cryptographic modules. The area in Plos results considers only code
size as cost factor. The code sizes in Table 6.7 don’t include protocol or other codes. The
additional hardware costs that are introduced by implementing cryptographic algorithms
on our work and on Plos’s processor are lower than by using stand-alone hardware module
of Feldhofer [36].

Table 6.7: Synthesis results of some AES algorithm implementations

Algorithm Code size
(bytes)

ROM area
efficiency
(bits/GE)

ROM Area
(GEs)

Total
Area
(GEs)

AES-128 - this work 70 3.11 180 2385
AES-128 - Plos [73] 1704 4.7 2911 2911
AES-128 - Feldhofer [36] - - - 3400
AES-128 - Yu [94] - - - 2154

In Plos’s work [73], round keys are computed on-the-fly. Encryption and decryption
operation were implemented. Decryption consumes significantly more execution time than
encryption. S-box operation and inverse S-box operation are realized as look-up tables with
256 entries each. 39 registers are used by this implementation. The AES implementation
with the area optimization target requires 5064 clock cycles for encryption and 8226 clock
cycles for decryption. Code size of this version is 1704 bytes. As shown in Table 6.8, our
ASIP has optimality score of 729.5 x 10−7 bits/cycles·GE for AES encryption operation
while it is only 22.65 x 10−7 bits/cycles·GE in the case of Plos’s work. The area (i.e. the

98

total area including cryptomodules areas and program code area) of both designs are rel-
atively similar but our ASIP has much better results in the execution time for encryption
operation. Our ASIP execution time is 4.9% of Plos’s execution time for encryption oper-
ation. The main reason is that Plos’s implementation for AES are fully done in software.

Ertl et. al. [30] use a low area implementation of the AES to provide mutual authen-
tication based on a challenge-response protocol. The architecture of Ertl’s AES module
is based on the design of Feldhofer et al. presented in [36]. Ertl et. al. implemented
only encryption functionality as it is only needed in the mutual authentication protocol.
The datapath implements the basic AES operations, which are: SubBytes, MixColumns,
AddRoundKey, and KeyScheduling. Their implementation uses an 8-bit architecture. The
S-Box implementation is the biggest part of the datapath and is realized as combinational
logic. The MixColumns implementation uses only one instead of four multipliers and pro-
cesses one column in 28 clock cycles. A full encryption of one 128-bit block takes 1024
clock cycles.

The areas, showed in Table 6.8, for Ertl’s designs consider the areas of AES specialized
circuits module and the tag controller. Our optimality result (729.5 x 10−7 bits/cycles·GE)
is almost quadruple the optimality score for the AES implemented in Ertl’s design. Our
AES area is nearly same as the area of the Ertl’s AES. While our execution time is quarter
the execution time of Ertl’s design although Ertl’s work use specialized circuits approach,
the main reason is using a whole Quark-AES hardware module that has an efficient imple-
mentation targeting low-area and low execution time design goals.

99

Table 6.8: AES Block encryption operation results in the related work

Feature Our ASIP
HSM

Plos’s
work [73]

Ertl’s work
[30]

Fu’s
work
[39]

Architecture ASIP-
based
approach

Software-
based
approach

Specialized circuits approach

Block size (bits) 128
Key size (bits) 128
Program size (bytes) 70 1704 - -
Program size (GEs) 180 2911 - -
ROM area efficiency
(bits/GE)

3.11 4.7 - -

Processor area without mem-
ories & extensions (GEs)

4662 5594 - -

Controller unit area (GEs) - - 4300 27598
Cryptographic module Hard-
ware cost (GEs)

2205 0 2770 4952

Total area 7047 8505 7070 32,550
Execution time for encryption
operation (cycles)

249 5064 1024 204

Performance (bits/cycle) 0.514 0.019 0.125 0.627
Optimality score (10−7

bits/cycles·GE)
729.5 22.6 176.8 192.8

Fu et. al. [39] implemented AES engine as a part of a whole tag chip’s baseband. The
authors implemented both encryption and decryption functionalities in 4952 GEs. This
area includes the four function modules for each round as well as the key expansion and the
state schedule. The 128 bit encryption operation can be performed only in 204 clock cycles.
This result makes optimality score of 192.8 x 10−7 bits/cycles·GE taking into considera-
tion that the optimality score for Fu is calculated using the whole tag chip’s baseband area.

As a summary, Table 6.8 shows different implementation results for AES for EPC tags
using various design approaches. Using the same block and key sizes of 128-bit, our ASIP-

100

based HSM has the best optimality score of 729.5 x 10−7 bits/cycles·GE compared to
22.6 x 10−7 bits/cycles·GE optimality score for a software-besed design and 176.8 x 10−7

bits/cycles·GE, and 192.8 x 10−7 bits/cycles·GE optimality scores for specialized circuits-
based designs. The key reason of these results is using an efficient AES hardware module
as Quark-AES that targets both low area and low execution time design criteria. Although
our HSM has an ASIP architecture, our HSM has the least overall area for AES for en-
cryption operation compared to other related work.

6.4.3 Block ciphers: Present and Simeck

The hardware cost of implementing some block ciphers are shown in Table 6.9. The table
compares the synthesis results for implementing these ciphers on our work, Plos’s design
work, and using another specialised circuits Present module. As mentioned before, the
areas shown in Table 6.9 for our work includes both the area of the program written in
the ROM utilized as a look-up table, and the extended hardware cryptographic modules.
The area in Plos results considers only code size as cost factor. The code sizes in Table 6.9
don’t include protocol or other codes. We used an implementation of Simeck developed by
Yang et al.[91].

Table 6.9: Synthesis results of some block ciphers implementations

Algorithm Code size
(bytes)

ROM area
efficiency
(bits/GE)

ROM Area
(GEs)

Total
Area
(GEs)

Simeck - this work 44 3.11 114 888
Present-80 Plos [73] 920 5.3 1399 1399
Present-80 Poschmann [75] - - - 1075

Table 6.10 shows the impact of using hardware extensions on the program size and
the execution time of Encryption/decryption operations using block ciphers. The overall
chip area, the program size, and the execution time for Present-80 block cipher imple-
mentation have been reduced after using hardware extensions in Groß’s work. The overall
chip area (in GEs) includes the micro-controller, the hardware extensions, and the ROM

101

memory (realised in GEs). The Performance as well as the optimality scores have been
enhanced after using hardware extensions. In our work, we use Simeck 32/64 block cipher
and we choose similar message size of 64 bits (two data blocks) to compare the execution
time, the performance, and the optimality result with Groß’s work. As shown in Table
6.10, our design has a major advantage regarding low execution time and high data rate
performance for encryption/decryption operations comparing to Groß’s work results. For
example, the execution time for encrypting 64-bit data message is 107 clock cycles in our
work compared to 26,062 and 11,469 clock cycles for Groß’s work. As a result of that, the
data rate performance in our design is much better than that in Groß’s design although
the total chip areas are relatively same. We have 0.6 bits/cycle data rate while it is 0.0015
bits/cycle in Groß’s design with no extension implementation and it is 0.0024 bits/cycle in
Groß’s design with s-box and permutation hardware extensions implementation.

102

Table 6.10: Block encryption/decryption operation results

Plos’s work
[73]

Groß’s
work[42]

This work

Algorithm Present block encryption/decryption Simeck block
encryp-
tion/decryption

HW Extensions no extensions Sbox+Perm Simeck cipher
Message size (bits) 64 64 64
Block size (bits) 64 64 32
Key size (bits) 80 80 64
Program size (bytes) 944 324 44
Program size (GEs) 1525 833 114
ROM area efficiency
(bits/GE)

4.96 3.11 3.11

Processor area without
memories & extensions
(GEs)

4300 4300 4662

Hardware extension cost
(GEs)

0 411 774

Total chip area 5825 5544 5550
Execution time for en-
cryption operation (cy-
cles)

28062 11468 107

Execution time for de-
cryption operation (cy-
cles)

60426 42479 107

Performance (bits/cycle) 0.0014 0.0024 0.5981
Optimality score (10−7

bits/cycles·GE)
2.48 4.28 1077.71

The other important advantage in our design is the low program size. The program for
encrypting/decrypting 64 bits has 44 bytes compared to 944 bytes and 324 bytes in Groß’s
work implementations. The main reason for that is using a complete hardware ciphers like
Simeck and WG-5. Now, cryptographic operations are performed completely in hardware

103

instead of software, as in Groß’s implementations, which is much slower and consumes
more program size as shown in Table 6.10. The overall chip area includes the processor
without extensions and the hardware extension and the program memory (in GEs). We
use an estimated ROM efficiency number to get the estimated realization for the program
ROM in Gate Equivalents (GEs). We use the least ROM efficiency number 3.11 in Groß’s
work. The overall chip area for both implementations that use extensions are almost same.

The optimality score is a measure for how efficient is the design with regards to the
chip area, and the execution time for certain operation. It is clearly shown that our de-
sign has better optimality score of 1,077.7 (10−7 bits/cycles·GE) compared to 2.48 and
4.28 (10−7 bits/cycles·GE) in Groß’s implementations. The calculated optimality score
for Groß’s design are for both encryption and decryption operations. The used execution
time is the average execution time for one encryption and one decryption operations for 64
bits message size. In general, the Performance as well as the optimality scores have been
enhanced. The performance for block cipher operations has been improved by 252.8× and
414.9× compared to Groß’s work implementations results and the optimality score has
been improved 251.8× and 434× compared to Groß’s work implementations results.

Table 6.11 shows the encryption/decryption operation results for different message sizes
for Simeck 32/64 block cipher on our ASIP HSM. Simeck 32/64 has block size of 32 bits
and key size of 64 bits. Each block encryption/decryption operation needs data and key
loading at the beginning. The initialization phase including data/key loading is repeated
with new data/key every block operation. For message size of 32 bits, one block encryption
or decryption is needed. The program size in this case is 39 bytes. For message size of 64,
128, or 256 bits, more than one block encryption or decryption is needed. The program
in this case uses loops to iterate the same number of message blocks (i.e. message size
divided by block size). The program size in this case is 44 bytes. As shown in Table 6.11,
the performance results for different message sizes are almost same (i.e. around 0.6). The
slight difference comes from the overhead from looping certain times depending on the
message size. The optimality score varies from 1055.5 to 1111.4 (10−7 bits/cycle·GE).

104

Table 6.11: Encryption/decryption operation results using Simeck 32/64 on our ASIP HSM

Operation Feature Simeck 32/64 cipher [91]

Initialization and
key/data loading
in each iteration

Message size (bits) 32 64 128 256
Program size (bytes) 37
Program size (GEs) 96
Execution time (cy-
cles)

44

Encryption/
decryption
operation

Program size (bytes) 39 44
Program size (GEs) 101 114
ROM area effi-
ciency (bits/GE)
(estimated)

3.11

Simeck cipher area
(GEs)

774

HSM area (GEs) 4662
Overall area (GEs) 5537 5550
Execution time
for encryp-
tion/decryption
operation (cycles)

52 107 217 437

Encryption/decryption
performance
(bits/cycle)

0.62 0.60 0.59 0.59

Optimality score
(10−7 bits/cycle·GE)

1111.4 1077.7 1062.8 1055.5

6.4.4 Stream ciphers: Trivium and WG-5

The hardware cost of implementing some stream ciphers are shown in Table 6.12. The
table compares the synthesis results for implementing these ciphers on our work, Plos’s
design work, and using another specialised circuits Trivium module. The areas shown in
Table 6.12 for our work includes both the area of the program written in the ROM utilized
as a look-up table, and the extended hardware cryptographic modules. The area in Plos
results considers only code size as cost factor. The code sizes in Table 6.12 don’t include

105

protocol or other codes. We used an implementation of WG-5 developed by Aagaard et
al.[5].

Table 6.12: Synthesis results of some stream ciphers implementations

Algorithm Code size
(bytes)

ROM area
efficiency
(bits/GE)

ROM Area
(GEs)

Total
Area
(GEs)

WG-5 - this work 16 3.11 42 1300
Trivium Plos [73] 332 3.6 754 754
Trivium Feldhofer [35] - - - 2390

The general trend for stream cipher results is close to that in block cipher results.
Table 6.13 shows software-approach implementation results for Trivium stream cipher us-
ing Plos’s micro-controller. Groß et al. have not implemented stream ciphers in their
work. Table 6.13 shows the implementation results for WG-5 stream cipher using our
ASIP processor and compares these results to Trivium stream cipher results using Plos’s
micro-controller. As in block cipher results, our design has some advantages with regards
to the low execution time and the low program size. The execution time to encrypt stream
of 128 bits is 135 clock cycles in our design while it takes 85,697 clock cycles to encrypt the
same message using Trivium cipher on Plos’s design. These results reflect to the bit rate
performance result which is 0.948 bits/cycle in our design but it is 2.689x10−3 bits/cycle in
Plos’s design. In other words, the bit rate has been improved over Plos’s design by 352.5×
for generating 128-bit key-stream.

106

Table 6.13: Stream encryption/decryption operation results

Plos’s work[73] This work

Algorithm Trivium
stream encryp-
tion/decryption

WG-5 stream
encryp-
tion/decryption

HW Extensions no extensions WG-5 cipher
Message size (bits) 128 128
Program size (bytes) 332 16
Program size (GEs) 754 42
ROM area efficiency
(bits/GE)

3.52 3.11

Processor area without
memories & extensions
(GEs)

4300 4662

Hardware extension cost
(GEs)

0 1258

Total chip area 5054 5962
Execution time for en-
cryption operation (cy-
cles)

85697 135

Execution time for de-
cryption operation (cy-
cles)

85697 135

Performance (bits/cycle) 1.494x10−3 0.948
Optimality score (10−7

bits/cycles·GE)
2.96 1590.32

The overall chip area in our design is much higher than the overall chip area in Plos’s
design. The base processors without extensions and memories have close area utilization.
But our design includes hardware extension for WG-5 cipher. The WG-5 cipher area is
1258 GEs. This explains the difference in area (908 GEs) between the both designs. Our
HSM achieves much higher performance because the cipher is implemented in hardware,
rather than software.

107

Table 6.11 shows the encryption/decryption operation results for different message sizes
for WG-5 stream cipher on our ASIP HSM. The initialization phase in WG-5 cipher is done
only one time at the beginning. Hence, the overhead resulted from the initialization phase
affects more the messages that have short lengths. For message size of 16 bits, the en-
cryption/decryption performance is 0.696 bits/cycle while it is 0.901, 0.948, and 0.973
bits/cycle for messages have lengths of 64, 128, 256 bits respectively. As shown in Table
6.14, the optimality score varies between 1,166.9 to 1,632.6 (10−7 bits/cycle·GE) for the
shown messages lengths.

Table 6.14: Encryption/decryption operation results using WG-5 on our ASIP HSM

Operation Feature WG-5 cipher [5]

Initialization

Message size (bits) 16 64 128 256
Program size (bytes) 191
Program size (GEs) 492
Execution time (cycles) 271

Encryption/
decryption
operation

Program size (bytes) 16 16 16 16
Program size (GEs) 42 42 42 42
ROM area efficiency
(bits/GE) (estimated)

3.11 3.11 3.11 3.11

WG-5 cipher area (GEs) 1258 1258 1258 1258
HSM area (GEs) 4662 4662 4662 4662
Overall area (GEs) 5,962 5,962 5,962 5,962
Execution time for en-
cryption/decryption op-
eration (cycles)

23 71 135 263

Encryption/decryption
performance (bits/cycle)

0.696 0.901 0.948 0.973

Optimality score (10−7

bits/cycle·GE)
1,166.9 1,511.9 1,590.3 1,632.6

6.4.5 ACE authenticated encryption module

ACE authenticated encryption module has quite complicated operations compared to WG-
5 and Simeck ciphers. The data width for inputs/outputs are 64 bit and there are four

108

mode of operations to support authenticated encryption operations. We used the ACE
implementation developed by Aagaard et al. [4]. Table 6.16 shows the execution times
for different operations of ACE authenticated encryption module using our ASIP HSM.
Our ASIP HSM consumes 725 clock cycles for the loading/initialization phase while the
standalone ace module consumes 651 clock cycles. The main reason for this difference
comes from loading immediate values to Ace module. Loading 32 bits consumes 3 clock
cycles in our ASIP HSM and another clock cycle to load this data from a register to ACE
inputs. There are 10 32-bit loading operations during the ace load phase. Initialization
phase and processing of associated data consume 516 clock cycles on standalone module
while they consume 539 clock cycles using our ASIP HSM. Our ASIP HSM has additional
15 cycles for encryption phase preparing. The detailed distribution for the execution time
in loading/initialization phase is shown in Table 6.15. The overall loading/initialization
time for ACE in our ASIP HSM is 725 clock cycles. This number is between the overall
loading/initialization times for standalone ace with 32-bit and 64-bit data interfaces. Our
ASIP HSM uses an ACE module with 64-bit data interface.

Table 6.15: Loading/initialization execution time for ACE in our ASIP HSM

Standalone
ace mod-
ule with
32-bit data
interface[4]

Standalone
ace mod-
ule with
64-bit data
interface[4]

Using our ASIP HSM

Operation execution time (cycles) execution
time (cycles)

instruc-
tions

Loading 409 135 171 43
Initialization 516 516 539 32
Encryption
preparation

- - 15 15

Overall load-
ing/ initializa-
tion

925 651 725 90

Table 6.16 shows the comparison of the performance results for ACE encryption/ de-
cryption operations in our ASIP HSM and in a standalone module. The execution time

109

Table 6.16: Encryption/decryption operation results for ACE in our ASIP HSM

Msg. size 64 128 256 512
(bits) stand-

alone
[4]

ASIP
HSM

stand-
alone
[4]

ASIP
HSM

stand-
alone
[4]

ASIP
HSM

stand-
alone
[4]

ASIP
HSM

Execution
time (cy-
cles)

129 146 258 292 516 584 1032 1168

Performance
(bits/cycle)

0.0821 0.0735 0.1408 0.1259 0.2194 0.1956 0.3042 0.2705

Optimality
score
(10−7 bits/
cycles·GE)

185.01 75.85 317.51 129.91 494.62 201.87 685.95 279.18

in our ASIP HSM has 17 clock cycles overhead for encrypting/decrypting 64 bits. This
overhead comes from loading data from memory and loading 64 bits to data input of ACE
module and reading 64 bits from data output of ACE module. Our ASIP HSM interacts
with ACE module through 7 extended instruction options as shown in Table 6.17. Our
general interface for extended modules allows loading two 16-bit input data and reading
from 16-bit output data. The data unit for ACE module is 64-bit so 64 bits data can
be loaded in two clock cycles and 64 bits data can be read in four clock cycles using the
ace instruction options. One encryption permutation cycle requires 16 steps and each step
requires 8 rounds and a round can run in one clock cycle. This operation is done in our
ASIP HSM by executing ace.run instruction for 128 clock cycles using the accelerated
mode.

The performance results shown in Table 6.16 consider the overall load/initialization
time into their calculations. The load/initialization operation is done only one time. As
message size gets increased, performance has better results. For message size of 512 bits,
our ASIP has 0.2705 bits/cycle performance while it is 0.3042 bits/cycle for standalone ace
module. The reason is the overhead in the encryption/decryption time beside the overhead
in the loading/initialization phase.

110

Table 6.17: ACE instruction options in our ASIP HSM

Ace instruc-
tion option

Meaning

ace.ldm load mode of operation
and control bits

ace.ldl load low 32-bits
ace.ldh load high 32-bits and read

word0
ace.rdw1 read word1
ace.rdw2 read word2
ace.rdw3 read word3
ace.run run

The optimality score results for our ASIP HSM are less than half of the optimality
score results for the standalone module. The optimality score calculations take into con-
sideration only the standalone ace module area (i.e. 9688 GEs) while the optimality score
calculations for our work take into consideration the areas of ace module with its wrapper,
our ASIP HSM, and the program memory (i.e. 9688 GEs) which are more than double of
the ace module area.

The area details for ace module in our ASIP are shown in Table 6.18. The standalone
ace has 4435 GEs while the ace module with the wrapper is 4940 GEs. The wrapper itself
is 505 GEs which is quite large (11.39% of ace module area). The main reason for that is
using flip-flops either for loading the data input or reading from the data output in multiple
cycles.

111

Table 6.18: Area results for ACE using our ASIP HSM

Module Area (GEs)

ASIP HSM (GEs) 4662
Ace module stand-alone[4] with wrapper

4435 4940
ROM Operation Initialization Encryption/

decryption
instructions 90 19
ROM Area (bytes) 156 34
ROM Area (GEs) 406 86

112

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we presented an optimized application-specific instruction set processor
(ASIP) for an ultralight Hardware Security Module (HSM). We choose EPC tags as a pro-
totype for ultralight devices. HSMs are computing devices that protect cryptographic keys
and provide cryptographic operations. The HSM combines all security-related functions
for EPC tag. The goal of this research is to demonstrate that using an ASIP architecture
for ultralight HSMs provides benefits in terms of trade-offs between flexibility, extensibility,
and efficiency.

The current commercial RFID tag designs use specialised hardware circuits approach.
This approach can achieve the lowest area and power consumption; however, it lacks flexi-
bility and takes long time to develop. On the contrary, the software-based approach is used
in a few academic works. These designs are much slower and consume more energy. The
main advantages of using software-based approach is the high flexibility and the shortest
time to market. The ASIP-based approach that is used in our work can achieve balance
between the rich functionality, the low cost chips, the high performance, and the reason-
able security requirements as well as high level of flexibility and the relatively short time
to market.

The instruction set and the micro-architecture of the ASIP processor are chosen such
that the overall chip area including the program ROM size is small as possible and the

113

processor’s operations can be run efficiently (i.e. in less time). The chosen instruction
length of 14-bits covers all the supported instructions. It is important to keep the instruc-
tion length as small as possible because this length affects the program ROM size. The
instruction length depends on the number of instruction fields and their sizes, the num-
ber of operations, and the number of supported addressing modes. 14-bits are the least
number that can be used for the instruction length to cover all supported instructions.
Three instruction formats are used in our ASIP: Register-type (R-type), Immediate-1-type
(I1-type), Immediate-2-type (I2-type).

Our ASIP processor uses reduced instruction set computing (RISC) architecture that
has fixed instruction length of 14-bits, three instruction formats, and a single-cycle instruc-
tion implementation. The ASIP processor is able to perform general operations as well as
special operations using the added hardware units. The added units can be integrated in
easy manner as plug-in units. This is what we call “flexibility” in this thesis. The added
units can be accessed by custom instructions defined by the system designer at the design
level phase (i.e. before fabrication), this adds more functionalities to the ASIP processor
by only integrating the required units into the ASIP’s datapath.

The proposed ASIP architecture for EPC tags can reduce the unit cost. Compared
to specialised hardware approach, major part of the design effort in the ASIP-based ap-
proach is moved from the hardware (i.e. relatively expensive) to the software (cheap).
This reduces the non-recurring cost (NRE). The ASIP-based approach allows large scale
production by combining more than one tag model in one fabrication process.

Beside performing cryptographic functions such as: random number generation, data
encryption/decryption, and message authentication, our design supports some hardware
security mechanisms to protect sensitive data in the memory or in the register file. These
mechanisms are designed to be suitable for extremely constrained devices. These mecha-
nisms include control access techniques for the memory, triple-mode redundancy (TMR)
fault-tolerant technique for some special-purpose registers, secure/non-secure states, and
memory passwords. The programmability in our design allows for adding more security
services using the available hardware resources. These services may include entity or mu-
tual authentication, keys/passwords management, and temporarily tag lock. Our design is
the first hardware security module for EPC RFID tags that performs cryptographic func-
tions as well as supports some hardware/software mechanisms to safeguard sensitive data
and private keys.

114

Our ASIP processor can be implemented with 4,662 gate equivalent units (GEs) for
65 nm CMOS technology excluding cryptographic units and memories. We integrated
and analysed four cryptographic modules: AES block cipher, Simeck block cipher, WG-5
stream cipher, and ACE authenticated encryption module. Our HSM achieves very good
efficiencies for both block and stream ciphers. Specifically for the AES cipher, we im-
prove over a previous programmable AES implementation result by 32×. We increase
performance dramatically and increase/decrease area by 17.97/17.14% respectively. Our
ASIP instruction set provides customizable instruction for different ciphers and our micro-
architecture provides a flexible but standardized interface to cryptographic modules. The
cost of incorporating a cryptographic module into our HSM ranges from an area overhead
of 2.37% and 40 lines of assembly code for the AES cipher to 10.39% overhead and 109
lines of code for the ACE authenticated cipher. These results fulfill the requirements of
extremely constrained devices as in EPC tags and allow the inclusion of cryptographic
units into the datapath of our ASIP processor.

7.2 Future works

7.2.1 Implementation of more security services

One of the advantages of our work is the ability to implement different cryptographic
services in easy way. In our work, we implemented some security services such as ran-
dom number generation, input/output data encryption/decryption, memory data encryp-
tion/decryption, and message authentication. Some services may be required to be imple-
mented, depending on the used application, such as mutual authentication, key manage-
ment. The important note here that these different cryptographic services can use same
cryptographic units. For example, a stream cipher can be used to implement random
number generation and input/output data encryption/decryption. The main advantage of
using software in our work is the ability to manage the added cryptographic modules to
implement different services using minimal design efforts.

7.2.2 Security validations

Hardware security modules have to be validated for security by one of the security evalu-
ations like FIPS 140-2 standard or Common Criteria (CC). Usually FIPS 140-2 validation

115

process has to be handled by independent third-party laboratories that are accredited by
National Voluntary Laboratory Accreditation Program (NVLAP) at NIST. It is beneficial
to perform this validation process ourselves for our HSM to check that our design meets the
FIPS 140-2 guidelines and requirements taking in mind that our HSM is not a commercial
product. Conformance to FIPS 140-2 standard is a necessary step toward maintaining the
intended security level. We have done some validations to FIPS 140-2 and most of our
design specifications meet the security requirements for level 3. More works are required to
meet the security requirements for key management and mitigation of some attacks such
as side channel attacks.

7.2.3 The communication module architecture

In our EPC tag design, we divided the tag digital baseband into two modules: the com-
munication module (CM), and the hardware security module (HSM). We want to explore
different architectures for the CM. To get the lowest possible area for the CM, the CM has
to be designed using the specialized circuit approach. This approach provides low level of
flexibility or programmability for the CM. One promising idea is to use the ASIP-based
approach. The ASIP-based approach combines the benefits of the flexibility and the low
area, low power consumption, and high performance at the same time.

116

References

[1] The common criteria. https://www.commoncriteriaportal.org/. Accessed: 2021-
01-23.

[2] Sae j3101 hardware protected security for ground vehicles. http://saemobilus.sae.
org/content/J3101_202002. Accessed: 2021-01-23.

[3] Globalplatform based trusted execution environment and trustzone ready. Arm.com,
2013.

[4] Mark Aagaard, Riham AlTawy, Guang Gong, Kalikinkar Mandal, and Raghvendra
Rohit. Ace: An authenticated encryption and hash algorithm. Submission to NIST-
LWC, 2019.

[5] Mark D Aagaard, Guang Gong, and Rajesh K Mota. Hardware implementations
of the wg-5 cipher for passive rfid tags. In 2013 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pages 29–34. IEEE, 2013.

[6] Himja Agrawal and PR Badadapure. A survey paper on elliptic curve cryptography.
International Research Journal of Engineering and Technology, (04), 2016.

[7] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang,
and Guang Gong. sliscp: Simeck-based permutations for lightweight sponge crypto-
graphic primitives. In International Conference on Selected Areas in Cryptography,
pages 129–150. Springer, 2017.

[8] Riham Altawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang,
and Guang Gong. Sliscp-light: Towards hardware optimized sponge-specific crypto-
graphic permutations. ACM Transactions on Embedded Computing Systems (TECS),
17(4):1–26, 2018.

117

https://www.commoncriteriaportal.org/
http://saemobilus.sae.org/content/J3101_202002
http://saemobilus.sae.org/content/J3101_202002

[9] Alex Arbit, Yoel Livne, Yossef Oren, and Avishai Wool. Implementing public-key
cryptography on passive rfid tags is practical. International Journal of Information
Security, 14(1):85–99, 2015.

[10] Frederik Armknecht, Matthias Hamann, and Vasily Mikhalev. Lightweight authenti-
cation protocols on ultra-constrained rfids-myths and facts. In International Workshop
on Radio Frequency Identification: Security and Privacy Issues, pages 1–18. Springer,
2015.

[11] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia.
Quark: A lightweight hash. In CHES, volume 6225, pages 1–15. Springer, 2010.

[12] Henri Barthel. EPCglobal–RFID standards & regulations. 2005.

[13] Lejla Batina, Jorge Guajardo, Tim Kerins, Nele Mentens, Pim Tuyls, and Ingrid
Verbauwhede. Public-key cryptography for RFID-tags. In Pervasive Computing and
Communications Workshops, 2007. PerCom Workshops’ 07. Fifth Annual IEEE In-
ternational Conference on, pages 217–222. IEEE, 2007.

[14] R Beaulieu, D Shors, J Smith, S Treatman-Clark, B Weeks, and L Wingers. The SI-
MON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive,
Report 2013/404, 2013.

[15] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-) security of 64-bit
block ciphers: Collision attacks on HTTP over TLS and OpenVPN. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 456–467. ACM, 2016.

[16] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. PRESENT: An
ultra-lightweight block cipher. In CHES, volume 4727, pages 450–466. Springer, 2007.

[17] Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matt Robshaw,
and Yannick Seurin. Hash functions and RFID tags: Mind the gap. Cryptographic
Hardware and Embedded Systems–CHES 2008, pages 283–299, 2008.

[18] Duy-Hieu Bui, Diego Puschini, Simone Bacles-Min, Edith Beigné, and Xuan-Tu Tran.
Ultra low-power and low-energy 32-bit datapath aes architecture for iot applications.
In 2016 International Conference on IC Design and Technology (ICICDT), pages 1–4.
IEEE, 2016.

118

[19] C De Canniere. Trivium specifications. http://www. ecrypt. eu.
org/stream/p3ciphers/trivium/trivium p3. pdf, 2005.

[20] David Canright. A very compact s-box for aes. In International Workshop on Cryp-
tographic Hardware and Embedded Systems, pages 441–455. Springer, 2005.

[21] Hee-Jin Chae, Mastooreh Salajegheh, Daniel J Yeager, Joshua R Smith, and Kevin
Fu. Maximalist cryptography and computation on the wisp uhf rfid tag. In Wirelessly
Powered Sensor Networks and Computational RFID, pages 175–187. Springer, 2013.

[22] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[23] Raghu Das and Peter Harrop. Rfid forecasts, players and opportunities 2009–2019.
IDTechEx report, 2009.

[24] Dang Nguyen Duc, Hyunrok Lee, and Kwangjo Kim. Enhancing security of EPC-
global gen-2 RFID against traceability and cloning. Auto-ID Labs Information and
Communication University, White Paper, 2006.

[25] Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-output
functions. 2015.

[26] Thomas Eisenbarth, Sandeep Kumar, Christof Paar, Axel Poschmann, and Leif Uh-
sadel. A survey of lightweight-cryptography implementations. IEEE Design & Test
of Computers, 24(6):522–533, 2007.

[27] Daniel Engels, Xinxin Fan, Guang Gong, Honggang Hu, and Eric M Smith. Ultra-
lightweight cryptography for low-cost RFID tags: Hummingbird algorithm and proto-
col. Centre for Applied Cryptographic Research (CACR) Technical Reports, 29, 2009.

[28] Daniel Engels, Xinxin Fan, Guang Gong, Honggang Hu, and Eric M Smith. Humming-
bird: ultra-lightweight cryptography for resource-constrained devices. In International
Conference on Financial Cryptography and Data Security, pages 3–18. Springer, 2010.

[29] EPCradio-frequencyidentityprotocolsclass EPCGlobal and K Chiew. Radio-frequency
identity protocols class-1 generation-2 uhf rfid protocol for communications at 860
mhz–960 mhz version 1.0. 9. K. Chiew et al./On False Authenticationsfor C1G2
Passive RFID Tags, 65, 2004.

[30] Johann Ertl, Thomas Plos, Martin Feldhofer, Norbert Felber, and Luca Henzen. A
security-enhanced uhf rfid tag chip. In 2013 Euromicro Conference on Digital System
Design, pages 705–712. IEEE, 2013.

119

[31] R Escherich, I Ledendecker, C Schmal, B Kuhls, C Grothe, and F Scharberth. She–
secure hardware extension–functional specification version 1.1. Hersteller Initiative
Software (HIS) AK Security, 2009.

[32] Xinxin Fan, Kalikinkar Mandal, and Guang Gong. WG-8: A lightweight stream cipher
for resource-constrained smart devices. In International Conference on Heterogeneous
Networking for Quality, Reliability, Security and Robustness, pages 617–632. Springer,
2013.

[33] Horst Feistel. Cryptography and computer privacy. Scientific american, 228(5):15–23,
1973.

[34] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong authentica-
tion for RFID systems using the AES algorithm. In CHES, volume 4, pages 357–370.
Springer, 2004.

[35] Martin Feldhofer and Johannes Wolkerstorfer. Hardware implementation of symmetric
algorithms for rfid security. In RFID security, pages 373–415. Springer, 2008.

[36] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen. Aes implementation
on a grain of sand. IEE Proceedings-Information Security, 152(1):13–20, 2005.

[37] NIST FIPS. 140-3,“security requirements for cryptographic modules,” 2019. US De-
partment of Commerce/National Institute of Standards and Technology.

[38] PUB FIPS. 180-2 federal information processing standards publication. SECURE
HASH STANDARD, National Institute of Standards and Technology, 2002.

[39] Lingzhi Fu, Xiang Shen, Linghao Zhu, and Junyu Wang. A low-cost uhf rfid tag chip
with aes cryptography engine. Security and Communication Networks, 7(2):365–375,
2014.

[40] EPC Global. Epc radio-frequency identity protocols generation-2, uhf rfid standard,
specification for rfid air interface protocol for, communications at 860 mhz-960 mhz,
2018.

[41] Gyõzõ Gódor, Norbert Giczi, and Sándor Imre. Elliptic curve cryptography based
mutual authentication protocol for low computational complexity environment. In
Wireless Pervasive Computing (ISWPC), 2010 5th IEEE International Symposium
on, pages 331–336. IEEE, 2010.

120

[42] Hannes Groß and Thomas Plos. On using instruction-set extensions for minimizing
the hardware-implementation costs of symmetric-key algorithms on a low-resource mi-
crocontroller. In International Workshop on Radio Frequency Identification: Security
and Privacy Issues, pages 149–164. Springer, 2012.

[43] OMTP Hardware Working Group et al. Omtp hardware requirements and defrag-
mentation. Trusted Environment OMTP TR1 v1.1. Open Mobile Terminal Platform,
2009.

[44] Trusted Computing Group. Tpm library specification 2.0. 2014.

[45] Caio Gubel. Advanced encryption standard using the pic16xxx, 2002.

[46] Bao Guihao, Zhang Minggao, Liu Jiuwen, and Li Yin. The design of an RFID security
protocol based on RSA signature for e-ticket. In Information Management and Engi-
neering (ICIME), 2010 The 2nd IEEE International Conference on, pages 636–639.
IEEE, 2010.

[47] Jian Guo, Thomas Peyrin, and Axel Poschmann. The photon family of lightweight
hash functions. In Annual Cryptology Conference, pages 222–239. Springer, 2011.

[48] Panu Hamalainen, Timo Alho, Marko Hannikainen, and Timo D Hamalainen. De-
sign and implementation of low-area and low-power AES encryption hardware core.
In Digital System Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th
EUROMICRO Conference on, pages 577–583. IEEE, 2006.

[49] George Hatzivasilis, Konstantinos Fysarakis, Ioannis Papaefstathiou, and Charalam-
pos Manifavas. A review of lightweight block ciphers. Journal of cryptographic Engi-
neering, 8(2):141–184, 2018.

[50] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for con-
strained environments. International Journal of Wireless and Mobile Computing,
2(1):86–93, 2007.

[51] Walter Hinz, Klaus Finkenzeller, and Martin Seysen. Secure UHF Tags with Strong
Cryptography.

[52] Payment Card Industry. Data security standard. Requirements and Security Assess-
ment version, 3:58, 2018.

[53] Geneva ISO. Information technology–trusted platform module. 2009.

121

[54] Abdellatif JarJar. Improvement of feistel method and the new encryption scheme.
Optik, 157:1319–1324, 2018.

[55] Ari Juels. RFID security and privacy: A research survey. IEEE journal on selected
areas in communications, 24(2):381–394, 2006.

[56] Kuljeet Kaur, Neeraj Kumar, Mukesh Singh, and Mohammad S Obaidat. Lightweight
authentication protocol for rfid-enabled systems based on ecc. In 2016 IEEE Global
Communications Conference (GLOBECOM), pages 1–6. IEEE, 2016.

[57] Elif Bilge Kavun and Tolga Yalcin. A lightweight implementation of keccak hash
function for radio-frequency identification applications. In International Workshop on
Radio Frequency Identification: Security and Privacy Issues, pages 258–269. Springer,
2010.

[58] Cheol-Joong Kim, Sung-Yeol Yun, and Seok-Cheon Park. A lightweight ECC algo-
rithm for mobile RFID service. In Ubiquitous Information Technologies and Applica-
tions (CUTE), 2010 Proceedings of the 5th International Conference on, pages 1–6.
IEEE, 2010.

[59] Jia Hao Kong, Li-Minn Ang, and Kah Phooi Seng. A comprehensive survey of modern
symmetric cryptographic solutions for resource constrained environments. Journal of
Network and Computer Applications, 49:15–50, 2015.

[60] Xuejia Lai and James L Massey. A proposal for a new block encryption standard.
In Workshop on the Theory and Application of of Cryptographic Techniques, pages
389–404. Springer, 1990.

[61] Jong-Wook Lee, Ngoc Dang Phan, Duong Huynh-Thai Vo, and Vinh-Hao Duong.
A fully integrated EPC Gen-2 UHF-band passive tag IC using an efficient power
management technique. IEEE Transactions on Industrial Electronics, 61(6):2922–
2932, 2014.

[62] Yiyuan Luo, Qi Chai, Guang Gong, and Xuejia Lai. A lightweight stream cipher WG-
7 for RFID encryption and authentication. In Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE, pages 1–6. IEEE, 2010.

[63] Adam SW Man, Edward S Zhang, Vincent KN Lau, Chi Ying Tsui, and Howard C
Luong. Low power vlsi design for a rfid passive tag baseband system enhanced with
an aes cryptography engine. In 2007 1st Annual RFID Eurasia, pages 1–6. IEEE,
2007.

122

[64] Sanu Mathew, Sudhir Satpathy, Vikram Suresh, Mark Anders, Himanshu Kaul, Amit
Agarwal, Steven Hsu, Gregory Chen, and Ram Krishnamurthy. 340 mv–1.1 v, 289
gbps/w, 2090-gate nanoaes hardware accelerator with area-optimized encrypt/decrypt
gf (2 4) 2 polynomials in 22 nm tri-gate cmos. IEEE Journal of Solid-State Circuits,
50(4):1048–1058, 2015.

[65] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Push-
ing the limits: a very compact and a threshold implementation of AES. In Eurocrypt,
volume 6632, pages 69–88. Springer, 2011.

[66] Yassir Nawaz and Guang Gong. The wg stream cipher. ECRYPT Stream Cipher
Project Report 2005, 33, 2005.

[67] Yassir Nawaz and Guang Gong. Wg: A family of stream ciphers with designed ran-
domness properties. Information Sciences, 178(7):1903–1916, 2008.

[68] Haifeng Niu, Eyad Taqieddin, and Sarangapani Jagannathan. Epc gen2v2 rfid stan-
dard authentication and ownership management protocol. IEEE Transactions on
Mobile Computing, 15(1):137–149, 2015.

[69] Liaojun Pang, Liwei He, Qingqi Pei, and Yumin Wang. Secure and efficient mutual au-
thentication protocol for RFID conforming to the EPC C-1 G-2 standard. In Wireless
communications and networking conference (WCNC), 2013 IEEE, pages 1870–1875.
IEEE, 2013.

[70] Marko Pavlin. Encription using low cost microcontrollers. In 42nd International
Conference on Microelectronics, Devices and Materials and the Workshop on MEMS
and NEMS, Society for Microelectronics Electronic, pages 189–194. Citeseer, 2006.

[71] Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan M Estevez-Tapiador, and
Arturo Ribagorda. Lightweight cryptography for low-cost rfid tags. Security in RFID
and Sensor Networks, pages 121–150, 2016.

[72] Pedro Peris-Lopez, Tong-Lee Lim, and Tieyan Li. Providing stronger authentication
at a low cost to RFID tags operating under the EPCglobal framework. In Embedded
and Ubiquitous Computing, 2008. EUC’08. IEEE/IFIP International Conference on,
volume 2, pages 159–166. IEEE, 2008.

[73] Thomas Plos, Hannes Groß, and Martin Feldhofer. Implementation of symmetric
algorithms on a synthesizable 8-bit microcontroller targeting passive rfid tags. In

123

International Workshop on Selected Areas in Cryptography, pages 114–129. Springer,
2010.

[74] Axel Poschmann, Gregor Leander, Kai Schramm, and Christof Paar. New light-
weight crypto algorithms for RFID. In Circuits and Systems, 2007. ISCAS 2007.
IEEE International Symposium on, pages 1843–1846. IEEE, 2007.

[75] Axel York Poschmann. Lightweight cryptography - cryptographic engineering for
a pervasive world. PhD thesis, Faculty of Electrical Engineering and Information
Technology, Ruhr-University Bochum,Germany, 2009.

[76] FIPS Pub. Standards for security categorization of federal information and informa-
tion systems. NIST FIPS, 199, 2004.

[77] NIST FIPS PUB. 140-2: Security requirements for cryptographic modules. Informa-
tion Technology Laboratory, National Institute of Standards and Technology, 2001.

[78] Quan Qian, Yan-Long Jia, and Rui Zhang. A lightweight rfid security protocol based
on elliptic curve crytography. IJ Network Security, 18(2):354–361, 2016.

[79] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. New area record for
the aes combined s-box/inverse s-box. In 2018 IEEE 25th Symposium on Computer
Arithmetic (ARITH), pages 145–152. IEEE, 2018.

[80] Andrea Ricci, Matteo Grisanti, Ilaria De Munari, and Paolo Ciampolini. Design of a
2 µw rfid baseband processor featuring an aes cryptography primitive. In 2008 15th
IEEE International Conference on Electronics, Circuits and Systems, pages 376–379.
IEEE, 2008.

[81] Sören Rinne, Thomas Eisenbarth, and Christof Paar. Performance analysis of con-
temporary light-weight block ciphers on 8-bit microcontrollers. In Ecrypt Workshop
SPEED, pages 33–43. Citeseer, 2007.

[82] Ronald Rivest and S Dusse. The md5 message-digest algorithm, 1992.

[83] Matthew Robshaw. The eSTREAM project. Lecture Notes in Computer Science,
4986:1–6, 2008.

[84] Markku-Juhani O Saarinen and Daniel W Engels. A Do-It-All-Cipher for RFID:
Design Requirements. IACR Cryptology EPrint Archive, 2012:317, 2012.

124

[85] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev, and
Joshua R Smith. Design of an rfid-based battery-free programmable sensing platform.
IEEE transactions on instrumentation and measurement, 57(11):2608–2615, 2008.

[86] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, and Joshua R Smith. Design
of a passively-powered, programmable sensing platform for UHF RFID systems. In
RFID, 2007. IEEE International Conference on, pages 149–156. IEEE, 2007.

[87] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The
128-bit blockcipher CLEFIA. In FSE, volume 4593, pages 181–195. Springer, 2007.

[88] Secure Hash Standard. Fips pub 180-1. National Institute of Standards and Technol-
ogy, 17:15, 1995.

[89] Hung-Min Sun and Wei-Chih Ting. A gen2-based RFID authentication protocol for
security and privacy. IEEE Transactions on Mobile Computing, 8(8):1052–1062, 2009.

[90] Pim Tuyls and Lejla Batina. RFID-tags for anti-counterfeiting. In Cryptographers’
Track at the RSA Conference, pages 115–131. Springer, 2006.

[91] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D Aagaard, and Guang Gong. The
simeck family of lightweight block ciphers. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 307–329. Springer, 2015.

[92] Daniel J Yeager, Alanson P Sample, Joshua R Smith, and Joshua R Smith. Wisp:
A passively powered uhf rfid tag with sensing and computation. RFID handbook:
Applications, technology, security, and privacy, pages 261–278, 2008.

[93] Jenny Yu. Area and energy optimizations in asic implementations of aes and present
block ciphers. Master’s thesis, University of Waterloo, 2020.

[94] Jenny W. Yu and Mark D. Aagaard. Benchmarking and optimizing AES for
lightweight cryptography on ASICs. NIST Workshop on Lightweight Cryptography,
2019.

125

APPENDICES

126

Appendix A

EPC commands flowcharts

A.1 NAK command

127

A.2 Query command

128

A.3 QueryRep command

129

A.4 QueryAdjust command

130

A.5 ReqRN command

131

A.6 Lock command

132

A.7 Select command

133

134

A.8 Read command

135

A.9 Write command

136

Appendix B

Instruction-set architecture

B.1 Memory/move instructions

Instruction Format Assembly Semantics

LD R ld rd, rs rd = Mem[rs]
ST R st rs, rd Mem[rs] = rd
LDL I2 ldl rd, imm8 rd[7 : 0] = imm8

137

B.2 Arithmetic instructions

Instruction Format Assembly Semantics

MOV R mov rd, rs rd = rs
NOT R not rd, rs rd = not rs
ADD R add rd, rd rd = rd + rs
SUB R sub rd, rd rd = rd − rs
AND R and rd, rd rd = rd and rs
OR R or rd, rd rd = rd or rs
XOR R xor rd, rd rd = rd xor rs
SHR R shr rd, rs rd = rs >> 1
SHL R shl rd, rs rd = rs << 1
SHR8 R shr8 rd, rs rd = rs >> 8
SHL8 R shl8 rd, rs rd = rs << 8

B.3 Branch instructions

Instruction Format Assembly Semantics

BEQ I1 beq rd if Zero flag == 0 then
pc = pc + imm8

else
pc = pc +1

BNEQ I1 bneq rs if Zero flag != 0 then
pc = pc + imm8

else
pc = pc +1

JMP I1 jmp rd pc = pc + imm8

BSR I1 bsr rs Stack[sptr] = pc
sptr - -
pc = rs

RTS I1 rts sptr ++
pc = Stack[sptr]

138

B.4 Output instructions

Instruction Format Assembly Semantics

PUT I1 ldl r1, imm8 r1[7 : 0] = imm8

PUT #8 OPCNTR ← 8
While (OPCNTR > 0)
{R1 ← R1 << 1
OPCNTR ← OPCNTR - 1 }

Any R-type inst R mov r1, rs r1 = rs

B.5 Custom instructions

Instruction op-
tion

Assembly Semantics

CRYPTO.INIT CRYPTO.INIT crypto module.mode ← #init crypto module
crypto module.i valid ← 1
crypto module.data in ← Rs (Data on data in
isn’t used by the cryptomodule in this option)

CRYPTO.LOAD CRYPTO.LOAD

R3

crypto module.mode ← #load crypto module

crypto module.data in ← R3

crypto module.i valid ← 1
CRYPTO.RUN CRYPTO.RUN

R4, R3

crypto module.mode ← #run crypto module

crypto module.data in ← R3

crypto module.i valid ← 1

139

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Security and Cryptography
	Symmetric-key cryptography
	Stream ciphers
	Block ciphers
	Mode of operations in block ciphers
	Pseudorandom number generators
	Hash functions

	Lightweight cryptography
	Physical security
	Hardware security module
	Secure Hardware Extension
	Payment Card Industry Data Security Standard
	Trusted Execution Environment
	Trusted Platform Module

	Security validations standards
	FIPS 140-2
	Common criteria

	Digital Hardware Circuits
	Digital hardware circuits design approaches

	EPC RFID Systems
	RFID standards
	RFID system components and overall behaviour
	Types of RFID tags
	power supply source
	Frequencies, Coupling method
	Overall behaviour

	EPC RFID tag specifications
	RFID Tag reading range and Power
	RFID Tag speed and response time
	RFID tag microchip and memory banks
	Reader stages/commands and Tag states:
	Tag states:
	Reader commands:

	The EPC tag requirements
	Functional Requirements:
	Security Requirements:
	Performance Requirements:
	Area Requirements:
	Power Requirements:

	Related Work
	Security for RFID tags
	Hardware architectures for RFID tags
	Software-based approach
	Specialized hardware approach
	ASIP-based approach

	System level design
	Top-level design
	The EPC tag digital baseband responsibilities
	The interaction between the HSM and the CM

	The HSM Architecture
	The overall architecture
	Instruction-set architecture
	Instruction Formats
	Register Format (R-type)
	First Immediate format (I1-type)
	Second Immediate format (I2-type)

	Instruction format design decisions
	Three-operand vs. two-operand ISA architectures
	Stack-based vs. register-based ISA architectures
	Variable length instructions vs. fixed length instructions

	The ASIP HSM features
	Interrupt driven control
	Input/output operations
	Instruction-set extension
	Accelerated mode support
	Instruction fetch unit and control stack
	Special-purpose registers
	Memory management unit (MMU)

	Results and Evaluations
	HSM architecture and results
	Other work results
	Comparison between our ASIP and Plos's and Groß's processor architectures
	Cryptographic algorithms implementation results
	Area considerations, ROM efficiency, and encryption/decryption efficiency
	AES block cipher
	Block ciphers: Present and Simeck
	Stream ciphers: Trivium and WG-5
	ACE authenticated encryption module

	Conclusion and Future Work
	Conclusion
	Future works
	Implementation of more security services
	Security validations
	The communication module architecture

	References
	APPENDICES
	EPC commands
	NAK command
	Query command
	QueryRep command
	QueryAdjust command
	ReqRN command
	Lock command
	Select command
	Read command
	Write command

	Instruction-set architecture
	Memory/move instructions
	Arithmetic instructions
	Branch instructions
	Output instructions
	Custom instructions

