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Abstract 

 

Aptamers are valuable tools in a variety of biotechnological applications, ranging from 

biosensing to in vivo cell imaging. Studying these molecules can further our understanding of the 

structure and kinetics of nucleic acid-ligand binding. The sulforhodamine B binding aptamer (SRB-2) is a 

polyanionic molecule that was selected to bind a ligand with an overall negative charge. It is also a 

somewhat promiscuous aptamer that can bind ligands that vary markedly in shape, size and charge. 

These characteristics make its binding mechanisms of interest to characterize.  

In Chapter 2, we categorized potential ligands based on their binding mode and structural 

characteristics required for high affinity and selectivity. Several known and potential ligands of SRB-2 

were screened for binding affinity using fluorescence. Promising candidates were subsequently 

characterized by biophysical assays including fluorescence, ITC, DSC, LSPR, CD and NMR spectroscopy. 

These studies showed that rhodamine B has the ideal structural and electrostatic properties for selective 

and high-affinity binding of the SRB-2 aptamer.  These are desirable properties in relevant applications 

of aptamers, indicating that of SRB-2 ligands currently commercially available, rhodamine B would be 

the most useful in those contexts. 

In Chapter 3, we show NMR experiments performed on the SRB-2 aptamer with the goal of 

elucidating a solution structure. An unlabelled sample, as well as three samples selectively labelled on a 

single type of nucleotide (A, C and U) were synthesized and analyzed using a variety of pulse sequences. 

These included multiple variations of HSQC, NOESY, TOCSY and COSY experiments. A significant amount 

of NMR data were obtained and some tentative and partial assignments were made, but ultimately the 

data were insufficient for unambiguous assignment. This resulted from several sources, but broad lines 

caused by structural heterogeneity were the primary obstacle encountered. 

In Chapter 4, we opted to pursue alternative NMR approaches which did not require isotopic 

labelling. This strategy, segmental analysis, involves breaking a molecule down into smaller segments 
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and studying them individually. The structural information obtained from the segments was then 

combined to give an overall picture of the full-sized molecule. This method was used when there are 

multiple stem-loop segments in a sequence that form stable structures independent of the other stem-

loops. Otherwise, this method did not yield accurate depictions of the overall structure. In this chapter, 

strategies for designing representative truncations are outlined. For a 16mer containing a UUCG 

tetraloop, assignments were completed, and a structure was calculated. This allowed for several 

resonances in the spectra of full-length SRB-2 to be identified. Results with another stem-loop region 

indicate that segmental analysis beyond the UUCG tetraloop is not possible for this system due to 

interactions between the two other stem-loops. 

In Chapter 5, a Na+-binding aptamer present in several DNAzymes was investigated. These 

DNAzymes require Na+ for activity but show no activity in the presence of K+ or other metal ions. Given 

that DNA can selectively bind K+ by forming a G-quadruplex structure, the goal of this work was to 

determine whether this Na+ aptamer also uses a G-quadruplex to bind Na+. The Na+ aptamer is 

embedded in the trivalent lanthanide-dependent DNAzyme Ce13d. Its sequence consists of multiple GG 

sequences, which is also a prerequisite for the formation of G4 structures. To probe the structure of 

Ce13d for G4 presence, thioflavin T (ThT) fluorescence spectroscopy, NMR spectroscopy and CD 

spectroscopy were used. Through comparative ThT fluorescence spectrometry studies, we determined 

that a control G-quadruplex DNA exhibited fluorescence enhancement in the presence of K+. The Ce13d 

DNAzyme did not show fluorescence enhancement in the presence of K+, but displayed fluorescence 

decrease with low millimolar concentrations of Na+. This agrees with NMR experiments that suggest 

Ce13d adapts a significantly different conformation, or equilibrium of conformations, in the presence of 

Na+ versus K+. However, it does appear significantly more stable in Na+. The absence of characteristic G-

quadruplex peaks in 1D 1H NMR suggest that a G-quadruplex is not responsible for the Na+ binding and 

this is supported by the absence of characteristic peaks in the CD spectra of this sequence. Therefore, 
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we concluded that the aptamer must be selective for Na+ and binds using a structural element that does 

not contain a G-quadruplex structure. 
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Chapter 1: Literature Review 

1.1 Overview of Nucleic Acids 

Our understanding of the biological importance of nucleic acids has come a long way in the last 

three-quarters of a century. The significance of DNA and RNA in biology cannot be understated; as a 

matter of fact, their story can be summarized in Nobel Prizes alone. Modern understanding of nucleic 

acids all started with James Watson and Francis Crick’s (and Maurice Wilkins’ and Rosalind Franklin’s) 

model of DNA, and won the 1962 Nobel Prize in Chemistry [1–3]. Shortly thereafter, the mechanism of 

nucleic acid synthesis was detailed by Ochoa and Kornberg, who discovered and characterized DNA 

polymerase [4,5]. They were actually recognized by the Nobel committee for their work on nucleic acid 

synthesis a few years earlier than Watson, Crick and Wilkins, receiving their prize for physiology in 1958. 

The big picture became much clearer when Robert Holley, Har Khorana, and Marshall Nirenberg were 

able to classify the functions of biomolecules, specifically the role of DNA in protein synthesis, forming 

what we know today as the central dogma of molecular biology. Holley discovered and characterized the 

structure and function of tRNA [6], while Khorana and Nirenberg determined the genetic code, showing 

how codon triplets code for amino acids [7,8]. Their work won the Nobel Prize for physiology in 1968.  

With the fundamentals of nucleic acid structure, chemistry and function now in place, it was time 

for field of molecular genetics to shine. This was made possible by the discovery of restriction enzymes 

by Werner Arber [9]. Hamilton Smith and Daniel Nathans discovered additional restriction 

endonucleases and were then able to show how they work and how they can be used to create genetic 

maps, respectively [10,11]. These three men received the 1978 Nobel Prize in physiology. Next in line 

were Paul Berg, Walter Gilbert and Frederick Sanger, who won the Nobel Prize in chemistry just two 

years later. Berg was recognized for his work understanding the mechanisms of DNA recombination in 

viruses [12] and Gilbert and Sanger for their development of DNA sequencing methods [13,14]. Aside 
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from paving the way for the next chapter in studying nucleic acid structure and function, this work also 

planted the first seeds in the biotechnology field. Now that nucleic acids were becoming better 

characterized, scientists could begin to think of how to use these biological processes and chemistry in 

new, innovative ways. 

 To summarize this section, the biological and evolutionary importance of nucleic acids is 

immeasurable, but at their core nucleic acids are biomolecules, polymers and chemicals. They are tools 

that scientists can apply to large variety of applications, just like proteins and small molecules. 

 

1.2 History of Aptamers 

In the late ‘70s and early ‘80s another revolutionary, Nobel Prize winning discovery was made that 

would forever change the ways scientists viewed nucleic acids. Sidney Altman and Thomas Cech 

discovered RNA with self-catalytic capabilities. Altman and Cech independently found that RNA could 

cut strands of RNA, a discovery suggesting that life could have started as RNA [15,16]. This is now known 

as the RNA world hypothesis, a phrase eventually coined by the aforementioned Nobel laureate Walter 

Gilbert. This work was eventually awarded the 1989 Nobel Prize in chemistry. We will come back to 

catalytic nucleic acids later, but the importance of this discovery with respect to the eventual 

development of aptamers was that RNA could have functional roles beyond expression of the genetic 

code. This was expanded upon when research by several groups on HIV was finally able to determine 

the previously unknown role of viral-associated RNAs, short RNA sequences that had been found in 

adenoviruses [17–20]. Their role in transcriptional regulation was fascinating in and of itself, but the 

major discovery here was that short, partially double-stranded nucleic acid sequences can bind targets, 

in this case proteins, with high affinity and specificity. Today, that is the textbook definition of an 

aptamer.  
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Following the establishment of the biological functions of nucleic acids and the existence of 

functional nucleic acids, researchers began to investigate the diverse structures of single stranded 

nucleic acids. As aptamer pioneer Larry Gold has said, they are “shapes, not tapes” [21]. Their tertiary 

structures, particularly those once thought of as ‘unique’ or ‘outliers’ such as rRNA and tRNA, were now 

recognized as more similar to globular proteins than to linear DNA.  It was not lost on biochemists of the 

time that these RNA molecules somewhat resembled the antigen binding sites of monoclonal 

antibodies. Of course, by this time, the discovery of monoclonal antibodies and the creation of 

monoclonal antibody hybridomas had already won Nobel Prizes of their own and their potential to treat 

diseases was recognized. This inspired the search in the late ‘80s and early ‘90s for so called nucleic acid 

antibodies. This was done using in vitro mutagenesis, a method that would eventually be developed into 

what we now know as SELEX (the systematic evolution of ligands by exponential enrichment). 

The concept of in vitro selection originated in the 1960s with work by Sol Spiegelman. His studies on 

the Qβ RNA bacteriophage led to the discovery of its replicase protein, an RNA-dependent RNA 

polymerase [22]. This enzyme made in vitro synthesis of viral RNA possible. Spiegelman’s work with 

exogenous viral RNA was able to show Darwinian selection when various selective pressures were 

applied [23]. These experiments resulted in mutants that had eliminated large portions of their 

nucleotide sequence, retaining only those required for replication. Mutants with other interesting 

phenotypes such as resistance to ethidium were also obtained and became the basis for studies on 

selecting mutants with increased replication rates under inhibitory conditions [24]. This was some 

significant progress, but a couple of limitations existed that would not be lifted until years later. Any 

sequence of interest required a vector in order to be studied in this capacity due to their swift removal 

upon any selection pressure. In addition, the scale of amplification, in general, was still minuscule 

compared to what we have to work with today. In another decade, however, this would all change. 
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In the 1980s, Kary Mullis revolutionized the future of aptamer research when he came up with the 

concept of the polymerase chain reaction (PCR) [25]. PCR allowed for the rapid amplification of DNA, 

making millions to billions of copies in mere hours. It also made the process of amplification sequence 

independent. This allowed researchers to easily amplify any sequence(s) of interest. This invention won 

him the Nobel Prize in chemistry in 1993. Reverse transcription PCR was invented shortly thereafter and 

is a staple of aptamer selection, and many other methodologies, to this day. 

 In 1989, Arnold Oliphant and Kevin Struhl published a paper in which they had synthesized DNA 

oligonucleotides 25 base pairs in length with random sequences [26]. They screened those sequences to 

select for those that bound to a yeast transcription factor, GCN4. However, this work did not use 

amplification in any sense of the word. They simply used affinity chromatography to screen all of the 

DNA sequences that they had made. This was really the first time in vitro mutagenesis had been used on 

this scale, but it still lacked the critical components of evolution and amplification. 

Finally, by combining the in vitro mutagenesis work of Oliphant and Struhl with the PCR technique 

invented by Mullis, SELEX was established independently by two groups in 1990: first by Larry Gold and 

his student Craig Tuerk, then by Jack Szostak and his student Andrew Ellington about a month 

later[27,28]. Craig Tuerk and Larry Gold’s work focused on an RNA sequence with a known affinity to 

bacteriophage T4 DNA polymerase. They took an eight nucleotide stretch of this RNA and completely 

randomized the sequence, creating a pool of 65 536 (48) theoretical mutants.  Their initial library was 

large enough (theoretically 5 x 109 copies of each individual sequence were present) that even at the 

lowest concentrations they used, millions of copies of each sequence should be present at the start of 

the experiment, assuming relatively consistent incorporation of each type of nucleotide. This suggests a 

high statistical probability that all theoretical sequences were sufficiently represented. After initial 

transcription of the DNA library, selection was performed with the bacteriophage T4 DNA polymerase 

(gp43). These sequences were isolated and reverse transcribed, followed by PCR amplification. Four 



5 
 

“rounds” of this procedure were performed. In the original publication, they referred to this method as 

“the systematic evolution of ligands by exponential enrichment” or SELEX for short. From the 65 536 

theoretical sequences, they obtained two with high binding affinity for the bacteriophage T4 DNA 

polymerase, the wild-type sequence and a mutant with four varying nucleotides. A more detailed 

schematic of this procedure is shown in Figure 1.  

 

Figure 1.1: SELEX schematic outlining Craig Tuerk and Larry Gold’s original procedure. 

The general steps of this procedure in include construction of a DNA template for transcription, in vitro 

transcription of the RNA by T7 RNA polymerase, selection on nitrocellulose filters by the target, gp43, 

reverse transcription, and PCR.  
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 Ellington and Szostak used six rounds of essentially identical methodology (Figure 2) to select 

sequences that bound to seven different dye columns. They were interested in these particular dyes due 

to their resemblance to biological cofactors, for example, Cibracon blue, which was known to bind to the 

NAD binding site of many dehydrogenases and had previously been used for affinity chromatography. 

They were able to obtain sequences with varying degrees of affinity and selectivity for the various dye 

columns. Some of the clones obtained varied markedly while others had regions of conservation, 

suggesting that nucleic acids can fit around their targets in numerous ways but that only certain parts of 

the sequence would be involved in binding. In fact, Ellington coined the term “aptamer” from this 

observation as it comes from the Latin aptus, which means “to fit.” Ellington and Szostak also concluded 

that novel ribozymes might be obtained by applying this technique to transition state affinity columns.  



7 
 

 

Figure 1.2: Schematic outlining Andrew Ellington and Jack Szostak’s original protocol for in vitro 

selection. 

The general steps of Ellington and Szostak’s procedure mirror those of Tuerk and Gold, however the 

selection step was done using a column based methodology rather than a nitrocellulose membrane.  

 

Tuerk and Gold’s acronym SELEX stuck, as did Ellington and Szostak’s term “aptamer”. Today you 

perform SELEX to get aptamers. Ultimately, Craig Tuerk and Larry Gold were awarded the patent for the 

invention of their SELEX technology [29]. Larry Gold and Gilead Sciences Inc. also held many other broad 

patents on aptamer selection methodology such as solution SELEX and counter SELEX [30,31]. As a result 

of these patents and several others, the commercial interest of these molecules was largely subdued 

until their expiry in the late 2000s and early 2010s. Throughout these years, countless advances in 
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selection were made, including the improvement of libraries, selection of sequences with complex and 

dual functions and various strategies for improving the selectivity and nuclease resistance of aptamers. 

Next we will take a closer look at some of these advances and outline the general methodologies and 

considerations that go into a contemporary aptamer selection. 

 

1.3 SELEX  

 Two different schemes for RNA aptamer selection were already shown in Figures 1 and 2, but a 

generalized scheme applicable to more types of nucleic acid selections is shown in Figure 3. Each step 

shown in this scheme will be discussed briefly, followed by a few other important factors that are not 

explicitly shown here. 

 

1.3.1 Creating a Library 

  The first step of any aptamer selection is to obtain a library of sequences from which to select. A 

typical selection consists of a sequence of ~30-80 nucleotides partly or entirely randomized, flanked by 

two fixed sequences of approximately 20 nucleotides in length that are designed to contain appropriate 

PCR primers [32]. When selecting RNA aptamers, a T7 promoter is also required for transcription prior to 

each round. Random regions are synthesized by using an equimolar mixture of all nucleotides, resulting 

in a pool of ~1014 unique sequences.  The probability of finding a particular sequence is 1/4N, i.e. the 

longer the random region, the less likely it is to find a specific sequence due to sampling bias. Therefore, 

multiple selections may be required in some cases [33]. The oligonucleotide pool is also usually 

amplified to ensure multiple copies of each sequence are present to limit the potential loss of binding 

sequences. Sometimes a genomic library can be used instead of a synthetic one, but this of course limits 

possible aptamer sequences to naturally occurring ones [34]. 
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Another consideration here for selection of DNA aptamers is that the DNA must be single-

stranded for selection and for future PCR amplifications. One of the most effective and commonly used 

methods for separating the strands is by biotinylation of the reverse primer, which allows for the 

removal of the template strand after PCR amplification by binding to streptavidin. Other more cost 

efficient methods include assymetric PCR, size separation by PAGE or enzymatic digestion of the 

undesired strand [35]. 

 

Figure 1.3: Schematic outlining the steps in a single round of a general aptamer selection. 

General selection steps are still the same as those used by Szostak and Gold when they independently 

discovered this process for obtaining RNA aptamers, however, this is a more modern, general schematic 

that applies to both RNA and DNA selections.  
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1.3.2 Binding and Partitioning 

 As shown in Figure 1.3, there are three main steps in a single selection cycle: binding, 

partitioning and amplification. In practice, ~5-15 rounds of selection are performed. The number of 

rounds generally depends on the type of target, level of stringency used in the selection and complexity 

of the initial pool. There are no outright restrictions on the target that is used; in literature, targets 

include ions, small molecules, biomolecules, and even entire cells [36–39]. The intrinsic properties of 

nucleic acids do make for some inherent limitations, however. Nucleic acids are small, negatively 

charged and hydrophilic molecules, which makes targeting a small, positively charged molecule more 

straightforward, while it may be more difficult to target a large, hydrophobic or negatively charged 

ligand [40]. The type of matrix used for binding will also depend on the target. Common strategies, 

particularly for small molecule targets, normally involve immobilization of the target on an affinity 

column [28] or paramagnetic beads [41]. Nitrocellulose filters are often the matrix of choice when using 

protein targets [27], and agar plates are used for cell-SELEX [42]. How the target is anchored to the 

matrix is also a worthwhile consideration as the binding sequences obtained will tend to bind the most 

accessible parts of the target and may not be able to bind regions close to the linker.  

There are several reaction conditions that must be considered as well, including concentrations 

of the target and library. Buffer conditions must also be optimized to promote binding; for a small 

molecule selection, this generally consists of neutral pH, high salt and presence of divalent cations which 

often act as cofactors in target binding [43]. The incubation time and temperature are also crucial 

parameters as they must be permissive to specific binding but minimize non-specific binding. Several of 

these conditions, particularly target concentration and incubation time, are also adjusted throughout 

the cycles to increase the stringency of the selection. This is done to ensure the acquisition of only high-

affinity sequences. Stringency is usually not increased until after the first few rounds to prevent the loss 

of rare sequences and is then increased progressively throughout the rest of the selection. [40]  
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Partitioning refers to the separation of binding and non-binding sequences. This is normally 

accomplished by first washing the non-binding and weakly binding sequences away with binding buffer, 

followed by the elution and isolation of high-affinity sequences using denaturing conditions such as 

urea, EDTA and heat. In selections using column affinity, stringency can be controlled by increasing the 

volume of wash buffer used [44]. Once the binding sequences have been isolated, they move on to PCR 

amplification and sequence analysis. 

 

1.3.3 Amplification and Analysis 

 The iterative nature of the selection process is what has made SELEX such a powerful tool. It 

results in high affinity binding sequences dominating the pool, simplifying isolation and sequencing of 

relevant oligonucleotides. This, of course, would not be possible on such a large scale without Mullis’ 

discovery of PCR amplification [25]. PCR is not a perfect system however and can have inherent biases. 

For example, the negative strand of DNA can compete with primers for hybridization, resulting in the 

suppression of rarer sequences [45]. It is therefore wise to optimize the PCR protocol before selection to 

minimize the number of PCR cycles required to obtain a sufficient quantity of products for the next 

round of selection. This also holds true for transcription and reverse transcription when selecting RNA 

aptamers as formation of certain RNA secondary structures can be inhibitory [46]. 

 Another useful facet of amplification is the opportunity it presents to introduce a mutation 

mechanism if one wishes to do so. Mutant libraries are advantageous because they allow sampling of a 

larger total population, and in a focused manner. Selections with mutation mechanisms are more likely 

to produce sequences with higher affinities or enhanced catalytic properties as a result [47,48]. 

Thermostable DNA polymerases are generally fairly processive; they have an intrinsic error rate ranging 

from about 10-5 – 10-7 which is not sufficient to maintain a mutant population [49]. Common approaches 

include error-prone PCR and hypermutagenic PCR, which involve decreasing the fidelity of the 
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polymerase by using biased dNTP pools and adding Mn2+ to promote polymerization after mismatches 

[50,51]. Recombination methods can also be used if a very large degree of mutation is desired [47]. 

 Progress of a selection is tracked by measuring the proportion of total nucleic acid that is 

retained by UV absorbance at 260nm. Only a small fraction of the total nucleic acid content will be 

recovered in the elution of initial rounds and those where stringency is increased. The selection is 

complete when essentially all nucleic acid is retained in the elution. The pool is amplified one last time 

and sequenced using next generation sequencing techniques. The sequences are then analyzed using 

computational techniques to determine one or a few consensus sequences. Minimization and 

optimization of the sequence is often desirable to highlight the active motif of the aptamer. This is 

generally done using kinetic-based methodologies. In addition, sequences may be re-selected with a 

partially random or ‘doped’ pool used specifically for binding site selection. This may result in an 

aptamer with improved properties [52]. 

 

1.3.4 Counter-selection 

 Many of the factors of aptamer selection discussed thus far impact primarily the binding affinity 

of the sequence obtained, but another advantageous property of aptamers is their high selectivity. In 

fact, aptamers with enantioselectivity for (R)-ibuprofen and (S)-ibuprofen have been isolated [53]. 

Selectivity can be tailored in the selection process by using counter-selection. This describes a cycle in 

which an alternate, undesired target is used, and sequences that bind said target are discarded. For 

example, when using a small molecule target such as sulforhodamine B is used, an analogue such as 

fluorescein may be used as the counter selection step [37]. A non-target peptide may be used when 

targeting a specific protein or an unwanted cell type in the case of cell-SELEX [42,54]. Negative selection 

is also used to ensure that the sequences present are binding the target as intended and eliminate false 
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positives that survive the selection by interacting with the matrix or binding by other undesirable 

mechanisms [55].  

 

1.3.5 Modified Nucleic Acids 

 Nucleic acid aptamers hold many advantages over their protein antibody counterparts, such as 

ease of storage and modification, low immunogenicity, high-temperature stability and a wider range of 

potential targets [56,57]. One problem with aptamers, particularly those destined for in vivo 

applications, is that their in-host stability is relatively low due to nuclease susceptibility. RNA aptamers 

are degraded almost immediately, and DNA aptamers are degraded within a few hours of incubation in 

human serum [58]. Fortunately, one of the advantages of aptamers is that they are relatively easy to 

modify, and nuclease resistance can be straightforwardly conferred using various modification strategies 

before and/or after selection.  

The most common modifications are substitutions of the 2’ sugar position (Figure 1.4a-b). Initial 

modification efforts revolved around 2’-amino pyrimidines but they proved difficult to use during solid-

phase chemical synthesis (Figure 1.4c) [59]. 2’-fluoro pyrimidines are often used in libraries due to their 

increased coupling efficiency (Figure 1.4d). The famed Macugen, the only FDA approved aptamer, has 

2’-fluoro pyrimidine modifications [60]. 2’-methylhydroxy groups are favoured as post-SELEX 

modifications due to their cost efficiency and in-cell role as a ubiquitous post-translational modification 

(Figure 1.4e). Locked nucleic acids are another highly nuclease-resistant modification that consists of a 

second ring structure being created by connecting the 2’ carbon and the 4’ carbon of the sugar (Figure 

1.4f).  

Also popular are 4’-thiol sugars (Figure 1.4g) and various modifications of the inter-nucleotide 

linkage. Examples include phosphorothioate, methylphosphanate, 5’-α-P-borano and thiazole linkages 
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(Figure 1.4h-k) [59,61]. Another advantage of modified nucleic acids is that they may diversify aptamer 

libraries; they may be able to adopt previously unseen conformations or bind novel targets. 

 

Figure 1.4: Types of nucleic acid modifications used to confer nuclease resistance in aptamers.  

A) 2’-H (DNA), B) 2’-OH (RNA), C) 2’-NH2, D) 2’-F, E) 2’-OMe, F) 4’-thiol, G) locked nucleic acid (LNA), H) 

phosphorothioate, I) methylphosphanate, J) 5’-α-P-borano, K) thiazole. 

 

1.4 Fluorophore-Binding Aptamers 

1.4.1 Applications of Fluorophore-Binding Aptamers 

As discussed in section 1.2, some of the first proof of concept RNA aptamers selected by  

Andrew Ellington and Jack Szostak used organic dyes as targets due to their similarity to biological 

cofactors [28]. They used the same group of dyes to select some of the first proof of concept DNA 
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aptamers [62]. The RNA world concept was prominent at the time, and scientists were interested in 

gauging the catalytic complexity of nucleic acids. In addition, the inherent advantages of having a 

detectable signal built into the system was not lost on researchers.  

Several years later, Jack Szostak and Charles Wilson selected in parallel a DNA aptamer and an 

RNA aptamer for sulforhodamine B (SR) (Figure 1.5a) [37,63]. With the DNA aptamer, they were 

interested in finding an aptamer that could catalyze the redox reaction of the colorless compound 

dihydrotetramethylrosamine to the fluorescent product tetramethylrosamine (Figure 1.6). These 

compounds oxidize spontaneously, so they instead used the related dye, SR, as the target for their 

selection. The clones they obtained, however, had only weak redox activity, and this work was 

abandoned. 

 

Figure 1.5: Relevant ligands of fluorophore-binding aptamers. 
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A) sulforhodamine B, B) Hoechst 33258, C) Hoechst 33242, D) malachite green, E) 

tetramethylrhodamine, F) fluorescein, G) Patent blue V, H) tetramethylrosamine  

 

 

Figure 1.6: Desired redox reaction of the SRB-2 DNA aptamer. 

Gold and Wilson attempted to find an aptamer that could catalyze the redox reaction of the colorless 

compound dihydrotetramethylrosamine to the fluorescent product tetramethylrosamine. This figure 

shows the general scheme for said reaction. 

 

1.4.1.1 Controlling Gene Expression 

 Thus far, aptamers have only been discussed in a synthetic capacity. Of course, as it turns out, 

biological systems have long been using their own version of aptamers, which are generally found in 

riboswitches. Riboswitches are nucleic acid sequences most commonly found in the 5’ UTR region of 

mRNAs which control gene expression in a cis fashion through small molecule binding [64]. Riboswitches 

consist of two main domains, a gene expression platform and a metabolite-binding (aptamer) domain. 

Riboswitches function by forming secondary structure elements that impede protein function. The most 

common mechanisms include rho-independent transcription termination and translation inhibition by 

sequestering of the ribosome binding site.   
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 The suspicion of the existence of such elements has been around for some time, as proposed by 

Larry Gold et al. in 1984 [65], but substantial proof was lacking until 2002 when riboswitches were finally 

characterized by several research groups working on several different riboswitches [66–70]. Interest in 

potential gene regulation by aptamers was heightened in the late ‘90s after the establishment of SELEX 

[27,28] and further studies showing modulation of gene expression by small molecules [71–73]. Initial 

studies using synthetic riboswitches (aptamers) to control gene expression were actually done in 1998, a 

few years earlier than the ‘discovery’ of riboswitches in 2002. 

 In these studies, two aptamers that could specifically bind both the dye Hoechst 33258 (Figure 

1.5b) and the related drug Hoechst 33342 (Figure 1.5c) were selected. They were inserted in tandem 

into a mammalian β-galactosidase expression plasmid which was then transfected into Chinese hamster 

ovary cells. These studies showed that Hoechst 33342 was able to dose-dependently inhibit β-

galactosidase activity by over 90% [74].  

 The malachite green aptamer (MGA) is among the most extensively studied aptamers and has 

proven to be dynamic in its applications [75–79]. This aptamer was originally selected to improve upon 

the chromophore-assisted laser inactivation (CALI) method developed by Jay and Keshishian [80], 

wherein antibodies are covalently modified with the fluorescent dye malachite green (MG) (Figure 1.5d). 

Malachite green forms destructive hydroxyl radicals upon irradiation by laser at 630nm, resulting in the 

inactivation of the antibody and its target. Therefore, gene products can be targeted and inactivated by 

controlling the laser (Figure 1.7). The malachite green aptamer has a single nucleotide bulge that is 

cleaved upon exposure to the hydroxyl radical generated by MG. As a result, when MGA is included in 

the 5’ UTR of a gene of interest, the laser can be used in an analogous fashion to downregulate the gene 

product by reducing transcript stability and translatability [75]. Furthermore, this system was used to 

demonstrate that cell-cycle control could be rendered dependent on MG in S.cerevisiae [81].   
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Figure 1.7: Site-specific inactivation of mRNA transcripts by chromophore assisted laser inactivation. 

Malachite green forms hydroxyl radicals when exposed to a laser of the appropriate wavelength. Due to 

close proximity and susceptibility, these radicals attack and cleave a single nucleotide bulge in MGA 

resulting in cap removal and translation inhibition.  

  

In 2010, aptamers were selected for the dye tetramethylrhodamine (Figure 1.5e) with high-

affinity and low magnesium dependence for optimal in vivo function, but no further works involving 

gene expression were conducted. Synthetic riboswitches have remained an area of interest for 

researchers after the CALI studies of MG, but studies have mostly turned to aptamers with non-

fluorogenic ligands that do not require laser mediation such as theophylline, FMN and neomycin [82–

84].  
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1.4.1.2 mRNA Imaging 

In 1998, in parallel with their work involving the sulforhodamine B DNA aptamer, Wilson and 

Szostak also selected an RNA aptamer for sulforhodamine B [37]. The original goal of selecting this RNA 

aptamer, SRB-2, was to develop a tool for fluorescent RNA labelling analogous to green fluorescent 

protein (GFP) and its derivatives in proteins. The methodology here involved inserting the DNA template 

sequence for SRB-2 on the end of a gene of interest, resulting in the fluorescent tagging of that 

transcript in the presence of the ligand (Figure 1.8). Wilson and Szostak recognized that this ability to 

fluorescently label nucleic acids in vivo or in vitro could open up many possible applications. They also 

used the clones obtained from the SRB-2 selection as a basis to select an aptamer for the similar dye 

fluorescein (Figure 1.5f), which has a similar structure but a different color than SR. They performed a 

proof of concept experiment in vitro that showed the two aptamers were able to discriminate between 

the two dyes which allowed localization of the aptamers to be observed when the dyes were anchored 

to separate beads [37]. This highlighted the potential for future multiple labelling as well as Forster 

resonance energy transfer (FRET) type experiments; though contemporary FRET sensors generally utilize 

aptamers that are labelled with fluorophores and/or quenchers rather than aptamers that bind them 

directly. Despite sulforhodamine B and fluorescein having a significantly greater fluorescence 

enhancement than biological cofactors such as tryptophan and flavin mononucleotide, background 

fluorescence was still far too great for biological applications [37,85–87].  
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Figure 1.8: Structural basis of light-up aptamers for intracellular imaging.  

In solution, fluorogens are non-fluorescent, but when stabilized by stacking interactions with the bases 

of an aptamer adopt a fluorescent conformation. 

 

More recent studies involving the SRB-2 aptamer have utilized ligand-quencher constructs to 

increase the fluorescence enhancement of sulforhodamine B upon binding by quenching its intrinsic 

fluorescence with dinitroaniline [88,89]. This approach yielded success as its brightness surpassed even 

enhanced GFP (eGFP), and 105-fold enhancement was observed. This is impressive, but other systems 

with different fluorophores have been characterized since then that have generated even greater 

fluorescence enhancements. 

 Studies by Babendure et al. with the SRB-2 and MGA aptamers showed that significantly larger 

fluorescence enhancements are observed with triphenylmethane dyes as opposed to planar xanthene-

type dyes [76]. They observed that the triphenylmethane dyes such as patent blue V (PBV) (Figure 1.5g) 

and MG had a lower intrinsic quantum yield and higher quantum yield when bound to the aptamer, 
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which they surmised was a result of the locking of the rotationally mobile dyes into planar 

conformations more similar to the xanthene dyes tetramethylrosamine (TMR) (Figure 1.5h) and 

sulforhodamine B (SR). Malachite green had a 2360-fold fluorescence enhancement upon binding, 

significantly surpassing SRB-2 and GFP. This could be further increased by using tandem repeats of MGA 

[76]. Efforts to optimize the enhancement of aptamer-based RNA imaging has more recently turned to 

the chromophore of GFP, 4-Hydroxybenzlidene (HBI) (Figure 1.9a) and its structural analogues. 

 The first works with HBI derivatives involved the selection of an aptamer for DMHBI (Figure 

1.9b). It was then determined that the derivative 3,5-difluoro-4-hydroxybenzylidene imidazolinone 

(DFHBI) (Figure 1.9c) was significantly brighter upon aptamer binding (80% as bright as GFP, DMHBI was 

only 12% as bright), and this system was termed spinach [90]. Spinach has since spawned several 

additional light-up aptamer systems with high fluorescence enhancement and of varying color. These 

include aptamers that bind other GFP mimics, such as broccoli [91] which binds DFHBI-1T (Figure 1.9d), 

and corn [92] which binds 3,5-difluoro-4-hydroxybenzylidene imidazolinone-2-oxime (DFHO) (Figure 

1.9e) and aptamers that bind other fluorogenic dyes such as the mango aptamer [93], which binds 

thiazole orange and its derivatives. These aptamers have all been sequence optimized and used in 

various live-cell imaging experiments of different types of RNA [94–102]. In addition, the corn aptamer 

has been used for quantification of transcription [92] and the mango aptamer has been used to 

simultaneously fluorescently label and purify biologically relevant RNAs [93].  

 Although these GFP-based selection targets were able to increase fluorescence enhancement of 

these systems drastically, there is always room for improvement. These RNA aptamers have been 

successful in imaging highly abundant, non-translated sequences such as tRNA and rRNA [90,91,103]. 

However, fluorescence enhancement of these aptamers is insufficient for mRNA imaging owing to its 

low cellular abundance [104].  One method implemented to improve fluorescence enhancement is the 

use of fluorescent protein multimers [105,106]. This strategy has also been adapted for the spinach 
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aptamer, where tandem repeats showed up to a ~17-fold increase in fluorescence enhancement [107].  

Tandem repeats of fluorescent proteins can cause some issues, especially when used in organisms with 

proficient homologous recombination mechanisms [108]. Fortunately, transcription seems to be 

relatively unaffected by the presence of spinach aptamer repeats [107]. However, the G-quadruplex 

nature of the spinach aptamer may cause another unforeseen problem with this type of system. 

Although the ability of the G-quadruplex to stabilize fluorogens is likely responsible for the large 

fluorescence enhancement of HBI derivatives, it has been suggested that RNA G-quadruplex domains 

may be kept globally unfolded in eukaryotic cells. This would, of course, limit the use of such aptamers 

for in vivo imaging applications. 

This potential hurdle highlights the importance of studying ways to improve the fluorescence 

enhancement of non- G-quadruplex containing aptamers such as malachite green and SRB-2. In fact, a 

variation of the tandem strategy was recently theorized using SRB-2 [109]. In these studies, the authors 

designed a sulforhodamine B dimer called Gemini-561 and selected a linker for an SRB-2 dimer they 

termed o-Coral. This fluorogenic aptamer showed remarkable fluorescence enhancement, surpassing 

even the aforementioned HBI derivatives. It also had noticeably higher photostability than the mango, 

corn and broccoli aptamers which could extend the useful timeframe of mRNA imaging experiments 

[109]. 
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Figure 1.9: Chemical structure of the GFP fluorophore and its RNA aptamer mimics.  

A) 4-Hydroxybenzlidene (HBI), GFP’s fluorophore. B) 3,5-dimethoxy-4-hydroxybenzylidene imidazolinone 

(DMHBI), selection target of the spinach aptamer. C) 3,5-difluoro-4-hydroxybenzylidene imidazolinone 

(DFHBI), a brighter analogue of DMHBI and ligand for the spinach aptamer. D) 3,5-difluoro-4-

hydroxybenzylidene imidazolinone 1-trifluoroethyl (DFHBI-1T), an even brighter modification of DFHBI. 

E) 3,5-difluoro-4-hydroxybenzylidene imidazolinone-2-oxime (DFHO), selection target of the corn 

aptamer. 
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1.4.1.3 Metabolite sensing 

 Another application that fluorophore binding aptamers are well suited for is biosensing. 

Aptamer-based fluorescent biosensors are most often FRET-based sensors that feature either a signal 

“turn-on” or “turn-off” mode involving a conformational change that alters the proximity of a 

fluorophore and a quencher [110–112]. That being said, there are several examples of innovative 

constructs that directly use fluorophore-binding aptamers.    

 The first attempt at creating such a construct was work done by Stojanovic and Kolpashchikov 

with the malachite green aptamer in 2004 [77]. They created modular aptameric sensors using 

recognition domains consisting of a binding site for ATP, FMN or theophylline and a signalling domain 

that had a binding site for malachite green (Figure 1.10a). All binding sites were based on existing 

aptamer sequences. The motivation for this work was to create a sensor for these biological cofactors 

that could be used for intracellular imaging. In contemporary research, the sensing and imaging of 

metabolite trafficking has become more popular than imaging RNA trafficking in vivo [113]. 

 Shortly after the development of these sensors, Kolpashchikov created a binary malachite green 

aptamer to be used as a probe for fluorescently reporting the presence of a specific nucleic acid 

sequence [78]. This sensor consisted of two RNA strands, each consisting of a fragment of the malachite 

green aptamer and a fragment of the complement RNA sequence to the DNA target sequence (Figure 

1.10b). In the presence of the target sequence and MG, the two strands would bind with their respective 

RNA complement forming the complete malachite green aptamer, which would then bind the dye 

resulting in a fluorescence enhancement. 

 In 2010, Lu and Xu combined aspects of these two approaches to make a sensor for adenosine 

[79]. Their sensor consisted of a construct with aptamers for MG and adenosine fused together, and a 

bridging strand that was constructed such that it could only be released upon binding of adenosine to 
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the adenosine aptamer. Once the bridging strand was released, MGA would be free to bind MG, 

resulting in a fluorescent signal (Figure 1.10c).  

 One of the problems with using MG for intracellular imaging is that its propensity for forming 

radicals results in it being relatively cytotoxic. Therefore, more recent studies in this field use aptamers 

that bind to HBI derivatives such as the spinach aptamer. Interest in this field has mostly pivoted 

towards the development of sensors for use in intracellular metabolite imaging so many of the 

constructs created in recent years bear a striking similarity to Stojanovic and Kolpashchikov’s original 

work with the malachite green aptamer. The spinach aptamer alone has since been used to image a 

variety of metabolites in cells, including adenosine, ADP, guanine, SAM, guanine, GTP, cyclic-di-GMP and 

c-AMP-GMP [114–116].  
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Figure 1.10: Metabolite sensors based on the malachite green aptamer.  

A) A modular aptamer construct for metabolite detection was devised by fusing binding motifs from the 

malachite green aptamer (MGA) and several metabolite binding aptamers such as the flavin 

mononucleotide aptamer. A tangible increase in fluorescence was observed in the presence of FMN 

[76]. B) Another sensing approach involved a binary aptamer-based on the sequence of MGA. Each 

strand also had an arm whose sequence was the complement of a target DNA sequence. In the presence 

of the target sequence, both arms bind to a target sequence and the complete MGA forms, resulting in 

MG binding and fluorescence enhancement [77]. C) An improvement of the methodology of a modular 

aptameric sensor that utilizes a bridging strand to increase fluorescence enhancement. This strand 
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prevents binding of MGA until adenosine has already bound to the adenosine aptamer, which releases 

the bridging strand and allows MGA to bind MG.  

 

1.4.2 Structural Studies of Fluorophore Binding Aptamers 

 One characteristic that all of the aforementioned applications have in common is that their 

rational development relies heavily on fundamental structural knowledge of the aptamer’s binding 

complex. For example, if a researcher wishes to design a riboswitch to control transcription of a gene 

with a fluorophore binding aptamer, they must ensure that the bound apo-form folds sufficiently to 

block transcription and the holo-form does not. Fortunately, a distinguishing feature of aptamers is their 

adaptive binding [117–122]. That is, an aptamer in the absence of its ligand (holo-form) tends to be 

relatively unstructured but when bound to its ligand (apo-form) forms structured binding motifs. 

Therefore, aside from characterizing the fundamental binding properties of nucleic acids, obtaining 

crystal or solution structures for these systems is important because structural knowledge of a system is 

useful for implementation in various applications. It is no coincidence then that the handful of 

fluorophore-binding aptamer structures that have been determined mostly coincide with the previously 

discussed aptamers that have been used in real-world applications.  

There are six fluorophore-binding aptamers that have at least one structure available, and each 

has contributed to the understanding of ligand-induced folding in aptamer-small molecule systems. The 

first system successfully characterized was the malachite green aptamer, for which a crystal structure 

was determined when bound to the high-affinity ligand analogue tetramethylrosamine (TMR) (Figure 

1.11a) [123]. Shortly thereafter, a solution structure was determined for MGA bound to its original 

selection target MG (Figure 1.11b) [124]. Comparison of these structures led to insights regarding the 

ability of the binding pocket to adapt to both planar and non-planar ligands. 
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The spinach aptamer was successfully crystallized years later in 2014 and revealed for the first 

time a G-quadruplex motif involved in the binding of a fluorophore (Figure 1.11c) [125]. They observed 

that this G-quadruplex motif was well suited to bind and induce fluorescence in an organic dye as it was 

forced into a locked planar conformation upon binding. A crystal structure was also obtained for 

iSpinach, the result of further selection to optimize the fluorescence and folding properties of the 

original sequence [126]. This structure showed that mutations in iSpinach resulted in a more stable and 

compact binding motif than the original sequence and conferred advantageous properties such as 

thermal stability and reduced salt dependence. 

Around the same time as iSpinach, several similarly fluorogenic systems of varying color were 

also characterized by x-ray crystallography. The mango and corn aptamers were revealed to utilize g-

quadruplex motifs as well, cementing the importance of these structures in light-up aptamer systems 

[96,127]. The fluorescence properties of the mango aptamer were also optimized in a similar fashion to 

iSpinach and the structure of this mutant was recently obtained [128]. Interestingly, the dimethylindole 

red (DIR2s) aptamer, which binds the cyanin dyes dimethylindole red and oxazole thiazole blue, was 

determined to be the first fluorophore binding aptamer that did not include a G-quadruplex motif or a 

base quadruple such as that observed in MGA. Instead, it relies on a base triple as a stacking platform 

which diversifies the known range of fluorophore activation by RNA.  

Most recently, a structure for a tetramethylrhodamine aptamer (TMR3) was determined by 

NMR spectroscopy [129]. TMR3 was found to share some structural similarities with the malachite green 

aptamer, but as shown in Figure 1.11d, it has a base triple similar to DIR2s. Interestingly, the 

fluorescence of the ligand is quenched upon binding in contrast to all the other systems that have been 

characterized. The ligand binds with similar base stacking and hydrogen bonding patterns to other 

fluorogenic RNA aptamers, so it is likely that this low fluorescence conformation is a result of a pKa shift, 

possibly of one of the carboxyl groups.  
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A) Crystal structure of MGA bound to TMR (1F1T) [123]. B) Solution structure of MGA bound to MG 

(1Q8N) [124]. C) Crystal structure of the iSpinach aptamer bound to DFHBI (5OB3) [126]. D) Solution 

structure of TMR3 bound to tetramethylrhodamine (6GZK) [129]. Images were created with the 

modelling software UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and 

Informatics at the University of California, San Francisco [130]. 

 

 

 

Figure 1.11: Structures of selected fluorophore binding aptamers. 
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1.5 Catalytic Nucleic Acids 

1.5.1 Ribozyme Discovery 

 In 1982, Thomas Cech was the first to discover RNA with catalytic properties thanks to his work 

on the Tetrahymena intervening sequence RNA (IVS RNA), which is capable of self-splicing [16]. Cech 

shared the Nobel Prize for Chemistry in 1989 with Sydney Altman, who characterized the catalytic 

properties of the RNAse P ribozyme, which also cleaves RNA, in 1983 [15]. Several biologically relevant 

ribozymes have since been discovered, including the Varkud satellite (VS) ribozyme [131], the 

hammerhead ribozyme [132,133], the hairpin ribozyme [134], the ribosome [135] and the spliceosome 

[136], all of which catalyze cleavage and/or ligation of the nucleic acid backbone. Another interesting 

ribozyme discovery was GlmS, a self-cleaving ribozyme that acts as a riboswitch [137]. More recently, 

synthetic ribozymes that can perform a variety of chemical reactions have been developed [138–141] as 

catalytic nucleic acids can be obtained through SELEX, just like aptamers. 

 

1.5.2 Selection of Catalytic Nucleic Acids 

Gold and Szostak are usually credited with the invention of SELEX, but the other, often 

underappreciated, pioneer in this field is Gerald Joyce. Joyce and Robertson also independently came up 

with an in vitro selection method in 1990 [142]. The main difference in this work was that rather than 

selecting aptamers that bind small molecules or proteins, Joyce was interested in selecting catalytic 

RNAs. Ellington and Szostak did ponder the possibility of selecting catalytic RNAs in their work earlier in 

the year [28], but Joyce was the first to actually do it. Using in vitro selection, Joyce and Robertson were 

able to isolate a mutant of the self-splicing Tetrahymena ribozyme, which more efficiently cleaved its 

substrate than the wildtype sequence. Their iteration of in vitro selection was again striking similar to 

Gold’s and Szostak’s procedures, and contemporary selections of catalytic nucleic acids typically use the 

same general SELEX procedure as aptamers. Due to the nature of these molecules, there are some 
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differences such as immobilization not being implemented. In addition, cleaved nucleotides must be 

separated from intact sequences, which is usually achieved through the use of either polyacrylamide gel 

electrophoresis (PAGE)  or biological tags such as biotin [143]. 

 

1.5.3 DNAzymes 

Although not found in nature, DNAzymes can also be selected through SELEX. The first 

DNAzyme, which could catalyze the cleavage of RNA, was isolated by Ronald Breaker and Gerald Joyce in 

1994 [144]. DNAzymes have since been created with the capacity to perform many types of catalysis, 

including nucleic acid cleavage and ligation [144–147], DNA modifications such as phosphorylation 

[148], adenylation [149] and deglycosylation [150] and even a Diels-Alder reaction [151].  

DNAzymes have been used in several applications, including DNAzyme therapeutics, of which a 

few have participated in clinical trials. These are generally treatments involving the inactivation of mRNA 

sequences, downregulating the expression of disease-related proteins [152]. The most common class of 

DNAzymes are ribonucleases, which catalyze the cleavage of an RNA phosphodiester bond via a 

transesterifaction reaction. These self-cleaving DNAs generally require specific metal cofactors which 

has resulted in metal sensing being one of the most studied applications of DNAzymes. For use in such 

commercial applications, DNAzymes provide a couple of key advantages over ribozymes, including 

stability, cost efficiency and ease of chemical modification [153]. 

 

1.5.3 Structural and Functional Importance of Metal Ions 

Due to the polyanionic nature of nucleic acids, it is impossible to discuss their structure and 

function without also considering metal ions. The negative charges need to be shielded by cations, i.e. 

metals, to allow the formation of stable secondary structure. Due to their stabilizing effect on nucleic 

acid structures, metal ions are imperative for the biological functions of DNA and RNA: storage, reading 
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and homologous recombination of genetic information [154]. Metal-binding also has a significant impact 

on the stability and reactivity of various functional groups in nucleic acids, especially particular 

heteroatoms in the bases [155]. They also mediate the ability of nucleic acids to interact with proteins 

and other ligands [156].  

In specific sequences, the presence of metals can lead to several distinct structural motifs, 

including triplexes (Figure 1.12a), helical junctions (Figure 1.12b), quadruplexes (Figure 1.12c) and the 

loop E motif (Figure 1.12d) [157–161].  These types of motifs are all dependent on the presence and 

concentration of common intracellular metals, including Na+, K+ and Mg2+. Some metals can also bind 

specifically to certain base pairs, such as in thymine-Hg2+-thymine [162] and cytosine-Ag+-cytosine [163].  

As the diverse roles of metal ions listed may suggest, under correct conditions, DNA binds to 

certain metals in a highly selective manner. This useful trait is often exploited in biotechnological 

applications such as DNAzyme-based biosensing.  
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Figure 1.12: Metal coordination to several nucleic acid structures. 

A) Penta-hydrated magnesium stabilizes triplex formation by binding to the N7 of guanine in the tertiary 

strand. B) Nickel (II) stabilizes a three-way junction by complexing with three bipyrimidines. C) 

Potassium promotes the formation of G-quadruplex in guanine-rich sequences.  D) A unique binuclear 

magnesium cluster observed in the Loop E motif. 

 

1.5.4 Metal Biosensors 

The ability to specifically detect metal ions is important for numerous reasons. Metals have 

great physiological importance, such as their aforementioned roles with respect to nucleic acids. They 

are crucial for cell signalling and transport [164,165], and metalloproteins are thought to make up about 

half of all known proteins [166]. Maintaining proper cellular levels of metals is therefore important for 



34 
 

human health, and the ability to reliably test these levels is required for diagnosis of metal deficiencies 

and other related ailments. Metals are also important in society as anthropological activities such as 

mining, smelting, electronic waste disposal and domestic and agricultural use of metal containing 

compounds continuously results in significant pollution of heavy metals [167–170]. Heavy metals are a 

known hazard to human health and the environment, therefore the ability to test drinking water and 

other potential sources for contamination is imperative. DNA-based methodologies have been used to 

detect a large percentage of metals from the periodic table [171]. Different strategies are implemented 

depending on the metal of interest and the ways it is known to interact with DNA. For example, Na+ has 

been detected using an aptamer sequence, K+ is generally detected using G-quadruplex based 

sequences and metals such as Pb2+ use metal-dependent self-cleaving DNAzymes.  

Biosensors generally consist of a biomolecular element, which in this case is DNA and a signal 

transduction element. Most signal transduction elements in DNAzyme sensors are either fluorescence, 

colorimetric or electrochemical based. Fluorescent detection is often achieved using 

fluorophore/quencher pairs [172]. Nanomaterials such as quantum dots (QD), gold nanoparticles 

(GNPs), graphene oxide and carbon nanotubes have proven useful as vectors for these labelling pairs 

[173–175]. Additionally, the change in color between dispersed and aggregated GNPs is the basis of 

several colorimetric biosensors [176–178]. Several unique strategies have been used to develop 

electrochemical sensors with impressive detection limits for metals such as Pb2+ [179–181]. 

 

1.6 Contents of the Thesis 

In order to develop potential applications such as biosensors and cell imaging, we must have a 

thorough understanding of how aptamers bind to their targets. This allows chemical modification and 

sequence optimization of aptamer systems for their use in previously discussed commercial 

applications. This is where work on characterizing aptamer structure and binding kinetics comes into 
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play. Chapters 2,3 and 4 feature work on the aptamer SRB-2, which is an interesting one due to its ligand 

promiscuity and overall negative charge of the ligand. Chapter 2 will present work wherein a variety of 

biophysical techniques were used to characterize the binding kinetics and affinity of several known and 

screened SRB-2 ligands. These techniques are also used to categorize the ligands by mechanism of 

binding. Chapter 3 discusses the attempted determination of a solution structure for SRB-2 bound to SR 

by NMR spectroscopy. This involved the preparation of several unlabelled and selectivity isotopically 

labelled SRB-2 samples. Chapter 4 outlines further characterization of the SRB-2 complex using a 

segmental analysis approach. Several truncated versions of the SRB-2 aptamer were designed and 

characterized by fluorescence and NMR spectroscopy. Chapter 5 presents work involving a DNAzyme 

that strongly discriminates between Na+ and K+. This work uses spectroscopy techniques including ThT, 

NMR and CD to show that, despite high G content, this selective binding ability is not conferred by a G-

quadruplex. Chapter 6 presents a summary and review of future work that can be done where 

applicable. 
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Chapter 2: Ligand Specificity and Affinity in the Sulforhodamine B 

Binding RNA Aptamer 

 

2.1: Foreword 

The results in this chapter have been published in the journal Biochemical and Biophysical 

Research Communications: Kyle A. Piccolo, Brooke McNeil, Jeff Crouse, Su Ji Lim, Sarah C. Bickers, W. 

Scott Hopkins & Thorsten Dieckmann. Ligand Specificity and Affinity in the Sulforhodamine B Binding 

RNA Aptamer. Biochem. Biophys. Res. Commun. 2020, 529 (3), pp 666-671. Any permission for further 

re-use of this material should be requested directly from BBRC with the DOI: 

https://doi.org/10.1016/j.bbrc.2020.06.056. 

LSPR experiments in this chapter (Figures 2.5 and 2.6, Table 2.5) were performed by Brooke 

McNeil and the electrostatic potential surfaces (Figures 2.22 and 2.23) were calculated by Jeff Crouse 

and Su Ji Lim. All other experimental work was performed and analyzed by the candidate.  

All data and figures in this chapter were published in the above article with the following 

exceptions: DSC experiments shown in (Figure 2.20), CD experiments shown in (Figure 2.21), ITC salt 

studies shown in Table 2.3 and the following NMR figures (Figures 2.8-12, 17-19). Data and figures listed 

are unchanged from the original publication, though some of the text was modified for inclusion in this 

thesis.  

 

2.2 Chapter Abstract 

Binding affinity and selectivity are critical properties of aptamers that must be optimized for any 

application. The sulforhodamine B binding RNA aptamer (SRB-2) is a somewhat promiscuous aptamer 

that can bind ligands that vary markedly in shape, size and charge. Here we categorize potential ligands 
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based on their binding mode and structural characteristics required for high affinity and selectivity. 

Several known and potential ligands of SRB-2 were screened for binding affinity using fluorescence. 

Promising candidates were subsequently characterized by LSPR, ITC, fluorescence anisotropy, DSC, CD 

and NMR spectroscopy. These studies show that rhodamine B has the ideal structural and electrostatic 

properties for selective and high-affinity binding of the SRB-2 aptamer.      

 

2.3 Introduction 

The sulforhodamine B binding aptamer (SRB-2) is an RNA aptamer that was selected by the 

Wilson group to bind the fluorescent dye sulforhodamine B (SR) [37]. The secondary structure of SRB-2 

and the structures of six of the studied ligands are shown in Figure 2.1. The structures of several other 

known and potential ligands studied are shown in Figure 2.2. Some of the very first targets used in the 

development of SELEX were small, organic, planar fluorophores due to their similarity to biological 

cofactors and comparatively high quantum yield [28]. Such aptamers, including SRB-2, continue to be 

widely studied due to their potential applications in bio-imaging and bio-sensing [79,88,89,182].  

The SRB-2 aptamer was selected for use in so-called “light-up” RNA aptamer systems [37]. This is 

a promising method wherein the complement of a fluorophore binding aptamer sequence is added to a 

gene of interest. The target fluorophores have low intrinsic fluorescence but become highly fluorescent 

upon binding the aptamer [113,182]. Several other fluorophore binding aptamers, particularly the class 

based on derivatives of fluorescent protein fluorophores such as spinach [90], broccoli [91], corn [92] 

and mango [93] have been selected and studied to create a rainbow of RNA reporter molecules for 

nucleic acid researchers analogous to the arsenal of fluorescent proteins used by protein researchers 

[113,183]. SRB-2 has been used successfully in mRNA imaging experiments with SR and with SR-

quencher constructs designed to reduce background noise in fluorescence measurements [88,89].  
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Aptamers have several characteristics that make them attractive receptors to use in biosensors 

compared to antibodies. These include similar high affinity, but with higher stability, ability to be 

produced synthetically, easy modification and wider range of potential targets. There are a few 

literature examples of fluorophore binding aptamers like SRB-2 being used in this type of application. 

One prime example is the label-free sensor discussed in Chapter 1 that incorporated the RNA aptamer 

MGA (malachite green aptamer) [79]. This sensor consisted of a fusion of MGA and the ATP aptamer, 

and a bridging strand connecting the two. The bridging strand is released upon ATP binding, allowing 

MGA to bind MG and significantly increase the fluorescence. In order to develop such systems, the 

binding mode of the aptamer needs to be well characterized, which we intend to do with the SRB-2 

aptamer.  

One of the defining characteristics of SRB-2 is its ligand promiscuity. SRB-2 can bind a variety of 

planar dyes which contain a similar xanthene ring structure, which is characteristic of rhodamine 

derivatives. These dyes are diverse in color, size, charge and selectivity. Much of the motivation of this 

work is to determine what structural characteristics of the dyes make for the best SRB-2 ligand. The dyes 

used in this work were selected on a number of factors which include structural similarity to SR, 

commercial availability and presence in prior SRB-2 studies [37,89]. The authors who originally selected 

SRB-2 used tetramethylrosamine and xylene cyanol among others in a competitive elution experiment 

with SR agarose [37]. There was also work done by Sunbul and Jaschke, where the Kd values of various 

SRB-2 ligands were determined and we took a representative sample of those including pyronin Y (PY), 

acridine orange (AO), 9-aminoacridine (9AA) and Atto 495 [89]. The problem with some of these ligands 

is that despite higher fluorescence enhancement, they are known nucleic acid stains. This means they 

bind sequence independently in the RNA/DNA backbone, which could limit their practical use [184–186]. 

All other dyes studied, including rhodamine B (RB), sulforhodamine 101 (SR101), rhodamine 6G (R6G), 

rhodamine 110 (R110), Atto rhodamine 101 biotin (AR101-B) and 5/6-biocytin tetramethylrhodamine (B-
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TMR) were chosen solely for their structural similarity to SR and commercial availability and to our 

knowledge have not been studied as SRB-2 ligands in any prior literature.  

It is worth noting that SRB-2 is also capable of binding the dyes Patent Blue V (PBV) and Patent 

Blue VF (PBVF) [76]. PBV is very similar to SR but lacks the bridging oxygen in the central ring, resulting in 

a propeller-like shape. PBVF differs from PBV by only the addition of a hydroxyl group in the meta 

position opposite the ortho sulfonate. However, these dyes bind with Kd values of just 23 µM for PBV 

and 86 µM for PBVF. These binding constants are significantly higher than the literature value of 310 nM 

for SR. This may limit the practicality of the aptamer in imaging and sensing applications. Therefore, we 

opted not to study these ligands any further. 

Another part of what makes SRB-2 an intriguing system to study is the overall negative charge of 

its ligand, SR (Figure 2.1). Negatively charged aptamer ligands are generally less common than neutral 

and positively charged ones due to potentially repulsive backbone interactions. There are few structures 

available of aptamers bound to negatively charged ligands available. One prominent example is the ATP 

aptamer. However, negative charges are not explicitly required for binding and based on the structure 

when bound the AMP, the negative charges of the phosphate do not interact directly with the RNA. 

Given the consistent presence of the xanthene-type group in ligands studied, this may well be the case 

for SRB-2 as well.  

In these studies, we use a variety of biophysical techniques to characterize and compare the 

kinetics and binding mode for several aptamer-ligand complexes of SRB-2. Fluorescence scans are used 

initially to screen ligands for binding activity. Fluorescence anisotropy, isothermal titration calorimetry 

(ITC), and light surface plasmon resonance (LSPR) are used to probe binding affinity and selectivity of 

known and potential ligands. Thermodynamic parameters of selective binders are also assessed via ITC 

and differential scanning calorimetry (DSC). Aptamer-ligand interactions are examined using 
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homonuclear nuclear magnetic resonance (NMR) spectroscopy, including 1D 1H NMR titrations and 2D 

NOESY experiments.  

Characterizing aptamer systems such as SRB-2 is essential to rationalize the motifs and 

intermolecular contacts that are critical for binding affinity and specificity. This information can then be 

used to implement aptamers in several types of applications including cell imaging and biosensing. In 

these studies, we screen several known potential SRB-2 ligands and use them to probe the structure of 

SRB-2. We determined the binding affinity, selectivity and mode of each of these ligands with the goal of 

determining what an ideal SRB-2 ligand would look like. Of the ligands studies, rhodamine B possesses 

the ideal characteristics for use in applications including selective binding, high binding affinity and 

reasonable fluorescence compared to other selective binders. 



41 
 

 

Figure 2.1: Secondary structure of SRB-2 and chemical structures of several studied dyes.  

These include sulforhodamine B (SR), rhodamine B (RB), sulforhodamine 101 (SR101), 

tetramethylrosamine (TMR), Patent blue V (PBV) and fluorescein (FL). Chemical structures of all other 

dyes discussed can be found in Figure 2.2. 
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Figure 2.2: Chemical structures of ligands screened for SRB-2 binding activity. 

These include 5/6-biocytin tetramethylrhodamine (B-TMR), Atto rhodamine 101 biotin (AR101-B), 9-

aminoacridine (9AA), Acridine orange (AO), Pyronin Y (PY), Atto 495, Rhodamine 6G (R6G), Rhodamine 

110 (R110) and Xylene cyanol FF (XC). 

 

2.4 Materials and Methods 

2.4.1 Preparation of RNA Samples and Dyes 

The SRB-2 RNA was synthesized enzymatically using a T7 RNA polymerase and a double-

stranded synthetic DNA template (Integrated DNA Technologies, Inc., Coralville, Iowa). The sequences 

used were as follows: 
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SRB-2 template DNA:  

5’-GGGACCTGAGGCGGTTAACCTTGCGCCTCTCCATCATCGCCGAAGCGAGGTCCCTATAGTGAGTCGTATTA-3’ 

SRB-2 coding DNA:  

5’-TAATACGACTCACTATAGGGACCTCGCTTCGGCGATGGAGAGGCGCAAGGTTAACCGCCTCAGGTCCC-3’ 

 

A single base-pair substitution in the original sequence of SRB-2 (A3 –> G3 and U52 –> C52) was 

introduced to increase transcriptional yield, as the presence of three consecutive G residues at the 

beginning of the sequence is thought to increase initiation of transcription [187,188]. RNA was 

transcribed using the recipe listed in Table 2.1. The transcription buffer was tris-buffered saline (TBS), 

which contains 40 µM Tris and 100µM NaCl.  

 

Table 2.1: Sample recipe for a 10mL transcription. 

Reagent Volume Stock concentration Final Concentration 

DMSO 2 mL 100 % 20 % 

MQ 400 μL N/A N/A 

TBS (pH 8.3) 1 mL 10X 1X 

MgCl2 450 μL 1 M 40 mM 

DTT 500 μL 100 mM 5 mM 

NTPs (A,C,G,U) 750 μL 100 mM 7.5 mM 

PEG 8000 400 μL 40% w/v 1.6% w/v 

DNA Template 800 μL 20 μM 1.6 μM 

T7 RNAP (in 50% 

glycerol) 

1 mL ~3 mg/mL ~0.3 mg/mL 
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The RNA was purified on a 10% Urea PAGE gel, and the band containing the aptamer was cut 

out. The RNA was eluted from the gel by crush & soak in 300mM NaCl or by electroelution. This was 

followed by clean-up on a HiPrep 16/10 DEAE FF anion-exchange column (GE Healthcare, Uppsala, 

Sweden) and desalting on a HiPrep 26/10 Desalting column (GE Healthcare, Uppsala, Sweden). The RNA 

was also precipitated with 70% ethanol prior to running each column. Pure samples obtained from the 

desalting column were then lyophilized and dissolved in the appropriate buffer.  For the fluorescence 

assay, MGA and Mango RNA aptamers were also used. In this case, a single-stranded template annealed 

to the T7 promoter was used in place of a double-stranded template sequence. These aptamers were 

otherwise transcribed and purified using methodologies analogous to SRB-2. DNA sequences used are as 

follows: 

MGA DNA: 5’-GGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCTATAGTGAGTCGTATTA-3’  

Mango DNA: 5’-CTGCTCTCCTCTCCGCACCGTCCCTTCGCTCCCTATAGTGAGTCGTATTA-3’ 

T7 promoter: 5’-TAATACGACTCACTATAG-3’ 

Sulforhodamine B (Life Technologies, Eugene, OR), sulforhodamine 101, acridine orange, 9-

aminoacridine, Atto 495, rhodamine 110 chloride, fluorescein (Sigma, St. Louis, MO), rhodamine B, 

rhodamine 6G (Alfa Aesar, Ward Hill, MA), tetramethylrosamine (Invitrogen Corporation, Carlsbad, CA), 

pyronin Y (Acros Organics, Geel, Belgium) and xylene cyanol FF (EMD, Burlington, MA) were used 

without further purification. Dyes were prepared in assay buffer (10mM HEPES, 10mM KCl and 5mM 

MgCl2 at pH 7.4) or NMR buffer (10 mM potassium phosphate buffer and 10 mM KCl) and 

concentrations were verified by UV/vis spectrophotometry.  

 

2.4.2 Emission Scans 

Spectra were obtained using a Spectramax M3 Multi-Mode Microplate Reader using a 100 nm 

wide scan with 1nm intervals. SR, RB and TMR were measured at an λex of 520 nm and an λem range of 
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540-640 nm. SR101 was measured using an λex of 550 nm and an λem range of 570 nm to 670 nm. PY was 

measured using an λex of 510 nm and an λem range of 530 nm to 630 nm. AO and Atto 495 were 

measured using an λex of 460 nm and an λem range of 480 nm to 580 nm. 9AA was measured using an λex 

of 390 nm and an λem range of 410 nm to 510 nm. Readings were taken in Greiner 96-well black 

microplates (Kremsmünster, Austria). Samples were prepared with 10µM dye and 50μM RNA in assay 

buffer (10mM HEPES, 10mM KCl and 5mM MgCl2 at pH 7.4).  

 

2.4.3 Fluorescence Anisotropy 

Fluorescence anisotropy measurements were acquired on a Photon Technology International 

(Edison, NJ) LS-100 spectrofluorimeter equipped with a continuous Ushio (Cypress, CA) UXL-75Xe xenon 

arc lamp and a PTI 814 photomultiplier detection system (Photon Technology International). 

Measurements were taken using a λex of 563 nm and a λem of 585 nm, which were determined 

experimentally using excitation and emission scans. Samples were prepared with varying concentrations 

of RNA (0.1-50 µM) and 1 µM SR in assay buffer (10mM HEPES, 10mM KCl and 5mM MgCl2 at pH 7.4). 

Samples were incubated at 25°C for at least 10 minutes before measurement and then read in a Hellma 

high-performance quartz glass cuvette with a 3.00 mm optical path length and 45µL volume (Müllheim, 

Germany). The resulting binding curves were fit using a non-linear, least squares method to the simple 

hyperbolic function: % FAmax =  FAmax × [SRB-2] / (Kd + [SRB-2]) where FAmax is the maximum fluorescence 

anisotropy and Kd is the dissociation constant. Anisotropy measurements were normalized to a 

percentage of FAmax for each respective ligand.  

 

2.4.4 ITC Studies 

Experiments were performed on a MicroCal ITC 200 microcalorimeter (MicroCal Inc., 

Northampton, MA). The samples of 30-35 µM RNA and dye solutions of 0.7-1.1 mM were each prepared 
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by dissolving in assay buffer. All experiments were carried out at 25°C and performed in triplicate. For 

each dye or experimental condition, a blank run with assay buffer in the cell and fluorophore dissolved 

in assay buffer in the syringe was performed. This run was subtracted from the experimental run to 

account for the heat of dilution of the fluorophore solutions. All data sets were analyzed and fitted using 

the Origin 7 software package provided by MicroCal. All data was fit to a single-site binding model using 

a non-linear least-squares approach.  

 

2.4.5 LSPR Assay 

Localized surface plasmon resonance (LSPR) binding assays were carried out on an OpenSPRTM 

(Nicoya, Waterloo, Canada) at room temperature. For the analysis of SRB-2, 10µM biocytin TMR 

(Invitrogen Corporation, Carlsbad, CA) or biotinylated Atto Rho101 (Sigma, St. Louis, MO) were 

immobilized onto the streptavidin sensor chip. SRB-2 was then injected at a flow rate of 20 µL/min at 

concentrations of 0.9 – 7.57 µM in HEPES (10 mM HEPES, 200 mM KCl, 10 mM MgCl2) running buffer. 

The binding time was 240 seconds, and the disassociation time was 150 seconds. The sensor was 

regenerated with 10 mM glycine-HCl (pH 2.5). The data was retrieved and analyzed with TraceDrawer 

software (Ridgeview Instruments AB, Sweden). A 1:1 Langmuir interaction was fit to the data for each 

compound, and the fit delivered the on rate (ka), off rate (kd), and the equilibrium constant (Kd). 

 

2.4.6 NMR Experiments 

NMR samples were prepared by dissolving an appropriate weight of lyophilized RNA in 500μL of 

10 mM potassium phosphate buffer and 10 mM KCl (90% H20/10% D2O). Lyophilized aliquots of dye 

were added to titrate the RNA to a ~1:1 ratio unless otherwise specified. The samples were dried by 

lyophilization and re-dissolved in 500 μL of 99.996% D2O (Cambridge Isotopes) to perform experiments 

on non-exchangeable resonances. All spectra were collected on a Bruker DRX-600 spectrometer 



47 
 

equipped with an HCN triple-resonance, triple-axis PFG probe. Quadrature detection for the indirect 

dimensions in multidimensional experiments was achieved using the States-TPPI method [189]. Samples 

in 90% H2O/10% D2O that were used to observe exchangeable protons were run using 11̅-spin echo 

solvent suppression [190]. Two-dimensional NOESY spectra [191] in 90% H2O/10% D2O were acquired at 

277 K with a mixing time of 150 ms. Samples in D2O that were used to observe non-exchangeable 

protons were run with presaturation solvent suppression [192]. 2D CITY-TOCSY [193] with a mixing time 

of 50 ms, and NOESY with a mixing time of 150 ms in 100% D2O were acquired at 298 K. All NMR 

samples had a volume of 500 μL and were read in standard 5 mm NMR tubes. Relevant pulse programs 

can be found in Appendix B. 

 

2.4.7 Electrostatic Potential Surfaces 

 All electrostatic potential surface (EPS) calculations were performed using the Gaussian 16 

program package for computational chemistry. The molecules were optimized at B3LYP/def2-TZVPP 

level of theory, besides Atto Rhodamine 101, 6-Biocytin TMR, and Patent Blue V, which were optimized 

at B3LYP/def2-SVP level. Frequency calculations were performed to ensure that structures correspond 

to minima and not transition states. 

 

2.4.8 Differential Scanning Calorimetry 

DSC experiments were performed using an LLP cap DSC (MicroCal Inc., Malvern Instruments 

Ltd.). 50 μM SRB-2 in assay buffer (10mM HEPES, 10mM KCl and 5mM MgCl2 at pH 7.4) was scanned at a 

rate of 1 °C per minute over a range of 20°C to 100°C. Where applicable, 100 μM of either SR or TMR 

were also present (2x the SRB-2 concentration). When plotted, each RNA scan has a reference scan of 

buffer (or dye + buffer where applicable) subtracted from it. 
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2.4.9 Circular Dichroism Spectroscopy 

CD experiments were performed on a Jasco J-715 spectropolarimeter (Jasco Inc., Easton, MD). 

CD scanning experiments were run from 320 nm to 220 nm with a path length of 0.1 cm, data interval of 

0.5 nm, band width of 0.5 nm, response of 1 second, scanning speed of 200 nm minute−1 and a total of 

four accumulated scans. Samples contained 40 μM RNA in 10mM HEPES, 10mM KCl and 5mM MgCl2 at 

pH 7.4. Where applicable, samples also contained 50 μM of either SR or TMR. The samples were heated 

to 85 °C for 5min, cooled to 4 °C and incubated for at least 24hrs before acquisition at 25 °C. A blank 

containing buffer or buffer + ligand was subtracted from each sample and the resulting data was 

smoothed using a Savitzky-Golay smoothing function [194].  

 

2.5 Results 

2.5.1 Emission Scans 

Fluorescence emission spectra were obtained for each dye both on their own and bound to SRB-

2 in a 5:1 ligand:RNA ratio (Figure 2.3). Fluorescence results are collected in Table 2.2. The specificity of 

these dyes was tested using additional RNA and dsDNA sequences. Dyes that could bind SRB-2 only 

included sulforhodamine B (SR), rhodamine B (RB) and sulforhodamine 101 (SR101), as well as 5/6-

biocytin tetramethylrhodamine (B-TMR) and Atto rhodamine 101 biotin (AR101-B), which are 

functionalized analogues of RB and SR101, respectively. All other dyes listed were capable of binding all 

sequences tested. Most dyes experienced a red shift in their maximum emission wavelength and an 

increase in fluorescence upon binding. As shown in Table 2.2, 9-aminoacridine (9AA) and acridine 

orange (AO) are exceptions, likely a result of a pKa change in the amines, which alters their protonation 

state and results in a non-fluorescent conformation in the case of 9AA and a higher energy complex in 

AO.  
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Figure 2.3: Emission scans comparing free dye (blue) and dye bound to SRB-2 (red). 

The are examples of some of the emission scans performed, comparing the fluorescence of free ligands 

to fluorescence when bound to SRB-2. As seen in most of these graphs, a fluorescence increase and a 

red shift are generally observed upon aptamer binding of a fluorogenic ligand. 9AA is an exception due 

to the presence of an amine group. Upon binding, the protonation state of this amine is changed, 

resulting in a non-fluorescent conformation. This plots are normalized to the fluorescence of the more 

fluorescent state (this would be the bound state in all cases except 9AA, as previously mentioned).  

 

 

 



50 
 

Table 2.2: Wavelength shifts and fluorescence changes determined by emission scans. 

Oligonucleotide    SR RB SR101 TMR PyrY AO Atto 
495  

9AA B-
TMR 

AR101-
B 

  
   

   
   

  

Assay buffer RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  max(nm) 580 576 604 573 563 526 516 435 578 605 

            

SRB-2 RF 1.52 2.05 1.48 1.38 1.15 3.08 10.82 0.06 1.11 1.11 

  Δλmax (nm) 8 6 4 10 9 -2 11 0 8 1 

                        

dsDNA 
template 

RF 0.91 0.80 0.74 0.35 0.28 2.39 2.53 0.19 0.92 0.84 

  Δλmax (nm) -2 0 0 9 9 -1 7 0 1 2 

                        

MG aptamer RF 0.87 0.78 1.04 0.37 0.28 2.90 2.50 0.26 0.92 0.92 

  Δλmax (nm) -1 0 0 6 9 -3 10 0 2 1 

                        

Mango aptamer RF 0.92 0.79 0.86 0.30 0.94 1.94 3.29 0.37 0.81 0.78 

  Δλmax (nm) -2 0 1 9 9 1 12 0 1 3 

 The max for each ligand is determined by inspection of the raw emission data of ligand in assay 

buffer. The Δλmax for each ligand-nucleic mixture is determined by taking the difference between the 

max of the ligand in assay buffer and the respective ligand-nucleic acid mixture. For purposes of 

identifying binding, the ligand-nucleic acid mixture must have a fluorescence increase of at least 10% 

and/or a max that increases by at least 5 nm.  

 

2.5.2 Fluorescence Anisotropy 

Fluorescence anisotropy was used to determine the binding affinity of the ligands tested as this 

was the method used by the authors of the original SRB-2 selection [37]. 9AA was not tested due to the 

unusual behaviour observed in the fluorescence emission scans. Through the dissociation constant, Kd, 

we find the order of binding affinities to SRB-2 is RB > SR > SR101, as shown in Table 2.3. This trend 

matches up with the ITC data listed in Table 2.4, however, affinities are reported as being lower in 

general. This may be due to the concentration of ligands not being limiting enough in these assays. TMR, 
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PY, AO and Atto 495 were also tested, but they are suspected to bind in multiple sites at SRB-2. The 

simple hyperbolic function used to fit these data is meant to represent single-site binding. Therefore, 

this methodology may be inappropriate for such ligands. The Kd for TMR is slightly higher than SR. Like 

RB and SR101, this value was also previously unreported, but due to its presumed intercalation, we were 

unable to substantiate this result with ITC. The Kd values determined for PY and AO are both lower than 

SR, which agrees with previous studies [89]. Atto 495 was determined to have the lowest binding 

affinity, though it was expected to be similar to SR based on previous studies [89]. 

 

Figure 2.4: Fluorescence anisotropy titration curves for SRB-2 and its various ligands. 
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Experimental data is shown as blue points and fit data is shown as a red line. Error bars are one standard 

deviation from the mean of the replicates acquired. 

 

Table 2.3: Dissociation constants of SRB-2 ligands determined by fluorescence anisotropy. 

Ligand Kd (µM) 

SR 3.94 ± 0.34 

RB 1.67 ± 0.18 

SR 101 10.3 ± 0.5 

TMR 4.24 ± 0.17 

PY 1.89 ± 0.14 

AO 1.16 ± 0.08 

Atto 495 0.989 ± 0.12 

 

2.5.2 Isothermal Titration Calorimetry 

Isothermal titration calorimetry (ITC) was also used to determine the binding affinity of the 

ligands due to the extra thermodynamic information it can provide. It has the inherent advantage over 

fluorescence anisotropy of being able to directly measure the molar ratio, n and the enthalpy, ΔH. The 

entropy, ΔS, and Gibbs free energy, ΔG, can also be determined indirectly. A sample ITC isotherm and its 

integrated plot are given in Figure 2.5. Through the dissociation constant, Kd, we find the order of 

binding affinities to SRB-2 is RB > SR > SR101, as shown in Table 2.4. This agrees with Kd values obtained 

from the fluorescence anisotropy experiments. 

Several other dyes, including tetramethyl rosamine (TMR), pyronin Y (PY), Atto 495, acridine 

orange (AO) and 9-aminoacridine (9AA) were tested by ITC. However, these small, planar and electron-

poor dyes intercalate between base pairs in double-stranded nucleic acid sequences. The resulting 

isotherms adhered poorly to a single-site binding model. Therefore, reasonable binding affinities and 

thermodynamic parameters were not determined by this method. PY, AO, 9AA and Atto 495 also mirror 

the trend observed in previous studies using fluorescence titrations [89].  
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The binding of ligands to aptamers is commonly dependent on divalent counter-ions to stabilize 

the negatively charged backbone. To probe this relationship, the ITC experiments were repeated in the 

absence of Mg2+. No binding was observed under these conditions for SR, SR101 or RB. Weak binding 

was observed for TMR, which carries an overall positive charge. However, due to its non-specific binding 

nature, an appropriate fit could not be determined. ITC experiments at 500mM KCl in the absence of 

Mg2+ showed weak binding of the dye ligands to SRB-2, as shown in Table 2.5. SR101 is not shown as 

binding was too weak to determine a reliable fit.  

 

Figure 2.5: Representative ITC data for the binding of SRB-2 to SR. 
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A titration curve of SR injected into SRB-2 is shown in black in the top panel. SR into buffer control is 

shown in green. The binding isotherm is shown in black in the bottom frame, with the SR into buffer 

control again being shown in green.  

 

Table 2.4: Thermodynamic parameters of SRB-2 determined by ITC in 5 mM MgCl2 and 10 mM KCl. 

 

 

 

 

Table 2.5: Thermodynamic parameters of SRB-2 determined by ITC in 0.5 M KCl and no MgCl2 

 

 

 

 

2.5.3 Surface Plasmon Resonance Studies 

LSPR anisotropy experiments were performed in order to obtain kinetic data for the structurally 

relevant rhodamine derivatives biocytin-tetramethyl rhodamine (B-TMR) and Atto rhodamine 101 biotin 

(AR101-B). These dyes were selected based on commercial availability and ability to bind the surface of 

SPR chips. Dissociation curves are shown in Figures 2.6 and 2.7, and binding data obtained for these 

dyes is listed in Table 2.6. 

 

Ligand n Kd (μM) ΔH (kcal mol-1) ΔS (cal mol-1 K-1)      

SR 0.885 ± 0.012 1.45 ± 0.09 -13.1 ± 0.3 -17.2 ± 0.4 

SR101 0.882 ± 0.031 4.7 ± 0.70 -10.1 ± 0.5 -9.27 ± 0.8 

RB 0.922 ± 0.010 0.447 ± 0.08 -14.2 ± 0.2 -18.5 ± 1.2 

Ligand n Kd (μM) ΔH (kcal mol-1) ΔS (cal mol-1 K-1) 

     

SR 1.09 ± 0.008 11.9 ± 0.2 -36.6 ± 0.4 -99.6 ± 6.0 

RB 1.08 ± 0.013 6.02 ± 0.3 -44.1 ± 0.8 -124 ± 2.6 
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Figure 2.6: LSPR response curve for Biocytin-TMR. 

LSPR response curve and 1:1 stoichiometry kinetic fit models for B-TMR. B-TMR was immobilized onto 

the streptavidin sensor chip and SRB-2 was injected at a flow rate of 20 µL/min at concentrations of 0.9 

– 3.76 µM. 

 

 

Figure 2.7: LSPR response curve for Atto Rho 101. 
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LSPR response curve and 1:1 stoichiometry kinetic fit models for AR101-B. AR101-B was immobilized 

onto the streptavidin sensor chip and SRB-2 was injected at a flow rate of 20 µL/min at concentrations 

of 3.79 – 7.57 µM. 

 

Table 2.6: Kinetic parameters of SRB-2 binding determined by LSPR. 

Ligand kon (uM-1 s-1) koff (s-1) Kd (uM) 

B-TMR 207 + 78.0 0.0292 + 0.0156 1.37 + 0.23 

AR101-B 735 + 559 0.0246 + 0.0346 4.66 + 0.47 

 

2.5.4 NMR Spectroscopy 

The binding behavior of SRB-2 with each ligand was studied by NMR spectroscopy. SRB-2 was 

titrated with each ligand in 3-5 steps. 1D 1H-NMR spectra in 90% H2O/10% D2O were used to follow the 

changes during the titrations. The spectrum of SRB-2 in the absence of dye shows relatively few and 

generally broad peaks (Figure 2.8 A). This is typical for the adaptive binding mode found in many 

aptamers [119,122], where the binding pocket in the absence of ligand is mostly unstructured. When 

the aptamer has been titrated to approximately 1:1 with SR, RB and SR101 (Figure 2.8 B-D), an NMR 

spectrum consistent with a single conformation is observed. This is indicated by the presence of 

additional peaks compared to the spectrum of the free SRB-2 and linewidths that are noticeably 

narrower. Several of the new peaks are in the 9-11 ppm region, which is typical for imino protons in 

non-canonical base pairs. Narrower line shapes in the NMR spectrum and additional peaks in the 9-11 

ppm region are consistent with a more highly structured bound conformation with more contacts 

forming between the imino protons of guanine or uridine residues and other atoms in the aptamer or 

ligand.    
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Figure 2.8: 1D 1H NMR spectra of free SRB-2 and SRB-2 bound in a 1:1 ratio to several different ligands. 

A) 0.9 mM SRB-2 only B) 1.8 mM SR, C) 1.3 mM RB, D) 1.1 mM SR101, E) 0.4 mM TMR.  

 

 



58 
 

 

Figure 2.9: 1D 1H NMR spectra of free SRB-2 and SRB-2 bound in a 1:1 ratio to several different ligands. 

A) 0.9 mM SRB-2 only B) 1.8 mM SR, C) 0.4 mM PY, D) 0.2 mM AO, E) 0.4 mM 9AA, F) 0.4mM Atto 495.  

 

TOCSY experiments were run on SRB-2 complexed with SR, RB and SR101. The aromatic protons 

of the ligands, particularly those on the single rings, are shifted downfield when bound to SRB-2 as a 

result of diamagnetic anisotropy experienced by these aromatic protons when they are involved in π-π 

stacking interactions with bases of the aptamer. It was qualitatively observed in these spectra that RB 

protons have a larger change in the chemical shift between free and bound forms (∆δfree-bound=δfree - 

δbound) as compared with SR, which shows larger shifts as compared with SR101. The spectrum for SR on 

its own is shown in Figure 3.11 and the spectra for SR and RB bound to SRB-2 are listed in Appendix A. 
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Figure 2.10: TOCSY spectra of 1mM SR101 (red) and 1.1mM SRB-2 fully bound to SR101 (black). 

TOCSY was acquired with a mixing time of 50 ms. Aromatic protons of SR101 are labelled in red. Clear 

changes in the chemical shifts of these protons can be observed in free(red) vs. bound (black) spectra.  

 

NOESY experiments in 90% H2O/10% D2O are used to map interactions between imino-protons. 

The NOEs between exchangeable imino protons in adjacent base-pairs allow a comparison of the 

patterns formed in the unfolded and folded states of the aptamer. SR has the greatest number of NOEs 

between exchangeable protons (Figure 2.14). This is expected as SR was the ligand SRB-2 was initially 

selected to bind, so the binding site is optimized for this molecule. The NOESY spectra for RB (Figure 

2.15) and SR101 are almost identical to SR, except for some minor chemical shift changes. This indicates 

that they likely bind in the same location. In the NOESY spectrum of TMR (Figure 2.17), fewer stacking 

NOEs are present when compared to SR. In addition, multiple conformations were clearly observed 
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based on the excess number of peaks compared to SR, RB and SR101 in the 1D 1H-NMR spectrum (Figure 

2.8E). PY, 9AA and Atto 495 all have similar NOESY and 1D spectra to TMR (Figure 2.9 B-F and Figures 

2.18-2.20), indicating that they are also binding in multiple different locations. In addition, lack of NOEs 

present in these spectra suggest that each of these dyes intercalate in the base-paired stems, rather 

than participating in adaptive aptamer binding. A NOESY spectrum was not acquired for AO due to 

limited solubility of the low-purity dye. NOESY spectra for all dyes except SR (Figure 2.11) are listed in 

Appendix A.  

 

Figure 2.11: NOESY spectrum of 1.8 mM SRB-2 ~1:1 with sulforhodamine B in 90% H2O/10% D2O. 

Many imino-imino stacking NOEs are observed between 11-14.5 ppm, indicating the presence of several 

base paired regions, consistent with the predicted secondary structure of SRB-2. This NOESY spectrum 

was acquired with a mixing time of 150ms. 
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2.5.5 Differential Scanning Calorimetry 

Several differential scanning calorimetry (DSC) isotherms were obtained for SRB-2 in order to 

compare its melting behaviour when bound to a ligand known to bind specifically with a ligand that is 

known to bind sequence-independently. Based on observations from the emission scans, SR and TMR 

were chosen to represent each of those categories, respectively. A comparison of the melting curves of 

SRB-2 and SRB-2 + SR is shown in Figure 2.20 A and a comparison of SRB-2 + SR and SRB-2 + TMR is 

shown in Figure 2.20 B. There is melting observed around 70°C in both bound forms that is not observed 

in SRB-2 alone. This suggests that there are tertiary structures that only form when the aptamer is 

bound. The secondary structure melts at 90°C in all samples. 

 

Figure 2.12: Differential scanning calorimetry isotherms. 

A) Comparison of unbound SRB-2 to SRB-2 bound to SR and B) comparison of SRB-2 when bound to SR 

versus when bound to TMR.  

 

2.5.6 Circular Dichroism Spectroscopy 

Circular dichroism (CD) spectra were acquired to assess the possibility of any distinct tertiary 

structures being present in SRB-2. Similar to DSC, CD and UV absorbance spectra were acquired for SRB-

2 on its own, SRB + SR and SRB-2 + TMR (Figure 2.21). These dyes were again chosen as a general 
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representative of their respective binding behaviors. No distinct tertiary structure features such as G-

quadruplex or triplex RNA are observed in any of the spectra.  

 

Figure 2.13: CD and UV absorbance spectra of SRB-2. 

A) CD spectra comparing unbound SRB-2, SRB-2 bound to SR and SRB-2 bound to TMR.  

B) Corresponding UV absorbance spectra for SRB-2, SRB-2 bound to SR and SRB-2 bound to TMR. 

 

2.6 Discussion  

2.6.1 Smaller Size and Reduced Negative Charge of Ligands Result in Higher Binding Affinity 

From the fluorescence emission scans, we show that RB has a similar red shift but a greater 

fluorescence intensity increase than SR (Table 2.2) when binding to SRB-2. A comparable red shift is 
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expected due to their conjugation systems being very similar. The fluorescence intensity increase for RB 

binding is likely higher as compared with SR due to differences in the polarity of the bound dyes. RB is 

missing a negatively charged group in the para-position of the single ring, which results in the ligand’s 

conformation being locked more tightly in the binding site. Figure 2.22 shows that the negatively 

charged sulfonates in SR draw electron density from the three-ring system, creating a significant 

concentration of negative partial charge on the bottom ring (electrostatic potential surfaces of all dyes 

referenced are shown in Figures 2.22 and 2.23). RB has a single carboxyl group rather than two sulfonate 

groups. The carboxyl group of RB is smaller and less electron-dense than the sulfonates on SR, resulting 

in a dye with less overall electron density. The reduction in repulsive interactions with the RNA 

backbone and the size of groups on the extended ring would account for the small relative increase in 

enthalpy and entropy, respectively. It also makes sense that RB would have a lower Kd for SRB-2 because 

the original selection target had a PEG-anchor at the para position rather than a negative charge and 

therefore possessed an overall neutral charge like RB. The NMR spectra support this as only minor 

chemical shift changes are observed between the two complexes. 
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Figure 2.14: Electrostatic potential surfaces for sulforhodamine B (SR), rhodamine B (RB), 

sulforhodamine 101 (SR101), tetramethylrosamine (TMR), patent blue V (PBV) and fluorescein (FL). 

The upper charge limit was set by averaging the maximum positive charges in all ligands calculated. The 

lower charge limit was set by averaging the minimum negative charges in all ligands calculated and 

subtracting one standard deviation.  
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Figure 2.15: Electrostatic potential surfaces of 5-biocytin tetramethylrhodamine, 6-biocytin 

tetramethylrhodamine (B-TMR), Atto rhodamine 101 biotin (AR), 9-aminoacridine (9AA), Acridine 

orange (AO), Pyronin Y (PY), Atto 495, Rhodamine 6G (R6G), Rhodamine 110 (R110) and Xylene cyanol 

FF (XC). 

The upper charge limit was set by averaging the maximum positive charges in all ligands calculated. The 

lower charge limit was set by averaging the minimum negative charges in all ligands calculated and 

subtracting one standard deviation. 

 

It can also be observed from the fluorescence data in Table 2.2 that SR101 has a similar 

fluorescence increase but a smaller red shift compared to SR. The smaller red shift results from SR101 
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being more rigid in its free conformation. This would fit with the ITC results in Table 2.3, which indicate 

that the entropy loss upon binding is relatively small for SR 101. This is in agreement with the observed 

Kd values as SR101 is expectedly higher than SR as the tighter the binding pocket, the stronger the π-π 

stacking interactions will be, resulting in a larger fluorescence redshift. There is also a significant 

decrease in the entropy loss of SR101 compared to SR. This decrease in entropy loss can be attributed to 

SR101 having a more rigid ring structure in place of the freely rotating ethyl groups in SR, the more 

ordered structure results in a smaller entropy loss upon binding. Solvation entropies may also differ 

between these two ligands. The enthalpy change for SR101 binding is also smaller compared to SR, 

which can also be explained by the steric interactions between the bulkier rings, resulting in less ideal π-

π stacking with the xanthene ring structure of the dye. NOESY experiments indicate that the aptamer is 

unable to form some contacts with SR101 that are observed with SR and RB, indicating that SR101 

doesn’t fit as well in the aptamer binding pocket. 

 

2.6.3 Negatively Charged Group is Required for Selectivity but is Likely Not Directly Involved 

in Binding 

TMR binding to SRB-2 resulted in the most significant chemical shift changes in the NOESY 

spectrum as compared to SR binding. However, even with significant over-titration, multiple 

conformations appear to be present based on the number of H5-H6 crosspeaks observed. There are also 

fewer NOEs observed in the SRB-2/TMR NOESY spectrum than in the SRB-2/SR spectrum, indicating that 

TMR is not inducing the formation of a specific binding pocket at all. TMR is known, from studies with 

MGA, to intercalate between base pairs of double-stranded RNA [124]. Similar observations were made 

for the NOESY spectra of PY, 9AA and Atto 495 (Figures A.7, A.8, A.9). Overall, this suggests that all of 

these small, positively charged dyes intercalate rather than participate in specific adaptive aptamer 
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binding. These observations also indicate that selective binding of SRB-2 is only possible in the presence 

of a negatively charged ring well.  

SR101 and AR101-B differ slightly in that the para sulfonate is replaced by biotin, and the other 

is missing entirely. Little difference is observed in the Kd for complexation with SRB-2 between these two 

dyes, despite a marked change in the electrostatic potential map. This suggests that the negative charge 

often found in the ortho position of these dyes plays no significant role in binding and likely interacts 

mostly with solvent, similar to the phosphate groups of ATP when bound to the ATP aptamer [117]. 

Aside from the biocytin group, B-TMR and SR differ in that B-TMR has a carboxyl group instead of a 

sulfonate on the single ring and diaminomethyl groups in place of diaminoethyl groups. Based on the 

SRB-2 binding observations with AR101-B and SR101, the difference in charged groups is expected to 

have little impact. However, despite B-TMR being more structurally similar to RB, the Kd for 

complexation with SRB-2 is more similar to that found for SR using ITC. This could be due to the 

presence of the smaller methyl groups in B-TMR versus ethyl groups in SR, however this cannot be 

concluded for certain as these Kd values were determined using different methodologies (SPR vs. ITC). 

 

2.6.4 Size and Shape of the Alkyl Groups are Crucial for Binding 

Concerning the nature of these alkyl groups, the SRB-2 aptamer has specific requirements. 

Fluorescein was used in a counter selection step during SELEX [37], resulting in the removal of 

sequences capable of binding to a dye with electron-withdrawing oxygens rather than the tertiary 

amines found in SR. The resulting consensus sequence would be expected to have electrostatic 

interactions with the RNA backbone preventing the correct folding of the aptamer in this case. Dyes 

such as Xylene cyanol FF (XC) and Patent Blue V (PBV) are missing the bridging oxygen in the middle ring, 

resulting in a propeller-like structure rather than a planar structure. It is probable then that stacking 

interactions are much less ideal in this case due to its freedom of mobility and steric hindrance by the 
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additional methyl groups adjacent to the aminoethyl groups. Interestingly, PBV has been shown to bind 

SRB-2 weakly [76], indicating a molecule of this shape can fit in the SRB-2 binding site. However, XC 

cannot bind, and the only difference is that PBV has the traditional diaminoethyl groups while XC has 

aminoethyl groups, which are secondary amines. Rhodamine 6G has the same aminoethyl groups as XC 

and also cannot bind, despite being planar like SR. Rhodamine 110 has primary amines and likewise is 

unable to bind. This suggests that, despite the similarities in electron density, SRB-2 is selective for 

tertiary amine groups. This fact indicates that with respect to SR101, the steric hindrance of the bulky 

ring groups is the limiting factor in binding, likely preventing the aptamer from coming in close enough 

contact to the negative charges for them to have an effect on binding affinity. Supporting this idea are 

the association and dissociation rates also obtained in LSPR experiments. As seen in Table 2.5, the 

difference in binding constant between TMR-B and AR101-B clearly comes from the association rate. 

The aptamer’s structure may have to adapt and strain further to allow AR101-B to bind compared to 

TMR-B, resulting in a slower rate of binding. The ligands are released by the aptamer at a comparable 

rate due to their relative similarity in charge distribution. 

 

2.6.5 SRB-2 Binding is Salt and Concentration Dependent 

Adaptive binding of aptamers is commonly dependent on counter-ions for stabilization of the 

negatively charged backbone of RNA. In order to investigate this further, ITC experiments were 

conducted in the absence of divalent cation. Binding was not observed under these conditions for SR, 

SR101 or RB. Some weak binding was observed for TMR, which is likely due to its positive charge 

interacting considerably more favourably with the RNA backbone than the other dyes, all of which 

contain negative charges. However, NMR titrations show ~1:1 binding in the absence of magnesium, 

indicating that a ~10 to 50 fold higher concentration of aptamer is enough to push the system to bind.  
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ITC experiments were also run at 500mM KCl (Table 2.4) to observe the ability of excess 

monovalent cations to assume the role of divalent cations. Binding was observed in the presence of high 

KCl for all ligands but with lower affinity than with magnesium present. This indicates that a high enough 

concentration of monovalent cations can result in enough positive charges being present in appropriate 

positions to assume the role of divalent cations in ligand binding, albeit less effectively. 

 

2.6.6 SRB-2 Lacks any Easily Discernable Tertiary Structure Elements  

In attempts to further characterize the structure of SRB-2 and solidify the categorization of its 

ligands into two distinct groups, DSC and CD experiments were performed.  

The rationale behind the DSC experiments was to see if the tertiary structure formed upon 

ligand binding was able to increase the melting temperature (Tm) of SRB-2 when bound to ligands 

involved in adaptive binding versus intercalation. Results from isotherms of bound and unbound SRB-2 

(Figure 2.20 A) clearly show that the secondary structure of the aptamer melts at 90 °C. This is relatively 

high for nucleic acids and can certainly be attributed to the presence of the highly stable UUCG 

tetraloop. In comparing the isotherms of SRB-2 bound the SR and TMR (Figure 2.20 B), their tertiary 

structures unfold at approximately 67 °C and 69 °C, respectively. They also have similar heat capacities, 

with TMR’s being slightly higher. Based on knowledge from other methodologies, we concluded that the 

slightly higher Tm and heat capacity of TMR is very likely due to electrostatics rather than formation of 

stable tertiary structures, and therefore, this line of investigation was abandoned due to the lack of 

obvious structural differences. 

CD was similarly used to assess tertiary structure formation upon SRB-2 binding of the ligands SR 

and TMR. An ellipticity change is observed in Figure 2.22 A that expectedly indicates stabilization of the 

aptamer structure when bound to either SR or TMR [195]. However, the general topology of unbound 

SRB-2 and the two bound conformations are quite similar to each other and are analogous to literature 
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CD spectra for double-stranded nucleic acids [196,197]. This indicates that no significant tertiary 

structure elements such as a G-quadruplex exist in this sequence before or after ligand binding. UV 

absorbance spectra are also nearly identical for the three samples tested (Figure 2.22 B). Small 

differences in SR compared to TMR and unbound can likely be attributed to minute differences in the 

aptamer structure or to the ligand itself.   

It can be concluded from these methodologies that notable tertiary structure elements such as 

G-quadruplex are not responsible for ligand binding of SRB-2. 

 

2.7 Conclusion 

In summary, we have shown that an ideal ligand for SRB-2 has several requirements. For optimal 

binding affinity, the amine groups must have small alkyl constituents that are able to participate in 

hydrophobic interactions but are not so large as to interfere with the aptamer’s binding conformation. 

The absence of a negative charge in the para position on the single ring also contributes positively to 

binding affinity. A negatively charged group on the ortho position has little impact on binding affinity but 

is required for selective binding of SRB-2 as repulsive interactions with the RNA backbone prevent these 

ligands from intercalating in base paired regions of the aptamer. As observed with AR101-B, bulky amine 

constituents can also confer selective binding of SRB-2 in the absence of this negative charge but at a 

considerable loss of binding affinity. Taking these observations into account, rhodamine B was shown to 

be the SRB-2 ligand with the best properties among those tested. We also show that SRB-2 binding is 

strongly dependent on divalent cations at low concentration and that its binding mechanism does not 

involve a G-quadruplex or formation of helical regions. 
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Chapter 3: Characterizing the Solution Structure of the Sulforhodamine 

B Binding RNA Aptamer by NMR Spectroscopy 

 

All experiments outlined in this chapter were performed and analyzed by the candidate. 

 

3.1 Chapter Abstract 

Aptamers are valuable tools in a variety of biotechnological applications, ranging from 

biosensing to in vivo cell imaging. Studying the structure of these molecules can further our 

understanding of the structure and kinetics of nucleic acid-ligand binding. The SRB-2 aptamer is a 

polyanionic molecule that binds a ligand with an overall negative charge, making this an interesting 

binding mechanism to characterize. Here, we show NMR experiments performed on the SRB-2 aptamer 

with the goal of working towards a solution structure. An unlabelled sample, as well as three samples 

selectively labelled on a single type of nucleotide (A, C and U) were synthesized and analyzed using a 

variety of pulse programs. These included multiple variations of HSQC, NOESY, TOCSY and COSY 

experiments. Some partial assignments were made, but ultimately the data obtained were not sufficient 

for unambiguous assignment. This structure remains an interesting one to study, and initial NMR studies 

show some promise, especially if more optimal experimental conditions are found.  

 

3.2 Introduction 

Structure determination of biomolecules is invaluable to researchers as it can reveal the 

intricacies of how these molecules move, fold, function and interact with other molecules. With respect 
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to aptamers, for example, this information can then be used to elucidate unknown binding mechanisms 

and to rationally design mutations and/or ligands. This may result in optimization of the binding 

properties discussed in Chapter 2 for use in desirable applications such as biosensing or cell imaging. As 

discussed in Chapter 2, the SRB-2 aptamer is of particular interest due to both its ligand promiscuity and 

ability to bind ligands with an overall negative charge. For these reasons, we set out to investigate the 

structure of this aptamer using NMR spectroscopy.  

NMR spectroscopy is a powerful tool to study biomolecules in solution. As shown in Chapter 2, it 

is quite useful for mapping structural changes in varying solution conditions. It will also be shown in 

Chapter 5 that it is a helpful technique to use, particularly in combinations with others like CD, to assess 

the presence of specific sequence motifs such as G-quadruplex or triplex DNA [198,199]. But perhaps 

most valuable is its ability to determine high-resolution 3D structures, offering an alternative, and often 

complementary, method to x-ray crystallography [200,201]. NMR is particularly useful for studying 

molecules that are poor candidates for crystallization, such as those that are flexible or have 

unorganized intermolecular interactions. Proteins have a diverse set of functional groups that can result 

in charge complementarity between molecules, while nucleic acids are primarily covered in negative 

charges which results in intermolecular repulsion. This makes it difficult to pack them into an 

appropriate crystal lattice structure for x-ray analysis [202]. For this reason, a much higher percentage of 

nucleic acid structures (37.8%) are determined by NMR compared to proteins (7.5%) and protein-nucleic 

acid complexes (18.0%) as shown in Table 3.1 [203]. Cryo-EM is another methodology for structure 

determination that is currently on the rise [204]. It has proven quite powerful, particularly in studying 

membrane-bound proteins, which previously lacked a reliable methodology for structure determination. 

It is a promising technique for studying nucleic acids as well, though only a handful of structures are 

available thus far [203]. NMR is the technique of interest in this case, so some assignment strategies will 
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be reviewed below. The general scheme for this overview is loosely based on volume 338 of the 

Methods in Enzymology book series [205].  

 

Table 3.1: PDB Statistics by Molecular Type as of September 21st, 2021 [200]. 

Molecular Type X-ray NMR EM Multiple Neutron Other Total 

Protein (only) 141397 11638 5718 176 70 32 159165 

Protein/Oligosaccharide 8370 31 913 5 0 0 9319 

Protein/NA 7468 271 1943 3 0 0 9685 

Nucleic acid (only) 2362 1369 53 8 2 1 3802 

Other 149 31 3 0 0 0 183 

Oligosaccharide (only) 11 6 0 1 0 4 22 

 

 A critical type of experiment in the characterization of 3D molecule structures is nuclear 

Overhauser effect spectroscopy (NOESY). Through-bond couplings (J-coupling) are studied in most NMR 

experiments, but NOESY takes advantage of 1H-1H dipolar couplings. This type of coupling provides a 

means for cross-relaxation to occur, resulting in the detection of resonances that are close in space, 

regardless of connectivity [206,207]. Peak intensity, I, can then be correlated to inter-proton distance, r, 

by the sixth inverse power, (I α 1/r6), which in turn can be used to set distance restraints for structure 

calculations [208]. NOESY experiments are extremely useful for studying tertiary structures of 

biomolecules or receptor-ligand interactions because it allows resonances that are very far apart in the 

molecule or in different molecules entirely to be correlated.  

With respect to structure determination of nucleic acid-ligand complexes, the first step is to 

prepare a sample of the sequence fully bound to ligand. To determine a high-resolution structure, there 

must be only a single conformation present to prevent spectral overlap and ambiguity in the resonance 

assignment. This is done by titrating of the sequence of interest with aliquots of lyophilized ligand. 1H 

NMR spectra are acquired for each aliquot and the titration continues until changes in the imino region 
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of the spectrum are no longer observed upon addition. A chart illustrating the chemical shift ranges of 

nucleic acids is shown in Figure 3.1.  

 

Figure 3.1: Proton chemical shift ranges of nucleic acids. 

Blue and red boxes show the approximate literature chemical shift ranges for each type of proton in 

RNA and DNA. A- Adenine, G- guanine, C- cytosine, T- thymine, U-uracil. 

 

Resonance assignment in unlabelled nucleic acids is possible but generally limited to smaller 

molecules. This type of assignment involves the contemporary through bond experiments DQF COSY 

[209] and TOCSY [193], as well as through-space NOESY [191] experiments. One generally begins by 

acquiring a NOESY in 90% H2O/10% D2O [210], since the sample is titrated in these conditions to observe 

changes of the exchangeable protons. This NOESY spectrum is used to establish base-pairing by 
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assigning imino-imino and amino-amino NOEs. It is also used to assign imino to base and imino to sugar 

correlations. The sample is then lyophilized, resuspended in 100 % D2O and NOESY, TOCSY and DQF 

COSY experiments are acquired. The D2O experiment is the primary source of sequential assignments. 

This is done by ‘walking’ through the H6/H8-H1’ region in the NOESY, as described in Figure 3.2. The 

H6/H8-H2’ region is also useful for this purpose, particularly in DNA where H2’ and H2” are well resolved 

from the other sugar protons. Methyl groups from thymine residues may also aid in the sequential 

assignment of DNA. TOCSY and/or COSY experiments allow the identification of C/U base spin systems 

(H5/H6) that also appear in this region. TOCSY and COSY are also used to identify sugar spin systems and 

provide information about sugar puckering. Lastly, 31P experiments may be performed on unlabelled 

samples since this isotope, which has the highest natural abundance, is an NMR-active nucleus. These 

experiments, usually heteronuclear correlation sequences (HETCOR) [211], are used to confirm or 

extend sugar spin systems and assign phosphorus resonances. In short sequences, the experiments 

listed may be sufficient for structural determination. However, in longer sequences, the spectral overlap 

becomes too great and additional data is required.  
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Figure 3.2: Important interactions in RNA backbone assignment. 

The NOEs used to ‘walk’ between sugars and bases (H1’-H6/H8) are shown with red arrows. The H5-H6 

TOCSY cross-peaks are shown with green arrows. These signals are used to differentiate pyrimidines 

from purines in the NOESY walk. Based-paired regions of RNA can be sequentially assigned using imino-

imino interactions between stacked bases. An example of this type of interaction is shown with a blue 

arrow. 

 

Isotopic labelling with 13C  and 15N is an extremely powerful method for deconvolution of more 

complex spectra, particularly for RNA. The enzymatic synthesis of RNA by T7 RNA polymerase allows for 

simple incorporation of isotopically labelled nucleotide triphosphates which can be isolated from E.coli 
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cells grown on 15N ammonium chloride and 13C glucose, for example. This allows for simple, uniform 

labelling of single or multiple nucleotide types. Labelling of DNA is not so straightforward due to the lack 

of viable precursors readily available for solid-phase phosphoamidite chemistry, though it does have the 

advantage of labelling by position rather than being limited to the type of nucleotide. SRB-2 is an RNA 

aptamer, so we will focus on RNA methodologies here.  

As indicated above, isotopically labelled nucleoside triphosphates are incorporated into RNA 

sequences via in vitro transcription. As a result, any combination of the four bases may be labelled in a 

given synthesis. Because the ligand titration is performed in water, it is generally most efficient to run all 

experiments that are required to be in H2O first, then lyophilize and switch over to D2O. For this reason, 

exchangeable proton/nitrogen correlations are generally acquired first.  

2D 1H-15N-HSQC experiments [212,213] are used to correlate imino (G N1H, U N3H) and amino 

(A N6H2, C N4H2, G N2H2) protons to their respective nitrogen atoms. A 2D HNN COSY [214] or variation 

thereof may be used to directly identify any hydrogen bonds involving two nitrogen atoms. Sequential 

assignment of exchangeable proton/nitrogen resonances in based paired regions of RNA may be 

accomplished using 3D 1H-15N -NOESY-HSQC [213] type experiments. Edited versions of 3D 1H-15N-

NOESY-HSQC may be used to correlate imino and amino resonances to non-exchangeable protons. This 

can also be done using a through bond experiment such as HCCNH or HCCNH-TOCSY [215].  

Once information about exchangeable resonances is acquired, the next step is the sequential 

assignment of sugar-base correlations. There are two main strategies for doing this, NOE-based 

assignment and through-bond coherence transfer assignment. NOE-based assignment involves filtered 

and edited type NOESY experiments, where protons attached to 13C are either filtered out or selected 

for, respectively. Filters can be applied in both F1 and F2, resulting in experiments selecting for protons 

that originate on a specified nucleus, end up on a specified nucleus or both. These filters are most often 

applied to 2D NOESY [191] or 3D 1H-13C-HSQC-NOESY pulse sequences. With a fully labelled sample, a 3D 
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1H-13C-HSQC-NOESY can also be used to distinguish NOEs originating from the (unlabelled) ligand. The 

through-bond approach involves triple resonance experiments that allow correlation between the base 

and sugar of each nucleotide, including HCN [216], HCNH [217], HCNCH [218] experiments. HMBC [219] 

may also be used to correlate H2/H8 protons in purines. Sequential sugar-phosphate assignments may 

be completed using 1H, 13C, 31P experiments such as HCP, PCCH-TOCSY and HPHCH [220–224].  

After sequential assignment, the next step is to assign carbon resonances and the remaining 

sugar protons. 2D 1H-13C-HSQC [212,213] experiments are used to identify carbon-proton spin systems, 

and remaining carbon and proton resonances, particularly those in the sugars, are assigned using either 

HCCH-TOCSY [225] or HCCH-COSY [226] experiments. Finally, 31P resonances are assigned via HETCOR if 

1H, 13C, 31P experiments were not already acquired. 



79 
 

 

Figure 3.3: Heteronuclear through-bond NMR experiments used for resonance assignment of nucleic 

acids. 

The transfers of magnetization in each type of experiment are shown by arrows. Relevant nuclei are 

colored to match the name of their pulse sequence. A) HNN-COSY [214], which correlates the hydrogen 

bond donor imino group in either G or U to the hydrogen bond acceptor nitrogen in C or A (shown in red 

for G-C base pair). Exchangeable protons can also be correlated to non-exchangeable protons in HCCNH 

or HCCNH-TOCSY [215] experiments. An example of an H5-H3 correlation in cytidine is shown in blue. B) 

HCCH-TOCSY [225] (shown in red) and COSY [226] experiments are used to assign sugar spin systems. 

Pulse programs for detection of 13C are also available. C) Correlation of sugar to base resonances may be 

achieved using triple resonance experiments such as HCNCH [218] (shown in red) and HCNH [217] 
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(shown in blue, overlap with HCNCH is shown in purple). It is also possible to obtain the same 

information from two separate HCN [216] experiments, one optimized for the ribose and the other 

optimized for the base. D) HCP [221–223] experiments correlate H3'/C3', H4'/C4' on the 5' side and 

H4'/C4' and H5',H5''/C5' resonances on the 3' side of a given phosphorus atom. An HCCP-TOCSY 

[220,221,224] experiment may be used to extend assignments to the rest of the ribose.  

 

This is by no means a step-by-step guide, as the experiments required to assign RNA will vary 

significantly with sequence complexity. There are also many other pulse sequences available that may 

be useful depending on gaps of information that need to be filled for a particular project. Also, it is 

important to note that the types of labelled sequences synthesized will affect the relevant pulse 

programs that one may use. A common strategy is to acquire spectra with fully labelled 13C, 15N and/or 

15N samples and either single or dual nucleotide 13C, 15N labelled samples to allow unambiguous 

assignment of resonances belonging to each type of base. That being said, isotopic labelling is rather 

expensive, so it is generally the goal of a researcher to assign the sequence with as few labelled samples 

as possible. 

 Another valuable labelling technique not covered above is deuterium (2H) labelling. For nucleic 

acids, this generally refers to either site-specific ribose (D3’, D4’, D5’ and D5”) or base 

deuteration/enrichment of perdeuterated bases. Partial deuteration of the ribose simplifies a NOESY 

spectrum significantly, as removing spins unimportant for sequential assignment drastically reduces the 

amount of dipolar relaxation experienced by the other protons, decreasing signal linewidth [227]. Due 

to the established lability of H8 protons, particularly under alkaline conditions, it is possible to either 

selectively deuterate fully protonated purine bases or selectivity proton-enrich perdeuterated bases 

[228]. Procedures have also been reported for H5 or H6 deuteration with pyrimidine 5′-

monophosphates [229,230]. This type of labelling results in relevant NOESY regions, including only 
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signals from particular bases, thereby simplifying assignment. Deuterating the H5 or H6 position has an 

added linewidth reduction benefit, similar to site-specific ribose labelling. This is due to a combination of 

large dipolar and scalar couplings between these positions [231].  

 In our work with the SRB-2 aptamer, we acquired the standard homonuclear spectra listed 

above, as well as some of the heteronuclear spectra discussed with three different single-nucleotide 13C, 

15N samples (A, C, U). Some regions of these spectra had unusually broad peaks, which is generally the 

result of chemical exchange. In fast chemical exchange, only one signal that represents the average of 

the contributions from each environment is observed. In slow chemical exchange, multiple sharp signals 

for each environment are observed. In intermediate exchange, one or multiple broad peaks may be 

observed. Because this is an aptamer-ligand complex, the chemical exchange and hence broad lines 

being observed is likely due to the presence of at least one additional aptamer conformation. This, 

among other reasons, resulted in the spectra listed above being of insufficient quality to assign 

unambiguously. 

 

3.3 Materials and Methods 

3.3.1 Preparation of RNA Samples and Dyes 

The SRB-2 RNA was synthesized enzymatically using a T7 RNA polymerase and a double-

stranded synthetic DNA template (Integrated DNA Technologies, Inc., Coralville, Iowa). The sequences 

used were as follows: 

SRB-2 template DNA:  

5’-GGGACCTGAGGCGGTTAACCTTGCGCCTCTCCATCATCGCCGAAGCGAGGTCCCTATAGTGAGTCGTATTA-3’ 

SRB-2 coding DNA:  

5’-TAATACGACTCACTATAGGGACCTCGCTTCGGCGATGGAGAGGCGCAAGGTTAACCGCCTCAGGTCCC-3’ 
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A single base-pair substitution in the original sequence of SRB-2 (A3 –> G3 and U52 –> C52) was 

introduced to increase transcriptional yield, as the presence of three consecutive G residues at the 

beginning of sequence is thought to increase initiation of transcription [187,188]. RNA was transcribed 

using the recipe listed in Table 2.1, and labelled samples were synthesized by incorporating the 

respective labelled nucleotide triphosphates in place of their unlabelled version. Single nucleotide 

labelled samples were synthesized with A, C and U. The RNA was purified on a 10% Urea PAGE gel and 

the band containing the aptamer was cut out. The RNA was eluted from the gel by crush & soak in 

300mM NaCl or by electroelution. This was followed by clean-up on a HiPrep 16/10 DEAE FF anion-

exchange column (GE Healthcare, Uppsala, Sweden) and desalting on a HiPrep 26/10 Desalting column 

(GE Healthcare, Uppsala, Sweden). The RNA was precipitated with 70% ethanol prior to running each 

column. Pure samples obtained from the desalting column were then lyophilized and dissolved in 500μL 

of 10 mM potassium phosphate and 10 mM KCl (90% H20/10% D2O). 

 

3.3.2 NMR Experiments 

Lyophilized aliquots of Sulforhodamine B (Life Technologies, Eugene, OR) were added to the 

90% H20/10% D2O samples to titrate the RNA to slightly above a 1:1 ratio. Once experiments examining 

exchangeable resonances were performed, the samples were dried by lyophilization and re-dissolved in 

500 μL of 99.996% D2O (Cambridge Isotopes) to perform experiments on non-exchangeable resonances. 

All spectra were collected on a Bruker DRX-600 spectrometer equipped with an HCN triple-resonance, 

triple-axis PFG probe. Quadrature detection for the indirect dimensions in multidimensional 

experiments was achieved using the States-TPPI method [189]. Samples in 90% H2O/10% D2O that were 

used to observe exchangeable protons were acquired at 277 K, and water suppression was achieved 

using a 11̅-spin echo [190]. As for the experiments in D2O that were used to observe non-exchangeable 
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protons, 2D NOESY [191], 2D CITY-TOCSY [193] and DQF COSY [209] were run with presaturation solvent 

suppression [192]. Double half x-filtered and F2 half x-filtered NOESY experiments [232,233] used the 

WATERGATE suppression sequence [234]. All other heteronuclear experiments had echo-antiecho 

coherence selection where solvent signals are suppressed using the inherent dephasing effects of pulsed 

field gradients [235]. All 2D NOESY spectra [191] were acquired with a mixing time of 150 ms, and TOCSY 

experiments were acquired with a mixing time of 50 ms. All NMR samples had a volume of 500 μL and 

were read in standard 5 mm NMR tubes. The labelled C sample was an exception with a volume of 200 

μL and was read in a 5mm Shigemi tube with 8mm bottom matched to D2O. Relevant pulse programs 

can be found in Appendix B. 

 

3.4 Results 

3.4.1 Homonuclear NMR Experiments 

As discussed in Chapter 1, aptamers are known to use an adaptive binding mechanism [117–

122]. This means that they undergo a significant conformational change upon binding their ligand. For 

this reason, the first step of the NMR studies was to titrate an SRB-2 sample with SR. This was done by 

preparing three lyophilized aliquots of ligand that each contained enough ligand to bind one-third of the 

RNA sample. 1H NMR spectra were acquired for the RNA sample on its own (Figure 3.4 D) and after each 

aliquot of SR was added (Figure 3.4 A-C). The imino range of these spectra is shown in Figure 3.4 

because these protons have the highest degree of variation in NMR when tertiary structure is formed or 

altered. These resonances can exchange with the solvent and have inherently broad lines as a result. 

They are also mostly unobservable in NMR in the absence of hydrogen bonding. In adaptive binding, the 

aptamer folds tightly around the ligand. This results in more opportunities for imino protons in single-

stranded regions to hydrogen bond with other parts of the molecule and protects imino protons in 

general from being exposed to solvent. Therefore, observing new peaks forming and/or existing peaks 
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sharpening in this region is a good way to observe changes in nucleic acid structures upon binding 

ligands. For SRB-2, it was observed that the linewidths of the peaks decreased throughout the titration, 

and clear changes in chemical shift and intensity of peaks could be identified. This suggests a change in 

conformation is occurring upon ligand binding.  

 

Figure 3.4: 1D titration of 1 mM SRB-2 with SR. 

Imino proton range showing the change in structure upon binding of the ligand in three aliquots. A) SRB-

2 fully bound, B) SRB-2 two-thirds bound, C) SRB-2 one-third bound, and D) SRB-2 completely unbound. 

 

 While the sample was still in 90% H2O/10% D2O, a 2D NOESY was acquired (Figure 3.5). Initially, 

NOESY experiments may be useful in assessing the likelihood of assignment based on the number of 

NOEs that are present and their resolution. Additionally, folding simulators such as UNAfold [236] are 
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often used to predict secondary structure formation in nucleic acids and looking at the number of G and 

U imino resonances present may give an indication of whether or not predicted stems are forming. 

Ultimately, the NOESY in 90% H2O/10% D2O is used to assign NOEs involving imino and amino protons.  

With respect to SRB-2, a significant number of NOEs from each imino proton were observed, 

even at lower RNA concentrations. Partial assignments of the stem regions were made from these NOEs, 

including unambiguous assignment of the UUCG tetraloop as shown in Figure 3.5 B. After the acquisition 

of this experiment, the sample was lyophilized and transferred into D2O.  

 

 

Figure 3.5: NOESY of 1.8 mM SRB-2 bound to SR in 90% H2O/10% D2O. 

A) Full spectrum. B) Imino-to-imino region. Assignments for the UUCG tetraloop determined in Chapter 

4 are shown in red, and U H3 protons are labelled blue based on chemical shifts observed in the 1H-15N 

HSQC spectrum. 
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Recalling the initial titration, a clear change in conformation was observed. However, we must 

be sure that this is a single conformation and that an equilibrium of multiple conformations is not what 

was observed. When multiple conformers are present, the resulting overlap renders multidimensional 

spectra unassignable. In order to determine whether or not SRB-2 was in a single bound conformation, a 

TOCSY in 100% D2O was acquired (Figure 3.6). Cytosine and uridine bases have H5 and H6 protons, 

giving rise to a strong cross-peak in TOCSY experiments due to the 3-bond j-coupling. Therefore, the 

number of H5-H6 cross-peaks observed in a TOCSY is correlated to the number of U and C residues in 

the sequence. If significantly more peaks are observed, then there a likely multiple conformations 

present. For example, in the SRB-2 spectrum, approximately 32 peaks were counted in this region. There 

are 16 cytosine and 9 uridine residues. Therefore, the number of peaks observed exceeds the expected 

number, which indicates that multiple conformations are likely present. Having a single conformation 

present is generally a required condition for assignment. Due to several of these peaks being 

substantially weaker than most, we carried on with NMR experiments and classified these peaks as 

being from alternative conformations as demonstrated in Figure 3.6. 
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Figure 3.6: TOCSY of 0.6 mM SRB-2 bound to SR. 

A) Full spectrum. B) Close-up of the H5-H6 region. Strong peaks that are likely from the dominant 

conformation are marked as red, and weaker ones from other conformations are marked as blue.  

 

 A DQF COSY was acquired as well (Figure 3.7), which provides similar information to the TOCSY 

with respect to H5-H6 cross-peaks. The TOCSY, however, tends be easier to resolve in this respect due to 

the peaks being in-phase. Because of the antiphase multiplet structure observed in COSY [237], 

destruction of overlapped, opposite phase signals is possible, resulting in more difficult assignment. 

However, COSY experiments are extremely valuable when doing structure calculations because of the 

information they provide regarding J-coupling constants. For example, the presence and magnitude of  

3JH1′ – H2′ and 3JH3′ – H4′ couplings indicates the type of sugar pucker that a particular residue has adopted 

(C3′-endo, C2′-endo or an intermediate) [238]. In this spectrum, 22 H5-H6 cross-peaks were counted. 

This is less than the expected 25, but due to the antiphase multiplet structure, it is possible that some of 

the signals in close proximity were cancelling each other.  
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Figure 3.7: DQF COSY of 0.6 mM SRB-2 bound to SR. 

Positive peaks are shown in black and negative peaks are shown in red. 

 

Now that the sample was in D2O, a second NOESY was acquired, this time optimized for the 

chemical shift range of non-exchangeable protons in the RNA and ligand (Figure 3.8). Non-exchangeable 

protons are plentiful in nucleic acids, resulting in the NOESY in D2O containing a vast amount of 

information. In short sequences, residues are sequentially assigned using a sequential walk in the 

H6/H8-H1’ region of the spectrum. The location and orientation of the sequence in this assignment 

process is determined with the help of the TOCSY as it highlights C and U residues. Once the backbone 

sequence has been determined, assignments are extended throughout the ribose, resulting in a large 

number of NOEs to be used in structure calculations. Therefore, with regards to short oligonucleotide 

sequences, the NOESY can be responsible for the overwhelming bulk of assignments. This highlights the 

significance of acquiring a high-resolution NOESY spectrum in D2O. In larger sequences such as SRB-2, 

the overlap is significant, and unambiguous sequential assignment using the base-sugar walk is not 
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possible. However, the NOESY is still critical as other experiments such as filtered/edited NOESYs are 

often overlayed on it for assignment. The spectrum acquired for SRB-2 is of decent quality and many 

strong NOEs are present, indicating that the SR-SRB-2 complex is highly structured. However, there are 

regions in this spectrum with broad peaks. Some of these may be a result of overlap, but this also 

suggests, like the TOCSY, that there is some chemical exchange happening here.  

 

Figure 3.8: NOESY of 1.8 mM SRB-2 bound to SR in D2O. 

A) Full spectrum. B) Close-up of the H1’ to H6/H8 region. Mixing time: 150ms.  

 

SRB-2 was originally selected using a buffer that contained MgCl2, so in an attempt to reduce the 

chemical exchange observed in Figure 3.8, we acquired a NOESY in D2O that contained 2 mM MgCl2 

(Figure 3.9). Some minor changes in the spectrum were observed when compared to the spectrum 

acquired in the absence of MgCl2, but this did not help significantly with the problem of spectral overlap. 

MgCl2 was not used in future experiments because despite its role as an important cofactor, Mg2+ is also 

known to catalyze RNA degradation [239].  
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Figure 3.9: Effect of Mg2+ on NOESY of 0.8 mM SRB-2. 

A) H1’-H6/H8 region of NOESY in the absence of Mg2+ B) H1’-H6/H8 region of NOESY with 2 mM MgCl. 

Mixing times: 150 ms. 

 

In another attempt to reduce the amount of chemical exchange observed, we took a cue from 

Chapter 2 and acquired a NOESY in D2O of SRB-2 bound to the best ligand, RB (Figure 3.10). This 

spectrum looked near identical to the one with SRB-2 bound to SR in Figure 3.8, albeit with a slightly 

lower concentration. Little to no difference was observed in the amount of structural heterogeneity. 
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Figure 3.10: H1’-H6/H8 region of NOESY in D2O of 1.3 mM SRB-2 bound to RB. 

A significant degree of spectral overlap is observed even when a ligand with higher affinity, RB, is used in 

place of SR. Spectrum was acquired with 150 ms mixing time.  

 

In addition to NOEs from the RNA, the intra- and inter- molecular NOES from the ligand are also 

clearly observed in Figure 3.8. In order to determine which signals in the NOESY are coming from the 

ligand and which cross-peaks involve interaction with the RNA, a TOCSY was acquired for 

sulforhodamine B (Figure 3.10). There appear to be a number of NOEs between the ligand and the RNA, 

and this is especially obvious with the ethyl groups from the ligand, as there are no resonances in RNA 

that show up at the same chemical shift (~0-3 ppm) as the ligand’s ethyl groups. 
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Figure 3.11: TOCSY spectrum of 1 mM sulforhodamine B. 

This spectrum was acquired with a mixing time of 50 ms. Aromatic protons of SR are labelled in red and 

their locations on the ligand are indicated on the structure to the right. 

 

3.4.2 Homonuclear NMR Experiments Without Ligand 

In an effort to probe the native secondary structure of SRB-2, a NOESY in D2O (Figure 3.11 A) and 

a TOCSY (Figure 3.11 B) of SRB-2 in the absence of ligand were acquired. Due to the adaptive binding 

nature of aptamers, they tend to lack a significant amount of tertiary structure in the absence of ligand. 

It is therefore likely that only protons in structured (double-stranded) regions of the aptamer are 

observable under these conditions. This could potentially be useful in assignments by helping to 

distinguish residues that are in the stem regions of the RNA. These experiments are also very convenient 

to run as they are simply acquired using a sample that will later be titrated with ligand for further study. 
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Unfortunately, the number of TOCSY H5-H6 peaks observed in the SRB-2 spectrum did not match the 

number of C and U residues in base paired regions and the variance in the intensity of signals was quite 

large, which significantly limits the practicality of this experiment. In the NOESY spectrum acquired in 

D2O, similarly underwhelming results were obtained. An obvious reduction in the quantity of peaks was 

observed as expected. However, the signals remained somewhat overlapped and many are clearly 

TOCSY peaks. For a few peaks, it may be inferred that the residue they belong to is in a base-paired 

region, but ultimately there is not a lot of information provided here. 

 

 

Figure 3.12: NMR spectra acquired on 0.5 mM unbound SRB-2. 

A) Close-up of the H1’-H6/H8 region of the NOESY spectrum in D2O. B) Close-up of the H5-H6 region of 

the 2D CITY TOCSY.   

 

3.4.3 Heteronuclear NMR Experiments with Single-nucleotide Labelling 
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As discussed above, spectral overlap is great in sequences as large as SRB-2 and homonuclear 

experiments are not sufficient for structural determination. Therefore, we prepared isotopically labelled 

samples to gain additional information. Three samples were prepared, and each had a single type of 

nucleotide fully 13C and 15N labelled (i.e. all nitrogen and carbons atoms in the base and in the intra-

residue sugar). These are henceforth denoted as [13C 15N]-Ade, [13C 15N]-Cyt and [13C 15N]-Ura to 

represent the samples where adenine, cytidine and uridine are labelled, respectively.  

 

3.4.3.1 HSQC Experiments 

The first experiments acquired with each sample were two 13C HSQC experiments, one 

optimized for H1’ and the other for aromatic protons. These spectra are used to identify sugar carbon 

spin systems and proton/carbon aromatic spin systems, respectively. These spin systems are assigned 

using 3D HCCH-TOCSY/COSY experiments. Proton chemical shift information, particularly with respect to 

the aromatic protons, can also be used to aid in NOESY assignment. Spectra for the [13C 15N]-Ade sample 

are shown in Figure 3.12. The experiment optimized for the sugar is shown in panel A. H2 and H8 

aromatic proton regions from the aromatic optimized experiment are shown in panels B and C, 

respectively. There are 10 adenine residues in this sequence, but despite ~10 C2-H2 peaks being 

observed, there are 16 observed for both C1’-H1’ and C8-H8. This indicates a high degree of 

heterogeneity in these residues. 
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Figure 3.13: 1H-13C HSQC spectra of 0.7 mM [13C 15N]-Ade SRB-2 bound to SR. 

Optimized for A) C1’-H1’ B) C2-H2 and C) C8-H8. 

 

 Spectra for the [13C 15N]-Cyt sample are shown in Figure 3.13. The experiment optimized for the 

sugar is shown in panel A. H5 and H6 aromatic proton regions from the aromatic optimized experiment 

are shown in panels B and C, respectively. There are 16 cytidine residues in SRB-2, and similar to 

adenine, exchange is observed. This is not evident for the C1’-H1’ or C5-H5 regions, but at least 18 peaks 

are observed in the C6-H6 region.  

 

Figure 3.14: 1H-13C HSQC spectra of 0.5 mM [13C 15N]-Cyt SRB-2 bound to SR. 

Optimized for A) C1’-H1’ B) C5-H5 and C) C6-H6. 
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 Spectra for the [13C 15N]-Ura sample are shown in Figure 3.14. The experiment optimized for the 

sugar and in this case, the H5, are shown in panels A and B, respectively. The experiment optimized for 

H6 is shown in panel C. For the [13C 15N]-Ura sample, a 15N HSQC in 90% H2O/10% D2O (Figure 3.13 D) 

was acquired in addition to the 13C HSQC experiments. This HSQC not only provided the exchangeable 

nitrogen-proton correlations, but the proton chemical shifts also allowed for partial assignment of 

imino-imino NOEs in the NOESY in 90% H2O/10% D2O, as shown in Figure 3.5. A significant contribution 

from structural heterogeneity is again observed in these spectra. There are 9 uridine residues in SRB-2, 

but at least 12 peaks were counted in all regions of the 1H-13C HSQCs. Six were observed in the N3-H3 

range of the 1H-15N HSQC, which suggests that three U H3 protons are not involved in hydrogen bonding.  
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Figure 3.15: HSQC spectra of 0.9 mM [13C 15N]-Ura SRB-2 bound to SR. 

A) 1H-13C HSQC optimized for C1’-H1’ and B) C5-H5. C) 13C HSQC optimized for C6-H6. D) 1H-15N HSQC 

optimized for N3-H3. 

 

3.4.3.2 2D HCCH-COSY 

Also acquired for the [13C 15N]-Ura sample was a 2D HCCH-COSY (Figure 3.15). This experiment 

was acquired primarily to distinguish between uridine and cytidine residues in the 2D CITY-TOCSY 
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experiment. It also contains pertinent chemical shift information about sugars in U residues, however, 

3D TOCSY/COSY experiments will be required for a full assignment.  

 

 

Figure 3.16: 2D HCCH-COSY spectrum of 0.9 mM [13C 15N]-Ura SRB-2 bound to SR. 

 

3.4.3.3 Filtered and Edited NOESY Experiments 

One of the primary goals with these labelled samples was to help reduce overlap in the NOESY 

in D2O so that sequential assignments could be made. For this reason, several filtered and edited NOESY 

experiments were performed with each sample. These types of pulse programs allow for the selection 

or elimination of protons bound to isotopically labelled heteroatoms. The resulting spectra can be 

overlayed on the unlabelled NOESY spectrum in D2O, which allows for the classification of residue type. 

Two filtered NOESY spectra were acquired with the [13C 15N]-Ade sample. The first spectrum, shown in 
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Figure 3.16, is a 2D double half x-filtered NOESY, which has two separate filters, one in each acquisition 

dimension. This effectively filters out magnetization that originates and/or ends up on a proton bound 

to 13C.  

 

 

Figure 3.17: Double half-x-filtered NOESY of 0.7 mM [13C 15N]-Ade SRB-2 bound to SR. 

A) Full spectrum. B) Close-up of the H1’-H6/H8 region. Spectrum acquired with mixing time of 150 ms. 

 

 The second filtered NOESY acquired for the [13C 15N]-Ade sample is a 2D half F2 x-filtered NOESY 

(Figure 3.17). This experiment only has a filter in F2, resulting in signals that originate on an adenine 

being filtered out of the spectrum. In combination with the double half x-filtered NOESY, this may 

distinguish signals originating on an A from those ending up on an A. The spectra suffer from the same 

heterogeneity issues as described for the unlabelled sample. 

 



100 
 

 

Figure 3.18: F2 half-x-filtered NOESY of 0.7 mM [13C 15N]-Ade SRB-2 bound to SR. 

A) Full spectrum. B) Close-up of the H1’-H6/H8 region. Spectrum acquired with mixing time of 150 ms. 

 

 A 2D half x-filtered NOESY was also obtained for the [13C 15N]-Cyt sample (Figure 3.18). 

Unfortunately, the concentration was lower, and therefore, the signal-to-noise ratio was somewhat 

lower than in the spectra acquired on [13C 15N]-Ade.  
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Figure 3.19: Half x-filtered NOESY of 0.5 mM [13C 15N]-Cyt SRB-2 bound to SR. 

A) Full spectrum. B) Close-up of the H1’-H6/H8 region. Spectrum acquired with mixing time of 150 ms. 

 

 In addition to the 2D NOESYs, 3D edited 13C HSQC-NOESY experiments were acquired for the [13C 

15N]-Ade and [13C 15N]-Ura samples (Figure 3.18). They were both optimized for the sugar in the carbon 

dimension. These spectra can be used to identify which peaks in the NOESY in D2O are from protons in 

adenine or uridine residues which is critical in the sequential assignment of a rather large RNA molecule 

like SRB-2. The F1-F3 projections for [13C 15N]-Ade and [13C 15N]-Ura are shown in Figure 3.18 A and B, 

respectively. The signal-to-noise ratio of the [13C 15N]-Ura spectrum is significantly higher despite only 

having a slightly higher RNA concentration and identical processing parameters to the [13C 15N]-Ade 

spectrum.  
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Figure 3.20: F1-F3 projections of 3D 13C HSQC-NOESY experiments. 

A) 0.7 mM [13C 15N]-Ade SRB-2 bound to SR. B) 0.9mM [13C 15N]-Ura SRB-2 bound to SR. Spectra were 

acquired with 150 ms mixing times. 

 

3.4.3.4 HCN Experiments 

In order to correlate imino and amino resonances to non-exchangeable base protons, we also 

attempted to acquire 3D HCCNH and 3D HCCNH-TOCSY experiments with the labelled-U sample. Despite 

meticulous optimization, no accumulation of signal was observed in the FID of these experiments, so we 

were unable to acquire a spectrum with either pulse program. We also ran a 3D HCN experiment to see 

if it would be possible to correlate the N1 to H1’ and/or H6 but obtained the same unsuccessful results 

as the HCCNH experiments.  
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3.5 Discussion 

As evidenced in section 3.4, a large quantity of NMR data was obtained on SRB-2. Some nice 

quality spectra were acquired, such as the HSQC experiments, filtered 2D NOESYs with [13C 15N]-Ade and 

the 2D HCCH-COSY and 3D HSQC NOESY with [13C 15N]-Ura. From these spectra, some assignments could 

be made, however, this was far from sufficient to fully assign and calculate a structure for SRB-2. There 

were a number of obstacles encountered that prevented the completion of this project, including broad 

lines, low-resolution spectra, structural heterogeneity, low sensitivity of pulse programs, degradation of 

samples, and lack of required samples. These barriers and possible resolutions will be discussed in detail 

below. 

 

3.5.1 Linewidth and Spectral Resolution 

As discussed in 3.2, many of the spectra acquired were of decent quality. However, they were 

plagued with broad lines caused by conformational heterogeneity. It is likely that heterogenous 

sequences were being observed in these spectra. This is evidenced by the presence of two distinct types 

of peaks in many of the spectrum acquired. Some peaks appeared to be strong and sharp, likely from 

the dominant binding conformation, while some regions contained weak, broad peaks, which appear to 

be the result of structural heterogeneity. We tried to separate these peaks when attempting to assign 

the various spectra, but the amount of heterogeneity coupled with significant overlap from the large 

number of signals in a 54nt sequence made assignment difficult. It is possible that conditions may exist 

that shift the equilibrium of conformations. For example, we tried adding MgCl2, but this did not solve 

the problem as discussed in 3.4.1. 

There were also several spectra, including the 3D HSQC NOESY with [13C 15N]-Ade and the 

filtered 2D NOESY with [13C 15N]-Ura, which were of overall poor quality. Only one attempt at the 3D 

HSQC NOESY was made before the sample degraded, so we were unfortunately not able to further 
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optimize the experiment at that time. The same pulse program was run with [13C 15N]-Ura and the 

spectral resolution was much higher, so I believe that this was at least partially a result of parameter 

adjustment. It should also be noted that the concentrations of the three labelled samples were all 

different. [13C 15N]-Ade was 0.7 mM, [13C 15N]-Cyt was 0.5 mM and [13C 15N]-Ura was 0.9 mM. The fact 

that the concentration of [13C 15N]-Ura was higher may have also contributed to the difference in 

spectral resolution. This was also likely a factor with the filtered 2D NOESY with [13C 15N]-Cyt. This 

sample was the lowest concentration and was also acquired in a Shigemi tube with a sample volume of 

only 200 µL. The concentrations of all these samples are significantly lower than the 1.8 mM unlabelled 

sample. This is an inherent disadvantage of a filtered NOESY compared to an edited one, as peaks 

disappearing may be a result of lower sensitivity due to concentration rather than being filtered out due 

to the NMR-active 13C. For this reason, it is difficult to confidently extract information from the filtered 

2D NOESY with [13C 15N]-Cyt. To resolve this problem, more RNA would likely need to be produced. This 

is quite cost-prohibitive, especially when labelling is involved. Another possibility, which will be 

discussed more in Chapter 4, is the optimization of transcription initiation by changing the first 5-8 

nucleotides of the sequence. At the very least, acquisition of edited NOESYs should be prioritized over 

filtered NOESYs.  

 

3.5.2 Structural Heterogeneity 

There are quite a few possibilities for the origin of the structural heterogeneity, several having 

to do with in vitro transcription by T7 RNA polymerase. Despite its usefulness in molecular biology, T7 

RNA polymerase is known to produce a number of undesirable side products that result in careful 

analysis and purification being required. Side reactions can result in aborted products [240,241], use of 

alternative template initiation sites [242,243], polymerase slippage [244], non-templated nucleotide 

additions at the 3’ end of RNA and [187,245] and 5’ sequence heterogeneity [240,242,246].  
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 Aborted sequences and sequences varying significantly in length resulting from alternative 

initiation sites are easily removed from a sample by gel purification. However, products with 3’ and 5’ 

heterogeneity are the same length or within a couple of nucleotides. Even with high resolution gels, it is 

not always possible to separate these kinds of products. There are several possible methods that could 

be used to reduce or eliminate these side products. For example, it has been shown that using a DNA 

template with C2’-methoxyl modifications at the 5’ end can be effective in reducing these additional 

nucleotides [247]. For both 3’ and 5’ heterogeneity, it has been shown that using self-cleaving or 

cleavable tags can be highly effective in reducing side products [246]. It may also be prudent to reduce 

3’ phosphate cyclization and ensure homogeneity by incubation with T4 polynucleotide kinase–

phosphatase [248]. Of particular concern to us, it has been shown that sequences beginning with GGG 

are particularly susceptible to 5’ heterogeneity [240,242,246]. However, we had issues with low 

transcription yields with other 5’ sequences. Therefore, it would certainly be of benefit to spend more 

time optimizing the 5’ sequence for a combination of reduced heterogeneity and sufficient product 

yield. 

Another source of heterogeneity sometimes encountered in nucleic acid samples, especially at 

concentrations required for NMR spectroscopy, is dimerization. Dimerization often results when self-

complementary regions exist in a nucleic acid sequence. Based on the SRB-2 sequence, it is possible that 

one of the regions in what we will later refer to as loop 3 could do this. However, we did not observe 

any conclusive NMR evidence, such as additional NOEs consistent with this type of base pairing, that 

would support this notion. In addition, a native gel run by a former student on various SRB-2-ligand 

complexes also showed no indication of dimerization or oligomerization.   

Finally, one source of heterogeneity possible with any receptor-ligand complex is if saturation 

has not been reached. We did not include MgCl2 in the NMR despite ITC studies indicating that it may be 

required. This is due to initial NMR titrations we did in the absence of Mg2+, wherein changes in the 
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spectrum were not observed after approximately a 1:1 titration with ligand. We titrated multiple 

equivalents of the ligand initially, but this was not enough to induce any observable differences in the 

spectrum. As a result, we generally aimed for ~1.2:1 ligand:RNA in our NMR samples. It is possible that 

the absence of peak observed in ITC has to do with thermodynamics of binding in the presence of MgCl2 

rather than an actual absence of binding. A control SPR experiment without any magnesium may be 

useful to confirm this theory. Another possibility here is that other residual metal ions present may have 

taken on the role of Mg2+. However, despite not de-metalating our solutions, there was a significant 

amount of EDTA present both in the gel and anion exchange buffers, giving little reason to believe that 

this was the case. For these reasons, we believe that the 5’ and 3’ heterogeneity discussed were more 

likely to be the source of heterogeneity.  

 

3.5.3 HCN Experiments 

One of the biggest disappointments of this project was our inability to acquire any triple 

resonance experiments with our labelled samples. These experiments are desirable as they can reduce 

ambiguity in NOESY experiments, but they are not without their challenges. Spectral resolution and 

sensitivity of RNA are known to decrease significantly with increasing molecular weight [227,249], and 

these types of pulse programs involve several transfers of magnetization, resulting in significant signal 

losses. Because SRB-2 is relatively large (54 nt), and these pulse programs used several resonance 

transfers, we postulate that the sensitivity of these programs was too low to detect signal in these 

multiple-transfer experiments. If this project were to continue, I would suggest synthesizing a very short 

[13C 15N] oligonucleotide, which could be used as positive control to confirm this hypothesis and rule out 

any issues with the pulse programs themselves or relevant parameter settings. It is also worth noting 

that the console of the Bruker DRX-600 spectrometer used was replaced and the software used to run it 

was updated during the period in which these experiments were run. This may have resulted in spectra 
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of varying quality before and after the change. It may have also resulted in compatibility issues with 

some pulse programs.  

 

3.5.4 Sample Stability 

In addition to the low resolution of some spectra, there were additional spectra that we 

intended to acquire but were unable to due to degradation of samples. Hence the missing NOESY 

experiments for some samples in section 3.4. RNA is particularly susceptible to degradation due to the 

ubiquitous presence of RNases on surfaces and in reagents that are not certified RNase-free. RNase 

activity has even been observed in RNA samples frozen at -20 °C [250]. Even if much care is taken to 

avoid RNase contamination, RNA is often only stable for up to a year when frozen at -20 °C or -80 °C and 

mere days at room temperature [251–254]. Despite -80 °C storage, certified nuclease-free labware and 

reagents, and re-suspension with ultra-pure Milli-Q water, all three of the labelled samples degraded 

within weeks or months of synthesis. Unfortunately, two of these samples ([13C 15N]-Cyt and [13C 15N]-

Ura) degraded during the months of storage resulting from the provincial lockdown in the spring of 

2020.  

Although RNA degradation is sometimes out of a researcher’s control, there are a few things I 

would do differently in the future. It has been suggested in the literature, that although freezing RNA in 

an aqueous solution at -80 °C is commonplace, storage as either a lyophilized powder or ethanol 

precipitate may be more effective long-term storage techniques [251,254]. Storage in an air-tight 

container should be ensured as atmospheric humidity is known to play a role in RNA degradation [251]. I 

also took time to analyze each spectrum before running more, and I believe that more meticulous 

planning and efficient scheduling of experiments could help guarantee the acquisition of all desired 

spectra by decreasing the amount of time that samples need to stay viable.  
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3.5.5 Additional Resources for Assignment 

The reality is that even if a full complement of high-resolution spectra were acquired for the 

three samples studied here, it is nearly certain that more data would still be required. This would likely 

involve the uniformly labelled samples [U- 15N] and [U- 13C 15N]. It may be useful to have another single 

(or dual) nucleotide labelled sample that has guanine, since it is has not been labelled in any of our 

previous samples. It also possible that selectively deuterated samples would be required to assign the 

severely overlapped H1’-H6/H8 region of the NOESY in D2O. Unfortunately, the isotopically labelled 

nucleotide triphosphates that are required to synthesize these samples are extremely cost prohibitive. 

There are alternative paths that may somewhat decrease the price tag of these samples, such as 

preparing the nucleotides ourselves. However, this requires significant time and expertise, and the 

starting materials and enzyme cocktail required are still very expensive. In addition to the quality of 

spectra obtained, cost was a factor in the stalling of this project after the three existing samples had 

degraded.  

 

3.6 Conclusions and Future Work 

In summary, the solution structure of SRB-2 was probed using homonuclear NMR techniques as 

well as with the three single-nucleotide labelled samples [13C 15N]-Ade, [13C 15N]-Cyt and [13C 15N]-Ura. 

The major obstacle encountered was the detrimental effects of multiple conformations on the spectra. 

This resulted in an insufficient amount of quality data for the unambiguous assignment of SRB-2. There 

are a few things one could do to potentially improve quality of these spectra. There were some minor 

changes observed with low Mg2+ concentrations, so investigations with more salt concentrations may be 

useful. Spectra obtained using other ligands were not promising, however, we could also consider 

looking at SRB-2 mutants that may have a stronger equilibrium of preferred to alternative 

conformations. This includes sequences with optimized 5’ and 3’ sequences, and perhaps other 
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modifications such as C2’-methoxylation of the DNA template, or cleavable RNA tags discussed in 3.5.2. 

In terms of NMR spectroscopy, there are also methodologies available that look at molecular dynamics, 

which may provide some insight into what is happening in this system [255]. 

If we found a solution for these structural heterogeneity issues, we would likely start by 

synthesizing [U- 15N], [U- 13C 15N] and either a single or dual nucleotide labelled sample involving G. With 

these samples, we would consider replicating some of the strategies used by Duchardt-Ferner et al. who 

recently characterized the solution structure of the TMR3 aptamer bound to tetramethylrhodamine 

[129]. This aptamer is a similar size (48 nt) as SRB-2 (54 nt) and binds tetramethylrhodamine (TMR), an 

analogue of SR. The binding affinity and kinetics of TMR with respect to SRB-2 were discussed back in 

Chapter 2. With the [U- 15N] sample, we would acquire standard and long-range 2D HNN-COSY 

experiments and a 15N HSQC-NOESY. With respect to NOESYs, Duchardt-Ferner et al. similarly acquired 

3D 13C HSQC NOESYs with their selectively labelled samples [13C 15N]-Ade, [13C 15N]-Ade, Cyt and [13C 

15N]- Gua, Ura. These largely provide the same information as our single-nucleotide labelled samples. 

The major difference is we never synthesized a sample with labelled G residues, which would be useful 

to have. Another sample that would be quite useful to have is [U- 13C 15N]. With this sample, a double x-

half filtered 2D NOESY could be acquired to isolate intra-ligand NOEs. An F1-filtered 3D 13C HSQC could 

also be acquired to specifically identify RNA-ligand NOEs. Similarly, a sample bound to 13C-labelled ligand 

could also prove valuable. 

As discussed in 3.5.3, HCN experiments did not work out, and there is little motivation to pursue 

them further. If we needed to further reduce ambiguity in the NOESYs, I would suggest using at least 

one partially deuterated sample, likely with one or more nucleotides deuterated in the H3’, H4’, H5’ and 

H5” positions. Removing some of these spins would drastically reduce the amount of dipolar relaxation 

experienced by the other protons, narrowing the linewidths of their cross-peaks and therefore reducing 

overlap in the spectrum [227]. 
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As will be described in Chapter 4, we opted to pursue a ‘divide and conquer’ approach as an 

alternative to isotopic labelling. This involves designing and synthesizing various truncations of the SRB-2 

aptamer which are more financially sustainable to synthesize than labelled samples.  
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Chapter 4: Probing the Structure of the SRB-2 Binding Aptamer 

All experiments in this chapter were performed and analyzed by the candidate. 

 

4.1 Chapter Abstract 

The SRB-2 aptamer is a polyanionic RNA that binds a ligand with an overall negative charge, 

making this an interesting system to characterize. There are various NMR strategies that can be used to 

acquire structural information, many of which involve isotopic labelling, as described in Chapter 3. Due 

to the lack of success for this sequence, we opted to pursue alternative approaches which do not, at 

least initially, require isotopic labelling. Segmental analysis, or the “divide and conquer” approach, 

involves resolving the structure of smaller pieces of a sequence then combining the information to 

produce a single, overall structure. This is a particularly useful method if there are multiple stem-loop 

segments in a sequence that may form stable structures independent of the other stem-loops. In this 

chapter, strategies for designing representative truncations are outlined. For a 16mer containing a 

UUCG tetraloop, assignments are completed, and a structure is calculated. This allowed for several 

resonances in the spectra of full-length SRB-2 to be identified. A similar study was attempted with 

another stem-loop structure (loop 3) from SRB-2. However, results obtained suggested that the 

structure of loop 3 alone is heterogenous, and in SRB-2 the structure of loop 3 is likely co-dependent 

with loop 2. These results indicate that segmental analysis beyond the UUCG tetraloop is not possible 

for this system.  

 

4.2 Introduction 

As established in previous chapters, SRB-2 is a desirable system to study due to its intrinsic 

properties including ligand promiscuity and overall negative charge. The kinetics and binding affinity of 
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SRB-2 ligands are outlined in Chapter 2. Structural NMR studies of SRB-2 bound to SR are presented in 

Chapter 3. These NMR studies involved unlabelled samples as well as the single nucleotide labelled 

samples [13C 15N]-Ade, [13C 15N]-Cyt and [13C 15N]-Ura. The spectra acquired with these samples were 

insufficient for unambiguous assignment due to structural heterogeneity, and further labelling was cost 

prohibitive, so we sought other avenues to pursue the goal of elucidating a solution structure of SRB-2.  

One such strategy that has been used to characterize numerous large RNAs by NMR is the so-

called divide and conquer approach [256–259]. This approach involves characterizing smaller pieces of 

the sequence, often individual stem-loop structures from a multi stem-loop complex. These shorter 

sequences are more amenable to assignment and are relatively inexpensive to synthesize. These smaller 

sequences potentially provide partial assignments for the overall sequence, and when all the data is 

pieced together, the result is significant deconvolution in the NMR spectra for the full-length sequence. 

This also provided an opportunity to become familiar with how structure calculations are done, as it 

became clear in Chapter 3 that a full structure determination was unlikely.  

Of course, there are several assumptions that must hold in order for this approach to work. 

First, the individual segments must be folded. Otherwise, unambiguous assignment will not be possible. 

Secondly, because we are talking about an aptamer, the segments must also retain the same structure 

in the presence and absence of ligand. It is highly unlikely that such severe truncations would retain any 

binding activity, so these experiments would be performed in the absence of ligand and if their structure 

is significantly different than when bound, assignments of the segment will not translate to the full-

length sequence. Finally, the structure of each stem-loop segment must not be dependent on the 

presence of other such segments from the full sequence. For example, if there is base-pairing between 

two distinct loop regions, then segmental analysis of the independent stem-loops will not be an 

effective method of assignment.  
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With regards to segmental analysis of the SRB-2 aptamer, the most logical place to start is the 

UUCG tetraloop. Tetraloops are highly stable secondary structure elements that often cap stems in RNA. 

They were first discovered by Woese et al. in 1983 when they noted a disproportionate number of 

hairpin loops consisting of four nucleotides in 16S rRNA [260]. The vast majority of these sequences fell 

into two main families, GNRA and UNCG. Further studies indicated that the UUCG tetraloop is the most 

stable tetraloop as a result of its high thermodynamic and structural favorability [261]. It was later noted 

by Tuerk et al. that a probable function of these biologically abundant hairpins is to organize the correct 

folding of large, complex RNA sequences [262]. Some tetraloops, including GAAA [263] and AUUA [264] 

are known to interact with receptors or proteins. However, the UUCG tetraloop lacks any known 

propensity for protein-RNA or RNA-RNA interactions [265]. For these reasons, UUCG tetraloops are 

often incorporated in aptamer sequences where possible to promote proper folding while avoiding 

unwanted interaction with the ligand or other parts of the RNA sequence. High stability and low 

interactivity are also properties that make the UUCG tetraloop of SRB-2 an ideal candidate for segmental 

NMR analysis.  

Due to its unusually high stability and experimental practicality, the structure of the UUCG 

tetraloop is well characterized. Several structures have been determined for UUCG tetraloops with 

varying short stems [266–268] and in larger RNA molecules such as a self-splicing intron [269], an 

influenza virus promoter [270], and the ATP-binding aptamer [77]. A schematic of the UUCG tetraloop is 

shown in Figure 4.1. The first solution structure was a 12-mer elucidated in 1991 by Varani et al. and this 

structure revealed many of the unusual contacts that result in the high stability of the UUCG tetraloop 

[266]. These include a U1-G4 reverse wobble base pair where G4 is in a syn conformation, a C3 base 

stack on U1 and a hydrogen bond between the N4 of C3 and a phosphate oxygen of U2 [266]. A few 

years later, the first crystal structure of the UUCG tetraloop was determined as part of a 57nt segment 

of the 16s rRNA. This structure revealed additional hydrogen bonds between O2’ of U2 and O6 of G4, 
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and between O2’ of C3 and O2 of C3, which were not observed in the solution structure. In the years 

since several NMR structures of higher quality have been reported for a UUCG 14mer as a result of 

improvements in both NMR and computational methodologies [268,271–273]. In recent studies on the 

same 14mer, the existence of a low-populated, non-native conformation where U1 and G4 do not pair 

was shown using exact NOE (eNOE) measurements and molecular dynamics simulations [273]. 

 Because of the high stability and well-defined structure of the UUCG tetraloop, this segment 

should be an ideal candidate for our segmental analysis. It provided a suitable model for learning how to 

do structure calculations and proving the efficacy of our assignment and calculation processes. We also 

designed several versions of what we termed loop 3, the other stem-loop structure in SRB-2. The goal 

for designing these segments was to optimize transcriptional yield while maintaining the structural 

integrity of the aptamer. For this reason, the binding of affinity of some modified versions of SRB-2 were 

tested to ensure that the sequence changes implemented would be representative of the original SRB-2 

sequence. In these studies, a complete NMR structure of a UUCG-containing 16mer was elucidated. 

Initial studies with loop 3 truncations indicate that elucidation of a structure is unlikely.  
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Figure 4.1: Schematic of the cUUCGg tetraloop. 

Solid black lines indicate bonds, horizontal black lines indicate stacking interactions and purple dashed 

lines indicate hydrogen bonds. This tetraloop was inserted into the SRB-2 sequence (Figure 2.1) by the 

original authors  to promote proper folding [37]. 

 

4.3 Materials and Methods 

4.3.1 Preparation of RNA Samples and Dyes 

RNA was synthesized enzymatically using a T7 RNA polymerase and either a double-stranded 

synthetic DNA template or a single-stranded DNA template with T7 promoter. DNA was purchased from 

Integrated DNA Technologies, Inc. (Coralville, Iowa) and Eurofins (Huntsville, Alabama). The sequences 

used are summarized in Table 4.1. 
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Table 4.1: List of relevant DNA template sequences  

Aptamer  Aptamer Template Sequence 

SRB-2 5’-GGG ACC TGA GGC GGT TAA CCT TGC GCC TCT CCA TCA TCG CCG AAG CGA GGT CCC 

TAT AGT GAG TCG TAT TA-3’ 

SRB-2 

reverse 

5’-TAA TAC GAC TCA CTA TAG GGA CCT CGC TTC GGC GAT GGA GAG GCG CAA GGT TAA 

CCG CCT CAG GTC CC-3’ 

SRB-2 min 5’-GGG ACT GAG GCG GTT AAC CTT GCG CCT CTC CAT CAT CGC ACC CTA TAG TGA GTC 

GTA TTA-3’ 

L3 5’-GGG GCG GTT AAC CTT GCG CCC CTA TAG TGA GTC GTA TTA-3’ 

L3 reverse 5’-TAA TAC GAC TCA CTA TAG GGG CGC AAG GTT AAC CGC CCC-3’ 

L3A 5’-GGG ACG GTT AAC CTT GCG TCC CTA TAG TGA GTC GTA TTA-3’ 

L3B 5’-GGG CCG GTT AAC CTT GCG GCC CTA TAG TGA GTC GTA TTA-3’ 

L3C 5’-GGG AAA GGT TAA CCT TGC TTT CCC TAT AGT GAG TCG TAT TA-3’ 

SRB-2C 5’-GGG ACC TGG GAA AGG TTA ACC TTG CTT TCC CTC CAT CAT CGC CGA AGC GAG GTC 

CCT ATA GTG AGT CGT ATT A-3’ 

SRB-2D 5’-GGG ACC TGG GAA GGT TAA CCT TGC TTC CCT CCA TCA TCG CCG AAG CGA GGT CCC 

TAT AGT GAG TCG TAT TA-3’ 

UUCG 5'-GGG CGC CGA AGC GCC CTA TAG TGA GTC GTA TTA-3' 

T7 

promoter 

5’-TAA TAC GAC TCA CTA TA-3’ 

 

RNA was transcribed using the recipe listed in Table 2.1. The RNA was purified on a 10% Urea 

PAGE gel and the band containing the aptamer was cut out. The RNA was eluted from the gel by crush & 

soak in 300mM NaCl or by electroelution. This was followed by clean-up on a HiPrep 16/10 DEAE FF 
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anion-exchange column (GE Healthcare, Uppsala, Sweden) and desalting on a HiPrep 26/10 Desalting 

column (GE Healthcare, Uppsala, Sweden). The RNA was also precipitated with 70% ethanol prior to 

running each column. Pure samples obtained from the desalting column were then lyophilized and 

dissolved in 500μL of 10 mM potassium phosphate buffer and 10 mM KCl (90% H20/10% D2O). 

 

4.3.2 Fluorescence Emission Scans 

Spectra were obtained using a Spectramax M5 Multi-Mode Microplate Reader using a 100 nm 

wide scan with 1nm intervals. Samples were measured at an λex of 535 nm and an λem range of 560-660 

nm. Readings were taken in Greiner 96-well black microplates (Kremsmünster, Austria). Samples were 

prepared with 10µM dye and 40μM RNA in assay buffer (10mM HEPES, 10mM KCl and 5mM MgCl2 at pH 

7.4). Samples were incubated at 25°C for at least 10 minutes before measurement. All data was 

normalized as a percentage of the fluorescence recorded at λmax (563nm) of SRB-2 bound to SR. 

 

4.3.3 Fluorescence Titrations 

Titrations were performed on a Spectramax M5 Multi-Mode Microplate Reader with a Greiner 

384-well black microplate (Kremsmünster, Austria). Measurements were taken using a λex of 563 nm and 

a λem of 585 nm, which were determined experimentally using excitation and emission scans. Samples 

were prepared with varying concentrations of RNA (0.4-20 µM) and 1 µM SR in assay buffer (10mM 

HEPES, 10mM KCl and 5mM MgCl2 at pH 7.4). Samples were incubated at 25°C for at least 10 minutes 

before measurement. The resulting binding curves were fit using a non-linear, least squares method to 

the simple hyperbolic function: % of Fmax =  Fmax × [SR] / (Kd + [SR]) where Fmax is the maximum 

fluorescence and Kd is the dissociation constant. Raw fluorescence values were normalized to a 

percentage of their sequence’s respective Fmax.  
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4.3.4 NMR Experiments 

Once experiments in 90% H20/10% D2O were acquired, the samples were dried by lyophilization 

and re-dissolved in 500 μL of 99.996% D2O (Cambridge Isotopes) to perform experiments on non-

exchangeable resonances. Experiments in 90% H2O/10% D2O that were used to observe exchangeable 

protons were run using 11̅-spin echo solvent suppression [190]. Two-dimensional NOESY spectra [191] 

in 90% H2O/10% D2O were acquired at 277 K with a mixing time of 150 ms for both the UUCG and L3C 

samples. Experiments in D2O that were used to observe non-exchangeable protons were run with 

presaturation solvent suppression [192]. For the UUCG sample, DQF-COSY [209], a 2D CITY-TOCSY [193] 

with a mixing time of 50 ms, and NOESYs with mixing times of 80, 150 and 200 ms in 100% D2O were 

acquired at 298 K. For the L3C sample, a 2D CITY-TOCSY and a NOESY with a 240ms mixing time were 

acquired. All NMR samples had a volume of 500 μL and were read in standard 5 mm NMR tubes. All 

spectra were collected on a Bruker DRX-600 spectrometer equipped with an HCN triple-resonance, 

triple-axis PFG probe. Quadrature detection for the indirect dimensions in multidimensional 

experiments was achieved using the States-TPPI method [189]. Relevant pulse programs can be found in 

Appendix B. 

 

4.3.5 Input Restraints and Structure Calculations 

Interproton distance restraints for hydrogens were obtained from NOESY spectra of the sample 

in D2O acquired at 298 K with 80, 150 and 240 ms mixing times.  Exchangeable NOE distances were 

obtained from a 2D NOESY in 90% H2O/10% D2O at 277 K with a 150 ms mixing time. Based on 

resonance assignments from these spectra, NOE peak intensities were examined and initially grouped 

into three distinct categories: strong (~2.5 Å), medium (~3.5 Å) and weak (~5 Å). These were based on an 

internal standard of 2.5 Å for H5-H6 NOESY cross-peaks. Upper bounds were set at a very conservative 

2.0 Å above the proposed distance and lower bounds were set at the Van der Waals distance. The 
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structure of the UUCG tetraloop is known from previous studies [266,267], and the remainder of the 

16mer UUCG sequence is a stem similar to that of the 12mer used in those studies. After a few rounds 

of calculation, it was apparent that the 16mer consisted of a standard UUCG tetraloop and a stem of 

RNA in A-form as expected. Once this was established, further refinement of the distance restraints was 

performed based on the literature interproton distances of the UUCG tetraloop and of A-form RNA, 

particularly for intra-residue distances. Upper and lower restraints were set at 0.5 Å for strong NOES, 1.0 

Å for medium intensity NOEs and 1.5 Å for weaker NOEs. Planarity restraints were included for each of 

the six Watson-Crick base pairs in the sequence to prevent tilting of the bases. Standard hydrogen bond 

restraints were also included for these base pairs. A few hydrogen bond restraints were also included for 

well-established contacts in the UUCG tetraloop, including U7 O2 to G10 N2 and H22, U7 O1P to C9 H41 

and U8 O2’ to G10 O6. The dihedral angles of all residues in Watson-Crick base pairs as well as U7 were 

restrained to a standard A-form helix and an N-type sugar pucker. The ribose angles ν1 and ν2 in U8 and 

C9 were restrained to an S-type sugar pucker based on coupling constants observed in the DQF COSY, 

while all other sugar and backbone angles in these residues were left unconstrained. G10 is known to 

adopt a syn conformation [266,267] and is evidenced by the very strong H8-H1’ correlation observed in 

the NOESY in D2O. For simplicity, all dihedral angles for this residue were left unconstrained. Lists of all 

chemical shifts, distance restraints and dihedral angles used in structure calculations can be found in 

Appendix C.  

All structure calculations were done with CNSsolve version 1.3 [274,275]. A total of 20 structures 

were calculated with 8200 simulated annealing steps per conformer. This consisted of 4000 high 

temperature steps of torsion angle molecular dynamics followed by two slow-cool annealing stages with 

1000 and 3000 steps, respectively. Finally, a minimization stage consisting of 200 steps was performed. 

Structures were visualized and analyzed using the software packages RasMol [276] and UCSF Chimera 

[130]. 
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4.4 Results and Discussion 

4.4.1 Sequence Design and Fluorescence Screening 

The two main domains of SRB-2 we investigated for segmental analysis were the UUCG 

tetraloop (loop 1) and loop 3. One of the first considerations that must be made in the design of these 

sequences is the effect of the sequence on T7 RNA polymerase activity. Optimizing activity is particularly 

important for NMR studies because relatively large (mg) quantities of RNA are required for an NMR 

sample of adequate concentration. It has been established in previous literature that having G residues 

in the +1 to +3 positions of the sequence is often optimal for in vitro transcription [277]. The +1 G base 

has been shown to have several specific interactions with residues in the active site of T7 RNA 

polymerase, which explain its strong preference for this type of nucleotide [278,279]. During 

transcription initiation, the T7 polymerase binds the DNA promotor from nucleotide position −17 to −5. 

The DNA template is then melted from position −4 to +3 to prime RNA synthesis, followed by expansion 

of this initiation bubble to at least the +7 position. It has been suggested that the triplet of G residues 

may help prevent slippage between the RNA-DNA complex and the active site during translocation, 

which in turn reduces the frequency of aborted sequences [280]. Expansion of the bubble becomes 

much less favourable after the +8 position, highlighting the possible significance of the +4 to +8 region. It 

has also been demonstrated in more recent studies that altering the nucleotides in positions +4 to +8 

can affect transcription activity by up to 5-fold [280]. A major observation from these studies was 

sequences that are AU-rich in the +4 to +8 region generally had the highest activity. This is likely due to 

the facilitation of strand melting upon transcription initiation [280]. These observations were taken into 

account when designing truncations of the SRB-2 aptamer.  

As seen in Figure 4.2 A, the original sequence of the UUCG stem-loop in SRB-2 is a 12mer with 

the sequence 5’-UCGCUUCGGCGA-3’. In order to make this sequence more suitable for transcription 
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while maintaining maximum sequence analogy, the A-U base pair was removed, and three consecutive 

G-C base pairs were added (Figure 4.2 B). The middle ten bases are identical to SRB-2. Due to the A-U 

base pair being situated at the end of the stem in SRB-2, the chemical environment of these two bases 

would likely be significantly different with the addition of a G triplet, and therefore, they do not warrant 

inclusion here.  

In our initial attempt to design a truncation for loop 3, the A-U base pair in the stem was simply 

changed to a G-C base pair, resulting in a run of four G-C base pairs to begin the sequence (Figure 4.2 C) 

The transcriptional yield of this sequence, titled L3, was quite poor, even when a double-stranded DNA 

template was used. For this reason, several modified versions of this sequence were designed and 

screened in order to optimize transcription (Figure 4.2 D-F). In the sequence L3A, the fourth G-C base 

pair was substituted with an A-U base pair to increase the A-U content as described above. The presence 

of an A-U base pair in the stem may also help to simply resonance assignment. In L3B, the fourth G-C 

base pair was again replaced but this time by a C-G base pair. This was done to replicate the start of the 

full SRB-2 aptamer sequence, where transcription activity was already sufficient. In the third and final 

version, L3C, the fourth G-C base pair and the following C-G base pair were removed and replaced with 

three A-U base pairs. This was done to substantially increase the AU content and attempt to replicate 

the results of the literature referenced above. These sequences were transcribed, run on a urea PAGE 

gel and qualitatively assessed by UV shadowing. The transcription yield observed was L3 << L3A < L3B < 

L3C. It was therefore decided that L3C would be the sequence used for NMR studies. 
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Figure 4.2: Segments of the SRB-2 aptamer designed for NMR studies. 

A) SRB-2, B) UUCG, C) L3, D) L3A, E) L3B and F) L3C. The UUCG tetraloop (loop 1) is shown in red and 

loop 3 is shown in blue. The remainder of the sequence is shown in black. 

 

Before an NMR sample was synthesized, we wanted to ensure that the structure of L3C was 

representative of the original sequence. To do this, we designed two versions of the full SRB-2 sequence 

with alterations to the stem of loop 3. SRB-2C has a stem identical to L3C, and SRB-2D has a stem similar 

to L3B. SRB-2C was designed as a direct comparison for L3C, but this sequence involves an additional 

base pair in the stem. That means that differences in binding affinity observed may be a result of either 

a change in sequence or a change in stem length. In order to distinguish these effects, the SRB-2D 

sequence was created, as it carries some of the same alterations as SRB-2C, but its stem is the same 
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length as the original SRB-2 sequence. These sequences were examined using fluorescence techniques. 

They are shown in Figure 4.3. 

 

 

Figure 4.3: SRB-2 variants studied using fluorescence titrations. 

A) SRB-2, B) SRB-2C, C) SRB-2D and D) SRB-2 min. For B and C, region that varies is shown in green. 

 

Some of the sequences discussed above were screened for SR binding using fluorescence 

emissions scans (Figure 4.4). UUCG and L3C by themselves showed no discernable binding activity, 

which is unsurprising due to the large amount of sequence that was removed. It was also observed that 

the binding activity of both SRB-2C and SRB-2D were comparable to SRB-2. The final sequence included 

in the emission scans was SRB-2 min. This was a truncation created by the authors who originally 

selected SRB-2, and we tested it to see if it was worth studying further. However, this sequence showed 
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only a slight shift in maximum emission wavelength and no change in fluorescence intensity. This 

indicates that at best, this sequence binds extremely weakly, which is unsuitable for NMR studies.  

 

 

Figure 4.4: Fluorescence emission scans of SRB-2 mutants and truncations. 

Emission spectra of ligand on its own are shown in red and emission spectra of ligand in the presence of 

excess SRB-2 are shown in blue. SRB-2, SRB-2C and SRB-2D all clearly bind SR, while L3A, UUCG and SRB-

2 Min do not. 
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In order to compare the binding affinities of SRB-2, SRB-2C and SRB-2D, fluorescence titrations 

were performed (Figure 4.5). As shown in Table 4.2, it was determined from these experiments that 

SRB-2C and SRB-2D had only slightly weaker binding affinity than SRB-2. This observation shows that the 

same general structure is likely being formed in the presence of ligand and that the sequence alterations 

have minimal effect on this structure. L3C should therefore be a reasonable representation of loop 3 in 

NMR studies.  

 

 

Figure 4.5: Fluorescence titrations of SRB-2 mutants with SR. 

Experimental data is shown as blue points and fit data is shown as a red line. Concentration of SR was 5 

µM and SRB-2 ranged in concentration from 0.5-25 µM. Error bars are one standard deviation from the 

mean of the replicates acquired. 
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Table 4.2: Dissociation constants of SRB-2 mutants determined by fluorescence titration. 

Sequence Kd (µM) 

SRB-2 2.09 ± 0.12 

SRB-2C 2.69 ± 0.30 

SRB-2D 2.23 ± 0.27 

 

4.4.2 NMR Structure of the UUCG 16mer  

 

Due to its small size and stable structure, resonance assignment of the UUCG 16mer was 

completed using only homonuclear experiments, including a NOESY in 90% H20/10% D2O and NOESY, 

TOCSY and COSY in D2O. Inter-residue connectivity was first established by assigning the cross-peaks in 

the H6/H8 to H1’ region of the NOESY in D2O. This NOESY is shown in Figure 4.6 A, and a close up of the 

H6/H8 to H1’ region is shown in Figure 4.6 B. After the chemical shifts of the H6/H8 proton from each 

base were determined, assignments were extended from each base to the H2’, H3’, H4’, H5’ and H5” 

protons.  
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Figure 4.6: NOESY of 2.0 mM UUCG 16mer in D2O. 

A) Full spectrum. B) Close-up of the H1’ to H6/H8 region. A sequential ‘walk’ is labelled on this spectrum, 

where cross-peaks connected by horizontal purple lines are two different bases that see the same sugar, 

and cross-peaks connected by vertical red lines are two different sugar protons that see the same base. 

Blue dots indicate intra-nucleotide cross-peaks. G11 has an H1’ with an uncharacteristically low chemical 

shift and appears outside of this figure’s chemical shift range. This is represented by a purple arrow. 

Spectrum was acquired with mixing time of 150 ms. 

 

Upon completing resonance assignments for the non-exchangeable protons, the NOESY in 90% 

H20/10% D2O was used to assign the exchangeable imino and amino protons on the bases where 

possible. The full spectrum is shown in Figure 4.7 A, and a close up of the imino-imino region of the 

spectrum is shown in Figure 4.7 B. Assignment was relatively straightforward for imino protons 

belonging to nucleotides in the tetraloop, but unambiguously assignments were not determined for the 

amino and imino protons in the stem due to significant overlap. The absence of any A-U content in the 
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stem contributed to this problem, resulting in a lack of chemical shift variation. Stacking NOEs between 

adjacent guanines in the stem were not clearly observed in this spectrum. This limited the usefulness of 

the imino-imino region shown in Figure 4.7 B. Assignment of the UUCG tetraloop resonances in the full-

length SRB-2 sequence was made possible by this work as shown in Figure 3.5. 

 

 

Figure 4.7: NOESY of 2.0 mM UUCG 16mer in 90% H2O/10% D2O. 

A) Full spectrum. B) Imino-to-imino region. Relevant assignments from the tetraloop are shown in red. 

Spectrum was acquired with mixing time of 150 ms. 

 

 A TOCSY experiment was also used to help identify the H5-H6 cross-peaks from C and U in the 

NOESY in D2O and to distinguish base-sugar cross-peaks involving the pyrimidine residues from those 

involving purine residues (Figure 4.8 A). There are nine C and U residues in the UUCG 16mer and ten 

peaks observed in the TOCSY. However, it appears likely that the two weakest peaks belong to the same 

resonance, allowing unambiguous assignment of the spectrum. A DQF COSY was also obtained and was 
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used to confirm the known S-type sugar puckers in the tetraloop, U8 and C9. This spectrum is shown in 

Figure 4.8 B. 

 

 

Figure 4.8: TOCSY and COSY spectra of 2.0 mM UUCG 16mer. 

A) H5-H6 region of the TOCSY spectrum. Strong signals from the dominant conformation are marked in 

red, and weaker signals experiencing chemical exchange are marked in blue. B) DQF COSY where 

positive contours are shown in black and negative contours are shown in red. Spectrum was acquired 

with mixing time of 50 ms. 

 

 Distance constraints and dihedral angles were obtained as outlined in 4.3.5. A total of 540 NOE 

distance constraints and 135 dihedral angles were used, which corresponds to an average of 33.8 

distance and 8.4 dihedral angle restraints per nucleotide as listed in Table 4.3. The distance constraints 

include a total of 40 hydrogen bonds that were added for the six base-pairs in the stem of the molecule 

as well as four in the tetraloop since previous studies indicate that these exist and are observed in 

experimental data. Within the tetraloop portion of the molecule, 145 NOEs were obtained, 47 of which 
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were inter-residue NOEs. Therefore, the tetraloop structure was defined by an average of 36.3 NOE 

constraints per nucleotide. 

 

Table 4.3: Structure determination statistics for UUCG 16mer 

Distance Restraints 

Tetraloop (7-10) intra-nucleotide 98 

Tetraloop (7-10) inter-nucleotide 47 

Total intra-nucleotide 363 

Total inter-nucleotide 137 

Hydrogen Bonds 40 

Total distance restraints 540 

Dihedral Restraints 

Ribose pucker 67 

Backbone 68 

Total dihedral restraints 135 

Structural Statistics 

NOE violations  None>0.5 Å 

Angle violations None>5° 

Loop (6-11) RMSD 0.629 Å 

Stem (1-5, 12-16) RMSD 1.808 Å 

 

 For visualization and RMSD calculation, the structure was separated into two segments. Due to 

the lack of long-range restraints included in the calculation, large variations in the bending of the stem 

were observed and aligning the two halves separately resulted in the structure being displayed more 

clearly. The first segment, shown in Figure 4.9 A, includes the tetraloop and the first base pair of the 

stem (residues 6-11). The second segment, shown in Figure 4.9 B, is the rest of the stem (residues 1-5, 

12-16).  
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Figure 4.9: Stereo view of the superposition of the 20 lowest energy structures of the UUCG 16mer. 

Separated into A) UUCG tetraloop and first base of the stem (nucleotides 6-11) and B) The stem 

(nucleotides 1-5 and 12-16). G residues are shown in blue, C’s in red and U’s in green.  

 

 Figure 4.10 shows a comparison between one of the 20 structures obtained in previous studies 

[268] and one of the 20 obtained in this work. As expected, there is little discernable difference between 

the two sets of structures. This is partly due to the inclusion of hydrogen bond restraints based on these 

previous structures. These include several of the defining interactions in the tetraloop: the trans-wobble 

U7-G10 base pair, the C9 amine to the U8 phosphate and the O6 of G10 to the O2’ of U8 [266,268]. 

These were all confirmed experimentally. As shown in Table 4.3 and Figure 4.9, a reasonably small 

deviation between structures was obtained. Additionally, this structure was already well defined and 

our calculation compared to literature versions relatively well. As such, we were not justified in spending 

any additional time refining the structure.  
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Figure 4.10: Literature comparison of the UUCG tetraloop. 

Lowest energy structure of A) the UUCG tetraloop as determined by Allain and Varani (1HLX) [269] and 

B) the UUCG tetraloop as determined in these studies.  

 

4.4.3 NMR Studies of the SRB-2 Truncation L3C 

Following the successful resonance assignment and structure calculation of the UUCG 16mer, 

the next step was to design and study another segment of the SRB-2 aptamer. Several variations of the 

‘loop 3’ stem-loop were designed, and we proceeded with NMR studies of L3C, for reasons discussed 

above. As with the UUCG 16mer, NOESYs in both D2O and 90% H2O/10% D2O were collected for this 

sample, as well as a TOCSY. From the NOESY spectra, it is evident that some of the heterogeneity issues 

seen with the full SRB-2 sequence were significantly worse with this sequence. The peaks in the D2O 

spectrum are very broad, resulting in poor resolution. In the NOESY in 90% H2O/10% D2O (Figure 4.11), 

only two imino resonances are observed, likely from the middle of the stem region. There are no peaks 

in the region where non-Watson-Crick type pairing is typically seen. This suggests that L3C is highly 

dynamic in solution, forming little tangible structure outside of the stem.  
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Figure 4.11: 2D NOESY spectra of L3C. 

1.5 mM RNA in A) D2O and B) 90% H2O/10% D2O. Very little structure is observed in these spectra. 

Spectra were both acquired with a mixing time of 150 ms. 

 

This is supported by the TOCSY (Figure 4.12), where it is clear that multiple conformations exist. 

There are eleven peaks expected in the H5-H6 region of the TOCSY (six C and five U in L3C), but at least 

17 peaks can be counted in this spectrum. At this point, we concluded that resonance assignment was 

not possible for this segment of SRB-2. Based on the results obtained, it is highly likely that nucleotides 

in the loop 3 region of the sequence interact with some of those in the center loop to form the binding 

site. This, unfortunately, results in segmental analysis being impractical for SRB-2. 
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Figure 4.12: H5-H6 region in the 2D TOCSY of 1.5 mM L3C. 

Peaks are labelled to show how they were counted. Peaks labelled in red are strong, and those labelled 

in blue are weak. Blue peaks are likely a result of structural homogeneity. 

 

4.5 Conclusions 

Overall, the segmental analysis of SRB-2 yielded mixed results. The UUCG 16mer was 

successfully assigned, and 20 structures of satisfactory energy and residual violations were acquired. As 

shown in Figure 4.10, no discernible differences were observed between the experimental and literature 

structures. When compared to SRB-2 spectra, cross-peaks in the tetraloop can be easily identified, 

particularly those belonging to exchangeable resonances in the NOESY spectrum in 90% H2O/10% D2O 

(Figure 3.5). Unfortunately, studies with the L3C sequence were unsuccessful due to the lack of tertiary 

structure present. This was not an unexpected result considering that the ligand is unable to bind this 

sequence. There is also a palindromic sequence in the loop that may cause dimerization and therefore 
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structural heterogeneity in the NMR spectra. Based on this significantly lower degree of structure 

observed in the NMR spectra for L3C compared to SRB-2, it is highly likely that there is significant 

interaction between loop 3 and loop 2 in the folded structure SRB-2. Therefore, segmental analysis will 

not be useful beyond the UUCG tetraloop. A minimal version of SRB-2 aptamer, SRB-2 Min, was 

proposed by the authors who originally selected SRB-2 [37]. The UUCG tetraloop is absent in this 

structure, while loop 2 and loop 3 are intact. However, fluorescence studies shown in Figure 4.4 indicate 

that the binding affinity of this sequence is quite low at best, which does not make NMR studies a 

realistic option. If future NMR studies are done on this system, finding conditions to limit exchange and 

hence peak broadening, would be the primary goal. Then, the isotope labelling strategies discussed in 

Chapter 3 may be more effective.  
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Chapter 5: Thioflavin T Fluorescence and NMR Spectroscopy Suggesting 

a Non-G-quadruplex Structure for a Sodium Binding Aptamer 

 

5.1 Foreward 

The results in this chapter have been accepted for publication in the Canadian Journal of 

Chemistry: Runjhun Saran, Kyle A. Piccolo, Yanping He, Yongqiang Kang, Po-Jung Jimmy Huang, 

Chunying Wei, Da Chen, Thorsten Dieckmann, and Juewen Liu. “Thioflavin T fluorescence and NMR 

spectroscopy suggesting a non-G-quadruplex structure for a sodium binding aptamer embedded in 

DNAzymes.” Any permission for further re-use of this material should be requested directly from the 

Canadian Journal of Chemistry. 

 

*R.S., K.A.P. and Y.H. contributed equally to this work. 

  

ThT fluorescence spectroscopy experiments were performed and analyzed by Runjhun Saran, 

Yanping He, Yongqiang Kang, Po-Jung Jimmy Huang, Chunying Wei and Da Chen. NMR and CD 

experiments were performed and analyzed by the candidate. All authors contributed to the text in the 

abstract, introduction, and conclusion sections, while the methods and results and discussion sections 

were written primarily by the author(s) who used those respective methodologies.  

All data and figures in this chapter were published in the above article with the following 

exceptions: Figures 5.11-13 and analysis in section 5.5.8. 
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5.2 Chapter Abstract 

Recently, a Na+-binding aptamer was reported to be embedded in a few RNA-cleaving 

DNAzymes, including NaA43, Ce13d and NaH1. These DNAzymes require Na+ for activity but show no 

activity in the presence of K+ or other metal ions. Given that DNA can selectively bind K+ by forming a G-

quadruplex structure, this work aims to answer whether this Na+ aptamer also uses a G-quadruplex to 

bind Na+. The Na+ aptamer embedded in Ce13d consists of multiple GG sequences, which is also a pre-

requisite for the formation of G4 structures. To delineate the structural differences and similarities 

between Ce13d and G-quadruplex in terms of metal binding, thioflavin T (ThT) fluorescence 

spectroscopy, NMR spectroscopy and CD spectroscopy were used. Through comparative ThT 

fluorescence spectrometry studies, we deciphered that while a control G-quadruplex DNA exhibited 

notable fluorescence enhancement up to 5 mM K+ with a Kd of 0.52 mM, the Ce13d DNAzyme 

fluorescence was negligibly perturbed with similar concentrations of K+. Opposed to this, Ce13d 

displayed specific remarkable fluorescence decrease with low millimolar concentrations of Na+. NMR 

experiments at two different pH values suggest that Ce13d adopts a significantly different conformation 

or equilibrium of conformations in the presence of Na+ versus K+ and has a more stable structure in the 

presence of Na+. Additionally, absence of characteristic G-quadruplex peaks in 1D 1H NMR suggest that 

G4 is not responsible for the Na+ binding. This theory is confirmed by absence of characteristic peaks in 

the CD spectra of this sequence. Therefore, we concluded that the aptamer must be selective for Na+ 

and binds using a structural element that does not contain G4. 

 

5.3 Introduction 

Understanding metal-binding to DNA is important not only for studying the biological functions 

of DNA, but also for biosensor development [171,281], drug development [282], and nanotechnology 

[283]. In biological studies, Na+ and K+ are among the most abundant physiological metal ions. They can 
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control the ionic strength of buffers and solutions and screen the negative charges on DNA, resulting in 

more stable DNA duplexes [284]. In addition, they can also have specific binding interactions with 

certain single-stranded DNA sequences [171]. The most famous example is of the stabilization of G-

quadruplex (G4) DNA [285]. Normally K+ is much more effective than Na+ in stabilizing G4 structures 

[286,287]. Na+ is less effective, often attributed to its smaller size and also because thermodynamically it 

has a higher energy of dehydration [287].  

 Recently, a Na+-binding DNA aptamer has been reported, [288,289] which was derived from the 

conserved sequences of the DNAzymes NaA43, NaH1, and Ce13d all originally discovered through in-

vitro selections [290–293]. The NaA43 DNAzyme was reported by Lu and co-workers [290], and it 

specifically requires Na+ for cleaving an RNA containing substrate. NaA43 shares its conserved sequence 

with the Ce13d DNAzyme, which was selected by our group in a lanthanide-dependent selection [291]. 

The conserved sequence is the main part of a Na+-binding aptamer [294–297]. The identification of this 

Na+-aptamer proved instrumental in understanding the reason for the specificity of NaA43 and Ce13d 

DNAzymes for Na+, although the mechanism underlying specific Na+ binding by the DNA still remains 

intriguing [289,296,298,299]. Our knowledge on specific Na+ binding by DNA is limited and from the 

literature known, and a possible mechanism may rely on G4 structures. In such a case, the G4 structure 

would require a superior Na+-induced stabilization than K+, as the aptamer is known to show a higher 

affinity to Na+ in comparison to K+, especially at room temperature [288,295,298,300]. Outside the G4 

context, Na+ binds more strongly to DNA than K+ since it can better increase the melting temperature 

(Tm) of DNA [301]. With respect to G4 structures, so far only a few specialized examples are known 

where Na+ can stabilize G4 more than K+ does. Alberti and coworkers reported a structure containing 

two contiguous G4 units with a greater stabilization by Na+ [302]. Other examples of Na+ being a better 

stabilizer were all from mutated human telomeric sequences, but the advantage of Na+ was extremely 

small. For example, by replacing a certain guanine with a O6-methylguanines, the Tm was enhanced by 
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just 1 C with Na+, while the Tm of the original DNA was 8 C higher with K+ [303]. Moderate advantages 

were also observed by replacing certain guanines by abasic sites [304], or adenines [305]. Overall, such 

mutations significantly decreased the overall stability of the G4 structures. Sun et al. reported an 

unmodified G4 sequence that showed different folding in the presence of Na+ and K+, and Na+ 

appeared to have an even tighter binding [306]. For unmodified simple G4 sequences, no examples are 

known for Na+ being a better stabilizer. Therefore, it would be extremely intriguing to probe whether 

the mechanism underlying Na+-binding to the aptamer derived from NaA43 and Ce13d DNAzymes 

involves Na+-G4 interactions.  

 Another interesting facet regarding Ce13d is its ability to act as a detection beacon for trivalent 

lanthanides [291]. Lanthanides are used in commercial applications such as magnets, batteries, lasers 

and contrasting agents, so the ability to detect these metal ions is important to identify and prevent 

pollution [307–310]. Their similarity in physical properties makes them difficult to separate without the 

use of complex instrumentation methods [311]. Previous studies with Ce13d indicate that several 

trivalent lanthanides can be detected in the low nanomolar concentration range [291]. This DNAzyme 

was the product of the first selection to contain lanthanides as the sole metal cofactor, though 

lanthanides have been noted to have activating or inhibitory effects on nucleic acid catalysis in the past 

[312–316]. From a practical perspective, lanthanides are a promising choice of cofactor for nucleic acid 

cleavage since their ability to act as strong Lewis acids make them adept at performing non-specific 

nucleic acid hydrolysis [309,317,318]. Here we examine by NMR the structural effects that lanthanide 

presence has on Ce13d. 

 Thioflavin T is a popular dye that becomes fluorescent upon binding to G4 DNA, and it has been 

extensively used to probe G4 [319]. In addition, NMR is a powerful method for studying G4 structures 

[199,320] and for studying biomolecule-ligand interactions in general. In this work, we used ThT to study 

Na+ binding by the Ce13d DNAzyme and a comparison was made with a G4 structure. In addition, NMR 
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spectroscopy was performed to further analyze the Ce13d DNAzyme structure. The results argued 

against the presence of a G4 structure to be responsible for the specific Na+ binding by the aptamer. 

NMR results also show that sodium and a lanthanide together are not sufficient to observe Cis13d in a 

single rigid conformation. 

 

5.4 Materials and Methods 

5.4.1 Chemicals 

The DNA sequences were obtained from Integrated DNA Technologies (Coralville, IA) and 

Eurofins (Huntsville, AL). Metal salts including lithium chloride (LiCl), sodium chloride (NaCl), lanthanum 

(III) nitrate (La(NO3)3), KH2PO4, K2HPO4, Na2HPO4, and NaH2PO4 were obtained from Sigma-Aldrich, VWR, 

and Fischer Scientific Canada at the highest purity available. ThT was from Sigma-Aldrich. 99.996% D2O 

was from Cambridge Isotope Laboratories.   

 

5.4.2 ThT Fluorescence Spectroscopy 

For ThT fluorescence spectroscopy, the Ce13d DNAzyme or G4 complexes were annealed at a 

final concentration of 20 µM in buffer A (25 mM LiCl, 50 mM HEPES, pH 7.5) by heating the samples to 

85 C for 5 min and then gradually cooling to 4 C over 30 min. For the experiments, final concentration 

of 0.6 µM DNA complexes were added to a final concentration of 3 µM ThT solution in buffer B at room 

temperature (500 mM tris-acetate, pH 8). After 15 min reaction at 4C, the sample was recovered to 

room temperature. Then fluorescence readings were collected on a Cary Eclipse fluorometer in a 1x1 cm 

quartz fluorescence cuvette with the excitation wavelength (λexc) as 442 nm and the scanning emission 

wavelength (λemm) range from 455 to 650 nm at room temperature. 
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5.4.3 Nuclear Magnetic Resonance 

DNA for NMR experiments was purified by 10% denaturing polyacrylamide gel electrophoresis 

(dPAGE). The DNA was eluted from the dPAGE using 300 mM LiCl. This was followed by purification on a 

HiPrep 16/10 DEAE FF anion-exchange column (GE Healthcare, Uppsala, Sweden), and desalting on a 

HiPrep 26/10 Desalting column (GE Healthcare, Uppsala, Sweden). Buffers containing only Li+ cations (no 

Na+ or K+) were used throughout purification. NMR samples were prepared by dissolving an appropriate 

weight of lyophilized powder in 400μL of either water (no salt samples), 5 mM sodium phosphate buffer 

and 5 mM NaCl, 5 mM potassium phosphate buffer and 5 mM KCl, 80 mM NaCl or 80 mM KCl. The pH 

was adjusted to 5.8 or 6.8 with ammonia, NaOH or KOH depending on the cation already present. The 

samples were dried by lyophilization and re-dissolved in 500 μL of 90% H20/10% D2O or 99.996% D2O. 

Samples were heated to 85°C for 5min and cooled to 4°C before spectra were acquired. All spectra were 

collected on a Bruker DRX-600 spectrometer equipped with a HCN triple-resonance, triple-axis PFG 

probe (Bruker, Billerica, MA). NMR experiments were carried out at 277 K in 90% H2O/10% D2O or 298 K 

in D2O. Solvent suppression was achieved using 11̅-spin echo pulse sequences [190] for 90% H2O/10% 

D2O or presaturation [192] for D2O samples. All 1D spectra were processed using identical parameters 

and window function. The 2D CITY TOCSY experiments [193] were run with a mixing time of 50 ms and 

NOESY experiments [191] were run with a mixing time of 150 ms. Quadrature detection for the indirect 

dimension was achieved using the States-TPPI method [189]. All NMR samples had a volume of 500 μL 

and were read in standard 5 mm NMR tubes. Relevant pulse programs can be found in Appendix B. 

 

5.4.4 Circular Dichroism 

CD experiments were performed on a Jasco J-815 spectropolarimeter (Jasco Inc., Easton, MD). 

CD scanning experiments were run from 330 nm to 200 nm with a path length of 0.1 cm, data interval of 

0.5 nm, bandwidth of 0.5 nm, response of 1 second, scanning speed of 200 nm minute−1 and a total of 
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four accumulated scans. Samples contained 5 μM DNA at pH 6.8 and either H2O, 80 mM KCl or 80 mM 

NaCl. The samples were also heated to 85 °C for 5min, cooled to 4 °C and incubated for at least 24hrs 

before acquisition at 25 °C. 

 

5.5 Results and Discussion 

5.5.1 The Ce13d DNAzyme 

The secondary structure of the Ce13d DNAzyme is shown in Figure 5.1 A [291]. Its substrate 

strand (shown in green) contains a single RNA linkage (rA in red for ribo-adenine) that serves as the 

cleavage site. For most of the studies in this work, this RNA linkage was replaced by its DNA analog to 

avoid cleavage (dA in red for deoxyribo-adenine). Previous assays have shown that such a change does 

not perturb Na+ binding [288,300]. The two ends of the enzyme strand (shown in blue) bind the 

substrate via two stems (shown as blue/green duplexes in Figure 5.1 A) respectively, and between these 

two stems the enzyme contains a hairpin (shown as blue) followed by a large loop (shown as red and 

purple), which is the main part of the Na+ aptamer. Stretches of G bases present in the catalytic loop of 

Ce13d DNAzyme as well as the substrate strand are highlighted in purple (Figure 1A). G4 structures are 

composed of stacked G-quartet, where each quartet consists of 4 guanines Hoogsteen base-paired in a 

square planar array (Figure 5.1 D). G4s may form by one to four nucleic acid strands that bear 

continuous runs of guanines or G-tracts in presence of metal ions such as K+ [321,322]. 
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Figure 5.1: Secondary structure of molecules used in ThT fluorescence experiments. 

(A) the Ce13d DNAzyme and (B) G4 construct, designed by replacing the Ce13d catalytic loop by a G4 

DNA. The guanine stretches are marked in purple. (C) The structure of ThT. (D) Structural representation 

of a G-quartet, where the hydrogen bonds are shown in pink color, G stands for guanine, and R depicts 

the rest of the nucleic acid chain attached to G. 

 

From the secondary structure of Ce13d, we can find four GG or GGG stretches (purple, Figure 

5.1 A) in its catalytic loop, and thus it has the chemical components to form a G4. From the previously 

published DMS foot-printing experiment, most of these guanines in the enzyme strand were protected 

in presence of Na+, indicating that these guanines are involved in the Na+-binding pocket [288]. 

However, this DNAzyme is known to be inactive with K+ [298]. In addition, upon replacing one of the 

critical guanines in the enzyme catalytic loop with base hypoxanthine, the modified Ce13d DNAzyme still 

retained the same Na+-induced activity [323]. This modification must disrupt G4 structures, however it 

did not hamper the Ce13d activity. Therefore, whether Ce13d uses G4 to bind Na+ remains elusive. To 
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address this problem through comparative studies, we designed a G4 construct as a positive control, in 

which we replaced the Ce13d catalytic loop with a G4 sequence (Figure 5.1 B). 

 

5.5.2 ThT fluorescence spectroscopy 

We started by using ThT to probe for the presence of G4 structures in the Ce13d DNAzyme and 

the G4 control sequence. The structure of ThT is shown in Figure 5.1 C, and it is commonly used for 

staining G4 DNA [319,324–326] although ThT also has its limitations such as it prefers to bind parallel G-

quadruplex over anti-parallel ones [327,328]. Before studying our Ce13d DNAzyme, we first did a control 

experiment using the G4 construct in Figure 5.1 B. We mixed ThT with this G4 structure, and an emission 

peak at 488 nm was observed with 442 nm excitation (Figure 5.2 A, black spectrum). Upon adding 10 

mM K+, an increase in the fluorescence was observed, suggesting formation of a G4 structure (Figure 5.2 

A, red spectrum). For quantitative understanding, we gradually titrated K+ (Figure 5.2 B, green trace) to 

see a concentration-dependent effect. A sharp increase in fluorescence occurred between 0 and 5 mM 

K+ and then the fluorescence saturated. A Kd of 0.52 mM K+ was obtained by fitting the curve. With more 

than 10 mM K+, the fluorescence started to drop, which might be attributed to the general effect of salt 

in screening the interaction between ThT and the DNA. While the increase in fluorescence in Figure 5.2 

B was sharp, it was relatively small in terms of fold-enhancement i.e. ~ 2-fold. This could be attributed to 

the long DNA structure in which only a small fraction of the nucleotides makes the G4 structure. The 

non-guanine nucleotides may non-specifically bind ThT and thus may have contributed to a high 

background fluorescence [326]. In addition, this G4 DNA might fold into an anti-parallel structure, which 

would also limit the amount of fluorescence increase (see discussion on its CD spectra later). When Li+ 

was titrated, no fluorescence increase was observed and it even dropped slightly (Figure 5.2 B, black 

trace). When Na+ was titrated, the drop in fluorescence was even more (Figure 5.2 B, red trace). Overall, 
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the control G4 experiment indicated that ThT can stain the G4 structure in our two-strand system 

(Figure 5.1 B), and only K+ promoted formation of the G4 structure.  

 We then titrated the metal ions to the Ce13d DNAzyme containing the non-cleavable substrate 

(Figure 5.2 C). Interestingly, we observed decreased fluorescence intensity upon addition of Na+, while 

K+ almost had no influence on the signal, similar to the response to Li+. We reason that Na+ can fold the 

DNAzyme into a tight binding structure, releasing previously associated ThT to decrease its fluorescence. 

Such a binding structure was unlikely to be a G4 sequence due to the drastic fluorescence quenching by 

Na+ and the lack of response to K+. To ensure that the data is representative, we also performed the 

metal titration in the presence of a lower buffer concentration (Figure 5.3). Still, Na+ showed the largest 

ThT fluorescence decrease, confirming specific Na+-binding but likely to a non-G4 structure.  

 

 

Figure 5.2: ThT fluorescence spectra of Ce13d and G4 control. 

(A) Fluorescence spectra of the G4/ThT mixture without and with 10 mM K+. Fluorescence titration of 

the (B) G4/ThT, and (C) Ce13d/ThT mixture with various monovalent metal ions in 500 mM Tris-acetate 

buffer, pH 8.0.  
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Figure 5.3: ThT fluorescence intensities in lower buffer concentration.  

(A) G4/ThT, and (B) Ce13dA/ThT mixture with various monovalent metal ions in 50 mM Tris-acetate 

buffer, pH 8.0. The ratio of the G4/Ce13dA to ThT was 0.6 µM : 3 µM. 

 

Another possibility is the formation of inter-molecular G4 complexes by multiple DNAzymes 

specifically interacting with each other. To test this, we varied the concentration of the Ce13d DNAzyme 

(keeping the ThT concentration the same). As we increased the concentration of DNAzyme, the initial 

fluorescence increased, which is consistent with formation of increasing DNA/ThT complexes. However, 

this response to Na+ was observed to be independent of DNAzyme concentration, upon plotting the 

relative fluorescence change (Figure 5.4). This data advocate that the effect of the Na+-binding is 

conferred upon individual DNAzyme molecules rather than the formation of inter-molecular complexes. 

An important aspect of ThT staining to be considered is the possibility of G4-induced 

fluorescence reduction. It has been previously reported that using ThT to stain G4 DNA followed by 

addition of metal ions may not always accompany fluorescence increase, and sometimes fluorescence 

decrease may also be observed [319]. Based on the available literature, in most common cases with 

unmodified DNA we expect K+ to be better than Na+ to stabilize G4 structures, although exceptions were 

also reported [306,329]. The fact that only Na+ had a strong response of decreasing fluorescence with 
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negligible fluorescence perturbation in presence of K+ (Figure 5.2 C) did not provide a strong support for 

a G4 structure in Ce13d with Na+. The insights from previous 2-aminopurine spectroscopy studies [298], 

in addition to the data fished out in our study herein, strengthen the notion of Ce13d DNAzyme to fold 

differently than G4 structures in presence of Na+. Due to the limitations of ThT as a G4 probe, the ThT 

data alone cannot conclude the structure of the Ce13d DNAzyme in the presence of Na+. Therefore, we 

then used spectroscopic methods that do not require labelling or staining of the DNA.

 

Figure 5.4: Fluorescence intensity at different DNA concentrations.  

(A) G4/ThT and (B) Ce13dA/ThT mixture in the G4/Ce13dA : ThT ratio of 1.2 µM : 3 µM, with various 

monovalent metal ions. Fluorescence spectra of the (C) G4/ ThT and (D) Ce13dA/ ThT mixture in the 

G4/Ce13dA : ThT ratio of 0.6 µM : 3 µM, with various monovalent metal ions. This data is collected in 

500 mM Tris-Acetate buffer pH 8.0. 
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5.5.3 Design of a cis-DNAzyme for NMR Spectroscopy 

To further test the structure of the DNAzymes, we then performed NMR spectroscopy. One of 

the main bottlenecks in obtaining information from nucleic acid NMR is the length of the sequence 

under study. The chemical diversity of the nucleotide monomers (i.e. adenine, thymine/uracil, cytosine, 

and guanine) present in naturally occurring nucleic acids is very low. Due to this there is high spectral 

overlap in their NMR peaks [227]. This problem becomes more and more significant as the number of 

nucleic acid polymers or the number of nucleotides increase [330]. The DNAzyme version used for ThT 

experiments (Figure 5.1 A) contains two separate strands, and the full Ce13d DNAzyme used for 

previous studies had nearly 90 nucleotides. It is difficult to prepare a homogenous NMR sample with the 

two-strand system since it is hard to control the presence of any unhybridized strand by having exactly 

the same ratio of the two strands. Such heterogeneity adds spectral overlap of NMR peaks as well, 

making NMR analysis even more difficult. Therefore, to lessen the probability of spectral overlap, short 

cis versions of Ce13d were designed for NMR studies. 

 

 

Figure 5.5: Ce13d sequence variations used for NMR spectroscopy. 

(A) trans-cleaving DNAzyme Ce13d with the conserved nucleotides (red) numbered from 3-18, and its 

non-cleavable analogues (B) Ce13dA, and (C) Ce13dB. 
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 The secondary structure of the trans-cleaving Ce13d previously used for biochemical 

characterizations [323], and the two short cis versions: Ce13dA and Ce13dB used for NMR studies are 

shown in Figure 3. The two substrate-binding arms of these two cis DNAzymes are 6 base pair (shown in 

green color) and 5 base pairs (shown in blue color) long, much shorter than those in Ce13d. Previous 

studies showed that the hairpin size and composition can be changed as long as a hairpin structure is 

retained [291,295,298]. In the catalytic loop, the length of the hairpin was also shortened. The only 

difference between Ce13dA and Ce13dB is that the adenine in the tip of the hairpin loop was changed to 

a cytosine. Shortened cis-DNAzymes were used to solve the DNA length and substrate/enzyme ratio 

problems. The region shown in dark red is the same for all three versions shown. These conserved 

nucleotides present in the enzyme loop of Ce13d are most important for Na+-binding as well as catalytic 

activity (nucleotides numbered 3-18 in Figure 5.5 A). A systematic mutation study of the conserved 

enzyme loop, in which each nucleotide was mutated to the other three has revealed interesting insights 

[295]. It was found that most of the mutants except for A3G, A8G, G14A, and G14T, were incapable of 

specific Na+-binding. In terms of catalytic activity, the nucleotides A3, G14 and T17 exhibited tolerance 

to mutations, and mutants C7A, A8G, and T13C were found active. Except for these, all the other 

mutants remarkably hampered the Ce13d catalysis. These data present a good correlation between Na+-

binding and catalytic activity, showing that Na+-binding is a key factor for catalysis to take place. These 

data also validate the usage of Ce13dA and Ce13dB for NMR, as these have the conserved set of 

nucleotides preserved. In the trans-cleaving Ce13d DNAzyme (Figure 5.5 A), the cleavage site is denoted 

with a black arrow, and the cleavage site ribonucleotide ‘rA’ is colored in cyan.  The cis-versions of 

Ce13d are designed to be non-cleavable by replacing the cleavage site ‘rA’ to deoxy-ribonucleotide ‘A’ 

(colored in cyan in Figure 5.5 B and 5.5 C). 
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5.5.4. Folding of Ce13d in Li+, Na+ and K+. 

To see if we could gain a deeper understanding of the folding of Ce13d in the presence of 

various monovalent ions we probed the 1D 1H spectrum of Ce13dA in the presence of various 

monovalent ions at two different pH values (Figures 5.6 and 5.7). The imino proton regions of 90% 

H2O/10% D2O 1D 1H NMR spectra of Ce13dA were collected with no salt added (only trace amounts of 

Li+ present) at pH 6.8 (Figure 5.6 A), 10 mM K+ at pH 6.8 (Figure 5.6 B), and 10 mM Na+ at pH 6.8 (Figure 

5.6 C) respectively. The imino region of the 1D 1H spectrum contains peaks for the exchangeable imino 

protons of guanine (H1) and thymine (H3) [331]. More specifically, the region of 12-14 ppm represents 

signals from imino (NH) protons which are strongly hydrogen bonded in Watson-Crick base pairs, while 

the signals in the region around 9-12 ppm belong to imino protons that are typically involved in non-

canonical base pairs which are useful for characterizing the secondary structures formed by complexed 

DNA [332,333]. A comparison of the three spectra in the region of 12-14 ppm in Figure 4 suggests that 

there are similar number of peaks and several shared chemical shifts between each of the three spectra, 

suggesting that the structure of the base paired regions shown in Figure 3B was relatively rigid and 

stable in the presence of traces of Li+, or 10 mM Na+, and K+ at pH 6.8. However, the region of 9-12 ppm 

is quite different with respect to the number of peaks and chemical shifts of the peaks for each of the 

three spectra, indicating that Ce13dA adopted a different conformation and/or equilibrium of 

conformations in the presence of no salt (Li+ traces), Na+ and K+.  

 In Figure 5.7, similar spectra were acquired but at a lower pH of 5.8 and with higher salt 

concentrations of 80 mM K+ (Figure 5B) and 80 mM Na+ (Figure 5.7 C) to drive the binding of the cations. 

Under these conditions, the spectra for K+, and to a lesser extent, Li+, had much broader linewidths and 

more spectral overlap, resulting in poorly defined peaks. This is indicative of the presence of multiple 

conformations, which is unsurprising at a lower pH where exchange occurs more readily due to higher 

H+ concentration. On the other hand, it can be observed in Figure 5.7 C that there are shifts in the Na+ 
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spectrum from higher salt concentration and lower pH, but in general it retains its structured 

conformation. From Figure 5.6, it is evident that many of the peaks affected in presence of Na+ are 

different from those affected with K+, and at the lower pH of 5.8 where the exchange rate is higher, 

Ce13dA visibly retains much more structure in the presence of Na+ than the free DNA or in the presence 

of K+. This emphasizes that Ce13dA adopts a different conformation and/or equilibrium of 

conformations in the presence of Na+ versus K+. It is also worth noting that in Figure 5.6, there are fewer 

peaks with a narrower distribution present in the absence of salt than there are in the presence of Na+ 

or K+ which implies that some features of the folded structures are unable to form without cation 

stabilization. Most of these differences are observed in the lower ppm range of the imino region, which 

is characteristic of non-Watson Crick base pairing. These interpretations support the conclusions of 

previous results, where using intrinsic fluorescence changes of 2-aminopurine labelled at the cleavage 

site, it was shown that the folding pattern with Na+-binding was completely different from K+-binding, 

where K+ is considered to induce misfolding of Ce13d [298,300].  
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Figure 5.6: Imino proton region of 90 % H2O / 10 % D2O 1D 1H NMR spectra of Ce13dA at 277K. 

(A) 600 μΜ Ce13dA with no salt added (only trace amounts of Li+ from purification present), pH 6.8, (B) 

150 μM Ce13dA in 10mM K+, pH 6.8, (C) 150μM Ce13dA in 10mM Na+, pH 6.8. 
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Figure 5.7: Imino proton region of 90 % H2O / 10 % D2O 1D 1H NMR spectra of Ce13dA at 277K. 

(A) 150 μΜ Ce13dA with no salt added (only trace amounts of Li+ from purification present), pH 5.8, (B) 

150 μM Ce13dA in 80mM K+, pH 5.8, (C) 150μM Ce13dA in 80mM Na+, pH 5.8.  

 

5.5.5 NMR Spectra Suggest the Na+-binding Structure is not a G-quadruplex 

 Many G-rich DNA aptamers contain G-quadruplex structures for molecular recognition, and 

these structures have fairly well defined guanine imino 1H NMR shifts between 10.5-12.5 ppm [198,334–

336]. G-quadruplex DNA is a highly stable structure and therefore these peaks are typically defined by 
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high intensity and narrow linewidth. Due to the Na+ dependence of the Ce13d DNAzyme and its 

sequence containing sufficient G-rich regions, NMR was also used to qualitatively assess the presence of 

G-quadruplex DNA. This needed the investigation of Ce13d in presence of Na+ due to its functional role, 

and also in presence of K+ because of the well-established preference of G-tetrads for K+ [337,338]. The 

spectra in Figures 4 and 5 were analyzed for this purpose. However, no compelling evidence supported 

the presence of a G-quadruplex in Ce13dA in the presence of Na+ or K+. There are some peaks between 

10.5 ppm and 12.5 ppm at both pH ranges, but this is not atypical of DNA, and based on the linewidths, 

G-quadruplex is not conclusively present in any of the spectra. At pH 5.8, it is highly likely that a G-

quadruplex would be stable and retain its characteristic, narrow imino peaks between 10.5-12.5 ppm 

and it is clear that this is not the case for free DNA or in the presence of K+. In the presence of Na+, the 

peaks in this region have narrower linewidths but this simply indicates that conformational stability is 

conferred but not necessarily due to a G-quadruplex. Analysis of Figure 5.6 shows that there are not 

significantly more peaks in the presence of Na+ than K+. Based on these observations and the fact K+ is 

known to have a higher propensity for G-quadruplex formation than Na+, it is unlikely that Ce13dA forms 

a G-quadruplex. However, despite the lack of evidence, it is possible that different G-quadruplexes are 

formed in presence of different cations and it cannot be explicitly ruled out by these spectra alone that 

G-quadruplex is formed. Therefore, we sought additional evidence to support this claim. In order to 

collect this evidence, we lyophilized the three samples from Figure 5.7 after the previous spectra were 

obtained and resuspended them in 100% D2O for acquisition of further 1D 1H NMR spectra. Under these 

conditions, signals from exchangeable imino and amino resonances from G-quadruplex G residues may 

survive for up to two or more weeks in D2O [339]. There were no residual imino or amino peaks 

observed in any of these spectra, despite being observed within 30 minutes of resuspension. These 

findings, in combination with those from spectra in Figures 5.6 and 5.7, support the conclusion that 

there is no G-quadruplex formation in the presence of Na+ or K+. To summarize, these 1H NMR spectra 
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show that Ce13d is unique in its ability to discriminate between monovalent cations and supports the 

idea that there is an aptamer specific for Na+ within the catalytic loop of Ce13d. This NMR data also 

indicates that this aptamer is not based on a G-quadruplex structure. 

 

5.5.6 CD Spectra Confirm the Absence of G-quadruplex Structure. 

 CD spectra were then obtained for Ce13dA under the same three salt conditions used for NMR 

experiments (no salt added, 80 mM Na+ and 80 mM K+). We chose the cis-cleaving Ce13dA to better 

match the results of the NMR experiments. All three spectra had maxima at approximately 280 nm, 

minima at 250 nm and a cross-over point from positive to negative intensity around 260 nm which is 

typical of duplex DNA (Figure 5.8) [196,340]. G-quadruplex DNA can have different forms, all with 

characteristic CD signatures, such as parallel (~264 nm max, 245 nm min), antiparallel (~ 295 max, 260 

min) or hybrid (~ 295 max, 260 max, 245 min) [341,342]. These peaks are clearly not present in any of 

the CD spectra obtained. In addition to this, all three salt conditions give nearly identical CD spectra, 

which is not consistent with the presence of a G-quadruplex. Since G-quadruplex formation is 

dependent on salt, a sequence containing G-quadruplex would experience significant shifts in 

wavelengths and increases in peak magnitudes in the presence of K+ compared to the absence of K+ 

[343]. We previously measured the CD spectra of the trans-cleaving Ce13d DNAzyme and also the G-

quadruplex control shown in Figure 5.1 A and 5.1 B, respectively [299]. The trans-cleaving Ce13d spectra 

were very similar to that of the cis-cleaving Ce13dA presented in Figure 5.8, suggesting that they had a 

similar overall folding. The G4 control, on the other hand, had the peaks shifted to 290 nm and 250 nm 

in the presence of K+, suggesting its folding into an anti-parallel G-quadruplex. The peaks did not 

perfectly match with the ideal values since a portion of the DNA was in duplex. This evidence indicates 

that Ce13dA does not form a G-quadruplex, in agreement with 1D NMR data. 
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Figure 5.8: CD spectra of Ce13dA in the presence of no added salt, K+ and Na+. 

No significant changes are observed in CD spectra when different ions are present and characteristic G-

quadruplex peaks are absent, indicating a lack of G-quadruplex structure in this sequence. 

 

5.5.7 Potential Structural Information from 2D NMR 

 In addition to the 1D 1H NMR, we probed the structure of Ce13d with 2D NMR. For this, we used 

the Ce13dB construct. The Ce13dB differs from Ce13dA by a cytosine residue in its hairpin-loop (shown 

in pink in Figure 5.5 B and 5.5 C). This change could be afforded as this position is known to be 

insignificant in Na+ binding and catalysis of Ce13d [291,323]. This was done to increase the number of 

cytosine residues as it proves beneficial for spectral assignment of peaks, and therefore in determining 

the homogeneity of the sample. Typically for cytosines, the H5 and H6 protons show up peaks between 

5-6 ppm and 6.9-7.9 ppm, respectively. The through-bond interaction between H5 and H6 protons is 
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unique to cytosines, and the number of peaks coming from this interaction directly correlates to the 

number of cytosines in the structure. To determine if Ce13dB is present in a single homogeneous 

conformation, we probed the structure of Ce13dB with a 2D TOCSY experiment (Figure 5.9) and looked 

at the peaks generated by the through-bond interactions of H5/H6 protons in the cytosine nucleotides 

(Figure 5.10). The number of cytosines in Ce13dB is 12 (Figure 5.5 C), while the number of peaks 

showing up in the 100 % D2O 1H5/1H6 2D TOCSY is 18 (Figure 5.9). This clearly indicated that Ce13dB is 

present in multiple three-dimensional conformations. Since conformational homogeneity is a 

prerequisite for structure determination through NMR, any further spectra for structure determination 

were not acquired in this study. 

 

Figure 5.9: 2D-TOCSY spectrum of 450 μM Ce13dB in 5 mM LiPO4
 pH 6.8, 200 mM Na+. 
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This is the full TOCSY spectrum of Ce13dB in the presence of high Na+. Spectrum was acquired with a 

mixing time of 50 ms. 

 

 

 

Figure 5.10: H5/H6 proton region of the 2D-TOCSY spectrum of Ce13dB.  

The spectrum shows cross-peaks generated by through-bond interactions of H5/H6 hydrogens of the 

cytosine residues of Ce13dB. These peaks are conservatively counted in blue text. The chemical shift 

range of H5 protons is 5-6.2 ppm (y-axis) and the chemical shift range of H6 protons is 6.8-8.0 ppm (x-

axis). This spectrum was acquired with a 450 μM sample in 5 mM LiPO4 pH 6.0, 200 mM Na+.  
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5.5.8 Structural Effects of Lanthanum Titration on Cis13dB 

It has been noted in previous work on Cis13d that cleavage activity is catalyzed by several 

trivalent lanthanides [291]. There was a distinct lack of structural homogeneity observed in TOCSY 

experiments with the non-cleaving Cis13dB, even in the presence of sodium. Because of Cis13d’s ability 

to interact with lanthanides at the cleavage site, we decided to probe Cis13dB with lanthanum to see if 

any structure-stabilizing effects were observed in its presence. To do this, we acquired TOCSY 

experiments after the addition of several aliquots of lanthanum, as shown in Figure 5.11. A clear change 

in conformation and/or equilibrium of conformations was observed over the course of this titration. 

After the addition of the final aliquot (4:1 lanthanum to DNA), shown in red in Figure 5.11, four fewer 

peaks are counted than at the beginning of the titration (no lanthanum, 80mM NaCl), shown in blue in 

Figure 5.11. This is still more than expected for a single conformation but is an obvious improvement 

over the spectra obtained with sodium alone. An additional aliquot (6:1 lanthanum to DNA) was 

obtained, but little difference was observed compared to the 4:1 aliquot so the titration was concluded 

at that point. Though the TOCSY titration suggests that multiple conformations are still present, NOESY 

experiments were performed to probe the tertiary structure and confirm the supposition of the TOCSYs. 
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Figure 5.11: Titration of Cis13dB with lanthanide. 

Blue- 600 µM DNA, 80 mM NaCl, Green- 600 µM DNA, 80 mM NaCl, 600 µM La(NO3)3, Orange- 600 µM 

DNA, 80 mM NaCl, 1200 µM La(NO3)3, Red- 600 µM DNA, 80 mM NaCl, 2400 µM La(NO3)3. All spectra 

were acquired with mixing times of 50 ms. 

 

 A NOESY in 90% H2O/10% D2O (Figure 5.12) and a NOESY in D2O (Figure 5.13) were acquired on 

the same sample used for the TOCSY experiments in Figure 5.11 (6:1 lanthanum to DNA and 80mM 

NaCl). Though spectra of reasonable resolution were acquired, the significant lack of NOEs is evident, 

particularly when comparing to high-quality spectra of a sequence of similar length (Figure 3.8). This is 

indicative of a lack of tertiary structure forming. At this point, no further spectra were acquired as it 

became clear that assignments were impossible. 
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Figure 5.12: NOESY of Cis13dB in 90% H2O/10% D2O. 

Sample contained 600 µM DNA, 80 mM NaCl, 3600 µM La(NO3)3 and was run with a 150 ms mixing time. 
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Figure 5.13: H1’-H6/H8 region in the NOESY spectrum of Ce13dA in D2O. 

Sample contained 600 µM DNA, 80 mM NaCl, 3600 µM La(NO3)3 and was run with a 150 ms mixing time. 

 

5.6 Conclusions 

In this study, ThT staining, NMR spectroscopy and CD spectroscopy were employed to study Na+ 

binding by its aptamer, which is embedded in the Ce13d and NaA43 DNAzymes. By accomplishing 

comparative analysis between Ce13d Na+-aptamer versus a G4 construct, it was observed that both 

show a distinct fluorescence change in the presence of Li+, Na+ and K+. In the case of Ce13d, while most 

of the binding was observed with Na+, no evidence supported that formation of a G4 structure makes 

the basis of Na+-binding, and thus this aptamer likely uses other mechanisms to bind Na+. NMR provided 

a similar conclusion arguing against a G4 structure in the presence of Na+. This is further supported by 
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the lack of G4 observed in CD. This report not only explicitly demonstrates the presence of a uniquely 

folding novel Na+-aptamer in Ce13d, but also substantiates the fact that isolation of novel aptamer 

containing DNAzymes or Aptazymes is a prudent way of discovering novel distinctly folding metal-

binding aptamers. Additionally, this study highlights the possibility of utilizing monovalent metal ions to 

play novel and unique roles in DNA scaffolding and DNA nanotechnology in general, other than just 

nucleic acid duplex stabilization. 
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Chapter 6: Summary and Future Work 

 

In Chapter 2, we screened and investigated SRB-2 ligands for optimal binding properties, namely 

affinity and selectivity. We determined that the amine groups on the ligand must have small alkyl 

constituents that are able to participate in hydrophobic interactions. They must not, however, be so 

large as to interfere with the aptamer’s binding conformation. Binding affinity is also increased when the 

total number of negative charges is decreased. A single negatively charged group was shown to have 

little impact on binding affinity but is required for selective binding of SRB-2. This is due to repulsive 

interactions with the RNA backbone preventing these ligands from non-specifically binding to A-form 

regions of the aptamer. As observed with AR101-B, bulky amine constituents can also confer selective 

binding of SRB-2 in the absence of a negative charge but at a considerable loss of binding affinity. 

Considering all these observations, we determined rhodamine B was the best ligand out of those we 

tested. We also showed via ITC that SRB-2 binding is dependent on divalent cations at low concentration 

and determined using CD that its binding mechanism does not involve a G-quadruplex and does not 

form any new helical regions upon binding. 

In Chapter 3, the solution structure of SRB-2 was probed using homonuclear NMR techniques as 

well as with the three single-nucleotide labelled samples [13C 15N]-Ade, [13C 15N]-Cyt and [13C 15N]-Ura. 

The presence of structural heterogeneity ultimately resulted in insufficient quality of data to pursue 

structure calculations. There were some minor changes observed with low Mg2+ concentrations so 

investigations with more salt concentrations may be useful. Initial spectra obtained using RB as the 

ligand were not successful. However, sequence modification of SRB-2 to address 3’ and 5’ heterogeneity 

may be more successful. If such changes were impactful, one could then consider re-acquiring some of 

the NMR experiments performed and perhaps synthesize additional samples that may be of use, such as 

a uniform 13C 15N sample. Another potentially useful strategy to address spectral overlap would be to 
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use at least one partially deuterated sample, likely with one or more nucleotides deuterated in the H3’, 

H4’, H5’ and H5” positions. Removing some of these spins would drastically reduce the amount of 

dipolar relaxation experienced by the other protons, resulting in a significantly sharpened spectrum that 

may reduce some of the remaining peak overlap.  

In Chapter 4, we pursued a “divide and conquer” strategy to acquire more structural 

information about SRB-2. Resonance assignments for a UUCG 16mer were acquired using homonuclear 

spectra, and a family of 20 structures was calculated. These structures were in agreement with literature 

structures, and characteristic cross-peaks from the tetraloop could be easily identified in the NOESY 

spectra of SRB-2. NMR studies with the L3C sequence were unsuccessful due to the high degree of 

structural heterogeneity present. Using this truncation clearly did not solve the overlap or heterogeneity 

problems discussed in Chapter 3. Based on the NMR spectra for L3C, it is likely that there is significant 

interaction between loop 3 and loop 2 in the folded structure SRB-2. Therefore, this “divide and 

conquer” approach will not be useful beyond the UUCG tetraloop. A minimal version of SRB-2 aptamer, 

SRB-2 min, was proposed by the authors who originally selected SRB-2. The UUCG tetraloop is absent in 

this structure, while loop 2 and loop 3 are intact. However, NMR studies are not possible due to the 

extremely low binding affinity observed in fluorescence experiments. If future NMR studies are done on 

this system, finding conditions to limit exchange and hence peak broadening would be the primary goal. 

Then, the isotope labelling strategies discussed in Chapter 3 may be more effective.  

In Chapter 5, ThT staining, NMR spectroscopy and CD spectroscopy were used to study Na+ 

binding by its aptamer, which is embedded in the Ce13d and NaA43 DNAzymes. By accomplishing 

comparative analysis between Ce13d Na+-aptamer versus a G4 construct, it was observed that both 

show a distinct fluorescence change in the presence of Li+, Na+ and K+. In the case of Ce13d, most of the 

binding was observed with Na+, but no evidence supported that formation of a G4 structure makes the 

basis of Na+-binding. NMR and CD provided similar conclusions regarding the absence of G4 structure in 
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the presence of Na+. However, based on the metal selectivity observed in this system, we were able to 

demonstrate the presence of a uniquely folding novel Na+-aptamer in Ce13d, but also suggests that 

isolation of novel aptamer containing DNAzymes or Aptazymes may be a practical way of discovering 

novel metal-binding aptamers. Additionally, this work highlighted the possibility of utilizing monovalent 

metal ions to serve novel and unique roles in DNA scaffolding and DNA nanotechnology in general. 

To conclude this thesis, I would like to briefly state the most significant impacts of this research. 

The binding kinetics investigated in Chapter 2 were able to show, with respect to SRB-2, that a ligand 

that was not the selection target, rhodamine B, actually had the most ideal binding properties of those 

studied, including a higher binding affinity than the original ligand, sulforhodamine B. Advances in 

aptamer selection methodologies have come a long way since SRB-2 was selected in 1997, so perhaps 

this indicates more optimal sequences could exist for some of these ligands. In literature, several SRB-2 

ligands showed promise due to their high fluorescence enhancement in previous studies, but we 

showed here that they were in fact binding to the aptamer non-specifically, questioning the usefulness 

of these ligands in potential applications. In Chapter 5, we studied a DNAzyme containing a Na+ aptamer 

that clearly discriminates between Na+ and K+ without the use of a G-quadruplex, as would generally be 

expected. This existence of a selective Na+ aptamer is also encouraging with respect to biosensor 

development for metal ions. Distinguishing ions as similar in properties to Li+, Na+ and K+ is no small feat 

and indicates that DNAzymes and/or aptazymes may be a useful method for sensing unique metal ions. 
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Appendices 

 

Appendix A: Supplementary Figures 

 

Figure A.1: 1D titration of 1 mM SRB-2 with SR.  

Imino proton range showing change in structure upon binding of the ligand in three aliquots. A) SRB-2 

fully bound, B) SRB-2 two-thirds bound, C) SRB-2 one-third bound, and D) SRB-2 completely unbound. 
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Figure A.2: TOCSY spectra of 1mM SR (red) and 1.8mM SRB-2 fully bound to SR (black). 
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Figure A.3: TOCSY spectra of 1mM RB (red) and 1.3mM SRB-2 fully bound to RB (black). 
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Figure A.4: NOESY spectrum of 1.3 mM SRB-2 bound ~1:1 with rhodamine B in 90% H2O/10% D2O. 
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Figure A.5: NOESY spectrum of 1.1 mM SRB-2 bound ~1:1 with sulforhodamine 101 in 90% H2O/10% 

D2O. 
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Figure A.6: NOESY spectrum of 0.4 mM SRB-2 bound ~1:1 with tetramethylrosamine in 90% H2O/10% 

D2O. 
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Figure A.7: NOESY spectrum of 0.4 mM SRB-2 bound ~1:1 with pyronin Y in 90% H2O/10% D2O. 
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Figure A.8: NOESY spectrum of 0.4 mM SRB-2 bound ~1:1 with 9-aminoacridine in 90% H2O/10% D2O. 
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Figure A.9: H2O NOESY spectrum of 0.4 mM SRB-2 bound ~1:1 with Atto 495. 
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Appendix B: NMR Pulse Programs  

 

1D 1H with 1𝟏̅-Spin Echo Solvent 
Suppression 

;SD_11echozg 
;1D sequence for 11 spin echo  water suppression with 
gradients 
;low power mode 
;4.8.94 vladi sklenar 
;modified 3-26-97, td 
 
#include <Avance.incl> 
#include <Grad.incl> 
 
"d11=30m" 
"d16=200u" 
"d13=20u" 
"d2=1s/(cnst2*4)-(p1*0.667)" 
 
1 ze 
  d11  
2 d13  
  d13 
  LOCKH_OFF 
  d1  
  LOCKH_ON 
  p1 ph1 
  d2 
  p1 ph2 
  p16:gp1 
  d16 
  p1 ph3 
  d2 
  d2 
  p1 ph4 
  p16:gp1 
  d16  
  go=2 ph31  
  wr #0  
  LOCKH_OFF 
exit 
 
ph1 = 0 0 0 0  1 1 1 1  2 2 2 2  3 3 3 3 
ph2 = 2 2 2 2  3 3 3 3  0 0 0 0  1 1 1 1 
ph3 = 0 1 2 3  1 2 3 0  2 3 0 1  3 0 1 2 
ph4 = 2 3 0 1  3 0 1 2  0 1 2 3  1 2 3 0 
ph30= 0 
ph31= 0 2 0 2  1 3 1 3  2 0 2 0  3 1 3 1 
 
;pl1: 1H high power(~0 dB) 
;p1 :  90 degree ecoupler pulse 
;d1 : relaxation delay; 1-5 * T1 
;d2 : 1/4*d2 excitation maximum calculated based on  
;     CNST2 = distance in Hz to first exitation max 
 

1D 1H with Presaturation 

;SD_1Dpresat 
;avance-version 
;1D sequence with f1 presaturation 
 
#include <Avance.incl> 
 
"d12=20u" 
"d13=3u" 
 
1 ze 
2 d12 pl9:f1 
  p18*0.6 ph28 
  d13 
  p18*0.4 ph29 
  d12 pl1:f1 
  p1 ph1 
  go=2 ph31 
  wr #0 
exit 
 
ph1=0 2 2 0 1 3 3 1 
ph28= 0 
ph29= 1 
ph31=0 2 2 0 1 3 3 1 
 
;pl1 : f1 channel - power level for pulse (default) 
;pl9 : f1 channel - power level for presaturation 
;p1 : f1 channel -  90 degree high power pulse 
;d1 : relaxation delay; 1-5 * T1 
;d12: delay for power switching         [20 usec] 
;d13: short delay                                    [3 usec] 
 

2D NOESY with 1𝟏̅-Spin Echo Solvent 
Suppression 

;SD_noe11ezg 
;2D NOE with 11echo and gradients 
;phase sensitive using States-TPPI 
;with presaturation during relaxation delay and mixing 
time 
;the shortest mixing time ~50 ms!!!! otherwise problems 
with radiation 
;damping 
;added decoupling, 9/15/94; thorsten 
;changed for DRX, 05/01/96; thorsten 
 
;Allows you to center spectrum anywhere. 
;Uses a frequency list: 
; 1) set the first value to the desired center of 
spectrum in f1 
; 2) set the second value to water 
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; 3) set the third value to the desired center of 
spectrum in f2 
; 4) Set o1 to the desired center of spectrum in f2 
(needed for DQD) 
;changed 1/21/97 - ELW 
 
;d2 calculation added 3-22-97, td 
 
#include <Avance.incl> 
#include <Grad.incl> 
 
 
 
"d11=30m" 
"d16=200u" 
"l3=td1/2" 
"d0=(in0/2)-(p1*4/3.14159)" 
"d8=d9-p16-d16" 
"d2=1s/(cnst2*4)-(p1*0.667)" 
 
1  ze 
   d11 
2  d11 
3  d11 pl1:f1 
4  d11 
   LOCKH_OFF 
   d1 fq1:f1   ;Center 
   LOCKH_ON 
   p1 ph1 
   d0 
   p1 ph2 
   d8 
    p16:gp1 
    d16 fq1:f1   ;Water 
   p1 ph3 
   d2 
   p1 ph6 
    p16:gp2 
    d16 
   p1 ph7 
   d2 
   d2 
   p1 ph8 
    p16:gp2 
    d16 fq1:f1   ;Center 
   go=2 ph31 
   d11 wr #0 if #0 ip1 zd 
    lo to 3 times 2 
     d11 id0 
      lo to 4 times l3 
   LOCKH_OFF 
exit 
 
ph1= 0 2 0 2  1 3 1 3  2 0 2 0  3 1 3 1 
     2 0 2 0  3 1 3 1  0 2 0 2  1 3 1 3 
ph2= 0 0 2 2  1 1 3 3  2 2 0 0  3 3 1 1 
     2 2 0 0  3 3 1 1  0 0 2 2  1 1 3 3 
ph3= 0 0 0 0  1 1 1 1  2 2 2 2  3 3 3 3 

ph6= 2 2 2 2  3 3 3 3  0 0 0 0  1 1 1 1 
ph7= 0 0 0 0  1 1 1 1  2 2 2 2  3 3 3 3 
ph8= 2 2 2 2  3 3 3 3  0 0 0 0  1 1 1 1 
ph20=0 0 0 0  0 0 0 0  2 2 2 2  2 2 2 2 
ph31=0 2 2 0  1 3 3 1  2 0 0 2  3 1 1 3 
 
;pl1: Proton power level 
;p1 :  90 degree proton pulse 
;d9 : the mixing time 
;d0 : incremented delay (2D) = in0/2-(4/pi*p1) 
;d2 : delay for exitation maximum, calculated based  
;     on cnst2 = offset of first max in Hz 
;d11: delay for disk I/O                           [30 msec] 
;gp1: Homospoil during mixing time 
;gp2: Watergate gradient 
;in0: 1/(SW)  
;nd0: 1 
;NS: 2,4 8,16 or 32 * n 
;DS: 4 
;td1: number of experiments 
;MC2: States-TPPI 
 

2D NOESY with Presaturation 

;SD_noesypr 
;avance-version 
;2D homonuclear correlation via dipolar coupling  
;dipolar coupling may be due to noe or chemical exchange. 
;phase sensitive using States-TPPI method 
;with presaturation during relaxation delay 
 
; changed presat to 'vladi-trick' 03-24-96, td 
  
#include <Avance.incl> 
#include <Grad.incl> 
 
"d11=30m" 
"d12=20u" 
"d13=5u" 
"d16=200u" 
 
"l3=(td1/2)" 
"d0=((in0/2)-(p1*4/3.14159))" 
"p19=d9-d12-p16-d16" 
 
1 ze 
2 d11 
3 d11 
4 d12 pl9:f1    
  LOCKH_OFF 
  p18*0.8 ph29 
  d13 
  p18*0.2 ph30 
  LOCKH_ON 
  d12 pl1:f1  
  p1 ph1 
  d0 
  p1 ph2 
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  d12 pl9:f1 
  p19 ph18 
  p16:gp1 
  d16 pl1:f1  
  p1 ph3 
  go=2 ph31 
  d11 wr #0 if #0 ip1 zd 
  lo to 3 times 2 
  d11 id0 
  lo to 4 times l3 
  LOCKH_OFF 
exit 
 
ph1 =0 2  
ph2 =0 0 0 0  0 0 0 0  2 2 2 2  2 2 2 2 
ph3 =0 0 2 2  1 1 3 3 
ph18=0 
ph29=0 
ph30=1 
ph31=0 2 2 0  1 3 3 1  2 0 0 2  3 1 1 3 
 
;pl1 : f1 channel - power level for pulse (default) 
;pl9 : f1 channel - power level for presaturation 
;p1 : f1 channel -  90 degree high power pulse 
;d0 : incremented delay (2D)                    [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d9 : mixing time 
;d11: delay for disk I/O                          [30 msec] 
;d12: delay for power switching             [20 usec] 
;d13: short delay                                    [3 usec] 
;L3: loop for phase sensitive 2D using States-TPPI method: 
l3 = td1/2 
;in0: 1/(1 * SW) = 2 * DW 
;nd0: 1 
;NS: 8 * n 
;DS: 16 
;td1: number of experiments 
;MC2: States-TPPI 
 

2D CITY-TOCSY 

;SD_cityprst 
;2D clean CITY with water presat 
;States-TPPI t1-detection 
;DRX version with gradient purging 
;4.7.1995 vladi sklenar 
;03-28-97, td drx version 
 
#include <Avance.incl> 
 
define delay mix 
 
"d0=3u" 
"d11=30m" 
"d12=20u" 
"d16=200u" 
"d20=(p6/90)*103" 
"l3=td1/2"  

"mix=(p6*48.532+d20*32)*l1" 
 
1 ze 
2 d11  
3 d11 
4 d12 pl9:f1 
  d13 LOCKH_OFF 
  p18*0.8 ph18 
  d13 
  p18*0.2 ph19 
  d13 LOCKH_ON 
  d12 pl1:f1 
  p1 ph1 
   d0 
  p1 ph2 
   p16:gp1 
   d16 
   d12 pl11:f1 
7 (d20 p6*2 ph22 d20*2 p6*2 ph22 d20) 
  (p6*0.533 ph23 p6*3.067 ph21 p6*0.533 ph23) 
  (d20 p6*2 ph22 d20*2 p6*2 ph22 d20) 
  (d20 p6*2 ph22 d20*2 p6*2 ph22 d20) 
  (p6*0.533 ph23 p6*3.067 ph21 p6*0.533 ph23) 
  (d20 p6*2 ph22 d20*2 p6*2 ph22 d20) 
  (d20 p6*2 ph24 d20*2 p6*2 ph24 d20) 
  (p6*0.533 ph21 p6*3.067 ph23 p6*0.533 ph21) 
  (d20 p6*2 ph24 d20*2 p6*2 ph24 d20) 
  (d20 p6*2 ph24 d20*2 p6*2 ph24 d20) 
  (p6*0.533 ph21 p6*3.067 ph23 p6*0.533 ph21) 
  (d20 p6*2 ph24 d20*2 p6*2 ph24 d20) 
  lo to 7 times l1 
   p16:gp2 
   d16  
  d12 pl1:f1 
  p1 ph3 
  go=2 ph31  
   d11 wr #0 if #0 ip1 zd 
    lo to 3 times 2 
     d11 id0 
      lo to 4 times l3 
   mix 
   3u LOCKH_OFF 
exit 
 
ph1  = 0 2 0 2  0 2 0 2  1 3 1 3  1 3 1 3 
ph2  = 0 0 0 0  2 2 2 2  1 1 1 1  3 3 3 3 
ph3  = 0 0 2 2  0 0 2 2  1 1 3 3  1 1 3 3 
ph4  = 0 
ph9  = 0 
ph10 = 0 0 0 0  0 0 0 0  1 1 1 1  1 1 1 1 
ph11 = 1 1 1 1  1 1 1 1  2 2 2 2  2 2 2 2 
ph21 = 0 0 0 0  0 0 0 0  1 1 1 1  1 1 1 1 
ph22 = 1 1 1 1  1 1 1 1  2 2 2 2  2 2 2 2 
ph23 = 2 2 2 2  2 2 2 2  3 3 3 3  3 3 3 3 
ph24 = 3 3 3 3  3 3 3 3  0 0 0 0  0 0 0 0 
ph18 = 0 
ph19 = 1 
ph31 = 0 2 2 0  2 0 0 2  1 3 3 1  3 1 1 3    



203 
 

 
;pl9 : transmitte water presat level 
;pl1 : transmitter excitation level 
;pl11 : transmitter TOCSY mixing level 
;p1  : 90 transmitter pulse at pl1 level 
;p6  : 90 transmitter pulse at pl2 level 
;p18 : presaturation pulse with pl9 
;d0  : incremented delay 
;d11 : disc I/O delay 
;d20 : delay for NOE-ROE compensation (1.1*p6? to be 
optimized) 
;l1  : loop for TOCSY mixing (48.532*p6+32*d20) 
;NS=8  minimal phase cycle for pure phase spectra 
incuding ax.peak suppr. 
;NS=16 + short CYCLOPS 
;MC2 : States-TPPI (90/-180 phase correction in F1) 
 

2D DQF-COSY 

;SD_cosydfprst 
;avance-version 
;2D homonuclear shift correlation 
;with presaturation during relaxation delay 
;phase sensitive using States-TPPI method 
;with double quantum filter 
;phasecycle: A. Derome & M. Williamson, J. Magn. Reson. 
88, 
;               177 - 185 (1990) 
 
#include <Avance.incl> 
 
"d0=3u" 
"d11=30m" 
"d12=20u" 
"d13=3u" 
 
"l3=(td1/2)" 
 
1 ze 
2 d11 
3 d11 
4 d12 pl9:f1 
  p18*0.8 ph29 
  d13 
  p18*0.2 ph30 
  d12 pl1:f1 
  p1 ph1 
  d0 
  p1 ph2 
  d13 
  p1 ph3 
  go=2 ph31 
  d11 wr #0 if #0 ip1 zd 
  lo to 3 times 2 
  d11 id0 
  lo to 4 times l3 
exit 
 

ph1=1 1 1 1 0 0 0 0 
ph2=0 0 0 0 1 1 1 1 
ph3=1 2 3 0 2 3 0 1 
ph29=0 
ph30=1 
ph31=0 3 2 1 3 2 1 0 
 
;pl1 : f1 channel - power level for pulse (default) 
;pl9 : f1 channel - power level for presaturation 
;p1 : f1 channel -  90 degree high power pulse 
;d0 : incremented delay (2D)                    [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d11: delay for disk I/O                          [30 msec] 
;d12: delay for power switching            [20 usec] 
;d13: short delay                                       [3 usec] 
;L3: loop for phase sensitive 2D using States-TPPI method: 
l3 = td1/2 
;in0: 1/(1 * SW) = 2 * DW 
;nd0: 1 
;NS: 8 * n 
;DS: 16 
;td1: number of experiments 
;MC2: States-TPPI 
 

2D 13C HSQC 

;SD_hsqchcgsse 
;avance-version 
;2D H-1/13C correlation via double inept transfer 
;   using sensitivity improvement 
;phase sensitive using Echo/Antiecho gradient selection 
;with decoupling during acquisition 
;A.G. Palmer III, J. Cavanagh, P.E. Wright & M. Rance, J. 
Magn. 
;   Reson. 93, 151-170 (1991) 
;L.E. Kay, P. Keifer & T. Saarinen, J. Am. Chem. Soc. 114, 
;   10663-5 (1992) 
;J. Schleucher et al., Angew. Chem. 114(10), 1518 (1993) 
 
; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
; !!                                                       !! 
; !!     Attention: DS has to be a multiple of 2*NS        !! 
; !!                                                       !! 
; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
#include <Avance.incl> 
 
"p2=p1*2" 
"p4=p3*2" 
"d4=1s/(cnst2*4)" 
"d24=1s/(cnst2*6)" 
 
"l3=(td1/2)" 
 
"d21=d13+p16+d16+4u" 
"d0=3u"                    ;(in0/2-p3*1.273)" 
"d20=p16+d16+50u+p2+d0*2" 
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#include <Grad.incl> 
 
1 ze 
  d11 pl12:f2 
2 d1 do:f2  
  6m 
3 d11 
4 (p1 ph1) 
  d4 pl2:f2  
  (p2 ph1) (p4 ph1):f2 
  d4 
  (p1 ph2) (p3 ph3):f2 
  d0  
  p2 ph1 
  d0 
  50u 
  GRADIENT(cnst21) 
  d16 
  (p4 ph4):f2 
  d20 
  (p1 ph1) (p3 ph4):f2 
  d24 
  (p2 ph1) (p4 ph1):f2 
  d24 
  (p1 ph2) (p3 ph5):f2 
  d4 
  (p2 ph1) (p4 ph1):f2 
  d4 
  (p1 ph1) 
  d21 
  (p2 ph1) 
  d13 
  GRADIENT(cnst22) 
  d16 pl12:f2 
  4u  
  go=2 ph31 cpd2:f2 
  d1 do:f2 wr #0 if #0 zd 
  3m ip5  
  3m ip5 
  lo to 3 times 2 
  d11 id0 
  lo to 4 times l3 
exit 
    
ph1=0  
ph2=1 
ph3=0 2 
ph4=0 0 2 2 
ph5=1 1 3 3 
ph31=0 2 2 0 
   
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl12: f2 channel - power level for CPD/BB decoupling 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p4 : f2 channel - 180 degree high power pulse 

;p16: homospoil/gradient pulse 
;p28: f1 channel - trim pulse 
;p31:  - 90 degree pulse for decoupling sequence 
;d0 : incremented delay (2D)                  [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d4 : 1/(4J)XH 
;d11: delay for disk I/O                          [30 msec] 
;d13: short delay (e.g. to compensate delay line)    [3 usec] 
;d16: delay for homospoil/gradient recovery 
;d20: = p16+d16+50u+p2+d0*2 
;d21: = d13+p16+d16+4u 
;d24: 1/(4J)XH for XH 
;     1/(6J)XH for all multiplicities 
;L3: loop for phase sensitive 2D using  E/A method : l3 = 
td1/2 
;in0: 1/(2 * SW(X)) = DW(X) 
;nd0: 2 
;NS: 1 * n 
;DS: >= 16, but 2 * ns * m 
;td1: number of experiments 
;MC2: echo-antiecho 
;cpd2: decoupling according to sequence defined by 
cpdprg2 
 
;use gradient program (GRDPROG) : SD_2sineea3 
 
;use gradient ratio: cnst21 : cnst22 : cnst23 : cnst24 : 
cnst25 
;        4 :      1 :      4 :      1 :     -1      
for C-13 
 

2D 15N HSQC 

;hsqcetf3gp 
;avance-version (02/07/15) 
;HSQC 
;2D H-1/X correlation via double inept transfer 
;phase sensitive using Echo/Antiecho-TPPI gradient 
selection 
;with decoupling during acquisition 
;using trim pulses in inept transfer 
;using f3 - channel 
; 
;Davis et al., J. Magn. Reson. 98, 207 - (1992) 
; 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
"p2=p1*2" 
"p22=p21*2" 
"d0=3u" 
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"d11=30m" 
"d13=4u" 
"d26=1s/(cnst4*4)" 
 
 
"DELTA1=d26-p16-d13-4u" 
 
#   ifdef LABEL_CN 
"DELTA=p16+d16+larger(p2,p14)+d0*2" 
#   else 
"DELTA=p16+d16+p2+d0*2" 
#   endif /*LABEL_CN*/ 
 
1 ze 
  d11 pl16:f3 
2 d1 do:f3 
3 (p1 ph1) 
  d26 pl3:f3 
  (center (p2 ph1) (p22 ph6):f3 ) 
  d26 UNBLKGRAD 
  p28 ph1 
  d13 
  (p1 ph2)  
  3u 
  p16:gp1 
  d16 
  (p21 ph3):f3 
  d0  
 
#   ifdef LABEL_CN 
  (center (p2 ph5) (p14:sp3 ph1):f2 ) 
#   else 
  (p2 ph5) 
#   endif /*LABEL_CN*/ 
 
  d0 
  p16:gp2*EA 
  d16 
  (p22 ph4):f3 
  DELTA 
  (ralign (p1 ph1) (p21 ph4):f3 ) 
  d26 
  (center (p2 ph1) (p22 ph1):f3 ) 
  d13 
  p16:gp3 
  DELTA1 pl16:f3 
  4u BLKGRAD 
  go=2 ph31 cpd3:f3 
  d1 do:f3 mc #0 to 2  
     F1EA(igrad EA, id0 & ip3*2 & ip6*2 & ip31*2) 
exit 
    
 
ph1=0  
ph2=1 
ph3=0 2 
ph4=0 0 0 0 2 2 2 2 
ph5=0 0 2 2 

ph6=0 
ph31=0 2 0 2 2 0 2 0 
 
;pl1 : f1 channel - power level for pulse (default) 
;pl3 : f3 channel - power level for pulse (default) 
;pl16: f3 channel - power level for CPD/BB decoupling 
;sp3: f2 channel - shaped pulse 180 degree (adiabatic) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p14: f2 channel - 180 degree shaped pulse for inversion 
(adiabatic) 
;p16: homospoil/gradient pulse              [1 msec] 
;p21: f3 channel -  90 degree high power pulse 
;p22: f3 channel - 180 degree high power pulse 
;p28: f1 channel - trim pulse                    [1 msec] 
;d0 : incremented delay (2D)                    [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d11: delay for disk I/O                           [30 msec] 
;d13: short delay                                         [4 usec] 
;d16: delay for homospoil/gradient recovery 
;d26: 1/(4J(YH)) 
;cnst4: = J(YH) 
;in0: 1/(2 * SW(X)) = DW(X) 
;nd0: 2 
;NS: 1 * n 
;DS: >= 16 
;td1: number of experiments 
;FnMODE: echo-antiecho 
;cpd3: decoupling according to sequence defined by 
cpdprg3 
;pcpd3: f3 channel - 90 degree pulse for decoupling 
sequence 
 
;use gradient ratio: gp 1 : gp 2 : gp 3 
;50 :   80 : 20.1     for C-13 
;50 :   80 :  8.1     for N-15 
 
;for z-only gradients: 
;gpz1: 50% 
;gpz2: 80% 
;gpz3: 20.1% for C-13, 8.1% for N-15 
 
;use gradient files:    
;gpnam1: SINE.100 
;gpnam2: SINE.100 
;gpnam3: SINE.100 
 
 
                                          ;preprocessor-flags-start 
;LABEL_CN: for C-13 and N-15 labeled samples start 
experiment with  
;             option -DLABEL_CN (eda: ZGOPTNS) 
                                          ;preprocessor-flags-end 
 
;$Id: hsqcetf3gp,v 1.2.8.1 2005/11/10 13:18:57 ber Exp $ 
 

3D HCCH COSY 
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;hcchcogp3d 
;avance-version 
;HCCH-COSY 
;3D sequence with 
;   inverse correlation using multiple inept transfer and 
; 
;      F1(H,t1) -> F2(C,t2) -> F2(C') -> F1(H',t3) 
; 
;off resonance C=O pulse using shaped pulse 
;phase sensitive using States-TPPI 
;(L.E. Kay, G.Y. Xu, A.U. Singer, D.R. Muhandiram & J. D. 
Forman-Kay 
;   J. Magn. Reson. B 101, 333 - 337 (1993)) 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
"d0=3u" 
"d10=3u" 
"d11=30m" 
"d12=20u" 
"d4=1.6m" 
"d21=1.1m" 
"d23=475u" 
"d24=3.6m" 
 
"DELTA1=d4-p16-d16-4u" 
"DELTA2=d4-p16-d16-4u+d0*2+p4" 
"DELTA3=d23-p29-d16" 
"DELTA4=p22+p2+d10*2+4u" 
"DELTA5=d24-p29-d16-4u" 
"DELTA6=d21-p16-d16-4u" 
"DELTA7=d4-p16-d16-p3*2-7u+p1" 
 
"TAU=(p3*2+3u)-p1" 
 
"CEN_HC1=(p3-p1)/2" 
"CEN_HC2=(p4-p2)/2" 
 
"l3=(td1/2)" 
"l13=(td2/2)" 
 
"d22=3.6m-d23*2-(in10*l13/2)" 
 
aqseq 312 
 
1 d11 ze 
  d11 pl12:f2 
2 d11 do:f2 
  d11 
3 d11 
4 d11  
5 d11  
6 d1 
  50u UNBLKGRAD 
  d12 pl1:f1 
 

  (p1 ph3) 
  4u 
  p16:gp1 
  d16 
  DELTA1 pl2:f2 
  d0 
  (p4 ph1):f2 
  d0 
  (p2 ph1) 
  4u 
  p16:gp1 
  d16 
  DELTA2 pl3:f3 
  (p1 ph2) 
 
  p19:gp3 
  d16 
 
  (p3 ph4):f2 
  d10 
 ; (p22 ph1):f3 
  4u 
  p29:gp2 
  d16 
  DELTA3 pl0:f2 
 ; (p14:sp5 ph1):f2 
  4u 
  p29:gp2 
  d16 
  DELTA3 pl2:f2 
  p2 ph1 
  d10 
  d22 
  (p4 ph1):f2 
  DELTA4 
  p29:gp2 
  d16 
  DELTA3 
 ; (p14:sp5 ph1):f2 
  4u 
  p29:gp2 
  d16 
  DELTA3 pl2:f2 
  d22 
 
  (p3 ph1):f2 
  4u 
  p29:gp2 
  d16 
  DELTA5 
  (p4 ph1):f2 
  4u 
  p29:gp2 
  d16 
  DELTA5 
  (p3 ph2):f2 
 
  (p17 ph1) 
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  (p17*2 ph2) 
  4u 
  p30:gp4 
  d16 
  (p1 ph1) 
  4u 
  p31:gp4 
  d16 
 
  (p3 ph2):f2 
  4u 
  p16:gp1 
  d16 
  DELTA6 pl2:f2 
  (CEN_HC2 p2 ph1) (p4 ph1):f2 
  4u 
  p16:gp1 
  d16 
  DELTA6 
  (CEN_HC1 p1 ph1) (p3 ph1):f2 
 
  4u 
  p16:gp1 
  d16 
  DELTA1 
  (CEN_HC2 p2 ph1) (p4 ph1):f2 
  4u 
  p16:gp1 
  d16 
  DELTA7  
  (TAU p1 ph1) (p3 ph1 3u p3 ph5):f2 
  4u pl12:f2  
  4u BLKGRAD 
  go=2 ph31 cpd2:f2 
  d11 do:f2 wr #0 if #0 zd 
 
  d11 ip3 
  lo to 3 times 2 
  d11 id0 
  lo to 4 times l3  
  d11 rd0 ip4 
  lo to 5 times 2 
  d11 id10 
  lo to 6 times l13 
 
exit 
 
ph1=0 
ph2=1 
ph3=0 2 
ph4=0 0 2 2 
ph5=0 0 0 0 2 2 2 2 
ph31=0 2 2 0 
 
;pl0 : 120dB 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl3 : f3 channel - power level for pulse (default) 

;pl12: f2 channel - power level for CPD/BB decoupling 
;sp5: f2 channel - shaped pulse 180 degree   (C=O off 
resonance) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p4 : f2 channel - 180 degree high power pulse 
;p14: f2 channel - 180 degree shaped pulse 
;p16: homospoil/gradient pulse                         [500 usec] 
;p17: f1 channel - trim pulse                     [1 msec] 
;p19: gradient pulse 2                                [2 msec] 
;p22: f3 channel - 180 degree high power pulse 
;p27: f2 channel - trim pulse                     [2 msec] 
;p29: gradient pulse 3                             [300 usec] 
;p30: gradient pulse 4                               [5 msec] 
;p31: gradient pulse 5                             [4.4 msec] 
;d0 : incremented delay (F1 in 3D)           [3 usec] 
;d4 : 1/(4J(CH)) - tau a                            [1.6 msec] 
;d10: incremented delay (F2 in 3D)          [3 usec] 
;d11: delay for disk I/O                            [30 msec] 
;d12: delay for power switching             [20 usec] 
;d16: delay for homospoil/gradient recovery 
;d21: 1/(6J'(CH)) - tau c                          [1.1 msec] 
;d22: d22+d23*2+t2max*0.5 = 1/(4J(CC)) : 3.6m-d23*2-
(in10*l13/2) 
;d23: tau b                                            [475 usec] 
;d24: 1/(4J(CC))                                       [3.6 msec] 
;l3: loop for phase sensitive 3D using  States-TPPI : l3 = 
td1/2 
;l13: loop for phase sensitive 3D using  States-TPPI : l13 = 
td2/2 
;in0: 1/(2 * SW(H)) = DW(H) 
;nd0: 2 
;in10: 1/(2 * SW(C)) = DW(C) 
;nd10: 2 
;NS: 16 * n 
;DS: 32 
;td1: number of experiments in F1 
;td2: number of experiments in F2 
;MC2: States-TPPI in F1 
;MC2: States-TPPI in F2 
;cpd2: decoupling according to sequence defined by 
cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling 
sequence 
 
;use gradient ratio:    gp 1 : gp 2 : gp 3 : gp 4 
;                         16 :   16 :   30 :   60 
 
;for z-only gradients: 
;gpz1: 16% 
;gpz2: 16% 
;gpz3: 30% 
;gpz4: 60% 
 
;use gradient files:    
;gpnam1: SINE.100 
;gpnam2: SINE.50 
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;gpnam3: SINE.100 
;gpnam4: SINE.100 
 

2D NOESY with X-Half Filter in F2 

;noesygpphwgx2 
;avance-version (05/02/17) 
;2D homonuclear correlation via dipolar coupling  
;   with C-13 and N-15 filter in F2 
; 
;   H (t1) -> H[C12,N14] (t2) 
; 
;dipolar coupling may be due to noe or chemical exchange. 
;phase sensitive 
;with gradient pulses in mixing time 
;water suppression using watergate sequence 
; 
;A.L. Breeze, Prog. NMR Spectrosc. 36, 323-372 (2000) 
;C. Zwahlen, P. Legault, S.J.F. Vincent, J. Greenblatt, R. 
Konrat & 
;   L.E. Kay, J. Am. Chem. Soc. 119 6711-6721 (1997) 
;K. Ogura, H. Terasawa & F. Inagaki, J. Biomol. NMR 8, 492-
498 (1996) 
;J. Iwahara, J.M. Wojciak & R.T. Clubb, J. Biomol. NMR 19, 
231-241 (2001) 
; 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
prosol relations=<triple> 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
"p2=p1*2" 
"p22=p21*2" 
"d0=3u" 
"d11=30m" 
"d26=1s/(cnst4*4)" 
"d28=1s/(cnst6*4)" 
"d29=1s/(cnst7*4)" 
 
"DELTA=larger(p8,p22)+d0*2" 
"DELTA1=d28-p19-d16-p15/2" 
"DELTA2=d26-d28-p15/2" 
"DELTA3=d26-p19-d16" 
"DELTA4=d29-p19-d16-p15/2" 
"DELTA5=d26-d29-p15/2" 
 
"TAU=d8-p16-d16" 
 
1 ze 
2 d11 
3 d1 pl1:f1 

  (p1 ph4) 
  DELTA 
  (p2 ph5) 
  d0 
  (center (p8:sp13 ph1):f2 (p22 ph1):f3 ) 
  d0 
  (p1 ph6) 
  TAU UNBLKGRAD 
  p16:gp1 
  d16 pl2:f2 
 
  (p1 ph1) 
  p19:gp2 
  d16 
  DELTA1 
  (p15:sp18 ph1):f2 
  DELTA2 
  (center (p2 ph2) (p22 ph1):f3 ) 
  DELTA3 
  p19:gp2 
  d16 pl2:f2 
  (p1 ph3) 
 
  (p3 ph8):f2 
  (p21 ph8):f3 
  p16:gp3 
  d16 
 
  (p1 ph1) 
  p19:gp4 
  d16 
  DELTA4 
  (p15:sp18 ph1):f2 
  DELTA5 
  (center (p2 ph2) (p22 ph1):f3 ) 
  DELTA3 
  p19:gp4 
  d16 pl2:f2 
  (p1 ph3) 
 
  (p3 ph8):f2 
  (p21 ph8):f3 
  p16:gp5 
  d16 
 
  (p1 ph7) 
  4u 
  p16:gp6 
  d16 pl0:f1 
  (p11:sp1 ph9:r):f1 
  4u 
  4u pl1:f1 
  (p2 ph10) 
  4u pl0:f1 
  (p11:sp1 ph9:r):f1 
  4u 
  p16:gp6 
  d16 
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  4u BLKGRAD 
 
  go=2 ph31 
  d11 mc #0 to 2 F1PH(ip4 & ip5, id0) 
exit 
 
ph1=0 
ph2=1 
ph3=2 
ph4=0 0 0 0 2 2 2 2  
ph5=1 1 1 1 3 3 3 3 
ph6=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 
ph7=0 1 2 3 
ph8=0 1 2 3 
ph9=2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1 
ph10=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 
ph31=0 3 2 1 0 3 2 1 2 1 0 3 2 1 0 3 
 
;pl0 : 120dB 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl3 : f3 channel - power level for pulse (default) 
;sp1: f1 channel - shaped pulse  90 degree 
;sp13: f2 channel - shaped pulse 180 degree (adiabatic) 
;spnam13: Crp60,0.5,20.1 
;sp18: f2 channel - shaped pulse 180 degree (adiabatic) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p8 : f2 channel - 180 degree shaped pulse for inversion 
(adiabatic) 
;p11: f1 channel -  90 degree shaped pulse 
;p15: f2 channel - 180 degree shaped pulse for inversion 
(adiabatic) 
;p16: homospoil/gradient pulse               [1 msec] 
;p19: gradient pulse 2                            [500 usec] 
;p21: f3 channel -  90 degree high power pulse 
;p22: f3 channel - 180 degree high power pulse 
;d0 : incremented delay (2D)                    [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d11: delay for disk I/O                           [30 msec] 
;d8 : mixing time 
;d16: delay for homospoil/gradient recovery 
;d26: 1/(4*J(NH)) 
;d28: 1/(4*J(CH)min) 
;d29: 1/(4*J(CH)max) 
;cnst4: = J(NH) 
;cnst6: = 1J(CH)min 
;cnst7: = 1J(CH)max 
;in0: 1/(2 * SW) = DW 
;nd0: 2 
;NS: 8 * n 
;DS: 32 
;td1: number of experiments 
;FnMODE: States-TPPI, TPPI, States or QSEQ 
 
;use gradient ratio:    gp 1 : gp 2 : gp 3 : gp 4 : gp 5 : gp 6 
;                         50 :    7 :   40 :    5 :    3 :   30 

 
;for z-only gradients: 
;gpz1: 50% 
;gpz2: 7% 
;gpz3: 40% 
;gpz4: 5% 
;gpz5: 3% 
;gpz6: 30% 
 
;use gradient files:    
;gpnam1: SINE.100 
;gpnam2: SINE.100 
;gpnam3: SINE.100 
;gpnam4: SINE.100 
;gpnam5: SINE.100 
;gpnam6: SINE.100 
 
;for p15:sp18 use either "Crp60,0.5,20.1" or adiabatic 
pulse  
;   with matched sweep  
;for matched sweep use  
;   low to high field sweep,  
;   carrier shifted to low field end via spoffs18 
;   d28 = d29 = 1/(4*J(CH)aro) 
 
;$Id: noesygpphwgx2,v 1.2.6.2 2006/04/03 14:25:11 ber 
Exp $ 
 

2D NOESY with Double X-Half Filters 

;noesygpphwgxf 
;avance-version (05/09/23) 
;2D homonuclear correlation via dipolar coupling 
;dipolar coupling may be due to noe or chemical exchange 
;phase sensitive 
;selecting C-12 or N-14 bound protons in F1 and F2 
;water suppression using watergate sequence 
; 
;M. Ikura & A. Bax, J. Am. Chem. Soc. 114, 2433-2440 
(1992) 
;M. Piotto, V. Saudek & V. Sklenar, J. Biomol. NMR 2, 661 - 
666 (1992) 
;V. Sklenar, M. Piotto, R. Leppik $ V. Saudek, J. Magn. 
Reson., 
;   Series A 102, 241 -245 (1993) 
; 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
prosol relations=<triple> 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
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"p2=p1*2" 
"p22=p21*2" 
"d0=3u" 
"d2=1s/(cnst2*2)" 
"d11=30m" 
"d12=20u" 
"d21=1s/(cnst4*2)" 
 
"p16=1m" 
"p19=3m" 
 
"DELTA=d21-d2-larger(p2,p22)-p3" 
"DELTA1=d2*2-d21-p21+larger(p2,p22)+p3-d0" 
"DELTA2=d24-p16-p11-d12-8u" 
"DELTA3=d21-d24-larger(p2,p22)-p3-p11-p16-d12-8u" 
"DELTA4=d24*2-d21-p21+larger(p2,p22)+p3-4u" 
 
"TAU=d8/2--p3/2-p21/2" 
"TAU1=d8/2-p21/2-p19-4u" 
 
1 ze 
2 d11 
3 d1 pl1:f1 
  (p1 ph1) 
  d2 
  (p3 ph6):f2  
  (center (p2 ph2) (p22 ph7):f3 ) 
  DELTA 
  (p21 ph6):f3 
  DELTA1 
  (p3 ph7):f2 
  d0 
  (p1 ph3) 
  TAU UNBLKGRAD 
  (p3 ph1):f2  
  (p21 ph1):f3 
  4u 
  p19:gp1 
  TAU1 
  (p1 ph4):f1 
  4u 
  p16:gp2 
  DELTA2 pl0:f1 
  (p11:sp1 ph5:r):f1 
  4u 
  d12 pl1:f1 
  (p3 ph6):f2  
  (center (p2 ph1) (p22 ph7):f3 ) 
  4u 
  d12 pl0:f1 
  (p11:sp1 ph5:r):f1 
  4u 
  p16:gp3 
  DELTA3 
  (p21 ph9):f3 
  DELTA4 
  (p3 ph8):f2 
  4u BLKGRAD 

  go=2 ph31 
  d11 mc #0 to 2 F1PH(dp3, id0) 
exit 
 
ph1=0 
ph2=0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
    2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 
ph3=0 
ph4=0 0 1 1 2 2 3 3 
ph5=2 
ph6=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2  
ph7=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
    2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
ph8=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
    2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
    2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
    2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
ph9=0 0 0 0 2 2 2 2 
ph31=0 2 3 1 2 0 1 3 
 
 
;pl0 : 120dB 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl3 : f3 channel - power level for pulse (default) 
;sp1 : f1 channel - shaped pulse  90 degree 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p11: f1 channel -  90 degree shaped pulse           [1 msec] 
;p16: homospoil/gradient pulse               [1 msec] 
;p19: gradient pulse 2                               [3 msec] 
;p21: f3 channel -  90 degree high power pulse 
;p22: f3 channel - 180 degree high power pulse 
;d0 : incremented delay (2D)                     [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d2 : 1/(2J(CH)) 
;d8 : mixing time 
;d11: delay for disk I/O                           [30 msec] 
;d12: delay for power switching             [20 usec] 
;d16: delay for homospoil/gradient recovery 
;d21: 1/(2J(NH)) 
;d24: 1/(2J'(CH)) 
;in0: 1/(1 * SW) = 2 * DW 
;nd0: 1 
;NS: 8 * n 
;DS: 16 
;td1: number of experiments 
;FnMODE: States-TPPI, TPPI, States or QSEQ 
 
 
;use gradient ratio: gp 1 : gp 2 : gp 3 
;             50 :   30 :   30 
 



211 
 

;for z-only gradients: 
;gpz1: 50% 
;gpz2: 30% 
;gpz3: 30% 
 
;use gradient files:    
;gpnam1: SINE.100 
;gpnam2: SINE.100 
;gpnam3: SINE.100 
 
;$Id: noesygpphwgxf,v 1.5.10.2 2006/04/03 14:25:11 ber 
Exp $ 
 

3D Edited HSQC-NOESY 

;noesyhsqcetgp3d 
;avance-version (05/10/28) 
;NOESY-HSQC 
;3D sequence with 
;   homonuclear correlation via dipolar coupling  
;   dipolar coupling may be due to noe or chemical 
exchange. 
;   H-1/X correlation via double inept transfer 
;phase sensitive (t1) 
;phase sensitive using Echo/Antiecho-TPPI gradient 
selection (t2) 
;using trim pulses in inept transfer 
;with decoupling during acquisition 
;using shaped pulses for inversion on f2 - channel 
;(use parameterset NOESYHSQCETGP3D) 
; 
;A.L. Davis, J. Keeler, E.D. Laue & D. Moskau, J. Magn. 
Reson. 98,  
;   207-216 (1992) 
; 
;$CLASS=HighRes 
;$DIM=3D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
"p2=p1*2" 
"p4=p3*2" 
"d0=3u" 
"d4=1s/(cnst2*4)" 
"d10=3u" 
"d11=30m" 
"d12=20u" 
 
#   ifdef LABEL_CN 
"p22=p21*2" 
#   else 
#   endif /*LABEL_CN*/ 
 

"DELTA2=d4-larger(p2,p14)/2-p16-8u" 
"DELTA3=d4-larger(p2,p14)/2" 
 
#   ifdef LABEL_CN 
"DELTA=larger(p14,p22)+d0*2" 
"DELTA1=p16+d16+larger(p2,p22)+d10*2" 
#   else 
"DELTA=p14+d0*2" 
"DELTA1=p16+d16+p2+d10*2" 
#   endif /*LABEL_CN*/ 
 
aqseq 321 
 
1 ze 
  d11 pl12:f2 
2 d1 do:f2 
3 d12 pl0:f2 
  (p1 ph7) 
  DELTA 
  (p2 ph8) 
  d0 
 
#   ifdef LABEL_CN 
  (center (p14:sp3 ph1):f2 (p22 ph1):f3 ) 
#   else 
  (p14:sp3 ph1):f2 
#   endif /*LABEL_CN*/ 
 
  d0 
  (p1 ph1):f1 
  d8 
  (p1 ph1):f1 
  DELTA3 pl0:f2 
  4u 
  (center (p2 ph1) (p14:sp3 ph6):f2 ) 
  4u 
  DELTA3 pl2:f2 UNBLKGRAD 
  p28 ph1 
  4u 
  (p1 ph2) (p3 ph3):f2 
  d10  
 
#   ifdef LABEL_CN 
  (center (p2 ph5) (p22 ph1):f3 ) 
#   else 
  (p2 ph5) 
#   endif /*LABEL_CN*/ 
 
  d10 
  p16:gp1*EA 
  d16 
  (p4 ph4):f2 
  DELTA1 
  (ralign (p1 ph1) (p3 ph4):f2 ) 
  DELTA3 pl0:f2 
  (center (p2 ph1) (p14:sp3 ph1):f2 ) 
  4u 
  p16:gp2 
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  DELTA2 pl12:f2 
  4u BLKGRAD 
  go=2 ph31 cpd2:f2 
  d1 do:f2 mc #0 to 2  
     F1PH(rd10 & rp3 & rp6 & rp31 & ip7 & ip8, id0)  
     F2EA(igrad EA, id10 & ip3*2 & ip6*2 & ip31*2) 
exit 
 
ph1=0  
ph2=1 
ph3=0 2 
ph4=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 
ph5=0 0 2 2 
ph6=0 
ph7=0 0 0 0 2 2 2 2 
ph8=1 1 1 1 3 3 3 3 
ph31=0 2 0 2 2 0 2 0 2 0 2 0 0 2 0 2 
 
;pl0 : 120dB 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl3 : f3 channel - power level for pulse (default) 
;pl12: f2 channel - power level for CPD/BB decoupling 
;sp3: f2 channel - shaped pulse 180 degree 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p4 : f2 channel - 180 degree high power pulse 
;p14: f2 channel - 180 degree shaped pulse for inversion 
;p16: homospoil/gradient pulse 
;p22: f3 channel - 180 degree high power pulse 
;p28: f1 channel - trim pulse 
;d0 : incremented delay (F1 in 3D)           [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d4 : 1/(4J)XH 
;d8 : mixing time 
;d10: incremented delay (F2 in 3D)          [3 usec] 
;d11: delay for disk I/O                            [30 msec] 
;d12: delay for power switching             [20 usec] 
;d16: delay for homospoil/gradient recovery 
;cnst2: = J(XH) 
;in0: 1/(2 * SW(H)) =  DW(H) 
;nd0: 2 
;in10: 1/(2 * SW(X)) = DW(X) 
;nd10: 2 
;NS: 8 * n 
;DS: >= 16 
;td1: number of experiments in F1 
;td2: number of experiments in F2 
;FnMODE: States-TPPI (or TPPI) in F1 
;FnMODE: echo-antiecho in F2 
;cpd2: decoupling according to sequence defined by 
cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling 
sequence 
 
;use gradient ratio:    gp 1 : gp 2 
;                         80 : 20.1    for C-13 

;                         80 :  8.1    for N-15 
 
;for z-only gradients: 
;gpz1: 80% 
;gpz2: 20.1% for C-13, 8.1% for N-15 
 
;use gradient files:    
;gpnam1: SINE.100 
;gpnam2: SINE.100 
 
                                          ;preprocessor-flags-start 
;LABEL_CN: for C-13 and N-15 labeled samples start 
experiment with  
;             option -DLABEL_CN (eda: ZGOPTNS) 
                                          ;preprocessor-flags-end 
 
;$Id: noesyhsqcetgp3d,v 1.3.2.1 2005/11/10 13:18:59 ber 
Exp $ 
 

3D HCCNH 

 
;na_h56c56c4n3h_3d 
;avance-version (04/11/04) 
;H6/5(C5C4)NH 
;3D sequence with 
;   inverse correlation for triple resonance 
;      via inept transfer steps 
;      and DIPSI3 CC spinlock 
; 
;   in U: 
;      F1(H6/5,t1) -> F2(C6/5 -> C4) -> F3(N3,t2) -> F1(H3,t3) 
; 
;   in C: 
;      F1(H6/5,t1) -> F2(C6/5 -> C4) -> F3(N4,t2) -> F1(H4,t3) 
; 
;on/off resonance C pulses using shaped pulse 
;phase sensitive (t1) 
;phase sensitive (t2) 
;using constant time in t2 
;water suppression using watergate sequence 
;(use parameterset NA_H56C56C4N3H_3D) 
; 
;J. Woehnert, M. Goerlach & H. Schwalbe, 
;   J. Biomol. NMR 26, 79-83 (2003) 
; 
;$CLASS=HighRes 
;$DIM=3D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
prosol relations=<triple_na> 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
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"p2=p1*2" 
"p22=p21*2" 
"d11=30m" 
 
"d4=1.25m" 
"d25=10m" 
"d26=2.5m" 
 
"in30=in10" 
 
"d0=3u" 
"d10=3u" 
"d30=d25" 
 
"l1=(d15/(p9*217.30))+0.5" 
 
"DELTA1=d4-d0-p8/2" 
"DELTA2=d4+d0+p8/2" 
"DELTA3=d4-larger(p2,p8)/2" 
"DELTA4=d25-d10-d24-p2" 
"DELTA5=d26-p16-d16-p11-8u" 
 
"spoff2=0" 
"spoff3=0" 
"spoff8=0" 
"spoff9=0" 
"spoff13=0" 
 
"cnst0=(cnst28+cnst24)/2" 
 
aqseq 312 
 
1 ze 
  d11 pl16:f3 
2 d11 do:f3 
 
3 d1 pl1:f1 pl3:f3  
  30u fq=cnst0(bf ppm):f2 
  50u UNBLKGRAD 
 
  (p3 ph1):f2 
  (p21 ph1):f3 
  p16:gp3 
  d16 
 
  (p1 ph3) 
  DELTA1 
  d0 
  (p8:sp13 ph1):f2 
  d0 
  (p2 ph1) 
  DELTA2 
  (p1 ph2)  
 
  p16:gp4 
  d16 
 
  (p3 ph4):f2 

  DELTA3 
  4u 
  (center (p2 ph1) (p8:sp13 ph1):f2 ) 
  4u 
  DELTA3 pl15:f2 
     
 ;begin DIPSI3 
4 (p9*2.722 ph11):f2 
  (p9*4.389 ph12):f2 
  (p9*2.778 ph11):f2 
  (p9*3.056 ph12):f2 
  (p9*0.333 ph11):f2 
  (p9*2.556 ph12):f2 
  (p9*4.000 ph11):f2 
  (p9*2.722 ph12):f2 
  (p9*4.111 ph11):f2 
  (p9*3.778 ph12):f2 
  (p9*3.889 ph11):f2 
  (p9*2.889 ph12):f2 
  (p9*3.000 ph11):f2 
  (p9*0.333 ph12):f2 
  (p9*2.500 ph11):f2 
  (p9*4.050 ph12):f2 
  (p9*2.830 ph11):f2 
  (p9*4.389 ph12):f2 
 
  (p9*2.722 ph12):f2 
  (p9*4.389 ph11):f2 
  (p9*2.778 ph12):f2 
  (p9*3.056 ph11):f2 
  (p9*0.333 ph12):f2 
  (p9*2.556 ph11):f2 
  (p9*4.000 ph12):f2 
  (p9*2.722 ph11):f2 
  (p9*4.111 ph12):f2 
  (p9*3.778 ph11):f2 
  (p9*3.889 ph12):f2 
  (p9*2.889 ph11):f2 
  (p9*3.000 ph12):f2 
  (p9*0.333 ph11):f2 
  (p9*2.500 ph12):f2 
  (p9*4.050 ph11):f2 
  (p9*2.830 ph12):f2 
  (p9*4.389 ph11):f2 
 
  (p9*2.722 ph12):f2 
  (p9*4.389 ph11):f2 
  (p9*2.778 ph12):f2 
  (p9*3.056 ph11):f2 
  (p9*0.333 ph12):f2 
  (p9*2.556 ph11):f2 
  (p9*4.000 ph12):f2 
  (p9*2.722 ph11):f2 
  (p9*4.111 ph12):f2 
  (p9*3.778 ph11):f2 
  (p9*3.889 ph12):f2 
  (p9*2.889 ph11):f2 
  (p9*3.000 ph12):f2 
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  (p9*0.333 ph11):f2 
  (p9*2.500 ph12):f2 
  (p9*4.050 ph11):f2 
  (p9*2.830 ph12):f2 
  (p9*4.389 ph11):f2 
 
  (p9*2.722 ph11):f2 
  (p9*4.389 ph12):f2 
  (p9*2.778 ph11):f2 
  (p9*3.056 ph12):f2 
  (p9*0.333 ph11):f2 
  (p9*2.556 ph12):f2 
  (p9*4.000 ph11):f2 
  (p9*2.722 ph12):f2 
  (p9*4.111 ph11):f2 
  (p9*3.778 ph12):f2 
  (p9*3.889 ph11):f2 
  (p9*2.889 ph12):f2 
  (p9*3.000 ph11):f2 
  (p9*0.333 ph12):f2 
  (p9*2.500 ph11):f2 
  (p9*4.050 ph12):f2 
  (p9*2.830 ph11):f2 
  (p9*4.389 ph12):f2 
  lo to 4 times l1 
     
 ;end DIPSI3 
  4u pl2:f2 
  (p3 ph2):f2 
 
  4u 
  30u fq=cnst24(bf ppm):f2 
 
  (p13:sp2 ph5):f2 
  d25 
  (center (p14:sp3 ph1):f2 (p30:sp9 ph1):f3 ) 
  d25 
  (p13:sp8 ph2):f2 
 
  (p21 ph6):f3 
  d10 
  d24 
  (p2 ph1) 
  DELTA4 
  (center (p14:sp3 ph1):f2 (p30:sp9 ph1):f3 ) 
  d30 
  (p21 ph1):f3 
 
  p16:gp4 
  d16 
 
  (p1 ph1)  
  p16:gp5 
  d16 
  DELTA5 pl0:f1 
  (p11:sp1 ph7):f1 
  4u 
  4u pl1:f1 

  (center (p2 ph1) (p22 ph1):f3 ) 
  4u pl0:f1 
  (p11:sp1 ph7):f1 
  DELTA5 
  p16:gp5 
  d16 pl16:f3 
  4u BLKGRAD 
 
  go=2 ph31 cpd3:f3  
  d11 do:f3 mc #0 to 2  
     F1PH(ip3, id0) 
     F2PH(rd0 & rp3 & ip6, id10 & dd30) 
exit 
    
ph1=0  
ph2=1 
ph3=0 0 0 0 2 2 2 2 
ph4=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 
ph5=0 0 2 2 
ph6=0 2 
ph7=2 
ph11=0 
ph12=2 
ph31=0 2 2 0 2 0 0 2 2 0 0 2 0 2 2 0 
 
;pl0 : 120db 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl3 : f3 channel - power level for pulse (default) 
;pl15: f2 channel - power level for TOCSY-spinlock 
;pl16: f3 channel - power level for CPD/BB decoupling 
;sp1: f1 channel - shaped pulse  90 degree  (H2O on 
resonance) 
;sp2 : f2 channel - shaped pulse  90 degree  (on resonance) 
;sp3 : f2 channel - shaped pulse 180 degree (on resonance) 
;sp8 : f2 channel - shaped pulse  90 degree  (on resonance) 
;                  for time reversed pulse 
;sp9 : f3 channel - shaped pulse 180 degree (N on 
resonance) 
;sp13: f2 channel - shaped pulse 180 degree (adiabatic) 
;spnam13: Crp60,0.5,20.1 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p8 : f2 channel - 180 degree shaped pulse for inversion 
(adiabatic) 
;     = 500usec for Crp60,0.5,20.1 
;p9 : f2 channel -  90 degree low power pulse 
;p11: f1 channel -  90 degree shaped pulse             [1 msec] 
;p13: f2 channel -  90 degree shaped pulse 
;p14: f2 channel - 180 degree shaped pulse 
;p16: homospoil/gradient pulse                         [1 msec] 
;p21: f3 channel -  90 degree high power pulse 
;p22: f3 channel - 180 degree high power pulse 
;p30: f3 channel - 180 degree shaped pulse 
;d0 : incremented delay (F1 in 3D)                     [3 usec] 
;d1 : relaxation delay: 1-5 * T1 
;d4 : 1/(4J(C5H5))                                     [1.25 msec] 
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;d10: incremented delay (F2 in 3D)                     [3 usec] 
;d11: delay for disk I/O                               [30 msec] 
;d15: TOCSY mixing time (CC)                           [19.5 msec] 
;d16: delay for homospoil/gradient recovery 
;d24: for U: 1/((4J)NH))                               [2.7 msec] 
;     for C: 1/((8J)NH))                               [1.4 msec] 
;d25: 1/(4J(C4N))                                      [10 msec] 
;d26: 1/(4J(NH))                                       [2.5 msec] 
;d30: decremented delay (F2 in 3D) = d25 
;cnst0 : (cnst28 + cnst24)/2 
;cnst24: C4 (C/U) chemical shift (offset, in ppm)      [169 
ppm] 
;cnst28: C5 (C/U) chemical shift (offset, in ppm)      [105 
ppm] 
;o3p: for U: 160 ppm, for C: 100 ppm 
;l1: loop for DIPSI cycle: 
;       mixing time = ((p9*217.3) * l1)                [19.5 msec] 
;in0: 1/(2 * SW(H)) = DW(H) 
;nd0: 2 
;in10: 1/(2 * SW(N)) = DW(N) 
;nd10: 2 
;in30: = in10 
;NS: 16 * n 
;DS: >= 32 
;td1: number of experiments in F1 
;td2: number of experiments in F2       td2 max = 2 * d30 / 
in30 
;FnMODE: States-TPPI (or TPPI) in F1 
;FnMODE: States-TPPI (or TPPI) in F2 
;cpd3: decoupling according to sequence defined by 
cpdprg3 
;pcpd3: f3 channel - 90 degree pulse for decoupling 
sequence 
 
;use gradient ratio: gp 3 : gp 4 : gp 5 
;     50 :   80 :   30 
 
;for z-only gradients: 
;gpz3: 50% 
;gpz4: 80% 
;gpz5: 30% 
 
;use gradient files:    
;gpnam3: SINE.100 
;gpnam4: SINE.100 
;gpnam5: SINE.100 
 
;calculate pulselength according to: 
; 
;   (DeltaOmega * DeltaT) / (width of region[ppm] * 
SFOn{MHz}) 
; 
;for p13 (sp2/sp8) use Q5/Q5tr pulse (DeltaOmega * 
DeltaT = 6.180) 
;      to cover 41.0ppm on resonance 
;      (pulselength: 1.0ms at 600.13 MHz) 
;for p14 (sp3) use Q3 pulse (DeltaOmega * DeltaT = 3.448) 
;      to cover 22.8ppm on or off resonance 

;      (pulselength: 1.0ms at 600.13 MHz) 
;for p30 (sp9) use Q3 pulse (DeltaOmega * DeltaT = 3.448) 
;   to cover 81ppm (N1/N9) 
;   (pulselength: 700us at 600.13 MHz) 
 
;$Id: na_h56c56c4n3h_3d,v 1.1.2.2 2006/01/26 08:40:39 
ber Exp $ 
 

3D HCCNH-TOCSY 

;na_hccnhdigpwg3d 
;avance-version (05/10/20) 
;HCCNH-TOCSY: H6/8(CCC)NH                    
;3D sequence with 
;   inverse correlation for triple resonance  
;      via multiple inept transfer steps 
;      and DIPSI3 CC spinlock and CN hetero TOCSY 
; 
;   in U: 
;      F1(H6,t1) -> F2(C) -> F3(N3,t2) -> F1(NH,t3) 
; 
;   in G: 
;      F1(H8,t1) -> F2(C) -> F3(N1,t2) -> F1(NH,t3) 
; 
;phase sensitive (t1) 
;phase sensitive (t2) 
;water suppression using watergate sequence 
;(use parameterset NA_HCCNHDIGPWG3D) 
; 
;V. Sklenar, T. Dieckmann, S. E.Butcher & J. Feigon, 
;   J. Biomol. NMR 7, 83 - 87 (1996) 
; 
;$CLASS=HighRes 
;$DIM=3D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
prosol relations=<triple_na> 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
"p2=p1*2" 
"p4=p3*2" 
"p22=p21*2" 
"d0=3u"  
"d4=1s/(cnst2*4)" 
"d10=6u"  
"d11=30m" 
"d12=20u" 
"d13=4u" 
"d26=1s/(cnst4*4)" 
 
"DELTA=d4-p4-d0*2" 
"DELTA1=d26-p16-d16-p11-d12*2-d13" 
"DELTA2=d26-d10*2-4u-d12-d13-larger(p2,p4)" 



216 
 

 
aqseq 312 
 
1 ze 
  d11 pl16:f3 
2 d11 do:f3 
3 d12 pl9:f1 pl2:f2 
  d1 cw:f1 ph29 
  4u do:f1 
  d12 pl1:f1 
   
  (p1 ph3):f1 
  DELTA UNBLKGRAD 
  d0 
  (p4 ph6):f2 
  d0 
  (p2 ph1) 
  d4 
  (p1 ph2)  
 
  d13 
  p16:gp1 
  d16 
 
  (p3 ph4):f2 
  d4 
  (center (p2 ph1) (p4 ph1):f2 ) 
  d4 pl26:f2 pl23:f3 
 
  (p20 ph7):f2      
     ;begin 
DIPSI3:f2 
4 (p25*2.722 ph7):f2 
  (p25*4.389 ph9):f2 
  (p25*2.778 ph7):f2 
  (p25*3.056 ph9):f2 
  (p25*0.333 ph7):f2 
  (p25*2.556 ph9):f2 
  (p25*4.000 ph7):f2 
  (p25*2.722 ph9):f2 
  (p25*4.111 ph7):f2 
  (p25*3.778 ph9):f2 
  (p25*3.889 ph7):f2 
  (p25*2.889 ph9):f2 
  (p25*3.000 ph7):f2 
  (p25*0.333 ph9):f2 
  (p25*2.500 ph7):f2 
  (p25*4.050 ph9):f2 
  (p25*2.830 ph7):f2 
  (p25*4.389 ph9):f2 
  (p25*2.722 ph9):f2 
  (p25*4.389 ph7):f2 
  (p25*2.778 ph9):f2 
  (p25*3.056 ph7):f2 
  (p25*0.333 ph9):f2 
  (p25*2.556 ph7):f2 
  (p25*4.000 ph9):f2 
  (p25*2.722 ph7):f2 

  (p25*4.111 ph9):f2 
  (p25*3.778 ph7):f2 
  (p25*3.889 ph9):f2 
  (p25*2.889 ph7):f2 
  (p25*3.000 ph9):f2 
  (p25*0.333 ph7):f2 
  (p25*2.500 ph9):f2 
  (p25*4.050 ph7):f2 
  (p25*2.830 ph9):f2 
  (p25*4.389 ph7):f2 
  (p25*2.722 ph9):f2 
  (p25*4.389 ph7):f2 
  (p25*2.778 ph9):f2 
  (p25*3.056 ph7):f2 
  (p25*0.333 ph9):f2 
  (p25*2.556 ph7):f2 
  (p25*4.000 ph9):f2 
  (p25*2.722 ph7):f2 
  (p25*4.111 ph9):f2 
  (p25*3.778 ph7):f2 
  (p25*3.889 ph9):f2 
  (p25*2.889 ph7):f2 
  (p25*3.000 ph9):f2 
  (p25*0.333 ph7):f2 
  (p25*2.500 ph9):f2 
  (p25*4.050 ph7):f2 
  (p25*2.830 ph9):f2 
  (p25*4.389 ph7):f2 
  (p25*2.722 ph7):f2 
  (p25*4.389 ph9):f2 
  (p25*2.778 ph7):f2 
  (p25*3.056 ph9):f2 
  (p25*0.333 ph7):f2 
  (p25*2.556 ph9):f2 
  (p25*4.000 ph7):f2 
  (p25*2.722 ph9):f2 
  (p25*4.111 ph7):f2 
  (p25*3.778 ph9):f2 
  (p25*3.889 ph7):f2 
  (p25*2.889 ph9):f2 
  (p25*3.000 ph7):f2 
  (p25*0.333 ph9):f2 
  (p25*2.500 ph7):f2 
  (p25*4.050 ph9):f2 
  (p25*2.830 ph7):f2 
  (p25*4.389 ph9):f2 
  lo to 4 times l1 
 
     ;begin 
DIPSI3:f3 
5 (p25*2.722 ph7):f2 (p25*2.722 ph7):f3 
  (p25*4.389 ph9):f2 (p25*4.389 ph9):f3 
  (p25*2.778 ph7):f2 (p25*2.778 ph7):f3 
  (p25*3.056 ph9):f2 (p25*3.056 ph9):f3 
  (p25*0.333 ph7):f2 (p25*0.333 ph7):f3 
  (p25*2.556 ph9):f2 (p25*2.556 ph9):f3 
  (p25*4.000 ph7):f2 (p25*4.000 ph7):f3 
  (p25*2.722 ph9):f2 (p25*2.722 ph9):f3 
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  (p25*4.111 ph7):f2 (p25*4.111 ph7):f3 
  (p25*3.778 ph9):f2 (p25*3.778 ph9):f3 
  (p25*3.889 ph7):f2 (p25*3.889 ph7):f3 
  (p25*2.889 ph9):f2 (p25*2.889 ph9):f3 
  (p25*3.000 ph7):f2 (p25*3.000 ph7):f3 
  (p25*0.333 ph9):f2 (p25*0.333 ph9):f3 
  (p25*2.500 ph7):f2 (p25*2.500 ph7):f3 
  (p25*4.050 ph9):f2 (p25*4.050 ph9):f3 
  (p25*2.830 ph7):f2 (p25*2.830 ph7):f3 
  (p25*4.389 ph9):f2 (p25*4.389 ph9):f3 
  (p25*2.722 ph9):f2 (p25*2.722 ph9):f3 
  (p25*4.389 ph7):f2 (p25*4.389 ph7):f3 
  (p25*2.778 ph9):f2 (p25*2.778 ph9):f3 
  (p25*3.056 ph7):f2 (p25*3.056 ph7):f3 
  (p25*0.333 ph9):f2 (p25*0.333 ph9):f3 
  (p25*2.556 ph7):f2 (p25*2.556 ph7):f3 
  (p25*4.000 ph9):f2 (p25*4.000 ph9):f3 
  (p25*2.722 ph7):f2 (p25*2.722 ph7):f3 
  (p25*4.111 ph9):f2 (p25*4.111 ph9):f3 
  (p25*3.778 ph7):f2 (p25*3.778 ph7):f3 
  (p25*3.889 ph9):f2 (p25*3.889 ph9):f3 
  (p25*2.889 ph7):f2 (p25*2.889 ph7):f3 
  (p25*3.000 ph9):f2 (p25*3.000 ph9):f3 
  (p25*0.333 ph7):f2 (p25*0.333 ph7):f3 
  (p25*2.500 ph9):f2 (p25*2.500 ph9):f3 
  (p25*4.050 ph7):f2 (p25*4.050 ph7):f3 
  (p25*2.830 ph9):f2 (p25*2.830 ph9):f3 
  (p25*4.389 ph7):f2 (p25*4.389 ph7):f3 
  (p25*2.722 ph9):f2 (p25*2.722 ph9):f3 
  (p25*4.389 ph7):f2 (p25*4.389 ph7):f3 
  (p25*2.778 ph9):f2 (p25*2.778 ph9):f3 
  (p25*3.056 ph7):f2 (p25*3.056 ph7):f3 
  (p25*0.333 ph9):f2 (p25*0.333 ph9):f3 
  (p25*2.556 ph7):f2 (p25*2.556 ph7):f3 
  (p25*4.000 ph9):f2 (p25*4.000 ph9):f3 
  (p25*2.722 ph7):f2 (p25*2.722 ph7):f3 
  (p25*4.111 ph9):f2 (p25*4.111 ph9):f3 
  (p25*3.778 ph7):f2 (p25*3.778 ph7):f3 
  (p25*3.889 ph9):f2 (p25*3.889 ph9):f3 
  (p25*2.889 ph7):f2 (p25*2.889 ph7):f3 
  (p25*3.000 ph9):f2 (p25*3.000 ph9):f3 
  (p25*0.333 ph7):f2 (p25*0.333 ph7):f3 
  (p25*2.500 ph9):f2 (p25*2.500 ph9):f3 
  (p25*4.050 ph7):f2 (p25*4.050 ph7):f3 
  (p25*2.830 ph9):f2 (p25*2.830 ph9):f3 
  (p25*4.389 ph7):f2 (p25*4.389 ph7):f3 
  (p25*2.722 ph7):f2 (p25*2.722 ph7):f3 
  (p25*4.389 ph9):f2 (p25*4.389 ph9):f3 
  (p25*2.778 ph7):f2 (p25*2.778 ph7):f3 
  (p25*3.056 ph9):f2 (p25*3.056 ph9):f3 
  (p25*0.333 ph7):f2 (p25*0.333 ph7):f3 
  (p25*2.556 ph9):f2 (p25*2.556 ph9):f3 
  (p25*4.000 ph7):f2 (p25*4.000 ph7):f3 
  (p25*2.722 ph9):f2 (p25*2.722 ph9):f3 
  (p25*4.111 ph7):f2 (p25*4.111 ph7):f3 
  (p25*3.778 ph9):f2 (p25*3.778 ph9):f3 
  (p25*3.889 ph7):f2 (p25*3.889 ph7):f3 
  (p25*2.889 ph9):f2 (p25*2.889 ph9):f3 

  (p25*3.000 ph7):f2 (p25*3.000 ph7):f3 
  (p25*0.333 ph9):f2 (p25*0.333 ph9):f3 
  (p25*2.500 ph7):f2 (p25*2.500 ph7):f3 
  (p25*4.050 ph9):f2 (p25*4.050 ph9):f3 
  (p25*2.830 ph7):f2 (p25*2.830 ph7):f3 
  (p25*4.389 ph9):f2 (p25*4.389 ph9):f3 
  lo to 5 times l4 
     ;end 
DIPSI3:f2, DIPSI3:f3 
 
  d13  
  d12 pl2:f2 pl3:f3 
  DELTA2 
  d10 gron0 
  2u groff 
  (center (p2 ph1):f1 (p4 ph1):f2 ) 
  d10 gron0*-1 
  2u groff 
  (p22 ph1):f3 
  d26 
  (p21 ph5):f3 
 
  d13 
  p16:gp2  
  d16 pl0:f1 
  (p29:sp11 ph10:r):f1    
  d13      
  d12 pl1:f1 
 
  (p1 ph1):f1 
  DELTA1 
  p16:gp3    
  d16 
  d12 pl0:f1   
  (p11:sp1 ph11:r):f1    
  d13      
  d12 pl1:f1 
  (center (p2 ph1):f1 (p22 ph8):f3 ) 
  d13 
  d12 pl0:f1 
  (p11:sp1 ph11:r):f1    
  d12 
  p16:gp3     
  d16 
  DELTA1 pl16:f3 
  4u BLKGRAD 
  go=2 ph31 cpd3:f3 
  d11 do:f3 mc #0 to 2 
     F1PH(ip3 & ip29, id0) 
     F2PH(rd0 & rp3 & ip5 & ip8, id10) 
exit 
 
ph1 = 0   
ph2 = 1 
ph3 = 0 
ph4 = 1 3 
ph5 = 1 1 3 3  
ph6 = 0 0 0 0 2 2 2 2 
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ph7 = 1  
ph8 = 0 
ph9 = 3 
ph10= 2  
ph11= 2 
ph29=0 
ph31= 0 2 2 0 
 
;pl0 : 120db 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl3 : f3 channel - power level for pulse (default) 
;pl9 : f1 channel - power level for presaturation 
;pl16: f3 channel - power level for CPD/BB decoupling 
;pl23: f3 channel - power level for TOCSY-spinlock 
;pl26: f2 channel - power level for TOCSY-spinlock (higher 
sel. II) 
;         to match p25/pl23 
;sp1 : f1 channel - shaped pulse  90 degree  (H2O on 
resonance) 
;sp11: f1 channel - shaped pulse  90 degree  (H2O on 
resonance) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p4 : f2 channel - 180 degree high power pulse 
;p11: f1 channel -  90 degree shaped pulse              [1 msec] 
;p16: homospoil/gradient pulse 1                        [1 msec] 
;p20: f2 channel - trim pulse                           [2 msec] 
;p21: f3 channel -  90 degree high power pulse 
;p22: f3 channel - 180 degree high power pulse 
;p25: f3 channel -  90 degree pulse at pl23 
;p29: f1 channel -  90 degree shaped pulse 
 [1 msec] 
;d0 : incremented delay (F1 in 3D)                      [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d4 : 1/(4J(HC))                                        [1.3 msec] 
;d10: incremented delay (F2 in 3D)                      [6 usec] 
;d11: delay for disk I/O                                [30 msec] 
;d12: delay for power switching                         [20 usec] 
;d13: short delay                                       [4 usec] 
;d16: delay for homospoil/gradient recovery 
;d26: 1/(4J(HN))    
 [2.5 msec] 
;cnst2: = J(HC) 
;cnst4: = J(HN) 
;o2p: 149 ppm 
;o3p: 160 ppm 
;l1: loop for DIPSI cycle: mixing time C-13 only 
;       mixing time = ((p25*217.3) * l1) + (p20) [19.4 
msec] 
;l4: loop for DIPSI cycle: mixing time C-13/N-15 
;       mixing time = ((p25*217.3) * l4)  [58 msec] 
;in0: 1/(2 * SW(H)) = DW(H) 
;nd0: 2 
;in10: 1/(2 * SW(C)) = DW(C) 
;nd10: 2 
;NS: 16 * n 

;DS: 32 
;td1: number of experiments in F1 
;td2: number of experiments in F2        
;FnMODE: States-TPPI (or TPPI) in F1 
;FnMODE: States-TPPI (or TPPI) in F2 
;cpd3: decoupling according to sequence defined by 
cpdprg3 
;pcpd3: f3 channel - 90 degree pulse for decoupling 
sequence 
 
 
;use gradient ratio:    gp 0 : gp 1 : gp 2 : gp 3 
;                          3 :   35 :   25 :   60 
 
;for z-only gradients: 
;gpz0: 3% 
;gpz1: 50% 
;gpz2: 60% 
;gpz3: 70% 
 
;use gradient files: 
;gpname1: SINE.100 
;gpname2: SINE.100 
;gpname3: SINE.100 
 
;set pl9 to 120dB when presaturation is not required 
;   use 75 - 80dB to reduce radiation damping 
 
;$Id: na_hccnhdigpwg3d,v 1.1.2.2 2006/03/10 18:08:32 
ber Exp $ 

 

3D HCN 

;na_hcnetgpsisp3d 
;avance-version (05/10/20) 
;HCN 
;3D sequence with 
;   inverse correlation for triple resonance using multiple 
;      inept transfer steps 
; 
;      F1(H6/8) -> F2(C6/8) -> F3(N1/9,t1)  
;                    -> F2(C6/8,t2) -> F1(H6/8,t3) 
;      and/or 
;      F1(H1') -> F2(C1') -> F3(N1/9,t1)  
;                    -> F2(C1',t2) -> F1(H1',t3) 
; 
;using shaped pulses on f2 and f3 
;phase sensitive (t1) 
;phase sensitive using Echo/Antiecho gradient selection 
(t2) 
;using constant time in t2 
;with decoupling during acquisition 
;(use parameterset NA_HCNETGPSISP3D) 
; 
;V. Sklenar, R.D. Peterson, M.R. Rejante & J. Feigon, 
;   J. Biomol. NMR 3, 721 - 727 (1993) 
; 
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;$CLASS=HighRes 
;$DIM=3D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
prosol relations=<triple_na> 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
"p2=p1*2" 
"p4=p3*2" 
"p22=p21*2" 
"d0=3u" 
"d10=3u" 
"d11=30m" 
"d13=4u" 
 
"in30=in10" 
 
"d30=d22-d13-p16-d16-larger(p14,p30)/2" 
 
"DELTA=d0*2+larger(p2,p4)" 
"DELTA1=d22-d13-p16-d16-larger(p14,p30)/2" 
"DELTA2=d22-larger(p2,p22)-d16-p16-larger(p14,p30)/2-
d10" 
"DELTA3=d13+p16+d16+4u 
 
"spoff3=0" 
"spoff9=0" 
 
aqseq 321 
 
1 ze  
  d11 pl12:f2 pl16:f3 
2 d11 do:f2 do:f3 
3 d1 
  (p1 ph1) 
  d4 pl2:f2 pl3:f3 
  (center (p2 ph1) (p4 ph1):f2 ) 
  d4 UNBLKGRAD              
  p28 ph1 
  d13 
  (p1 ph2) 
 
  d13 
  p16:gp1 
  d16 
   
  (p3 ph3):f2 
  DELTA1 
  d13 
  p16:gp2 
  d16 pl0:f2 pl0:f3 
  (center (p14:sp3 ph1):f2 (p30:sp9 ph1):f3 ) 
  d13 

  p16:gp2 
  d16 pl2:f2 pl3:f3 
  DELTA1 
  (p3 ph2):f2 
  
  (p21 ph5):f3 
  d0 
  (center (p2 ph1) (p4 ph6):f2 ) 
  d0 
  (p22 ph1):f3 
  DELTA 
  (p21 ph1):f3 
 
  d13 
  p16:gp5 
  d16 
   
  (p3 ph7):f2 
  d10 
  (center (p2 ph1) (p22 ph1):f3 ) 
  DELTA2 
  p16:gp3*EA*-1 
  d16 pl0:f2 pl0:f3 
  (center (p14:sp3 ph1):f2 (p30:sp9 ph1):f3 ) 
  d13 
  p16:gp3*EA 
  d16 pl2:f2 
  d30 
  
  (center (p1 ph1) (p3 ph8):f2 ) 
  d4 
  (center (p2 ph1) (p4 ph1):f2 ) 
  d4 
  (center (p1 ph2) (p3 ph9):f2 ) 
  d4 
  (center (p2 ph1) (p4 ph1):f2 ) 
  d4 
  (p1 ph1)   
  DELTA3 
  (p2 ph1)  
  d13 
  p16:gp4 
  d16 pl12:f2 pl16:f3 
  4u  BLKGRAD                  
  go=2 ph31 cpd2:f2 cpd3:f3 
  d11 do:f2 do:f3 mc #0 to 2 
     F1PH(rd10 & rd30 & rp6 & rp7 & rp31 & ip4 & ip5, id0) 
     F2EA(igrad EA & ip9*2, id10 & dd30 & ip6*2 & ip7*2 & 
ip31*2) 
exit  
   
ph1=0 
ph2=1 
ph3=0 0 0 0 2 2 2 2  
ph4=0    
ph5=0 2 
ph6=0 
ph7=1 
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ph8=0 0 2 2  
ph9=3 3 1 1  
ph31=0 2 2 0 2 0 0 2 
 
;pl0 : 120db 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl3 : f3 channel - power level for pulse (default) 
;pl12: f2 channel - power level for CPD/BB decoupling 
;pl16: f3 channel - power level for CPD/BB decoupling 
;sp3: f2 channel - shaped pulse 180 degree (on resonance) 
;sp9: f3 channel - shaped pulse 180 degree (on resonance) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p4 : f2 channel - 180 degree high power pulse 
;p14: f2 channel - 180 degree shaped pulse 
;p16: homospoil/gradient pulse   
 [1 msec] 
;p21: f3 channel -  90 degree high power pulse 
;p22: f3 channel - 180 degree high power pulse 
;p28: f1 channel - trim pulse                           [1 msec] 
;p30: f3 channel - 180 degree shaped pulse for inversion 
;d0 : incremented delay (F1 in 3D)  
 [3 usec] 
;d1 : relaxation delay; 1-5 * T1   
;d4 : 1/(4J(HC)) for both:                              [1.4 msec] 
;                for H1':                               [1.56 msec] 
;                for H8':                               [1.25 msec] 
;d10: incremented delay (F2 in 3D)  
 [3 usec] 
;d11: delay for disk I/O                                [30 msec] 
;d13: short delay                                       [4 usec] 
;d16: delay for homospoil/gradient recovery 
;d22: 1/(4J(CN)) 
;        C1':                                           [19 msec] 
;        C6/C8:                                         [16 msec] 
;        both                                           [17.5 msec] 
;        and constant time delay T(C) = 1/(J(CC)) with J(CC)=40 
Hz 
;d30: decremented delay (F2 in 3D) = d22-d13-p16-d16-
p14/2 
;o2p: 90(C1') or 137(C6/C8) or 113.5 ppm(both) 
;o3p: 157 ppm 
;in0: 1/(2 * SW(N)) =  DW(N) 
;nd0: 2 
;in10: 1/(2 * SW(C)) = DW(C) 
;nd10: 2 
;in30: = in10 
;NS: 8 * n 
;DS: >= 32 
;td1: number of experiments in F1 
;td2: number of experiments in F2       td2 max = 2 * d30 / 
in30 
;FnMODE: States-TPPI (or TPPI) in F1 
;FnMODE: echo-antiecho in F2 
;cpd2: decoupling according to sequence defined by 
cpdprg2 

;cpd3: decoupling according to sequence defined by 
cpdprg3 
;pcpd2: f2 channel - 90 degree pulse for decoupling 
sequence 
;pcpd3: f3 channel - 90 degree pulse for decoupling 
sequence 
 
 
;use gradient ratio:   gp 1 : gp 2 : gp 3 : gp 4 : gp 5 
;    -40 :   25 :   40 : 20.1 :  -50 
 
;for z-only gradients: 
;gpz1: -40% 
;gpz2: 25% 
;gpz3: 40% 
;gpz4: 20.1%   
;gpz5: -50% 
 
;use gradient files: 
;gpname1: SINE.100 
;gpname2: SINE.100 
;gpname3: SINE.100 
;gpname4: SINE.100 
;gpname5: SINE.100 
 
;Processing 
 
;F2 reverse: true 
 
;calculate pulselength according to: 
;    
;   (DeltaOmega * DeltaT) / (width of region[ppm] * 
SFOn{MHz}) 
; 
;for p14 (sp3) use Q3 pulse (DeltaOmega * DeltaT = 3.448) 
;   either one pulse to cover 22.8ppm (C1' or C6/C8 in 
separate  
;      experiments) 
;   (pulselength: 1ms at 600.13 MHz) 
;   or a twofold modulated pulse to cover 8.8ppm at 
90ppm (C1')  
;      and 137ppm (C6/C8) (both in one experiment) 
;   (pulselength: 2.6ms at 600.13 MHz) 
;for p30 (sp9) use Q3 pulse (DeltaOmega * DeltaT = 3.448) 
;   to cover 81ppm (N1/N9) 
;   (pulselength: 700us at 600.13 MHz) 
 
;$Id: na_hcnetgpsisp3d,v 1.1.2.2 2006/03/10 18:08:32 ber 
Exp $ 
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Appendix C: UUCG Chemical Shifts and Restraints for Structure Calculations 

UUCG 16mer Assigned Chemical Shifts 

   1   7.633 0.000 H6      9 

   2   2.634 0.000 H5pp    9 

   3   3.533 0.000 H5p     9 

   4   3.727 0.000 H4p     9 

   5   4.418 0.000 H3p     9 

   6   6.074 0.000 H5      9 

   7   5.893 0.000 H1p     9 

   8   7.966 0.000 H6      8 

   9   5.799 0.000 H5      8 

  10   6.047 0.000 H1p     8 

  11   4.606 0.000 H2p     8 

  12   3.982 0.000 H5pp    8 

  13   4.196 0.000 H5p     8 

  14   3.962 0.000 H3p     8 

  15   4.438 0.000 H4p     8 

  16   7.719 0.000 H6      7 

  17   5.671 0.000 H5      7 

  18   5.607 0.000 H1p     7 

  19   3.727 0.000 H2p     7 

  20   4.022 0.000 H5pp    7 

  21   4.324 0.000 H4p     7 

  22   4.438 0.000 H5p     7 

  23   4.458 0.000 H3p     7 

  24   7.795 0.000 H8     10 

  25   5.893 0.000 H1p    10 

  26   5.558 0.000 H3p    10 

  27   4.773 0.000 H2p    10 

  28   4.129 0.000 H5pp   10 

  29   8.235 0.000 H8     11 

  30   4.207 0.000 H3p    11 

  34   7.524 0.000 H6      4 

  35   5.158 0.000 H5      4 

  36   7.419 0.000 H6      6 

  37   5.162 0.000 H5      6 

  38   8.097 0.000 H8      3 

  39   5.767 0.000 H1p     3 

  40   8.148 0.000 H8      1 

  41   5.872 0.000 H1p     1 

  44   7.634 0.000 H6     15 

  45   5.452 0.000 H1p    15 

  46   7.391 0.000 H8      2 

  47   5.783 0.000 H1p     2 

  48   7.594 0.000 H8      5 

  49   5.688 0.000 H1p     5 

  50   7.610 0.000 H6     12 

  51   5.214 0.000 H5     12 
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  52   7.682 0.000 H6     14 

  53   5.188 0.000 H5     14 

  54   7.513 0.000 H8     13 

  55   5.700 0.000 H1p    13 

  56   5.423 0.000 H1p     6 

  58   5.487 0.000 H1p     4 

  59   4.654 0.000 H2p     2 

  60   4.798 0.000 H2p     1 

  61   4.507 0.000 H2p     4 

  62   4.874 0.000 H2p     3 

  64   5.463 0.000 H1p    14 

  65   5.469 0.000 H1p    12 

  66   4.355 0.000 H1p    11 

  67   4.038 0.000 H2p     9 

  68   4.334 0.000 H5p    10 

  69   4.343 0.000 H4p    10 

  70   4.443 0.000 H5p    11 

  71   4.369 0.000 H2p    11 

  72   4.340 0.000 H4p    11 

  73   3.979 0.000 H5pp    6 

  74   4.179 0.000 H3p     6 

  75   4.495 0.000 H4p     6 

  76   4.478 0.000 H5p     6 

  77   4.437 0.000 H2p     6 

  78   4.011 0.000 H5pp    5 

  79   4.044 0.000 H5p     5 

  80   4.504 0.000 H2p     5 

  81   4.478 0.000 H3p     5 

  82   4.378 0.000 H4p     5 

  83   4.648 0.000 H3p     1 

  84   4.525 0.000 H4p     1 

  85   4.466 0.000 H5p     1 

  86   4.243 0.000 H5pp    1 

  87   4.645 0.000 H3p     2 

  88   4.628 0.000 H4p     2 

  89   4.126 0.000 H5p     2 

  90   4.117 0.000 H5pp    2 

  91   4.663 0.000 H3p     3 

  92   4.190 0.000 H5pp    3 

  93   4.217 0.000 H5p     3 

  94   4.387 0.000 H4p     3 

  95   4.425 0.000 H3p     4 

  96   4.196 0.000 H4p     4 

  97   4.035 0.000 H5p     4 

  98   4.003 0.000 H5pp    4 

  99   4.437 0.000 H3p    12 

 100   4.428 0.000 H4p    12 

 101   4.416 0.000 H5p    12 

 102   4.407 0.000 H5pp   12 

 103   4.512 0.000 H2p    13 

 104   4.438 0.000 H3p    13 
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 105   4.407 0.000 H4p    13 

 106   4.049 0.000 H5p    13 

 107   4.036 0.000 H5pp   13 

 108   4.455 0.000 H2p    14 

 109   4.429 0.000 H3p    14 

 110   4.394 0.000 H4p    14 

 111   4.018 0.000 H5p    14 

 112   4.004 0.000 H5pp   14 

 113   4.431 0.000 H2p    15 

 114   4.398 0.000 H3p    15 

 115   4.209 0.000 H4p    15 

 116   3.974 0.000 H5pp   15 

 117   3.986 0.000 H5p    15 

 119   7.738 0.000 H6     16 

 120   5.456 0.000 H1p    16 

 121   5.462 0.000 H5     16 

 122   4.378 0.000 H2p    16 

 123   4.335 0.000 H3p    16 

 124   4.215 0.000 H4p    16 

 125   4.004 0.000 H5p    16 

 126   3.974 0.000 H5pp   16 

 127   4.445 0.000 H2p    12 

 128   9.843 0.000 H1     10 

 129  13.425 0.000 H1     11 

 130  11.789 0.000 H3      7 

 131  12.116 0.000 H3      8 

 132   7.075 0.000 H42     6 

 133   6.607 0.000 H22    11 

 

UUCG 16mer NOE Restraints 

assi ( resid 10 and name H2' )( resid 10 and name H4' ) 3.8 1.0 1.0 

assi ( resid 2 and name H2' )( resid 2 and name H5'' ) 5.0 1.5 1.5 

assi ( resid 13 and name H8 )( resid 12 and name H4' ) 5.8 1.5 1.5 

assi ( resid 8 and name H2' )( resid 8 and name H4' ) 3.9 1.0 1.0 

assi ( resid 10 and name H1' )( resid 10 and name H3' ) 3.9 1.0 1.0 

assi ( resid 3 and name H2' )( resid 3 and name H3' ) 2.5 1.0 1.0 

assi ( resid 9 and name H1' )( resid 10 and name H3' ) 5.0 1.0 1.0 

assi ( resid 11 and name H1' )( resid 11 and name H4' ) 3.5 1.0 1.0 

assi ( resid 7 and name H5' )( resid 7 and name H5'' ) 1.8 0.5 0.5 

assi ( resid 9 and name H3' )( resid 9 and name H2' ) 2.5 0.5 0.5 

assi ( resid 13 and name H3' )( resid 13 and name H5' ) 3.8 1.0 1.0 

assi ( resid 9 and name H5 )( resid 9 and name H5' ) 6.2 1.0 1.0 

assi ( resid 11 and name H2' )( resid 11 and name H1' ) 2.8 1.0 1.0 

assi ( resid 8 and name H5 )( resid 8 and name H5' ) 5.9 1.0 1.0 

assi ( resid 3 and name H3' )( resid 3 and name H4' ) 3.0 1.0 1.0 

assi ( resid 8 and name H5 )( resid 8 and name H5'' ) 6.6 1.5 1.5 

assi ( resid 9 and name H6 )( resid 8 and name H5' ) 5.0 1.5 1.5 

assi ( resid 3 and name H2' )( resid 3 and name H4' ) 3.8 1.0 1.0 

assi ( resid 8 and name H5 )( resid 8 and name H4' ) 6.8 1.0 1.0 
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assi ( resid 6 and name H5' )( resid 6 and name H3' ) 3.8 1.0 1.0 

assi ( resid 9 and name H6 )( resid 8 and name H2' ) 4.0 1.5 1.5 

assi ( resid 8 and name H5 )( resid 8 and name H2' ) 4.5 1.0 1.0 

assi ( resid 8 and name H1' )( resid 8 and name H3' ) 3.9 1.0 1.0 

assi ( resid 12 and name H6 )( resid 11 and name H3' ) 3.2 1.5 1.5 

assi ( resid 3 and name H3' )( resid 3 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 9 and name H6 )( resid 8 and name H4' ) 4.6 1.5 1.5 

assi ( resid 2 and name H3' )( resid 2 and name H5' ) 3.8 1.5 1.5 

assi ( resid 5 and name H3' )( resid 6 and name H3' ) 5.8 1.5 1.5 

assi ( resid 13 and name H4' )( resid 13 and name H5' ) 2.3 1.0 1.0 

assi ( resid 2 and name H1' )( resid 2 and name H2' ) 2.8 1.0 1.0 

assi ( resid 2 and name H1' )( resid 2 and name H4' ) 3.5 1.0 1.0 

assi ( resid 11 and name H2' )( resid 11 and name H4' ) 3.8 1.0 1.0 

assi ( resid 13 and name H8 )( resid 12 and name H3' ) 2.4 1.5 1.5 

assi ( resid 13 and name H8 )( resid 12 and name H2' ) 3.5 1.5 1.5 

assi ( resid 8 and name H5 )( resid 7 and name H5' ) 5.2 1.0 1.0 

assi ( resid 12 and name H6 )( resid 11 and name H2' ) 2.2 1.5 1.5 

assi ( resid 14 and name H4' )( resid 14 and name H5'' ) 4.0 2.5 2.5 

assi ( resid 1 and name H2' )( resid 1 and name H5' ) 5.3 1.5 1.5 

assi ( resid 3 and name H1' )( resid 3 and name H2' ) 2.8 1.0 1.0 

assi ( resid 3 and name H1' )( resid 3 and name H5'' ) 5.0 1.5 1.5 

assi ( resid 2 and name H2' )( resid 2 and name H5' ) 5.3 1.5 1.5 

assi ( resid 3 and name H1' )( resid 3 and name H5' ) 3.5 1.5 1.5 

assi ( resid 5 and name H4' )( resid 5 and name H5' ) 4.0 1.5 1.5 

assi ( resid 3 and name H1' )( resid 3 and name H3' ) 4.0 1.5 1.5 

assi ( resid 4 and name H3' )( resid 4 and name H5' ) 3.8 1.0 1.0 

assi ( resid 1 and name H2' )( resid 1 and name H4' ) 3.8 1.0 1.0 

assi ( resid 13 and name H3' )( resid 13 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 8 and name H5 )( resid 8 and name H3' ) 6.4 1.0 1.0 

assi ( resid 9 and name H1' )( resid 9 and name H3' ) 3.7 0.5 0.5 

assi ( resid 4 and name H3' )( resid 4 and name H4' ) 3.0 1.0 1.0 

assi ( resid 10 and name H1' )( resid 10 and name H5'' ) 4.7 1.0 1.0 

assi ( resid 12 and name H6 )( resid 11 and name H5' ) 7.0 1.5 1.5 

assi ( resid 7 and name H6 )( resid 6 and name H5' ) 6.4 1.5 1.5 

assi ( resid 8 and name H6 )( resid 9 and name H5' ) 7.3 1.5 1.5 

assi ( resid 2 and name H1' )( resid 2 and name H5' ) 5.0 1.5 1.5 

assi ( resid 11 and name H8 )( resid 9 and name H4' ) 7.0 1.5 1.5 

assi ( resid 1 and name H2' )( resid 1 and name H3' ) 2.5 1.0 1.0 

assi ( resid 14 and name H4' )( resid 14 and name H5' ) 2.2 1.0 1.0 

assi ( resid 3 and name H1' )( resid 3 and name H4' ) 3.5 1.0 1.0 

assi ( resid 16 and name H2' )( resid 16 and name H3' ) 2.4 1.0 1.0 

assi ( resid 13 and name H8 )( resid 12 and name H5' ) 6.0 1.5 1.5 

assi ( resid 8 and name H4' )( resid 8 and name H5'' ) 2.4 1.0 1.0 

assi ( resid 14 and name H2' )( resid 14 and name H5' ) 5.4 1.5 1.5 

assi ( resid 9 and name H5 )( resid 9 and name H2' ) 4.5 1.0 1.0 

assi ( resid 10 and name H1' )( resid 9 and name H4' ) 4.0 1.0 1.0 

assi ( resid 8 and name H1' )( resid 8 and name H5' ) 4.6 1.0 1.0 

assi ( resid 10 and name H8 )( resid 9 and name H5' ) 3.3 1.0 1.0 

assi ( resid 14 and name H2' )( resid 14 and name H5'' ) 4.7 1.0 1.0 

assi ( resid 7 and name H3' )( resid 7 and name H5'' ) 2.9 1.0 1.0 

assi ( resid 8 and name H1' )( resid 8 and name H5'' ) 5.0 1.5 1.5 
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assi ( resid 9 and name H1' )( resid 9 and name H2' ) 3.0 0.5 0.5 

assi ( resid 9 and name H1' )( resid 9 and name H4' ) 3.2 1.0 1.0 

assi ( resid 15 and name H2' )( resid 15 and name H5'' ) 4.7 1.5 1.5 

assi ( resid 1 and name H1' )( resid 1 and name H3' ) 3.9 1.0 1.0 

assi ( resid 8 and name H1' )( resid 8 and name H2' ) 3.0 0.5 0.5 

assi ( resid 1 and name H1' )( resid 1 and name H2' ) 2.7 1.0 1.0 

assi ( resid 8 and name H1' )( resid 8 and name H4' ) 3.2 0.5 0.5 

assi ( resid 9 and name H6 )( resid 9 and name H5' ) 3.9 1.5 1.5 

assi ( resid 4 and name H6 )( resid 4 and name H4' ) 4.2 1.0 1.0 

assi ( resid 6 and name H6 )( resid 6 and name H4' ) 4.2 1.0 1.0 

assi ( resid 12 and name H6 )( resid 12 and name H5' ) 4.0 1.5 1.5 

assi ( resid 11 and name H8 )( resid 10 and name H2' ) 4.0 1.0 1.0 

assi ( resid 9 and name H5 )( resid 9 and name H1' ) 5.4 1.0 1.0 

assi ( resid 8 and name H1' )( resid 8 and name H5 ) 5.5 1.0 1.0 

assi ( resid 11 and name H8 )( resid 10 and name H3' ) 3.8 0.5 0.5 

assi ( resid 10 and name H1' )( resid 10 and name H2' ) 2.9 0.5 0.5 

assi ( resid 6 and name H6 )( resid 6 and name H2' ) 3.7 2.5 2.5 

assi ( resid 13 and name H8 )( resid 13 and name H5'' ) 3.8 1.0 1.0 

assi ( resid 9 and name H6 )( resid 9 and name H5'' ) 4.2 1.5 1.5 

assi ( resid 15 and name H6 )( resid 15 and name H5'' ) 4.0 1.0 1.0 

assi ( resid 5 and name H8 )( resid 5 and name H5'' ) 3.8 1.0 1.0 

assi ( resid 5 and name H3' )( resid 5 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 15 and name H6 )( resid 15 and name H2' ) 3.7 1.0 1.0 

assi ( resid 14 and name H6 )( resid 14 and name H5 ) 2.5 1.0 1.0 

assi ( resid 5 and name H2' )( resid 5 and name H5' ) 5.4 1.5 1.5 

assi ( resid 16 and name H6 )( resid 16 and name H1' ) 3.5 1.0 1.0 

assi ( resid 10 and name H8 )( resid 10 and name H2' ) 4.0 1.0 1.0 

assi ( resid 4 and name H6 )( resid 4 and name H3' ) 3.2 1.0 1.0 

assi ( resid 5 and name H8 )( resid 5 and name H4' ) 4.3 1.0 1.0 

assi ( resid 6 and name H6 )( resid 6 and name H3' ) 3.2 1.5 1.5 

assi ( resid 14 and name H6 )( resid 14 and name H5' ) 4.0 1.0 1.0 

assi ( resid 5 and name H8 )( resid 5 and name H3' ) 3.0 1.0 1.0 

assi ( resid 15 and name H6 )( resid 15 and name H5' ) 4.0 1.0 1.0 

assi ( resid 15 and name H6 )( resid 15 and name H4' ) 4.2 1.0 1.0 

assi ( resid 12 and name H6 )( resid 11 and name H1' ) 5.0 1.5 1.5 

assi ( resid 12 and name H6 )( resid 12 and name H3' ) 3.2 1.5 1.5 

assi ( resid 15 and name H6 )( resid 15 and name H3' ) 3.2 1.5 1.5 

assi ( resid 5 and name H8 )( resid 5 and name H1' ) 3.8 1.0 1.0 

assi ( resid 1 and name H8 )( resid 1 and name H3' ) 3.0 1.0 1.0 

assi ( resid 11 and name H8 )( resid 11 and name H5' ) 4.2 1.0 1.0 

assi ( resid 4 and name H6 )( resid 3 and name H1' ) 5.2 1.0 1.0 

assi ( resid 4 and name H2' )( resid 4 and name H5'' ) 4.7 1.0 1.0 

assi ( resid 10 and name H8 )( resid 9 and name H1' ) 7.1 1.5 1.5 

assi ( resid 10 and name H8 )( resid 10 and name H1' ) 2.4 1.0 1.0 

assi ( resid 6 and name H6 )( resid 6 and name H5' ) 4.0 1.0 1.0 

assi ( resid 9 and name H6 )( resid 10 and name H3' ) 7.3 1.5 1.5 

assi ( resid 9 and name H6 )( resid 9 and name H2' ) 2.7 1.0 1.0 

assi ( resid 5 and name H2' )( resid 5 and name H5'' ) 4.7 1.0 1.0 

assi ( resid 1 and name H8 )( resid 1 and name H4' ) 4.3 1.0 1.0 

assi ( resid 3 and name H8 )( resid 2 and name H1' ) 5.0 1.0 1.0 

assi ( resid 9 and name H6 )( resid 8 and name H1' ) 6.0 1.5 1.5 
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assi ( resid 13 and name H8 )( resid 13 and name H3' ) 3.0 1.0 1.0 

assi ( resid 4 and name H6 )( resid 4 and name H2' ) 3.7 1.5 1.5 

assi ( resid 15 and name H6 )( resid 14 and name H1' ) 5.0 1.5 1.5 

assi ( resid 13 and name H8 )( resid 13 and name H2' ) 3.8 1.0 1.0 

assi ( resid 13 and name H8 )( resid 12 and name H1' ) 5.0 1.5 1.5 

assi ( resid 10 and name H1' )( resid 10 and name H4' ) 3.1 0.5 0.5 

assi ( resid 3 and name H8 )( resid 3 and name H5' ) 4.2 1.5 1.5 

assi ( resid 8 and name H6 )( resid 7 and name H1' ) 5.5 1.0 1.0 

assi ( resid 9 and name H6 )( resid 9 and name H4' ) 4.3 1.5 1.5 

assi ( resid 12 and name H6 )( resid 12 and name H2' ) 4.0 1.5 1.5 

assi ( resid 5 and name H3' )( resid 6 and name H5'' ) 5.2 1.5 1.5 

assi ( resid 12 and name H6 )( resid 12 and name H4' ) 4.2 1.0 1.0 

assi ( resid 6 and name H6 )( resid 6 and name H5'' ) 4.0 1.5 1.5 

assi ( resid 3 and name H8 )( resid 3 and name H3' ) 3.0 1.5 1.5 

assi ( resid 12 and name H6 )( resid 12 and name H5'' ) 4.0 1.5 1.5 

assi ( resid 11 and name H8 )( resid 12 and name H5 ) 4.0 1.5 1.5 

assi ( resid 7 and name H6 )( resid 7 and name H5 ) 2.4 0.5 0.5 

assi ( resid 6 and name H5' )( resid 5 and name H5'' ) 6.2 1.5 1.5 

assi ( resid 6 and name H6 )( resid 6 and name H5 ) 2.5 1.0 1.0 

assi ( resid 13 and name H8 )( resid 13 and name H1' ) 3.8 1.0 1.0 

assi ( resid 6 and name H5' )( resid 5 and name H5' ) 7.0 1.5 1.5 

assi ( resid 1 and name H8 )( resid 1 and name H5' ) 4.0 1.5 1.5 

assi ( resid 7 and name H6 )( resid 7 and name H2' ) 3.9 1.0 1.0 

assi ( resid 10 and name H8 )( resid 10 and name H3' ) 5.4 1.5 1.5 

assi ( resid 6 and name H6 )( resid 6 and name H1' ) 3.5 1.0 1.0 

assi ( resid 13 and name H8 )( resid 13 and name H5' ) 4.2 1.5 1.5 

assi ( resid 4 and name H6 )( resid 4 and name H5' ) 4.3 1.5 1.5 

assi ( resid 13 and name H8 )( resid 13 and name H4' ) 4.3 1.0 1.0 

assi ( resid 5 and name H8 )( resid 5 and name H2' ) 3.8 1.0 1.0 

assi ( resid 14 and name H6 )( resid 14 and name H5'' ) 4.0 1.0 1.0 

assi ( resid 5 and name H8 )( resid 5 and name H5' ) 4.2 1.0 1.0 

assi ( resid 14 and name H6 )( resid 14 and name H3' ) 3.2 1.0 1.0 

assi ( resid 11 and name H5' )( resid 11 and name H1' ) 4.9 1.0 1.0 

assi ( resid 13 and name H2' )( resid 13 and name H5'' ) 4.7 1.0 1.0 

assi ( resid 4 and name H2' )( resid 4 and name H5' ) 5.4 1.5 1.5 

assi ( resid 14 and name H6 )( resid 14 and name H2' ) 3.7 1.0 1.0 

assi ( resid 7 and name H3' )( resid 7 and name H4' ) 3.0 1.0 1.0 

assi ( resid 13 and name H1' )( resid 13 and name H3' ) 4.0 1.0 1.0 

assi ( resid 11 and name H1 )( resid 10 and name H1 ) 5.3 1.0 1.0 

assi ( resid 13 and name H2' )( resid 13 and name H5' ) 5.3 1.5 1.5 

assi ( resid 11 and name H8 )( resid 10 and name H1' ) 6.8 1.0 1.0 

assi ( resid 11 and name H8 )( resid 11 and name H2' ) 3.8 1.0 1.0 

assi ( resid 16 and name H6 )( resid 16 and name H5'' ) 4.0 1.0 1.0 

assi ( resid 14 and name H6 )( resid 14 and name H4' ) 4.2 1.0 1.0 

assi ( resid 7 and name H6 )( resid 7 and name H1' ) 3.5 1.0 1.0 

assi ( resid 4 and name H6 )( resid 4 and name H5'' ) 4.0 1.0 1.0 

assi ( resid 11 and name H8 )( resid 11 and name H3' ) 3.0 1.0 1.0 

assi ( resid 1 and name H1' )( resid 1 and name H4' ) 3.5 1.0 1.0 

assi ( resid 7 and name H6 )( resid 7 and name H5'' ) 4.0 1.0 1.0 

assi ( resid 11 and name H8 )( resid 11 and name H1' ) 3.8 1.5 1.5 

assi ( resid 7 and name H6 )( resid 7 and name H4' ) 4.1 1.0 1.0 
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assi ( resid 16 and name H6 )( resid 15 and name H1' ) 5.0 1.5 1.5 

assi ( resid 9 and name H6 )( resid 9 and name H1' ) 3.5 1.0 1.0 

assi ( resid 4 and name H6 )( resid 4 and name H5 ) 2.5 1.0 1.0 

assi ( resid 8 and name H6 )( resid 8 and name H5 ) 2.4 0.5 0.5 

assi ( resid 8 and name H6 )( resid 8 and name H5' ) 3.8 0.5 0.5 

assi ( resid 4 and name H6 )( resid 4 and name H1' ) 3.5 1.0 1.0 

assi ( resid 14 and name H6 )( resid 13 and name H1' ) 5.0 1.5 1.5 

assi ( resid 3 and name H8 )( resid 3 and name H1' ) 3.8 1.0 1.0 

assi ( resid 1 and name H8 )( resid 1 and name H1' ) 3.8 1.0 1.0 

assi ( resid 7 and name H6 )( resid 7 and name H3' ) 3.0 1.0 1.0 

assi ( resid 3 and name H8 )( resid 3 and name H4' ) 4.3 1.5 1.5 

assi ( resid 10 and name H8 )( resid 10 and name H4' ) 5.4 1.5 1.5 

assi ( resid 11 and name H5' )( resid 11 and name H4' ) 2.3 1.0 1.0 

assi ( resid 7 and name H6 )( resid 7 and name H5' ) 3.7 1.0 1.0 

assi ( resid 12 and name H6 )( resid 12 and name H1' ) 3.5 1.0 1.0 

assi ( resid 7 and name H6 )( resid 6 and name H1' ) 5.2 1.0 1.0 

assi ( resid 15 and name H6 )( resid 15 and name H1' ) 3.5 1.0 1.0 

assi ( resid 8 and name H6 )( resid 8 and name H3' ) 4.1 1.0 1.0 

assi ( resid 8 and name H6 )( resid 8 and name H2' ) 2.5 0.5 0.5 

assi ( resid 8 and name H6 )( resid 8 and name H5'' ) 4.3 1.0 1.0 

assi ( resid 8 and name H6 )( resid 8 and name H1' ) 3.7 0.5 0.5 

assi ( resid 16 and name H6 )( resid 16 and name H4' ) 4.2 1.0 1.0 

assi ( resid 16 and name H6 )( resid 16 and name H2' ) 3.7 1.0 1.0 

assi ( resid 9 and name H6 )( resid 9 and name H5 ) 2.4 1.5 1.5 

assi ( resid 3 and name H8 )( resid 3 and name H2' ) 3.8 1.0 1.0 

assi ( resid 9 and name H6 )( resid 9 and name H3' ) 4.5 1.5 1.5 

assi ( resid 10 and name H8 )( resid 10 and name H5'' ) 6.3 1.5 1.5 

assi ( resid 1 and name H8 )( resid 1 and name H2' ) 3.8 1.0 1.0 

assi ( resid 12 and name H6 )( resid 12 and name H5 ) 2.5 0.5 0.5 

assi ( resid 4 and name H6 )( resid 3 and name H4' ) 5.8 1.5 1.5 

assi ( resid 5 and name H8 )( resid 4 and name H1' ) 5.0 1.0 1.0 

assi ( resid 1 and name H4' )( resid 1 and name H5' ) 2.3 1.0 1.0 

assi ( resid 3 and name H8 )( resid 2 and name H2' ) 2.0 0.5 0.5 

assi ( resid 12 and name H2' )( resid 12 and name H5'' ) 4.7 1.0 1.0 

assi ( resid 14 and name H2' )( resid 14 and name H4' ) 3.8 1.0 1.0 

assi ( resid 6 and name H6 )( resid 5 and name H4' ) 5.8 1.5 1.5 

assi ( resid 16 and name H6 )( resid 16 and name H3' ) 3.2 1.0 1.0 

assi ( resid 6 and name H6 )( resid 5 and name H1' ) 5.0 1.5 1.5 

assi ( resid 6 and name H6 )( resid 5 and name H2' ) 2.2 1.0 1.0 

assi ( resid 12 and name H2' )( resid 13 and name H4' ) 4.2 1.5 1.5 

assi ( resid 13 and name H3' )( resid 13 and name H4' ) 3.0 1.5 1.5 

assi ( resid 2 and name H8 )( resid 2 and name H2' ) 3.8 1.0 1.0 

assi ( resid 3 and name H8 )( resid 3 and name H5'' ) 3.8 1.0 1.0 

assi ( resid 14 and name H6 )( resid 13 and name H3' ) 3.3 1.5 1.5 

assi ( resid 16 and name H6 )( resid 16 and name H5 ) 2.5 1.0 1.0 

assi ( resid 15 and name H6 )( resid 14 and name H5'' ) 5.7 1.5 1.5 

assi ( resid 6 and name H6 )( resid 5 and name H3' ) 3.3 1.5 1.5 

assi ( resid 16 and name H6 )( resid 16 and name H5' ) 4.0 1.0 1.0 

assi ( resid 11 and name H8 )( resid 11 and name H4' ) 4.3 1.0 1.0 

assi ( resid 6 and name H5' )( resid 5 and name H4' ) 4.8 1.5 1.5 

assi ( resid 14 and name H6 )( resid 13 and name H5'' ) 5.7 1.5 1.5 
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assi ( resid 13 and name H2' )( resid 13 and name H4' ) 3.8 1.0 1.0 

assi ( resid 14 and name H6 )( resid 14 and name H1' ) 3.5 1.0 1.0 

assi ( resid 12 and name H2' )( resid 12 and name H5' ) 5.3 1.5 1.5 

assi ( resid 13 and name H2' )( resid 13 and name H3' ) 2.4 1.0 1.0 

assi ( resid 4 and name H6 )( resid 3 and name H3' ) 3.3 1.0 1.0 

assi ( resid 4 and name H6 )( resid 3 and name H5' ) 7.0 1.5 1.5 

assi ( resid 7 and name H5' )( resid 7 and name H4' ) 2.4 1.0 1.0 

assi ( resid 9 and name H5 )( resid 9 and name H4' ) 7.6 1.5 1.5 

assi ( resid 1 and name H1' )( resid 1 and name H5' ) 5.0 1.5 1.5 

assi ( resid 9 and name H5 )( resid 9 and name H3' ) 6.7 1.5 1.5 

assi ( resid 14 and name H3' )( resid 14 and name H4' ) 3.0 1.0 1.0 

assi ( resid 4 and name H6 )( resid 3 and name H5'' ) 5.7 1.5 1.5 

assi ( resid 6 and name H4' )( resid 6 and name H2' ) 3.8 1.0 1.0 

assi ( resid 15 and name H2' )( resid 15 and name H5' ) 5.3 1.5 1.5 

assi ( resid 6 and name H2' )( resid 6 and name H5'' ) 4.7 1.5 1.5 

assi ( resid 11 and name H5' )( resid 11 and name H3' ) 3.7 1.0 1.0 

assi ( resid 10 and name H1' )( resid 9 and name H5' ) 4.0 1.0 1.0 

assi ( resid 15 and name H2' )( resid 16 and name H5'' ) 4.5 1.0 1.0 

assi ( resid 5 and name H2' )( resid 5 and name H4' ) 3.8 1.0 1.0 

assi ( resid 3 and name H8 )( resid 2 and name H3' ) 3.0 1.5 1.5 

assi ( resid 4 and name H2' )( resid 4 and name H3' ) 2.4 1.0 1.0 

assi ( resid 6 and name H6 )( resid 5 and name H5' ) 7.0 1.5 1.5 

assi ( resid 9 and name H1' )( resid 9 and name H5' ) 4.7 1.0 1.0 

assi ( resid 6 and name H5' )( resid 6 and name H5'' ) 1.7 0.5 0.5 

assi ( resid 7 and name H6 )( resid 6 and name H4' ) 5.4 1.0 1.0  

assi ( resid 2 and name H3' )( resid 2 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 16 and name H2' )( resid 16 and name H5' ) 5.4 1.5 1.5 

assi ( resid 5 and name H1' )( resid 5 and name H5' ) 5.0 1.5 1.5 

assi ( resid 8 and name H2' )( resid 8 and name H5' ) 4.3 1.0 1.0 

assi ( resid 15 and name H3' )( resid 16 and name H5'' ) 5.2 1.5 1.5 

assi ( resid 10 and name H4' )( resid 10 and name H5' ) 2.3 0.5 0.5 

assi ( resid 8 and name H6 )( resid 7 and name H5' ) 6.2 1.0 1.0 

assi ( resid 13 and name H1' )( resid 13 and name H5'' ) 5.1 1.5 1.5 

assi ( resid 14 and name H6 )( resid 13 and name H2' ) 2.2 1.0 1.0 

assi ( resid 13 and name H8 )( resid 12 and name H5'' ) 6.0 1.5 1.5 

assi ( resid 8 and name H6 )( resid 7 and name H4' ) 4.0 1.0 1.0 

assi ( resid 10 and name H2' )( resid 10 and name H5'' ) 4.5 1.0 1.0 

assi ( resid 6 and name H4' )( resid 6 and name H3' ) 3.0 1.0 1.0 

assi ( resid 14 and name H6 )( resid 13 and name H4' ) 5.8 1.5 1.5 

assi ( resid 7 and name H5 )( resid 7 and name H5'' ) 6.2 1.5 1.5 

assi ( resid 16 and name H2' )( resid 16 and name H5'' ) 4.7 1.5 1.5 

assi ( resid 13 and name H1' )( resid 13 and name H5' ) 5.0 1.5 1.5 

assi ( resid 5 and name H4' )( resid 5 and name H5'' ) 2.6 1.0 1.0 

assi ( resid 10 and name H2' )( resid 10 and name H5' ) 5.0 1.0 1.0 

assi ( resid 2 and name H3' )( resid 2 and name H2' ) 2.4 1.0 1.0 

assi ( resid 12 and name H5'' )( resid 13 and name H5' ) 6.2 1.5 1.5 

assi ( resid 8 and name H6 )( resid 7 and name H5'' ) 5.3 1.0 1.0 

assi ( resid 4 and name H3' )( resid 4 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 6 and name H2' )( resid 6 and name H3' ) 2.4 1.0 1.0 

assi ( resid 8 and name H6 )( resid 7 and name H3' ) 4.7 1.5 1.5 

assi ( resid 1 and name H3' )( resid 1 and name H5' ) 3.7 1.0 1.0 
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assi ( resid 3 and name H2' )( resid 3 and name H5' ) 5.3 1.5 1.5 

assi ( resid 7 and name H5 )( resid 7 and name H4' ) 6.5 1.0 1.0 

assi ( resid 7 and name H5 )( resid 7 and name H2' ) 5.3 1.0 1.0 

assi ( resid 6 and name H5 )( resid 6 and name H4' ) 6.5 1.5 1.5 

assi ( resid 1 and name H3' )( resid 1 and name H4' ) 3.0 1.0 1.0 

assi ( resid 6 and name H5 )( resid 5 and name H3' ) 3.8 1.5 1.5 

assi ( resid 11 and name H8 )( resid 10 and name H5' ) 5.0 1.5 1.5 

assi ( resid 2 and name H2' )( resid 2 and name H4' ) 3.8 1.0 1.0 

assi ( resid 5 and name H1' )( resid 5 and name H4' ) 3.4 1.0 1.0 

assi ( resid 6 and name H5 )( resid 6 and name H5' ) 6.3 1.5 1.5 

assi ( resid 4 and name H5 )( resid 4 and name H2' ) 5.2 1.5 1.5 

assi ( resid 9 and name H6 )( resid 8 and name H3' ) 2.2 1.5 1.5 

assi ( resid 9 and name H6 )( resid 8 and name H5'' ) 3.4 1.5 1.5 

assi ( resid 3 and name H4' )( resid 3 and name H5' ) 2.3 0.5 0.5 

assi ( resid 8 and name H4' )( resid 8 and name H3' ) 2.7 1.0 1.0 

assi ( resid 15 and name H3' )( resid 15 and name H4' ) 3.0 1.0 1.0 

assi ( resid 3 and name H2' )( resid 3 and name H5'' ) 4.7 1.5 1.5 

assi ( resid 2 and name H3' )( resid 2 and name H4' ) 3.0 1.0 1.0 

assi ( resid 12 and name H5'' )( resid 13 and name H5'' ) 6.8 1.5 1.5 

assi ( resid 13 and name H4' )( resid 13 and name H5'' ) 2.6 0.5 0.5 

assi ( resid 15 and name H3' )( resid 15 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 7 and name H5 )( resid 7 and name H5' ) 6.0 1.0 1.0 

assi ( resid 10 and name H8 )( resid 9 and name H4' ) 4.5 1.5 1.5 

assi ( resid 5 and name H1' )( resid 5 and name H5'' ) 5.0 1.5 1.5 

assi ( resid 13 and name H1' )( resid 13 and name H4' ) 3.5 1.0 1.0 

assi ( resid 4 and name H4' )( resid 4 and name H5' ) 2.3 1.0 1.0 

assi ( resid 6 and name H1' )( resid 6 and name H4' ) 3.4 1.0 1.0 

assi ( resid 2 and name H4' )( resid 2 and name H5'' ) 2.6 1.0 1.0 

assi ( resid 5 and name H1' )( resid 5 and name H2' ) 2.8 1.0 1.0 

assi ( resid 8 and name H2' )( resid 8 and name H3' ) 2.4 1.0 1.0 

assi ( resid 16 and name H5 )( resid 16 and name H3' ) 5.2 1.5 1.5 

assi ( resid 13 and name H1' )( resid 13 and name H2' ) 2.8 1.0 1.0 

assi ( resid 2 and name H4' )( resid 2 and name H5' ) 2.3 0.5 0.5 

assi ( resid 12 and name H5 )( resid 12 and name H4' ) 6.6 1.5 1.5 

assi ( resid 4 and name H4' )( resid 4 and name H5'' ) 2.6 1.0 1.0 

assi ( resid 16 and name H3' )( resid 16 and name H4' ) 3.0 1.0 1.0 

assi ( resid 9 and name H3' )( resid 9 and name H4' ) 2.7 1.0 1.0 

assi ( resid 16 and name H5 )( resid 16 and name H5' ) 6.3 1.5 1.5 

assi ( resid 16 and name H5 )( resid 16 and name H4' ) 6.6 1.5 1.5 

assi ( resid 5 and name H1' )( resid 5 and name H3' ) 3.9 1.0 1.0 

assi ( resid 8 and name H4' )( resid 8 and name H5' ) 2.4 1.0 1.0 

assi ( resid 5 and name H1' )( resid 6 and name H5' ) 6.0 1.5 1.5 

assi ( resid 12 and name H5 )( resid 12 and name H3' ) 5.2 1.5 1.5 

assi ( resid 15 and name H1' )( resid 16 and name H5'' ) 7.0 1.5 1.5 

assi ( resid 3 and name H3' )( resid 3 and name H5' ) 3.8 1.0 1.0 

assi ( resid 4 and name H1' )( resid 4 and name H4' ) 4.0 1.0 1.0 

assi ( resid 4 and name H1' )( resid 4 and name H3' ) 3.5 1.0 1.0 

assi ( resid 11 and name H8 )( resid 10 and name H4' ) 6.5 1.5 1.5 

assi ( resid 16 and name H1' )( resid 16 and name H5' ) 4.9 1.0 1.0 

assi ( resid 4 and name H5 )( resid 4 and name H5'' ) 6.3 1.5 1.5 

assi ( resid 16 and name H3' )( resid 16 and name H5' ) 3.8 1.0 1.0 
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assi ( resid 12 and name H5 )( resid 12 and name H2' ) 5.2 1.5 1.5 

assi ( resid 16 and name H4' )( resid 16 and name H5' ) 2.3 1.0 1.0 

assi ( resid 15 and name H3' )( resid 15 and name H5' ) 3.8 1.0 1.0 

assi ( resid 14 and name H1' )( resid 14 and name H4' ) 3.5 1.0 1.0 

assi ( resid 16 and name H4' )( resid 16 and name H5'' ) 2.6 1.0 1.0 

assi ( resid 8 and name H2' )( resid 8 and name H5'' ) 4.0 1.0 1.0 

assi ( resid 9 and name H4' )( resid 9 and name H5'' ) 2.6 0.5 0.5 

assi ( resid 7 and name H1' )( resid 7 and name H5'' ) 5.2 1.0 1.0 

assi ( resid 7 and name H5' )( resid 7 and name H2' ) 4.0 1.5 1.5 

assi ( resid 12 and name H5 )( resid 12 and name H5' ) 6.3 1.5 1.5 

assi ( resid 15 and name H4' )( resid 15 and name H5'' ) 2.6 1.0 1.0 

assi ( resid 14 and name H1' )( resid 14 and name H5'' ) 5.0 1.5 1.5 

assi ( resid 16 and name H1' )( resid 16 and name H5'' ) 5.0 1.5 1.5 

assi ( resid 3 and name H4' )( resid 3 and name H5'' ) 2.6 1.0 1.0 

assi ( resid 16 and name H1' )( resid 16 and name H2' ) 2.8 1.0 1.0 

assi ( resid 11 and name H2' )( resid 11 and name H3' ) 2.4 1.0 1.0 

assi ( resid 14 and name H1' )( resid 14 and name H5' ) 5.0 1.0 1.0 

assi ( resid 10 and name H5' )( resid 10 and name H5'' ) 1.7 0.5 0.5 

assi ( resid 6 and name H1' )( resid 6 and name H5' ) 5.0 1.0 1.0 

assi ( resid 6 and name H1' )( resid 6 and name H2' ) 2.8 1.0 1.0 

assi ( resid 16 and name H1' )( resid 16 and name H4' ) 3.5 1.0 1.0 

assi ( resid 9 and name H2' )( resid 9 and name H5'' ) 3.5 0.5 0.5 

assi ( resid 15 and name H4' )( resid 15 and name H5' ) 2.3 1.0 1.0 

assi ( resid 9 and name H3' )( resid 9 and name H5'' ) 2.3 0.5 0.5 

assi ( resid 15 and name H1' )( resid 15 and name H3' ) 3.9 1.0 1.0 

assi ( resid 6 and name H1' )( resid 6 and name H3' ) 4.0 1.0 1.0 

assi ( resid 11 and name H4' )( resid 11 and name H3' ) 3.0 1.0 1.0 

assi ( resid 16 and name H1' )( resid 16 and name H3' ) 3.5 1.0 1.0 

assi ( resid 16 and name H5 )( resid 16 and name H2' ) 5.2 1.5 1.5 

assi ( resid 4 and name H5 )( resid 4 and name H4' ) 6.6 1.5 1.5 

assi ( resid 4 and name H1' )( resid 4 and name H5' ) 5.0 1.0 1.0 

assi ( resid 4 and name H5 )( resid 4 and name H5' ) 6.3 1.5 1.5 

assi ( resid 9 and name H5' )( resid 9 and name H5'' ) 1.8 0.5 0.5 

assi ( resid 7 and name H1' )( resid 7 and name H2' ) 2.8 1.0 1.0 

assi ( resid 7 and name H4' )( resid 7 and name H5'' ) 2.4 1.0 1.0 

assi ( resid 6 and name H1' )( resid 5 and name H3' ) 6.0 1.5 1.5 

assi ( resid 7 and name H1' )( resid 7 and name H5' ) 4.6 1.0 1.0 

assi ( resid 12 and name H1' )( resid 12 and name H2' ) 2.8 1.0 1.0 

assi ( resid 6 and name H5 )( resid 6 and name H3' ) 5.2 1.5 1.5 

assi ( resid 12 and name H1' )( resid 12 and name H4' ) 3.5 1.5 1.5 

assi ( resid 4 and name H2' )( resid 4 and name H4' ) 3.8 1.0 1.0 

assi ( resid 14 and name H5 )( resid 14 and name H5' ) 6.3 1.5 1.5 

assi ( resid 4 and name H1' )( resid 4 and name H5'' ) 5.0 1.0 1.0 

assi ( resid 9 and name H2' )( resid 9 and name H4' ) 3.8 0.5 0.5 

assi ( resid 7 and name H1' )( resid 7 and name H3' ) 3.9 1.0 1.0 

assi ( resid 12 and name H1' )( resid 12 and name H3' ) 4.0 1.0 1.0 

assi ( resid 14 and name H1' )( resid 14 and name H2' ) 2.8 1.0 1.0 

assi ( resid 8 and name H4' )( resid 7 and name H4' ) 8.0 1.5 1.5 

assi ( resid 6 and name H1' )( resid 6 and name H5'' ) 5.0 1.5 1.5 

assi ( resid 10 and name H3' )( resid 10 and name H5'' ) 2.4 0.5 0.5 

assi ( resid 14 and name H1' )( resid 14 and name H3' ) 4.0 1.0 1.0 
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assi ( resid 11 and name H1' )( resid 11 and name H3' ) 4.0 1.0 1.0 

assi ( resid 10 and name H3' )( resid 10 and name H4' ) 3.0 0.5 0.5 

assi ( resid 15 and name H1' )( resid 15 and name H2' ) 2.8 1.0 1.0 

assi ( resid 11 and name H5' )( resid 11 and name H2' ) 5.3 1.5 1.5 

assi ( resid 9 and name H4' )( resid 9 and name H5' ) 2.3 0.5 0.5 

assi ( resid 15 and name H1' )( resid 15 and name H5' ) 5.0 1.0 1.0 

assi ( resid 7 and name H1' )( resid 7 and name H4' ) 3.3 1.0 1.0 

assi ( resid 14 and name H5 )( resid 14 and name H2' ) 5.2 1.5 1.5 

assi ( resid 6 and name H5 )( resid 6 and name H2' ) 5.2 1.5 1.5 

assi ( resid 12 and name H5 )( resid 12 and name H5'' ) 6.3 1.5 1.5 

assi ( resid 15 and name H2' )( resid 15 and name H4' ) 3.8 1.0 1.0 

assi ( resid 5 and name H3' )( resid 5 and name H4' ) 3.0 1.0 1.0 

assi ( resid 8 and name H4' )( resid 7 and name H2' ) 6.2 1.5 1.5 

assi ( resid 10 and name H3' )( resid 10 and name H5' ) 3.2 0.5 0.5 

assi ( resid 10 and name H4' )( resid 10 and name H5'' ) 2.4 0.5 0.5 

assi ( resid 4 and name H5 )( resid 4 and name H3' ) 5.2 1.5 1.5 

assi ( resid 7 and name H4' )( resid 7 and name H2' ) 3.8 1.0 1.0 

assi ( resid 16 and name H5 )( resid 15 and name H5'' ) 6.3 1.5 1.5 

assi ( resid 9 and name H3' )( resid 9 and name H5' ) 3.6 0.5 0.5 

assi ( resid 1 and name H5'' )( resid 1 and name H2' ) 4.7 1.5 1.5 

assi ( resid 7 and name H5'' )( resid 7 and name H2' ) 4.9 1.0 1.0 

assi ( resid 14 and name H5 )( resid 14 and name H4' ) 6.6 1.5 1.5 

assi ( resid 8 and name H5' )( resid 8 and name H3' ) 3.7 1.0 1.0 

assi ( resid 12 and name H1' )( resid 12 and name H5 ) 5.2 1.5 1.5 

assi ( resid 8 and name H4' )( resid 9 and name H4' ) 7.6 1.5 1.5 

assi ( resid 4 and name H6 )( resid 3 and name H2' ) 2.2 1.0 1.0 

assi ( resid 15 and name H1' )( resid 15 and name H5'' ) 5.1 1.0 1.0 

assi ( resid 10 and name H3' )( resid 10 and name H2' ) 2.4 0.5 0.5 

assi ( resid 6 and name H1' )( resid 6 and name H5 ) 5.2 1.5 1.5 

assi ( resid 9 and name H2' )( resid 9 and name H5' ) 4.2 0.5 0.5 

assi ( resid 14 and name H5 )( resid 14 and name H3' ) 5.2 1.5 1.5 

assi ( resid 4 and name H1' )( resid 4 and name H5 ) 5.2 1.5 1.5 

assi ( resid 4 and name H1' )( resid 4 and name H2' ) 2.8 1.0 1.0 

assi ( resid 14 and name H1' )( resid 14 and name H5 ) 5.2 1.5 1.5 

assi ( resid 16 and name H2' )( resid 16 and name H4' ) 3.8 1.0 1.0 

assi ( resid 8 and name H5' )( resid 8 and name H5'' ) 1.7 1.0 1.0 

assi ( resid 7 and name H3' )( resid 7 and name H2' ) 2.4 1.0 1.0 

assi ( resid 6 and name H5 )( resid 6 and name H5'' ) 6.3 1.5 1.5 

assi ( resid 6 and name H3' )( resid 6 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 16 and name H5 )( resid 16 and name H5'' ) 6.3 1.5 1.5 

assi ( resid 14 and name H5 )( resid 14 and name H5'' ) 6.3 1.5 1.5 

assi ( resid 2 and name H8 )( resid 1 and name H2' ) 2.0 1.0 1.0 

assi ( resid 12 and name H1' )( resid 12 and name H5' ) 5.0 1.0 1.0 

assi ( resid 14 and name H2' )( resid 14 and name H3' ) 2.4 1.0 1.0 

assi ( resid 12 and name H1' )( resid 12 and name H5'' ) 5.0 1.0 1.0 

assi ( resid 16 and name H3' )( resid 16 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 6 and name H5' )( resid 6 and name H2' ) 5.3 1.5 1.5 

assi ( resid 5 and name H8 )( resid 4 and name H5' ) 7.5 1.5 1.5 

assi ( resid 1 and name H5'' )( resid 1 and name H3' ) 2.5 1.0 1.0 

assi ( resid 6 and name H6 )( resid 5 and name H5'' ) 5.8 1.5 1.5 

assi ( resid 7 and name H6 )( resid 6 and name H3' ) 2.7 1.0 1.0 
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assi ( resid 1 and name H5'' )( resid 1 and name H5' ) 1.7 0.5 0.5 

assi ( resid 12 and name H2' )( resid 12 and name H3' ) 2.4 0.5 0.5 

assi ( resid 15 and name H2' )( resid 15 and name H3' ) 2.4 0.5 0.5 

assi ( resid 1 and name H5'' )( resid 1 and name H1' ) 5.0 1.5 1.5 

assi ( resid 1 and name H5'' )( resid 1 and name H8 ) 3.8 1.0 1.0 

assi ( resid 2 and name H8 )( resid 2 and name H5' ) 4.2 1.0 1.0 

assi ( resid 1 and name H5'' )( resid 1 and name H4' ) 2.6 1.0 1.0 

assi ( resid 12 and name H5' )( resid 12 and name H5'' ) 1.7 0.5 0.5 

assi ( resid 2 and name H8 )( resid 2 and name H1' ) 3.8 1.0 1.0 

assi ( resid 2 and name H8 )( resid 1 and name H4' ) 5.8 1.5 1.5 

assi ( resid 2 and name H8 )( resid 2 and name H5'' ) 6.3 1.5 1.5 

assi ( resid 9 and name H6 )( resid 7 and name H5 ) 8.0 2.5 2.5 

assi ( resid 2 and name H8 )( resid 1 and name H1' ) 5.0 1.5 1.5 

assi ( resid 7 and name H3 )( resid 10 and name H1 ) 3.7 0.5 0.5 

assi ( resid 2 and name H8 )( resid 2 and name H3' ) 3.0 1.5 1.5 

assi ( resid 16 and name H6 )( resid 15 and name H5'' ) 5.7 1.5 1.5 

assi ( resid 5 and name H3' )( resid 6 and name H2' ) 6.8 1.5 1.5 

assi ( resid 6 and name H4' )( resid 5 and name H3' ) 5.8 1.5 1.5 

assi ( resid 16 and name H6 )( resid 15 and name H2' ) 2.2 1.5 1.5 

assi ( resid 16 and name H6 )( resid 15 and name H4' ) 5.8 1.5 1.5 

assi ( resid 12 and name H4' )( resid 13 and name H4' ) 6.5 1.5 1.5 

assi ( resid 2 and name H8 )( resid 2 and name H4' ) 4.3 1.0 1.0 

assi ( resid 7 and name H6 )( resid 6 and name H5'' ) 5.0 1.0 1.0 

assi ( resid 12 and name H3' )( resid 12 and name H5' ) 3.8 1.0 1.0 

assi ( resid 2 and name H8 )( resid 1 and name H3' ) 3.0 1.5 1.5 

assi ( resid 12 and name H2' )( resid 12 and name H4' ) 3.8 1.0 1.0 

assi ( resid 16 and name H6 )( resid 15 and name H3' ) 3.3 1.5 1.5 

assi ( resid 5 and name H8 )( resid 4 and name H3' ) 3.0 1.5 1.5 

assi ( resid 1 and name H8 )( resid 2 and name H8 ) 5.0 1.5 1.5 

assi ( resid 3 and name H8 )( resid 4 and name H6 ) 5.5 1.5 1.5 

assi ( resid 5 and name H8 )( resid 4 and name H2' ) 2.0 1.5 1.5 

assi ( resid 11 and name H8 )( resid 12 and name H6 ) 5.5 1.5 1.5 

assi ( resid 16 and name H6 )( resid 15 and name H5' ) 7.0 1.5 1.5 

assi ( resid 12 and name H4' )( resid 12 and name H5'' ) 2.6 1.0 1.0 

assi ( resid 6 and name H4' )( resid 6 and name H5' ) 2.3 0.5 0.5 

assi ( resid 15 and name H6 )( resid 14 and name H4' ) 5.8 1.5 1.5 

assi ( resid 10 and name H8 )( resid 9 and name H5'' ) 4.9 1.5 1.5 

assi ( resid 7 and name H3' )( resid 7 and name H5' ) 3.8 1.0 1.0 

assi ( resid 7 and name H3' )( resid 8 and name H4' ) 7.0 1.5 1.5 

assi ( resid 15 and name H6 )( resid 14 and name H3' ) 3.3 1.5 1.5 

assi ( resid 15 and name H6 )( resid 14 and name H5' ) 7.0 1.5 1.5 

assi ( resid 10 and name H1 )( resid 11 and name H8 ) 5.8 1.0 1.0 

assi ( resid 8 and name H6 )( resid 9 and name H6 ) 5.8 1.5 1.5 

assi ( resid 8 and name H6 )( resid 7 and name H2' ) 4.4 1.0 1.0 

assi ( resid 7 and name H6 )( resid 6 and name H6 ) 4.8 1.0 1.0 

assi ( resid 5 and name H8 )( resid 4 and name H5'' ) 6.3 1.5 1.5 

assi ( resid 5 and name H2' )( resid 6 and name H5' ) 4.0 1.5 1.5 

assi ( resid 12 and name H3' )( resid 12 and name H4' ) 3.0 1.0 1.0 

assi ( resid 5 and name H8 )( resid 4 and name H4' ) 5.8 1.5 1.5 

assi ( resid 12 and name H4' )( resid 12 and name H5' ) 2.3 1.0 1.0 

assi ( resid 7 and name H6 )( resid 6 and name H2' ) 2.6 1.0 1.0 
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assi ( resid 5 and name H2' )( resid 5 and name H3' ) 2.4 1.0 1.0 

assi ( resid 12 and name H3' )( resid 12 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 11 and name H1 )( resid 7 and name H3 ) 3.0 1.5 1.5 

assi ( resid 8 and name H5 )( resid 7 and name H5'' ) 4.8 1.0 1.0 

assi ( resid 8 and name H5 )( resid 7 and name H1' ) 5.7 1.0 1.0 

assi ( resid 8 and name H5 )( resid 7 and name H2' ) 5.6 1.0 1.0 

assi ( resid 8 and name H5 )( resid 7 and name H3' ) 5.4 1.0 1.0 

assi ( resid 8 and name H5 )( resid 7 and name H4' ) 3.3 1.0 1.0 

assi ( resid 8 and name H2' )( resid 7 and name H4' ) 5.4 1.0 1.0 

assi ( resid 8 and name H2' )( resid 7 and name H1' ) 5.4 1.0 1.0 

assi ( resid 8 and name H3' )( resid 8 and name H5'' ) 2.5 1.0 1.0 

assi ( resid 8 and name H3' )( resid 9 and name H5 ) 3.0 1.0 1.0 

assi ( resid 1 and name H1' )( resid 2 and name H8 ) 5.0 1.5 1.5 

assi ( resid 2 and name H8 )( resid 3 and name H8 ) 5.0 1.5 1.5 

assi ( resid 3 and name H1' )( resid 4 and name H6 ) 5.0 1.5 1.5 

assi ( resid 4 and name H1' )( resid 5 and name H8 ) 5.0 1.5 1.5 

assi ( resid 12 and name H6 )( resid 13 and name H8 ) 5.5 1.5 1.5 

assi ( resid 13 and name H1' )( resid 14 and name H6 ) 5.0 1.5 1.5 

assi ( resid 14 and name H1' )( resid 15 and name H6 ) 5.0 1.5 1.5 

assi ( resid 14 and name H6 )( resid 15 and name H6 ) 5.0 1.5 1.5 

assi ( resid 15 and name H1' )( resid 16 and name H6 ) 5.0 1.5 1.5 

assi ( resid 15 and name H6 )( resid 16 and name H6 ) 5.0 1.5 1.5 

 

List of Hydrogen Bond Restraints 

! for G1/ C16  base pair 

assign (resid 1 and name N1)  (resid 16 and name N3)    2.91   0.5     0.5   

assign (resid 1 and name O6)  (resid 16 and name N4)    2.71   0.5     0.5   

assign (resid 1 and name N2)  (resid 16 and name O2)    3.08   0.5     0.5   

assign (resid 1 and name H1)  (resid 16 and name N3)    1.89   0.5     0.5   

assign (resid 1 and name O6)  (resid 16 and name H42)   1.71   0.5     0.5   

assign (resid 1 and name H22) (resid 16 and name O2)    2.08   0.5     0.5   

 

! for G2/ C15  base pair 

assign (resid 2 and name N1)  (resid 15 and name N3)    2.91   0.5     0.5   

assign (resid 2 and name O6)  (resid 15 and name N4)    2.71   0.5     0.5   

assign (resid 2 and name N2)  (resid 15 and name O2)    3.08   0.5     0.5   

assign (resid 2 and name H1)  (resid 15 and name N3)    1.89   0.5     0.5   

assign (resid 2 and name O6)  (resid 15 and name H42)   1.71   0.5     0.5   

assign (resid 2 and name H22) (resid 15 and name O2)    2.08   0.5     0.5   

 

! for G3/ C14  base pair 

assign (resid 3 and name N1)  (resid 14 and name N3)    2.91   0.5     0.5   

assign (resid 3 and name O6)  (resid 14 and name N4)    2.71   0.5     0.5   

assign (resid 3 and name N2)  (resid 14 and name O2)    3.08   0.5     0.5   

assign (resid 3 and name H1)  (resid 14 and name N3)    1.89   0.5     0.5   

assign (resid 3 and name O6)  (resid 14 and name H42)   1.71   0.5     0.5   

assign (resid 3 and name H22) (resid 14 and name O2)    2.08   0.5     0.5   

 

! for C4/ G13  base pair 

assign (resid 13 and name N1)  (resid 4 and name N3)    2.91   0.5     0.5   
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assign (resid 13 and name O6)  (resid 4 and name N4)    2.71   0.5     0.5   

assign (resid 13 and name N2)  (resid 4 and name O2)    3.08   0.5     0.5   

assign (resid 13 and name H1)  (resid 4 and name N3)    1.89   0.5     0.5   

assign (resid 13 and name O6)  (resid 4 and name H42)   1.71   0.5     0.5   

assign (resid 13 and name H22) (resid 4 and name O2)    2.08   0.5     0.5   

 

! for G5/ C12  base pair 

assign (resid 5 and name N1)  (resid 12 and name N3)    2.91   0.5     0.5   

assign (resid 5 and name O6)  (resid 12 and name N4)    2.71   0.5     0.5   

assign (resid 5 and name N2)  (resid 12 and name O2)    3.08   0.5     0.5   

assign (resid 5 and name H1)  (resid 12 and name N3)    1.89   0.5     0.5   

assign (resid 5 and name O6)  (resid 12 and name H42)   1.71   0.5     0.5   

assign (resid 5 and name H22) (resid 12 and name O2)    2.08   0.5     0.5 

 

! for C6/ G11  base pair 

assign (resid 11 and name N1)  (resid 6 and name N3)    2.91   0.5     0.5   

assign (resid 11 and name O6)  (resid 6 and name N4)    2.71   0.5     0.5   

assign (resid 11 and name N2)  (resid 6 and name O2)    3.08   0.5     0.5   

assign (resid 11 and name H1)  (resid 6 and name N3)    1.89   0.5     0.5   

assign (resid 11 and name O6)  (resid 6 and name H42)   1.71   0.5     0.5   

assign (resid 11 and name H22) (resid 6 and name O2)    2.08   0.5     0.5   

 

! for U7/ G10  base pair 

assign (resid 7 and name O2)  (resid 10 and name N2)    3.08   0.5     0.5 

assign (resid 7 and name O2)  (resid 10 and name H22)   2.50   1.0     1.0 

 

! for U8/ C9  base pair 

assign (resid 8 and name O1P)   (resid 9 and name H41)    2.50   1.0     1.0  

 

! for U8/ G10  base pair 

assign (resid 8 and name O2')   (resid 10 and name O6)    2.50   1.0     1.0  

 

 

UUCG 16mer Dihedral Angle Restraints 

! G1 chi 

assign (resid 1 and name O4') (resid 1 and name C1') 

       (resid 1 and name N9 ) (resid 1 and name C4 ) 

       1 -158 30 2 

! G1 nu0 

assign (resid 1 and name C4') (resid 1 and name O4') 

       (resid 1 and name C1') (resid 1 and name C2') 

       1 6 15 2 

! G1 nu1 

assign (resid 1 and name O4') (resid 1 and name C1') 

       (resid 1 and name C2') (resid 1 and name C3') 

       1 -25 15 2 

! G1 nu2 

assign (resid 1 and name C1') (resid 1 and name C2') 

       (resid 1 and name C3') (resid 1 and name C4') 
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       1 37 15 2 

! G1 nu3 

assign (resid 1 and name C2') (resid 1 and name C3') 

       (resid 1 and name C4') (resid 1 and name O4') 

       1 -33 15 2 

! G1 nu4 

assign (resid 1 and name C3') (resid 1 and name C4') 

       (resid 1 and name O4') (resid 1 and name C1') 

       1 17 15 2 

! G2 alpha 

assign (resid 1 and name O3') (resid 2 and name P  ) 

       (resid 2 and name O5') (resid 2 and name C5') 

       1 -65 15 2 

! G2 beta 

assign (resid 2 and name P  ) (resid 2 and name O5') 

       (resid 2 and name C5') (resid 2 and name C4') 

       1 178 25 2 

! G2 gamma 

assign (resid 2 and name O5') (resid 2 and name C5') 

       (resid 2 and name C4') (resid 2 and name C3') 

       1 54 15 2 

! G2 epsilon 

assign (resid 2 and name C4') (resid 2 and name C3') 

       (resid 2 and name O3') (resid 3 and name P  ) 

       1 200 40 2 

! G2 zeta 

assign (resid 2 and name C3') (resid 2 and name O3') 

       (resid 3 and name P  ) (resid 3 and name O5') 

       1 -71 15 2 

! G2 chi 

assign (resid 2 and name O4') (resid 2 and name C1') 

       (resid 2 and name N9 ) (resid 2 and name C4 ) 

       1 -158 20 2 

! G2 nu0 

assign (resid 2 and name C4') (resid 2 and name O4') 

       (resid 2 and name C1') (resid 2 and name C2') 

       1 6 15 2 

! G2 nu1 

assign (resid 2 and name O4') (resid 2 and name C1') 

       (resid 2 and name C2') (resid 2 and name C3') 

       1 -25 15 2 

! G2 nu2 

assign (resid 2 and name C1') (resid 2 and name C2') 

       (resid 2 and name C3') (resid 2 and name C4') 

       1 37 15 2 

! G2 nu3 

assign (resid 2 and name C2') (resid 2 and name C3') 

       (resid 2 and name C4') (resid 2 and name O4') 

       1 -33 15 2 

! G2 nu4 

assign (resid 2 and name C3') (resid 2 and name C4') 
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       (resid 2 and name O4') (resid 2 and name C1') 

       1 17 15 2 

! G3 alpha 

assign (resid 2 and name O3') (resid 3 and name P  ) 

       (resid 3 and name O5') (resid 3 and name C5') 

       1 -68 15 2 

! G3 beta 

assign (resid 3 and name P  ) (resid 3 and name O5') 

       (resid 3 and name C5') (resid 3 and name C4') 

       1 178 25 2 

! G3 gamma 

assign (resid 3 and name O5') (resid 3 and name C5') 

       (resid 3 and name C4') (resid 3 and name C3') 

       1 54 15 2 

! G3 epsilon 

assign (resid 3 and name C4') (resid 3 and name C3') 

       (resid 3 and name O3') (resid 4 and name P  ) 

       1 200 40 2 

! G3 zeta 

assign (resid 3 and name C3') (resid 3 and name O3') 

       (resid 4 and name P  ) (resid 4 and name O5') 

       1 -71 15 2 

! G3 chi 

assign (resid 3 and name O4') (resid 3 and name C1') 

       (resid 3 and name N9 ) (resid 3 and name C4 ) 

       1 -158 20 2 

! G3 nu0 

assign (resid 3 and name C4') (resid 3 and name O4') 

       (resid 3 and name C1') (resid 3 and name C2') 

       1 6 15 2 

! G3 nu1 

assign (resid 3 and name O4') (resid 3 and name C1') 

       (resid 3 and name C2') (resid 3 and name C3') 

       1 -25 15 2 

! G3 nu2 

assign (resid 3 and name C1') (resid 3 and name C2') 

       (resid 3 and name C3') (resid 3 and name C4') 

       1 37 15 2 

! G3 nu3 

assign (resid 3 and name C2') (resid 3 and name C3') 

       (resid 3 and name C4') (resid 3 and name O4') 

       1 -33 15 2 

! G3 nu4 

assign (resid 3 and name C3') (resid 3 and name C4') 

       (resid 3 and name O4') (resid 3 and name C1') 

       1 17 15 2 

! C4 alpha 

assign (resid 3 and name O3') (resid 4 and name P  ) 

       (resid 4 and name O5') (resid 4 and name C5') 

       1 -65 15 2 

! C4 beta 
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assign (resid 4 and name P  ) (resid 4 and name O5') 

       (resid 4 and name C5') (resid 4 and name C4') 

       1 160 25 2 

! C4 gamma 

assign (resid 4 and name O5') (resid 4 and name C5') 

       (resid 4 and name C4') (resid 4 and name C3') 

       1 70 15 2 

! C4 epsilon 

assign (resid 4 and name C4') (resid 4 and name C3') 

       (resid 4 and name O3') (resid 5 and name P  ) 

       1 200 30 2 

! C4 zeta 

assign (resid 4 and name C3') (resid 4 and name O3') 

       (resid 5 and name P  ) (resid 5 and name O5') 

       1 -85 15 2 

! C4 chi 

assign (resid 4 and name O4') (resid 4 and name C1') 

       (resid 4 and name N1 ) (resid 4 and name C2 ) 

       1 -158 20 2 

! C4 nu0 

assign (resid 4 and name C4') (resid 4 and name O4') 

       (resid 4 and name C1') (resid 4 and name C2') 

       1 6 15 2 

! C4 nu1 

assign (resid 4 and name O4') (resid 4 and name C1') 

       (resid 4 and name C2') (resid 4 and name C3') 

       1 -25 15 2 

! C4 nu2 

assign (resid 4 and name C1') (resid 4 and name C2') 

       (resid 4 and name C3') (resid 4 and name C4') 

       1 37 15 2 

! C4 nu3 

assign (resid 4 and name C2') (resid 4 and name C3') 

       (resid 4 and name C4') (resid 4 and name O4') 

       1 -33 15 2 

! C4 nu4 

assign (resid 4 and name C3') (resid 4 and name C4') 

       (resid 4 and name O4') (resid 4 and name C1') 

       1 17 15 2 

! G5 alpha 

assign (resid 4 and name O3') (resid 5 and name P  ) 

       (resid 5 and name O5') (resid 5 and name C5') 

       1 -50 15 2 

! G5 beta 

assign (resid 5 and name P  ) (resid 5 and name O5') 

       (resid 5 and name C5') (resid 5 and name C4') 

       1 165 15 2 

! G5 gamma 

assign (resid 5 and name O5') (resid 5 and name C5') 

       (resid 5 and name C4') (resid 5 and name C3') 

       1 54 15 2 
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! G5 epsilon 

assign (resid 5 and name C4') (resid 5 and name C3') 

       (resid 5 and name O3') (resid 6 and name P  ) 

       1 220 30 2 

! G5 zeta 

assign (resid 5 and name C3') (resid 5 and name O3') 

       (resid 6 and name P  ) (resid 6 and name O5') 

       1 -80 15 2 

! G5 chi 

assign (resid 5 and name O4') (resid 5 and name C1') 

       (resid 5 and name N9 ) (resid 5 and name C4 ) 

       1 -158 20 2 

! G5 nu0 

assign (resid 5 and name C4') (resid 5 and name O4') 

       (resid 5 and name C1') (resid 5 and name C2') 

       1 6 15 2 

! G5 nu1 

assign (resid 5 and name O4') (resid 5 and name C1') 

       (resid 5 and name C2') (resid 5 and name C3') 

       1 -25 15 2 

! G5 nu2 

assign (resid 5 and name C1') (resid 5 and name C2') 

       (resid 5 and name C3') (resid 5 and name C4') 

       1 37 15 2 

! G5 nu3 

assign (resid 5 and name C2') (resid 5 and name C3') 

       (resid 5 and name C4') (resid 5 and name O4') 

       1 -33 15 2 

! G5 nu4 

assign (resid 5 and name C3') (resid 5 and name C4') 

       (resid 5 and name O4') (resid 5 and name C1') 

       1 17 15 2 

! C6 alpha 

assign (resid 5 and name O3') (resid 6 and name P  ) 

       (resid 6 and name O5') (resid 6 and name C5') 

       1 -40 30 2 

! C6 beta 

assign (resid 6 and name P  ) (resid 6 and name O5') 

       (resid 6 and name C5') (resid 6 and name C4') 

       1 160 20 2 

! C6 gamma 

assign (resid 6 and name O5') (resid 6 and name C5') 

       (resid 6 and name C4') (resid 6 and name C3') 

       1 54 20 2 

! C6 epsilon 

assign (resid 6 and name C4') (resid 6 and name C3') 

       (resid 6 and name O3') (resid 7 and name P  ) 

       1 220 40 2 

! C6 zeta 

assign (resid 6 and name C3') (resid 6 and name O3') 

       (resid 7 and name P  ) (resid 7 and name O5') 
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       1 -80 20 2 

! C6 chi 

assign (resid 6 and name O4') (resid 6 and name C1') 

       (resid 6 and name N1 ) (resid 6 and name C2 ) 

       1 -158 20 2 

! C6 nu0 

assign (resid 6 and name C4') (resid 6 and name O4') 

       (resid 6 and name C1') (resid 6 and name C2') 

       1 6 15 2 

! C6 nu1 

assign (resid 6 and name O4') (resid 6 and name C1') 

       (resid 6 and name C2') (resid 6 and name C3') 

       1 -25 15 2 

! C6 nu2 

assign (resid 6 and name C1') (resid 6 and name C2') 

       (resid 6 and name C3') (resid 6 and name C4') 

       1 37 15 2 

! C6 nu3 

assign (resid 6 and name C2') (resid 6 and name C3') 

       (resid 6 and name C4') (resid 6 and name O4') 

       1 -33 15 2 

! C6 nu4 

assign (resid 6 and name C3') (resid 6 and name C4') 

       (resid 6 and name O4') (resid 6 and name C1') 

       1 17 15 2 

! U7 alpha 

assign (resid 6 and name O3') (resid 7 and name P  ) 

       (resid 7 and name O5') (resid 7 and name C5') 

       1 -68 30 2 

! U7 beta 

assign (resid 7 and name P  ) (resid 7 and name O5') 

       (resid 7 and name C5') (resid 7 and name C4') 

       1 178 30 2 

! U7 gamma 

assign (resid 7 and name O5') (resid 7 and name C5') 

       (resid 7 and name C4') (resid 7 and name C3') 

       1 54 25 2 

! U7 epsilon 

assign (resid 7 and name C4') (resid 7 and name C3') 

       (resid 7 and name O3') (resid 8 and name P  ) 

       1 215 50 2 

! U7 zeta 

assign (resid 7 and name C3') (resid 7 and name O3') 

       (resid 8 and name P  ) (resid 8 and name O5') 

       1 -71 30 2 

! U7 chi 

assign (resid 7 and name O4') (resid 7 and name C1') 

       (resid 7 and name N1 ) (resid 7 and name C2 ) 

       1 -158 20 2 

! U7 nu0 

assign (resid 7 and name C4') (resid 7 and name O4') 
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       (resid 7 and name C1') (resid 7 and name C2') 

       1 6 15 2 

! U7 nu1 

assign (resid 7 and name O4') (resid 7 and name C1') 

       (resid 7 and name C2') (resid 7 and name C3') 

       1 -25 15 2 

! U7 nu2 

assign (resid 7 and name C1') (resid 7 and name C2') 

       (resid 7 and name C3') (resid 7 and name C4') 

       1 37 15 2 

! U7 nu3 

assign (resid 7 and name C2') (resid 7 and name C3') 

       (resid 7 and name C4') (resid 7 and name O4') 

       1 -33 15 2 

! U7 nu4 

assign (resid 7 and name C3') (resid 7 and name C4') 

       (resid 7 and name O4') (resid 7 and name C1') 

       1 17 15 2 

! U8 chi 

assign (resid 8 and name O4') (resid 8 and name C1') 

       (resid 8 and name N1 ) (resid 8 and name C2 ) 

       1 -150 40 2 

! U8 nu1 

assign (resid 8 and name O4') (resid 8 and name C1') 

       (resid 8 and name C2') (resid 8 and name C3') 

       1 25 15 2 

! U8 nu2 

assign (resid 8 and name C1') (resid 8 and name C2') 

       (resid 8 and name C3') (resid 8 and name C4') 

       1 -25 15 2 

! C9 chi 

assign (resid 9 and name O4') (resid 9 and name C1') 

       (resid 9 and name N1 ) (resid 9 and name C2 ) 

       1 -140 50 2 

! C9 nu1 

assign (resid 9 and name O4') (resid 9 and name C1') 

       (resid 9 and name C2') (resid 9 and name C3') 

       1 30 25 2 

! C9 nu2 

assign (resid 9 and name C1') (resid 9 and name C2') 

       (resid 9 and name C3') (resid 9 and name C4') 

       1 -35 25 2 

! G11 alpha 

assign (resid 10 and name O3') (resid 11 and name P  ) 

       (resid 11 and name O5') (resid 11 and name C5') 

       1 -135 50 2 

! G11 beta 

assign (resid 11 and name P  ) (resid 11 and name O5') 

       (resid 11 and name C5') (resid 11 and name C4') 

       1 165 30 2 

! G11 gamma 
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assign (resid 11 and name O5') (resid 11 and name C5') 

       (resid 11 and name C4') (resid 11 and name C3') 

       1 110 50 2 

! G11 epsilon 

assign (resid 11 and name C4') (resid 11 and name C3') 

       (resid 11 and name O3') (resid 12 and name P  ) 

       1 200 30 2 

! G11 zeta 

assign (resid 11 and name C3') (resid 11 and name O3') 

       (resid 12 and name P  ) (resid 12 and name O5') 

       1 -100 30 2 

! G11 chi 

assign (resid 11 and name O4') (resid 11 and name C1') 

       (resid 11 and name N9 ) (resid 11 and name C4 ) 

       1 -150 20 2 

! G11 nu0 

assign (resid 11 and name C4') (resid 11 and name O4') 

       (resid 11 and name C1') (resid 11 and name C2') 

       1 6 15 2 

! G11 nu1 

assign (resid 11 and name O4') (resid 11 and name C1') 

       (resid 11 and name C2') (resid 11 and name C3') 

       1 -25 15 2 

! G11 nu2 

assign (resid 11 and name C1') (resid 11 and name C2') 

       (resid 11 and name C3') (resid 11 and name C4') 

       1 37 15 2 

! G11 nu3 

assign (resid 11 and name C2') (resid 11 and name C3') 

       (resid 11 and name C4') (resid 11 and name O4') 

       1 -33 15 2 

! G11 nu4 

assign (resid 11 and name C3') (resid 11 and name C4') 

       (resid 11 and name O4') (resid 11 and name C1') 

       1 17 15 2 

! C12 alpha 

assign (resid 11 and name O3') (resid 12 and name P  ) 

       (resid 12 and name O5') (resid 12 and name C5') 

       1 -65 25 2 

! C12 beta 

assign (resid 12 and name P  ) (resid 12 and name O5') 

       (resid 12 and name C5') (resid 12 and name C4') 

       1 178 25 2 

! C12 gamma 

assign (resid 12 and name O5') (resid 12 and name C5') 

       (resid 12 and name C4') (resid 12 and name C3') 

       1 54 25 2 

! C12 epsilon 

assign (resid 12 and name C4') (resid 12 and name C3') 

       (resid 12 and name O3') (resid 13 and name P  ) 

       1 200 40 2 
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! C12 zeta 

assign (resid 12 and name C3') (resid 12 and name O3') 

       (resid 13 and name P  ) (resid 13 and name O5') 

       1 -71 25 2 

! C12 chi 

assign (resid 12 and name O4') (resid 12 and name C1') 

       (resid 12 and name N1 ) (resid 12 and name C2 ) 

       1 -158 25 2 

! C12 nu0 

assign (resid 12 and name C4') (resid 12 and name O4') 

       (resid 12 and name C1') (resid 12 and name C2') 

       1 6 15 2 

! C12 nu1 

assign (resid 12 and name O4') (resid 12 and name C1') 

       (resid 12 and name C2') (resid 12 and name C3') 

       1 -25 15 2 

! C12 nu2 

assign (resid 12 and name C1') (resid 12 and name C2') 

       (resid 12 and name C3') (resid 12 and name C4') 

       1 37 15 2 

! C12 nu3 

assign (resid 12 and name C2') (resid 12 and name C3') 

       (resid 12 and name C4') (resid 12 and name O4') 

       1 -33 15 2 

! C12 nu4 

assign (resid 12 and name C3') (resid 12 and name C4') 

       (resid 12 and name O4') (resid 12 and name C1') 

       1 17 15 2 

! G13 alpha 

assign (resid 12 and name O3') (resid 13 and name P  ) 

       (resid 13 and name O5') (resid 13 and name C5') 

       1 -65 20 2 

! G13 beta 

assign (resid 13 and name P  ) (resid 13 and name O5') 

       (resid 13 and name C5') (resid 13 and name C4') 

       1 178 20 2 

! G13 gamma 

assign (resid 13 and name O5') (resid 13 and name C5') 

       (resid 13 and name C4') (resid 13 and name C3') 

       1 54 20 2 

! G13 epsilon 

assign (resid 13 and name C4') (resid 13 and name C3') 

       (resid 13 and name O3') (resid 14 and name P  ) 

       1 200 40 2 

! G13 zeta 

assign (resid 13 and name C3') (resid 13 and name O3') 

       (resid 14 and name P  ) (resid 14 and name O5') 

       1 -71 20 2 

! G13 chi 

assign (resid 13 and name O4') (resid 13 and name C1') 

       (resid 13 and name N9 ) (resid 13 and name C4 ) 
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       1 -158 20 2 

! G13 nu0 

assign (resid 13 and name C4') (resid 13 and name O4') 

       (resid 13 and name C1') (resid 13 and name C2') 

       1 6 15 2 

! G13 nu1 

assign (resid 13 and name O4') (resid 13 and name C1') 

       (resid 13 and name C2') (resid 13 and name C3') 

       1 -25 15 2 

! G13 nu2 

assign (resid 13 and name C1') (resid 13 and name C2') 

       (resid 13 and name C3') (resid 13 and name C4') 

       1 37 15 2 

! G13 nu3 

assign (resid 13 and name C2') (resid 13 and name C3') 

       (resid 13 and name C4') (resid 13 and name O4') 

       1 -33 15 2 

! G13 nu4 

assign (resid 13 and name C3') (resid 13 and name C4') 

       (resid 13 and name O4') (resid 13 and name C1') 

       1 17 15 2 

! C14 alpha 

assign (resid 13 and name O3') (resid 14 and name P  ) 

       (resid 14 and name O5') (resid 14 and name C5') 

       1 -65 15 2 

! C14 beta 

assign (resid 14 and name P  ) (resid 14 and name O5') 

       (resid 14 and name C5') (resid 14 and name C4') 

       1 178 25 2 

! C14 gamma 

assign (resid 14 and name O5') (resid 14 and name C5') 

       (resid 14 and name C4') (resid 14 and name C3') 

       1 54 15 2 

! C14 epsilon 

assign (resid 14 and name C4') (resid 14 and name C3') 

       (resid 14 and name O3') (resid 15 and name P  ) 

       1 200 40 2 

! C14 zeta 

assign (resid 14 and name C3') (resid 14 and name O3') 

       (resid 15 and name P  ) (resid 15 and name O5') 

       1 -71 15 2 

! C14 chi 

assign (resid 14 and name O4') (resid 14 and name C1') 

       (resid 14 and name N1 ) (resid 14 and name C2 ) 

       1 -158 20 2 

! C14 nu0 

assign (resid 14 and name C4') (resid 14 and name O4') 

       (resid 14 and name C1') (resid 14 and name C2') 

       1 6 15 2 

! C14 nu1 

assign (resid 14 and name O4') (resid 14 and name C1') 
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       (resid 14 and name C2') (resid 14 and name C3') 

       1 -25 15 2 

! C14 nu2 

assign (resid 14 and name C1') (resid 14 and name C2') 

       (resid 14 and name C3') (resid 14 and name C4') 

       1 37 15 2 

! C14 nu3 

assign (resid 14 and name C2') (resid 14 and name C3') 

       (resid 14 and name C4') (resid 14 and name O4') 

       1 -33 15 2 

! C14 nu4 

assign (resid 14 and name C3') (resid 14 and name C4') 

       (resid 14 and name O4') (resid 14 and name C1') 

       1 17 15 2 

! C15 alpha 

assign (resid 14 and name O3') (resid 15 and name P  ) 

       (resid 15 and name O5') (resid 15 and name C5') 

       1 -65 15 2 

! C15 beta 

assign (resid 15 and name P  ) (resid 15 and name O5') 

       (resid 15 and name C5') (resid 15 and name C4') 

       1 178 15 2 

! C15 gamma 

assign (resid 15 and name O5') (resid 15 and name C5') 

       (resid 15 and name C4') (resid 15 and name C3') 

       1 54 15 2 

! C15 epsilon 

assign (resid 15 and name C4') (resid 15 and name C3') 

       (resid 15 and name O3') (resid 16 and name P  ) 

       1 200 40 2 

! C15 zeta 

assign (resid 15 and name C3') (resid 15 and name O3') 

       (resid 16 and name P  ) (resid 16 and name O5') 

       1 -71 15 2 

! C15 chi 

assign (resid 15 and name O4') (resid 15 and name C1') 

       (resid 15 and name N1 ) (resid 15 and name C2 ) 

       1 -158 20 2 

! C15 nu0 

assign (resid 15 and name C4') (resid 15 and name O4') 

       (resid 15 and name C1') (resid 15 and name C2') 

       1 6 15 2 

! C15 nu1 

assign (resid 15 and name O4') (resid 15 and name C1') 

       (resid 15 and name C2') (resid 15 and name C3') 

       1 -25 15 2 

! C15 nu2 

assign (resid 15 and name C1') (resid 15 and name C2') 

       (resid 15 and name C3') (resid 15 and name C4') 

       1 37 15 2 

! C15 nu3 
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assign (resid 15 and name C2') (resid 15 and name C3') 

       (resid 15 and name C4') (resid 15 and name O4') 

       1 -33 15 2 

! C15 nu4 

assign (resid 15 and name C3') (resid 15 and name C4') 

       (resid 15 and name O4') (resid 15 and name C1') 

       1 17 15 2 

! C16 chi 

assign (resid 16 and name O4') (resid 16 and name C1') 

       (resid 16 and name N1 ) (resid 16 and name C2 ) 

       1 -158 30 2 

! C16 nu0 

assign (resid 16 and name C4') (resid 16 and name O4') 

       (resid 16 and name C1') (resid 16 and name C2') 

       1 6 15 2 

! C16 nu1 

assign (resid 16 and name O4') (resid 16 and name C1') 

       (resid 16 and name C2') (resid 16 and name C3') 

       1 -25 15 2 

! C16 nu2 

assign (resid 16 and name C1') (resid 16 and name C2') 

       (resid 16 and name C3') (resid 16 and name C4') 

       1 37 15 2 

! C16 nu3 

assign (resid 16 and name C2') (resid 16 and name C3') 

       (resid 16 and name C4') (resid 16 and name O4') 

       1 -33 15 2 

! C16 nu4 

assign (resid 16 and name C3') (resid 16 and name C4') 

       (resid 16 and name O4') (resid 16 and name C1') 

       1 17 15 2 

 

UUCG 16mer Planarity Restraints 

! G1-C16 WC 

!-------------------------------------------------------------------- 

group 

selection=     ((resid  1 and name N1) or (resid  1 and name N3) or 

  (resid  1 and name C5) or (resid 16 and name N1) or 

   (resid 16 and name N3) or (resid 16 and name C5)) 

weight = $pscale end 

 

! G2-C15 WC 

!-------------------------------------------------------------------- 

group 

selection=     ((resid   2 and name N1) or (resid  2 and name N3) or 

  (resid   2 and name C5) or (resid 15 and name N1) or 

   (resid  15 and name N3) or (resid 15 and name C5)) 

weight = $pscale end 
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! G3-C14 WC 

!-------------------------------------------------------------------- 

group 

selection=     ((resid  3 and name N1) or (resid  3 and name N3) or 

  (resid  3 and name C5) or (resid 14 and name N1) or 

   (resid 14 and name N3) or (resid 14 and name C5)) 

weight = $pscale end 

 

 

! C4-G13 WC 

!-------------------------------------------------------------------- 

group 

selection=     ((resid  4 and name N1) or (resid  4 and name N3) or 

  (resid  4 and name C5) or (resid 13 and name N1) or 

   (resid 13 and name N3) or (resid 13 and name C5)) 

weight = $pscale end 

 

! G5-C12 WC 

!-------------------------------------------------------------------- 

group 

selection=     ((resid  5 and name N1) or (resid  5 and name N3) or 

  (resid  5 and name C5) or (resid 12 and name N1) or 

   (resid 12 and name N3) or (resid 12 and name C5)) 

weight = $pscale end 

 

! C6-G11 WC 

!-------------------------------------------------------------------- 

group 

selection=     ((resid  6 and name N1) or (resid  6 and name N3) or 

  (resid  6 and name C5) or (resid 11 and name N1) or 

   (resid 11 and name N3) or (resid 11 and name C5)) 

weight = $pscale end

 


