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Abstract

Risk-weight function is the most popular formula for banking regulations used to calcu-
late the amount of backup deposit that banks need to hold in order to bear extraordinary
losses. The model behind the formula was introduced by Vasicek in 2002. In that paper,
there are several intuitively appealing assumptions which are oversimplified. The most un-
realistic assumption made by Vasicek is that correlations among each unit do not depend
on the overall market environment.

Metzler (2020) has developed a generalized version of the Vasicek model to relax this
assumption, which is called the state-dependent model. The model includes a parameter
to allow the market correlations to change in a systematic way based on the overall eco-
nomic level. We apply an EM algorithm that produces consistent estimates of the model
parameters proposed by Metzler (2000). We also explore some properties of the model.

The model involves an independence assumption, which assumes that the default rate
for each time is independent with each other. But according to the plots of the historical
data, that assumption is obviously violated. In order to relax the independence assumption,
we bring a dependence structure to the model with respect to time by using time series to
model the so-called systematic risk factor M . By doing so, we bring the forecasting ability
to the model and verify its accuracy in the empirical study.

The results suggest that the model we proposed shows some advantages compared with
the classic auto-regression models. We also demonstrate that the model we proposed can
be treated as a general extension of the classic auto-regression models.

In the last part, we try to overcome the other well-know problem of the Vasicek model.
Both the Vasicek model and SDM model fall into the family of the Gaussian copula.
Although the Gaussian copula is widely used in the industry for its nice properties, the 2008
financial crisis warned researchers that tail independence can lead to some fatal results. In
order to solve this problem, we change the underlying distribution from normal distribution
to t-distribution.
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Chapter 1

Introduction

To let the banks survive during the worst economic scenarios, financial regulators require
banks and other financial institutions to hold specific capital, which is called Regulatory
Capital (RC). In mathematical terms, the regulatory capital is defined as the difference
between the 99.9 percentile of the portfolio’s loss and the expected portfolio loss. For the
loans extended by financial institutions, Basel II requires the institution to calculate the
Regulatory Capital (RC) based on the following formula:

RC =
N∑
i=1

EADi · LGDi

[
Φ

(
Φ−1(PDi)− aiΦ−1(0.001)√

(1− a2
i )

)
− PDi

]
, (1.1)

where EADi is the exposure at default, LGDi is the loss given default, PDi is the de-
fault probability, ai is the factor loading, which describes the correlation among the risk
units in the market, and Φ is the cumulative distribution function of the standard normal
distribution. More details on this formula can be found in Basel Committee on Banking
Supervision (2005).

Formula 1.1 was introduced and justified by Gordy (2003) in the Asymptotic Single
Risk Factor (ASRF) framework as an easy approximation to the accurate value of RC
within the model developed by Vasicek (2002). However, Kupiec (2009) documented em-
pirically that the value given by Formula 1.1 always underestimates the probability that
these high default rates happen. As a result, the RC derived from Formula 1.1 may be
insufficient. Breitung and Eickmeier (2011) also support this claim.

There are several potential reasons for the underestimation in the Vasicek default model:
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• Implied correlations among the loans (i.e., factor loadings) do not depend on the
overall state of the economy and remain constant over time.

• Lack of time dynamics in the model, which is also supported by empirical evidence.

• The Underlying Gaussian distribution, which is well-known for its thin tail property,
and is also criticized by researchers for computing the quantile of the default rate.

• Another serious shortcoming of the traditional Vasicek model is the Absence of ran-
domness of LGD.

For each individual problem, researchers have proposed new models to fix them respec-
tively. In our thesis, we propose a new model, which combines the ideas from existing
models, to improve the first three problems identified in the above list.

For the constant factor loading problem, Cheng et al. (2016) suggests an econometric
procedure that can identify a small number of significant breaks in the factor loadings.
Meanwhile, Pelger and Xiong (2019) presents a state-varying factor model of large dimen-
sions that assumes that the state factor loading changes according to some other observable
data. Recently, Metzler (2020) proposes a State Dependent model (SDM) that general-
izes factor loading from a constant to a function of a state variable. The model assumes
that the state process which controls the factor loadings can not be observed directly.
The author applied a maximum likelihood method to estimate the model parameters and
demonstrated the significant impact of the market correlation on the amount of RC.

Absence of time dynamics is supported by the plots of the Federal Reserve Data’s
historical observations1. We can tell that there exists a strong correlation of the underlying
exposures over time periods. In order to capture the dependence structure and improve
the model’s predictive ability, we introduce additional parameters to control the temporal
dependence in the market. To simplify the computational workload, we assume that each
time period is conditionally independent given the systematic risk factor. As a reasonable
starting point, we adopt an AR process to model the underlying systematic risk factor.
Since the AR(1) process may not be accurate enough to describe the risk factor dynamics,
we plan to replace it with other structures later. We name this model as SDM-AR model.

In addition, the implicit usage of the Gaussian copula in the traditional Vasicek model
is another potential source of the underestimation. The consequences of the 2008 financial
crisis warned the researchers that zero tail dependence of Gaussian copula could lead

1Charge-Off and Delinquency Rates on Loans and Leases at Commercial Banks.
https://www.federalreserve.gov/releases/chargeoff/deltop100sa.htm
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to a fatal result. To overcome this disadvantage, we further extend SDM-AR model by
introducing additional parameter to replace the Gaussian copula with a Student t-copula.
We call the new model t-SDM-AR model.

The most straightforward (and the most natural) extension of the Vasicek model for
LGD is proposed in Frye (2000), which assumes that LGD is a second risk indicator driving
credit losses, and LGD is a function of collateral. We leave this extension as a potential
future research direction.

Nevertheless, when the value of the state process is unobservable as it is in the Vasicek
model, we have to deal with a model that contains some latent variables. Due to our
assumption about the temporal dependence structure, the EM-algorithm we apply in the
independent case is hard to apply here. Therefore, we need to find some other approaches
to estimate the model. After implementing the model, we found that it is challenging to
ensure that our results are robust with respect to the choice of the initial value because
there exist some local maximum points. The problem of initial points selection will also
be discussed in the part of empirical study.

We go through some necessary background knowledge in the following several subsec-
tions before presenting and discussing the SDM, SDM-AR and t-SDM-AR models.

1.1 Asymptotic single risk factor (ASRF) framework

Consider a portfolio that consists ofN exposures. Let EADi and LGDi denote the exposure
at default and loss given default for the ith loan. Under the ASRF, both EADi and LGDi

are assumed to be constant and known. Then we use ωi = LGDi/
∑
EADi to denote

the relative size of loss when the default of ith loan occurs. So we can represent the total
percentage loss of the portfolio in the following way:

LN =
N∑
i=1

ωi ·Bi, (1.2)

where Bi is an indicator variable that equals one when the ith loan is in default and
0 otherwise. The default probability for the ith loan is PDi = P (Bi = 1). Then the
expected total loss is

E[LN ] =
N∑
i=1

ωi · PDi. (1.3)
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In the ASRF model proposed by Gordy (2003), there exists a random variable M to
represent the overall economic performance. This variable is used as a systematic risk
factor. Larger values of M represent a better state of the economy at the current time. It
is natural for us to assume that the default rates of the loans are negatively related to M .

1.2 Vasicek model

The Vasicek Model assigns a value Xi, called credit quality, to the ith loan, where

Xi = aiM +
√

1− a2
i · εi i = 1, 2. . . . , n, (1.4)

and

• n is the number of loans in the portfolio.

• M , and ε1, ε2, . . . , εn are iid N(0, 1) random variables.

• {ai}1,...,n is a sequence of constants that belong to [0, 1].

Under this setting, the random variable Xi follows a standard normal distribution and
Cov(Xi, Xj) = aiaj for any i 6= j. As it considers a single common factor, and both
common and idiosyncratic factors follow the normal distribution, the Vasicek single-factor
model is equivalent to a single-factor Gaussian copula.

The ith loan defaults if Xi 6 Φ−1(PDi), where Φ−1 is the inverse of the cumulative
distribution function (CDF) of a standard normal distribution, and PDi is a parameter of
the model, which denotes the probability of default for the ith loan.

M is the common systematic risk factor, and εi is the independent idiosyncratic risk
factor associated with the ith loan. It follows that P (Bi = 1) = P (Xi 6 Φ−1(PDi)) = PDi.

The parameter ai controls a trade-off between systematic and idiosyncratic risk factors.
It is easy to see that Xi also follows a standard normal distribution. The correlations among
the {Xi}1,...,n come from the common systematic risk factor M . Then we can calculate the
conditional default probability given the systematic risk factor:

P (Bi = 1|M) = P (Xi 6 Φ−1(PDi)|M)

= P (aiM +
√

1− a2
i εi 6 Φ−1(PDi)|M)

= Φ

(
Φ−1(PDi)− aiM√

1− a2
i

)
.
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1.2.1 Homogeneous Vasicek model

In both Metzler’s (2020) and our study, we deal with the homogeneous version of the
Vasicek model. In this case we let ai = a and PDi = PD for all i, where a and PD are
constants. Since the portfolio is homogeneous and large, all loans are of the same size, and
they are conditionally independent with each other when M is known, based on the law of
large number (LLN), the following result holds (i.e. if the portfolio is large, LLNs ensures
that the fraction of obligors that actually defaults is almost surely equal to the individual
default probability.):

D = lim
N→∞

1

N

N∑
i=1

Bi = Φ

(
Φ−1(PD)− aM√

1− a2

)
,

where D is the default rate. The thing we need to notice is that the systematic risk factor
determines the value of D. Since D is a function of M , D is also a random variable. Our
first goal is to find a limiting marginal distribution of the default rate, which is

P (D > d) = P

(
Φ

(
Φ−1(PD)− aM√

1− a2

)
> d

)
= P

(
Φ−1(PD)− aM√

1− a2
> Φ−1 (d)

)
= P

(
M <

Φ−1(PD)−
√

1− a2 · Φ−1 (d)

a

)
= Φ

(
Φ−1(PD)−

√
1− a2 · Φ−1 (d)

a

)
. (1.5)

As we can see from Equation 1.5, the loan portfolio loss distribution is fully characterized
by two parameters: the probability of default, PD, and the asset correlation coefficient, a.
The former parameter fixes the expected loss rate of the portfolio, while the latter controls
the shape of the loss distribution.

By differentiating 1− P (D > d), we get the probability density function of the default
rate for a large portfolio in the Vasicek Model. It is:

fx,d(d) =
√

1− a2
φ(
√

1− a2Φ−1(d);x, a2)

φ(Φ−1(d))
. (1.6)
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1.2.2 Drawbacks of the Vasicek model

Kupiec (2009) illustrated that the value given by Formula 1.1 always underestimates the
probability these high default rates happen. As a result, the RC may be insufficient if
we use that formula. In the study of Breitung and Eickmeier (2011), they found the
factor loadings can change either smoothly or abruptly. So, we will first talk about some
well-known drawbacks of the traditional Vasicek model. After that, we present a brief
introduction about the Vasicek model’s extensions to overcome those problems.

Absence of randomness of LGD

In the traditional Vasicek model presented in Section 1.2.1 and Formula 1.1, we assume
the LGD is a constant, which does not depend on the systematic risk factor M . However,
the empirical evidence strongly suggests that the LGD should be a random variable and
correlates with the overall market level. The literature supporting this observation is large
and growing, such as Acharya et al. (2003), Frye (2000) and Andersen et al. (2004). In
the paper of Andersen (2004), they proposed a model that split the recovery rate into a
systematic factor term and an idiosyncratic one.

Flat correlation

The other well-known issue is the assumption made by Vasicek that the implied correlations
among the loans (i.e. factor loadings) do not depend on the overall market behavior and
remain constant all the time. Overcoming this problem has attracted a lot of attention.
Burtschell et al. (2005) proposed two models named as stochastic correlation model and
state-dependent correlation model respectively.

Lack of tail dependence

Last but not least, most of the models applied in the industry have an implicit assumption
of a joint Gaussian distribution of the obligors’ asset value. With more and more efforts
have been devoted into the area of credit modelling, researchers have noticed the limitations
of the Gaussian distribution, especially tail independence. Salmon (2012) and Balla (2014)
suggest that lacking tail dependence is the main reason for the financial crisis in 2008.
Schloegl, O’Kane (2005) and Pimbley (2008) proposed similar methodologies to replace
the Gaussian copula with a Student t-copula.
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1.2.3 Extension of the Vasicek model

For the purpose of overcoming the problems mentioned in the previous section, researchers
have proposing new models basically from two main streams, the factor load model and
copula based model. Although the paper published by Daivd Li (2000) realized that those
two methods have a strong relation with each other, it is easy for us to understand the
background information in this area by treating them separately. In the following part, we
talk about some well-developed extensions of the Vasicek model.

Student-t and Archimedean copula

Using a multivariate normal distribution to describe the obligors’ asset value leads to a
so-called Gaussian Copula. Copulas concentrate on the dependency among the random
variables, and the marginal distribution is irrelevant. Nevertheless, Gaussian Copula is just
one of many copulas. Frey and McNeil (2001) replaced it with a student-t copula. There
are two benefits by doing so. First, a t-distribution converges to the Gaussian distribution
as the degree of freedom goes to infinity. Secondly, the t-copula has the property of tail
dependence to capture extreme events with higher probabilities than the Gaussian copula.

Except for the t-copula, Schonbucher (2002) compared the difference between Gaussian
copula and some other Archimedean copulas: Clayton, Gumbel and Frank copula. In this
research work, they fixed individual default probabilities, exposure sizes and even the
pairwise default correlations in order to separate the effects of the dependency structure.
The result suggests that modelling the credit risk by adopting other copula is feasible.
Also, the Gaussian copula and the Clayton copula imply almost identical loss distribution,
while the Gumbel copula are considerably different from the two aforementioned copulas.

Factor loading model

A couple of models proposed in the paper by Burtschell, Gregory and Laurent (2005)
concentrate on overcoming the constant correlation coefficient assumption. The main idea
is to change the constant factor loading in Formula 1.4 by some random variables, which
can be either independent or dependent with the systematic risk factor.

Xi = ãiM +
√

1− ãi2 · εi i = 1, 2. . . . , n, (1.7)

where M, εi are Gaussian random variables, all these being jointly independent, ãi are some
random variables taking values in [−1, 1]. There are two concrete examples in this paper.
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The first one is the case that the factor loading is independent with the systematic risk
factor M .

Xi = ((1−Bi)al +Biah)M +
√

1− ((1−Bi)al +Biah)2 · εi i = 1, 2. . . . , n,

where Bi are independent Bernoulli random variables. Depending on Bi equaling to 0 or 1,
we have a factor loading equal to al or ah. The second one introduces dependence between
factor loading and systematic risk factor.

Xi = α + (al1{M6e} + ah1{M>e})M + v · εi i = 1, 2. . . . , n,

where al, ah, e are some input parameters, al, ah ∈ [−1, 1]. α and v are some constants to
ensure that E[Xi] = 0 and E[X2

i ] = 1.

The paper shows that a simple class of stochastic correlation models can provide a
reasonably good fit to the default rate. Later, we will show that all those two models are
actually two special cases of the model we proposed.

1.3 Federal reserve delinquency rates

In this section, we briefly demonstrate the historical data we will study in this thesis. The
data set is called Charge-Off and Delinquency Rates on Loans and Leases at Commercial
Banks. It is available on the website of the Board of Governors of the Federal Reserve
System. The 100 largest banks are measured by consolidated foreign and domestic assets.
The data set consists of quarterly delinquency rates for 11 different categories. The time
period is from the first quarter of 1991 to the fourth quarter of 2016. The following table
shows the 11 categories we used in our study.
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Series Abbreviation Mean(%) Std. Dev(%) Kurtosis Skewness

All All 3.49 1.85 2.62 1.01
Business B 2.26 1.42 3.52 1.15
Consumer C 3.48 0.79 2.55 -0.04
Credit Card CC 4.16 1.15 2.75 -0.05
Other Consumer OC 2.99 0.6 2.29 -0.06
Agricultural AG 3.3 1.74 3.11 0.90
Large Format Retail LFR 1.36 0.54 2.29 0.66
Secured By Real Estate SRE 4.77 3.19 1.99 0.70
Farmland F 3.87 1.88 3.28 0.92
Mortgages M 4.58 3.59 2.63 1.11
Commercial Real Estate CRE 4.64 4.53 4.10 1.44

Table 1.1: Data categories

The following plots show the default rate for All and Other Consumer series.
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Figure 1.1: Historical data plot

As we can see from the above figures, the data shows extreme persistence over time.
The data shows strong visual evidence that temporal dependence structure is important
for modelling default rate.
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1.4 Expectation-maximization algorithm

In our thesis, since the market factor is latent, the EM-algorithm will be a key tool for
us to estimate the model parameters. The expectation-maximization (EM) algorithm,
introduced and named by Dempster, Laird and Rubin (1977), is an iterative method to
find maximum likelihood estimates of parameters in a model with latent variables. Given
a statistical model, a set of observations X, parameter θ, and a set of latent data Z that
can not be observed directly, then we can write the joint likelihood function L(θ;X,Z) =
p(X,Z|θ) and the marginal likelihood of the observed data L(θ|X) =

∫
p(X,Z|θ)dZ.

The EM-algorithm is divided into two steps. The first step is the Expectation step.
Define the expected value of the log-likelihood function of θ with respect to the current
conditional distribution of Z given X and the current estimates of the parameters θ(t),

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)].

The second step is the Maximization step, which is finding the parameter that maximizes
Q.

θ(t+1) = arg max
θ
Q(θ|θ(t)).

So first, we initialize the parameters θ by assigning an initial value. Then we repeat the
E-step and M-step until the sequence θ(n) is deemed to converge. As proven by Roderick
and Rubin (1987), this algorithm will converge to a local maximum point.
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Chapter 2

Static State-Dependent Model

In this chapter, we discuss the model proposed by Metzler (2020). The author has provided
empirical evidence that correlations between financial assets change through time in some
systematic ways. The explanation for this is illustrated by Campbell, Koedijk (2002) and
Melkuev (2014) who show that the correlations usually rise dramatically during a financial
crisis. In Metzler’s paper, the author proposes a generalized version of the homogeneous
Vasicek model, the so-called State-dependent Model (SDM), that allows us to capture this
stylized fact. In this Chapter, we first apply the EM algorithm to estimate the model
parameters. After that, we further generalize the factor loading of the SDM model to be
more flexible.

The main idea employed in the SDM model is to introduce a standard normal latent
variable T . First, T is correlated with the systematic risk factor M . Secondly, the factor
loading becomes a function of T . Then the credit score for the ith loan can be written as

Xi = a(T )M +
√

1− a(T )2 · εi, (2.1)

where a : R→ [0, 1] is a function. The correlation, β, between M and T is a new parameter
in the model. It is natural to treat β as a measure of how closely the factor loading changes
with respect to the overall market. The other notations remain the same as in Model 1.4.

For simplicity, we begin with a simple function a() of the form:

a(t) =
K∑
k=1

ak · 1(tk−1 < t 6 tk),

where 0 6 a1 < a2 < · · · < aK 6 1 are the possible values for the factors loadings and
−∞ = t0 < t1 < · · · < tK =∞. Under this setting, we bring another notation to indicate
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the market regime determined by T :

R =
K∑
k=1

k · 1(tk−1 < T 6 tk). (2.2)

Since {t1, t2, . . . , tK} is a partition of the real line, the market would be in only one regime
at a time.

2.1 Properties of the model

In this section, we first motivate further Metzler’s (2020) model and then present some
of its properties proved by the author. Compared to the traditional Vasicek model, the
factor loading is linked to the systematic risk factor M via the random variable T . Since
M and T are correlated with each other, and the factor loading a(T ) is a linear function
of T , it is easy to show that a(T ) and M are correlated as well. As we have explained
earlier, the correlation, β, between T and M works as a measure of the state dependence.
For example, if β is large, then there exists a very high probability that the correlation
among the loans is high when the overall economic level is low. The model includes both
the Gaussian mixture model and the Random Factor loading model as special cases when
β = 0 and β = 1 respectively. The Vasicek model mentioned in Chapter 1 is also a special
case when the function a(·) is constant.

2.1.1 Conditional market correlation for each regime

Since the goal of SDM is to capture the phenomenon that market correlation is higher in the
stressed market scenario, the first thing presented by Metzler (2020) is how the probability
distribution for different regimes changes based on the given value of the systematic risk
factor M . We can calculate the conditional probability of the kth regime given the realized
value of the systematic risk factor as:

pk(m) = P (R = k|M = m) = Φ(tk; βm, 1− β2)− Φ(tk−1; βm, 1− β2), (2.3)

where R is defined in Equation 2.2. The market correlation given that we are in regime k,
Corr(Xi, Xj|R = k), can be calculated by the following procedure.

1. We need the conditional variance of the credit quality given M :

V ar(Xi|R = k) = a2
kV ar(M |R = k) + (1− a2

k)V ar(εi|R = k).
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Corr(M,R) 6= 0 since R is fully determined by T , which is correlated with M .

2. The conditional variance of M given regime k, σ2
k = V ar(M |R = k), can be found

in the following theorem.

Theorem 1. Suppose that
(
X1
X2

)
follows a bivariate normal distribution with mean(

µ1
µ2

)
and variance

( σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. Let α = (a− µ1)/σ1 and β = (b− µ1)/σ1. Then we

have

E[X2|a 6 X1 < b] = µ2 − ρσ1

(
φ(β)− φ(α)

Φ(β)− Φ(α)

)
(2.4)

V ar[X2|a 6 X1 < b] = σ2
2 + ρ2σ2

1

[
−βφ(β)− αφ(α)

Φ(β)− Φ(α)
−
(
φ(β)− φ(α)

Φ(β)− Φ(α)

)2
]
. (2.5)

The details of the proof can be found in the paper of Metzler (2020). By applying
Theorem 1, we have

σ2
k = 1− β2 tkφ(tk)− tk−1φ(tk−1)

Φ(tk)− Φ(tk−1)
+

(
−β φ(tk)− φ(tk−1)

Φ(tk)− Φ(tk−1)

)2

. (2.6)

3. Since εi and R are independent of each other, V ar(εi|R = k) = V ar(εi) = 1. As a
result,

V ar(Xi|R = k) = a2
kσ

2
k + (1− a2

k)

and
Cov(Xi, Xj|R = k) = a2

kV ar(M |R = k) = a2
kσ

2
k.

2.1.2 Regime probabilities given a systematic risk factor

We present some properties of the regime changes given the value of the systematic risk
factor M . The unconditional regime probability, pk, is determined by the value of tk

pk = Φ(tk)− Φ(tk−1).

But the conditional regime probability given the systematic risk factorM is also determined
by the value of both M and β. In Metzler’s paper, the author shows that

pk(m) = P (R = k|M = m)

= Φ(tk; βm, 1− β2)− Φ(tk−1; βm, 1− β2), (2.7)
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where Φ(·,m, σ2) is the CDF of the normal distribution with mean m and variance σ2. Due
to the fact that t0 = −∞ and tK =∞, it follows that when the overall market is extremely
bearish, the market will be in a high correlation state almost surely, p1(−∞) = 1, and vice
versa. But it is hard to find a general way to infer the impact of both M and β on pk(m)
for the intermediate regimes. The following plots demonstrate some interesting properties
of the relations between pk(m), M and β.

(a) Impact of systematic risk factor
(b) Impact of Beta when overall market
is stressed (i.e. M = Φ−1(0.05))

(c) Impact of Beta when overall market
is moderate (i.e. M = Φ−1(0))

(d) Impact of Beta when overall market
is good (i.e. M = Φ−1(0.95))

Figure 2.1: Impact of M and β on Conditional Regime Probability Property. All plots are
drawn under the framework of three regimes. The values of {ti}0,...,3 = [−∞, −0.5, 0.8, ∞].
(a) represents the impact of M on the conditional regime probability with β = 0.7. (b),(c)
and (d) show the impact of β on the conditional regime probability with different market
levels.
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All of the plots in Figure 2.1 are drawn under the assumption that the market can be in
one of the three regimes: high, moderate and low correlation regimes. The values of {ti}0,...,3

are [−∞, −0.5, 0.8, ∞]. Graph (a) shows the impact of M on the conditional regime
probability. We set β = 0.7. As we can see, the probability of the high correlation regime is
decreasing with respect to M , and conversely, the probability of the low correlation regime
is increasing with respect to M . But, the probability that the market is in the regime with
a moderate correlation is bell-shaped. Parts (b), (c) and (d) demonstrate the impact of β
on the conditional regime probability when the overall market is under stressed, moderate
and good scenarios, respectively. It is easy to see that the regime is fully determined by
the systematic risk factor M when |β| is large enough. That means when β equals 1, the
conditional regime probabilities become binary (either 1 or 0) depending on the realized
value of the systematic risk factor.

2.1.3 Default threshold of credit quality Xi

Due to the fact that the SDM model relax the constant factor loading assumption, the
distribution of credit score also changes. So it is necessary for us to find the marginal
distribution and default threshold of the credit scores defined in the formula (2.1). In
order to do so, we calculate the conditional cumulative distribution function of credit score
first. It has been shown in Metzler’s paper (2020) that:

P (Xi 6 x|M = m) =
K∑
k=1

[Φ(x; akm, 1− a2
k) · pk(m)]. (2.8)

Then, the unconditional CDF of Xi can be found by:

P (Xi 6 x) =

∫ ∞
−∞

[
K∑
k=1

Φ(x; akm, 1− a2
k) · pk(m)

]
· φ(m)dm. (2.9)

The term inside the large brackets in Equation 2.9 can be rewritten further in the form of:

Φ(x; akm, 1− a2
k) · pk(m) =Φ(x; akm, 1− a2

k) · (Φ(tk; βm, 1− β2)− Φ(tk−1; βm, 1− β2))

=Φ(x; akm, 1− a2
k) · Φ(tk; βm, 1− β2)

− Φ(x; akm, 1− a2
k) · Φ(tk−1; βm, 1− β2). (2.10)

The product of two normal CDFs can be treated as a 2-dimensional normal CDF with
correlation 0, original means and variances, respectively:

Φ(x1;µ1, σ
2
1) · Φ(x2;µ2, σ

2
2) = Φ2

([
x1

x2

]
;

[
µ1

µ2

]
,

[
σ2

1 0
0 σ2

2

])
, (2.11)
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where Φ2(x;µ,Σ) is the CDF of the 2-dimension normal distribution with mean µ and
covariance matrix Σ. By applying Equation 2.11 to the last line of Equation 2.10, we can
get:

Φ(x; akm, 1− a2
k) · pk(m) =Φ2

([
x
tk

]
;

[
akm
βm

]
,

[
1− a2

k 0
0 1− β2

])
− Φ2

([
x
tk−1

]
;

[
akm
βm

]
,

[
1− a2

k 0
0 1− β2

])
. (2.12)

After switching the order of summation and integral in Equation 2.9, we can represent the
unconditional CDF in the following form:

P (Xi < x) =
K∑
k=1

EM

[
Φ2

([
x
tk

]
;

[
akM
βM

]
,

[
1− a2

k 0
0 1− β2

])
− Φ2

([
x
tk−1

]
;

[
akM
βM

]
,

[
1− a2

k 0
0 1− β2

])]
.

The following theorem proven by Metzler (2020) can be used to further simplify the above
equation.

Theorem 2. Let M have a standard normal distribution and let a = [a1, . . . , an]T , b =
[b1, . . . , bn]T . Then,

E[Φn(a+ bM, 0,Σ)] = Φn(a, 0,Σ + bbT ), (2.13)

where Φn(x;µ,Σ) is the n-dimension normal CDF with mean µ and covariance matrix Σ.

According to the theorem, we have

P (Xi < x) =
K∑
k=1

[
Φ2

([
x
tk

]
;

[
0
0

]
,

[
1 βak
βak 1

])
− Φ2

([
x
tk−1

]
;

[
0
0

]
,

[
1 βak
βak 1

])]
.

(2.14)
Although the CDF of the credit score can be expressed in closed form, it may be too time-
consuming or even impossible to find the closed form for its inverse CDF. As a result, we
can find the credit threshold xpd by solving the equation P (Xi < xpd) = PD numerically.
Since the CDF of the credit quality is monotone increasing and also bounded between 0
and 1, there exists exactly one solution to that equation.

2.1.4 Distribution of large portfolio default rate

In this section, we take a look at the distribution of the default rate D. Since all the details
of the calculations are available in Metzler’s paper (2020), we skip the details and only
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present the results in here. The distribution is similar to the homogeneous Vasicek Model
mentioned in Section 1.2.1. If we assume there exist N loans, then the default rate can be
calculated as:

D =
N∑
i=1

Bi

N

=
N∑
i=1

1(Xi<xPD)

N
.

Once we are given the condition that M = m and R = k, then {Xi}1,...,N become inde-
pendent of each other. Based on the LLNs, we can approximate the default rate by the
following formula when we have a large enough number of loans:

(D|M = m,R = k) = lim
N→∞

N∑
i=1

1(Xi<xPD|M=m,R=k)

N

= E[1(Xi<xPD|M=m,R=k)]

= P (Xi < xpd|M = m,R = k). (2.15)

It is easy to see that once we are given the condition that M = m and R = k, we can treat
the state-dependent model as a classic Vasicek model with the same systematic risk factor
value of M = m and factor loading a = ak. So

D =
K∑
k=1

[
vk(M) · 1(R=k)

]
, (2.16)

where xpd is the default threshold corresponding to the default probability PD and vk(M) =

Φ

(
xpd−akM√

1−a2k

)
is the Vasicek curve corresponding to a default threshold xpd and the factor

loading ak. The intuition is straightforward. Once the regime is fixed, the relation between
the systematic risk factor M and the default rate D is the same as the one in the Vasicek
model with the factor loading ak.

The next thing we need to determine is the distribution function of D. For each regime,
the default rate will exceed a certain threshold value d only when vk(M) > d. According
to the definition of the model and the fact that events are mutually exclusive, we have:

1(D>d) =
K∑
k=1

1(vk(M)>d,R=k).
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After taking expectation on both sides of the above equation, we get:

P (D > d) =
K∑
k=1

P (M < v−1
k (d), T ∈ [tk−1, tk)),

where v−1
k () is the inverse function of vk() as shown above.

We know that M and T follow a 2-dimensional standard normal distribution with a
correlation β. So

P (D > d) =
K∑
k=1

P (M < v−1
k (d), T ∈ [tk−1, tk))

=
K∑
k=1

[
Φ2

([
v−1
k (d)
tk

]
;

[
0
0

]
,

[
1 β
β 1

])
− Φ2

([
v−1
k (d)
tk−1

]
;

[
0
0

]
,

[
1 β
β 1

])]
.

By differentiating the function 1−P (D > d), we can obtain the density of the default rate,
denoted by fD(d):

fD(d) =
K∑
k=1

pk(v
−1
k (d)) · fk(d), (2.17)

where fk(d) = fxpd,ak(d) is the Vasicek density function, defined in Equation 1.6 with a
default threshold xpd and a factor loading ak. pk() is the conditional probability of regime
k defined in Equation 2.3.

2.1.5 Joint PDF of D and R

It is natural to consider the joint distribution function of D, M and R. But the interesting
fact is that under the assumption that the number of loans is infinite, the default rate, D,
is totally determined by the values of M and R. For example, if we know which regime we
are in and the value of the systematic risk factor, then D can be calculated by Equation
2.16. This is equivalent to saying that D is a deterministic function of M and R. In its
original formulation, the EM algorithm needs the joint PDF of the observation data D and
all latent variables M , R. But in our model, we only need the joint PDF of D and R since
D is no longer a random variable, but a fixed value once M and R are given. Using a basic
definition of conditional probability, we have:

fD,R(d, k) = P (R = k|D = d) · fD(d)

= P (R = k|M = v−1
k (d)) · fD(d)

= pk(v
−1
k (d))fk(d),
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where pk() is defined in Formula 2.3. We can also write this in a more general way as:

fD,R(d, k) =
K∑
r=1

[
pr(v

−1
r (d))fr(d)1(k=r)

]
. (2.18)

It is instructive to consider the posterior regime probability, P (R = k|D = d), which is
also necessary for the implementation of the EM-algorithm.

P (R = k|D = d) =
fD,R(d, k)

fD(d)

=

∑K
r=1

[
pk(v

−1
k (d))fk(d)1(r=k)

]
fD(d)

. (2.19)

2.2 Parameter estimation

In this section, we apply the EM-algorithm to estimate the state-dependent model on the
Federal Reserve Data on quarterly delinquency rates for various types of loan from 1991Q1
to 2016Q41. Loans are treated as default if they are 30 or more days overdue. Eleven
loan categories are available. In our model, the default rate D is the observed data, and
the regime indicator R is the latent variable. In addition to the assumptions mentioned in
previous sections, we add the following assumptions when we apply the EM algorithm:

1. There only exist two different market regimes, low and high correlation regimes. (i.e.
K = 2)

2. The quarterly data are independent and identically distributed.

For the state-dependent model with K = 2, the model involves five parameters, which are
θ = {ah, al, β, t1, PD}. al and ah are the factor loadings in the low and high correlation
regimes respectively. β is the correlation between M and T . t0 and t2 are −∞ and ∞
respectively. t1 is the value that determines the probability of the market regime. The low
correlation regime will occur when T 6 t1 and the high correlation regime will occur when
T > t1. PD is the probability of default.

In the first step of the EM algorithm, we need to calculate the expected value of the
log-likelihood function, with respect to the conditional distribution of the latent variable

1Charge-Off and Delinquency Rates on Loans and Leases at Commercial Banks.
https://www.federalreserve.gov/releases/chargeoff/deltop100sa.htm
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R given the observed data D under the current estimate of the parameters, θ(t). The
following equation is used to calculate the expected value:

V (θ|θ(t)) = ER|D,θ(i) [logL(θ;D,R)], (2.20)

where L(θ;D,R) is the likelihood function of D and R:

L(θ;D,R) = Πn
i=1fD,R(di, ri) = Πn

i=1

(
2∑

k=1

pk(v
−1
k (d))fk(d)1(ri=k)

)
, (2.21)

where pk() can be found in Equation 2.7. v−1
k (d) is the inverse function of vk(m), which

defined by Equation 2.16. fk(d) is defined in Equation 2.17. Then, Equation 2.20 can be
written in the following form:

V (θ|θ(t)) =
n∑
i=1

(
2∑

k=1

log(pk(v
−1
k (di))fk(di)) · P(R = k|D = di; θ

(t))

)
. (2.22)

Next, we proceed to the maximization step, which involves finding the parameters that
maximize the expected value with respect to θ:

θ(t+1) = arg max
θ

V (θ|θ(t)). (2.23)

The entire algorithm can be summarized as follows:

1. Initialize the parameters θ(1) to a starting value.

2. Calculate the expected value as a function of θ, V (θ|θ(t)), with the probability of
each possible result of R.

3. Maximize the expected value w.r.t θ and set θ(t+1) equal to it.

4. Repeat steps 2 and 3 until θ(t) converges.

In our application of the EM algorithm in software R, we have encountered the following
issues. First, overflow is a problem, which needs to be fixed. Theoretically, the probability
density function of the standard normal distribution, φ(x), should always be greater than
0 for any x ∈ R. But φ(x) is treated as 0 on the computer when x is far away from its
mean. As a result, when we calculated the log-likelihood value, the log-likelihood function
returns NaN, which causes the whole algorithm to end up with NaN. In order to solve this
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problem, we add an IF statement to check if φ(x) is 0 or not. If so, we change the value
to 10−320, which is close to the machine epsilon. The bias created from this method is
minimal.

The other problem is generated from the optimization step. As mentioned in the
previous section, V (θ|θ(t)) does not exist in closed form, so we adopt a Nelder-Mead method
to find an optimal solution. Since we apply the numerical method in five-dimensional
optimization, accuracy and robustness are hard to guarantee. Therefore, we use the long-
run average of the observed data D as the estimator for PD,

P̂D =
1

N

N∑
i=1

Di. (2.24)

This helps us to lower the dimension of the optimization problem from five to four. Even
so, the numerical method still performs strangely when the estimators are moving closer to
the boundary. For example, when the correlation parameter β tends to 1, i.e. β → 1, the
values of other parameters start to fluctuate within a relatively small region. By choosing
the results with the largest likelihood value, we can sidestep this problem.

2.2.1 Simulation study of EM algorithm

In this section, we demonstrate the accuracy of EM-algorithm before we apply it to the
Federal Reserve Data. We first apply it to simulated data generated by the SDM with
known parameters. The data are generated in the following procedure:

1. Select values for all the parameters a1, . . . , ak, β, ts and PD.

2. Generate N pairs of M and T based on a multivariate standard normal distribution
with a correlation β.

3. Use the simulated data M and T to calculate the value of D by Equation 2.16.

We set the number of regimes K = 2 in this section in order to reduce the computational
workload. Later on, we will discuss the effect of the number of regimes. So, in order to
reduce the estimation error caused by a low number of data points, we make N = 5000,
which is a reasonably large number. We choose the actual value of the parameters in the
following way:
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a1 a2 β t1 PD
Actual Value 0.32 0.12 1 0.174 0.035
Estimator 0.3274 0.1186 0.9803 0.1587 0.0351

a1 a2 β t1 PD
Actual Value 0.46 0.07 0.5 -0.24 0.07
Estimator 0.4748 0.0708 0.4686 -0.2438 0.06983

Table 2.1: Simulation test of the EM-algorithm with 5000 simulated data points and two
regimes. The results shown in the table are generated based on one simulation.

As we can see from Table 2.1, the EM algorithm appears to work well, and the method-
ology we applied to estimate PD is also accurate enough. The plots in Figure 2.2 also verify
the accuracy of the EM algorithm. The initial starting points we have used here are middle
points among the possible space, i.e., a1 = 0.51, a2 = 0.49, β = 0, t1 = 0.

(a) Estimation on the simulation data based on
the upper table in Table 2.1

(b) Estimation on the simulation data based on
the lower table in Table 2.1

Figure 2.2: EM algorithm on simulation data: The number of points is 5000. The values of
the parameters are presented in Table 2.1. The green dashed line represents the theoretical
PDF of default rate, and the red solid line stands for the estimated PDF.

2.2.2 The effect of different numbers of regimes

In this section, we wish to take a deeper look at the number of regimes’ impact on the
estimation accuracy. We examine the 2-regimes model estimation results based on the
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simulated data generated from a 3-regimes model. If the estimated probability density is
not far away from the true one, we can reduce the computational workload by working
with the 2-regimes state-dependent model in future research. The Federal Reserve Data’s
estimation results in the next section also suggest that the difference of the fitting results
between the 2-regimes model and the 3-regimes model is negligible. We test 6 different
parameter settings presented in Table 2.2 and 2 different numbers of samples are simulated.
Based on the histogram plots of those fittings, it turns out that even when we underestimate
the number of regimes, the model can still provide a good approximation to the true
distribution of the default rate.

a1 a2 a3 β t1 t2 PD

1 0.23 0.12 0.05 0.95 -0.44 0.24 0.05
2 0.18 0.12 0.09 0.95 -0.44 0.24 0.05
3 0.18 0.12 0.09 0.35 -0.44 0.24 0.05
4 0.23 0.12 0.05 0.35 -0.44 0.24 0.05
5 0.18 0.12 0.09 0.95 -0.1 0.18 0.05
6 0.18 0.12 0.09 0.35 -0.1 0.18 0.05

Table 2.2: Parameter Setting for simulating data from the SDM model with 3-regimes.
Then, we estimate the 2-regime model to the simulated data to check the impact of fitting
data with a misspecified model.
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(a) Under parameter setting 1 with 104 data
points

(b) Under parameter setting 1 with 500 data
points

(c) Under parameter setting 2 with 104 data
points

(d) Under parameter setting 2 with 500 data
points

Figure 2.3: Simulation Fitting 2 regime model on 3 regime data: The solid line represents
the theoretical PDF of the default rate under the 3-regime model. The dashed line shows
the estimated PDF under the 2-regime model.

2.2.3 Calibration results

This section demonstrates some empirical results for the state-dependent model under the
assumption that there exist 2 or 3 different market regimes, K = 2 or 3. The following
section shows Federal Reserve Data histograms on quarterly delinquency rates for various
types of loans. We also superimpose the classic Vasicek density and the density curve
derived from the state-dependent model in the same histogram to compare them directly.
The time period is from the first quarter of 1991 to the fourth quarter of 2016.
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ρh ρl β P (R = 1) PD d0.001,SD d0.001,V as (d1 − d2)/d2 aicSD aicV as

1. All 9.94% 1.02% 1 72.57% 3.49% 17.45% 11.90% 46.60% -610.54 -572.83
2. Bus 9.74% 4.32% 0.9928 53.75% 2.26% 12.98% 9.78% 32.73% -636.01 -631.81
3. Cons 1.65% 0.79% -0.9776 14.68% 3.48% 6.20% 6.81% -8.94% -709.81 -702.70
4. CC 3.04% 0.98% -0.9519 18.75% 4.16% 7.81% 9.36% -16.50% -642.34 -623.24
5. OC 1.18% 0.42% -0.8917 59.49% 2.99% 4.75% 5.42% -12.31% -765.07 -762.36
6. AG 5.65% 3.20% 1 96.35% 3.30% 12.74% 12.24% 4.13% -575.74 -571.04
7. LFR 2.66% 0.90% 0.9964 94.21% 1.36% 4.17% 3.87% 7.70% -809.94 -806.53
8. SRE 13.27% 4.37% 1 86.51% 4.77% 27.43% 22.34% 22.77% -484.79 -459.76
9. F
10. M 26.39% 3.77% 1 56.29% 4.58% 41.40% 22.51% 83.87% -517.19 -464.51
11. CRE 18.87% 4.90% 1 88.27% 4.64% 34.67% 30.27% 14.54% -464.93 -440.60

Table 2.3: Estimation results for Federal Reserve Data when K = 2. For each series
we estimate the parameters for the Vasicek model and the five parameters for the state-
dependent model. ρh and ρl are calculated based on the formulas in Section 2.1.1. P (R = 1)
refers to the probability that the market is in the high-correlation regime. (d1 − d2)/d2 is
the percentage difference in 99% quantile of Vasicek density and state-dependent model.

For each data set, we calculate the Akaike information criterion (AIC) value as well.
AIC value works as a measurement of model quality. A model with a lower AIC value is
usually better than the one with a higher AIC value. It turns out that the state-dependent
model always has a lower value on AIC than the classic Vasicek model when K = 2. Also,
the absolute value of the correlation term β for each series is close to 1. Most interestingly,
the difference of the quantile heavily relies on the sign of the correlation term β. We can
instantly notice that negative correlation brings us a lighter tail than positive correlation.
These results indicate that dependence between the systematic risk factor and the factor
loading has a considerable impact on the default rate distribution.
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ρ1 ρ2 ρ3 β P (R = 1) P (R = 2) P (R = 3)

1. All 0.03583449 0.17918289 0.02122849 1 10.138% 53.105% 36.757%
2. Bus 0.10137856 0 0.00710649 0.9479 82.343% 0.258% 17.399%
3. Cons 0.01221025 0.01385329 0 0.8565 9.133% 89.708% 1.159%
4. CC 0.03964081 0.01505529 0.00000324 -0.9626 23.377% 71.883% 4.740%
5. OC 0.007056 0.01352569 0.00087025 -1 3.822% 87.185% 8.993%
6. AG 0.00160801 0.09381969 0.00160801 -1 8.219% 85.202% 6.579%
7. LFR 0.02819041 0.20223009 0.00968256 -1 41.379% 39.062% 19.558%
8.SRE 0.06140484 0.14622976 0.05803281 1 9.402% 76.372% 14.226%
9. F 0.05466244 0 0.04301476 -0.2405 34.853% 0.378% 64.769%
10. M 0.27394756 0.08491396 0.03129361 1 49.238% 35.409% 15.353%
11. CRE 0.20187049 0.05564881 0 0.9988 86.516% 13.368% 0.116%

Table 2.4: Estimation results for Federal Reserve Data when K = 3.

As we can see from Table 2.4, some estimation results suggest that the market may
have only 2 regimes even under the assumption that there are 3 regimes. We evaluate the
performance of the model based on the AIC score as before. The following table provides
the AIC values for the model with K = 2 and K = 3.

AIC (K = 2) AIC(K = 3)

1. All -610.54 -625.2234
2. Bus -636.01 -632.5814
3. Cons -709.81 -690.0734
4. CC -642.34 -649.1723
5. OC -765.07 -720.7929
6. OP -575.74 -516.3857
7. LFR -809.94 -823.4793
8.SRE -484.79 -504.1335
9. F
10. M -517.19 -530.1692
11. CRE -464.93 -458.4619

Table 2.5: AIC score comparison between K = 2 and K = 3 state-dependent model.

Based on the AIC score, we can hardly conclude that more regimes always bring us a
better model. In order to reduce the computational workload and stabilize the estimator,
we will mainly focus on the model with 2 regimes in future research.
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2.2.4 Histograms with the density curves

(a) All (b) Business

(c) Consumer (d) Credit card

Figure 2.4: The histograms of different series with Vasicek density curve and state-
dependent density curve: We can see from the histograms that the data presents some
bi-mode feature. By checking some properties about the default rate time series in Section
4.6, we realize that this is caused by the extreme persistence in the data.

The above figure presents a subset of series in our data set. We selected four most repre-
sentative histograms to demonstrate our findings. The rest of the figures can be found in
Appendix. This setting is also applied to the rest of figures in this thesis.

The density fittings strongly suggest that the state-dependent model captures more
information than the traditional Vasicek model does. When the absolute value of the state
correlation β approaches 1, the density curve becomes discontinuous at certain points.
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We also present the density curves of models with K = 2 and K = 3 together to have
a more direct comparison.

(a) Business (b) Other.Consumer

(c) Agriculture (d) LFR

Figure 2.5: The histograms of different series with state-dependent density curve when
K = 2 and K = 3.

As we can see, sometimes the 3-regimes model fits the data more closely than the 2-
regimes model does. But it is hard to conclude that the 3-regimes model is uniformly
superior to the 2-regimes one.
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2.3 Continuous factor loading

In this section, we relax the assumption that a(·) is a simple discrete function in the form
of

a(t) =
K∑
k=1

ak · 1(tk−1 < t ≤ tk).

We want to find a suitable continuous function that satisfies the following condition:

1. Monotone, decreasing, and continuous function of t.

2. Bounded between 0 and 1.

3. The sensitivity with respect to t can be controlled in a straightforward way by a
small number of parameters.

As a result, the following function is a good starting point for this section:

aα1,α2(T ) = Φ

(
α1 − T
α2

)
, (2.25)

where α1 and α2 are two unknown parameters, which need to be estimated, and Φ() is the
CDF of the standard normal. It is clear that the function is bounded between 0 and 1.
Because we use −T in the Function 2.25, aα1,α2(T ) is a decreasing function with respect
to T if α2 > 0. The parameters α1 and α2 control the sensitivity of the factor loading with
respect to T .
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(a) Setting 1 is α1 = 3 and α2 = 2. Setting 2 is α1 = −2 and α2 = 2.
Setting 3 is α1 = 3 and α2 = 0.5.

Figure 2.6: Effect of α1 and α2 on the realized value of a(t) defined in Eqaution 2.25

Figure 2.6 demonstrates the impact of α1 and α2 on the value of a(T ). It is readily
seen that α1 shifts the value horizontally and α2 controls the flatness of the function. The
line is flatter when α2 increases.

2.3.1 Conditional regime probabilities

In Section 2.1.2, we defined the function pk(m) = P(R = k|M = m). So we need to change
it according to the modification of a(t). Under the continuous factor loading setting, we do
not have the regime indicator variable R anymore since there are infinitely many regimes.
Then pk(m) should be replaced by

pt(m) = fT |M(t|m) = φ(t, βm, 1− β2),

which is the conditional PDF of T given M .
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2.3.2 Conditional correlations

In this section we find the relation between β and market correlation ρt under the contin-
uous factor loading setting.

V ar(Xi|T = t) = a(t)2 · V ar(M |T = t) + (1− a(t)2) · V ar(Z|T = t)

= a(t)2(1− β2) + (1− a(t)2)

= 1− a(t)2β2

and
Cov(Xi, Xj|T = t) = a(t)2(1− β2).

So

ρt =
a(t)2(1− β2)

1− a(t)2β2
.

The correlation preserves the property that in the case of β = 0, squared factor loadings
and asset correlations are identical. But when the factor loading is constant, the previous
property does not hold, since once we condition on T , the distribution of M will also be
changed.

(a) All the parameter settings are same as Figure 2.6

Figure 2.7: Conditional market correlation given T
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Figure 2.7 demonstrates the behavior of the conditional market correlation for different
values of T .

2.3.3 Marginal distribution of credit quality

Due to the fact that we change the factor loading function, the threshold for the credit
quality also changes. As before, we need to look at the credit quality distribution function
under the continuous factor loading function. This is given by:

P(X 6 x) =

∫ ∞
−∞

∫ ∞
−∞

P(X 6 x|M = m,T = t)φ2(m, t) dm dt

=

∫ ∞
−∞

∫ ∞
−∞

P

(
a(t)m+

√
1− a(t)2Y 6 x|M = m,T = t

)
φ2(m, t) dm dt

=

∫ ∞
−∞

∫ ∞
−∞

P

(
Y 6

x− a(t)m√
1− a(t)2

∣∣∣∣∣M = m,T = t

)
φ2(m, t) dm dt

=

∫ ∞
−∞

∫ ∞
−∞

Φ

(
x− a(t)m√

1− a(t)2

)
φ2(m, t) dm dt

=

∫ ∞
−∞

∫ ∞
−∞

Φ

(
x− a(t)m√

1− a(t)2

)
φM(m|T = t)φT (t) dm dt

=

∫ ∞
−∞

∫ ∞
−∞

Φ

(
x− a(t)m√

1− a(t)2

)
φM(m|T = t) dm φT (t) dt

=

∫ ∞
−∞

EM

[
Φ

(
x− a(t)M√

1− a(t)2

)∣∣∣∣∣T = t

]
φT (t) dt

=

∫ ∞
−∞

EM

[
P

(
Z 6

x− a(t)M√
1− a(t)2

)∣∣∣∣∣T = t

]
φT (t) dt

=

∫ ∞
−∞

EM

[
P

(√
1− a(t)2Z + a(t)M 6 x

)∣∣∣T = t
]
φT (t) dt,

where Z ∼ N(0, 1) and M |T = t ∼ N(βt, 1 − β2). In addition to that, Z and M are
independent of each other. We can define Z̃ =

√
1− a(t)2Z + a(t)M . So Z̃|T = t ∼

N [a(t)βt, 1−a(t)2β2]. Then we can further simplify the distribution function of the credit
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quality,

P(X 6 x) =

∫ ∞
−∞

P(Z̃ 6 x|T = t)φT (t) dt

=

∫ ∞
−∞

Φ

(
x− a(t)βt√
1− a(t)2β2

)
φT (t) dt.

To evaluate the right-hand side of the above formula, we need to use a numerical method
to find out the corresponding default threshold xPD given a default probability PD.

2.3.4 Probability distribution of a large portfolio default rate

Last but not least, we need to find out the density function of a large portfolio default
rate. Because under the current setting, we can not use R to indicate which regime we are
in, we will deal with the joint distribution function of M and T directly. First we have

P (D > d) =

∫ ∞
−∞

P (T = t, vt(M) > d)dt =

∫ ∞
−∞

P (T = t,M < v−1
t (d))dt,

where P (T = t,M < v−1
t (d)) is not really a probability that T = t and M < v−1

t (d) because
T is a continuous random variable. Instead, it is actually a half-integrated joint PDF of

M and T , P (T = t,M < v−1
t (d)) =

∫ v−1
t (d)

−∞ φ2(t,m; β)dm and vt(M) = Φ

(
xpd−a(t)M√

1−a(t)2

)
.

After differentiating 1 −
∫∞
−∞ P (T = t,M < v−1

t (d))dt with respect to d, we obtain the
PDF of the large default rate as follows:

fD(d) =

∫ ∞
−∞

pt(v
−1
t (d)) · ft(d)dt, (2.26)

where ft(d) = fxpd,a(t)(d).

The intuition is quite apparent. In order to have D = d, the value of M must equal v−1
t (d)

if we are given the condition that T = t. For a fixed T the density of M at v−1
t (d) is ft(d),

and the density that we have T = t given this value of M is pt(v
−1
k (d)).

Now, in order to apply the EM algorithm, we still need the joint PDF of D and T . It
is just the part inside the integration of Equation 2.26.

fD,T (d, t) = pt(v
−1
t (d)) · ft(d).

33



The expected value in Step 1 of the EM algorithm can be calculated by the following
equation:

V (θ|θ(t)) = ET |D,θ(i) [logL(θ;D,T )], (2.27)

where L(θ;D,T ) is the likelihood function of D and T :

logL(θ;D,T ) =
n∑
i=1

log fD,T (di, ti) =
n∑
i=1

[
log(pti(v

−1
ti

(di)) · fti(di))
]
. (2.28)

Now the Equation 2.27 can be written in the following form:

V (θ|θ(t)) =
n∑
i=1

(∫ ∞
−∞

(log(pti(v
−1
ti

(di)) · fti(di)) · P (fT |D(t|D = di; θ
(t))dt

)
. (2.29)

As we can tell from equation 2.29, it may be hard to write V (θ|θ(t)) in a closed form. So
we need to apply some numerical method to calculate V (θ|θ(t)).

2.3.5 Parameter estimation

We apply the EM algorithm based on the continuous factor loading state-dependent model
to the same historical data we have used in Section 2.2. But the result is not desirable.
The following table is the estimator for the historical data.

Data set α1 α2 β
1 -2.57 3.17 0.76
2 -7.55 11.11 0.78
3 -1885.08 1518.91 0.41
4 -2661.26 2434.33 0.41
5 -1818.48 1362.43 0.41
6 -21.75 29.32 0.42
7 -12.08 11.83 0.88
8 -2.01 4.76 0.98
9 -35.76 45.73 0.47
10 -1.02 2.15 0.88
11 -0.84 4.75 0.97

Table 2.6: Estimates for continuous factor loading state dependent model
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As we can see from the Table 2.6, the third, fourth and fifth data set have unreason-
ably large values for α1 and α2. With such large values and the fact that T has a standard
normal distribution, the continuous factor loading function a(T ) is almost constant at a
certain level. Due to the large values of both α1 and α2, the model actually reduces to the
classical Vasicek model with a constant factor loading, and this renders β meaningless.

2.4 Regime filtration

When we estimate the parameters for the discrete 2-regimes model, we can draw inference
about the latent variables R and M . In this section, we applied the following methodology
to infer the values of the systematic risk factor and the regime indicator R. The inference
we made here is based on the parameter estimates we got in Section 2.2.3. We keep the
assumption that there are only 2 regimes in the market, low and high correlation regimes.
We also assume that each time period is independent (an assumption that will be relaxed
in subsequent sections). Then, we have that the following equation:

P (Rt = k|D1,...,t) = P (Rt = k|Dt).

We calculate the regime with the maximum probability given the observation data at time
i.

K̂i = arg max
k
P (Ri = k|Di = di). (2.30)

Then we assume that the market is in K̂i regime at time i. As a result, the default rate,
Di, can be used to calculate the implied systematic risk factor via the following equation:

Mi =

xPD√
1−a2

K̂i

− Φ−1(Di)

aK̂i√
1−a2

K̂i

=
xPD −

√
1− a2

K̂i
Φ−1(Di)

aK̂i
.
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(a) All (b) Business

(c) Consumer (d) Credit card

Figure 2.8: The 2-regimes state-dependent model filtration plots. The green dashed line
refers to the regimes we are in. The high position of the green dashed line stands for the
high correlation regimes. The blue dotted line is the implied systematic risk factor M .
The black solid line is the observed default rate.

The interesting fact is that although the regimes change from time to time, the changes
of M and D are pretty similar to each other. We believe that we can take a look at the
dynamics of the observation data D to find a suitable dependence structure for it, and the
same structure should also be a good model for the systematic risk factor M .

Based on Figure 2.8, it is easy to see that both the time series of observed default rates
and implied systematic risk factor strongly suggest the existence of time dynamic. We
use the estimated parameters for the Business series to generate a set of simulated data
under the independence assumption. After plotting the simulated data in Figure 2.9, we
notice that the dynamic of the simulated default rate is quite different from the historical
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data. This fact motivates the approach that we take later in Chapter 3, where we explicitly
model a temporal dependence for the systematic factors in the SDM.

Figure 2.9: The simulation data based on the model we fitted for the second data set
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Chapter 3

Dynamic State-Dependent Model

In this chapter, we propose a new model to introduce time dynamics to the static model
from Chapter 2 based on the discrete factor loading. Based on the results we have generated
in Section 2.4, we suspect that the independence among data points is strongly violated. In
order to capture the dependence structure between different time periods, it is natural for us
to propose a new model in Section 3.1 to capture this property. The model that we propose
in this chapter is based on the SDM described in Chapter 2. But instead of assuming the
data points are independent of each other, we wish to add a certain dependence structure
to the model by adopting AR(1) process on the systematic risk factor, M . By doing so,
the autocorrelation of the observation data can be explained by the dependence structure
of the systematic risk factor. We will present some properties of the model in this Chapter.
Then we will move to the model parameter estimation problem.

Due to the existence of latent variables and dependence structure, it is not a simple
task to get a closed-form formula for the joint likelihood function for the observations.
But by applying the classic filtering and smoothing procedures, we are able to get the
one-step-ahead conditional predictive density function of the observations given the past
path. As a result, the likelihood function of the observations can be written as a product
of the one-step-ahead conditional density functions together. After that, the maximum
likelihood method is applied to calibrate the model. Simulation tests and Monte Carlo
tests are also applied to verify the accuracy of the estimation procedure.

From the empirical analysis that we conduct, the data implies that AR(1) performs
poorly in forecasting the one-year-ahead market movement. The plots of both autocor-
relation function and partial autocorrelation function also confirm this observation. In
order to improve the forecasting ability, we change the model by switching the process of
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M from AR(1) to AR(2). The same estimation method and tests are applied to the new
model. The empirical results suggest that there is a marked improvement in the forecasting
exercise.

3.1 Dynamic state-dependent model

In this section, we first present our new model and then discuss the temporal dependence
structure that the model is designed to capture. The model is formulated in the following
way:

Xi,t = a(Tt)Mt +
√

1− a(Tt)2ei,t (3.1)

Mt = θMt−1 + εt (3.2)

Tt = βMt + ε′t, (3.3)

and a(·) is the function defined at the beginning of Chapter 2:

a(x) =
K∑
k=1

ak · 1(tk < x 6 tk+1), (3.4)

where K is the number of the market regimes. For each t, the error terms ei,t, εt and ε′t are
independent with mean 0 and variances σ2

e = 1,σ2
ε = 1− θ2 and σ2

ε′ = 1− β2, respectively.

As we can notice from Equation 3.2, the formula we used to define the AR(1) structure
of {Mt} is different from the traditional way. We remove the constant term and force the
idiosyncratic term’s variance to be a function of θ instead of estimating it independently.
There are several reasons for us to define it in this way. First, the systematic risk factor
{Mt} is used to represent the relative level of the market scenario. We use the mean value
of its stationary distribution to denote the middle market level. Adding a constant term
in Equation 3.2 only shifts the distribution horizontally without changing the shape of it.
As a result, we eliminate the constant term in our model. Second, by forcing the variance
of the idiosyncratic term to be a function of θ, the unit variance assumption about the
systematic risk factor can be preserved for any value of θ.

We call this model the State-Dependent Model with AR(1) process, shortened as SDM-
AR(1). In the rest of this thesis, M1:N and T1:N represent the time series of market level
(systematic risk factor) and regime index. They are two latent variables that we cannot
observe directly from the market. The only observable data are the quarterly default rate
Dt for each time t. The relationship between the quarterly default rate Dt and the ith
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obligor credit score Xi,t remains the same as in the Vasicek model described in Section 1.2
and is of the form

Dt :=
N∑
i=1

1(Xi,t<xPD)

N
, (3.5)

where xPD is the default threshold of the credit score, which satisfies the Equation

P (Xi,t 6 xPD) = PDi. (3.6)

Here PDi stands for the ith obligor’s probability of default, which is a parameter in our
model. Since we are interested in the large portfolio under the homogeneous market as-
sumption, PDi = PD and N → ∞. As a result of the law of large numbers and the fact
that for any i and j, Xi,t and Xj,t are independent with each other once Mt and Tt are
given, we know that the distribution of Dt conditionally on Mt and Tt can be approximated
as follows

Dt ≈ lim
N→∞

N∑
i=1

1(Xi,t<xPD)

N

=P (Xi,t 6 xPD|Mt, Tt)

=Φ

(
xPD − a(Tt)Mt√

1− a(Tt)2

)
, (3.7)

where Φ(·) is the CDF of standard normal distribution. When compared to the SDM
in Chapter 2, the variables {Mt} and {Tt} are no longer independent here within each
time period. The temporal dependence structure of series {Mt} and {Tt} are described by
Formulas 3.2 and 3.3, which can be replaced by other processes in future research.

In order to simplify our presentation, we introduce the transferred default rate Yt such
that

Yt = Φ−1(Dt).

If in this formula we substitute for Dt its approximation given by 3.7, then we obtain

Yt = Φ−1

(
Φ

(
xPD − a(Tt)Mt√

1− a2(Tt)

))

=
xPD√

1− a(Tt)2
− a(Tt)√

1− a(Tt)2
Mt, (3.8)
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where a(·) and XPD are defined in Formulas 3.4 and 3.6, respectively.

In order to get the maximum likelihood estimators for the parameters, we need to
determine the joint density function of {Y1, . . . , YN}. From Equation 3.8, we should notice
that once we condition on Mt, the conditional distribution of the random variable Yt|Mt

will become discrete, with the number of possible values equal to the number of regimes
we assume. We have the following representation of the conditional probability function
of Yt:

P (Yt = yt|M1:N = m1:N) =
K∑
k=1

P (Tt ∈ (tk, tk+1)|Mt = mt)1

(
yt =

xPD − akmt√
1− a2

k

)
.

As a result, the joint probability density function of the time series M1:N and Y1:N is

fY&M(y1:N ,m1:N) =
N∏
t=1

(
K∑
k=1

P (Tt ∈ (tk, tk+1)|Mt = mt)1

(
yt =

xPD − akmt√
1− a2

k

))
fM(M1:N),

(3.9)
where fM(·) is the joint density function of the variables M1:N that follow the autoregressive
process 3.2,

fM(m1:N) = φ(m1)ΠN
t=2π(mt|mt−1)

with π(mt|mt−1) being the transition density of {Mt}t=2,.... According to the Equation 3.2,
we know

P (Mt 6 mt|Mt−1 = mt−1) = P (θMt−1 + εt 6 mt|Mt−1 = mt−1)

= P (εt 6 mt − θmt−1).

As we mentioned at the beginning of Section 3.1, εt follows a normal distribution with
mean 0 and variance 1− θ2. Then

P (Mt 6 mt|Mt−1 = mt−1) = Φ(mt − θmt−1; 0, 1− θ2)

= Φ(mt; θmt−1, 1− θ2),

where Φ(x;µ;σ2) is the CDF of the normal distribution with mean µ and variance σ2. By
taking the derivative with respect to mt, we can get π(mt|mt−1) as

π(mt|mt−1) = φ(mt; θmt−1, 1− θ2).

Again, φ(x;µ;σ2) is the PDF of the normal distribution with mean µ and variance σ2.
But, due to the presence of an indicator function inside Equation 3.9, this joint likelihood
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function is actually ill-defined. The interval of the indicator function only contains one
single point for each time t = 1, . . . and k = 1, 2. Based on the fundamental property of
integration, if we take integration of fY&M(y1:N ,m1:N) over all feasible regions of Y1:N and
M1:N , the answer will always be zero. That contradicts the definition of a density function.
The proper method to find out the joint likelihood function of the observations will be
discussed in Section 3.3.1.

3.2 Filtering, smoothing and forecasting

In this section, we describe the filtering and smoothing procedure for the model we have
proposed. The one-step-ahead predictive density function of the observations plays an
important role when we calculate the likelihood function.

The main challenge when using this approach is that we can only observe the overall
default rate Dt for each time period, but the market risk factor Mt and the regime variable
Tt are latent, meaning that we can not observe them directly. However, as we demonstrate
below, we are able to use the filtering procedure to make inference about the market risk
Mt and market regime index Tt based on the observations up to time t.

Following the exposition provided in Chapter 2.7 of the monograph by Petris, Petrone
and Campagnoli (2009), for a general state space model, we assume that there is a latent
process M1:N , called state process, and the observations Y1:N can be viewed as an imprecise
measurement of M1:N . There are two critical assumptions for a state space model:

1. The state process {Mt}t=1,... is a Markov chain.

2. For any t = 1, . . . , N , conditionally on Mt, the Yt are independent with its past and
future values, and Yt are fully determined by Mt and Tt only.

We can also treat M1:N as an auxiliary time series, which will determine the probability
distribution of Y1:N . So the purpose of the filtering procedure is to determine the dis-
tribution of Mt given the observations Y1:t. We denote this filtering density function at
time t by fMt|Y1:t(mt|y1:t). In order to get the filtering density function fMt|Y1:t(mt|y1:t) for
t = 1, . . . , N , one can recursively repeat the following three steps from t = 2 to N .

(i) In the first step, we calculate the one-step-ahead predictive density function for the
state variables, fMt|Y1:t−1(mt|y1:t−1). This function describes the probability distribu-
tion of Mt when we only have observations up to the previous time Y1:t−1. It can
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be computed from the filtered density at time t− 1, fMt−1|Y1:t−1(mt−1|y1:t−1) and the
conditional distribution function of Mt given Mt−1, fMt|Mt−1(mt|mt−1), according to

fMt|Y1:t−1(mt|y1:t−1) =

∫
fMt|Mt−1(mt|mt−1) · fMt−1|Y1:t−1(mt−1|y1:t−1)dmt−1. (3.10)

(ii) Once we have the one-step-ahead predictive density function for the state variables,
fMt|Y1:t−1(mt|y1:t−1) at time t− 1, we are able to derive the one-step-ahead predictive
density function for the observation Yt, fYt|Y1:t−1(yt|y1:t−1).

fYt|Y1:t−1(yt|y1:t−1) =

∫
fYt|Mt(yt|mt) · fMt|Y1:t−1(mt|y1:t−1)dmt.

This density function enables us to make a prediction about the distribution of the
observation at time t when we only have observations up to time t− 1.

(iii) Now, the filtering density fMt|Y1:t(mt|y1:t) can be computed based on the Bayes rule
with fMt|Y1:t−1(mt|y1:t−1) as the prior distribution and the likelihood fYt|Mt(yt|mt),

fMt|Y1:t(mt|y1:t) =
fYt|Mt(yt|mt) · fMt|Y1:t−1(mt|y1:t−1)

fYt|Y1:t−1(yt|y1:t−1)
. (3.11)

In the following subsections, we will present more details about applying this general
procedure to our model. In particular, we will first use Step 1 to determine the probability
distribution for our market risk factor Mt given the observations from time 1 to t, Y1:t.
Then, we will derive the one-step-ahead predictive density for the observation at time t,
Yt, given Y1:t−1. Finally, we will be able to update the distribution of the latent market risk
factor Mt based on all available observations. Once the one-step-ahead predictive density
function of the observation fYt|Y1:t−1(yt|y1:t−1) is derived for times t = 1, . . . , N , we can
obtain the joint likelihood function of the observations fY1:N (y1:N) according to

fY1:N (y1:N) = fY1(y1) ·
N∏
t=2

fYt|Y1:t−1(yt|y1:t−1).

3.2.1 One-step-ahead predictive density for the states

Compared to the general state space model, our model requires a different approach. This
is due to the fact that once the value of the variable Yt is known, the latent variable Mt
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is no longer continuous but discrete, and vice versa. So the filtering density function 3.11
is not a probability density function but a probability mass function. This means that
Equation 3.10 is actually a product of probability density functions and probability mass
functions. As a result, Equation 3.10 takes the following form if we assume that there are
only 2 potential regimes for the market, K = 2,

fMt|Y1:t−1(mt|y1:t−1) =
2∑
j=1

fMt,Mt−1|Y1:t−1(mt,M
−1(yt−1, j)|y1:t−1)

=
2∑
j=1

fMt|Mt−1(mt|M−1(yt−1, j)) · P (Mt−1 = M−1(yt−1, j)|Y1:t−1 = y1:t−1),

(3.12)

where

M−1(y, i) =
xPD −

√
1− a2

i y

ai
. (3.13)

In Equation 3.13, xPD is the default threshold of the credit score introduced in Equation
3.6. Function 3.13 returns the possible value of M given the observation value of Y = y
and regime ith. The first term in Equation 3.12,

fMt|Mt−1(mt|M−1(yt−1, j))

is the transition density function of the AR(1) process {Mt}. According to the definition
of {Mt} in Equation 3.2, we know that the driving noise of the process {Mt} follows the
normal distribution with mean 0 and variance 1− θ2. Then we have

P (Mt 6 mt|Mt−1 = mt−1) =P (θMt−1 + εt 6 mt|Mt−1 = mt−1)

=P (εt 6 mt − θmt−1)

=Φ

(
mt − θmt−1√

1− θ2

)
.

By taking the first derivative with respect to mt, we have the transition density function
in the following form

fMt|Mt−1(mt|mt−1) =
d

dmt

P (Mt 6 mt|Mt−1 = mt−1)

=
d

dmt

Φ

(
mt − θmt−1√

1− θ2

)
=

1√
1− θ2

· φ
(
mt − θmt−1√

1− θ2

)
. (3.14)
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The second term in Equation 3.12,

P (Mt−1 = M−1(yt−1, j)|Y1:t−1 = y1:t−1),

represents the probability of Mt−1 = M−1(yt−1, j) given Y1:t−1, the form of which will be
derived in Section 3.2.3. Once the value of Yt is fixed, the sample space of Mt becomes
discrete with the same number of elements as the number of regimes.

3.2.2 One-step-ahead predictive density for the observations

In this section, we derive the one-step-ahead predictive density function of Yt given Y1:t−1.
The result is stated in the theorem below.

Theorem 3. The one-step-ahead predictive density function of Yt given Y1:t−1 is of the
following form

fYt|Y1:t−1(yt|y1:t−1) =
2∑
i=1

√
1− a2

i

ai
P (Tt ∈ [ti, ti+1)|Mt = M−1(yt, i))·

fMt|Y1:t−1(M
−1(yt, i)|y1:t−1). (3.15)

Proof. The first term in Equation 3.15, P (Tt ∈ [ti, ti+1)|Mt = M−1(yt, i)), is easy to
calculate since Mt and Tt follow a bivariate standard normal distribution with correlation
β. The second term, fMt|Y1:t−1(M

−1(yt, i)|y1:t−1), is described in Section 3.2.1. We first
start from the cumulative density function

P (Yt 6 yt|Y1:t−1 = y1:t−1) =
2∑
i=1

P (Tt ∈ [ti, ti+1),Mt >M−1(yt, i)|Y1:t−1 = y1:t−1).

Then we take the derivative of the above CDF with respect to yt. We have

fYt|Y1:t−1(yt|y1:t−1) =
d

dyt
P (Yt 6 yt|Y1:t−1 = y1:t−1)

=
d

dyt

2∑
i=1

P (Tt ∈ [ti, ti+1),Mt >M−1(yt, i)|Y1:t−1 = y1:t−1)

=
2∑
i=1

d

dyt

∫ ti+1

ti

∫ ∞
M−1(yt,i)

fTt,Mt|Y1:t−1(a, b|y1:t−1) db da

=
2∑
i=1

∫ ti+1

ti

d

dyt

∫ ∞
M−1(yt,i)

fTt,Mt|Y1:t−1(a, b|y1:t−1) db da.
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According to the Leibniz integral rule,

fYt|Y1:t−1(yt|y1:t−1) =
2∑
i=1

∫ ti+1

ti

[−fTt,Mt|Y1:t−1(a,M
−1(yt, i)|y1:t−1)] · d

dyt
M−1(yt, i) da

=
2∑
i=1

∫ ti+1

ti

[−fTt,Mt|Y1:t−1(a,M
−1(yt, i)|y1:t−1)] ·

[
−
√

1− a2
i

ai

]
da

=
2∑
i=1

√
1− a2

i

ai

∫ ti+1

ti

fTt,Mt|Y1:t−1(a,M
−1(yt, i)|y1:t−1) da.

Since we know that Tt is conditionally independent of the past variables once Mt is given,
we have

fYt|Y1:t−1(yt|y1:t−1) =
2∑
i=1

√
1− a2

i

ai

∫ ti+1

ti

fTt|Mt(a|M−1(yt, i))fMt|Y1:t−1(M
−1(yt, i)|y1:t−1) da

=
2∑
i=1

√
1− a2

i

ai

∫ ti+1

ti

fTt|Mt(a|M−1(yt, i)) da · fMt|Y1:t−1(M
−1(yt, i)|y1:t−1)

=
2∑
i=1

√
1− a2

i

ai
P (Tt ∈ [ti, ti+1)|Mt = M−1(yt, i)) · fMt|Y1:t−1(M

−1(yt, i)|y1:t−1).

3.2.3 Filtering probability function

According to Equation 3.11, once we have the one-step-ahead predictive density for both
the states and observations, we can easily calculate the filtering probability function
fMt|Y1:t(mt|y1:t). As we mentioned in the beginning of Section 3.2.1, once the observa-
tion Yt is given, the variable Mt becomes discrete. Therefore, our filtering function is a
probability mass function instead of a probability density function, which is in the following
form

P (Mt = mt|Y1:t = y1:t) =
P (Yt = yt|Mt = mt) · fMt|Y1:t−1(mt|y1:t−1)

fYt|Y1:t−1(yt|y1:t−1)

=
2∑
i=1

√
1−a2i
ai

P (Tt ∈ [ti, ti+1)|Mt = M−1(yt, i)) · fMt|Y1:t−1(M
−1(yt, i)|y1:t−1)

fYt|Y1:t−1(yt|y1:t−1)
· 1(mt = M−1(yt, i)).

(3.16)
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The reason for the presence of an indicator function at the end of Equation 3.16 is that
for any given value of Yt, there exist only two potential values of Mt.

3.2.4 Filtering procedure for SDM-AR(1) model

In this section, we will summarize all the results from previous sections to formulate a
complete filtering algorithm for the SDM-AR(1) model with 2 regimes:

1. First, we create a 2×N filtering matrix Ψ

Ψ =

[
Ψ1,1 Ψ1,2 . . . Ψ1,N

Ψ2,1 Ψ2,2 . . . Ψ2,N

]
,

such that

Ψi,j = P (Mj = M−1(yj, i)|Y1:j = y1:j).

We will keep updating the elements from left to right iteratively by the following
steps.

2. In this step, we calculate the probability mass function of M1 given Y1. These are
the elements in the first column of the matrix Ψ, Ψ1,1 and Ψ2,1. It is helpful to know
that

P (M1 = m1|Y1 = y1) =P (T1 ∈ (−∞ t1]|D1 = Φ(y1))1{m1=M−1(y1,1)}

+ P (T1 ∈ (t1 ∞]|D1 = Φ(y1))1{m1=M−1(y1,2)},

where T1 and D1 are the market regime index and observed actual default rate at
time t = 1, respectively. As we can see from the above equation, the probability of
M1 = M−1(y1, i) given Y1 = y1 equals the probability of the market being in the ith

regime given the observation of the default rate at time t, Dt = Φ(y1). Also, we only
have one available observation, so the dependence structure brought by Equation 3.2
has no impact when we calculate such probability. As a result of those two facts, we
can calculate P (M1 = m1|Y1 = y1) by Equation 2.19

P (M1 = m1|Y1 = y1) =
K∑
k=1

fD,R(d, k)

fD(d)
1{m1=M−1(y1,k)},

where fD,R(·) and fD(·) are defined in Equations 2.18 and 2.17, respectively.
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Now, we repeatedly complete Steps 3 to 5 from time t = 2 to t = N .

3. In this step, we calculate the one-step-ahead predictive density function of the market
risk factor Mt given Y1:t−1 by the following equation

fMt|Y1:t−1
(mt|y1:t−1) =

2∑
j=1

fMt|Mt−1
(mt|M−1(yt−1, j)) · P (Mt−1 = M−1(yt−1, j)|Y1:t−1 = y1:t−1)

where fMt|Mt−1(·) is defined in Equation 3.14, and the last term in above equation
P (Mt−1 = M−1(yt−1, j)|Y1:t−1 = y1:t−1) is already stored in the matrix Ψ as Ψj,t−1.

4. In this step, we calculate the one-step-ahead predictive density function of the ob-
servation Yt given Y1:t−1

fYt|Y1:t−1(yt|y1:t−1) =
2∑
i=1

√
1− a2

i

ai
P (Tt ∈ [ti, ti+1)|Mt = M−1(yt, i))·

fMt|Y1:t−1(M
−1(yt, i)|y1:t−1),

where P (Tt ∈ [ti, ti+1)|Mt = M−1(yt, i)) is easy to calculate since Mt and Tt follow a
joint standard normal distribution with correlation β. The second term, fMt|Y1:t−1(·),
is already derived from Step 3.

5. We update the tth column filtering matrix according to Equation 3.16

Ψi,t =P (Mt = M−1(yt, i)|Y1:t = y1:t) (3.17)

=
P (Yt = yt|Mt = M−1(yt, i)) · fMt|Y1:t−1(M

−1(yt, i)|y1:t−1)

fYt|Y1:t−1(yt|y1:t−1)
. (3.18)

As we can see from Equation 3.8, once given the value of the market risk factor Mt,
the value of Yt is totally dependent on the market regime index Tt. Then the first
term in the numerator of Equation 3.18 can be computed as

P (Yt = yt|Mt = mt) =P (Tt ∈ (−∞ t1]|Mt = mt)1{mt=M−1(yt,1)}

+ P (T1 ∈ (t1 ∞]|Mt = mt)1{mt=M−1(yt,2)}.

3.2.5 Smoothing

After we are able to filter the market risk factor {Mt}, we are interested in smoothing the
values M1, . . . ,MN . It is worth explaining the difference between filtering and smoothing.

48



For the filtering problem, the observations are assumed to be available sequentially in time.
In contrast, the problem of smoothing assumes that we already have observations on {Yt}
for a certain period, and we wish to retrospectively study the behavior of the underlying
market risk factor {Mt}. In general, we can use the following backward-recursive algorithm
presented by Petris, Petrone and Campagnoli (2009) to compute the smoothing probability
function P (Mt = mt|Y1:N = y1:N) for t = 1, . . . , N .

(i) Conditional on Y1:N , the state process {M1,M2, . . . ,MN} has backward transition
probabilities given by

P (Mt = mt|Mt−1 = mt−1, Y1:N = y1:N) =
2∑
i=1

fMt+1|Mt(mt+1|mt)P (Mt = mt|Y1:t = y1:t)

fMt+1|Y1:t(mt+1|y1:t)
·

1(mt+1 = M−1(yt+1, i)).

(ii) The smoothing distribution of Mt given Y1:N can be computed according to the fol-
lowing backward recursion, fMt|Y1:N (mt|y1:N), starting from t = T, . . . , 1:

P (Mt = mt|Y1:N = y1:N) =
2∑
i=1

P (Mt = mt,Mt+1 = M−1(yt+1, i)|Y1:N = y1:N)

=
2∑
i=1

P (Mt = mt|Mt+1 = M−1(yt+1, i), Y1:N = y1:N)·

P (Mt+1 = M−1(yt+1, i)|Y1:N = y1:N)

=
2∑
i=1

fMt+1|Mt(M
−1(yt+1, i)|mt)P (Mt = mt|Y1:t = y1:t)

fMt+1|Y1:t(M
−1(yt+1, i)|y1:t)

·

P (Mt+1 = M−1(yt+1, i)|Y1:N = y1:N)

=P (Mt = mt|Y1:t = y1:t)
2∑
i=1

fMt+1|Mt(M
−1(yt+1, i)|mt)

fMt+1|Y1:t(M
−1(yt+1, i)|y1:t)

·

P (Mt+1 = M−1(yt+1, i)|Y1:N = y1:N).

3.2.6 K-step ahead prediction

In Section 3.2.2, we present a formula for the one-step-ahead predictive function for the ob-
servations {Yt}. However, in practice, it is also essential and necessary to make a prediction

49



several time periods ahead. For this, we need to determine the K-step-ahead predictive
density of Yt+K given Y1:t, which we denote by fYt+k|Y1:t(yt+k|y1:t).

Theorem 4. The K-step-ahead predictive density of Yt+K given Y1:t, fYt+k|Y1:t(yt+k|y1:t),
can be calculated in the following way

fYt+k|Y1:t(yt+k|y1:t) =
2∑
i=1

2∑
j=1

P (Yt+k = yt+k|Mt+k = M−1(yt+k, j))·

fMt+k|Mt(M
−1(yt+k, j)|M−1(yt, i))·

P (Mt = M−1(yt, i)|Y1:t = y1:t),

where fMt+k|Mt(M
−1(yt+k, j)|M−1(yt, i)) is the K-step transition density function of the

AR(1) model.

Proof. First, we know that according to the law of total probability we have

fYt+k|Y1:t(yt+k|y1:t) =
2∑
i=1

fYt+k,Mt|Y1:t(yt+k,M
−1(yt, i)|y1:t).

Since for any integer k ≥ 0, Yt+k is conditionally independent of Y1:t once given Mt is given,
we can rewrite the above equation in the following way

fYt+k|Y1:t(yt+k|y1:t) =
2∑
i=1

fYt+k|Mt(yt+k|M−1(yt, i)) · P (Mt = M−1(yt, i)|Y1:t = y1:t)

=
2∑
i=1

2∑
j=1

fYt+k,Mt+k|Mt(yt+k,M
−1(yt+k, j)|M−1(yt, i))·

P (Mt = M−1(yt, i)|Y1:t = y1:t)

=
2∑
i=1

2∑
j=1

P (Yt+k = yt+k|Mt+k = M−1(yt+k, j))·

fMt+k|Mt(M
−1(yt+k, j)|M−1(yt, i))·

P (Mt = M−1(yt, i)|Y1:t = y1:t).

We will use the formula presented in Theorem 4 in the empirical study to demonstrate
the forecasting ability of our model.
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3.3 Model estimation

Although our model is easy to understand, it is not a simple task to estimate the model
parameters because of the existence of the latent processes M1:N and T1:N . In this section,
we will focus on the method of estimation of the model parameters. The main challenge is
to determine a proper way of calculating the joint likelihood function of the observations.
In the following sections, we present a method of computing the log-likelihood function of
the observations {Yt}. After that, we will talk about the MLE for the model parameters
and perform simulation tests in order to verify the accuracy of such an estimation method.
Results of our simulation test suggest that the estimation procedure works reasonably well.

3.3.1 Likelihood for the observations {Y1:N}

In this section, we present a method to calculate the likelihood function for the observations
{Y1:N}. For any fixed values of parameters, we can easily execute the algorithm described
in Section 3.2.4, which means that we are already able to compute the one-step-ahead
predictive density function fYt|Y1:t−1(yt|y1:t−1) for each t = 2, . . . , N . After that, according
to the definition of the conditional density function, we can derive the likelihood function
of {Y1:N} by the following equation:

L(δ; y1:N) =
N∏
i=2

fYi|Y1:i−1
(yi|y1:i−1; δ)fY1(y1; δ), (3.19)

where δ denotes the all the model parameters.

Then the log-likelihood function can be calculated as

`(δ; y1:N) = logL(δ; y1:N)

=
N∑
i=2

log fYi|Y1:i−1
(yi|y1:i−1; δ) + log fY1(y1; δ),

where fYi|Y1:i−1
(yi|y1:i−1) is defined in Equation 3.17, and fY1(y1) is the stationary distribu-

tion function of the observation series {Yt}, which we derive now. According to the way we
define the model in Section 3.1, the stationary distribution of the market risk series {Mt}
follows the standard normal distribution. As a result, the stationary distribution of the
{Yt} and the distribution of Dt, which was defined in Equation 2.17, have the following
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relation:

P (Yt 6 yt) =P (Φ−1(Dt) 6 yt)

=P (Dt 6 Φ(yt)).

By taking the derivative with respect to yt on both side, we will get

fYt(yt) =fD(Φ(yt)) · φ(yt),

where fD(·) is defined in Equation 2.17, and φ(·), Φ(·) are the PDF and CDF of the
standard normal distribution.

3.3.2 Maximum likelihood estimator for SDM-AR(1) model

Since we have determined a method to evaluate the log-likelihood for the observation series
{Yt}, we are now able to apply some numeric optimizer to get the MLE of the parameters,
a1, a2, β, θ, t1 by maximizing the likelihood function with respect to those parameters

[ã1, ã2, t̃1, β̃, θ̃] = arg max
a1,a2,t1,β,θ

log(fY1:N (y1:N ; a1, a2, t1, β, θ)),

where fY1:N (·) is defined in Equation 3.19.

We have implemented our estimation procedure in Matlab with the numerical optimizer
function fmincon. Since we wish to find the maximal value of the likelihood function but
the fmincon provides the minimal value for the objective function, we applied the fmincon
to − log(fY1:N (y1:N ; a1, a2, t1, β, θ)) with the following constraints:

0 < a2 < a1 < 1

− 1 < β < 1

− 1 6 θ 6 1.

The fmincon function also requires an initial starting point as input. For different starting
points, the fmincon function may eventually terminate at, and return, different local min-
ima. In order to find the global maximum, we defined a set of values for each parameter
and used all the possible combinations of those values to create a mesh over the space

a = [0.5, 0.4, 0.3, 0.2, 0.1]

t = [−1,−0.5, 0, 0.5, 1]

β = [0.1, 0.3, 0.5, 0.7, 0.9]

θ = [−1,−0.5, 0, 0.5, 1].
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For a1 and a2, we have chosen all the combinations from a such that a1 > a2. That means
there are 10 different sets of values for [a1, a2] and 5 sets for t, β and θ. This gives us 1250
different starting points in total. Then, we run the fmincon function with respect to those
starting points and choose the parameters with the lowest objective function value as our
estimates of the model parameters.

Test of our estimation method based on simulated data

We have conducted a small simulation study to assess some basic properties of our estima-
tion method. First, we present the algorithm used to simulate data. For any given set of
parameters, we have the following algorithm to generate the data:

1. At time t = 1, we generate M1 and T1 from the standard normal distribution with
correlation β.

2. Calculate Y1 from Equation 3.8.

3. For any time t = 2, . . . , N , we simulate Mt based on the value of Mt−1, and Tt, based
on the value of Mt, according to Equations 3.2 and 3.3 respectively.

4. Calculate Yt according to Equation 3.8.

Now, we consider the accuracy of those estimators. We randomly chose seven sets of
parameter values to cover some situations that the parameters may look like. For each set,
we repeatedly simulate 2000 data points 200 times and separately estimate the parameters
for each of our 200 data sets. The following tables provide some basic statistics about the
estimators for each set.
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a1 a2 β t1 θ
True value 0.340 0.250 0.300 0.600 0.980

Average of the 200 runs 0.373 0.285 0.274 0.379 0.976
Std. Err of the 200 runs 0.096 0.072 0.401 0.832 0.014

P-value 0.73 0.63 0.94 0.79 0.77

True value 0.340 0.250 0.750 0.600 0.980
Average of the 200 runs 0.358 0.277 0.563 0.218 0.960
Std. Err of the 200 runs 0.078 0.067 0.561 1.150 0.121

P-value 0.81 0.68 0.73 0.73 0.86

True value 0.340 0.110 0.750 0.600 0.980
Average of the 200 runs 0.342 0.131 0.641 0.601 0.958
Std.dev of the 200 runs 0.136 0.080 0.385 0.852 0.036

P-value 0.98 0.79 0.77 0.987 0.54

True value 0.190 0.070 0.980 0.600 0.750
Average of the 200 runs 0.187 0.069 0.977 0.593 0.744
Std.dev of the 200 runs 0.007 0.006 0.008 0.084 0.017

P-value 0.66 0.86 0.71 0.93 0.72

True value 0.340 0.250 0.750 0 0.750
Average of the 200 runs 0.334 0.242 0.722 0.069 0.734
Std.dev of the 200 runs 0.017 0.045 0.317 0.631 0.093

P-value 0.72 0.85 0.92 0.91 0.86

True value 0.190 0.070 0.100 0.600 0.750
Average of the 200 runs 0.189 0.072 0.084 0.593 0.745
Std.dev of the 200 runs 0.007 0.014 0.170 0.301 0.026

P-value 0.88 0.88 0.92 0.98 0.84

True value 0.190 0.110 0.750 0 0.300
Average of the 200 runs 0.189 0.109 0.767 -0.037 0.297
Std.dev of the 200 runs 0.004 0.006 0.070 0.165 0.020

P-value 0.80 0.87 0.81 0.82 0.88

Table 3.1: SDM-AR(1) model estimators accuracy test with 200 sets of 2000 simulated
data.

In Table 3.1, the row “true value” in each sub-table shows the values of the parameters
we have used to simulate data. The average and standard error rows are calculated based
on all the successfully finished tests. The last row is the P-value associated with the test of
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the null hypothesis that the estimators are unbiased. As we can see from the tables, there
is no statistical evidence to reject the null hypothesis that the estimators are unbiased.
The average values of the estimators are within one standard error of the true value. We
also noticed that the accuracy of ã1 and ã2 is strongly negatively related to the value of
θ. The estimates are more accurate when the value of θ is lower. The performance of β̃ is
hard to conclude from those tables. But the estimator still provides a reasonable estimates
of the true value. θ̃ is the most accurate (as measured by standard error) among all. t̃1
is the least accurate estimator. Since the value t̃1 only works as a trigger for the regime
probability, which means its value is not too sensitive compared to other parameters, this
is still an acceptable estimator for our model.

It is also worth mentioning that for each test presented in Table 3.1, there is a possibility
that the estimates do not correspond to the global maximum of the likelihood but rather
to a local maximum. As a result, the accuracy of the estimators may suffer some negative
effects from such problems.

In addition to the test described above, we also conduct a simulation test to check
the overall accuracy of the estimators for more general parameter values. The parameters
are set to be all possible combinations of the following values to ensure that the proposed
method can be used in different situations

a = [0.34 0.25] or [0.34 0.11] or [0.19 0.11] or [0.19 0.07]

t = 0 or 0.6

β = 0.1 or 0.3 or 0.75 or 0.98

θ = 0.1 or 0.3 or 0.75 or 0.98

PD = 0.05 or 0.1.

For each parameter set, we simulate one sample path. The number of simulated data
points is N = 2000 in each test. As a result, there should be in total 256 simulation tests.
The following table presents the estimation results.

In our study, 225 tests of the total 256 runs have successfully finished running, and the
others were stopped due to some numerical issues of the Matlab optimizer. We used the
fmincon function in Matlab with default setting. Table 3.2 is calculated based on those
225 tests. The first two rows show the average and standard error of the estimation errors,
respectively. The last row is the P-value corresponding to the null hypothesis that the
estimation error has a mean of 0. It is worth mentioning that this estimation procedure
is now applied to different value settings of the parameters, so the distribution of the
estimators should not be identical with each other. But we should expect that the mean of
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a1 − â1 a2 − â2 β − β̂ t1 − t̂1 θ − θ̂1

Average -0.023 -0.007 -0.006 0.010 0.0006
Std. Err 0.0933 0.0562 0.1782 0.5013 0.0218
P-value 0.81 0.90 0.97 0.98 0.98

Table 3.2: Estimation error analysis based on the simulation data. We simulated one set
of 2000 data points based on all 256 possible parameter combinations presented in the last
paragraph. All the statistics are calculated based on the estimation error.

the combined estimation error is zero if the estimators were unbiased. In this test, we use
the overall standard deviation as an approximation of the real one to calculate the P-value.
As we can see, there is no evidence to reject the null hypothesis that they are unbiased for
all estimators.

In conclusion, the estimation procedure works reasonably well and can be applied to
historical data with extra caution about the local maximum problem.

3.4 Dependence structure of SDM-AR(1)

In this section, we study the autocorrelation structure for the observations {Yt} as induced
by the model SDM-AR(1). Although, we know the expression of Yt in terms of Mt and
Tt, as given in Equation 3.8, it is still difficult to directly determine the autocorrelation
between Yt and Yt+c for any c = 1, . . .. For these reasons, we will first look at the conditional
distribution of Y1:N given T1:N . Then, we can apply the law of total variance to get the
covariance matrix for the time series {Yt}.

3.4.1 Conditional distribution of {Y1:N} given {T1:N}

In this section, we present a method of finding the conditional distribution function of the
observations Y1:N given the latent market regime variables T1:N .

According to Equation 3.8, we can write the CDF of {Y1:N} conditional on {T1:N} in
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the following form

P (Y1 6 y1, Y2 6 y2, . . . YN 6 yN |T1:N = t1:N) = P (
xPD√

1− a(t1)2
− a(t1)√

1− a(t1)2
M1 6 y1,

xPD√
1− a(t2)2

− a(t2)√
1− a(t2)2

M2 6 y2, . . . ,
xPD√

1− a(tN)2
− a(tN)√

1− a(tN)2
MN 6 yN |T1:N = t1:N),

where XPD is the default threshold of the credit score defined in Formula 3.6 and a(ti) is
defined in Formula 3.4. Before we are able to calculate this conditional CDF of {Yt} given
{Tt} explicitly, we need to derive the distribution of M1:N given T1:N first.

Theorem 5. The distribution of M1:N given T1:N is

M1:N |T1:N = t1:N ∼ N (ΣMTΣ−1
TT (t1:N),ΣMM − ΣMTΣ−1

TTΣTM),

where

ΣMM =


1 θ θ2 . . . θN−1

θ 1 θ . . . θN−2

...
...

...
. . .

...
θN−1 θN−2 θN−3 . . . 1

 (3.20)

ΣMT = ΣTM =


β θβ θ2β . . . θN−1β
θβ β θβ . . . θN−2β
...

...
...

. . .
...

θN−1β θN−2β θN−3β . . . β

 (3.21)

ΣTT =


1 θβ2 θ2β2 . . . θN−1β2

θβ2 1 θβ2 . . . θN−2β2

...
...

...
. . .

...
θN−1β2 θN−2β2 θN−3β2 . . . 1

 . (3.22)

Proof. Since under our model, the time series M1:N follows an AR(1) process with normally
distributed driving noise and Ti being a linear function of Mi plus a normally distributed
driving noise, we can treat the series M1:N and T1:N as a 2N -dimensional multi-variate
normal distribution. In order to determine the dependence structure between the series
M1:N and T1:N , we will decompose the covariance matrix into three parts, ΣMM is the
covariance matrix for M1:N , ΣTT is the covariance matrix between T1:N , and ΣMT is the
covariance matrix for M1:N and T1:N . The dependence structure between Mi and Mi+c is
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easy to find due to the fact that M follows AR(1) model, namely it can be directly derived
from the autocorrelation function of M1:N

cov(Mi,Mi+c) = θc.

This implies the form of the covariance matrix M1:N given in 3.20.

Now we are going to find the covariance matrix of the time series T1:N . We can see that
the mean of {Ti} is

E[Ti] = βE[Mi] + E[ε′i] = 0.

Since {Mi} is second-order stationary with mean 0 and variance 1, the variance of Ti is

V ar[Ti] = β2V ar[Mi] + V ar[ε′i] = β2 + 1− β2 = 1.

In addition to that, {ε′i} follows the distribution defined on Page 39. The covariance of Ti
and Ti+c is

cov[Ti, Ti+c] = E[TiTi+c]− E[Ti]E[Ti+c]

= E[TiTi+c]

= E[Ti ∗ (θTi+c−1 − θε′i+c−1 + βεi+c + ε′i+c)].

Since Ti is independent of the future error term:

cov[Ti, Ti+c] = θE[TiTi+c−1]

= θc−1E[TiTi+1]

= θc−1E[Ti ∗ (θTi − θε′i + βεi + ε′i)]

= θc−1(θE[T 2
i ]− θσ2

ε′).

= θcβ2,

and we also notice that cov(Ti, Ti) = 1. So the covariance matrix of T1:N is as given in
3.22. The covariance between Mi+c and Ti is

cov(Mi+c, Ti) = E[(θMi+c−1 + εi+c)(βMi + ε′i)]

= E[θβMi+c−1Mi]

= θβ ∗ θc−1

= θcβ.
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So the covariance matrix for M1:N and T1:N is Matrix 3.21. As a result, we can treat
(M1:N , T1:N) as jointly normally distributed variables with mean 0 and covariance matrix:

Σ =

[
ΣMM ΣMT

ΣTM ΣTT

]
.

Thus, from the well-known properties of a multivariate normal distribution

M1:N |T1:N = t1:N ∼ N (ΣMTΣ−1
TT (t1:N),ΣMM − ΣMTΣ−1

TTΣTM).

As we can see from Equation 3.8, once the values of T1:N are given, Y1:N is just a linear
transformation of M1:N . We introduce the following notation:

α(T1:N) =


XPD√
1−a(T1)
XPD√
1−a(T2)

...
XPD√
1−a(TN )

 , χ(T1:N) =



a(T1)√
1−a(T1)

0 . . . 0

0 a(T2)√
1−a(T2)

. . . 0

...
...

. . .
...

0 0 . . . a(TN )√
1−a(TN )

 .

Then the distribution of Y1:N given T1:N can be acquired by the following theorem.

Theorem 6. The distribution of Y1:N given T1:N is

Y1:N |T1:N ∼ N (α(T1:N)− χ(T1:N)ΣMTΣ−1
TT · (T1:N), χ(T1:N)(ΣMM − ΣMTΣ−1

TTΣTM)χ(T1:N)T ).

We omit the proof, as it uses only basic properties of a multi-variate normal distribution
and is similar to that for Theorem 5.

3.4.2 Autocorrelation of {Yt} in SDM-AR(1) model

In the last section, we have determined the conditional distribution of Y1:N given T1:N .
Now we can use the law of total variance to compute the unconditional variance matrix of
Y1:N .

Theorem 7. The unconditional variance matrix of Y1:N can be calculated by the following
equation

V ar(Y1:N) = ET1:N [V ar(Y1:N |T1:N)] + V arT1:N (E[Y1:N |T1:N ])

where V ar(Y1:N |T1:N) and E[Y1:N |T1:N ] are N ×N and N × 1 matrices defined in Theorem
6 respectively.
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Although, the covariance matrix of Y1:N admits an analytical representation, it is still
difficult or even impossible to determine its explicit form. But we can use simulated values
to generate numerical approximation of the covariance matrix by the following algorithm

1. Generate N∗ series of T1:N .

2. For each i = 1, . . . , N∗, calculate the V ar(Y1:N |T i1:N) and E[Y1:N |T i1:N ].

3. Evaluate the sample average of each elements in V ar(Y1:N |T i1:N) and the sample
variance matrix of E[Y1:N |T i1:N ] as an approximation for ET1:N [V ar(Y1:N |T1:N)] and
V arT1:N (E[Y1:N |T1:N ]) respectively.

Let V ar(Y1:N)i,j represent the element in the ith row of the jth column of the matrix
V ar(Y1:N). We know that V ar(Y1:N)i,j = Cov(Yi, Yj). Then the Corr(Yt, Yt+c) can be
calculated by

Corr(Yt, Yt+c) =
V ar(Y1:N)t,t+c√

V ar(Y1:N)t,t · V ar(Y1:N)t+c,t+c
.

Since the series {Yt} is stationary, V ar(Y1:N)t,t = V ar(Y1:N)t+c,t+c, and

Corr(Yt, Yt+c) =
V ar(Y1:N)t,t+c
V ar(Y1:N)t,t

.

The following ACF plots are calculated based on different values of the parameters pre-
sented in Table 3.3.

Figure a1 a2 β t1 θ
3.1 0.5 0.2 1 0 0.95
3.2 0.35 0.2 1 0 0.95
3.3 0.5 0.2 1 0 0.5
3.4 0.5 0.2 0.5 0 0.95

Table 3.3: Value of parameters for the ACF plots
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Figure 3.1: ACF plot based on SDM-AR(1)
model with 1st set of parameters
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Figure 3.2: ACF plot based on SDM-AR(1)
model with 2nd set of parameters
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Figure 3.3: ACF plot based on SDM-AR(1)
model with 3rd set of parameters
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Figure 3.4: ACF plot based on SDM-AR(1)
model with 4th set of parameters

As we can see from Figures 3.1 to 3.4, although the different values of the parameters
have their own effect on the autocorrelations structure of the series {Yt}, the ACF plots of
the SDM-AR(1) are still close to the ACF of a classic AR(1) model. Since it is desirable
to check if historical data has similar ACF, in next section we will present the ACF for
some real historical data and compare it with the ACF of the SDM-AR(1) model.
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3.4.3 ACF plots of real historical data

In this section, we will present sample autocorrelation and partial autocorrelation plots
of the Federal Reserve Data. We only present six data sets in here since most of them
have similar ACF. The following table shows the series whose ACF and PACF plots are
presented in Figures 3.5 to 3.10.

a b c d e f
All Business Consumer Credit Card Other Consumer Agricultural

Table 3.4: Table of series

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

0 2 4 6 8 10 12 14 16 18 20

Lag

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
S

am
pl

e 
P

ar
tia

l A
ut

oc
or

re
la

tio
n

Sample Partial Autocorrelation Function

0 2 4 6 8 10 12 14 16 18 20

Lag

Figure 3.5: Autocorrelation function plots of the “All” historical data
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Figure 3.6: Autocorrelation function plots of the “Business” historical data
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Figure 3.7: Autocorrelation function plots of the “Consumer” historical data
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Figure 3.8: Autocorrelation function plots of the “Credit Card” historical data
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Figure 3.9: Autocorrelation function plots of the “Other Consumer” historical data
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Figure 3.10: Autocorrelation function plots of the “Agricultural” historical data

As we can see from those ACF plots, the real historical data strongly disagree with the
AR(1) process. By comparing Figures 3.5 to 3.10 with Figures 3.1 to 3.4, we can easily
notice that the state-dependent model with AR(1) process can not accurately capture the
autocorrelations for series {Yt}. As we know, if the coefficient of an AR(1) process is
positive, then the ACF should converge exponentially to 0 from the positive side. The
ACF should appear on both sides of zero alternatively if the coefficient is negative. But it
is impossible for AR(1) process to have an ACF of the same form as the one produced by
historical data. Also the sample ACF plots of the real historical data suggest that AR(2)
process should provide a better dependence structure for describing the behavior of real
market. So, in the next section, we will introduce a state-dependent model with an AR(2)
process.

3.5 Dynamic state-dependent model with AR(2)

As we have mentioned in the previous section, we noticed that the state-dependent model
with an AR(1) underlying process can’t properly describe the dependence structure for
real observations {Yt}. In order to improve the performance of the model, we would like
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to change the AR(1) to AR(2). So we have made the following changes to the model,

Xi,t = a(Tt)Mt +
√

1− a(Tt)2ei,t

Mt = θ1Mt−1 + θ2Mt−2 + εt (3.23)

Tt = βMt + ε′t, (3.24)

where a(·) is the same function defined in beginning of Chapter 2

a(x) =
K∑
k=1

ak · 1(tk < x 6 tk+1),

and K is the number of market regimes. For t = 1, . . . , ei,t and ε′t are independent error
terms with mean 0 and variances σ2

e = 1 and σ2
ε′ = 1 − β2 respectively. But the variance

of εt is

σ2
ε = 1− γ1θ1 − γ2θ2, (3.25)

where γ1 = θ1
1−θ2 and γ2 = θ1γ1 + θ2. Also, the values of θ1 and θ need to ensure the

stationarity of {Mt}.
The main change we have made here is the process Mt. It was AR(1) in the previous

model but AR(2) in here. In order to maintain the property that the stationary distribution
of Mt is still standard normal, we change the variance of the error term in Equation 3.23
as well. By doing so, the relation between Yt and Mt of the model SDM-AR(1) remains
the same for the SDM-AR(2)

Yt = Φ−1

(
Φ

(
xPD − a(Tt)Mt√

1− a2(Tt)

))

=
xPD√

1− a(Tt)2
− a(Tt)√

1− a(Tt)2
Mt,

where xPD is defined in Formula 3.6.

The stationary distribution of {Mt}, {Tt} and the correlation between Mt and Tt for any
t = 1, . . . , N , remain the same as for the model SDM-AR(1). The only thing that is going
to change is the dependence structures for the underlying market risk factor series {Mt} and
the market regime index {Tt}. This will also lead to a different dependence structure for
the observations {Yt}. In the following sections, we describe the new dependence structure
of those series and the modification that we need to make for the filtering procedure.
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3.6 Dependence structure of SDM-AR(2)

In this section, we determine the autocorrelation structure of the observed series {Yt} in
the same manner as we have done in Section 3.4 but for the model based on the SDM-
AR(2) process. So, we start from the joint distribution of {Mt} and {Tt} first. Then
we derive the conditional distribution of {Mt} given {Tt}. Also, due to the fact that the
observations {Yt} are a linear transformation of {Mt}, if we give condition on {Tt}, we
are able to determine the conditional distribution of {Yt} given {Tt} from the conditional
distribution of {Mt} given {Tt}. As a last step, we will apply the law of total variance to
get the unconditional variance matrix for {Yt}.

Theorem 8. The conditional distribution of {M1:N} given {T1:N} is

M1:N |T1:N ∼ N (ΣMTΣ−1
TT (t1:N),ΣMM − ΣMTΣ−1

TTΣTM),

where

ΣMM =


1 ρ(1) ρ(2) . . . ρ(N − 1)
ρ(1) 1 ρ(1) . . . ρ(N − 2)

...
...

...
. . .

...
ρ(N − 1) ρ(N − 2) ρ(N − 3) . . . 1

 (3.26)

ΣMT = ΣTM =


β ρ(1)β ρ(2)β . . . ρ(N − 1)β

ρ(1)β β ρ(1)β . . . ρ(N − 2)β
...

...
...

. . .
...

ρ(N − 1)β ρ(N − 2)β ρ(N − 3)β . . . β

 (3.27)

ΣTT =


1 ρ(1)β2 ρ(2)β2 . . . ρ(N − 1)β2

ρ(1)β2 1 ρ(1)β2 . . . ρ(N − 2)β2

...
...

...
. . .

...
ρ(N − 1)β2 ρ(N − 2)β2 ρ(N − 3)β2 . . . 1

 (3.28)

ρ(1) =
θ1

1− θ2

, ρ(2) =
θ2

1 + (1− θ2)θ2

1− θ2

ρ(k) = θ1ρ(k − 1) + θ2ρ(k − 2) for k = 3, 4, . . .

Proof. First, according to Equation 3.23, we know that {Mt} follows an AR(2) process
with a normally distributed driving noise. Also, based on Equation 3.3, {Tt} is a linear
transformation of {Mt}. As a result, we can treat the series M1:N and T1:N as a 2N -
dimension multi-variate normal distribution. So, our first step is to determine the variance
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matrix for {Mt}. Since {Mt} follows an AR(2) process with constant 0 and coefficients θ1

& θ2, the autocorrelation function of it is

Corr(Mt,Mt+k) = ρ(k) = θ1ρ(k − 1) + θ2ρ(k − 2) for k = 3, 4, . . . ,

where

ρ(1) =
θ1

1− θ2

, ρ(2) =
θ2

1 + (1− θ2)θ1

1− θ2

.

Due to the fact that the stationary distribution of {Mt} is the standard normal distribution,
we know that

Cov(Mt,Mt+k) = Corr(Mt,Mt+k),

and

Cov(Mt,Mt) = 1.

This implies the form of the covariance matrix for M1:N given in Matrix 3.26.

The next thing we need is the correlation between {Mt} and {Tt}. We have

Cov(Mt, Tt+k) =E[MtTt+k]− E[Mt]E[Tt+k]

=E[MtTt+k]

=E[Mt(βMt+k + ε′t+k)]

=E[βMt+kMt + ε′t+kMt]

=βE[Mt+kMt] + E[ε′t+k]E[Mt]

=βρ(k).

This result suggests that the covariance matrix for M1:N and T1:N is in the form of Matrix
3.27.

Now, we find the covariance matrix for T1:N :

Cov(Tt, Tt+k) =E[TtTt+k]− E[Tt]E[Tt+k]

=E[(βMt + ε′t)(βMt+k + ε′t+k)]

=E[β2MtMt+k + βMtε
′
t+k + βMt+kε

′
t + ε′tε

′
t+k]

=β2E[MtMt+k]

=β2ρ(k).
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According to Theorem 6, we know that Y1:N given T1:N under the SDM-AR(2) model
has the following distribution:

Y1:N |T1:N ∼ N (α(T1:N)− χ(T1:N)ΣMTΣ−1
TT · (T1:N), χ(T1:N)(ΣMM − ΣMTΣ−1

TTΣTM)χ(T1:N)T ),

where α(T1:N) and χ(T1:N) are defined on Page 59.

Then the unconditional covariance matrix and the autocorrelations of {Yt} can be
calculated by Theorem 7 and the numerical method mentioned on Page 59.

3.7 Likelihood function of Yt in SDM-AR(2)

Before we calculate the joint likelihood function of {Yt}, we need to determine the new
one-step-ahead state predictive density, fMt+1|Y1:t(mt+1|y1:t). Since we have changed the
process of Mt from AR(1) to AR(2), we need the formula of fMt+1,Mt|Y1:t(mt+1,mt|y1:t)
instead of fMt+1|Y1:t(mt+1|y1:t) to calculate the joint likelihood function of Yt.

Theorem 9. By the one-step-ahead state predictive density, fMt+1,Mt|Y1:t(mt+1,mt|y1:t), can
be calculated by following equation

fMt+1,Mt|Y1:t(mt+1,mt|y1:t) =
2∑
i=1

fMt+1|Mt,Mt−1(mt+1|mt,M
−1(yt−1, i))·

P (Mt = mt,Mt−1 = M−1(yt−1, i)|Y1:t = y1:t)

where fMt+1|Mt,Mt−1(mt+1|mt,mt−1) is the transition density of an AR(2) process.

Proof. First, based on the law of total probability, we know that

fMt+1,Mt|Y1:t(mt+1,mt|y1:t) =
2∑
i=1

fMt+1,Mt,Mt−1|Y1:t(mt+1,mt,M
−1(yt−1, i)|y1:t).

Then, since Mt follows an AR(2) process, Mt+1 is independent of the past given Mt and
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Mt−1. Therefore,

fMt+1,Mt|Y1:t(mt+1,mt|y1:t) =
2∑
i=1

fMt+1|Mt,Mt−1,Y1:t(mt+1|mt,M
−1(yt−1, i), y1:t)·

P (Mt = mt,Mt−1 = M−1(yt−1, i)|Y1:t = y1:t)

=
2∑
i=1

fMt+1|Mt,Mt−1(mt+1|mt,M
−1(yt−1, i))·

P (Mt = mt,Mt−1 = M−1(yt−1, i)|Y1:t = y1:t), (3.29)

where fMt+1|Mt,Mt−1(mt+1|mt,mt−1) is the transition density of an AR(2) process.

For the next step, we need to figure out how to calculate the new one-step-ahead
predictive density fYt+1|Y1:t(yt+1|y1:t).

Theorem 10. The one-step ahead predictive density fYt+1|Y1:t(yt+1|y1:t) is

fYt+1|Y1:t(yt+1|y1:t) =
2∑
i=1

√
1− a2

i

ai
P (Yt+1 = yt+1|Mt+1 = M−1(yt+1, i))

2∑
j=1

fMt+1,Mt|Y1:t(M
−1(yt+1, i),M

−1(yt, j)|y1:t),

where P (Yt+1 = yt+1|Mt+1 = M−1(yt+1, i)) is

P (Yt+1 = yt+1|Mt+1 = M−1(yt+1, i)) = P (Tt+1 ∈ [ti, ti+1)|Mt+1 = M−1(yt+1, i)).

Proof. We know that

fYt+1|Y1:t(yt+1|y1:t) =
2∑
i=1

fYt+1,Mt+1|Y1:t(yt+1,M
−1(yt+1, i)|y1:t).

Since Yt+1 will be independent of the previous values once Mt+1 is given, we can keep

70



writing the equation in the following way

fYt+1|Y1:t(yt+1|y1:t) =
2∑
i=1

fYt+1|Mt+1(yt+1|M−1(yt+1, i)) · fMt+1|Y1:t(M
−1(yt+1, i)|y1:t)

=
2∑
i=1

√
1− a2

i

ai
P (Yt+1 = yt+1|Mt+1 = M−1(yt+1, i))

2∑
j=1

fMt+1,Mt|Y1:t(M
−1(yt+1, i),M

−1(yt, j)|y1:t).

This gives us the result.

After that, we can notice from the Equation 3.29 that we need to find a way to calculate
the new filtering function P (Mt = mt,Mt−1 = M−1(yt−1, i)|Y1:t = y1:t).

Theorem 11. We can calculate P (Mt = mt,Mt−1 = M−1(yt−1, i)|Y1:t = y1:t) in the
following way:

P (Mt = M−1(yt, i),Mt−1 = M−1(yt−1, j)|Y1:t = y1:t) =
P (Yt = yt|Mt = M−1(yt, i))

fYt|Y1:t−1
(yt|y1:t−1)

·

fMt,Mt−1|Y1:t−1
(M−1(yt, i),M

−1(yt−1, j)|y1:t−1).

Proof. We have

P (Mt = M−1(yt, i),Mt−1 = M−1(yt−1, j)|Y1:t = y1:t) =
fMt,Mt−1,Yt|Y1:t−1

(M−1(yt, i),M
−1(yt−1, j), yt|y1:t−1)

fYt|Y1:t−1
(yt|y1:t−1)

=fYt|Mt,Mt−1,Y1:t−1
(yt|M−1(yt, i),M

−1(yt−1, j), y1:t−1) ·
fMt,Mt−1|Y1:t−1

(M−1(yt, i),M
−1(yt−1, j)|y1:t−1)

fYt|Y1:t−1
(yt|y1:t−1)

=P (Yt = yt|Mt = M−1(yt, i)) ·
fMt,Mt−1|Y1:t−1

(M−1(yt, i),M
−1(yt−1, j)|y1:t−1)

fYt|Y1:t−1
(yt|y1:t−1)

.

Once we have those formulas, we are able to perform a similar filtering procedure as the
one we have described in Section 3.2.4, and then to compute the values of fYt+1|Y1:t(yt+1|y1:t)
for all t = 1 . . . T − 1. Based on these, the log-likelihood function of {Yt} is

logL(δ; y1:N) = log fY (y1; δ) +
T∑
i=2

log(fYi|Y1:i−1
(yi|y1:i−1; δ)).
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3.7.1 K-step-ahead prediction of SDM-AR(2)

In this section, we describe a method of finding the K-step-ahead prediction for the obser-
vations {Yt} based on the SDM-AR(2) model. Although we have already derived procedure
to the SDM-AR(1) model, we still need to modify some parts of the previous derivation
since Mt is changed from AR(1) to AR(2). The following theorem presents an equation to
calculate the K-step-ahead predictive function in SDM-AR(2).

Theorem 12. The K-step-ahead predictive density of Yt+K given Y1:t, which is denoted by
fYt+k|Y1:t(yt+k|y1:t), can be calculated in the following way:

fYt+k|Y1:t(yt+k|y1:t) =
2∑
i=1

2∑
j=1

P (Yt+k = yt+k|Mt+k = M−1(yt+k, j))·

fMt+k|Mt,Mt−1(M
−1(yt+k, j)|M−1(yt, i),M

−1(yt−1, i))·
P (Mt = M−1(yt, i),Mt = M−1(yt−1, i)|Y1:t = y1:t),

where fMt+k|Mt,Mt−1(M
−1(yt+k, j)|M−1(yt, i),M

−1(yt−1, i)) is the K-step transition density
function of the AR(2) model.

The proof for the K-step ahead predictive density of SDM-AR(2) is similar to the proof
of Theorem 4, so we omit it here.

3.8 Special cases of the SDM-AR(2) model

In this section, we wish to demonstrate that the AR(1), AR(2) and SDM-AR(1) models
are nested within the SDM-AR(2) model as special cases. It is trivial to see that we can
set the parameter θ2 in Equation 3.23 equal to zero to make the SDM-AR(2) model the
same as the SDM-AR(1) model. Then, if we can prove that the classic AR(1) model in
the following form

Yt = C + αYt−1 + ε′t (3.30)

can also be expressed as a special case of the SDM-AR(1) model, it would be enough for us
to conclude that the AR(1) model also belongs to the subset of the SDM-AR(2) models,
since the SDM-AR(1) model is obviously a subset of SDM-AR(2) model. After that, we
will demonstrate that the AR(2) model defined as

Yt = C + α1Yt−1 + α2Yt−2 + ε′t

is a special case of the SDM-AR(2) model.
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3.8.1 Expressing AR(1) model in terms of SDM-AR(1)

The following theorem demonstrates that AR(1) model can be expressed in terms of the
SDM-AR(1) model.

Theorem 13. By setting the parameters of SDM-AR(1) in the following forms,

a1 = a2 =

√√√√ σ2
ε′t

(1− α2 + σ2
ε′t

)
(3.31)

θ = α

PD = Φ

(√
1− a2

1C

(1− α)

)
,

where PD is the sixth parameter for the SDM-AR(1) model, which controls the long-run
average of the observations Dt. The SDM-AR(1) model is identical with the traditional
AR(1) model in Equation 3.30.

Proof. According to Formulas 3.2 and 3.8 we have:

Yt =
xPD√

1− a(Rt)2
− a(Rt)√

1− a(Rt)2
(θMt−1 + εt)

=
xPD√

1− a(Rt)2
− a(Rt)√

1− a(Rt)2
θMt−1 −

a(Rt)√
1− a(Rt)2

εt. (3.32)

Also based on Equation (3.8), we know that:

Mt−1 =
xPD

a(Rt−1)
−
√

1− a(Rt−1)2

a(Rt−1)
Yt−1.

By substituting this into Equation (3.32), we get

Yt =
xPD√

1− a(Rt)2
(1− θ a(RT )

a(Rt−1)
) + θ

a(Rt)

a(Rt−1)

√
1− a(Rt−1)2√
1− a(Rt)2

Yt−1 −
a(Rt)√

1− a(Rt)2
εt.

(3.33)

Then for any AR(1) model in the following form

Yt = C + αYt−1 + ε′t,
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we only need to set the parameters of SDM-AR(1) to meet the following conditions

V ar(
a1√

1− a2
1

εt) = V ar(ε′t)

xPD√
1− a2

1

(1− θ) = C

θ = α

a1 = a2.

Then, from the condition V ar( a1√
1−a21

εt) = V ar(ε′t) and θ = α, we will have

a2
1

1− a2
1

(1− θ2) = σ2
ε′t

a2
1(1− θ2) = σ2

ε′t
− σ2

ε′t
a2

1

a2
1(1− α2 + σ2

ε′t
) = σ2

ε′t

a1 =

√√√√ σ2
ε′t

(1− α2 + σ2
ε′t

)
.

If we set a1 = a2, then we know that Xt defined in Equation 3.1 actually follows the
standard normal distribution. Then according to the definition of xPD in Section 2.1.3, we
have

xPD = Φ−1(PD),

where PD is the sixth parameter for the SDM-AR(1) model, which controls the long-run
average of the observation Dt. Then as a result, we get

xPD√
1− a2

1

(1− θ) = C

Φ−1(PD)

C
(1− θ) =

√
1− a2

1.
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We also have the condition that θ = α, so

Φ−1(PD)

C
(1− α) =

√
1− a2

1

Φ−1(PD) =

√
1− a2

1C

(1− α)

PD = Φ

(√
1− a2

1C

(1− α)

)
.

In addition, as the result of a1 = a2, the impacts of β and t1 are eliminated. Therefore,
there is no constraint for those two parameters.

3.8.2 Expressing AR(2) model in terms of SDM-AR(2)

In this section, we prove that the traditional AR(2) model defined in the following way

Yt = C + α1Yt−1 + α2Yt−2 + ε′t (3.34)

can be expressed as a special case of the SDM-AR(2) model.

Theorem 14. By setting the parameters of SDM-AR(2) model in the following form,

a1 = a2 =

√√√√ σ2
ε′t

(σ2
εt + σ2

ε′t
)

(3.35)

θ1 = α1

θ2 = α2

PD = Φ(

√
1− a2

1C

1− α1 − α2

),

where σ2
ε′t

is the variance of ε′t, and σ2
εt defined in 3.25 is the variance of the driving noise for

series {Mt}. The SDM-AR(2) model is identical with the classic AR(2) model in Equation
3.34.

Proof. As we mentioned in Section 3.5, the relation between Yt and Mt defined in 3.8 is
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still valid for SDM-AR(2) model. Then, according to Equations 3.23, we have

Yt =
xPD√

1− a(Rt)2
− a(Rt)√

1− a(Rt)2
(θ1Mt−1 + θ2Mt−2 + εt)

Yt =
xPD√

1− a(Rt)2
− a(Rt)√

1− a(Rt)2
θ1Mt−1 −

a(Rt)√
1− a(Rt)2

θ2Mt−2 −
a(Rt)√

1− a(Rt)2
εt.

(3.36)

Also based on Equation (3.8), we know that:

Mt−1 =
xPD

a(Rt−1)
−
√

1− a(Rt−1)2

a(Rt−1)
Yt−1.

Mt−2 =
xPD

a(Rt−2)
−
√

1− a(Rt−2)2

a(Rt−2)
Yt−2.

By substituting this into Equation 3.36, we get

Yt = C̃ + α̃1Yt−1 + α̃2Yt−2 −
a(Rt)√

1− a(Rt)2
εt,

where

C̃ =
xPD√

1− a(Rt)2
(1− θ1

a(RT )

a(Rt−1)
− θ2

a(RT )

a(Rt−2)
)

α̃1 = θ1
a(Rt)

a(Rt−1)

√
1− a(Rt−1)2√
1− a(Rt)2

α̃2 = θ2
a(Rt)

a(Rt−2)

√
1− a(Rt−2)2√
1− a(Rt)2

.

Under the condition a1 = a2, we know that a(Tt) is actually constant. Therefore, we can
simplify the above equations

C̃ =
xPD√
1− a2

1

(1− θ1 − θ2) (3.37)

α̃1 = θ1

α̃2 = θ2.

As a result, we know that we need to set θ1 and θ2 in SDM-AR(2) equal to α1 and α2

respectively to make those two models equivalent. Also due to the condition a1 = a2, we
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know that Xt defined in Equation 3.1 actually follows the standard normal distribution.
Then according to the definition of xPD in Section 2.1.3, we have

xPD = Φ−1(PD),

where PD is the seventh parameter for the SDM-AR(2) model which controls the long-run
average of the observation Dt. In order to have C = C̃, the following condition has to be
valid

C =
Φ−1(PD)√

1− a2
1

(1− θ1 − θ2)

C =
Φ−1(PD)√

1− a2
1

(1− α1 − α2)

Φ−1(PD) =

√
1− a2

1C

1− α1 − α2

PD = Φ(

√
1− a2

1C

1− α1 − α2

),

where the value of a1 can be determined from the condition that V ar( a1√
1−a21

εt) = V ar(ε′t).

That means

a2
1

1− a2
1

σ2
εt = σ2

ε′t
,

where σ2
εt stands for the variance of εt which is defined in Equation 3.25. By solving above

equation with respect to a1, we have

a2
1

1− a2
1

σ2
εt = σ2

ε′t

a2
1σ

2
εt = σ2

ε′t
− σ2

ε′t
a2

1

a2
1(σ2

εt + σ2
ε′t

) = σ2
ε′t

a1 =

√√√√ σ2
ε′t

(σ2
εt + σ2

ε′t
)
.

In conclusion, the SDM-AR(2) model is an unrestricted form of SDM-AR(1), AR(2)
and AR(1) model. Then theoretically, for the same data set, the performance of the SDM-
AR(2) should always be better than the others. We will compare those four models in the
following chapter from the empirical perspective.
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Chapter 4

Empirical Study of SDM-AR Model

In this chapter, we conduct an empirical study using historical data. The data we use is
the same as the one used in Section 2.2.3. Let us recall that the data is obtained from the
Federal Reserve and consists of quarterly delinquency rates for 11 different categories. The
time period is from the first quarter of 1991 to the fourth quarter of 2016.

This Chapter is divided into the following sections. In Section 4.1, we estimate the
parameters of the state dependent model with one and two lags in the autoregressive pro-
cess driving the systematic risk factor. We find that the degree of state dependence, β,
is relatively high in virtually all series. In Section 4.2, we assess the models’ in-sample
forecasting ability (point and 99.9% interval estimates, which are of the greatest interest
to risk managers.). We find that the state-dependent model with two lags generates con-
siderably more accurate in-sample forecasts through the financial crisis. In Section 4.3,
we assess the models’ out-of-sample one-step and four-step-ahead point forecasting abil-
ity. We realize that the state-dependent model with two lags can predict market behavior
more accurately than the other models. In the last section, we evaluate the model’s out-of-
sample one-step and four-step-ahead interval forecasting. The results strongly agree that
the state-dependent model with two lags shows strong advantages.

4.1 Parameter estimation

In order to estimate the parameters for each series appearing in Table ??, we apply the
methodology described in Sections 3.3 & 3.7. Let us recall that the log-likelihood functions
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for both SDM-AR(1) and SDM-AR(2) models take the form:

`(ξ; ~Y ) = log(fY1;ξ(y1)) +
N∑
i=2

log(fYi|Y1:i−1;ξ(yi|y1:i−1)), (4.1)

where ~Y is the vector of transformed default rates that are calculated by

Yi = Φ−1(Di), (4.2)

and ξ is the vector of parameters, which contains {a1, a2, β, t2, θ1} for the SDM-AR(1)
model and {a1, a2, β, t2, θ1 θ2} for the SDM-AR(2) model.

4.1.1 Selection of initial points

Further recall that the likelihood function must be optimized numerically. To find the
global maximum, we systematically select different initial points, and for each initial point,
we use the Matlab built-in optimizer, fmincon, to find a local minimum of the negative
log-likelihood, −`(ξ; ~Y ). We then take that the local minimizer that produces the lowest
value as the global minimum, i.e., maximum likelihood estimate.

For the initial points of the numerical optimizer for the SDM-AR(1) model, we defined
a set of values for each parameter and used all the possible combinations of those values
to create a mesh over the following space:

a = [0.5, 0.4, 0.3, 0.2, 0.1]

t = [−1,−0.5, 0, 0.5, 1]

β = [0.1, 0.3, 0.5, 0.7, 0.9]

θ = [−1,−0.5, 0, 0.5, 1].

For a1 and a2, we chose all the combinations from a such that a1 > a2. That means there
are 10 different sets of values for [a1, a2] and 5 sets for t, β and θ, respectively. This gives
us 1250 different initial points in total.

For the SDM-AR(2) model, we keep the space for a, t and β unchanged. As we can
tell from the historical ACF plots in Section 3.4.3, the data sets suggest that there is a
high correlation between each time. Then we set the initial points for θ1 and θ2 from the
following combinations:

{θ1, θ2} = [{0, 0}, {0.7, 0.29}, {0.8, 0.1}, {1.1,−0.2}, {1.5,−0.52}].

As a result, there are 1250 different initial points for the SDM-AR(2) model.
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4.1.2 Estimation results

After we finish running fmincon from different initial points for each model, we pick the
results with the highest likelihood value as our estimate for the parameters. The following
table shows the five largest log-likelihood values that we obtained from 1250 different
starting points for the All series in the SDM-AR(1) model.

a1 a2 β t1 θ Log likelihood
0.228 0.137 1.00 -0.634 0.984 219.809
0.226 0.136 1.00 -0.634 0.983 219.808
0.232 0.139 1.00 -0.634 0.984 219.808
0.232 0.139 1.00 -0.634 0.984 219.808
0.232 0.139 1.00 -0.634 0.984 219.808

Table 4.1: Calibration results of SDM-AR(1) model on All series

As we can see from Table 4.1, even if the estimation procedure starts from different
initial points, the final results converge to the same point. This gives us confidence that if
we systematically explore the parameter space, we are typically able to locate to the global
maximum, i.e., that we are accurately computing the maximum likelihood estimates. The
same method is applied to the rest of the data with the SDM-AR(1) and SDM-AR(2),
respectively.
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Series Model a1 a2 β t1 θ1 θ2 θ1 + θ2

All SDM-AR(2)
0.232

(0.089)
0.162

(0.076)
1

(0.177)
-0.704
(1.123)

1.832
(0.047)

-0.853
(0.046)

0.979

SDM-AR(1)
0.229

(0.082)
0.137

(0.053)
1

(0.056)
-0.635
(0.726)

0.984
(0.011)

OC SDM-AR(2)
0.115

(0.076)
0.085

(0.032)
1

(0.298)
-0.641
(1.435)

1.366
(0.088)

-0.386
(0.085)

0.98

SDM-AR(1)
0.119

(0.071)
0.088

(0.075)
1

(0.137)
-0.631
(0.934)

0.986
(0.031)

SRE SDM-AR(2)
0.246

(0.071)
0.234

(0.079)
-0.303
(0.393)

0.672
(1.001)

1.878
(0.037)

-0.892
(0.035)

0.986

SDM-AR(1)
0.236

(0.148)
0.221

(0.108)
1

(0.618)
1.323

(0.914)
0.987

(0.018)

CRE SDM-AR(2)
0.392

(0.128)
0.378

(0.109)
-1

(0.359)
-0.621
(1.399)

1.790
(0.051)

-0.802
(0.047)

0.988

SDM-AR(1)
0.418

(0.176)
0.402

(0.156)
1

(0.298)
0.6943
(0.987)

0.993
(0.024)

Table 4.2: Estimation results of SDM-AR(1) and SDM-AR(2) models

For a direct comparison of the SDM-AR(1) and SDM-AR(2) model estimation, Table
4.2 shows part of the results from these two models, with the remaining results presented
in the Appendix. We can notice the following notable features of the data based on Table
4.2:

1. The factor loadings a1 and a2 in both the SDM-AR(1) and SDM-AR(2) models are
similar.

2. The degree of state dependence, β, is extremely high for almost every series except
SRE.

3. When the factor loadings in both regimes are similar, it appears that the state de-
pendence parameter β and state change threshold t1 are very hard to identify. This
may be caused by the fact that a1 and a2 are close to each other in this series, which
makes the effect of the different regimes negligible. As a result, the impacts of β and
t1 are also dramatically reduced.
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For the parameters θ1 and θ2 in the SDM-AR(2) model, we can rewrite Formula 3.23
for M in the following way:

Mt = θ1Mt−1 + θ2Mt−2 + εt

= (θ1 + θ2)Mt−1 − θ2(Mt−1 −Mt−2) + εt.

As we can see from Table 4.2, the value of θ1 + θ2 in the SDM-AR(2) model is close to the
value of θ1 in the SDM-AR(1) model. Also the values of θ2 are far away from zero. That
implies that the dynamic of Mt not only heavily depends on the previous value Mt−1 but
also on the previous increment, Mt−1−Mt−2. Since θ1 +θ2 ≈ 1, the next period’s expected
market level is the last period’s market level, plus an adjustment based on momentum.

It is natural to ask if our model improves the forecasting ability of the classic AR model.
In order to compare our models with the plain AR model, we also fitted the following AR
model to our data with one or two lag terms:

Yt = C + θ1Yt−1 + θ2Yt−2 + ε′′t

Again, Yt = Φ−1(Dt), where Dt is the observation at time t. C is a constant and {ε′′t }t=1,2,...

follow the i.i.d. normal distribution with mean 0 and variance σ2
ε′′ . The setting for the AR

model remains the same as in the rest of this study.
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Series Model a1 a2 β t1 θ1 σ2
ε′′ C

All SDM-AR(1)
0.229

(0.082)
0.137

(0.053)
1

(0.056)
-0.635
(0.726)

0.984
(0.011)

AR(1) 0.154
0.980

(0.016)
0.0094

(0.0001)
-0.0413
(0.0297)

OC SDM-AR(1)
0.119

(0.071)
0.088

(0.075)
1

(0.137)
-0.631
(0.934)

0.986
(0.031)

AR(1) 0.099
0.986

(0.018)
0.00027

(0.00003)
-0.0291
(0.036)

SRE SDM-AR(1)
0.236

(0.148)
0.221

(0.108)
1

(0.618)
1.323

(0.914)
0.987

(0.018)

AR(1) 0.209
0.985

(0.013)
0.00128

(0.00018)
-0.0297
(0.023)

CRE SDM-AR(1)
0.418

(0.176)
0.402

(0.156)
1

(0.298)
0.6943
(0.987)

0.993
(0.024)

AR(1) 0.279
0.987

(0.013)
0.00216
(0.0002)

-0.0372
(0.023)

Table 4.3: In-sample estimation results of SDM-AR(1) and AR(1) models

Table 4.3 presents the results from both one-lag term models. The a1 column for the
AR(1) model is the implied factor loading based on Equation 3.31. From this table, we
can make the following observations:

1. The coefficients of the AR process are almost the same for both models. This fact
strongly suggests that the AR process plays an important role in default rate mod-
eling.

2. The implied factor loading of the classic AR model is close to the average of SDM-
AR(1) model’s two-factor loadings.

When we compare estimates based on the SDM-AR(2) and AR(2) models presented in
Table 4.4, we can observe the same phenomena as in Table 4.3.
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Series Model a1 a2 β t1 θ1 θ2 σ2
ε′′ C

All SDM-AR(2)
0.232

(0.089)
0.162

(0.076)
1

(0.177)
-0.704
(1.123)

1.832
(0.047)

-0.853
(0.046)

AR(2) 0.189
1.824

(0.052)
-0.846
(0.049)

0.00024
(0.00002)

-0.0415
(0.018)

OC SDM-AR(2)
0.115

(0.076)
0.085

(0.032)
1

(0.298)
-0.641
(1.435)

1.366
(0.088)

-0.386
(0.085)

AR(2) 0.089
1.340

(0.091)
-0.364
(0.089)

0.00023
(0.00003)

-0.0461
(0.033)

SRE SDM-AR(2)
0.246

(0.071)
0.234

(0.079)
-0.303
(0.393)

0.672
(1.001)

1.878
(0.037)

-0.892
(0.035)

AR(2) 0.273
1.794
0.051)

-0.808
(0.051)

0.00042
0.00006)

-0.0253
(0.010)

CRE SDM-AR(2)
0.392

(0.128)
0.378

(0.109)
-1

(0.359)
-0.621
(1.399)

1.790
(0.051)

-0.802
(0.047)

AR(2) 0.333
1.735

(0.060)
-0.750
(0.057)

0.0009
(0.0001)

-0.0305
(0.019)

Table 4.4: In-sample estimation results of SDM-AR(2) and AR(2) models

4.2 In-sample forecasting performance

In this section, we assess the accuracy of the models’ in-sample point and interval pre-
dictions, at various horizons. First, we use the estimated parameters in Section 4.1.2 to
generate the one-step-ahead prediction plots by the following method:

1. For each time t = 1, . . . , T − 1 for SDM-AR(1) and t = 2, . . . , T − 1 for SDM-AR(2),
extract the observations Y1:t from the historical data.

2. Calculate the one-step-ahead predictive density fYt+1|Y1:t(yt+1|y1:t) using the maxi-
mum likelihood estimates obtained in Section 4.1.2.

3. Evaluate the expected value of Φ(Yt+1) given Y1:t as the predictive value of the default
rate for next time period.

D̂t+1 =

∫ ∞
−∞

Φ(x) · fYt+1|Y1:t(x|y1:t)dx.
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We use the built-in integral function, int, in Matlab to evaluate this integral numer-
ically.

4. For the α% confidence interval of Yt+1 given Y1:t = y1:t, solve the following equation
w.r.t x numerically to find out the lower and upper boundary, Yt+1, 1−α%

2
and Yt+1,α%+1

2
,

respectively ∫ x

−∞
fYt+1|Y1:t(z|y1:t)dz =

1− α%

2
or

α% + 1

2
.

Since the relations between Yt and Dt are monotone and bijective for any t, the
confidence boundary of Dt equals to Φ(Yt+1, 1−α%

2
) and Φ(Yt+1,α%+1

2
).

5. Repeat Steps 1 to 4 until t = T − 1.

After that, we plot the predictions we generate along with the historical data to have a
direct picture of how the prediction evolves with respect to time. We also calculate some
accuracy measures to help us quantify the performance of each model.

4.2.1 In-sample prediction (point and interval estimates)

Sub-graph (a) in Figure 4.1 presents the predictions based on the fitted SDM-AR(1) model
and (b) based on the fitted SDM-AR(2) model. The red dash line in each plot is the
expected value of the one-step-ahead prediction of Φ(Y ), E[Φ(Yt)|Y1:t−1]. The green dash-
dotted and blue dotted lines represent the 95% and 99% CI, respectively. The lower lines
are the 2.5% and 0.5% quantiles of Φ(Yt)|Y1:t−1. The upper lines are 97.5% and 99.5%
quantiles of Φ(Yt)|Y1:t−1. The star markers in the plot represent the points at which the
actual historical data breaches of the corresponding model’s confidence interval.

First, we can tell from the plots that the SDM-AR(2) model has better prediction
during the financial crisis (2007 to 2010). Most of the time, the CI generated by the SDM-
AR(2) shows distinct advantages. For example, in Figure 4.1, the 95% CI generated by
the SDM-AR(1) model breached 7 times (6.8%) while the one based on SDM-AR(2) model
only breached 4 times (4.9%).

It is also worth pointing out that the prediction made by SDM-AR(1) is pretty close
to a naive prediction, where naive prediction is produced as equal to the last observed
value. This result is mainly caused by the high values of θ1, since all the values of θ1 for
these 3 series are at least 0.98. As a result, the prediction SDM-AR(1) made for the next
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time would be close to the current level. But when we look at the prediction made by
SDM-AR(2), this phenomenon is less obvious.

Figure 4.2 shows a comparison between the fitting results from the SDM-AR(2) and
AR(2) models. The plot legend and style remain the same as in Figure 4.1. We can tell
from this comparison that the CI generated by the SDM-AR(2) model is more reliable
compared with the one generated by the AR(2) model. As we can see from the plot, for
the All series, both the 95% and 99% CI of SDM-AR(2) model breached one point less
than the one of the AR(2) model.
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(b) SDM-AR(2)

Figure 4.1: In-sample predictive value and confidence intervals for historical “All” series
based on fitted SDM-AR(1) and SDM-AR(2) models.
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Figure 4.2: In-sample predictive value and confidence intervals for historical “All” series
based on fitted SDM-AR(2) and AR(2) models.
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However, for the point forecasting accuracy, it is hard to make a conclusion directly
from the plots. So we have also calculate the following popular accuracy measurements,
where MAE stands for the mean absolute error, RMSE is the root mean squared error,
and MAPE is the mean absolute percentage error:

MAE = N−1

N∑
i=1

|Dt − D̂t| (4.3)

RMSE =

√√√√N−1

N∑
i=1

(Dt − D̂t)2 (4.4)

MAPE = N−1

N∑
i=1

|Dt − D̂t|/|Dt|. (4.5)

First, we compare the performance of the SDM-AR(1) and SDM-AR(2) models in the
following table.

Series model MAE(%) RMSE(%) MAPE(%)
All SDM-AR(2) 0.0802 0.1163 2.65

SDM-AR(1) 0.2123 0.2913 5.88

OC SDM-AR(2) 0.0854 0.1155 2.93
SDM-AR(1) 0.0903 0.1208 3.13

SRE SDM-AR(2) 0.1512 0.2258 3.36
SDM-AR(1) 0.2924 0.4132 6.48

CRE SDM-AR(2) 0.1731 0.2424 5.32
SDM-AR(1) 0.3676 0.5138 9.59

Table 4.5: In-sample prediction error comparison between SDM-AR(1) and SDM-AR(2).

Based on the results presented in Table 4.5, we can quickly tell that the SDM-AR(2)
model shows obvious advantages. In particular, when we look at the All series, the SDM-
AR(2) model reduces those three accuracy measures by half. This result strongly suggests
that the second-order lag term has a significant role in default rate prediction.
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Series model MAE(%) RMSE(%) MAPE(%)
All SDM-AR(2) 0.0802 0.1163 2.65

AR(2) 0.0861 0.1342 2.73

OC SDM-AR(2) 0.0854 0.1155 2.93
AR(2) 0.0828 0.1143 2.84

SRE SDM-AR(2) 0.1512 0.2258 3.36
AR(2) 0.1684 0.2423 3.56

CRE SDM-AR(2) 0.1731 0.2424 5.32
AR2 0.1887 0.2497 5.41

Table 4.6: In-sample prediction error comparison between SDM-AR(2) and AR(2).

Now, we demonstrate the importance of state-dependence by comparing SDM-AR(2)
with AR(2). From Table 4.6, the SDM-AR(2) model has a slight advantage when compared
with the AR(2) model. Although the improvement brought by changing from AR(2) to
SDM-AR(2) is not as significant as the one brought by changing from SDM-AR(1) to
SDM-AR(2), the importance of different regimes is still non-negligible.

It is also important to notice that, in this section, we have estimated the models to
the entire data set and used the result to make a prediction. This is unrealistic in the
real world. In order to better measure the forecasting ability of the models, Sections 4.3,
4.4, and 4.5 consider out-of-sample performance. But before moving on, we consider the
serial correlation of the data, which is another important diagnostic tool. Since we already
pointed out in Section 3.4.3 that the first-order-lag models have obvious disadvantages
in capturing serial correlation, we only make a comparison between the second-order-lag
models in the next section.
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4.2.2 Auto- and partial auto-correlation comparison between SDM-
AR(2) and AR(2)

In this section, we study the performance of each model in capturing the autocorrelation
of the observations {Yt}. We compute the sample auto- and partial auto-correlation for
each data set. We also calculate the auto-correlation for the SDM-AR(2) model according
to the method described in Section 3.6. In addition to the ACF, we also use the simulated
data to approximate the partial auto-correlation for the SDM-AR(2) model.

Figure 4.3 shows the sample ACF and PACF for the SRE series. The second and third
rows of the figure are the ACF and PACF of the SDM-AR(2) and AR(2) models, with the
estimated values presented in Table 4.4.

Here, by inspecting the ACF from each figure, the SDM-AR(2) model shows a distinct
advantage, especially in terms of the PACF. We can easily notice that the autocorrelations
for the historical data series are negative after the 18th lag term. Although the ACF of the
SDM-AR(2) model becomes negative only after the 19th lag term, the ACF of the AR(2)
model remains positive even at the 20th lag term. The similarity between the ACF of the
data and the AR(2) model is lower than the one for the SDM-AR(2) model.

Also, from the PACF figures, it is well-known that the AR(2) model always has a zero
value for the third-lag term, but the actual historical data series and the SDM-AR(2) model
have values less than zero. The non-zero third lag term is an unavoidable drawback of the
AR(2) model.

In conclusion, the SDM-AR(2) model can capture the dependence structure of historical
data series much better than the AR(2) model.
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Figure 4.3: Sample ACF and PACF plots the of SRE Series from historical data and
different models.
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4.3 Out-of-sample prediction

In this section, we divide the historical data points of each series into two non-overlapping
segments. The first part is used to estimate the model parameters, and the subsequent
segment is used for evaluating the forecasting ability of the models. Let n1 denote the
number of points in the first segment and n2 be the number of points in the second segment,
so that n1 + n2 = 104. We consider both n1 = 60, in which case the last point in the
estimation window is the last quarter of 2005 (one year before the onset of the financial
crisis), and n1 = 94, in which case the estimation window is longer, and parameter estimates
are ostensibly more reliable. Crucially, the shorter window allows us to see how the model
would have performed during the crisis.

4.3.1 Classic AR models estimation results

We first estimate the classic AR(1) and AR(2) models with those two training segments.
The following tables show the out-of-sample estimation result for the AR(1) and AR(2)
models.

Series Estimation Period Implied a θ1 σ2
ε of AR C of AR

All n1 = 60 0.009 0.975 0.000422 -0.0577
n1 = 94 0.152 0.979 0.000982 -0.0425

OC n1 = 60 0.211 0.998 0.000186 -0.00483
n1 = 94 0.117 0.990 0.000278 -0.0219

SRE n1 = 60 0.101 0.980 0.000404 -0.0503
n1 = 94 0.222 0.987 0.001341 -0.0254

CRE n1 = 60 0.188 0.987 0.000965 0.0451
n1 = 94 0.234 0.980 0.000229 -0.0471

Table 4.7: AR(1) model’s estimation results based on n1 = 60&94 data points.
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Series Estimation Period Implied a θ1 θ2 σ2
ε of AR C of AR

All n1 = 60 0.108 1.644 -0.670 0.000202 -0.052
n1 = 94 0.196 1.824 -0.846 0.000268 -0.0417

OC n1 = 60 0.056 1.467 -0.667 0.000406 -0.36797
n1 = 94 0.073 1.334 -0.369 0.000232 -0.0679

SRE n1 = 60 0.121 1.462 -0.482 0.000293 0.38799
n1 = 94 0.286 1.791 -0.804 0.000464 -0.2435

CRE n1 = 60 0.211 1.329 -0.342 0.000831 -0.0392
n1 = 94 0.319 1.726 -0.743 0.000978 -0.0338

Table 4.8: AR(2) model’s estimation results based on n1 = 60&94 data points.

We can see from these results that the implied factor loadings of both models increase
when we are extending the training segment to the end of the financial crisis. This is to
be expected, since market correlations should be higher when the market is at a bearish
level. Also, the variances of the noise term increase as well.

4.3.2 SDM-AR models estimation results

We also estimate the SDM-AR(1) and SDM-AR(2) models by using the method presented
in Section 3.3. For a more direct comparison, the following two tables display some of the
SDM-AR(1) and SDM-AR(2) models’ estimation results based on 60 and 94 data points.

Series Estimation Period a1 a2 β t θ1 σ2
ε of AR

All n1 = 60 0.387 0.189 1 -0.536 0.996 0.007984
n1 = 94 0.224 0.130 1 -0.615 0.982 0.035676

OC n1 = 60 0.225 0.169 -1 0.124 0.998 0.003996
n1 = 94 0.136 0.097 1 -0.563 0.989 0.021879

SRE n1 = 60 0.362 0.181 1 -0.673 0.995 0.010266
n1 = 94 0.282 0.265 1 1.012 0.991 0.017656

CRE n1 = 60 0.436 0.422 1 0.741 0.996 0.000831
n1 = 94 0.253 0.242 1 1.865 0.981 0.037237

Table 4.9: SDM-AR(1) model’s estimation results based on n1 = 60&94 data points.
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Series Estimation Period a1 a2 β t θ1 θ2 σ2
ε of AR

All n1 = 60 0.177 0.143 1 0.693 1.831 -0.848 0.005144
n1 = 94 0.235 0.162 1 -0.672 1.829 -0.851 0.006517

OC n1 = 60 0.420 0.386 -1 0.0298 1.176 -0.177 0.001645
n1 = 94 0.117 0.0839 1 -0.594 1.411 -0.433 0.024756

SRE n1 = 60 0.388 0.369 -0.351 1.121 1.861 -0.864 0.00096
n1 = 94 0.267 0.255 -0.349 0.645 1.881 -0.894 0.002873

CRE n1 = 60 0.930 0.928 -0.942 0.858 1.816 -0.816 6.08e−10

n1 = 94 0.349 0.332 -1 -0.946 1.759 -0.775 0.006748

Table 4.10: SDM-AR(2) model’s estimation results based on n1 = 60&94 data points.

The “σ2
ε of AR” term for the SDM-AR(2) and SDM-AR(1) models is the variance of

the driving noise term for the process {Mt}. We can tell from both Tables 4.9 and 4.10
that the model parameters do suggest a change of market behavior, since the values of
a1, a2 and t have changed. For both models, the variance of the driving noise term for the
process {Mt} increased dramatically. This is consistent with the fact we observed from the
classic AR models.

The unforeseen phenomenon is the decrement of the factor loadings, a1 and a2. Theo-
retically, by including the financial crisis period, we expect the factor loadings to increase
due to our original assumption that market correlation is higher in the bearish market. But
the factor loadings of the SDM-AR(1) and SDM-AR(2) models changed in the opposite
way compared with the ones of classic AR models. This may be caused by the increment
of the variance of {Mt}’s driving noise.
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4.4 Out-of-sample prediction (point estimates)

In this section, we discuss the out-of-sample point forecasting abilities of the four models,
AR(1)&(2) and SDM-AR(1)&(2). The models are estimated with the two training data
segments we used in Section 4.3. We use the parameters displayed in Section 4.3 to perform
such predictions. By doing so, we are able to directly compare the prediction performance
of different models based on pre- and post- financial crisis periods.

The prediction is made based on all available observations up to the current position.
For example, the prediction we make at time t is evaluated based on

d̂t+h = E[Φ(Yt+h)|Y1:t],

where h is the length of the time interval we want to predict. In this section, we set
h = 1 or 4, which are equivalent to one-quarter and one-year-ahead predictions. But the
parameters we used to make such predictions remain the same as the value we obtained
from the training segment with length n1.

Then the prediction errors can be calculated (εt = dt − d̂t) for each time t after the
training segment. Again, the same accuracy measures, MAE, RMSE and MAPE defined in
Section 4.2.1 are evaluated in this section in order to quantify the prediction performance
of each model.

4.4.1 Predicting one quarter ahead

In this subsection, we focus on the one-quarter-ahead prediction made by those four dif-
ferent models based on two different training segments. Tables 4.11 and 4.12 show the
prediction accuracy results based on n1 = 60 and 94, respectively. The results of the
remaining series can be found in the Appendix.
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Series Model MAE (%) RMSE(%) MAPE(%)
All SDM-AR(2) 0.1107 0.1691 2.938

AR(2) 0.1159 0.1846 2.905
SDM-AR(1) 0.2723 0.3707 6.483
AR(1) 0.2454 0.3984 5.761

OC SDM-AR(2) 0.0914 0.1218 3.436
AR(2) 0.1483 0.1765 6.295
SDM-AR(1) 0.0974 0.1290 3.630
AR(1) 0.1641 0.131 3.685

SRE SDM-AR(2) 0.2162 0.3052 3.686
AR(2) 0.2856 0.3992 4.917
SDM-AR(1) 0.4205 0.5529 7.561
AR(1) 0.4139 0.6199 7.286

CRE SDM-AR(2) 0.1835 0.2722 4.782
AR(2) 0.2686 0.3981 7.023
SDM-AR(1) 0.4164 0.5404 11.45
AR(1) 0.3916 0.5783 10.12

Table 4.11: Out-of-sample forecasting Error
when n1 = 60

Series Model MAE (%) RMSE(%) MAPE(%)
All SDM-AR(2) 0.0375 0.0468 1.5074

AR(2) 0.0364 0.0453 1.4648
SDM-AR(1) 0.1216 0.1387 4.6910
AR(1) 0.1028 0.1209 3.9423

OC SDM-AR(2) 0.0695 0.0865 3.5412
AR(2) 0.07 0.0882 3.5641
SDM-AR(1) 0.0781 0.0930 3.9646
AR(1) 0.0771 0.0920 3.9168

SRE SDM-AR(2) 0.061 0.0787 1.4126
AR(2) 0.0608 0.0821 1.4197
SDM-AR(1) 0.2774 0.2961 6.4907
AR(1) 0.2497 0.268 5.8429

CRE SDM-AR(2) 0.0444 0.0562 4.2262
AR(2) 0.0391 0.0505 3.7330
SDM-AR(1) 0.1313 0.1466 12.726
AR(1) 0.0915 0.1042 8.8034

Table 4.12: Out-of-sample forecasting Error
when n1 = 94

Based on Table 4.11 & 4.12, we can draw the following conclusions:

1. As we can see from both tables, by changing the one-lag structure (AR(1), SDM-
AR(1)) to the two-lag structure (AR(2), SDM-AR(2)), most of the error measure-
ments are reduced by 50% at least. This fact suggests that the two-lag structure
plays an important role from the perspective of prediction.

2. When we only look at Table 4.11, there appears to be an evidence that state depen-
dence structure (SDM-AR(1), SDM-AR(2)) is also essential. For example, we can
notice that MAE of OC series is reduced dramatically by switching the model from
classic AR models to the state-dependence models.

3. Overall, the SDM-AR(2) model presents clear advantages compared with other mod-
els. This is to be expected, since the other models can be written as a special case
of the SDM-AR(2) model, which we have proved in Section 3.8.

These phenomena can also be found in the series we present in the Appendix. For a clear
and direct comparison, we also show some forecasting error series of those four models. Due
to the fact that there are only 10 points left as testing segments for the post-financial crisis
training segments, we left the forecasting error series plots for n1 = 94 in the Appendix
and display some plots for n1 = 60 in here.
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Figure 4.4: Out-sample one-step ahead predictive error based on n1 = 60 training segment

First, it is easy to notice from most of those plots that when the financial crisis is
not included in the training segment, three of the models systematically and consistently
under-predict the default rates during the financial crisis (i.e. 2007 to 2010), whereas the
SDM-AR(2) model does not. This conclusion is supported by the fact that the residual
series produced by SDM-AR(1), AR(2) and AR(1) models are always greater than 0 during
the financial crisis period, while the one of the SDM-AR2 model is more similar to white
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noise, which move up and down around 0 randomly.

When we look at the performance of the models after the crisis, the SDM-AR(2) and
AR(2) models have similar accuracy. Those two models also show slight advantages when
compared to SDM-AR(1) and AR(1). This result is consistent with the conclusion we drew
from the accuracy measurement tables that the two-lag term structure is relatively more
important for the post-crisis period. All those phenomena can also be found in most of
the other series.

We have also checked the ACF plots for the predictive error series (εt = dt − d̂t) for
each model. We only check the error ACF plots of the models estimated with the pre-crisis
training segment.
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Figure 4.5: ACF plots of the prediction error series for the four models estimated with
pre-crisis training segment - All Series
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Figure 4.6: ACF plots of the prediction error series for the four models estimated with
pre-crisis training segment - SRE Series

The blue horizontal lines represent autocorrelation confidence bounds consisting of
2 standard errors. From the perspective of predictive error series, the autocorrelations
should be zero for the error series if the model fits the data well. But as we can see from
the following plots, it is clear that one-lag structures violate this assumption. There also
exists some terms exceeding the confidence bounds in the plot of the AR(2) model. The
SDM-AR(2) model is the only model that can generate the predictive error series having
zero autocorrelations.

4.4.2 Predicting four quarters ahead

Sometimes, the risk analyst may wish to forecast the default rate more than one quarter
ahead. So, in this section, we will consider the four-step-ahead prediction, which is equiva-
lent to one-year-ahead prediction. Since we are performing four-quarter-ahead prediction,
we will only focus on the pre-crisis training segment. Otherwise, if we use 94 points to
estimate the model, we will only have 6 points left for testing the forecasting accuracy,
which is way too few to judge the performance of the model. There exist some numerical
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issues when calculating the four-quarter-ahead prediction of the OC series, so we exclude
it in here.

Series Model MAE (%) RMSE(%) MAPE(%)
All SDM-AR(2) 0.494 0.744 10.632

AR(2) 0.645 1.027 13.390
SDM-AR(1) 1.099 1.395 24.863
AR(1) 0.896 1.433 19.233

SRE SDM-AR(2) 0.873 1.149 13.743
AR(2) 1.351 1.906 20.058
SDM-AR(1) 1.612 2.039 26.651
AR(1) 1.560 2.213 23.903

CRE SDM-AR(2) 1.030 1.373 24.729
AR(2) 1.325 1.88 32.734
SDM-AR(1) 1.715 2.061 48.035
AR(1) 1.501 2.085 36.900

Table 4.13: Four-quarter-ahead out-of-sample prediction results based on n1 = 60 training
observations.

The Table 4.13 shows the accuracy measurements. The SDM-AR(2) model shows
more significant advantages in four-quarter-ahead prediction than it does in one-quarter-
ahead. It is clear that all the accuracy measurements are improved dramatically by using
the SDM-AR(2) model. But if we compare the SDM-AR(1) with AR(1) models, the
result goes in the opposite way as we expect. The state dependence does not improve the
prediction accuracy. Also, only changing the model from AR(1) to AR(2) does not bring us
a significant improvement. This result suggests that when performing four-quarter-ahead
prediction, either state-dependence or two-lag structure alone is not sufficient. We need
both of them in order to forecast the market behavior accurately. For the remaining series
we left in the Appendix, we can find that the SDM-AR(2) model provides at least the same
accuracy as the other models do.

The following figure provides a close look at the prediction error series of the All series.
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Figure 4.7: Four-step ahead prediction error series for All series when n1 = 60

Although, it is less obvious that the models except SDM-AR(2) systematically under-
predict the default rate during the financial crisis, the SDM-AR(2) is still able to show
slight advantages. As we can see from Figure 4.7, the errors of SDM-AR(2) are closer
to zero than the others. This is also supported by the accuracy measurements we have
calculated in the previous table. Based on the remaining plots we have relegated to the
Appendix, we are able to conclude that the SDM-AR(2) model can provide at least the
same accuracy as the other three models do.
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4.5 Out-of-sample prediction (interval estimates)

Besides the accurate point estimates, which is an important factor when choosing a model,
interval estimates are more important than point estimates from a risk management per-
spective. Especially, after the financial crisis, banks put more efforts in developing models
to foresee potential huge loss.

In this section we will focus on the one- and four-quarter-ahead one-sided 99.9% upper
prediction confidence intervals based on the four fitted models. In order to quantify the
performance of those intervals, we will count the number of points which fall outside the
confidence interval, with the interpretation that the more points fall outside the interval,
the worse the model is in capturing the potential risk for the next time period.

The out-of-sample predictive quantiles are calculated by conditioning on all the available
observations up to the current position. For example, the h-quarter-ahead quantile at time
t, D̂t+h,99.9% is Φ(x), where x is the solution of the following equation:∫ x

−∞
fYt+h|Y1:t(z|y1:t)dz = 99.9%,

where the integrand is the K-step-ahead prediction density for the observation defined by
Theorem 4 and 12 for the SDM-AR(1) and SDM-AR(2) models, respectively. Then we
iteratively solve this equation for each time after the training segment. The solutions form
a curve, which presents how the 99.9% quantile evolves along the time. In this section, we
focus on the one- and four-quarter-ahead interval prediction.

4.5.1 Interval predicting one quarter ahead

The following table presents the numbers of points that fall outside the 99.9% confidence
intervals calculated by the above equations based on the models estimated with the pre-
crisis training segment. The column n∗ represents the number of points that fall outside
the 99.9% CI.
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Series Model n∗ Percentage
All SDM-AR(2) 1 2.27%

AR(2) 1 2.27%
SDM-AR(1) 4 9.09%
AR(1) 9 20.45%

OC SDM-AR(2) 0 0%
AR(2) 0 0%
SDM-AR(1) 0 0%
AR(1) 2 4.55%

SRE SDM-AR(2) 0 0%
AR(2) 6 13.63%
SDM-AR(1) 3 6.81%
AR(1) 10 22.72%

CRE SDM-AR(2) 1 2.27%
AR(2) 2 4.55%
SDM-AR(1) 1 2.27%
AR(1) 7 15.91%

Table 4.14: The numbers of points that fall outside of the 99.9% one-side confidence
interval when n1 = 60. The number of points in the testing set is 44. The percentage
column presents the percentage of the points out of total test points.

Based on Table 4.14, we can easily notice several pieces of evidence to support the idea
that the SDM-AR(2) model shows strong advantages compared with other models.

1. Changing from the one-lag structure (AR(1) and SDM-AR(1)) to the two-lag struc-
ture (AR(2) and SDM-AR(2)) brings a significant improvement to the interval esti-
mates.

2. The state dependence also plays an important role in the one-quarter-ahead interval
prediction. It is obvious that all the state-dependence models reduce the number of
points that breach the interval by at least 50%.

3. The SDM-AR(2) model clearly outperforms the other models by having the least
number of points breached the intervals.

The following figure presents the evolution of the model-implied 99.9% one-quarter-
ahead quantile from the four models estimated with the pre-crisis training segment, along
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with the historical data. The star markers in the plot represent the points at which the
historical data breached corresponding model’s confidence interval. We only display the
All series in here and relegated the rest to the Appendix.
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Figure 4.8: One-quarter-ahead prediction CI with 60 points estimation

It is hard to directly compare how the models behave during the financial crisis. But,
during the recovery period after the financial crisis, the SDM-AR(2) and AR(2) models
provide a lower value of CI. This may suggest that the other two models may overestimated
the default rate for the next quarter. Especially, in 2010 which is the turning point of the
financial crisis, the AR(2) and SDM-AR(2) models are able to lower their prediction for the
next quarter faster than the other models. This result implies that the two-lag structure
brings the ability to foresee the turning point when the market will change.

In order to have a clear assessment of the ability of the models in capturing the future
risk, we zoom in the overall default rate (All series) from the beginning of 2007 to the end
of 2011 in Figure 4.9. This is also the period which contains all the historical data which
lie outside of the prediction confidence interval.
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Figure 4.9: Zoom-in plot of the 99.9% CI during the financial crisis for All series generated
by four models when n1 = 60.

As we can see from this figure, all the intervals generated by those four models are
breached in the third quarter of 2008. This suggests that the financial crisis is an extreme
event which occurs with probability less than 0.1%. But this is also the only time when
the data breaches the intervals generated by the SDM-AR(2) and AR(2) models.

Based on the figure, changing the model from AR(1) to AR(2) enables the prediction
interval to cover the majority of the points. This result is consistent with the conclusion
we drew from point estimates. Bringing the state-dependence to the AR(1) model also
improves the result, but the improvement of changing AR(2) to SDM-AR(2) model is not
substantial for All series.

In order to verify the importance of the state-dependence, we also zoom on the SRE
series during the financial crisis in Figure 4.10.
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Figure 4.10: Zoom-in plot of the 99.9% CI during the financial crisis for SRE series gener-
ated by four models when n1 = 60.

The improvment of introducing the state-dependence can be easily found in the middle
of 2007 where the historical data breached all the confidence intervals of the other three
models except the one of the SDM-AR(2) model. The same situation happens again at the
beginning of 2008. This is a strong evidence to support the idea that using neither two-lag
structure nor state-dependence alone is enough to predict the market behavior. We need
both of them together in order to have an accurate result.

4.5.2 Interval predicting four-quarters ahead

Agian, we also demonstrate the four-quarter-ahead interval prediction in this section. The
same methodology as in the previous section is applied in here. The following table presents
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the numbers of points falling outside the 99.9% confidence intervals with pre-crisis training
segment. As before, the column n∗ represents the number of points falling outside the
99.9% CI.

Series Model n* Percentage
All SDM-AR(2) 2 5%

AR(2) 7 17.5%
SDM-AR(1) 10 25%
AR(1) 12 30%

SRE SDM-AR(2) 1 2.5%
AR(2) 12 30%
SDM-AR(1) 11 27.5%
AR(1) 15 37.5%

CRE SDM-AR(2) 1 2.5%
AR(2) 11 27.5%
SDM-AR(1) 10 25%
AR(1) 14 35%

Table 4.15: The number of points that lie out of the 99.9% one-sided confidence interval
when n1 = 60. The number of back-testing points is 40. The percentage column presents
the percentage of the points out of total test points.

When we focus on the four-quarter-ahead prediction intervals, the advantages of the
SDM-AR(2) model are much more obvious. The table clearly reflects the fact that intro-
ducing the two-lag structures helps the model to accurately foresee more potential risks.
The state-dependence is another important factor we need to include in the model we use.
As we can see from the table, by introducing the state-dependence to the AR(2) model,
we dramatically reduce the number of points breached the interval.

The following figures provide a direct comparison of the four-quarter-ahead prediction
intervals from those four models estimated with the pre-crisis training segment. The star
markers in the plot represent the points at which the historical data breached corresponding
model’s confidence interval. The rest of the plots can be found in the Appendix.

108



2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Time

0

0.02

0.04

0.06

0.08

0.1

0.12

D

D
SDM-AR(2)
SDM-AR(1)
AR(1)
AR(2)

(a) All series

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Time

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D

D
SDM-AR(2)
SDM-AR(1)
AR(1)
AR(2)

(b) CRE series

Figure 4.11: Four-quarter-ahead prediction CI with 60 points estimation

We can easily tell from the figures, the SDM-AR(2) model provides us with the most
reliable results. During the financial crisis, the CI of SDM-AR(2) is high enough to cover
the majority of default rates in the following time period. It also reacts more rapidly than
the other models do after the financial crisis. This is also a piece of evidence to support
the idea that both the two-lag structure and state-dependence are important factors when
we try to predict the default rate.

4.6 Inference about the systematic risk factor {Mt}

The purpose of this section is to make some inferences about the latent systematic risk fac-
tor {Mt} based on the SDM-AR(2) model. In the first part of this section, we demonstrate
the method we have used to select the best inferential value M̂t of the underlying process
{Mt} for each time t = 1, . . . , T . Then, by checking some fundamental characteristics of
the series {M̂t}, we are able to verify if the AR(2) process defined in Equation 3.23 can
adequately model the latent process {Mt}.
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4.6.1 Systematic risk factor filtering

After we have successfully applied the maximum likelihood method for estimating the
model parameters, we need to develop a procedure to estimate the current value of the
systematic risk factor based on the observations up to time t (the current time). To solve
such a filtering problem, we compute the filtering density function of the latent state
fMt|Y1:t(mt|y1:t).

In a classic dynamic linear model, the conditional variable Mt|Y1:t = y1:t is usually
continuous. But in the SDM-AR(2) model, we know that the distribution of Mt is discrete
once given the value of Yt and depends on the whole path of {Y1:t}. As a result, the filtering
function of the SDM-AR(2) model is a probability mass function.

According to Theorem 11 in Section 3.7 and the law of total probability, we can calculate
the filtering function at time t, P (Mt = mt|Y1:t = y1:t), by:

P (Mt = mt|Y1:t = y1:t) =
K∑
k=1

P (Mt = mt,Mt−1 = M−1(yt−1, k)|Y1:t = y1:t), (4.6)

where K is the number of regimes for the market, assumed equal to 2 in this study. The
function M−1(y, k) is defined in Equation 3.13.

Then, for each time t = 1 :, . . . , T , we choose M̂t such that:

M̂t = arg max
mt

P (Mt = mt|Y1:t = y1:t). (4.7)

By doing so, we obtain an inferential series {M̂t} about the latent process {Mt}. The
following figure shows the series {M̂t} for ALL series.
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Figure 4.12: The inferential series {M̂t} for ALL series.
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4.6.2 AR(2) assumptions diagnostics

In this section, we want to verify if the following assumptions we have made for the latent
process {Mt} in the SDM-AR(2) model are possibly violated:

• The process {Mt} follows the AR(2) process.

• The stationary distribution of {Mt} is a standard normal.

By using the inferential series {M̂t} we calculated in Section 4.6.1, we have obtained the
following ACF and PACF plots:
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(a) ACF: inferential series {M̂t}
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(b) PACF: inferential series {M̂t}

Figure 4.13: The ACF and PACF of the inferential series {M̂t} for ALL series.

Figure 4.13 provides the ACF and PACF of the inferential series {M̂t} for the ALL
series. We only present one series here, but a similar behavior can also be found in other
series. According to those two figures, there is no clear evidence to indicate the AR(2)
assumption of the process {Mt} is violated.

It is more challenging to verify the assumption that the stationary distribution of {Mt}
is standard normal. Because the Federal Reserve Data we studied in this chapter only
contains 104 data points for each series, the number of data points is too small for a slowly
mean-reverting series to check its stationary distribution. For example, if we directly check
the histogram and QQ-plot of the inferential series {M̂t} in Figure 4.12, the results are
deceiving:

111



(a) Histogram: inferential series {M̂t}
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(b) QQ-plot: inferential series {M̂t}

Figure 4.14: The histogram and QQ-plot of the inferential series {M̂t} for ALL series. The
red line in the histogram represents the normal density curve with the sample mean and
variance.

The red line in Figure 4.14(a) represents the normal density with sample mean and
variance of {M̂t}. The first thing we noticed is that the sample mean and variance are
0.11 and 1.22, which are close to 0 and 1. But the shape of the histogram is far away from
the bell shape, which a normal distribution should have. The QQ-plot also supports that
the normality is questionable. The other unexpected feature of these graphs is that the
QQ-plot suggests the tail of {M̂t} should be lighter than the standard normal distribution.

We know that the stationary distribution of an AR(2) process depends on the values of
its lag coefficients and variance of the white-noise. So, instead of checking {M̂t} directly,
we calculate the residuals of {M̂t} when fitting it to Equation 3.23, and denote them by
{ε̂t}:

ε̂t = M̂t − θ1
ˆMt−1 − θ2

ˆMt−2. (4.8)

The following figures are corresponded to the four major components used to check the
residuals {ε̂t}:
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(c) QQ-plot: The fitted residuals {ε̂t}
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(d) ACF: The fitted residuals {ε̂t}

Figure 4.15: The fitted residuals {ε̂t} of inferential series {M̂t} for ALL series.

As we can easily notice from the above figures, there is no compelling evidence to
indicate a violation of the white noise assumptions. The sample mean and variance of {ε̂t}
are 0.006 and 0.0063. Theoretically, to retain the standard normal stationary distribution
of {Mt} given θ1 = 1.832 and θ2 = −0.853, the variance of the white noise should be 0.0061,
which is close to the sample variance we have. We also perform the Kolmogorov–Smirnov
test on {ε̂t} to verify the normality assumption.
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Series KS test P-value
ALL 0.5741
OC 0.4765
SRE 0.5394
CRE 0.1995

Table 4.16: The Kolmogorov–Smirnov test

So, this result does imply that the stationary distribution of {M̂t} is not inconsistent
with the standard normal distribution.

We realize from the QQ-plot in Figure 4.15 that the distribution of {ε̂t} may have a
heavier tail than the normal distribution. This phenomenon can also be found in most of
the other series. As a result, we may suspect that using the model driven by a normal
distribution to describe the default rate may underestimate the probability of the extreme
event. In the next chapter, we propose a new model to replace the underlying driven
distribution of the SDM-AR(2) model from a normal to t-distribution, which is well-known
for its heavier tails.
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Chapter 5

t-distributed Correlated
State-Dependent Model

The “aftermath” of the 2008 financial crisis warned practitioners and academics about
the shortcomings of the conventional models whose dependence structure is provided via
the Gaussian copula. Under the Gaussian copula model, risk obligator defaults become
asymptotically independent when the market goes far enough into the worst scenario.
We can explain this phenomenon by using the concept of tail dependence. The main
disadvantage of the Gaussian copula is that its tail dependence equals zero. This means
that the Gaussian copula underestimates the default clustering that the market may face.
In order to overcome this drawback, researchers like Schloegl and O’Kane (2005), and
Pimbley (2018) used a similar method based on a chi-square random variable to propose
an extension of the Vasicek model based on the t-distribution that preserves its analytical
convenience but also provides a broader (fat tails) distribution of credit losses.

Let us recall that the credit score defined in the traditional Vasicek model is in the
following form:

Xi = aM +
√

1− a2εi.

The variables M and εi are independent standard normal random variates. The compo-
nent M is common to all obligors, while εi is the idiosyncratic term. The constant a is
the factor loading that controls the level of market correlation. The model proposed by
Schloegl, O’Kane (2005) and Pimbley (2018) similarly modifies the credit score by intro-
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ducing another common factor Sν in the following way:

Xi = Sν

(
aM +

√
1− a2εi

)
(5.1)

Sν =

√
ν

W
, (5.2)

where W is an independent chi-squared random variable with ν degrees of freedom. Hence,
Xi is now changed to having a t-distribution with degrees of freedom ν. This model has
been proved to be able to provide fat tails by adjusting the degrees of freedom ν. So, we
use the name of “tail thickness factor” when referring to the new factor Sν .

In this chapter, we adopt such a modification of the traditional Vasicek model to the
SDM-AR(2) model we propose in Chapter 3. We call this new model the correlated state-
dependent two-lag autoregressive model with a t-distribution systematic risk factor, ab-
breviated as t-SDM-AR(2).

When defining a model of the form 5.1, we need to pay some attention to the fact that
the systematic risk factor M in Equation 5.1 is assumed to be uncorrelated through time.
Based on our findings in Chapter 3, the systematic risk factor should exhibit some serial
correlations. This difference raises the question of the effect of the tail thickness factor Sν
on the serial correlation.

To answer this question, in subsequent sections , we closely study the effect of including
the tail thickness factor Sν in the context of three possible extensions of the SDM-AR(2)
model. One possible way is given by Equation 5.1. Both the systematic risk factor and
the idiosyncratic term are affected by Sν . The other possible alternative models are of the
form:

Xi = aSνM +
√

1− a2εi (5.3)

Xi = aM +
√

1− a2Sνεi. (5.4)

As we can tell from the above equations, the tail thickness factor Sν only affects either
the systematic risk factor or the idiosyncratic term. By comparing the formulas of the
transformed default rate based on those three models, we will be able to get a clear picture
of the effect of the tail thickness factor.

In the first part of this chapter, we take a closer look at some of the basic properties of
the tail thickness factor Sν . Then, we move on to study the effect brought by Sν into the
SDM-AR(2) model.

In the next part of this chapter, we bring the same modifications as in Equations 5.1,
5.3 and 5.4 to the SDM-AR(2) model. However, we also argue that these modifications
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change the variances of the systematic risk and the idiosyncratic factor, which make the
effect of different distributions and variance indistinguishable. So, we introduce another
scalar factor to force the variance to be at the same level as in the SDM-AR(2) model.

After that, we extend the methodology we have developed in Section 3.7 to calculate
the likelihood function of the t-SDM-AR(2) models and perform some simulation tests to
check the impact of the new parameter ν. In the last part of this chapter, we estimate
the t-SDM-AR(2) models using historical data and compare the results with those for the
SDM-AR(2) model.

The final results show no clear evidence that the t-SDM-AR(2) model fits the data
better the SDM-AR(2) model does. However, the proposed t-SDM-AR(2) model can be
treated as an extension of the SDM-AR(2). Also, the t-SDM-AR(2) model allows us to
change the conservative degree of the predictive confidence interval by considering different
values of ν.

5.1 Properties of the tail thickness factor Sν

Before we study the new models, we take a closer look at some basic properties of Sν .
First, we calculate its expectation:

E(Sν) =

∫ ∞
0

√
ν

x
fν(x) dx,

where fν(x) is the probability density function of the chi-square distribution with ν degrees
of freedom. We have,

E(Sν) =

∫ ∞
0

√
ν√
x

xν/2−1e−x/2

2ν/2Γ(ν
2
)

dx

=

√
ν

2ν/2Γ(ν
2
)
2ν/2−1/2Γ(

ν − 1

2
)

=

√
ν

2

Γ(ν−1
2

)

Γ(ν
2
)
.

According to the Euler’s definition of the Gamma function as an infinite product that

lim
ν→∞

Γ(ν−1
2

)

Γ(ν
2
)ν

2
−1/2

= 1, (5.5)
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we have that limν→∞E(Sν) = 1.

Using a similar method, we can calculate the second moment of Sν :

E(S2
ν) =

∫ ∞
0

ν

x

xν/2−1e−x/2

2ν/2Γ(ν
2
)

dx

=
ν

2ν/2Γ(ν
2
)
2ν/2−1Γ(ν/2− 1)

=
νΓ(ν

2
− 1)

2Γ(ν
2
)

=
ν

ν − 2
.

Then, the variance of Sν is

V ar(Sν) = E(S2
ν)− E(Sν)

2

=
ν

ν − 2
− ν

2

[
Γ(ν−1

2
)

Γ(ν
2
)

]2

.

By Equation 5.5, we have

lim
ν→∞

V ar(Sν) = 0.

By combining the facts that limν→∞E(Sν) = 1 and limν→∞ V ar(Sν) = 0, we can infer
that as ν increases to infinity, the tail thickness factor Sν converges to 1 in probability and
the credit score Xi goes back to the original Vasicek model.

The density function of Sν can be derived by finding the distribution function first,

P (Sν 6 s) = P (

√
ν

W
6 s) = 1− Fν

( ν
s2

)
,

where Fν() is the CDF of the Chi-squared distribution with ν degrees of freedom. By
taking the first derivative of Fν() with respect to s, we find the PDF of Sν ,

fSν (s) =
2ν

s3
fν

( ν
s2

)
for s ∈ [0,∞]. (5.6)
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5.2 The proposed t-SDM-AR(2) models

Let’s first recall the SDM-AR(2) model we have proposed in Section 3.5

Xi,t = a(Tt)Mt +
√

1− a(Tt)2ei,t

Mt = θ1Mt−1 + θ2Mt−2 + εt

Tt = βMt + ε′t,

where

a(x) =
K∑
k=1

ak · 1(tk < x 6 tk+1),

and K is the number of market regimes. For t = 1, . . . , T , ei,t and ε′t are independent error
terms with mean 0 and variances σ2

e = 1 and σ2
ε′ = 1− β2, respectively. But the variance

of εt is

σ2
ε = 1− γ1θ1 − γ2θ2, (5.7)

where γ1 = θ1
1−θ2 and γ2 = θ1γ1 + θ2.

In this section, we retain all the other components of the SDM-AR(2) model besides
the credit score Xi,t. We replace the formula for the credit score in three different ways:

Xi,t =

√
ν − 2

ν
St,ν

[
a(Tt)Mt +

√
1− a(Tt)2ei,t

]
(5.8)

Xi,t = a(Tt)

√
ν − 2

ν
St,νMt +

√
1− a(Tt)2ei,t (5.9)

Xi,t = a(Tt)Mt +
√

1− a(Tt)2

√
ν − 2

ν
St,νei,t, (5.10)

where St,ν =
√
ν/Wt and W1, . . . ,WN follow an independent Chi-squared distribution with

a degree of freedom ν. We also introduce an additional scale factor
√

ν−2
ν

in the equations

so that we can keep the variances of the systematic and idiosyncratic terms the same as in
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the SDM-AR(2) model

V ar

(√
ν − 2

ν
St,νMt

)
=
ν − 2

ν
V ar (St,νMt)

=
ν − 2

ν

[
E(S2

t,νM
2
t )− E(St,ν)

2E(Mt)
2
]

=
ν − 2

ν
E(S2

t,ν)E(M2
t )

= 1.

The last equation is based on the facts that E(S2
t,ν) = ν

ν−2
and E(M2

t ) = 1. Similar result
can also be derived for the idiosyncratic term. As a consequence of this scaling procedure,
we are able to distinguish the effect of having distributions with different tails from the
effect of different variances.

By combining one of the Equations 5.8-5.10 with the other components of the SDM-
AR(2) model, we obtain three different model specifications. For ease of reference, in the
rest of the chapter, we shall call the model with Equation 5.8 t-SDM-AR(2) with local
and systematic fluctuation (t-SDM-AR(2)-LS). t-SDM-AR(2) with systematic fluctuation
(t-SDM-AR(2)-S) and t-SDM-AR(2) with local fluctuation (t-SDM-AR(2)-L) will be used
to denote the models defined in Equation 5.9 or 5.10. The reasons for naming the models
in this way will be explained in Section 5.3.

5.3 The impact of St,ν in three t-SDM-AR(2) models

In this section, we study the effect of St,ν with given Mt and Tt under the assumption that
the values of the parameters are identical for all models. To simplify the calculation, we
introduce the transformed default rate

Yt = Φ−1(Dt). (5.11)

Under the large homogeneous portfolio assumption and the fact that for any i and j, Xi,t

and Xj,t are conditionally independent with each other once given Mt, Tt and St,ν , we know
that the distribution of Dt converges to

Dt|Mt, Tt, St,ν ∼ lim
N→∞

N∑
i=1

1(Xi,t<xPD)

N

∼ P (Xi,t 6 xPD|Mt, Tt, St,ν)

= Φ(Yt).
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The transformed default rate Yt for each model is of the form

Yt =


[xL,SPD/

(√
ν−2
ν
St,ν

)
− a(Tt)Mt] · κ(Tt), for t-SDM-AR(2)-LS

[xSPD − a(Tt)
(√

ν−2
ν
St,ν

)
Mt] · κ(Tt), for t-SDM-AR(2)-S

√
ν√

ν−2St,ν
[xLPD − a(Tt)Mt] · κ(Tt), for t-SDM-AR(2)-L

[xPD − a(Tt)Mt] · κ(Tt), for SDM-AR(2),

where κ(Tt) =
[√

1− a2(Tt)
]−1

. The values, xL,SPD, xTPD, xLPD and xPD represent the default

thresholds for each model. We use Y L,S
t , Y S

t , Y L
t and Yt to denote the transformed default

rate for each model, respectively.

As we know, once Mt and Tt are given, Yt is fixed and Y L,S
t , Y S

t , Y L
t are functions of

St,ν only. So, we use Yt as a benchmark and divide Y L,S
t , Y S

t and Y L
t by Yt to compute

relative changes, as compared to the SDM-AR(2) model.

In the situation where all parameters are identical across the four models, the numerical
results suggest that differences among xL,SPD, xSPD, xLPD and xPD are negligible:

xL,SPD ≈ xSPD ≈ xLPD ≈ xPD.

By making this assumption, we can concentrate on the impact of St,ν and ignore differences
among the thresholds.

5.3.1 Systematic change ratio

We first divide Y S
t by Yt:

Y S
t

Yt
≈

[xPD − a(Tt)
(√

ν−2
ν
St,ν

)
Mt] · κ(Tt)

[xPD − a(Tt)Mt] · κ(Tt)

=
xPD

xPD − a(Tt)Mt

− a(Tt)Mt

xPD − a(Tt)Mt

(√
ν − 2

ν
St,ν

)
.

We can notice that this ratio is a random variable whose value depends on St,ν when Mt

and Tt are given. Some of the other properties of this ratio are easy to identify. First, the
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conditional expectation and variance of the ratio can be easily derived as

ESt,ν

[
Y S
t

Yt
|Mt, Tt

]
=

xPD
xPD − a(Tt)Mt

− a(Tt)Mt

xPD − a(Tt)Mt

√
ν − 2

2

Γ(ν−1
2

)

Γ(ν
2
)

V arSt,ν

[
Y S
t

Yt
|Mt, Tt

]
=

[
a(Tt)Mt

xPD − a(Tt)Mt

]2
ν − 2

ν
V ar(St,ν).

As we can see, both the expectation and variance are dependent on the value of Mt.
For the given ν, the variance of the ratio increases when Mt decreases. From the above
representations we can also conclude that

lim
ν→∞

ESt,ν

[
Y S
t

Yt
|Mt, Tt

]
= 1. (5.12)

lim
ν→∞

V arSt,ν

[
Y S
t

Yt
|Mt, Tt

]
= 0. (5.13)

These results imply that the t-SDM-AR(2)-S model converges back to the SDM-AR(2)
model as ν goes to infinity. In addition, by comparing the expectation of the ratio with 1,
we have

1− ESt,ν
[
Y S
t

Yt
|Mt, Tt

]
=

a(Tt)Mt

xPD − a(Tt)Mt

[√
ν − 2

2

Γ(ν−1
2

)

Γ(ν
2
)
− 1

]
.

Note that
√

ν−2
2

Γ( ν−1
2

)

Γ( ν
2

)
− 1 is always less than 0 for any ν > 2. For xPD less than 0, the

ratio a(Tt)Mt

xPD−a(Tt)Mt
will be greater than 0 when xPD

a(Tt)
< Mt < 0. As a result, we can expect

that Y S
t should be larger than Yt when xPD

a(Tt)
< Mt < 0. Then, according to Equation 5.11,

the expected default rate of t-SDM-AR(2)-S should be larger than the one of SDM-AR(2)
when xPD

a(Tt)
< Mt < 0.

We are able to draw the conclusion that by multiplying the tail thickness factor St,ν

and the normalization scale factor
√

ν−2
ν

with the systematic risk factor Mt only, we should

expect a broader distribution of the default rate than that for the SDM-AR(2) model when
we are at a bearish market level. Also, the default rate distributions of both models are
close to each other when the market is around its average. Thus, the systematic change
ratio heavily depends on the level of the market.

The following figures show the conditional expectation and variance of the systematic
change ratio given Mt for different factor loadings and degree of freedoms.
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Figure 5.1: Effect of Mt on the conditional expectation and variance of
Y St
Yt

with different
factor loadings and degrees of freedom.
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5.3.2 Local change ratio

In this section, we calculate the ratio between Y L
t and Yt, which we will call the “local

change ratio”:

Y L
t

Yt
≈

√
ν√

ν−2St,ν
[xPD − a(Tt)Mt] · κ(Tt)

[xPD − a(Tt)Mt] · κ(Tt)

=

√
ν√

ν − 2St,ν
.

As we can see, the interpretation of the local change ratio is quite simple. It is a random
variable whose distribution is only dependent on ν and independent of Mt and Tt, even the
values of other model parameters. Based on the study of 1

St,ν
made by Pimbley (2018), it

is also easy to obtain:

ESt,ν

[
Y L
t

Yt

]
=

√
2

ν − 2

Γ(ν+1
2

)

Γ(ν
2
)

V arSt,ν

[
Y L
t

Yt

]
=

ν

ν − 2
− 2

ν − 2

[
Γ(ν+1

2
)

Γ(ν
2
)

]2

.

As we can see, the local change ratio’s conditional mean and variance remain the same
regardless of the market level. Therefore, the default rate distribution should always be
broader in the t-SDM-AR(2)-L model than the one in the SDM-AR(2) model under all
market levels. As ν approaches infinity, the expected value and variance of the local
change ratio converge to 1 and 0, respectively. This is also consistent with the fact that
the t-SDM-AR(2)-L model converges to the SDM-AR(2) model.

5.3.3 Local-systematic change ratio

In this section, we compute the change ratio between the t-SDM-AR(2)-LS and the SDM-
AR(2) model:

Y L,S
t

Yt
≈

[xL,SPD/
(√

ν−2
ν
St,ν

)
− a(Tt)Mt] · κ(Tt)

[xPD − a(Tt)Mt] · κ(Tt)

=

√
ν√

ν − 2St,ν

xPD
xPD − a(Tt)Mt

− a(Tt)Mt

xPD − a(Tt)Mt

.
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Now, the change ratio is more complicated than both the systematic and local change
ratios. By rearranging the above equation in the following form, we have:

Y L,S
t

Yt
=

√
ν√

ν − 2St,ν

[
xPD

xPD − a(Tt)Mt

− a(Tt)Mt

xPD − a(Tt)Mt

(√
ν − 2

ν
St,ν

)]

=
Y L
t

Yt
· Y

S
t

Yt
.

This means that the change ratio between the t-SDM-AR(2)-LS and the SDM-AR(2)
model can be decomposed into two parts: a systematic part and a local part. By keeping
re-arranging the above equation, we can also find:

Y L,S
t

Y S
t

=
Y L
t

Yt

Y L,S
t

Y L
t

=
Y S
t

Yt
.

That means the t-SDM-AR(2)-LS model preserves the properties of both the t-SDM-
AR(2)-L and the t-SDM-AR(2)-S model. The default rate distribution of the t-SDM-
AR(2)-LS model should always be broader than the one of the SDM-AR(2) model at all
market levels, and much broader when the market is far from its average.

5.3.4 Change ratio visualization

In this section, we depict some of the properties of the change ratios we have introduced
in the last section by using simulated data from each model. We have chosen the following
values of the parameters

a1 = 0.25, a2 = 0.1, β = 0.9, θ = [1.8, −0.85], t1 = 0, ν = 20, PD = 0.05.

By fixing the seed of the random number generator, we use the same values of {Mt},
{Tt} and {St,ν} to simulate the default rate based on t-SDM-AR(2)-LS, t-SDM-AR(2)-L,
t-SDM-AR(2)-S and SDM-AR(2). The following figures show the 100 simulated default
rate points from each model.
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(b) t-SDM-AR(2)-L vs. SDM-AR(2)
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(c) t-SDM-AR(2)-LS vs. SDM-AR(2)

Figure 5.2: Simulated default rates from the t-SDM-AR(2)-LS, t-SDM-AR(2)-L, t-SDM-
AR(2)-S, SDM-AR(2).

As we can observe from panel (a), the discrepancy between the two models is more
pronounced when the default rate is relatively high. The discrepancies shown in the other
two panels fluctuate randomly at all market levels.

The following figures show the systematic change ratio and local change ratio along
with the systematic risk factor Mt.
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Figure 5.3: Systematic and local change ratio vs. systematic risk factor

The above figures provide strong visual evidence to support the idea that the systematic
change ratio has large variation when the market is bearish and the variation of the local
change ratio is independent of the market level.

To summarize our findings in this section, we can interpret the t-SDM-AR(2)-LS, t-
SDM-AR(2)-S, t-SDM-AR(2)-L and SDM-AR(2) models in the following way:

• The t-SDM-AR(2)-L model provides extra volatility in all market levels. This volatil-
ity is independent of the market level.

• The t-SDM-AR(2)-S model provides additional volatility when the market is bearish.
Also, the additional volatility increases when the market declines.

• The t-SDM-AR(2)-LS model can be treated as a combination of t-SDM-AR(2)-L and
t-SDM-AR(2)-S, and hence it provides additional volatility for all market scenarios.
The additional volatility is amplified when the market declines.

Since we believe the overall market level should have some impact on the distribution of
the default rate, we expect that the t-SDM-AR(2)-S and t-SDM-AR(2)-LS models should
perform better than the other models in describing the Federal Reserve Data.
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5.4 Credit threshold of the three t-SDM-AR(2) mod-

els

Since in the proposed models, we define the credit score Xi,t differently than in the SDM-
AR(2) model, it is essential to calculate the default threshold xPD for each t-SDM-AR(2)
model. In this section, we derive the formulas for each xPD. First, by conditioning on St,ν ,
Mt and Tt, we can find that the conditional distributions of Xi,t are of the form:

P (Xi,t 6 x|St,ν ,Mt, Tt) =


Φ([x− a(Tt)ζ(ν)St,νMt]/[κ(Tt)ζ(ν)St,ν ]) for t-SDM-AR(2)-LS

Φ([x− a(Tt)ζ(ν)St,νMt]/κ(Tt)) for t-SDM-AR(2)-S

Φ([x− a(Tt)Mt]/[κ(Tt)ζ(ν)St,ν ]) for t-SDM-AR(2)-L,

(5.14)

where ζ(ν) =
√

ν−2
ν

and κ(Tt) =
√

1− a(Tt)2. We can also present the expressions in

Equation 5.14 in the form of Φ (x;µ(St,ν ,Mt, K), σ(K)), where

µ(St,ν ,Mt, K) =

{
aKζ(ν)St,νMt for t-SDM-AR(2)-LS and t-SDM-AR(2)-S

aKMt for t-SDM-AR(2)-L,

σ(St,ν , K) =

{√
1− a2

Kζ(ν)St,ν for t-SDM-AR(2)-LS and t-SDM-AR(2)-L√
1− a2

K for t-SDM-AR(2)-S.

Then, we have:

P (Xi,t 6 x|St,ν) =

∫ ∞
−∞

[
K∑
k=1

Φ (x;µ(St,ν ,mt, k), σ(St,ν , k)) · pk(m)

]
· φ(m) dm, (5.15)

where pk(m) is defined in Equation 2.7. By applying the same method we have used for
Equation 2.12, we can further simplify Equation 5.15 as:

P (Xi,t 6 x|St,ν) =
K∑
k=1

EM

[
Φ∗2

([
x
tk+1

]
,

[
x
tk

]
;

[
µ(St,ν ,M, k)

βM

]
,

[
σ(St,ν , k)2 0

0 1− β2

])]
,

where Φ∗2(x1, x2;µ,Σ) = Φ2(x1;µ,Σ)− Φ2(x2;µ,Σ).
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To apply Theorem 2, we can set a(k) =

[
x
tk

]
, Σ(St,ν , k) =

[
σ(St,ν , k)2 0

0 1− β2

]
and

b(St,ν , k) =

[
b∗(St,ν , k)

β

]
, where

b∗(St,ν , k) =

{
akζ(ν)St,ν For t-SDM-AR(2)-LS and t-SDM-AR(2)-S

ak For t-SDM-AR(2)-L.

Then we have:

P (Xi,t 6 x|St,ν) =
K∑
k=1

Φ∗2(a(k + 1), a(k); 0,Σ(St,ν , k) + b(St,ν , k)b(St,ν , k)T ).

By integrating over St,ν , we find the unconditional distribution function of Xi,t to be

P (Xi,t 6 x) =

∫ ∞
0

P (Xi 6 x|s) fSν (s) ds,

where fSν (s) is defined in Equation 5.6. The credit threshold xPD can be found numerically
by solving the following equation:

P (Xi,t 6 xPD) = PD.

5.5 Filtering procedure and likelihood function

In this section, we develop a filtering procedure and likelihood function for the observations
of the three t-SDM-AR(2) models.

We start this section by developing a filtering procedure. The first step is to determine
the one-step-ahead state predictive density function. After that, we start to derive the
one-step-ahead observation predictive density function. The last function we need is the
filtering density function. By using the same method we have used to find the likelihood
function of the SDM-AR(2) model, we will also be able to derive the likelihood function
of the t-SDM-AR(2) models.

5.5.1 One-step-ahead predictive density for the states

The main idea behind the one-step-ahead predictive density function of the t-SDM-AR(2)
models is similar to the one of the SDM-AR(2) model in Section 3.7. We first derive the
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one-step-ahead state predictive density by the following equation:

fMt+1,Mt|Y1:t(mt+1,mt|y1:t) =

∫ ∞
−∞

fMt+1|Mt,Mt−1(mt+1|mt,mt−1)fMt,Mt−1|Y1:t(mt,mt−1|y1:t) dmt−1,

(5.16)

where fMt+1|Mt,Mt−1() is the transition density function of the AR(2) process {Mt}, given
by

fMt+1|Mt,Mt−1(mt+1|mt,mt−1) =
1

σε
φ(
mt+1 − θ1mt − θ2mt−1

σε
),

with σε defined in Equation 5.7.

The last term in Equation 5.16, fMt,Mt−1|Y1:t , is the filtering density function that we
will determine later in this section. A proof of Equation 5.16 is similar to that we have
presented in Section 3.7.

5.5.2 One-step-ahead predictive density function for the trans-
formed default rate

The one-step-ahead prediction density function of the observations can be derived by first
applying the law of total probability,

fYt|Y1:t−1(yt|y1:t−1) =

∫ ∞
−∞

fYt,Mt|Y1:t−1(yt,mt|y1:t−1) dmt

=

∫ ∞
−∞

fYt|Mt,Y1:t−1(yt|mt, y1:t−1)fMt|Y1:t−1(mt|y1:t−1) dmt.

Since we know that Yt is conditionally independent of its past path {Y1:t−1} once given Mt,
we can simplify the above representation to the following form:

fYt|Y1:t−1(yt|y1:t−1) =

∫ ∞
−∞

fYt|Mt(yt|mt)fMt|Y1:t−1(mt|y1:t−1)dmt, (5.17)

where fYt|Mt() is defined in Section D for each t-SDM-AR(2) model, and fMt|Y1:t−1(mt|y1:t−1)
can be calculated by integrating the Equation 5.16 with respect to mt−1 over all real
numbers

fMt|Y1:t−1(mt|y1:t−1) =

∫ ∞
−∞

fMt,Mt−1|Y1:t−1(mt,mt−1|y1:t−1) dmt−1.
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5.5.3 Filtering density function

We are able to compute the filtering density function, fMt,Mt−1|Y1:t(mt,mt−1|y1:t), by using
the definition of the conditional density first:

fMt,Mt−1|Y1:t(mt,mt−1|y1:t) =
fMt,Mt−1,Y1:t(mt,mt−1, y1:t)

fY1:t(y1:t)

=
fMt,Mt−1,Y1:t(mt,mt−1, y1:t)/fY1:t−1(y1:t−1)

fY1:t(y1:t)/fY1:t−1(y1:t−1)

=
fYt,Mt,Mt−1|Y1:t−1(yt,mt,mt−1|y1:t−1)

fYt|Y1:t−1(yt|y1:t−1)

=
fYt|Mt(yt|mt)fMt,Mt−1|Y1:t−1(mt,mt−1|y1:t−1)

fYt|Y1:t−1(yt|y1:t−1)
.

The last step is derived by the property that Yt is conditionally independent of both its
past path {Y1:t−1} and Mt−1 once the value of Mt is given.

5.5.4 Likelihood function of the transformed default rate

The likelihood function can be calculated by decomposing it into the following form:

fY1:N (y1:N) = fY1(y1)
N∏
i=2

fYi|Y1:i−1
(yi|y1:i−1), (5.18)

where fYi|Y1:i−1
has been determined in Section 5.5.2 and fYt() is the stationary density

function of the transformed default rate, which can be derived by considering its stationary
distribution function first,

P (Yt 6 yt) =

∫ ∞
−∞

(1− P (Yt > yt|Mt = mt)) · φ(mt) dmt

By taking the derivatives, we can find the stationary density function of Yt.

5.6 Model estimation

In this section, we discuss the problem of model estimation in the context of the three t-
SDM-AR(2) models defined in Section 5.2. Although we have developed the formula for the
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likelihood function in Equation 5.18, the challenge is that the equation contains some three-
dimensional integration. In our experience, the built-in integral3 function in Matlab does
not appear to be well-suited to this problem, in the sense that computational times for the
integrands we are dealing with are excessively high. In order to speed up the calculation, we
use the standard numerical method presented in Appendix E to approximate the integral.

We demonstrate the accuracy of the estimation procedure in Section 5.6.1. Then, we
briefly discuss the method we used to select the initial points for the numeric optimizer.
After that, we use the simulated data to demonstrate the proposed models’ forecasting
ability. In the last part, we apply the proposed models to the Federal Reserve Data we
used in Chapter 4.

5.6.1 Simulation study

In this section we use simulated data to verify the accuracy of the estimation procedure
for the proposed models.

In order to verify that the proposed estimation procedure works for different parameter
settings, we first simulate one time series with 500 observations based on four different
parameter settings. The initial point for the numerical optimizer is set at the true values
of the parameters. By doing so, we are able to verify the performance of the estimation
procedure in different scenarios given condition on having good starting values. Table 5.1
presents the results for this test.
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a1 a2 β t θ1 θ2 ν

True value 0.2 0.1 1 -0.3 1.8 -0.85 20
t-SDM-AR(2)-L 0.176 0.051 0.99 0.751 1.849 -0.903 19
t-SDM-AR(2)-S 0.193 0.085 0.99 -0.252 1.757 -0.811 16
t-SDM-AR(2)-LS 0.169 0.058 0.99 0.780 1.859 -0.912 19

True value 0.2 0.1 1 -0.3 1.8 -0.85 100
t-SDM-AR(2)-L 0.180 0.097 0.99 0.780 1.820 -0.877 96
t-SDM-AR(2)-S 0.189 0.102 0.99 0.339 1.787 -0.853 103
t-SDM-AR(2)-LS 0.178 0.097 0.99 0.810 1.824 -0.882 92

True value 0.2 0.1 1 -0.3 1.8 -0.85 300
t-SDM-AR(2)-L 0.193 0.105 0.99 0.536 1.799 -0.860 302
t-SDM-AR(2)-S 0.203 0.098 0.99 -0.10 1.777 -0.829 290
t-SDM-AR(2)-LS 0.193 0.106 0.99 0.540 1.803 -0.863 290

True value 0.2 0.1 0.5 -0.3 1.8 -0.85 20
t-SDM-AR(2)-L 0.214 0.115 0.24 -0.463 1.849 -0.913 23
t-SDM-AR(2)-S 0.205 0.104 0.713 -0.069 1.803 -0.860 17
t-SDM-AR(2)-LS 0.167 0.066 0.63 -0.135 1.838 -0.875 19

Table 5.1: The simulation test of t-SDM-AR(2)-L, t-SDM-AR(2)-S, and t-SDM-AR(2)-LS
models based on four different parameter settings with 500 simulated data points.

As we can see from Table 5.1, the estimators for both θ1 and θ2 work reasonably well
in all cases considered in this study. The pattern of results becomes more complicated
when look at the parameters a1 and a2. The discrepancy between the true values and
the estimates of a1 and a2 increases when the degree of freedom ν decreases. This result
suggests that the effect of having different regimes can be difficult to distinguish from the
effect of modeling the systematic risk factor based on distributions with different tails.
This brings to our attention the well-known parameter identification problem, solution of
which we leave as a possible future research direction.

In the second stage of our simulation study, we estimated some basic statistics regarding
the estimators by repeating the simulation study mentioned in last paragraph 50 times.
Because of the computational complexity of the problem, we only perform this study to
the t-SDM-AR(2)-S model and reduce the number of observation for each simulated path
to 300. The results are displayed in Table 5.2.
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a1 a2 t β θ1 θ2 ν

True Value 0.2 0.1 0 0.9 1.8 -0.85 100
Average of estimators 0.196 0.102 0.01 0.888 1.764 -0.815 83
Std.Err of estimators 0.019 0.014 0.09 0.04 0.04 0.04 17.28
T-stat -0.199 0.126 0.076 -0.311 -0.981 0.953 -1.006
P-Value 0.84 0.90 0.94 0.76 0.33 0.34 0.319

True Value 0.3 0.1 0 0.5 1.5 -0.65 50
Average of estimators 0.302 0.101 -0.01 0.487 1.488 -0.643 44
Std.Err of estimators 0.025 0.008 0.10 0.08 0.06 0.05 35.78
T-stat 0.060 0.087 -0.067 -0.168 -0.220 0.138 -0.170
P-Value 0.95 0.93 0.95 0.87 0.83 0.89 0.87

True Value 0.3 0.1 0 0.5 1.5 -0.65 20
Average of estimators 0.297 0.099 -0.01 0.477 1.477 -0.635 21
Std.Err of estimators 0.020 0.008 0.08 0.07 0.06 0.06 6.29
T-stat -0.124 -0.098 -0.137 -0.319 -0.368 0.247 0.154
P-Value 0.90 0.92 0.89 0.75 0.71 0.80 0.87

Table 5.2: t-SDM-AR(2)-S model estimators stability test. We repeat the estimation
procedure 50 times for each parameter setting. In each iteration, 300 data points are
simulated to perform the estimation.

From Table 5.2, we can notice that there is no obvious evidence of a bias of the proposed
estimation procedure. Overall, all the estimators appear to perform well. This gives us
the confidence about the accuracy of the proposed estimation method.

5.6.2 Initial point selection

The results presented in Section 5.6.1 suggest that the proposed estimation procedure
works reasonably well. But there is still one problem we need to address. This is how to
properly select the initial points for the numerical optimizer we used in Matlab to find the
maximum likelihood estimates. Due to the computational complexity of the t-SDM-AR(2)
models, we are not able to use the exhaustive search method as we did in Section 4.1.2.
Therefore, We need to find out a reasonable and reliable initial point.

In the current stage, we have already derived the estimates for the SDM-AR(2) model
in Section 4.1.2, so we suspect that the value of the parameters for the t-SDM-AR(2)
models should be not too far away from the ones for the SDM-AR(2) model. In order to
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verify this idea, we perform the following simulation test. We first generate 500 data points
from the t-SDM-AR(2)-S, t-SDM-AR(2)-L and t-SDM-AR(2)-LS models respectively, and
then estimate the SDM-AR(2) model with the simulated data to check if the results are
close enough to the true values. We test four different values of the parameters. Table 5.3
presents the results.

As we can tell from Table 5.3, the impact of ν is quite large. The estimators work well
in the situations when the data is generated from the t-SDM-AR(2)-S model, regardless
of the degrees of freedom. But for the t-SDM-AR(2)-L and t-SDM-AR(2)-LS models, the
consequence of eliminating the St,ν brings a significant effect on the estimation values of
the model parameters. As we can see, the discrepancy decreases when we increase the
value of ν. This is because all three t-SDM-AR(2) models converge to the SDM-AR(2)
model as ν approaches infinity. By combining all those results, we can notice that the
SDM-AR(2) model is robust to small and modest deviations from its assumed framework.
However, the presented results also suggest that for larger deviations it is important to use
a proper model.
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Model used to simulate data a1 a2 t β θ1 θ2 ν

True Value 0.2 0.1 0 0.9 1.8 -0.85 20
t-SDM-AR(2)-S 0.188 0.116 -0.049 1 1.116 -0.201
t-SDM-AR(2)-L 0.297 0.297 2.379 0.999 0.219 0.153
t-SDM-AR(2)-LS 0.318 0.091 1.611 0.588 0.185 0.134

(a) Estimation result of SDM-AR(2) model with simulated data from different t-SDM-
AR(2) model.

Model used to simulate data a1 a2 t β θ1 θ2 ν

True Value 0.2 0.1 0 0.9 1.8 -0.85 100
t-SDM-AR(2)-S 0.206 0.155 -0.067 0.96 1.626 -0.690
t-SDM-AR(2)-L 0.241 0.178 -1.040 -0.33 0.461 0.240
t-SDM-AR(2)-LS 0.201 0.189 -1.589 -0.97 0.429 0.246

(b) Estimation result of SDM-AR(2) model with simulated data from different t-SDM-
AR(2) model.

Model used to simulate data a1 a2 t β θ1 θ2 ν

True Value 0.2 0.1 0 0.9 1.8 -0.85 300
t-SDM-AR(2)-S 0.197 0.110 0.225 0.927 1.711 -0.771
t-SDM-AR(2)-L 0.215 0.160 -1.406 -0.29 0.659 0.179
t-SDM-AR(2)-LS 0.169 0.160 0.942 0.998 0.607 0.215

(c) Estimation result of SDM-AR(2) model with simulated data from different t-SDM-
AR(2) model.

Model used to simulate data a1 a2 t β θ1 θ2 ν

True Value 0.2 0.1 0 0.5 1.8 -0.85 20
t-SDM-AR(2)-S 0.214 0.104 0.071 0.608 1.224 -0.300
t-SDM-AR(2)-L 0.312 0.286 -1.248 -0.995 0.200 0.145
t-SDM-AR(2)-LS 0.302 0.000 2.432 0.232 0.171 0.147

(d) Estimation result of SDM-AR(2) model with simulated data from different t-SDM-
AR(2) model.

Table 5.3: Simulation test: Estimation result of SDM-AR(2) model to the simulated data
from three t-SDM-AR(2) models respectively with the initial points of the numerical opti-
mizer set at the true values.
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5.6.3 Forecasting

In this section, we perform some studies on the forecasting ability of each of the t-SDM-
AR(2) models. We first generate 104 simulation data points from each t-SDM-AR(2) model
with the same random seed and the following parameter setting:

a1 a2 t θ1 θ2 β PD
0.2 0.1 0 1.8 -0.85 0.99 0.05

Table 5.4: Parameter settings for generating simulation data

For each parameter setting, we set the degree of freedom to be 10, 50 and 100 to check
the effect of the degree of freedom on forecasting ability.

The one-step ahead forecasting value at time t, D̂t, is calculated by:

D̂t = E[Φ(Yt)|Y1:t−1 = y1:t−1] (5.19)

=

∫ ∞
−∞

Φ(yt)fYt|Y1:t−1(yt|y1:t−1) dyt, (5.20)

where fYt|Y1:t−1(yt|y1:t−1) is defined in Section 5.5.2 for each t-SDM-AR(2) model. We also

calculate the one-step ahead predictive up-side 99.9% upper bound, D̂t,99.9% = Φ(ŷt,99.9%),
where ŷt,99.9% is found by solving the following equation:∫ ŷt,99.9%

−∞
fYt|Y1:t−1(yt|y1:t−1) dyt = 0.999. (5.21)

The following figures show the simulated data along with the forecasting series and the
99.9% CI.
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(a) t-SDM-AR(2)-S: ν = 10
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(b) t-SDM-AR(2)-S: ν = 100
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(c) t-SDM-AR(2)-L: ν = 10
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(d) t-SDM-AR(2)-L: ν = 100
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(e) t-SDM-AR(2)-LS: ν = 10
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(f) t-SDM-AR(2)-LS: ν = 100

Figure 5.4: The one-step-ahead forecasting series and confidence interval of t-SDM-AR(2)
models
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First, we can notice that all the simulation data fall into the prediction confidence
interval in all figures. The following tables provide a more quantitative measurement on
the point prediction. The formulas for those measurements can be found in Equations
4.3-4.5.

Unit: % t-SDM-AR(2)-S t-SDM-AR(2)-L t-SDM-AR(2)-LS

ν MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
10 0.48 0.77 12.28 3.17 3.84 243.68 3.19 3.94 218.38
50 0.29 0.43 6.13 1.53 1.86 43.95 1.58 1.95 42.97
100 0.27 0.38 5.71 1.13 1.41 28.14 1.17 1.51 27.83

Table 5.5: The forecasting accuracy measurements of t-SDM-AR(2) models

As we can see from Table 5.5, point estimation is more accurate when the degree of
freedom is larger. The results also suggest that the level of forecasting accuracy is relatively
higher for the t-SDM-AR(2)-S model than the others.

5.7 Empirical study

Using simulated data, we have demonstrated that the estimated values of the parameters
of the SDM-AR(2) give a reasonable starting point for the t-SDM-AR(2)-S model. Given
that we can not apply the exhaustive searching method we applied in Section 4.1.2 due
to the computational complexity, the values of the estimates based on the SDM-AR(2)
model are reasonable initial points for the numerical optimizer. Under this assumption,
we apply the maximum likelihood method to the t-SDM-AR(2)-S, t-SDM-AR(2)-L and
t-SDM-AR(2)-LS models.

Let us recall that the data is obtained from the Federal Reserve and consists of quarterly
delinquency rates for 11 different categories. A brief summary table for the data set can
be found at the beginning of Chapter 4. In this section, we present the results based on
the same categories we have used in Chapter 4.

5.7.1 Parameter estimation and in-sample prediction

In this section, we perform the estimation to check the models’ fitting accuracy. The
following table shows the results along with the estimates for the SDM-AR(2) model to
compare with.
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Series Model a1 a2 t β θ1 θ2 ν `(y1:T )
All t-SDM-AR(2)-S 0.204 0.126 -0.767 0.99 1.867 -0.889 500 -286.72

t-SDM-AR(2)-L 0.322 0.144 -0.441 1.00 1.926 -0.946 500 -160.56
t-SDM-AR(2)-LS 0.186 0.155 0.958 1.00 1.903 -0.924 500 -159.97
SDM-AR(2) 0.232 0.162 -0.704 1.00 1.832 -0.853 -287.43

OC t-SDM-AR(2)-S 0.104 0.097 -0.066 0.36 1.520 -0.539 252 -285.78
t-SDM-AR(2)-L 0.058 0.048 0.998 0.99 -0.135 0.865 348 -396.05
t-SDM-AR(2)-LS 0.042 0.013 -0.999 0.99 -0.015 0.985 70 -365.73
SDM-AR(2) 0.115 0.085 -0.641 1.00 1.366 -0.386 -283.51

CRE t-SDM-AR(2)-S 0.494 0.468 -0.901 1.00 1.819 -0.828 500 -206.95
t-SDM-AR(2)-L 0.417 0.395 -0.117 -1.00 1.952 -0.963 500 -151.50
t-SDM-AR(2)-LS 0.302 0.260 -0.450 -1.00 1.917 -0.930 500 -152.66
SDM-AR(2) 0.392 0.378 -0.621 -1.00 1.790 -0.802 -217.80

Table 5.6: In-sample estimation result comparison between t-SDM-AR(2)-S, t-SDM-
AR(2)-L, t-SDM-AR(2)-LS and SDM-AR(2).

We have encountered some numerical issues when estimating the t-SDM-AR(2) models
for the SRE category, and hence we omit the results here.

Although we can see from the results that the t-SDM-AR(2)-S model is pretty close to
the SDM-AR(2) model, we need to keep in mind that the initial point of the optimizer is
set to be the value of SDM-AR(2) model. By checking on the values of ν, we realize that
some of them are high enough to let us draw the conclusion that all three t-SDM-AR(2)
models are close to the SDM-AR(2) model with the same parameters.

To assess the goodness of fit, we obtain the one-step-ahead predictions for each t-
SDM-AR(2) model based on the values of the parameters in Table 5.6. Each prediction
is calculated by the method discussed in Section 5.6.3. The following figures show the
prediction series along with the 99.9% upside interval predictions from each t-SDM-AR(2)
model.
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(a) t-SDM-AR(2)-S
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(b) t-SDM-AR(2)-L
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(c) t-SDM-AR(2)-LS

Figure 5.5: t-SDM-AR(2): The one-step-ahead point and interval prediction for ALL series

By looking at the figures, we can see that all the t-SDM-AR(2) models provide some
reasonable predictions. Also, the upper boundary of each model covers all the historical
data. The table below shows the accuracy measurements for the fittings of the t-SDM-
AR(2) models using a subset of the Federal Reserve Data:
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Series Model MAE(%) RMSE(%) MAPE(%)

ALL t-SDM-AR(2)-S 0.09 0.11 2.55
t-SDM-AR(2)-L 0.19 0.25 6.02
t-SDM-AR(2)-LS 0.25 0.36 7.82
SDM-AR(2) 0.08 0.11 2.51

OC t-SDM-AR(2)-S 0.08 0.11 2.85
t-SDM-AR(2)-L 0.45 0.53 16.8
t-SDM-AR(2)-LS 0.41 0.52 16.11
SDM-AR(2) 0.08 0.11 2.93

CRE t-SDM-AR(2)-S 0.18 0.26 5.41
t-SDM-AR(2)-L 0.27 0.38 7.93
t-SDM-AR(2)-LS 0.29 0.42 8.79
SDM-AR(2) 0.17 0.24 5.33

Table 5.7: The in-sample accuracy measurements of t-SDM-AR(2) models.

As we can easily tell from Table 5.7, the t-SDM-AR(2)-S and SDM-AR(2) models
provide the most accurate predictions when compared with the other two models. The
accuracies of the t-SDM-AR(2)-L and t-SDM-AR(2)-LS models are similar to each other.

5.7.2 Relation between degree of freedom and interval prediction

In this section, we demonstrate and discuss the relationship between the degree of freedom
and the interval prediction. The following two figures show the predictions of the t-SDM-
AR(2)-S model based on the same parameter values in Table 5.6 for ALL series with the
degree of freedom set to be 100 and 500, respectively.
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(a) Degree of freedom ν = 100.
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(b) Degree of freedom ν = 500.

Figure 5.6: t-SDM-AR(2)-S for ALL series.

It is easy to notice that the interval prediction is more conservative when the degree of
freedom is lower. The following table shows the impact of changing the degree of freedom
on the point prediction.

Unit: % t-SDM-AR(2)-S t-SDM-AR(2)-L t-SDM-AR(2)-LS

ν MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
100 0.10 0.14 2.77 0.32 0.41 11.07 0.51 0.62 17.83
500 0.09 0.11 2.55 0.19 0.25 6.02 0.25 0.36 7.82

Table 5.8: The effect of changing the degree of freedom on the point prediction for ALL
series.

Table 5.8 does suggest that lowering the degree of freedom makes the point prediction
less accurate. The accuracy of the point prediction for t-SDM-AR(2)-L and t-SDM-AR(2)-
LS is more sensitive than that for the t-SDM-AR(2)-S model. However, the reduction of
the accuracy for the t-SDM-AR(2)-S model stands within a tolerable level.

5.7.3 Out-of-sample prediction for the t-SDM-AR(2) models

In this section, we perform the out-of-sample test in the same manner as we have done
in Sections 4.4 and 4.5. The following table shows the estimation results of the three
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t-SDM-AR(2) models based on the training set that includes only the first 60 data points.

Series Model a1 a2 t β θ1 θ2 ν

ALL t-SDM-AR(2)-S 0.117 0.09 -0.03 1 1.779 -0.805 319
t-SDM-AR(2)-L 0.309 0.126 -0.6 1 1.931 -0.947 500
t-SDM-AR(2)-LS 0.181 0.116 -0.662 1 1.88 -0.899 500

OC t-SDM-AR(2)-S 0.255 0.203 -0.963 1 1.442 -0.445 72
t-SDM-AR(2)-L 0.892 0.478 -0.301 -1 -0.059 0.939 500
t-SDM-AR(2)-LS 0.664 0.013 0.619 -1 1.997 -0.997 86

CRE t-SDM-AR(2)-S 0.399 0.377 -0.234 0.91 1.745 -0.752 363
t-SDM-AR(2)-L 0.472 0.354 0.84 0.98 1.999 -0.999 27
t-SDM-AR(2)-LS 0.325 0.282 -1 1 1.933 -0.939 500

Table 5.9: Out-of-sample estimation result of t-SDM-AR(2)-LS, t-SDM-AR(2)-S and SDM-
AR(2).

According to Table 5.9, there does not appear to be any relationship or pattern among
estimates produced by the different t-SDM-AR(2) models. The following two tables show
the accuracy measures for the training and test set.

Series Model Training Set Testing Set
Unit(%) MAE RMSE MAPE MAE RMSE MAPE

ALL t-SDM-AR(2)-S 0.07 0.1 2.81 0.11 0.17 2.85
t-SDM-AR(2)-L 0.17 0.22 7.05 0.27 0.37 6.37
t-SDM-AR(2)-LS 0.2 0.24 7.97 0.29 0.4 7.07
SDM-AR(2) 0.12 0.16 4.53 0.11 0.17 2.94

OC t-SDM-AR(2)-S 0.09 0.12 2.84 0.09 0.12 3.5
t-SDM-AR(2)-L 0.29 0.35 8.73 0.29 0.43 9.63
t-SDM-AR(2)-LS 0.51 0.59 17.51 0.71 0.79 30.74
SDM-AR(2) 0.08 0.1 2.64 0.09 0.12 3.44

CRE t-SDM-AR(2)-S 0.21 0.31 5.92 0.2 0.3 5.48
t-SDM-AR(2)-L 0.74 1.04 17.7 2.85 4.02 54.08
t-SDM-AR(2)-LS 0.27 0.38 8.27 0.56 0.81 12.67
SDM-AR(2) 0.17 0.26 5.35 0.18 0.27 4.78

Table 5.10: Accuracy measurements for the training and testing sets.
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Based on Table 5.10, it is not surprising to notice that some predictions for the testing
set perform worse than that for the training set. But the t-SDM-AR(2)-S and SDM-AR(2)
models work consistently well for both training and testing sets. By combining the results
from the In-sample test, it is easy to notice that the t-SDM-AR(2)-S and SDM-AR(2)
models have better ability in describing the Federal Reserve Data. The following plots
show the predictions based on the t-SDM-AR(2)-S model for the ALL series with different
degrees of freedom.
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(a) Degree of freedom ν = 319.
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(b) Degree of freedom ν = 30.

Figure 5.7: Prediction based on the t-SDM-AR(2)-S model for the ALL series

The green star mark in the sub-figure (a) of Figure 5.7 represents the point that breaches
the prediction interval. The sub-figure (b) is generated with the same parameter values
but the degree of freedom is set to be 30 to generate a broader forecasting interval. By
doing so, we obtain a more conservative interval prediction so that the breached point is
included.

ν MAE(%) RMSE(%) MAPE(%)
319 0.11 0.17 2.85
30 0.21 0.31 4.6

Table 5.11: Accuracy measurements of t-SDM-AR(2)-S for the testing set of ALL series
with different degrees of freedom.

As we can see from Table 5.11, lowering the degree of freedom does increase the predic-
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tion errors. This result shows that by adding the St,ν into the SDM-AR(2) model allows
us to control the conservative level of the interval prediction.

5.8 Economic capital comparison

The traditional way of calculating the Economic Capital relies on the Vasicek model we
have presented in Section 1.2. Banks and companies fit the model defined by Equation 1.2
to historical default rate series and then calculate the 99.9% quantile of the default rate
distribution in the form of Equation 1.6. Since the calculation of the regulatory capital
involves the value of LGD and EAD, which is absenct in our data set, we simply define
the economic capital as the 99.9% quantile of the default rate which is also an important
capital that banks usually pay attention to.

The underlying temporal independence assumption of the Vasicek model makes the
economic capital a static value all the time. In our study, we have relaxed this assumption
by assuming that the systematic risk factor has some time-dependence structure. As a
result of introducing temporal dependence to the systematic risk factor, we can predict
the 99.9% quantile of the default rate for next time period condition on current default
rate. We name such prediction as dynamic economic capital in contrast to the static one
that the Vasicek model provides, which is independent to current default rate. In addition
to that, the models that we have proposed also can calculate an overall static economic
capital, since the systematic risk factor process has a stationary distribution.
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Figure 5.8: Economic capital comparison

For a more concrete example, Figure 5.8 shows the static economic capital of the Vasicek
and t-SDM-AR(2)-S models along with the dynamic economic capital based on the t-SDM-
AR(2)-S model for the ALL series in the Federal Reserve Data.

It is clear from Figure 5.8 that the economic capital based on dynamic models is lower
than those based on a static model. This makes sense since when the market is in a
relatively good scenario, it is not necessary to hold an excess of the economic capital.
Also, we can notice from the plot that when the default rate is way above its average, the
dynamic economic capital of the t-SDM-AR(2)-S exceeds the static economic capital of
the Vasicek model.

For the dynamic EC, the traditional AR(2) model also possesses similar ability. The
following figure directly compares the t-SDM-AR(2)-S and AR(2) models’ dynamic EC.
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Figure 5.9: Dynamic Economic capital comparison between t-SDM-AR(2) and AR(2) mod-
els

Based on Figure 5.9, we can readily notice two features of the t-SDM-AR(2)-S’s dynamic
EC. First, the t-SDM-AR(2)-S’s dynamic EC exceeds the one from the AR(2) model when
the market is bearish. Secondly, both dynamics of the Economic Capital are close with each
other when the default rate is relatively low. These two features suggest that the t-SDM-
AR(2)-S model would be more conservative than the AR(2) model at a stressed market
level, and its performance is similar to the AR(2) model when the market is moderate.
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Chapter 6

Conclusion and Future Research
Directions

In this chapter, we will summarize our contributions and talk about some potential further
research directions. All in all, the conclusion can be divided into the following parts. In
the first part, we investigate some basic properties of the State-dependent model (SDM)
proposed by Metzler (2020), which is an extension of the classic Vasicek default model.
In the main part of the thesis, we propose an extension of the SDM model, called the
Correlated State-dependent model, abbreviated as SDM-AR, based on the SDM model
by introducing an autoregressive structure into the dynamic of the latent systematic risk
factor. This approach will bring the forecasting ability to the model. In our empirical
study, we demonstrate that the proposed approach significantly improves the forecasting
ability of the SDM model. In the last part, we further extend the SDM-AR model to
replace the underlying distribution from a normal distribution to t-distribution.

Our research has raised some interesting questions, some of which we are planning to
address in the future. Although we have given a quick look at the continuous factor loading,
further work is needed to fully understand the implications of it. The other potential area
of research is developing a proper methodology to deal with the non-stationarity of the
Federal Reserve Data. Also, extending the AR(2) structure used to model the systematic
risk factor {Mt} is worthy of some endeavor. The other source of weakness of the proposed
approach that could which could restrain the practicality of the model is its computational
complexity.
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6.1 Contribution summary

The main goal of this study was to address some well-known drawbacks of the Vasicek
default model. The first one is the underlying assumption that the implied correlations
among the loans do not depend on the overall market level and remain constant all the
time. In order to relax this assumption, the state-dependence structure is introduced.

The main component of the Vasicek default model is the credit score defined as

Xi = aM +
√

1− a2 · εi.

The factor loading a controls the relation between the individual credit score with the
latent systematic risk factor M . The credit score is more sensitive to the overall economy
when a is larger. The factor loading a remains constant for any level of the overall economy.
This contradicts the existing empirical evidence, which shows that the market correlation
tends to rise during the bearish market.

With the intention of making the factor loading vary systematically with the overall
market level, we employ the idea of changing the factor loading a into a function of a
standard normal random variable T , which correlates with the systematic risk factor M
with a correlation coefficient β

Xi = a(T )M +
√

1− a(T )2 · εi,

where the function of factor loading a(T ) has the following form:

a(t) =
K∑
k=1

ak · 1(tk−1 < t 6 tk)

0 6 a1 < a2 < . . . < aK 6 1

−∞ = t0 < t1 < . . . < tK =∞.

By defining the model in this form, it is straightforward to notice that the model falls into
the Gaussian Mixture category when β = 0, and Random Factoring proposed by Burtschell,
Gregory and Laurent (2005) when β = ±1. Also, by setting aK = aK−1 = . . . = a1, the
model regresses back to the traditional Vasicek model.

After developing the EM-algorithm in Chapter 2, we perform an empirical study using
the Federal Reserve Data with the SDM and Vasicek models. By comparing the estimation
results of those two models, we realize that the correlation between the systematic risk
factor M and factor loading a plays an important role in capturing the probability of
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extreme events. For all ten historical data series that we consider in this study, seven of
them indicate that the estimate of β is close to 1 and the rest of them have β close to −1.
Furthermore, when we focus on the calculation of Regulatory Capital, the fat tail brought
by the state-dependent structure suggests that Regulatory Capital should be more than
the amount estimated based on the traditional Vasicek model.

In Chapters 3 and 4 of the thesis, we establish a framework for introducing the forecast-
ing ability to the SDM model by adopting an autoregressive model for the systematic risk
factor {Mt}. We call this model state-dependent model with an underlying autoregression
process, shortened as SDM-AR. The model is defined in the following form:

Xi,t = a(Tt)Mt +
√

1− a(Tt)2ei,t

Mt = θ1Mt−1 + εt or θ1Mt−1 + θ2Mt−2 + εt

Tt = βMt + ε′t,

where Mt is modeled by the AR(1) and AR(2) processes for the SDM-AR(1) and SDM-
AR(2) models, respectively. Also, the variance of εt and ε′t are defined such that remaining
the stationary distribution of {Mt} and {Tt} follow standard normal distributions.

We also show the fact that the SDM-AR model can be treated as a general extension of
the Vasicek, SDM and AR models. Through the filtering procedure that we have developed
for the SDM-AR model, we are able to estimate the model using the maximum likelihood
method and to forecast future observations.

The maximum likelihood method is applied to the Federal Reserve Data to estimate
the models AR(1), AR(2), SDM-AR(1) and SDM-AR(2) models, separately. In addition
to that, the in-sample and out-of-sample tests are also employed to verify the goodness-
of-fit of each model. The empirical results suggest that the role of both two-lag and
state-dependence structure are important.

For forecasting, we have concentrated on both the point and interval forecasts. The
comparison of the out-of-sample point forecasts for the AR(2) and SDM-AR(2) models
indicate that the improvement brought by the state-dependence structure is around 20%
in lowering the mean absolute error and other accuracy measures. By comparing results
based on the SDM-AR(1) and SDM-AR(2) models, we have found strong evidence in favor
of using the two-lag structure. Using this structure is especially important during the
financial crisis, as all other models consistently under-predict the market risk except the
SDM-AR(2) model.

The advantage of the SDM-AR(2) model becomes more considerable when we focus on
the interval forecasting. At the beginning of the financial crisis, there exist some observa-
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tions which are only contained within the forecasting confidence interval generated by the
SDM-AR(2) model.

In summary, these discoveries advocate the notable impact of state-dependence and the
two-lag structure in enhancing the default rate forecasting.

The models that we propose in Chapters 3 and 4 are driven by a normal distribution.
However, it is well-known that tails of the normal distribution are not heavy enough to
properly describe the probabilities of extreme events. The main aim of the study presented
in Chapter 5 is to overcome this drawback by changing the normal distribution to a t-
distribution. To achieve this goal, we introduce a random variable called a tail thickness
factor, St,ν , into the credit score of the SDM-AR(2) model. We call this model T-driven
State-dependent model with an underlying autoregression process, and denote it as t-SDM-
AR(2). To be more specific, we define three versions of the model. The only differences
are in the definition of the credit score in each model

Xi,t =


√

ν−2
ν
St,ν

[
a(Tt)Mt +

√
1− a(Tt)2ei,t

]
For t-SDM-AR(2)-LS

a(Tt)
√

ν−2
ν
St,νMt +

√
1− a(Tt)2ei,t For t-SDM-AR(2)-S

a(Tt)Mt +
√

1− a(Tt)2

√
ν−2
ν
St,νei,t For t-SDM-AR(2)-L,

St,ν =

√
ν

Wt

where {Wt} follows an independent Chi-squared distribution with the degree of freedom ν.
All three t-SDM-AR(2) models can be considered as extensions for the SDM-AR(2) model

due to the fact that the factor
√

ν−2
ν
St,ν converges to 1 when ν →∞.

The empirical studies of the t-SDM-AR(2) models show that the t-SDM-AR(2)-S model
is the most suitable t-SDM-AR(2) model in modelling the Federal Reserve Data. But the
improvements in point and interval predictions are still not substantial enough compared
with the SDM-AR(2). However, t-SDM-AR(2) models enable us to control the conservative
level of the predictive confidence interval by changing the value of the degree of freedom.
Although the t-SDM-AR(2) models do not show notable advantages for the Federal Reserve
Data, they may be useful to model other data with relatively higher variation and lower
auto-correlation.

Last but not least, both the SDM-AR(2) and t-SDM-AR(2) models provide us with a
framework to compute the regulatory capital dynamically. Also from the perspective of the
regulators, our models can capture the pro-cyclicality of the default rate by introducing
the temporal dependence.
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6.2 Future research directions

There are still some unexplored aspects of the models that we have proposed.

• As we mentioned the in Section 1.2.2, the absence of randomness of LGD is also a
potential research directions. A lot of researchers have developed varied models to
capture the randomness of the LGD. How to properly absorb those models into our
dynamic SDM-AR models shall also be an area which worth some effort to study.

• All the models in this study are proposed under the assumption that the factor
loading is in the form of a simple discrete function with respect to a random variable
correlated with the systematic risk factor. Although we give a quick peek about
changing the factor loading function into a continuous form as

aα1,α2(t) = Φ

(
α1 − T
α2

)
,

where α1 and α2 are two parameters and Φ() is the cumulative distribution function
of the standard normal distribution. But, estimated parameters of such a model
on the Federal Reserve Data give fail to indicate the existence of different regimes.
Considerably more work will need to be done to clearly determine the reason for the
non-existence of regimes implied by the continuous factor loading function. Other
forms of continuous factor loading also deserve some attention.

• The issue of non-stationary is a thought-provoking problem which should be carefully
explored in further research as well. We can readily notice the non-stationarity of
the historical data from the plot. This obviously violates the underlying assumption
of the models we have proposed in this study that the systematic risk factor follows
a stationary autoregression model. We also rely on the stationary assumption of
the systematic risk factor to define the default threshold xPD which works as the
trigger value of default. How to properly define the new credit threshold if we adopt
a non-stationary process to model the systematic risk factor is an essential problem
we have to investigate.

• The other unsolved challenge we have faced in this study is the computational com-
plexity of the t-SDM-AR(2) models. Under those models, the likelihood function
involves some three-dimensional integration. It is infamous that the numerical solver
for such a integration in Matlab is unstable and excessively time-consuming. In or-
der to reduce the computational time, we create 3-D mesh grid over the space and
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evaluate the value of the integrand in each of the point. Then we use this result to
approximate the integration. The side effect of reducing the computational time by
such a method is at the expense of accuracy. Developing some efficient methodology
to evaluate the likelihood value of t-SDM-AR(2) model should be a potential further
study.

• In this study, we concentrate on the default rate of the Federal Reserve Data only. A
natural approach to improve forecasting performance is to introduce additional ex-
planatory variables that have high correlation with the default rate. How to suitably
select those variables deserves a further study.
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Appendix A

Estimation with assumption θ = 0

In this section, we wish to introduce a new estimation method for the SDM-AR(1) model
which can reduce the amount of the computational workload. We would like to apply an
iterative procedure to get the estimators to approach to the true value step by step.

(i) The first thing we want to do is to get some rough idea about the parameters a1, a2, t1, β.

(ii) After that, we can make some inference about the latent process Mt by the filtering
procedure described at the beginning of Section 3.2 based on the guess of a1, a2, t1, β.

(iii) Once we have a potential latent process Mt, it is easier for us to estimate the autocor-
relation parameter θ of the process Mt.

(iv) Then we will re-estimate a1, a2, t1, β by maximizing the joint likelihood function of the
observable series Yt but fixed the value of θ to be the estimation result from the last step.

(v) Keep repeating steps (ii) to (iv) until the estimators converges.

The idea behind this procedure is that after each iteration, we should be able to get
a more accurate estimation of θ. With the improvement in estimating θ, the estimator of
a1, a2, t1, β should be better compared to the result obtained from a less accurate estimator
of θ.
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In order to have a rough idea about the parameters a1, a2, t1, β first, we will start with
the EM-algorithm estimation procedure under the assumption that θ = 0. Since we have
pre-fixed the stationary distribution of Mt and Tt to be standard normal distribution with
the correlation coefficient β, we believe that after enough time, the stationary distribution
of the observations Yt will be only dependent on a1, a2, t1, β. Given this property, we can
first ignore the θ by assuming that θ = 0, then the model goes back to the independent case
so that the other parameters can be estimated by the EM-algorithm described in Chapter
1.

After obtaining the estimates â1, â2, t̂1, β̂, we can use the smoothing procedure described
in the Section 3.2.5 with θ = 0. Then for each time t, we will choose the M∗

t which has the
higher value of P (Mt = mt|Y1:t = y1:t; â1, â2, t̂1, β̂, θ = 0). After obtaining the time series
{M∗

t }, we can get the MLE θ̂ based on the likelihood function of fMT :2|M1(m
∗
T :2|m∗1). The

next step is to re-estimate the a1, a2, t1, β by maximizing the likelihood function of Yt with
a fixed value of θ = θ̂. Then we just keep repeating these two steps until the estimators
converge.

A.1 Joint likelihood function of Yt

In this section, we want to find out how to calculate the joint likelihood of the observable
series Yt without the assumption that θ = 0. According to the law of total probability, we
first decompose the conditional density function of Yt given Y1:t−1, fYt|Y1:t−1(yt|y1:t−1), into
the several parts so that it is easy to calculate:

fYt|Y1:t−1(yt|y1:t−1) =
2∑
i=1

2∑
j=1

f(Rt = i, Rt−1 = j, Yt = yt|Y1:t−1 = y1:t−1)

=
2∑
i=1

2∑
j=1

f(Yt = yt|Rt = i, Rt−1 = j, Y1:t−1 = y1:t−1)·

P (Rt = i|Rt−1 = j, Y1:t−1 = y1:t−1) · P (Rt−1 = j|Y1:t−1 = y1:t−1) (A.1)

Theorem 15. The conditional density function of Yt given Rt, Rt−1 and Y1:t−1,f(Yt =
yt|Rt = i, Rt−1 = j, Y1:t−1 = y1:t−1), has the Markovian property with respect to Y1:t−1:

f(Yt = yt|Rt = i, Rt−1 = j, Y1:t−1 = y1:t−1) = f(Yt = yt|Rt = i, Rt−1 = j, Yt−1 = yt−1)
(A.2)
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Proof. Before being able to calculate this density function, we need to figure out the
relationship between Yt and Yt−1 first. According to formulas 3.2 and 3.8 we have:

Yt =
xPD√

1− a(Rt)2
− a(Rt)√

1− a(Rt)2
(θMt−1 + εt)

=
xPD√

1− a(Rt)2
− a(Rt)√

1− a(Rt)2
θMt−1 −

a(Rt)√
1− a(Rt)2

εt (A.3)

Also based on Equation (3.8), we know that:

Mt−1 =
xPD

a(Rt−1)
−
√

1− a(Rt−1)2

a(Rt−1)
Yt−1.

Then substituting this into Equation (A.3),

Yt =
xPD√

1− a(Rt)2
(1− θ a(RT )

a(Rt−1)
) + θ

a(Rt)

a(Rt−1)

√
1− a(Rt−1)2√
1− a(Rt)2

Yt−1 −
a(Rt)√

1− a(Rt)2
εt

(A.4)

As a result, Yt is conditionally independent of Yt−2:1 once given Rt, Rt−1 and Yt−1 since the
only random variable, εt, is the iid error term.

f(Yt = yt|Rt = i, Rt−1 = j, Y1:t−1 = y1:t−1) = f(Yt = yt|Rt = i, Rt−1 = j, Yt−1 = yt−1)

After this we can easily calculate the conditional density function of Yt given Rt, Rt−1

and Yt−1:

f(Yt|Rt = i, Rt−1 = j, Yt−1 = yt−1) = φ(γ; 0, 1− θ2)(

√
1− a(Rt)2

a(Rt)
)

where

γ =

√
1− a(Rt)2Yt − xPD(1− θ a(Rt)

a(Rt−1)
)− θ a(Rt)

√
1−a(Rt)2

a(Rt−1)
Yt−1

−a(Rt)
.

Then, we can proceed to prove that the second term in Equation A.1, P (Rt = i|Rt−1 =
j, Y1:t−1 = y1:t−1) also has the Markovian property.
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Theorem 16. The conditional probability mass function of Rt given Rt−1 and Y1:t−1,
P (Rt = i|Rt−1 = j, Y1:t−1 = y1:t−1) has the Markovian property with respect to Y1:t−1.

P (Rt = i|Rt−1 = j, Y1:t−1 = y1:t−1) = P (Rt = i|Rt−1 = j, Yt−1 = yt−1) (A.5)

Proof. Based on Equation (3.2) and Equation(3.24), we know that:

Tt = βθMt−1 + βεt + ε′t.

We can notice that once the value of the systemic risk factor Mt−1 is given, then Tt is
independent of the other Ti for ∀i < t since both εt and ε′t are iid error terms. Then we
would like to simplify the conditional part of the left side of Equation A.5 into the following
form:

{Rt−1 = j ∩ Yt−1 = yt−1} = {{Tt−1 ∈ [tj, tj+1)} ∩ [∪2
k=1{Tt−1 ∈ [tk, tk+1),Mt−1 = M−1(yt−1, k)}]}

= {Tt−1 ∈ [tj, tj+1),Mt−1 = M−1(yt−1, j)}

As mentioned before, Tt is independent of the other Ti for ∀i < t once the value of the
systematic risk factor Mt−1 is given. So

P (Rt = i|Rt−1 = j, Yt−1 = yt−1) =P (Tt ∈ [ti, ti+1)|{Tt−1 ∈ [tj, tj+1),Mt−1 = M−1(yt−1, j)})
=P (Tt ∈ [ti, ti+1)|Mt−1 = M−1(yt−1, j)) (A.6)

The other thing that we need to pay attention is the conditional distribution of Tt given
Mt−1. It is easy to see that

Tt|Mt−1 = mt−1 ∼ N(βθmt−1, 1− β2θ2) (A.7)

The last term in Equation A.1 is actually the filtering density function since

P (Rt−1 = j|Y1:t−1 = y1:t−1) = P (Mt−1 = M−1(yt−1, j)|Y1:t−1 = y1:t−1).

So it can be calculated based on the procedure provided in the previous section.

As a result, the joint likelihood function of Yt can be calculated based on the following
equation

fYT :2|Y1(yT :2|y1) =
T∏
i=2

fYi|Yi−1:1
(yi|yi−1:1) (A.8)
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A.2 Iterative Estimation Algorithm

In this section, we would like to show the estimation procedure described in the Section
A for our model in detail. Since we will start with assuming that θ = 0, we can use
the EM-algorithm mentioned in Section 2.2 to get a rough guess about a1, a2, t1 and β.
Then we use â1, â2, t̂1, β̂ to denote the estimation results from the EM-algorithm under
the assumption that θ = 0. After that, we can use â1, â2, t̂1, β̂ to compute all the possible
values of M for each time period. We chose the M∗

t which has the higher value of P (Mt =
M∗

t |Y1:t = y1:t; â1, â2, t̂1, β̂, θ = 0) for each time t. Based on our choices of M∗
t , we can use

this new time series to estimate the θ, and use θ̂ to denote the estimation result. After
that, we can solve the following optimaiztion problem to re-estimate the other parameters
in order to get a more accurate result.

ã1
(1), ã2

(1), t̃1
(1)
, β̃(1) = arg max

a1,a2,t1,β

T∑
i=2

log f ∗Yi|Yi−1:1
(yi|yi−1:1; a1, a2, t1, β) (A.9)

where

f ∗Yt|Y1:t−1
(yt|y1:t−1; a1, a2, t1, β) =

2∑
i=1

2∑
j=1

f(Yt = yt|Rt = i, Rt−1 = j, Y1:t−1 = y1:t−1; a1, a2, t1, β, θ̂)·

P (Rt = i|Rt−1 = j, Y1:t−1 = y1:t−1; a1, a2, t1, β, θ̂)· (A.10)

P (Rt−1 = j|Y1:t−1 = y1:t−1; â1, â2, t̂1, β̂, θ̂). (A.11)

Once we have the new estimator ã1
(1), ã2

(1), t̃1
(1)
, β̃(1), we can apply the method men-

tioned at the beginning of this section to get a new estimator of θ and denoted by θ̃(1).
Once we have θ̃(1), we return to optimization problem A.9 to update the estimator to

ã1
(2), ã2

(2), t̃1
(2)
, β̃(2) by changing the objective function, f ∗Yt|Y1:t−1

(yt|y1:t−1; a1, a2, t1, β) in
the following way,

f ∗Yt|Y1:t−1
(yt|y1:t−1; a1, a2, t1, β) =

2∑
i=1

2∑
j=1

f(Yt = yt|Rt = i, Rt−1 = j, Y1:t−1 = y1:t−1; a1, a2, t1, β, θ̃
(1))·

P (Rt = i|Rt−1 = j, Y1:t−1 = y1:t−1; a1, a2, t1, β, θ̃
(1))·

P (Rt−1 = j|Y1:t−1 = y1:t−1; ã1
(1), ã2

(1), t̃1
(1)
, β̃(1), θ̃(1)).

The main idea is to repeat doing this iteration several rounds until the estimators converge.
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A.3 Iterative Estimation result

In this section, we wish to use simulated data to verify if the estimation approach works
in the way described in the last section. We simulated 2000 data points. Theoretically, we

would expect that the estimators, ã1
(i), ã2

(i), t̃1
(i)
, β̃(i) and θ̃(i) should move closer and closer

to the true values after each iteration. But the simulation test suggest that this estimation
approach does not work in the way we expect and actually moves in the opposite way. The
following table shows the true values of the parameters used for generating the data.

a1 a2 β t1 θ Fval
True Value 0.38 0.19 0.7 -0.2 0.3 583.677

The next table displays the evaluation of the estimators for each iteration. The Fval
column is the log-likelihood value. As we can see, the log-likelihood value also keeps
decreasing after each iteration.

The table shows that the procedure provided a relatively good estimation results in
the first round. But it quickly moved away from the true values and provided a lower
log-likelihood value in the next iteration. After 30 iterations, the estimators do converge
to a stable point but the log-likelihood value is obviously lower than the first iteration. The
value of each estimators is also far away from the true point. Similar situation happens
in another simulation tests. The result suggests that this iterative method does not work
properly in calibrating the model. We suspect that the method involves too many rounds
of numeric optimization and this is the main reason for the failure. It is hard to guarantee
that each optimization can find the global maximum and once some of them are stuck in
some local maximum, then the estimators may start to move away from the true value.
So we need to find another estimation method in order to find the estimators for the
parameters. Since we notice that we can calculate the fYi|Yi−1:1

(yi|yi−1:1) for i = 2 . . . T ,
we should be able to calculate the joint likelihood of Yt by using it. So, we will apply the
direct ML method instead.
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a1 a2 β t1 θ Fval
1 0.380 0.190 0.717 -0.226 0.286 583.979
2 0.353 0.209 0.751 -0.461 0.286 553.062
3 0.352 0.211 0.713 -0.479 0.274 556.265
4 0.352 0.210 0.727 -0.474 0.275 555.017
5 0.352 0.211 0.722 -0.477 0.275 555.453
6 0.352 0.211 0.724 -0.476 0.275 555.275
7 0.352 0.211 0.723 -0.476 0.275 555.347
8 0.352 0.211 0.724 -0.476 0.275 555.315
9 0.352 0.211 0.723 -0.477 0.275 555.314
10 0.352 0.211 0.723 -0.476 0.275 555.315
11 0.352 0.211 0.723 -0.476 0.275 555.318
12 0.352 0.211 0.723 -0.476 0.275 555.318
13 0.352 0.211 0.723 -0.476 0.275 555.319
14 0.352 0.211 0.723 -0.476 0.275 555.319
15 0.352 0.211 0.723 -0.476 0.275 555.319
16 0.352 0.211 0.723 -0.476 0.275 555.319
17 0.352 0.211 0.723 -0.476 0.275 555.319
18 0.352 0.211 0.723 -0.476 0.275 555.319
19 0.352 0.211 0.723 -0.476 0.275 555.319
20 0.352 0.211 0.723 -0.476 0.275 555.319
21 0.352 0.211 0.723 -0.476 0.275 555.319
22 0.352 0.211 0.723 -0.476 0.275 555.319
23 0.352 0.211 0.723 -0.476 0.275 555.319
24 0.352 0.211 0.723 -0.476 0.275 555.319
25 0.352 0.211 0.723 -0.476 0.275 555.319
26 0.352 0.211 0.723 -0.476 0.275 555.319
27 0.352 0.211 0.723 -0.476 0.275 555.319
28 0.352 0.211 0.723 -0.476 0.275 555.319
29 0.352 0.211 0.723 -0.476 0.275 555.319
30 0.352 0.211 0.723 -0.476 0.275 555.319
31 0.352 0.211 0.723 -0.476 0.275 555.319
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Appendix B

Calibration results

In this section, we present the empirical results for the SDM-AR models along with the
classic AR models.
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Series Model a1 a2 β t θ1 θ2 σ2 of AR C of AR
1 SDM-AR2 0.232 0.162 1 -0.704 1.832 -0.853 0.00613

AR2 0.189 1.824 -0.846 0.00024 -0.0415
SDM-AR1 0.228 0.137 1 -0.634 0.984 0.03135
AR1 0.154 0.980 0.00094 -0.0413

2 SDM-AR2 0.395 0.33 -0.918 0.626 1.873 -0.892 0.00408
AR2 0.210 1.620 -0.658 0.00120 -0.0818
SDM-AR1 0.225 0.178 1 0.2988 0.971 0.05608
AR1 0.182 0.967 0.00219 -0.0722

3 SDM-AR2 0.341 0.239 0.988 -0.611 1.735 -0.738 0.00157
AR2 0.106 1.602 -0.625 0.00019 -0.0431
SDM-AR1 0.409 0.259 1 -0.695 0.998 0.00310
AR1 0.161 0.994 0.00031 -0.0140

4 SDM-AR2 0.613 0.208 0.997 -0.705 1.779 -0.782 0.00130
AR2 0.142 1.515 -0.537 0.00042 -0.0409
SDM-AR1 0.514 0.320 1 -0.717 0.997 0.00424
AR1 0.199 0.992 0.00059 -0.0164

5 SDM-AR2 0.115 0.085 1 -0.641 1.366 -0.386 0.02438
AR2 0.089 1.340 -0.364 0.00023 -0.0461
SDM-AR1 0.119 0.088 1 -0.631 0.986 0.02703
AR1 0.099 0.986 0.00027 -0.0291

6 SDM-AR2 0.237 0.208 1 -1.614 1.145 -0.209 0.09856
AR2 0.216 1.111 -0.173 0.00488 -0.1200
SDM-AR1 0.233 0.205 1 -1.630 0.945 0.10545
AR1 0.213 0.945 0.00503 -0.1064

7 SDM-AR2 0.142 0.132 -1 -1.578 1.210 -0.272 0.08742
AR2 0.136 1.189 -0.250 0.00169 -0.1372
SDM-AR1 0.133 0.124 -1 -1.704 0.944 0.10748
AR1 0.132 0.948 0.00180 -0.1179

8 SDM-AR2 0.245 0.234 -0.303 0.6721 1.878 -0.892 0.00302
AR2 0.273 1.794 -0.808 0.00042 -0.0253
SDM-AR1 0.236 0.221 1 1.3232 0.987 0.02452
AR1 0.209 0.985 0.00128 -0.0297

9 SDM-AR2 0.181 0.125 -1 2.2554 1.189 -0.233 0.06624
AR2 0.182 1.162 -0.205 0.00227 -0.0802
SDM-AR1 0.177 0.154 -1 -0.897 0.956 0.08481
AR1 0.174 0.961 0.00237 -0.0743

10 SDM-AR2 0.334 0.304 -0.794 0.5719 1.820 -0.829 0.00295
AR2 0.316 1.658 -0.667 0.00068 -0.0161
SDM-AR1 0.272 0.245 1 0.9424 0.990 0.01951
AR1 0.320 0.994 0.00122 -0.0075

11 SDM-AR2 0.392 0.378 -1 -0.621 1.790 -0.802 0.00477
AR2 0.333 1.735 -0.750 0.00090 -0.0305
SDM-AR1 0.418 0.402 1 0.6943 0.993 0.01222
AR1 0.279 0.987 0.00216 -0.0372

Table B.1: Calibration results based on the whole sample set
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B.1 SDM-AR(1) Calibration Plots
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Figure B.1: Fitted value and confidence in-
terval of SDM-AR(1) model for ALL series
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Figure B.2: Fitted value and confidence inter-
val of SDM-AR(1) model for Business series
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Figure B.3: Fitted value and confidence inter-
val of SDM-AR(1) model for Consumer series
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Figure B.4: Fitted value and confidence in-
terval of SDM-AR(1) model for Credit Card
series
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Figure B.5: Fitted value and confidence inter-
val of SDM-AR(1) model for Other Consumer
series
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Figure B.6: Fitted value and confidence in-
terval of SDM-AR(1) model for Agricultural
series
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Figure B.7: Fitted value and confidence in-
terval of SDM-AR(1) model for LFR series
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Figure B.8: Fitted value and confidence in-
terval of SDM-AR(1) model for Secured By
Real Estate series
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Figure B.9: Fitted value and confidence inter-
val of SDM-AR(1) model for Farmland series
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Figure B.10: Fitted value and confidence in-
terval of SDM-AR(1) model for Mortgages se-
ries
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Figure B.11: Fitted value and confidence in-
terval of SDM-AR(1) model for Commercial
Real Estate series
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B.2 SDM-AR(2) Calibration Plots
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Figure B.12: Fitted value and confidence in-
terval of SDM-AR(2) model for ALL series

1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017

Time

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D

D
1-step prediction
95% CI
99% CI

Figure B.13: Fitted value and confidence in-
terval of SDM-AR(2) model for Business se-
ries

1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017

Time

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

D

D
1-step prediction
95% CI
99% CI

Figure B.14: Fitted value and confidence in-
terval of SDM-AR(2) model for Consumer se-
ries
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Figure B.15: Fitted value and confidence in-
terval of SDM-AR(2) model for Credit Card
series
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Figure B.16: Fitted value and confidence in-
terval of SDM-AR(2) model for Other Con-
sumer series
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Figure B.17: Fitted value and confidence in-
terval of SDM-AR(2) model for Agricultural
series

1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017

Time

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

D

D
1-step prediction
95% CI
99% CI

Figure B.18: Fitted value and confidence in-
terval of SDM-AR(2) model for LFR series
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Figure B.19: Fitted value and confidence in-
terval of SDM-AR(2) model for Secured By
Real Estate series
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Figure B.20: Fitted value and confidence in-
terval of SDM-AR(2) model for Farmland se-
ries
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Figure B.21: Fitted value and confidence in-
terval of SDM-AR(2) model for Mortgages se-
ries
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Figure B.22: Fitted value and confidence in-
terval of SDM-AR(2) model for Commercial
Real Estate series
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Appendix C

Out-of-sample calibration results

In this section, we present the out-of-sample calibration and forecasting results for the
SDM-AR models along with the classic AR models.
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Series Model a1 a2 β t θ1 θ2 σ2 of AR C of AR
1 SDM-AR2 0.177 0.143 1 0.693 1.831 -0.848 0.00514

AR2 0.108 1.644 -0.67 0.00020 -0.052
SDM-AR1 0.387 0.189 1 -0.536 0.996 0.00798
AR1 0.092 0.975 0.00042 -0.0577

2 SDM-AR2 0.191 0.173 1 1.303 1.819 -0.852 0.00968
AR2 0.164 1.757 -0.791 0.00039 -0.0698
SDM-AR1 0.176 0.157 1 0.867 0.977 0.04547
AR1 0.154 0.976 0.00116 -0.0571

3 SDM-AR2 0.070 0.055 -1 -0.949 1.597 -0.633 0.02613
AR2 0.073 1.443 -0.467 0.00013 -0.046
SDM-AR1 0.207 0.178 -1 -0.185 0.998 0.00399
AR1 0.130 0.995 0.00017 -0.0129

4 SDM-AR2 0.068 0.056 -1 -1.252 1.315 -0.382 0.08080
AR2 0.071 1.288 -0.342 0.00035 -0.0931
SDM-AR1 0.065 0.054 -1 -1.302 0.947 0.10319
AR1 0.071 0.961 0.00039 -0.0695

5 SDM-AR2 0.42 0.386 -1 0.0298 1.176 -0.177 0.00164
AR2 0.056 1.467 -0.667 0.00040 -0.3679
SDM-AR1 0.224 0.169 -1 0.124 0.998 0.00399
AR1 0.210 0.998 0.00018 -0.0048

6 SDM-AR2 0.358 0.194 -0.819 0.774 1.369 -0.381 0.01479
AR2 0.573 0.879 0.084 0.0386 -0.076
SDM-AR1 0.368 0.195 -0.771 0.921 0.992 0.01593
AR1 0.210 0.957 0.00389 -0.0888

7 SDM-AR2 0.236 0.122 -1 -0.041 1.35243 -0.386 0.04128
AR2 0.128 1.1745 -0.241 0.00166 -0.1501
SDM-AR1 0.349 0.249 -1 0.204 0.992679 0.01458
AR1 0.125 0.94297 0.00177 -0.1294

8 SDM-AR2 0.387 0.369 -0.351 1.120 1.860341 -0.863 0.00096
AR2 0.120 1.4622 -0.481 0.00029 0.38799
SDM-AR1 0.361 0.181 1 -0.672 0.994854 0.01026
AR1 0.100 0.98013 0.00040 -0.0502

9 SDM-AR2 0.179 0.117 -1 1.961 1.086572 -0.123 0.06442
AR2 0.210 0.98507 -0.007 0.00201 -0.05
SDM-AR1 0.151 0.100 -1 2.425 0.952981 0.09182
AR1 0.211 0.97828 0.00201 -0.0495

10 SDM-AR2 0.095 0.065 -1 -0.084 1.129254 -0.169 0.06592
AR2 0.093 1.0719 -0.103 0.00049 -0.0667
SDM-AR1 0.107 0.077 -1 -0.054 0.973007 0.05325
AR1 0.096 0.97321 0.00050 -0.0572

11 SDM-AR2 0.930 0.927 -0.942 0.858 1.816297 -0.816 6.08E-05
AR2 0.211 1.3289 -0.342 0.00083 -0.0392
SDM-AR1 0.436 0.421 1 0.740 0.996482 0.00702
AR1 0.188 0.98675 0.00096 -0.0450

Table C.1: Four models’ estimation results based on n1 = 60 data points, where C is the
constant term and σ2

ε is the variance of the error term of the AR(1) and AR(2) processes.
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Series Model a1 a2 β t θ1 θ2 σ2 of AR C of AR
1 SDM-AR2 0.235 0.162 1 -0.672 1.829 -0.851 0.006517

AR2 0.195 1.824 -0.846 0.000268 -0.0417
SDM-AR1 0.224 0.13 1 -0.615 0.982 0.035676
AR1 0.151 0.979 0.000982 -0.0425

2 SDM-AR2 0.372 0.235 0.004 -2.288 1.814 -0.846 0.009771
AR2 0.226 1.681 -0.713 0.00098 -0.0681
SDM-AR1 0.255 0.182 1 0.183 0.978 0.043516
AR1 0.198 0.976 0.00195 -0.0568

3 SDM-AR2 0.321 0.224 0.986 -0.581 1.742 -0.746 0.00203
AR2 0.090 1.597 -0.631 0.000205 -0.0618
SDM-AR1 0.382 0.245 1 -0.658 0.998 0.003996
AR1 0.370 0.999 0.000318 -0.0037

4 SDM-AR2 0.634 0.198 0.996 -0.711 1.828 -0.831 0.001013
AR2 0.129 1.515 -0.545 0.00046 -0.0539
SDM-AR1 0.524 0.339 1 -0.676 0.998 0.003996
AR1 0.483 0.999 0.00061 -0.0046

5 SDM-AR2 0.117 0.083 1 -0.594 1.411 -0.433 0.024756
AR2 0.072 1.334 -0.369 0.000232 -0.0679
SDM-AR1 0.136 0.096 1 -0.563 0.989 0.021879
AR1 0.117 0.99 0.000278 -0.0219

6 SDM-AR2 0.252 0.221 1 -1.516 1.149 -0.207 0.089778
AR2 0.212 1.124 -0.186 0.00466 -0.1189
SDM-AR1 0.261 0.228 1 -1.48 0.957 0.084151
AR1 0.230 0.954 0.00505 -0.0926

7 SDM-AR2 0.220 0.131 -1 0.130 1.372678 -0.411 0.045444
AR2 0.136 1.2452 -0.311 0.001694 -0.1498
SDM-AR1 0.307 0.239 -1 0.289 0.989665 0.020563
AR1 0.137 0.94989 0.001876 -0.1148

8 SDM-AR2 0.266 0.254 -0.348 0.645 1.880337 -0.893 0.002873
AR2 0.285 1.7902 -0.803 0.000464 -0.0243
SDM-AR1 0.281 0.264 1 1.012 0.991133 0.017656
AR1 0.221 0.98698 0.001341 -0.0253

9 SDM-AR2 0.181 0.121 -1 2.103 1.177185 -0.221 0.067311
AR2 0.182 1.1485 -0.190 0.002311 -0.0786
SDM-AR1 0.182 0.146 -1 -1.146 0.952495 0.092754
AR1 0.174 0.96097 0.002401 -0.0737

10 SDM-AR2 0.353 0.320 -0.806 0.694 1.821151 -0.829 0.002823
AR2
SDM-AR1 0.332 0.299 1 0.525 0.993143 0.013667
AR1

11 SDM-AR2 0.349 0.331 -1 -0.945 1.759495 -0.774 0.006748
AR2 0.319 1.7261 -0.742 0.000978 -0.0337
SDM-AR1 0.252 0.241 1 1.864 0.981205 0.037237
AR1 0.234 0.98009 0.002288 -0.0470

Table C.2: Four models’ estimation results based on n1 = 94 data points, where C is the
constant term and σ2

ε is the variance of the error term of the AR(1) and AR(2) processes.
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C.1 Out-of-sample one-step ahead prediction error

The following tables show the out-of-sample forecasting accuracy result for the SDM-AR
and AR models.

Series Model MAE(%) RMSE(%) MAPE(%)
1 SDM-AR2 0.111 0.169 2.938

AR2 0.115 0.184 2.905
SDM-AR1 0.272 0.370 6.483
AR1 0.245 0.398 5.761

2 SDM-AR2 0.153 0.267 9.548
AR2 0.134 0.227 8.260
SDM-AR1 0.204 0.301 11.38
AR1 0.190 0.301 10.44

3 SDM-AR2 0.088 0.137 2.716
AR2 0.088 0.141 2.653
SDM-AR1 0.135 0.186 4.002
AR1 0.130 0.186 3.820

4 SDM-AR2 0.183 0.244 5.131
AR2 0.169 0.242 4.450
SDM-AR1 0.229 0.309 6.001
AR1 0.207 0.301 5.134

5 SDM-AR2 0.091 0.121 3.436
AR2 0.148 0.176 6.295
SDM-AR1 0.097 0.129 3.630
AR1 0.164 0.131 3.685

6 SDM-AR2 0.411 0.572 15.02
AR2 0.434 0.625 15.65
SDM-AR1 0.481 0.673 16.61
AR1 0.413 0.594 15.24

7 SDM-AR2 0.107 0.135 9.299
AR2 0.106 0.134 9.089
SDM-AR1 0.116 0.147 9.783
AR1 0.113 0.145 9.495

8 SDM-AR2 0.216 0.305 3.686
AR2 0.285 0.399 4.917
SDM-AR1 0.420 0.552 7.560
AR1 0.413 0.619 7.286

9 SDM-AR2 0.289 0.378 9.446
AR2 0.293 0.398 9.195
SDM-AR1 0.306 0.387 10.11
AR1 0.294 0.399 9.227

10 SDM-AR2 0.461 0.671 6.199
AR2 0.457 0.677 6.376
SDM-AR1 0.456 0.672 6.601
AR1 0.466 0.697 6.715

11 SDM-AR2 0.183 0.272 4.782
AR2 0.268 0.398 7.023
SDM-AR1 0.416 0.540 11.45
AR1 0.391 0.578 10.12

Table C.3: Out-of-sample Forecast-
ing Error Comparison When n1 =
60

Series Model MAE(%) RMSE(%) MAPE(%)
1 SDM-AR2 0.037 0.046 1.507

AR2 0.036 0.045 1.464
SDM-AR1 0.121 0.138 4.691
AR1 0.102 0.120 3.942

2 SDM-AR2 0.235 0.413 17.383
AR2 0.122 0.212 9.785
SDM-AR1 0.100 0.180 9.245
AR1 0.107 0.192 9.922

3 SDM-AR2 0.035 0.042 1.727
AR2 0.041 0.051 2.015
SDM-AR1 0.054 0.060 2.662
AR1 0.054 0.059 2.641

4 SDM-AR2 0.031 0.037 1.429
AR2 0.039 0.044 1.858
SDM-AR1 0.045 0.051 2.078
AR1 0.050 0.059 2.302

5 SDM-AR2 0.069 0.086 3.541
AR2 0.070 0.088 3.564
SDM-AR1 0.078 0.093 3.964
AR1 0.077 0.092 3.916

6 SDM-AR2 0.257 0.302 18.56
AR2 0.258 0.301 18.50
SDM-AR1 0.271 0.309 19.03
AR1 0.271 0.309 18.91

7 SDM-AR2 0.061 0.092 8.068
AR2 0.061 0.086 7.945
SDM-AR1 0.065 0.078 8.007
AR1 0.063 0.076 7.730

8 SDM-AR2 0.061 0.078 1.412
AR2 0.060 0.082 1.419
SDM-AR1 0.277 0.296 6.490
AR1 0.249 0.268 5.849

9 SDM-AR2 0.175 0.225 8.115
AR2 0.178 0.226 8.122
SDM-AR1 0.221 0.277 10.267
AR1 0.190 0.234 8.4824

10 SDM-AR2 0.061 0.094 0.9134
AR2 0.121 0.155 1.903
SDM-AR1 0.333 0.351 5.381
AR1 0.426 0.444 6.890

11 SDM-AR2 0.044 0.056 4.226
AR2 0.039 0.050 3.733
SDM-AR1 0.131 0.146 12.72
AR1 0.091 0.104 8.803

Table C.4: Out-of-sample Forecast-
ing Error Comparison When n1 =
94
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Figure C.1: Out-of-sample Forecasting Error Comparison for All series
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Figure C.2: Out-of-sample Forecasting Error Comparison for Business series
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Figure C.3: Out-of-sample Forecasting Error Comparison for Consumer series
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Figure C.4: Out-of-sample Forecasting Error Comparison for Credit Card series
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Figure C.5: Out-of-sample Forecasting Error Comparison for Other Consumer series
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Figure C.6: Out-of-sample Forecasting Error Comparison for Agricultural series
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Figure C.7: Out-of-sample Forecasting Error Comparison for LFR series
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Figure C.8: Out-of-sample Forecasting Error Comparison for SRE series
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Figure C.9: Out-of-sample Forecasting Error Comparison for Farmland series
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Figure C.10: Out-of-sample Forecasting Error Comparison for Mortgages series
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Figure C.11: Out-of-sample Forecasting Error Comparison for CRE series
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C.2 Out-of-sample one-step ahead prediction confi-

dence interval

Series Model n* Series Model n*
1 SDM-AR2 1 7 SDM-AR2 0

AR2 1 AR2 0
SDM-AR1 4 SDM-AR1 0
AR1 9 AR1 0

2 SDM-AR2 2 8 SDM-AR2 0
AR2 2 AR2 6
SDM-AR1 2 SDM-AR1 3
AR1 4 AR1 10

3 SDM-AR2 1 9 SDM-AR2 1
AR2 1 AR2 1
SDM-AR1 2 SDM-AR1 1
AR1 2 AR1 1

4 SDM-AR2 2 10 SDM-AR2
AR2 2 AR2
SDM-AR1 2 SDM-AR1
AR1 2 AR1

5 SDM-AR2 0 11 SDM-AR2 1
AR2 0 AR2 2
SDM-AR1 0 SDM-AR1 1
AR1 2 AR1 7

6 SDM-AR2 1
AR2 2
SDM-AR1 2
AR1 2

Table C.5: The number of points that lie
out of the 99.9% one-sided confidence interval
when n1 = 60. The number of back-testing
points is 44. The percentage column presents
the percentage of the points out of total test
points

Series Model n* Series Model n*
1 SDM-AR2 0 7 SDM-AR2 0

AR2 0 AR2 0
SDM-AR1 0 SDM-AR1 0
AR1 0 AR1 0

2 SDM-AR2 1 8 SDM-AR2 0
AR2 1 AR2 0
SDM-AR1 1 SDM-AR1 0
AR1 1 AR1 0

3 SDM-AR2 0 9 SDM-AR2 0
AR2 0 AR2 0
SDM-AR1 0 SDM-AR1 0
AR1 0 AR1 0

4 SDM-AR2 0 10 SDM-AR2
AR2 0 AR2
SDM-AR1 0 SDM-AR1
AR1 0 AR1

5 SDM-AR2 0 11 SDM-AR2 0
AR2 0 AR2 0
SDM-AR1 0 SDM-AR1 0
AR1 0 AR1 0

6 SDM-AR2 0
AR2 0
SDM-AR1 0
AR1 0

Table C.6: The number of points that lie
out of the 99.9% one-sided confidence interval
when n1 = 94. The number of back-testing
points is 10. The percentage column calcu-
late the presents of the points out of total
test points
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Figure C.12: Out-of-sample 99.9% upper-side forecasting confidence interval comparison
for ALL series
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Figure C.13: Out-of-sample 99.9% upper-side forecasting confidence interval comparison
for Business series
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Figure C.14: Out-of-sample 99.9% upper-side forecasting confidence interval comparison
for Consumer series
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Figure C.15: Out-of-sample 99.9% upper-side forecasting confidence interval comparison
for Credit Card series
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Figure C.16: Out-of-sample 99.9% upper-side forecasting confidence interval comparison
for Other Consumer series
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Figure C.17: Out-of-sample 99.9% upper-side forecasting confidence interval comparison
for Agriculture series
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Figure C.18: Out-of-sample 99.9% upper-side forecasting confidence intervalcomparison
for LFR series
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Figure C.19: Out-of-sample 99.9% upper-side forecasting confidence interval comparison
for SRE series

191



2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Time

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

D

D
SDM-AR(2)
SDM-AR(1)
AR(1)
AR(2)

(a) One-step ahead prediction CI with 60 points
estimation

2015 2016 2017

Time

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

D

D
SDM-AR(2)
SDM-AR(1)
AR(1)
AR(2)

(b) One-step ahead prediction CI with 94 points
estimation

Figure C.20: Out-of-sample 99.9% upper-side forecasting confidence interval comparison
for Farmland series
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Figure C.21: Out-of-sample 99.9% upper-side forecasting confidence interval comparison
for CRE series
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C.3 Out-of-sample 4-step ahead prediction

Series Model MAE(%) RMSE(%) MAPE(%) n*
1 SDM-AR2 0.493 0.743 10.632 2

AR2 0.645 1.027 13.390 7
SDM-AR1 1.099 1.394 24.863 10
AR1 0.896 1.433 19.233 12

2 SDM-AR2 0.550 0.847 30.536 1
AR2 0.492 0.737 27.935 1
SDM-AR1 0.746 0.995 43.616 8
AR1 0.701 0.973 38.053 8

3 SDM-AR2 0.440 0.520 14.504 3
AR2 0.396 0.522 12.018 3
SDM-AR1 0.482 0.617 14.535 4
AR1 0.468 0.603 13.679 7

4 SDM-AR2 0.812 0.917 24.547 3
AR2 0.736 0.874 20.591 3
SDM-AR1 0.788 0.948 22.176 3
AR1 0.723 0.920 18.904 3

5 SDM-AR2 0.314 0.400 11.256 4
AR2 0.738 0.875 32.730 0
SDM-AR1 0.332 0.407 12.002 4
AR1 0.306 0.413 10.804 8

6 SDM-AR2 1.135 1.641 36.050 4
AR2 1.181 1.789 34.982 5
SDM-AR1 1.286 1.839 39.459 5
AR1 1.142 1.748 34.153 5

7 SDM-AR2 0.290 0.382 24.877 0
AR2 0.275 0.359 23.713 0
SDM-AR1 0.317 0.418 26.639 0
AR1 0.288 0.378 24.356 0

8 SDM-AR2 0.873 1.149 13.743 1
AR2 1.350 1.905 20.058 12
SDM-AR1 1.611 2.039 26.651 11
AR1 1.560 2.213 23.903 15

9 SDM-AR2 0.862 1.031 28.101 0
AR2 0.837 1.134 23.865 6
SDM-AR1 0.889 1.055 29.305 2
AR1 0.817 1.108 23.357 5

10 SDM-AR2 1.861 2.528 22.180 21
AR2 1.792 2.467 22.174 14
SDM-AR1 1.712 2.304 22.147 13
AR1 1.754 2.393 22.439 14

11 SDM-AR2 1.030 1.372 24.729 1
AR2 1.325 1.88 32.734 11
SDM-AR1 1.714 2.061 48.035 10
AR1 1.501 2.084 36.900 14

Table C.7: Four-step ahead out-of-sample prediction results with 60 points training set
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Figure C.22: Out-of-sample four-step ahead prediction for ALL series
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Figure C.23: Out-of-sample four-step ahead prediction for Business series
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Figure C.24: Out-of-sample four-step ahead prediction for Consumer series
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Figure C.25: Out-of-sample four-step ahead prediction for Credit Card series
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Figure C.26: Out-of-sample four-step ahead prediction for Other Consumer series
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Figure C.27: Out-of-sample four-step ahead prediction for Agriculture series
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Figure C.28: Out-of-sample four-step ahead prediction for LFR series
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Figure C.29: Out-of-sample four-step ahead prediction for SRE series
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Figure C.30: Out-of-sample four-step ahead prediction for Farmland series
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Figure C.31: Out-of-sample four-step ahead prediction for Mortgages series
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Figure C.32: Out-of-sample four-step ahead prediction for CRE series
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Appendix D

The conditional density function of Yt
given Mt.

In this section, we derive the conditional density function of Yt given Mt, fYt|Mt(yt|mt),
for the three t-SDM-AR(2) models defined in Section 5.2. The conditional density func-
tion fYt|Mt(yt|mt) is an essential part for calculating the one-step-ahead predictive density
function for all three t-SDM-AR(2) models.
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D.1 fYt|Mt
(yt|mt) of t-SDM-AR(2)-S

To derive the conditional density function of Yt given Mt, we start by looking at the
conditional survival function first. We have:

P (Yt > yt|Mt = mt) =P (
xPD − a(Tt)

√
ν−2
ν
St,νmt√
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Then, by taking the first derivative with respect to yt, we find the conditional density
function of Yt given Mt,

fYt|Mt(yt|mt) =
d

dyt
(1− P (Yt > yt|Mt = mt))

=
2∑
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 √1− a2
i
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 ,
(D.1)

where fSν is the density function of Sν defined in Equation 5.6. Although, Function D.1 is
undefined at the point mt = 0, this is acceptable since Mt follows a continuous distribution.
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D.2 fYt|Mt
(yt|mt) of t-SDM-AR(2)-L

We use the same method as the one in Section D.1. The conditional survival function is
of the form:

P (Yt > yt|Mt = mt) =P (
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]
The conditional density function can be derived in the standard way:

fYt|Mt(yt|mt) =
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D.3 fYt|Mt
(yt|mt) of t-SDM-AR(2)-LS

We use the same method as the one in Section D.1. The conditional survival function is
of the form:

P (Yt > yt|Mt = mt) = P
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For xPD < 0, we have

P (Yt > yt|Mt = mt) = P
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Then, by taking the first derivative, we find the conditional density function of Yt given
Mt,
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Appendix E

Likelihood approximation

As we can see from Equation 5.17, fYt+1|Y1:t(yt+1|y1:t) is a three-dimensional integral over
Mt+1,Mt,Mt−1. But the built-in function of Matlab is inefficient and unreliable when
calculating such integral. In order to improve the computational efficiency, we adopt the
following methodology to approximate the value of fYt+1|Y1:t1(yt+1|y1:t).

1. First, we create a three-dimensional mesh grid over [−5 5] of the space ofMt+1,Mt,Mt−1.
We use d to denote the grid size.

2. We evaluate the values of fYt+1|Mt+1(yt+1|mt+1), fMt+1|Mt,Mt−1(mt+1|mt,mt−1) and
fMt,Mt−1|Y1:t(mt,mt−1|y1:t) for each point in the mesh grid we created in Step 1.

3. We time the values in Step 2 together along with the grid cube volume d3 and sum
them up to get an approximation for the value of fYt+1|Y1:t(yt+1|y1:t).

4. Then, the value of fMt+1,Mt|Y1:t+1 can also be approximated by the same manner.

In our study, we set the grid size d equal to 0.0175 to maintain the accuracy of approxima-
tion. The other reason for setting d = 0.0175 is because of the limit of the Matlab memory
size constraint.
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