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Abstract—Given a control-affine system and a controlled in-
variant submanifold, the local transverse feedback linearization
problem is to determine whether or not the system is locally
feedback equivalant to a system whose dynamics transversal to
the submanifold are linear and controllable. In this paper we
present necessary and sufficient conditions for a single-input
system to be locally transversally feedback linearizable to a
given submanifold that dualize, in an algebraic sense, previously
published conditions. These dual conditions are of interest in their
own right and represent a first step towards a Gardner-Shadwick
like algorithm for local transverse feedback linearization.

I. INTRODUCTION

Gardner and Shadwick introduced their G.S. algorithm
in [1] for solving the exact feedback linearization problem
for multi-input systems. The algorithm treats a control system
as an exterior differential system or, more precisely, a Pfaffian
system [2]. The appeal of the GS algorithm, as opposed to
the “vector field” approach presented in, for instance, [3], is
that it yields the differentials whose intergrals equal the virtual
output function that has the correct vector relative degree.

Transverse feedback linearization (TFL) refers to feedback
linearizing that portion of a control system’s dynamics which
governs the transversal motion to a given submanifold of
its state-space. While the necessary and sufficient conditions
in [4] are checkable, they are not constructive in the sense that
they do not provide a method for obtaining the linearizing
output function. This motivates the construction of “dual”
conditions. The necessary and sufficient dual conditions we
present are also checkable but, in addition, they suggest a
procedure for obtaining the one-form to be integrated to pro-
duce the “transversal output” needed for transverse feedback
linearization. In this sense, the conditions presented in this
paper precede the development of a GS-like algorithm for
transverse feedback linearization.

As pointed out by Gardner and Shadwick, the framework
of Pfaffian systems has a long history in mathematics. The
paper [5] contains a well-written and entertaining account of
the origins and development of the so-called Problem of Pfaff.
The Pfaffian approach to feedback equivalence problems has
been used by various authors of which we mention some
essential contributions [6], [7], [8], [9], [10], [11]. More
recently, Shöberl and Shclacher established a constructive
approach to generating a triangular decomposition of a non-
linear control system [12].
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A. Notation

If n is a natural number, then Nn := {1, . . . , n} and
Zn := {0, . . . , n− 1}. If M is a smooth m-dimensional
manifold then TM and T ?M denote, respectively, its tangent
and cotangent bundle. The set of all smooth vector fields on M
is denoted T(M). The Lie bracket of f, g ∈ T(M) is written
[f, g]. For iterated Lie brackets we use the standard notation
ad0

fg = g, adk
fg = [f, adk−1

f g], for k ≥ 1.
A point p ∈ M is called a regular point of a smooth

distribution ∆ : M → TM if there is a neighbourhood
U of p such that dim (∆(q)) is constant for all q ∈ U .
In this case we say that ∆ is regular at p and nonsingular
in U . The involutive closure of ∆ is denoted inv(∆) and
its annihilator ann(∆) : M → T ?M is defined pointwise
by ann(∆)(p) =

{
ω(p) ∈ T ?

pM : ω(v) = 0, ∀v(p) ∈ ∆(p)
}

.
Conversely, if Ω : M → T ?M is a codistribution then
Ker(Ω)(p) = {v(p) ∈ TpM : ω(v) = 0, ∀ω ∈ Ω(p)}. If ∆
and Ω are constant dimensional, then ann (∆), respectively,
Ker (Ω) are constant dimensional and ∆ = Ker (ann (∆)),
Ω = ann (Ker (Ω)).

If ∆1, ∆2 are distributions on M , then their sum ∆1 + ∆2

is defined pointwise by (∆1 + ∆2)(p) = ∆1(p) + ∆2(p) and
[∆1,∆2] = {[v1, v2] ∈ T(M) : vi ∈ ∆i, i ∈ N2}.

The vector space of smooth k-forms on an m-dimensional
manifold M is denoted by Ak(M) and A?(M) :=⊕m

k=0 A
k(M). The exterior (wedge) product of a k-form

ω ∈ Ak(M) with an l-form η ∈ Al(M) is a (k + l)-form.
An exterior ideal in A?(M) is a linear subspace I ⊆ A?(M)
that is closed under wedge products with arbitrary elements of
A?(M). If I ⊆ A?(M) is an exterior ideal, then Ik denotes
the homegenous component of k-forms in I.

For a k-form ω ∈ Ak(M), its exterior derivative is denoted
dω ∈ Ak+1(M). Given an exterior ideal I, its derived ideal
is δI = {ω ∈ I : dω ≡ 0 mod I}. Continuing this way, the
ideals δkI determine a nested sequence of codistributions

I1 ⊇ δI1 ⊇ · · · ⊇ δNI1. (1)

If the dimension of the subspace spanned by each δkI1 is
constant, then this construction terminates for some finite
integer N . The relation (1) is called the derived flag of I
while N is its derived length.

II. LOCAL TRANSVERSE FEEDBACK LINEARIZATION

Consider a single-input control system modelled by

ẋ = f(x) + g(x)u (2)
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where f, g : Rn → TRn are smooth. Let Γ ⊂ Rn be a closed,
connected, embedded submanifold of Rn that is controlled
invariant for the system (2). Let n? := dim (Γ) ∈ Nn−1.

Given (2), the set Γ and a point x0 ∈ Γ, the problem of local
transverse feedback linearization for (2) is as follows [4]: Find,
if possible, a diffeomorphism

Ξ : U → Ξ(U) ⊂ (Γ ∩ U)× Rn−n?

x 7→ (η, ξ)
(3)

where U is a neighbourhood of x0, such that
(i) The restriction of Ξ to Γ ∩ U is

Ξ|Γ∩U : x 7→ (η, 0).

(ii) The dynamics of system (2) in (η, ξ)-coordinates reads

η̇ = f0(η, ξ)

ξ̇ = Aξ + b(a1(η, ξ) + a2(η, ξ)u),
(4)

where the pair (A, b) is in Brunovský normal form (one
chain of integrators) and a2(η, ξ) 6= 0 in Ξ(U).

If such a diffeomorphism exists, then the smooth feedback
u = −a1(η, ξ)/a2(η, ξ) + v/a2(η, ξ) yields a system of the
form

η̇ = f0(η, ξ)

ξ̇ = Aξ + bv
(5)

and we say that system (2) has been locally transversely
feedback linearized with respect to the set Γ. The feedback
equivalence problem between (2) and (4) (equivalently (5))
can be stated in terms of the existence of a “virtual” output
function yielding a well-defined relative degree, a point of
view championed by Isidori [3]. Accordingly, in [4, Theorem
3.1] it was shown that local transverse feedback linearization
is possible if, and only if, there exists a smooth function
α : U ⊆ Rn → R, defined in an open and connected set
U ⊆ Rn containing x0, such that (i) Γ∩U ⊂ α−1(0) and (ii) α
yields a relative degree of n−n? at x0. Such an output function
is called a local transverse output of (2) with respect to Γ. This
discussion shows that local transverse feedback linearization
is equivalent to the following problem.

Problem 1. (Local Zero Dynamics Assignment) Given
a controlled invariant manifold Γ find an output function
yielding a well-defined relative degree whose associated zero
dynamics manifold locally coincides with Γ. M

Checkable necessary and sufficient conditions for the exis-
tence of a transverse output were given in [13] for the single-
input case and in [4] for the multi-input case. In order to state
these conditions, define the distributions

(∀i ∈ Zn−n∗) Gi := span
{
g, adfg, . . . , adi

fg
}
. (6)

Theorem II.1 ([4, Theorem 3.2]). Suppose that x0 ∈ Γ is a
regular point of inv (Gi), i ∈ Zn−n?−1. Then (2) is locally
transversally feedback linearizable at x0 if, and only if,
(a) dim (Tx0

Γ +Gn−n?−1(x0)) = n,

and there exists an open neighbourhood U of x0 in Rn such
that, for all i ∈ Zn−n?−1, and all x ∈ Γ ∩ U
(b) dim(TxΓ + Gi(x)) = dim(TxΓ + inv (Gi)(x)) = n? +

i+ 1.

The assumptions of Theorem II.1 are checkable, however its
proof does not provide a constructive procedure for finding the
transversal output. The next result relates transverse feedback
linearization to partial feedback linearization but it isnt a viable
solution to the local transverse feedback linearization problem
because its assumptions are not checkable. On the other hand,
the theorem provides guidelines for finding the transversal
output function.

Theorem II.2 ([4, Theorem 3.5]). Suppose that x0 ∈ Γ
is a regular point of inv (Gi), i ∈ Zn−n?−1. Then (2) is
locally transversally feedback linearizable at x0 if, and only
if, there exists an open neighbourhood U of x0 and a smooth,
involutive, and nonsingular distribution ∆ on U such that,

(i) ∆|Γ = TΓ,
(ii) ∆ is locally controlled invariant,

(iii) (∀x ∈ Γ ∩ U) dim (TxΓ +Gn−n?−1(x)) = n,
(iv) ∆ +Gi is nonsingular and involutive on U .

The procedure based on Theorems II.1 and II.2 for com-
puting a transversal output requires the designer to first check
the conditions of Theorem II.1. If the conditions hold, then
one must find a (non-unique) locally controlled invariant
distribution ∆, which is guaranteed to exist, and use this
distribution together with the distributions Gi, to determine
the exact one forms corresponding to the linearizing output.

The primary objective of this paper, inspired by [1], is to
dualize the conditions of Theorem II.1 for local transverse
feedback linearization.

III. STATEMENT OF MAIN RESULT

Associated to the nonlinear control system (2) is a Pfaffian
system of rank n given by

Σ = {dxi − (fi + giu) dt, i ∈ Nn} (7)

on the manifold M := R×R×Rn. The first two coordinates
are time and control so that points on M have the form
p = (t, u, x). Let ωi := dxi − (fi(x) + gi(x)u) dt for i ∈ Nn

and let I = {ω1, . . . , ωn} denote the exterior ideal generated
by the ωi. This ideal induces higher order derived ideals and
a derived flag (1). To the n?-dimensional controlled invariant
submanifold Γ ⊂ Rn we associate a family of embedded
submanifolds Γ̂ := {t0} × R × Γ ⊂ M where the time t0
is fixed, but arbitrary.

Definition III.1. Let I ⊆ A?(M) be an exterior ideal and
let Γ̂ ⊆ M be an embedded submanifold. The transversal
codistribution induced by I with respect to Γ̂ is the subpace
I1
t ⊆ I1 which satisfies, for all p ∈ Γ̂,

I1
t(p) = I1(p) ∩ ann

(
TpΓ̂

)
.



A point p ∈ Γ̂ is a regular point of I1
t if there exists a

neighbourhood U in M such that dim (I1
t(q)) is constant for

all q ∈ U ∩ Γ̂.

Of course, Defintion III.1 applies equally well when the role
of I is played by a derived exterior ideal δkI. In that case we
will write

δkI1
t(p) = δkI1(p) ∩ ann

(
TpΓ̂

)
.

Lemma III.2. Let I ⊆ A?(M) be an ideal which is simply
generated by smooth, linearly independent one-forms, let
Γ̂ ⊂ M be an embedded submanifold and let p ∈ Γ̂ be a
regular point of I1

t with dim (I1
t(p)) = r. Then there exists

an open neighbourhood U of p and a set {ω1, . . . , ωr} of
smooth, linearly independent, one-forms defined on U with
the property that

(i) (∀q ∈ U) span {ω1(q), . . . , ωr(q)} ⊆ I1(q),
(ii)

(
∀q ∈ U ∩ Γ̂

)
I1
t(q) = span {ω1(q), . . . , ωr(q)}.

Due to space limitations, the proof of Lemma III.2 is
omitted. Next we define an exterior ideal whose generators
are the one forms in the transversal codistribution.

Definition III.3. The transversal exterior ideal induced by
δkI with respect to the set Γ̂ is the simply generated exterior
ideal whose generators are the one-forms in δkI1.

If p ∈ Γ̂ is a regular point of both codistributions δkI1

and δkI1
t, then by Lemma III.2 there exists an open set U

containing p and one-forms ωi ∈ A1(U) such that δkI1
t =

span {ω1, . . . , ωr}. In this case, using the characterization in
Definition δkIt = {ω1, . . . , ωr}.

At times we will need to consider exterior ideals that have
been augmented with the form dt. More specifically, if δkI ⊆
A?(M) is a simply generated ideal, then δkÎ :=

{
δkI1,dt

}
denotes the exterior ideal that is simply generated by the one
forms in δkI and the one form dt.

We now state the main result of this paper. It is the dual
of the necessary and sufficient conditions for local transverse
feedback linearization in Theorem II.1.

Theorem III.4 (Main result). Let I be the exterior ideal sim-
ply generated by the Pfaffian system (7). Let p = (t0, u0, x0) ∈
Γ̂ be a regular point of each codistribution δkI1, δkI1

t,
k ∈ Zn−n?+1. Then system (2) is locally transverse feedback
linearizable at x0 ∈ Γ̂ if, and only if,
(a) δn−n

∗It(p) = {0},
(b) δkÎt is a differential ideal for k ∈ Nn−n?−1.

Remark III.5. Condition (a) is a controllability condition. It
guarantees that the largest integrable subsystem contained in
I produces a foliation of the state space which is transversal
to the target set Γ̂. Condition (b) is an involutivity condition.

IV. SUPPORTING RESULTS

In order to prove Theorem III.4, various preliminary sup-
porting results are required. We start by lifting vector fields in
T(Rn) to T(M).

Definition IV.1. Let M = R × R × Rn, let f ∈ T(Rn) and
let π : M → Rn be the submersion defined by (t, u, x) 7→ x.
The lift of f to the manifold M is the unique vector field
X ∈ T(M) which is π-related to f and tangent to every
submanifold {t0} × {u0} × Rn.

Applying the procedure from Definition IV.1 to the local
generators of a smooth distribution D : Rn → TRn, we obtain
a lifted distribution on D : M → TM on M which satisfies,
for all p ∈M , π∗D(p) = D(π(p)).

Unless otherwise stated, distributions on M are denoted by
script letters while distributions on Rn are denoted by roman
letters. Applying these constructions to the distributions Gi

defined in (6) we obtain the lifted distributions Gi : M → TM .
Additionally, we need the following distributions on Rn

S0 := G0, (8a)
Si := Si−1 + [Si−1, Si−1] +Gi, i ∈ N, (8b)

as well as the distributions

D0 := span

{
∂

∂t
+

n∑
i=1

(fi + giu)
∂

∂xi
,
∂

∂u

}
, (9a)

Di := Di−1 + [Di−1,Di−1] , i ∈ N, (9b)

defined on M . Observe that D0(p) has dimension 2 every-
where. Moreover, if I is the the exterior ideal generated
by the Pfaffian system (7), then at each p ∈ M , it holds
that D0(p) = Ker(I1(p)). This implies that, for k ≥ 1,
Dk(p) = Ker(δkI1(p)). The proof of our main result uses the
relationship between the lift Si of (8) and the distribution (9)
described in the next Lemma.

Lemma IV.2. For all i ≥ 1, Di = D0 + Si−1.

Proof. The proof is by induction. Simple calculations give that
G0 = [D0,D0] and D1 = D0 + G0. Since S0 = G0 the base
case holds. Now, by way of induction, suppose for some i ≥ 1,

Di = D0 + Si−1. (10)

Using the definition of Di+1, (10) and bilinearity

Di+1 = D0 + Si−1 + [D0 + Si−1,D0 + Si−1]

= D0 + Si−1 + [D0,D0] + [D0, Si−1] + [Si−1, Si−1]

= D0 + Si−1 + [Si−1, Si−1] + [D0, Si−1] . (11)

We’ve used [D0,D0] = S0 ⊆ Si−1 above. It follows from (8b)
that D0 + Si−1 + [Si−1, Si−1] ⊆ D0 + Si Then (11) becomes

Di+1 ⊆ D0 + Si + [D0, Si−1] .

Proposition A.2 already gives [D0, Si−1] ⊆ Si. As a result we
have shown that Di+1 ⊆ D0 + Si. Conversely, using (8b)

D0 + Si = D0 + Si−1 + [Si−1, Si−1] + Gi.

By the inductive hypothesis (10)

D0 + Si ⊆ Di + [Di,Di] + Gi = Di+1 + Gi.

The result follows by Proposition A.3.



Next we characterize the structure of the transversal codis-
tributions induced by I with respect to Γ̂.

Lemma IV.3. Let p ∈ Γ̂ be a regular point of the codistri-
butions δkI1

t for all k ≥ 1. Then there exists an open set
U ⊂M containing p such that for all q ∈ U ∩ Γ̂,

Ker(δkI1
t(q)) = D0(q) + Sk−1(q) + TqΓ̂.

Proof. Let p ∈ Γ̂ be a regular point of the codistributions
δkI1

t for k ≥ 1. Let U ⊂M be the open set containing p for
which the codistributions have constant dimension. Then for
any q ∈ U ∩ Γ̂,

Ker(δkI1
t(q)) = Ker

(
δkI1(q) ∩ ann

(
TqΓ̂

))
= Ker(δkI1(q)) + TqΓ̂.

We have that Ker(δkI1(q)) = Dk(q) so,

Ker(δkI1
t(q)) = Dk(q) + TqΓ̂.

The result follows by applying Lemma IV.2.

Corollary IV.4. Let p ∈ Γ̂ be a regular point of the codis-
tributions δkI1

t for all k ≥ 1. Then there exists an open set
U ⊂M containing p such that for all q ∈ U ∩ Γ̂,

Ker(δkÎ1
t(q)) = Sk−1(q) + TqΓ̂.

Proof. Let p ∈ Γ̂ be a regular point of the codistributions
δkI1

t for k ≥ 1. Let U ⊂M be the open set containing p for
which the codistributions have constant dimension. Then for
any q ∈ U ∩ Γ̂,

Ker(δkÎ1
t(q)) = Ker(δkI1

t(q)) ∩Ker(span {dt} (q))

=
(
Sk−1(q) + TqΓ̂

)
∩Ker(span {dt} (q)).

By the way we lift the set Γ to Γ̂, no element of TqΓ̂ has
a component in ∂

∂t . As a result, TqΓ̂ ⊆ Ker(span {dt} (q)).
This implies,

Ker(δkÎ1
t(q)) = Sk−1(q) ∩Ker(span {dt} (q)) + TqΓ̂.

By the choice of lift used for distributions, we have that
Sk−1(q) ⊆ span{ ∂

∂x1
, . . . , ∂

∂xn
}. So we may conclude

Ker(δkÎ1
t(q)) = Sk−1(q) + TqΓ̂.

We need two more technical propositions before proving
the main result.

Proposition IV.5. For all i ≥ 0, Si + [Si, Si] ⊆ inv(Gi).

The proof for Proposition IV.5 is omitted. It follows an
inductive proof that uses the definition of Si.

Proposition IV.6. Let Γ̂ be a closed, embedded submanifold
of M and let p ∈ Γ̂. If for all j ≥ 0,

Sj(p) + TpΓ̂ = inv(Gj(p)) + TpΓ̂, (12)

then for all k ≥ 0,

Gk(p) + TpΓ̂ = inv(Gk(p)) + TpΓ̂. (13)

The proof of Proposition IV.6 is in the appendix.

V. PROOF OF MAIN RESULT

We now prove Theorem III.4. Conditions (a) and (b) will
be shown to be equivalent to single-input variant of Theorem
3.2 in [4]. Suppose conditions (a) and (b) of Theorem III.4.
Let U be an open set of M containing p on which δkI1 and
δkI1

t are constant dimensional. Then, by Corollary IV.4 and
Proposition IV.5, for all q ∈ U ∩ Γ̂,

Ker(δkÎ1
t(q)) = Sk−1(q) + TqΓ̂ ⊆ inv(Gk−1(q)) + TqΓ̂.

Since δkÎt is a differential ideal, the distribution annihi-
lated by δkÎt is involutive. Therefore, since Gk−1(q) ⊆
Ker(δkÎ1

t(q)), we may conclude that inv(Gk−1(q)) ⊆
Ker(δkÎ1

t(q). In particular we find,

inv(Gk−1(q)) + TqΓ̂ ⊆ Ker(δkÎ1
t(q)).

As a result, for q ∈ U ∩ Γ̂ and for all k ≥ 1,

inv(Gk−1(q)) + TqΓ̂ = Sk−1(q)) + TqΓ̂.

We can see now that the premise of Proposition IV.6 is satisfied
so we may conclude that for all j ≥ 0,

inv(Gj(q)) + TqΓ̂ = Gj(q) + TqΓ̂.

But this is just condition (b) of Theorem II.1 on the lifted
manifold M . Projecting down to Rn using the embedding from
Definition IV.1 we conclude that condition (b) of Theorem II.1
holds.

We turn to the controllability condition, condition (a) of
Theorem II.1. Observe by Corollary IV.4,

{0} × R× Rn ∼= Ker(δn−n
?

Ît(p))

= Sn−n?−1(p)) + TpΓ̂.

Then using the property proven above,

{0} × R× Rn = inv(Gn−n?−1(p)) + TpΓ̂

= Gn−n?−1(p) + TpΓ̂.

Projecting down to Rn once again we obtain

Rn ∼= +Tx0Γ +Gn−n?−1(x0).

And so both conditions of Theorem II.1 hold.
Conversely, suppose the conditions of Theorem II.1. Then

there exists a distribution ∆ defined on some open set U ⊂ Rn

containing x0 such that the conditions of Theorem II.2 are
satisfied. We use ∆ to define a distribution V : W → TW on
an open set of M containing p = (t0, 0, x0) in a manner such
that the conditions of Theorem II.2 remain true on W using
Gk in place of Gk. In particular, we define

V := span

{
∂

∂u

}
+ C,



where C is the lift of ∆ into M. Define W := R × R × U
which is an open set on M containing p. Let q ∈W ∩ Γ̂. Now
use Corollary IV.4 to get,

Ker(δkÎ1
t)(q) = Sk−1(q) + TqΓ̂.

Then apply Proposition IV.5 and use the properties of V,

Ker(δkÎ1
t)(q) ⊆ inv(Gk−1(q)) + TqΓ̂

= inv(Gk−1(q)) + V

= Gk−1(q) + V.

Then,

Ker(δkÎ1
t) ⊆ Gk−1 + V

⊆ Sk−1 + TxΓ̂

= Ker(δkÎ1
t).

Therefore δkÎ1
t = ann(Gk−1 + V) is a differential ideal (by

the involutivity of the distribution) and condition (b) holds.
Condition (a) holds since on Γ̂ we have by condition (iii) of
Theorem II.2,

{0} × R× Rn = Gn−n∗−1(p) + TpΓ̂

By involutivity,

{0} × R× Rn = inv(Gn−n∗−1(p)) + TpΓ̂

= Sn−n∗−1(p) + TpΓ̂

= Ker(δn−n
∗
I1
t)(p).

As a result condition (a) holds and so Theorem III.4 is implied
by Theorem II.1.

VI. ILLUSTRATIVE EXAMPLE

Consider the kinematic model of a rear-wheel drive
car-like robot with a fixed forward speed. This is a
system of the form (2) with n = 4 and f(x) =
(cos (x3), sin (x3), tan (x4), 0)ᵀ, g(x) = (0, 0, 0, 1). Here
the steering angle x4 is confined to the open interval
(−π/2,−π/2). Setting M = R×R×R4, the ideal generated
by the Pfaffian system associated with the car-like robot is
I = {ω1, ω2, ω3, ω4}alg where ω1 = dx1 − cos (x3)dt, ω2 =
dx2−sin (x3)dt, ω3 = dx3−tan (x3)dt, and ω4 = dx4−udt.
It was established in [14], in the context of path following,
that this system is locally transversally feedback linearizable
in a neighbourhood of any point of the set Γ = {x ∈ R4 :
x2

1 + x2
2 = 1, x1 cosx3 + x2 sinx3 = 0, 1 + tan(x4) = 0}

with dimension n? = 1. We show that, as expected, our dual
conditions confirm this result.

Since Γ̂ = {0} × R × Γ is the zero level set of a smooth
function, ann(TpΓ̂) is spanned by the differential of the
function. In particular ann(TpΓ̂) is the image of1 0 0 0 0 0
0 0 x1 x2 0 0
0 0 cos (x3) sin (x3) x2 cos(x3)− x1 sin(x3) 0
0 0 0 0 0 sec2 (x4).


The transversal ideals are found – using MATLAB – by
intersecting the derived flags of IΣ with ann(TpΓ̂). The basis

is adapted so that It = {ω1, ω2, ω3}alg, δ1It = {ω1, ω2}alg,
δ2It = {ω1}alg and δ3It = {0} where

ω1 := −(x1 cosx3 − x2 sinx3)dt+ x1dx1 + x2dx2,

ω2 := [− tan(x4)(x2 cos(x3)− x1 sin(x3))− 1] dt

+ cos(x3)dx1 + sin(x3)dx2

+ [x2 cos(x3)− x1 sin(x3)] dx3

ω3 := [tan(x4)2(x1 cos(x3) + x2 sin(x3))

− u(tan(x4)2 + 1)(x2 cos(x3)

− x1 sin(x3))]dt

+ tan(x4) sin(x3)dx1 + tan(x4) cos(x3)dx2

− [tan(x4)(x1 cos(x3) + x2 sin(x3))]dx3

+ [(tan(x4)2 + 1)(x2 cos(x3)− x1 sin(x3))]dx4

Since n − n? = 3, we immediately see that condition (a) of
Theorem III.4 holds at every point of Γ̂.

To check condition (b) of Theorem III.4, we need to
check the above transversal ideals It, δIt and δ2It, when
augmented with dt, are differential ideals. This can be done
using the properties of wedge products in combination with
Frobenius’ Theorem [2, Proposition 1.1, Theorem 1.1]. Due to
space limitations the explicit expressions are not shown, but
it is straightforward to check that they are closed.

Since both conditions of Theorem III.4 are satisfied we
conclude that car-like robot is locally transverse feedback
linearizable around any point on Γ as expected.

APPENDIX

Proposition A.1. For all i ≥ 0, [D0,Gi] ⊆ Si+1.

Proof. Since Gi is tangent to every submanifold of the form
{t}× {u}×Rn, every vector fields in Gi commutes with ∂

∂u .
In light of the definition of D0 in (9a), this means we need
only consider Lie brackets between vector fields in Gi and
∂
∂t +

∑n
i=1 (fi + giu) ∂

∂xi
∈ D0.

For i = 0, we note that G0 is spanned by
∑n

i=0 gi(x) ∂
∂xi

so [D0,G0] is spanned by,[
n∑

i=0

fi
∂

∂xi
,

n∑
i=0

gi
∂

∂xi

]
.

which is the lift of adfg. This vector field belongs to G1 ⊆ S1.
Suppose, by way of induction that, for some i ≥ 1,

[D0,Gi−1] ⊆ Si and consider [D0,Gi]. By the inductive
hypothesis we have that it suffices to show that ∂

∂t
+

n∑
j=0

(fj + gju)
∂

∂xj
,

n∑
j=0

(adi
fg)j

∂

∂xj

 .
belongs to Si+1. By linearity of the brackets, the above equals

n∑
j=0

(adi+1
f g)j

∂

∂xj
+

 n∑
j=0

gj
∂

∂xj
,

n∑
j=0

(adi
fg)j

∂

∂xj

u.
The former term is in Gi+1 which is a subset of Si+1. The
latter term belongs to [Gi,Gi] ⊆ [Si, Si] ⊆ Si+1.



Proposition A.2. For all i ≥ 0, [D0, Si] ⊆ Si+1.

Proof. The base case follows from applying Proposition A.1
and the fact that S0 = G0. By way of induction, suppose that
for some i ≥ 1,

[D0, Si−1] ⊆ Si (14)

Consider [D0, Si] . Use (8b) on [D0, Si] and linearity to find,

[D0, Si] = [D0,Gi + Si−1 + [Si−1, Si−1]]

= [D0,Gi] + [D0, Si−1] + [D0, [Si−1, Si−1]] .

By Proposition A.1, [D0,Gi] ⊆ Si+1, and so,

[D0, Si] ⊆ Si+1 + [D0, Si−1] + [D0, [Si−1, Si−1]] .

By applying the inductive hypothesis (14),

[D0, Si] ⊆ Si+1 + [D0, [Si−1, Si−1]] . (15)

By the Jacobi identity,

[D0, [Si−1, Si−1]] = [Si−1, [D0, Si−1]] + [Si−1, [Si−1,D0]]

= [Si−1, [D0, Si−1]] .

Therefore (15) becomes,

[D0, Si] ⊆ Si+1 + [Si−1, [D0, Si−1]] .

It follows from the inductive hypothesis (14) that,

[D0, Si] ⊆ Si+1 + [Si−1, Si] .

The result follows by the definition of Si+1.

Proposition A.3. For all i ≥ 0, Gi ⊆ Di+1.

Proof. By definition, D1 = D0 + [D0,D0] and [D0,D0] is
spanned by,[

∂

∂t
+

n∑
i=1

(fi + giu)
∂

∂xi
,
∂

∂u

]
=

n∑
i=1

−gi
∂

∂xi
.

Therefore G0 = [D0,D0] ⊂ D1.
Suppose now, by way of induction, that for some i ≥ 0,

Gi ⊆ Di+1. The distribution Gi+1 equals the direct sum of Gi

and the lifted vector field adi+1
f g.. We know by the inductive

hypothesis and by (9b) that Gi ⊆ Di+1 ⊆ Di+2. As a result,
it suffices to check that the lift of adi+1

f g belongs to Di+2.

To this end, observe that the lift of adi
fg and D0 is spanned

by,

n∑
j=0

(adi+1
f g)j

∂

∂xj
+

 n∑
j=0

gj
∂

∂xj
,

n∑
j=0

(adi
fg)j

∂

∂xj

u. (16)

The vector field (16) belongs to Di+2 by the induction
hypothesis. Furthermore, the latter term of (16) is also in
Di+2 since it belongs to [Gi,Gi] which, again by the inductive
hypothesis, belongs to Di+2. It follows that the former term
is in Di+2. Hence Gi+1 ⊆ Di+2.

Proof of Proposition IV.6. For k = 0 equality holds by defi-
nition since S0 = G0.

Now by way of induction suppose that (13) holds for
some k ≥ 0. By hypothesis we have that, for all j ≥ 0,
the equality (12) holds. Now consider inv(Gk+1(p)) + TpΓ.
By (12),

inv(Gk+1(p)) + TpΓ ⊆ Sk+1(p) + TpΓ.

Use (8b) to expand Sk+1,

inv(Gk+1) + TpΓ ⊆ Gk+1 + Sk + [Sk, Sk] + TpΓ.

Apply Proposition IV.5,

inv(Gk+1) + TpΓ ⊆ Gk+1 + inv(Gk) + TpΓ.

Invoke the inductive hypothesis,

inv(Gk+1) + TpΓ ⊆ Gk+1 + Gk + TpΓ,

and finally use the fact that Gk ⊆ Gk+1 to arrive at,

inv(Gk+1) + TpΓ ⊆ Gk+1 + TpΓ.

The reverse containment follows from the definition of the
involutive closure.
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