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Abstract

Adaptive control deals with systems that have unknown and/or time-varying parameters.
Most techniques are proven for the case in which any time-variation is slow, with results for
systems with fast time-variations limited to those for which the time-variation is of a known
form or for which the plant has stable zero dynamics. In this paper a new adaptive controller
design methodology is proposed in which the time-variation can be rapid and the plant may
have unstable-zero dynamics. Under the structural assumptions that the plant is relative
degree one and that the plant uncertainty is a single scalar variable, as well as some mild
regularity assumptions, it is proven that the closed-loop system is exponentially stable under
fast parameter variations with persistent jumps. The proposed controller is nonlinear and
periodic, and in each period the parameter is estimated and an appropriate stabilizing control
signal is applied.
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1 Introduction

The primary objective of adaptive control is to handle systems with parameters that are uncertain.
A classical example of such an adaptive controller is a linear time-invariant (LTI) controller having
adjustable parameters. Typically a tuning mechanism is used to modify the controller in such a
way that it is suitable for the uncertain plant, which usually results in a nonlinear closed-loop
system.

In the 1950’s, adaptive control methods were adopted in order to deal with systems for which
parameters were both uncertain and time-varying. However, the solution to such a general prob-
lem could not be found. Focus shifted to a more modest goal of controlling systems for which
parameters were uncertain, but fixed. This simplified scenario was still very difficult and it wasn’t
until around 1980 that a generalized solution was obtained, e.g., [1], [2], [3]. These controllers typ-
ically gave poor transient responses and were not robustly stable in the presence of unmodelled
dynamics and bounded disturbances, e.g., [4]. In response, a number of approaches were developed
to improve performance. These included Certainty Equivalence approaches, e.g., [5], prerouted
logic based switching approach, e.g., [6], [7], and more refined methods such as supervisory and
multi-model switching control, e.g. [8], [9], [10], [11], [12].

The study of the adaptive control of time-varying systems has been challenging. With modi-
fication, many of the earlier adaptive controllers can handle slow time-variation of plant param-
eters and/or occasional parameter jumps, e.g., [13], [14], [15], [16], [17], [18]. While there are
several general results which deal with unstable zero dynamics under moderate time-variations,
e.g., [19], [20], [21], the study of rapid time-variation has been limited, with either the form of the
time-variations being known, e.g., [22], [23], or plants with stable zero dynamics (the time-varying
counterpart of minimum phase), e.g., [24], [25], [26], [27], [28], [29]. There is a recent result by the
last co-author and his graduate student, [30], inspired by the related area of gain scheduling, that
can handle arbitrarily fast, but bounded, time-variation. The approach imposes stringent condi-
tions on the observability matrix of the plant, which is used in the estimate of the plant states.
In this paper we revisit that approach, with an objective of removing the stringent observability
assumptions.

The approach of gain scheduling developed alongside adaptive control. In the gain scheduling
problem, a plant whose parameters depend on a variable (the gain scheduling parameter) is con-
sidered. This variable is assumed to be measurable, e.g., a plane whose dynamics depend on the
altitude. Despite gain scheduled controller design being a classical, and often ad-hoc, approach, it
has re-gained interest since the 1990’s, e.g., [31], [32], [33]. There are many different design meth-
ods for gain scheduling; however, the most common is that of varying the controller coefficients
based on the current value of the scheduling variable. An important approach considered is that
of converting a nonlinear plant to a linear parameter-varying (LPV) system by either regarding
the nonlinearity as the scheduling parameter, or linearizing for a set of operating points regarded
as the scheduling parameter. This preserves well-understood linear design tools and allows the
utilization of these tools on difficult nonlinear systems. Several controller design approaches have
been developed for this situation, typically resulting in a set of LTI compensators where each
controller achieves the desired performance specification for a particular instance of the plant,
e.g., [33]. Of significance is the invariant set approach developed in [34], [35], [36], [37], [38], where
it is shown that polyhedral Lyapunov functions and associated geometrically intuitive methods
can be used for controller synthesis. In particular, in [38] it is shown that under some strin-
gent assumptions (see Section 3.1), a continuous-time gain-scheduled output feedback controller
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can be constructed such that the closed-loop system is exponentially stable under arbitrarily fast
time-variations in the parameter.

The purpose of this paper is to develop a nonlinear adaptive output feedback controller that can
stabilize a linear system with possibly unstable zero dynamics and arbitrarily fast, but bounded,
time variations. This is primarily achieved by extending the work on gain scheduling in [38],
but here the scheduling parameter is not available to the controller; the approach builds on the
approach presented in [30] and [39]. The main result, Theorem 2, proves that the proposed
controller achieves closed-loop exponential stability with a bounded gain on the measurement
and process noise. This is a strong form of stability, given that the controller, and therefore the
closed-loop system, is nonlinear and time-varying.

The proposed controller utilizes a nonlinear continuous-time filter in tandem with a discretized
version of the gain-scheduled output feedback controller in [38]. However, the time-varying pa-
rameter is replaced with an estimate generated by a discrete-time parameter estimator inspired
by [39], yielding a nonlinear adaptive controller.

As noted above, there are very few general stabilization results within adaptive control for
systems with unstable zero dynamics and rapid time-variation. Because of the difficulty of the
problem and the lack of general results, in this paper the major structural assumptions imposed
are that the plant is single-input single-output and that the unmeasurable time-varying parameter
is a scalar; while this may seem restrictive, there are many physical examples where the time-
variation is represented by a scalar variable, such as the altitude of a plane, the mass of a missile,
and the tank level control problem of [38]. Furthermore, this can be viewed as enabling a first
step towards a more general theory for multi-input multi-output systems with multiple unknown
parameters.

In Section 2, mathematical preliminaries are presented. In Section 3, the problem of LPV
stability is introduced. In Subsection 3.1, a number of crucial definitions and results regarding the
stability of LPV systems are discussed and necessary conditions are also stated. In Subsection 3.2,
additional standing assumptions are introduced. In Section 4, the proposed controller is expanded
upon, and a number of key technical results are proven. Subsection 4.1 provides a brief overview
of the controller, and each of Subsections 4.2, 4.3, and 4.4 delve into a specific component of
the proposed controller (the filter, the discretized gain-scheduled controller, and the estimator,
respectively). In Section 5, it is proven that the proposed controller achieves the desired stability
objective. Finally, in Section 6 an illustrative example is provided.

2 Mathematical Preliminaries

Let N denote the set of natural numbers, R denote the set of real numbers, R+ denote the set
of non-negative real numbers, and Z+ denote the set of non-negative integers. We use both the
1-norm and the ∞-norm to measure the size of a vector x ∈ Rn, defined, respectively as

‖x‖1 :=
n∑
i=1

|xi|, ‖x‖∞ := max
{
|x1|, ..., |xn|

}
;

we also use the corresponding induced 1-norm and ∞-norm of a matrix A ∈ Rm×n:

‖A‖1 := sup
‖x‖1 6=0

‖Ax‖1

‖x‖1

, ‖A‖∞ := sup
‖x‖∞ 6=0

‖Ax‖∞
‖x‖∞

.
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Occasionally we will leave the norm of a vector, x, or matrix, A, undecorated when the specific
norm used doesn’t impact the analysis or results. When handling noise terms we will frequently
use a signal norm to measure size, defined as:

‖w‖∞ := sup
t
‖w(t)‖∞ .

For a set S ⊆ Rm×n, PC(S) denotes the set of all piecewise continuous functions of the form
f : R+ → S; we let PC∞ denote the set of all piecewise continuous functions f ∈ PC(R) for
which ‖f‖∞ < ∞. A function f : R+ → S is doubly piecewise smooth on a closed interval
[a, b] ⊂ R if there exists a finite set {ti} having

a = t1 < t2 < · · · < tk = b

so that on each open interval (ti, ti+1), i = 1, 2, . . . , k − 1, f , ḟ , and f̈ are continuous, bounded,
and have finite limits as t→ ti and t→ ti+1. We say that f : R+ → S is doubly piecewise smooth,
denoted f ∈ PS1(S), if it is doubly piecewise smooth on every finite closed interval in R+. With
T0 > 0 and δα > 0, we let PS1(S, T0, δα) denote the set of f ∈ PS1(S) for which all discontinuities

of (f, ḟ , f̈) are at least T0 seconds apart and satisfy ess sup
t≥0

∥∥∥∥∥∥
fḟ
f̈

∥∥∥∥∥∥
∞

≤ δα.

For a set F ⊂ R of the form

F := [f
1
, f 1] ∪ [f

2
, f 2] ∪ · · · ∪ [f

q
, f q]

satisfying f
1
< f 1 < f

2
< f 2 < · · · < f

q
< f q, we define a projection function ΠF : R→ F by

ΠF(a) :=



a, if a ∈ F ;

f
1
, if a < f

1
;

f j, if a ∈ (f j,
1
2
(f j + f

j+1
)] and j = 1, 2, ..., q − 1;

f
j+1
, if a ∈ (1

2
(f j + f

j+1
), f

j+1
) and j = 1, 2, ..., q − 1;

f q, if a > f q.

We will also take advantage of order notation throughout the analysis. We say that f : R+ →
Rn×m is of order T j, and write f = O(T j), when there exist constants c > 0 and T1 > 0 so that

‖f(T )‖ ≤ cT j, T ∈ (0, T1).

Sometimes we have a function which depends not only on T , but also on a parameter α lying in
a set A ⊂ R. Then we say f = O(T j) if there exists constants c > 0 and T1 > 0 so that

‖f(T, α)‖ ≤ cT j, T ∈ (0, T1), α ∈ A.

For a set S ⊆ Rm×n and a function of the form f : R+ → S, with a sampling period T let
f [k] := f(kT ) for all k ∈ Z+.
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3 Problem Formulation

We consider a time-varying plant of the form

ẋ(t) = A(α(t))x(t) +B(α(t))u(t), x(0) = x0 (1a)

y(t) = C(α(t))x(t), (1b)

where x(t) ∈ Rn is the plant state, u(t) ∈ R is the plant input, and y(t) ∈ R is the plant output.
The plant parameters A(α), B(α), and C(α) are assumed to be known functions of
α. The parameter α(t) is unmeasurable1 and takes values in a known compact subset A ⊂ Rp.
Since the case of n = 1 corresponds to a minimum phase plant which is well understood (see [24],
[25], [26], [27], [28], and [29]), here we will assume that n ≥ 2. The following assumption is very
natural.

Assumption 1: (A,B)(α) is stabilizable for all α ∈ A, and (C,A)(α) is detectable for all α ∈ A.

We want to prove a strong exponential form of closed-loop stability. First we ascertain neces-
sary conditions on A(α), B(α), and C(α) such that this is achievable. This has been studied in
great detail in [38] in the simpler case of gain scheduling in which α is measurable; the conditions
which are proven to be necessary there must, clearly, also be necessary here.

3.1 Necessary Conditions

In [38], Blanchini et al. study the control of (1) when α is measurable. In Proposition 3.1 and
Theorem 3.1 of [38] it is, in essence, argued that a strong exponential form of stability2 is achievable
if, and only if, it is achievable using a so-called LPV controller of the form

˙̄z(t) = F̄ (α(t))z̄(t) + Ḡ(α(t))y(t) (2a)

u(t) = H̄(α(t))z̄(t) + K̄(α(t))y(t). (2b)

If we apply this controller to (1), then in closed-loop we obtain:[
ẋ(t)
˙̄z(t)

]
=

[
A(α(t)) +B(α(t))K̄(α(t))C(α(t)) B(α(t))H̄(α(t))

Ḡ(α(t))C(α(t)) F̄ (α(t))

] [
x(t)
z̄(t)

]
. (3)

To proceed we introduce some definitions in order to formalize the necessary conditions and
subsequent analysis.

Definition 1 (LPV Exponential Stability). The system

˙̄x(t) = Ā(α(t))x̄(t), x̄(t0) = x̄0 (4)

(or simply Ā(α)) is said to be LPV exponentially stable if there exist constants γ ≥ 1 and λ > 0
such that for every t0 ∈ R, x̄0 ∈ Rn, and α ∈ PC(A), the solution of (4) satisfies

‖x̄(t)‖ ≤ γe−λ(t−t0)‖x̄(t0)‖, for t ≥ t0. (5)

1The value of α(t) is not available to the control law.
2In [38] it is actually argued that an asymptotic form of stability is achievable if, and only if, it is achievable by

a controller of the form (2). However, it is easy to prove that the controller (2) asserted to exist by Theorem 3.1
of [38] actually provides exponential stability.
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The controller (2) exponentially stabilizes the plant (1) if the corresponding closed-loop system (3)
is exponentially stable.
At the heart of the approach of [38] is the use of polyhedral Lyapunov functions and their matrix
representations in terms of the 1-norm and ∞-norm. For this reason, we would like to ascertain
conditions on a matrix H(α) so that it is not only LPV exponentially stable, but also the value of
the constant γ in (5) can be taken equal to one when using the appropriate norm. To present the
results of [38] on the stabilization of the closed-loop system we need several additional concepts
and notation defined therein.

Definition 2 (Class H1). A square matrix H(α) is of class H1 if it is a continuous function of
α and if there exists a τ̄ > 0 such that ‖I + τH(α)‖1 < 1 for all τ ∈ (0, τ̄) and α ∈ A.

Definition 3 (Class3 H∞). A square matrix H(α) is of class H∞ if it is a continuous function
of α and if there exists a τ̄ > 0 such that ‖I + τH(α)‖∞ < 1 for all τ ∈ (0, τ̄) and α ∈ A.

Proposition 1. (i) For every matrix H(α) ∈ H1 there exist λ̄ < 0 and T̄ > 0 such that for all
λ ∈ (λ̄, 0) and T ∈ (0, T̄ ), the following holds:

‖I + TH(α)‖1 ≤ 1 + λT, α ∈ A. (6)

(ii) For every matrix H(α) ∈ H∞ there exist λ̄ < 0 and T̄ > 0 such that for all λ ∈ (λ̄, 0) and
T ∈ (0, T̄ ), the following holds:

‖I + TH(α)‖∞ ≤ 1 + λT, α ∈ A. (7)

Proof. The proof of (i) is given in the proof of [40, Proposition 1]. Part (ii) follows from part (i)
on observing that H(α) ∈ H∞ ⇐⇒ H(α)> ∈ H1 and ‖I + TH(α)‖∞ =

∥∥I + TH(α)>
∥∥

1
.

The next proposition elucidates the connection between class H1 and class H∞ matrices and
their strong stability properties.

Proposition 2. If H(α) ∈ H1 or H(α) ∈ H∞, then H(α) is LPV exponentially stable; moreover,
if H(α) ∈ H1 (respectively H(α) ∈ H∞) and the 1-norm (respectively ∞-norm) is used in (1),
then γ can be chosen to be one.

Proof. The proof for the case of H(α) ∈ H1 is given in the proof of [40, Proposition 3]. The case
of H(α) ∈ H∞ follows from a slightly modified argument and can also be found in the proof of [40,
Proposition 3].

Now we turn to a key result of [38]: the first part of the result is a restatement of part of
Theorem 3.1 of [38]; the second part follows from the details of its proof.

3This definition of H∞ is not to be confused with the Hardy space of the same name.
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Theorem 1. The system (1) is LPV exponentially stabilizable via an output feedback controller
of the form (2) if, and only if, there exists a matrix P (α) ∈ H1, a matrix Q(α) ∈ H∞, a full
row-rank matrix X, a full column-rank matrix R, a row vector U(α), and a column vector L(α)
such that the equations

A(α)X +B(α)U(α) = XP (α) (8)

RA(α) + L(α)C(α) = Q(α)R (9)

are satisfied for all α ∈ A; indeed, with M any left inverse of R, Z chosen so that

[
X
Z

]
is square

and invertible and V (α) := ZP (α), a stabilizing controller of the form (2) can be chosen in the
following way: first define [

K(α) H(α)
G(α) F (α)

]
:=

[
U(α)
V (α)

] [
X
Z

]−1

, (10)

and from this we obtain the controller

˙̄z(t) :=

[
ż(t)
ṙ(t)

]
=

[
F (α) G(α)M

RB(α)H(α) Q(α) +RB(α)K(α)M

] [
z(t)
r(t)

]
+

[
0

−L(α)

]
y(t), (11)

u(t) =
[
H(α) K(α)M

] [z(t)
r(t)

]
; (12)

it turns out that [
A(α) +B(α)K(α) B(α)H(α)

G(α) F (α)

]
=

[
X
Z

]
P (α)

[
X
Z

]−1

. (13)

In light of Theorem 1, we impose the following assumption.

Assumption 2: There exists a known matrix P (α) ∈ H1, a known matrix Q(α) ∈ H∞, a known
full row-rank matrix X, a known full column-rank matrix R, a known row vector U(α), and a
known column vector L(α) such that (8)–(9) hold for all α ∈ A.

At this point Z is fixed so that

[
X
Z

]
is non-singular, and we fix a matrix M to be any left inverse

of R.

3.2 Additional Assumptions

From the previous section we see that stabilizing a time-varying system is difficult, even when the
free parameter is known. The difficulty arises in a very subtle way from the existence of unstable
zero dynamics, since it is well known that if the zero dynamics are stable then stabilizing in the
face of rapid time-variation is possible, e.g., see [25], [26], [27], [28], [29]. Because of the difficulty
of the problem and the lack of general results, in this paper we impose a major structural assump-
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tion: we allow one degree of freedom in α – it is a scalar.

Assumption 3: A is a known compact subset of R, consisting of a finite set of closed intervals.

The assumption that α be scalar is reasonable in many situations, e.g., when compensating for
altitude in the control of an airplane, or when taking into account the significant loss of mass of
a missile during its flight.

We will estimate α using ideas from work by the last co-author [39]. We assume that it can
be obtained, roughly speaking, from the plant’s first Markov parameter. To this end, define

f : A → R
α 7→ C(α)B(α),

as well as the image of A under f :
F := f(A).

At this point we impose the second major structural assumption.

Assumption 4: The function f : A → F is one-to-one and its inverse f−1 is Lipschitz continuous
on F .

Now we turn to more routine regularity assumptions needed to prove that our approach will
work. First of all, we assume that A, B, and C are well-behaved as functions of the parameter α.

Assumption 5: A(α), B(α), C(α), and dC(α)
dα

are Lipschitz continuous on A.

We impose similar conditions on P (α) and Q(α) of Assumption 2:

Assumption 6: P (α), Q(α), U(α) and L(α) are Lipschitz continuous on A.

Remark 1. It follows from Theorem 1 that the corresponding controller matrices F (α), G(α),
H(α), and K(α) are also Lipschitz continuous on A.

While seemingly restrictive, there exist physical systems satisfying all of Assumptions 1 to 6,
as the next example illustrates.

Example 1. Consider an inverted pendulum with a fixed pivot, with the angle θ being measured
from the upward vertical position of the pendulum. The pendulum has a mass m located a time-
varying distance l(t) away from the pivot. Taking the input to be an applied torque u, the output
to be the velocity of the pendulum θ̇, and restricting l(t) ∈ [a, b] for some 0 < a < b , this yields
the model

θ̈(t) =
g

l(t)
sin (θ(t)) +

u(t)

ml(t)2
,

y(t) = θ̇(t).
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Linearizing the system at the upright position yields the linear system

[
θ̇(t)

θ̈(t)

]
=

[
0 1
g
l(t)

0

] [
θ(t)

θ̇(t)

]
+

[
0
1

ml(t)2

]
u(t),

y(t) =
[
0 1

] [θ(t)
θ̇(t)

]
.

Since there is only one time-varying parameter, Assumption 3 holds with A = [a, b]. Moreover,
for all m > 0, l(t) > 0, Assumption 2 holds with

X =

[
1 0
−1 1

]
, U(l) =

[
ml2(1− g

l
) −3ml2

]
, P =

[
−1 1
0 −2

]
,

R =

[
1 −1
0 1

]
, L(l) =

[
g
l
− 1
−3g

l

]
, Q(l) =

[
−g

l
0

g
l
−2g

l

]
.

Assumption 4 holds with f(l) = 1
ml2

. Furthermore, it is easy to check that Assumptions 1, 5, and 6
do hold.

In a realistic situation, the plant is subjected to disturbances from the environment. If we
define wd to be disturbance injected into the plant, and wn to be measurement noise, then the
revised model of the plant is

ẋ(t) = A(α(t))x(t) +B(α(t))u(t) + wd(t), x(0) = x0, (14a)

y(t) = C(α(t))x(t) + wn(t). (14b)

We represent the plant model (14) by the triple (A(α), B(α), C(α)). From this point on we fix
the plant matrices A(α), B(α), and C(α) as functions of α. We will construct a sampled-data
controller, which means that α(t) cannot move arbitrarily fast. However we can allow an occasional
jump, thus, we fix choices of T0, and δα. The goal of this paper is to develop, under Assumptions 1
to 6, a controller that stabilizes (A(α), B(α), C(α)) for every x0 ∈ Rn, wn ∈ PC∞, wd ∈ PC∞,
and α ∈ PS1(A, T0, δα) when only the plant output y is measurable.

4 The Controller

Here, we present the proposed adaptive controller and prove three key lemmas which are essential
to the proof of the main result.

4.1 The Approach

We seek to stabilize the plant (14) when α is not measurable. We propose a nonlinear periodic
controller to achieve this goal. It operates at a period, T , and consists of several components:

• a continuous-time filter which is used to provide an upper bound on ‖x(t)‖ and to scale a
probing signal;
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wn(t)wd(t)

u(t) y(t)
+

+

v(t)
v[·]

v[·]

y[·]

y[·] u[·]

α̂[·] r[·] z[·]

Filter
(15)

Estimator
(21)–(22)

Discretized
Gain-Scheduled
Controller and
Probing Signal

Generator
(17)–(19)

Plant
(14)

Hh

ST

Sh

Figure 1: Closed-loop system block diagram4.

• a discretized version of the gain-scheduled output feedback controller (11)–(12) with states
z(t) and r(t) and α replaced by an estimate α̂;

• a sampled-data parameter estimator of α(t) which produces an estimate α̂[k] for use on the
control interval [kT, (k + 1)T ).

The base sampling period is h = T
2
. A block diagram of the closed-loop system is depicted in

Figure 1.

4.2 The Filter

By Proposition 1, for each Q(α) ∈ H∞ there exists a constant λ < 0 so that, for sufficiently small
T ,

‖I + TQ(α)‖∞ ≤ 1 + λT , α ∈ A.

A method for computing λ is given in the proof of [40, Proposition 1]: letting qij(α) denote the
(i, j)th element of Q(α), define

λ∗ := −min
i

∣∣∣∣qii(α) +
m∑

j=1,j 6=i

|qij(α)|
∣∣∣∣,

4Hh is a zero-order-hold operating at period h, while Sh and ST are ideal samplers operating at periods h and
T , respectively.
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and then fix λ ∈ (λ∗, 0).5 The proposed filter is

v̇(t) = λv(t) + ‖u(t)‖+ ‖y(t)‖ , v(0) = 0. (15)

It turns out that v(t) provides an upper bound on the size of the state.

Lemma 1. Consider the filter (15) driven by the input and output of the plant (14). There exists
a constant c > 0 so that for every u ∈ PC∞, wn ∈ PC∞, wd ∈ PC∞, α ∈ PS1(A, T0, δα), and
x0 ∈ Rn, the plant state satisfies

‖x(t)‖ ≤ ceλt ‖x(0)‖+ cv(t) + c ‖wn‖∞ + c ‖wd‖∞ , t ≥ 0. (16)

Proof. The proof of Lemma 1 is in the appendix.

4.3 The Discretized Gain-Scheduled Controller

With v(t) defined in (15) and with α̂[k] denoting an estimate of α(kT ) to be defined shortly, we
use a suitably modified discretized version of the LPV controller (11)–(12). The state equation is

[
z[k + 1]
r[k + 1]

]
=

(
I + T

[
F (α̂[k]) G(α̂[k])M

RB(α̂[k])H(α̂[k]) Q(α̂[k]) +RB(α̂[k])K(α̂[k])M

])[
z[k]
r[k]

]

− T
[

0
L(α̂[k])

]
y[k],

[
z(0)
r(0)

]
=

[
0
0

]
. (17)

With ρ ∈ (0,−λ), we define a probing signal of the form

δ(t) :=

{
ρ
(
v[k] + ‖z[k]‖+ ‖r[k]‖

)
t ∈ [kT, kT + h)

−ρ
(
v[k] + ‖z[k]‖+ ‖r[k]‖

)
t ∈ [kT + h, kT + 2h),

(18)

which we add to the discretized version of the output equation of the LPV controller (11)–(12)
passed through a zero-order hold, yielding

u(t) = H(α̂[k])z[k] +K(α̂[k])Mr[k] + δ(t), t ∈ [kT, (k + 1)T ). (19)

4.4 The Parameter Estimator

To motivate the choice of parameter estimator, we examine the simplest relative degree one system

ẋ(t) = ax(t) + bu(t) + wd(t)

y(t) = cx(t) + wn(t),

5Since Q(α) ∈ H∞, it can be shown that λ∗ < 0.
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with a 6= 0. In light of Assumption 4, the goal here is to estimate the first Markov parameter, cb.
With δ > 0, if we set

u(t) =

{
δ t ∈ [0, h)

−δ t ∈ [h, 2h),

then

x(h) = eahx(0) +
bδ

a
(eah − 1) +

∫ h

0

ea(h−τ)wd(τ)dτ,

x(2h) = eahx(h)− bδ

a
(eah − 1) +

∫ 2h

h

ea(2h−τ)wd(τ)dτ

= e2ahx(0) +
bδ

a
(1− 2eah + e2ah) +

∫ 2h

0

ea(2h−τ)wd(τ)dτ.

So it follows that

y(2h)− 2y(h) + y(0) = c(1− 2eah + e2ah)x(0) +
cbδ

a
(3− 4eah + e2ah)

+c

∫ 2h

0

ea(2h−τ)wd(τ)dτ

−2c

∫ h

0

ea(h−τ)dτ + [wn(2h)− 2wn(h) + wn(0)]

Hence,

∥∥∥∥cb− 1

2hδ

(
− y(2h) + 2y(h)− y(0)

)∥∥∥∥ = O(h)

(∥∥∥∥x(0)

δ

∥∥∥∥+ 1

)
+

1

δ
O(1) ‖wd‖∞ +

1

δ
O(h−1) ‖wn‖∞ . (20)

So if the last three terms of the RHS of (20) are small, then the LHS provides a good estimate
of cb. This simple discussion motivates the choice of the estimate in our case where the plant is
higher order, the parameter α is time-varying, and the control signal is more complicated. More
specifically, with the probing signal defined above in (18), we define the estimate of the first
Markov parameter by

ĈB[k + 1] :=

{
−y(kT+2h)+2y(kT+h)−y(kT )

2hδ[k]
if δ[k] 6= 0

C(α)B(α) if δ[k] = 0,
(21)

where α := min{a : a ∈ A}, which is well-defined because A is compact by Assumption 3. We
then use the estimate of the Markov parameter, under Assumption 4, to form the estimate of
α((k + 1)T ), which we label α̂[k + 1]:

α̂[k + 1] := f−1
(

ΠF(ĈB[k + 1])
)
. (22)

There are two possible stumbling blocks in the estimation procedure:

12



(i) If the probing signal δ[k] is small relative to the size of ‖x[k]‖, then the estimation error

term of size ‖x[k]‖
|δ[k]| (see (20)) will be large and the estimate may be inaccurate.

(ii) If the probing signal δ[k] is small relative to ‖wd‖∞ or to T−1 ‖wn‖∞, then the estimate may
also be inaccurate.

In the following result we provide sufficient conditions to avoid these problems.

Lemma 2. For every ε > 0 and δ > 0, there exist constants c > 0 and T1 > 0 so that, for
every T ∈ (0, T1), k ∈ Z+, wn ∈ PC∞, wd ∈ PC∞, α ∈ PS1(A, T0, δα), and x0 ∈ Rn, when the
controller given by (15), (17)–(19), and (21)–(22) is applied to the plant (14), if

(i) v[k] + ‖z[k]‖+ ‖r[k]‖ > ε ‖x[k]‖,

(ii) v[k] + ‖z[k]‖+ ‖r[k]‖ > c
(
T−1 ‖wn‖∞ + ‖wd‖∞

)
, and

(iii) α(t) is absolutely continuous for t ∈ [kT, (k + 1)T ],

then

‖α((k + 1)T )− α̂[k + 1]‖ ≤ δ. (23)

Proof. The proof of Lemma 2 is in the appendix.
Hence if the probing signal is large relative to the plant state and the noise, and if α(t) is

absolutely continuous on [kT, (k + 1)T ], then the estimate α̂[k + 1] of α[k + 1] will be accurate,
in which case one would expect that the discretized LPV controller (17)–(19) should perform well
over the interval [(k + 1)T, (k + 2)T ) (observe that the effect of the probing signal approximately
cancels out over an interval). On the other hand, if any of these conditions fail, then the estimate
α̂[k + 1] may be inaccurate, so the proposed controller may yield an inappropriate control signal
on the subsequent interval; however, condition (iii) fails infrequently, while condition (ii) fails only
if the controller state is small relative to the size of the noise, so this case should turn out to be
unimportant. The tricky condition (i) will be the problematic one, but it will be carefully handled
in the proof of the main result.

Before we get to this, however, we first prove that if the estimate α̂[k + 1] is accurate, then
the closed-loop system behaves well on the following interval [(k + 1)T, (k + 2)T ). To facilitate
analysis, we transform the plant state x and controller states z and r using the approach adopted
in the proof of [38, Theorem 1]: define z(t) := z[k] and r(t) := r[k] for t ∈ [kT, (k + 1)T ), and
subsequently define the transformed states[

x̄(t)
z̄(t)

]
:=

[
X
Z

]−1 [
x(t)
z(t)

]
, s(t) := Rx(t)− r(t). (24)

At this point we depart from a standard analysis by choosing a norm in just the right way to
prove that the closed-loop state is contractive. To this end, it turns out that the system matrix

in
([x̄

z̄

]
, s
)

-coordinates is upper block triangular with the (1, 1) block being in H1 and the (2, 2)
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block being in H∞. Hence, in light of Proposition 2, it is natural to use a 1-norm on

[
x̄
z̄

]
and

an∞-norm on s. Now we are ready to state a property of the closed-loop behaviour over a period.

Lemma 3. There exist constants T2 > 0, λ̂ < 0, δ > 0, and c > 0 together with an invertible
matrix N ∈ R3×3 so that with

p(t) := N


v(t)∥∥∥∥[x̄(t)
z̄(t)

]∥∥∥∥
1

‖s(t)‖∞

 ,
for every T ∈ (0, T2), k ∈ Z+, wn ∈ PC∞, wd ∈ PC∞, α ∈ PS1(A, T0, δα), and x0 ∈ Rn, when the
controller given by (15), (17)–(19), and (21)–(22) is applied to the plant (14), with p[k] := p(kT )
we have:

(i) In all cases,

‖p(t)− p[k]‖∞ ≤ cT ‖p[k]‖∞ + cT ‖wn‖∞ + cT ‖wd‖∞ , t ∈ [kT, (k + 1)T ). (25)

(ii) In all cases,
‖p[k + 1]‖∞ ≤ (1 + cT ) ‖p[k]‖∞ + cT ‖wn‖∞ + cT ‖wd‖∞ . (26)

(iii) If ‖α̂[k]− α(kT )‖ ≤ δ and if α(t) is absolutely continuous for t ∈ [kT, (k + 1)T ), then

‖p[k + 1]‖∞ ≤ eλ̂T ‖p[k]‖∞ + cT ‖wn‖∞ + cT ‖wd‖∞ . (27)

Proof. The proof of Lemma 3 is in the appendix.

5 The Main Result

In Lemma 3 we prove that the closed-loop system is well behaved on intervals for which the
estimate of α(t) is accurate. We now leverage Lemmas 1–3 to prove that we obtain desirable
closed-loop behaviour for all t ≥ 0. In the following, recall that the initial conditions on the
controller states v(t), z(t), and r(t) are zero.

Theorem 2. There exists contants T3 > 0, λ̄ < 0, and c > 0 so that for every T ∈ (0, T3),
wn ∈ PC∞, wd ∈ PC∞, α ∈ PS1(A, T0, δα), and x0 ∈ Rn, when the controller given by (15), (17)–
(19), and (21)–(22) is applied to the plant (14), then∥∥∥∥∥∥∥∥


v(t)
x(t)
z(t)
r(t)


∥∥∥∥∥∥∥∥ ≤ ceλ̄t

∥∥∥∥∥∥∥∥


0
x(0)

0
0


∥∥∥∥∥∥∥∥+ cT−1 ‖wn‖∞ + c ‖wd‖∞ , t ≥ 0. (28)
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Proof.

Step 1: Bad Estimation Region
Let wn ∈ PC∞, wd ∈ PC∞, α ∈ PS1(A, T0, δα), and x0 ∈ Rn be arbitrary. Let c1 > 0 be the
constant asserted to exist by Lemma 1. Now fix ε ∈ (0, 1

2c1
). Let T2 > 0, λ̂ < 0, δ > 0, and c3 > 0

be the constants, and N ∈ R3×3 be the invertible matrix, asserted to exist by Lemma 3; define
p(t) accordingly. Using these choices of δ and ε, we let c2 > 0 and T1 > 0 be the constants asserted
to exist by Lemma 2.

Let T ∈ (0,max{T1, T2}) be arbitrary. To proceed, we define two sets of intervals. The first
represents times for which the probing signal is too small to ensure a good estimate of α(t), while
the second represents times for which the probing signal is of adequate size but is overwhelmed
by the noise:

B1(T ) :=
{
t ≥ 0 : v(t) + ‖z(t)‖+ ‖r(t)‖ ≤ ε ‖x(t)‖

}
,

B2(T ) :=
{
t ≥ 0 : v(t) + ‖z(t)‖+ ‖r(t)‖ > ε ‖x(t)‖ ,

v(t) + ‖z(t)‖+ ‖r(t)‖ ≤ c2

(
T−1 ‖wn‖∞ + ‖wd‖∞

)}
,

and
B(T ) := B1(T ) ∪B2(T );

notice that B(T ) is not empty, since 0 ∈ B1(T ). Although we expect that the estimate of α(t)
will be poor on B(T ), quite surprisingly, we are still able to obtain a desirable bound on the state.
This is because either:

(i) the controller states are small compared to the plant state, so the filter provides an expo-
nential bound (t ∈ B1(T )), or

(ii) the noise is large compared to the closed-loop state (t ∈ B2(T )), so it provides a bound on
the state.

Claim 1. There exists a constant c4 > 0, so that

‖p(t)‖ ≤ c4eλt ‖p(0)‖+ c4T
−1 ‖wn‖∞ + c4 ‖wd‖∞ , t ∈ B(T ). (29)

Proof of Claim 1.
First we consider the case of t ∈ B1(T ). By Lemma 1 it follows that

‖x(t)‖ ≤ c1eλt ‖x(0)‖+ c1v(t) + c1 ‖wn‖∞ + c1 ‖wd‖∞
≤ c1eλt ‖x(0)‖+ c1ε ‖x(t)‖+ c1 ‖wn‖∞ + c1 ‖wd‖∞ ;

since c1ε ∈ (0, 1
2
), this yields

‖x(t)‖ ≤ c1

1− c1ε
eλt ‖x(0)‖+

c1

1− c1ε
‖wn‖∞ +

c1

1− c1ε
‖wd‖∞

≤ 2c1eλt ‖x(0)‖+ 2c1 ‖wn‖∞ + 2c1 ‖wd‖∞ .
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Additionally, for t ∈ B1(T ), we have that

v(t) + ‖z(t)‖+ ‖r(t)‖ ≤ ε ‖x(t)‖ ≤ 2c1εe
λt ‖x(0)‖+ 2c1ε ‖wn‖∞ + 2c1ε ‖wd‖∞

≤ eλt ‖x(0)‖+ ‖wn‖∞ + ‖wd‖∞ .

So there exists a constant c5 > 0 so that

‖p(t)‖ ≤ c5eλt ‖p(0)‖+ c5 ‖wn‖∞ + c5 ‖wd‖∞ , t ∈ B1(T ). (30)

Now we consider the case of t ∈ B2(T ). By definition of B2(T ) it is clear that

ε ‖x(t)‖ < v(t) + ‖z(t)‖+ ‖r(t)‖ ≤ c2T
−1 ‖wn‖∞ + c2 ‖wd‖∞ ,

so there exists a constant c6 > 0 such that

‖p(t)‖ ≤ c6T
−1 ‖wn‖∞ + c6 ‖wd‖∞

≤ c6eλt ‖p(0)‖+ c6T
−1 ‖wn‖∞ + c6 ‖wd‖∞ , t ∈ B2(T ). (31)

If we combine (30) and (31), and define c4 := max{c5, c6, c5T2}, then the result follows.

Step 2: Good Estimation Region

Now define the remaining set of time as

G(T ) := [0,∞) \B(T )

=
{
t ≥ 0 : v(t) + ‖z(t)‖+ ‖r(t)‖ > ε ‖x(t)‖ ,

v(t) + ‖z(t)‖+ ‖r(t)‖ > c2

(
T−1 ‖wn‖∞ + ‖wd‖∞

)}
;

on this set, we expect, roughly speaking, that the estimate of α(t) will be accurate so long as α(t)
is smooth.

If G(T ) is empty, then Claim 1 provides the desired bound. Now suppose that G(T ) is non-
empty; then we can write it as a disjoint union of open intervals, possibly an infinite number
of them; we will write them as (t1, t2), (t3, t4), ..., with {ti} strictly increasing, which we express
concisely as {(ti, ti+1) : i ∈ S} with S ⊆ {n ∈ N : n odd}. The set G(T ) is trickier to handle than
B(T ), with potential issues being the initial partial periods and intervals containing parameter
jumps.

The parameter estimator requires a full period in order to return an accurate estimate of α(t).
Furthermore, each interval (ti, ti+1), i ∈ S, always has a non-empty intersection with intervals of
the form [kT, (k + 1)T ] at the beginning and possibly at the end. This leads us to remove an
interval from each end of (ti, ti+1) and define an associated discrete-time index as follows: with
i ∈ S odd, define

ki(T ) := int
( ti
T

)
+ 2

and

ki+1(T ) := int
(ti+1

T

)
.

First we obtain a bound on the initial part of the interval (ti, ti+1), namely [ti, ki(T )T ].
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Claim 2. There exist constants T4 ∈ (0,min{T1, T2}) and c7 > 0 such that, for all T ∈ (0, T4)
and i ∈ S:

‖p(t)‖ ≤ c7 ‖p(ti)‖+ c7T ‖wn‖∞ + c7T ‖wd‖∞ , t ∈ [ti, ki(T )T ]. (32)

Proof of Claim 2.
Let T ∈ (0,min{T1, T2}). From Lemma 3(i)

‖p(t)− p[ki(T )− 2]‖ ≤ c3T ‖p[ki(T )− 2]‖+ c3T (‖wn‖∞ + ‖wd‖∞),

t ∈ [(ki(T )− 2)T, (ki(T )− 1)T ], (33)

‖p(t)− p[ki(T )− 1]‖ ≤ c3T ‖p[ki(T )− 1]‖+ c3T (‖wn‖∞ + ‖wd‖∞),

t ∈ [(ki(T )− 1)T, ki(T )T ]. (34)

We know that ti ∈ ((ki(T )− 2)T, (ki(T )− 1)T ); we’d like to use (33) to obtain a bound on p(t) in
terms of p(ti). If we evaluate the LHS of (33) at t = ti and rearrange, we see that

(1− c3T ) ‖p[ki(T )− 2]‖ ≤ ‖p(ti)‖+ c3T (‖wn‖∞ + ‖wd‖∞),

so if we define T4 := min{T1, T2,
1

2c3
}, we see that, for all T ∈ (0, T4),

‖p[ki(T )− 2]‖ ≤ 2 ‖p(ti)‖+ 2c3T ‖wn‖∞ + 2c3T ‖wd‖∞ .

If we now combine this with (33) and (34), then the result follows easily.
Now we need a bound on ‖p(t)‖ for t ∈ [ki(T )T, ti+1). If this interval is empty, then ti+1− ti ≤

2T so we can combine Claims 1 and 2 to yield

‖p(t)‖ ≤ c7c4eλti ‖p(0)‖+ (c7c4T
−1 + c7T ) ‖wn‖∞ + (c7c4 + c7T ) ‖wd‖∞

≤ c7c4e−2λT eλt ‖p(0)‖+ (c7c4T
−1 + c7T ) ‖wn‖∞ + (c7c4 + c7T ) ‖wd‖∞ , t ∈ [ti, ti+1],

so there exists a constant c8 > 0 such that

‖p(t)‖ ≤ c8eλt ‖p(0)‖+ c8T
−1 ‖wn‖∞ + c8 ‖wd‖∞ , t ∈ [ti, ti+1].

Now suppose [ki(T ), ti+1) is non-empty; this means that ki+1(T ) ≥ ki(T ). For every k ∈
[ki(T ), ki+1(T ) + 1] we have

v[k − 1] + ‖z[k − 1]‖+ ‖r[k − 1]‖ > ε ‖x[k − 1]‖ ,

and

v[k − 1] + ‖z[k − 1]‖+ ‖r[k − 1]‖ > c2

(
T−1 ‖wn‖∞ + ‖wd‖∞

)
,

so by Lemma 2 and Lemma 3:

a) if α(t) is absolutely continuous for t ∈ [(k − 1)T, (k + 1)T ), then |α(kT )− α̂[k]| ≤ δ, so

‖p[k + 1]‖ ≤ eλ̂T ‖p[k]‖+ c3T ‖wn‖∞ + c3T ‖wd‖∞ ; (35)
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b) if α(t) is not absolutely continuous for t ∈ [(k − 1)T, (k + 1)T ), then

‖p[k + 1]‖ ≤ (1 + c3T ) ‖p[k]‖+ c3T ‖wn‖∞ + c3T ‖wd‖∞ . (36)

We can now bound the closed-loop state for t ∈ [ki(T )T, (ki+1(T ) + 1)T ); notice that (ki+1(T ) +
1)T ≥ ti+1, with equality if and only if ti+1 =∞.

Claim 3. For every λ̄ ∈ (λ̂, 0), there exist constants T3 ∈ (0, T4) and c9 > 0 so that for all
T ∈ (0, T3) and i ∈ S, the following holds:

‖p(t)‖ ≤ c9eλ̄(t−ki(T )T ) ‖p[ki(T )]‖+ c9 ‖wn‖∞ + c9 ‖wd‖∞ , t ∈ [ki(T )T, (ki+1(T ) + 1)T ). (37)

Proof of Claim 3.
Fix λ̄ ∈ (λ̂, 0) and let T ∈ (0, T4), i ∈ S, and k ∈ [ki(T ), ki+1(T )] be arbitrary. From (35)

and (36) we see that

‖p[k + 1]‖ ≤

{
eλ̂T ‖p[k]‖+ c3T ‖wn‖∞ + c3T ‖wd‖∞ if α(t) is a.c. on [(k − 1)T, (k + 1)T ),

(1 + c3T ) ‖p[k]‖+ c3T ‖wn‖∞ + c3T ‖wd‖∞ otherwise.

(38)

This gives rise to a time-varying gain

a[k] =

{
eλ̂T if α(t) is a.c. on [(k − 1)T, (k + 1)T ),

(1 + c3T ) otherwise,

with the corresponding state-transition function labelled Φ. Discontinuities in α(t) are spaced

by at least T0 seconds, so in the time interval [ki(T )T, kT ] there can be at most d (k−ki(T ))T
T0

e
parameter jumps; this means there are at most 2d (k−ki(T ))T

T0
e values of k for which a[k] 6= eλ̂T .

Because Φ(k, ki(T )) =
k−1∏

m=ki(T )

a[m], it follows that

‖Φ(k, ki(T ))‖ ≤ (1 + c3T )
2d (k−ki(T ))T

T0
e
e
λ̂T
(
k−ki(T )−2d (k−ki(T ))T

T0
e
)

=
[
(1 + c3T )2e−2λ̂T

]d (k−ki(T ))T

T0
e
eλ̂T (k−ki(T )), k = ki(T ), ..., ki+1(T ) + 1. (39)

But d (k−ki(T ))T
T0

e < (k−ki(T ))T
T0

+ 1, so

‖Φ(k, ki(T ))‖ ≤
[
(1 + c3T )2e−2λ̂T

] (k−ki(T ))T

T0
+1

eλ̂T (k−ki(T )), k = ki(T ), ..., ki+1(T ) + 1. (40)

We’d like to simplify the first term on the RHS. We claim that there exists a constant c10 > 0
such that

‖Φ(k, ki(T ))‖ ≤ c10eλ̄T (k−ki(T )), k = ki(T ), . . . , ki+1(T ) + 1; (41)

this will be the case if c10 satisfies[
(1 + c3T )2e−2λ̂T

] (k−ki(T ))T

T0
+1

eλ̂T (k−ki(T )) ≤ c10eλ̄T (k−ki(T )), k = ki(T ), ..., ki+1(T ) + 1,
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which will hold if

c10 ≥
[
(1 + c3T )2e−2λ̂T

]
e

(
λ̂−λ̄+ 1

T0
ln
(

(1+c3T )2e−2λ̂T
))

(k−ki(T ))T
, k = ki(T ), ..., ki+1(T ) + 1.

We have λ̂− λ̄ < 0, so it is clear that we can choose T3 ∈ (0,min{T4, 1}) sufficiently small so that

λ̂− λ̄+
1

T0

ln
(
(1 + c3T )2e−2λ̂T

)
≤ 0, T ∈ (0, T3),

and then set c10 = (1 + c3T3)2e−2λ̂T3 .
Using the upper bound on the size of Φ given in (41), we can now analyze the difference

inequality (38) and obtain an upper bound on the size of p:

‖p[k]‖ ≤ ‖Φ(k, ki(T ))‖ × ‖p[ki(T )]‖+
( k−1∑
m=ki(T )

‖Φ(k − 1,m)‖
)(
c3T ‖wn‖∞ + c3T ‖wd‖∞

)
≤ c10eλ̄T (k−ki(T )) ‖p[ki(T )]‖+ c10

( k−(ki(T )+1)∑
m=0

eλ̄Tm
)(
c3T ‖wn‖∞ + c3T ‖wd‖∞

)
,

for k = ki(T ), ..., ki+1(T ) + 1. We can obtain an upper bound on the summation with

k−(ki(T )+1)∑
m=0

eλ̄Tm ≤
∞∑
m=0

(eλ̄T )m =
1

1− eλ̄T
= O(T−1),

so there exists a constant c11 > 0 such that for all T ∈ (0, T3):

‖p[k]‖ ≤ c11eλ̄T (k−ki(T )) ‖p[ki(T )]‖+ c11 ‖wn‖∞ + c11 ‖wd‖∞ ,
k = ki(T ), ..., ki+1(T ) + 1. (42)

Finally, by Lemma 3(i), we have that

‖p(t)‖ ≤ (1 + c3T )c11eλ̄T (k−ki(T )) ‖p[ki(T )]‖+
(
(1 + c3T )c11 + c3T

)
(‖wn‖∞ + ‖wd‖∞)

for t ∈ [ki(T )T, (ki+1(T ) + 1)T ), so there exists a constant c9 > 0 such that for all T ∈ (0, T3):

‖p(t)‖ ≤ c9eλ̄(t−ki(T )T ) ‖p[ki(T )]‖+ c9 ‖wn‖∞ + c9 ‖wd‖∞ , t ∈ [ki(T )T, ti+1).

Now restrict T ∈ (0, T3). We can bound all of t ∈ (ti, ti+1), i ∈ S odd, as follows. By Claim 1,

‖p(ti)‖ ≤ c4eλti ‖p(0)‖+ c4T
−1 ‖wn‖∞ + c4 ‖wd‖∞ .

So by Claim 2

‖p(t)‖ ≤ c7 ‖p(ti)‖+ c7T ‖wn‖∞ + c7T ‖wd‖∞
≤ c7c4e−2λT eλt ‖p(0)‖+ (c7c4T

−1 + c7T ) ‖wn‖∞
+(c7c4 + c7T ) ‖wd‖∞ , t ∈ [ti, ki(T )T ];
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if we set c12 := max{c4c7e−2λT3 , c4c7 + c7T
2
3 , c4c7 + c7T3}, then

‖p(t)‖ ≤ c12eλt ‖p(0)‖+ c12T
−1 ‖wn‖∞ + c12 ‖wd‖∞ , t ∈ [ti, ki(T )T ].

By Claim 3, we have

‖p(t)‖ ≤ c9eλ̄(t−ki(T )T ) ‖p[ki(T )]‖+ c9 ‖wn‖∞ + c9 ‖wd‖∞
≤ c9c12eλ̄t ‖p(0)‖+ (c9c12T

−1 + c9) ‖wn‖∞ + (c9c12 + c9) ‖wd‖∞ , t ∈ [ki(T )T, ti+1].

Then, with c13 := max{c9c12 + c9, c12, c9c12 + c9T3}, we end up with

‖p(t)‖ ≤ c13eλ̄t ‖p(0)‖+ c13T
−1 ‖wn‖∞ + c13 ‖wd‖∞ , t ∈ (ti, ti+1). (43)

Step 3: Final Bound

By Claim 1, for all t ∈ B(T ) we have

‖p(t)‖ ≤ c4eλt ‖p(0)‖+ c4T
−1 ‖wn‖∞ + c4 ‖wd‖∞ ,

and using (43), for all t ∈ G(T ) we have

‖p(t)‖ ≤ c13eλ̄t ‖p(0)‖+ c13T
−1 ‖wn‖∞ + c13 ‖wd‖∞ .

Defining c := max{c4, c13} gives the desired result.

6 A Simulation Example

We present a simulation example of our controller design for a plant that cannot be stabilized by
an LTI controller. Consider the system

ẋ(t) =

[
α(t) 0

0 −1

]
x(t) +

[
1
α(t)

]
u(t), (44a)

y(t) =
[
1 1

]
x(t). (44b)

The time-varying parameter α(t) takes values in the set A = [−9.5,−1.5] ∪ [1.5, 9.5]. For our
purposes, we assume that the derivative of α is bounded above by δα = 100 and that there is a
minimum time between jumps of T0 = 0.5 seconds. If we freeze α, the plant transfer function is

(1 + α)(s+ 1− α)

(s− α)(s+ 1)
,

which has a zero at s = α − 1 > 0 and a pole at s = α for all α ∈ [1.5, 9.5]. Indeed, the frozen
plant will have both an unstable pole and a non-minimum phase zero when α ∈ [1.5, 9.5], with
the zero being slower than the pole (a particularly nasty setup). The first Markov parameter is
f(α) = C(α)B(α) = 1 +α. It is routine to check that this plant satisfies Assumptions 1, 4 and 5.
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This plant is difficult to control; it cannot be stabilized by an LTI controller for all α ∈ A.
This fact follows from the study of strong stabilization in [41, Corollary 12], e.g., you cannot
simultaneously stabilize the plant corresponding to α = 2 with that corresponding to α = −2
using a single LTI controller.

Following Theorem 1, the matrices

X =

[
0.1 0
0 1

]
, U(α) =

[
−1.5|α|( 1

10+α
+ 1

10−α) 0
]
, R =

[
0.1 0
0 1

]
, L(α) =

[
−10

33
|α|

0

]
,

satisfy (8), (9). These matrices are used to get the controller described in Section 4.3. Finally,
the filter pole is chosen to be λ = −1 by the method described in Section 4.2.

The discretized gain-scheduled controller (17) is given by

r[k+1] =

[
1 + T

(
α̂[k]− 10

33
|α̂[k]| − 15|α̂[k]|

(
1

10+α̂[k]
+ 1

10−α̂[k]

))
−10

33
T |α̂[k]|

−150T |α̂[k]|α̂[k]
(

1
10+α̂[k]

+ 1
10−α̂[k]

)
1 + T

]
r[k]+

[
10
33
T |α̂[k]|

0

]
y[k],

and the filter (15) is given by

v̇(t) = −v(t) + |u(t)|+ |y(t)|.

To simulate the closed-loop system, we choose h = 0.001 seconds (yielding T = 0.002 seconds)
and ρ = 0.25.

Remark 2. The criterion for selecting the parameters λ and ρ was discussed in Sections 4.2
and 4.3, respectively. Briefly, to select λ, we first compute the class H∞ matrix Q(α) satisfying (9)
and then use it to compute λ∗ < 0 which characterizes the allowable range of λ ∈ (λ∗, 0). After
fixing a choice of λ, we are free to pick any ρ ∈ (0,−λ). The selection of a sufficiently small
sampling period h is best addressed through simulation.

The parameter α(t) switches between the trajectories

α(t) = 5.5 + 4 sin(25t), α(t) = −5.5− 4 sin(25t),

and spends 1 second following the former trajectory, and 0.5 seconds following the latter, between
jumps. Uniformly distributed noise with ‖wn‖∞ = 0.05 and ‖wd‖∞ = 0.05 is injected in the
system for t ∈ [5, 15); otherwise, the system is noise-free. The plant initial condition is set to

x(0) =

[
10
1

]
.

The simulation results are presented in Figures 2 and 3. We see that the output of the plant is
bounded in response to the initial condition and the measurement noise. Furthermore, we see from
Figure 3 that the parameter estimator works quite well (on average), even in the presence of noise.
While the control signal is fairly large, and the plant state becomes quite large as well, this is
mostly due to the nastiness of the plant and the difficulty of the problem considered in this paper.
Indeed, in Figure 4 we compare our adaptive controller to that of the original LPV controller; we
see that, even in a best case scenario where the parameter α is known, the size of the state vector
can become large. That being said, the sizeable difference starting at t = 5 seconds stems from the
larger effect of the noise in the adaptive setting than in the LPV setting; this is the price that we
pay for having to estimate the plant parameter α. Nevertheless, the proposed adaptive controller
guarantees a stable closed-loop system even in the presence of frequent parameter jumps.
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Figure 2: The norm of the plant state, control signal, probing signal, and estimation error (the
noise turns on at 5 seconds and off at 15 seconds).

7 Summary and Conclusions

In this paper we consider the problem of designing a controller to adaptively stabilize an uncertain
linear parameter-varying (LPV) plant. This plant can be rapidly time-varying and can have
unstable zero dynamics (the time-varying counterpart of being non-minimum phase). While there
are a number of results in the literature for the situation of an uncertain plant with stable zero
dynamics, the case of unstable zero dynamics, however, is very challenging. Indeed, results related
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Figure 3: Close up of the control signal and parameter estimate/parameter value (the noise turns
on at 5 seconds and off at 15 seconds).

0 2 4 6 8 10 12 14 16 18 20

time

0

100

200

300

LPV Controller vs. Our Controller

||x
LPV

(t)||

||x(t)||

Figure 4: The ∞-norm of the plant’s state vector versus time when: (i) our proposed controller
is used (solid line) and, (ii) the parameter α is known and the LPV controller from [38] is used
(dashed line).

to plants having unstable zero dynamics suffer very stringent conditions on the plant.
In this paper a new approach is provided based on results in gain scheduling, particularly [38].

A controller design is presented based on a discretized version of a gain-scheduled output feedback
controller, with the scheduling variable replaced by an estimate. The estimate is generated by
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a discrete-time estimator which uses the state of a filter to appropriately scale a probing signal.
Under suitable assumptions on the LPV plant, it is proven that if the controller sampling period
is small enough, then the closed-loop system is exponentially stable with bounded gain on the
noise in the presence of rapid time-variation and persistent parameter jumps. Furthermore, the
controller can tolerate noisy measurements and disturbances injected into the state, although the
noise gain may be large. Finally, an illustrative example of a plant with unstable zero dynamics
is provided.

At the moment, the plant is limited to being single-input single-output and having a scalar-
valued scheduling variable; however, we would like to extend this approach to multiple-input
multiple-output plants with vector-valued scheduling variables. Furthermore, due to the difficult
nature of handling a plant with a time-varying state-to-output relationship, a major structural
assumption that the plant be relative degree one for each value of the scheduling parameter is
required. We would like to weaken this assumption so that the applicability of the approach can
be extended.

Appendix A Proofs

A.1 Proof of Lemma 1

Let u ∈ PC∞, wn ∈ PC∞, wd ∈ PC∞, α ∈ PS1(A, T0, δα), and x0 ∈ Rn be arbitrary. The proof
is organized into three steps:

1. Motivated by equation (9), define matrices Re, Ae(α), and Ce(α), with Re non-singular, so
that ReAe(α) + L(α)Ce(α) = Q(α)Re.

2. Use the equation from step 1 to bound a yet to be defined extended state xe(t).

3. Use the bound on xe(t) to bound the plant’s state x(t).

Step 1
Let v be the number of columns of the constant full rank matrix R from Assumption 2. Let
R̄ ∈ Rv×(v−n) be any matrix so that Re :=

[
R R̄

]
is non-singular, and then define[

A12(α)
A22(α)

]
:= R−1

e Q(α)R̄,

where A12(α) ∈ Rn×(v−n), A22(α) ∈ R(v−n)×(v−n). Then, by the definition of R, Re, A12, and A22,[
A(α) A12(α)

0 A22(α)

]
︸ ︷︷ ︸

=:Ae(α)

+R−1
e L(α)

[
C(α) 0

]︸ ︷︷ ︸
=:Ce(α)

= R−1
e Q(α)Re. (45)

Step 2
Consider the control system[

ẋ1(t)
ẋ2(t)

]
=

[
A(α(t)) A12(α(t))

0 A22(α(t))

] [
x1(t)
x2(t)

]
+

[
B(α(t))

0

]
u(t) +

[
wd(t)

0

]
ye(t) =

[
C(α(t)) 0

] [x1(t)
x2(t)

]
+ wn(t),
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where x1(t) ∈ Rn, x2(t) ∈ Rv−n. Define xe := (x1, x2); then

ẋe(t) =

([
A(α(t)) A12(α(t))

0 A22(α(t))

]
+R−1

e L(α(t))
[
C(α(t)) 0

])
xe(t)

−R−1
e L(α(t))

(
ye(t)− wn(t)

)
+

[
B(α(t))

0

]
u(t) +

[
wd(t)

0

]
.

Using (45), we can write

ẋe(t) = R−1
e Q(α(t))Rexe(t)−R−1

e L(α(t))ye(t) +R−1
e L(α(t))wn(t)

+

[
B(α(t))

0

]
u(t) +

[
wd(t)

0

]
.

The solution to this differential equation, for t ≥ 0 and any xe(0) ∈ Rv, is

xe(t) = Φ(t, 0)xe(0) +

∫ t

0

Φ(t, τ)

([
B(α(τ))

0

]
u(τ)−R−1

e L(α(τ))ye(τ)

)
dτ

+

∫ t

0

Φ(t, τ)

(
R−1
e L(α(τ))wn(τ) +

[
wd(τ)

0

])
dτ,

where Φ(t, 0) is the state transition function of the unforced system

ż(t) = R−1
e Q(α(t))Rez(t), t ≥ 0.

Consider the change of coordinates p = Rez, where Re is the non-singular matrix from Step 1.
Then ṗ = Q(α(t))p with Q(α(t)) ∈ H∞ so that, by Proposition 2, there exist γ ≥ 1 and λ < 0
such that

‖p(t)‖ ≤ γeλt ‖p(0)‖ , t ≥ 0.

Again, following the proof of [40, Proposition 1], the constant λ can be taken to be the same as
that in the filter (15). Then there exists a constant c1 such that for all t ≥ 0, ‖z(t)‖ ≤ c1eλt ‖z(0)‖,
so we conclude that ‖Φ(t, 0)‖ ≤ c1eλt for t ≥ 0. Using this bound on Φ(t, 0) in the expression for
xe(t) we get

‖xe(t)‖ ≤ceλt ‖xe(0)‖+ c

∫ t

0

eλ(t−τ)
(
‖u(τ)‖+ ‖ye(τ)‖

)
dτ + c

(
‖wn‖∞ + ‖wd‖∞

)
, (46)

with c defined as

c := c1 max
α∈A

{
1,
∥∥R−1

e

∥∥ ‖L(α)‖ , ‖B(α)‖ ,−‖R
−1
e ‖ ‖L(α)‖

λ
,−1

λ

}
.

Step 3
The subspace {xe : x2 = 0} is invariant for the extended system. Let x(t) be the solution of the
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plant’s ODE (14a) with initial condition x(0). Then the initial condition xe(0) = (x(0), 0) admits
the solution xe(t) = (x(t), 0) and ye(t) = y(t). Therefore, using (46),

‖x(t)‖ = ‖xe(t)‖ ≤ ceλt ‖x(0)‖+ c

∫ t

0

eλ(t−τ)
(
‖u(τ)‖+ ‖y(τ)‖

)
dτ + c

(
‖wn‖∞ + ‖wd‖∞

)
.

The solution v(t) of (15) equals the integral in the RHS of the above inequality, so we get the
desired result.

A.2 Proof of Lemma 2

In the proofs of Lemma 2 and Lemma 3, we utilize a crude bound on the maximum growth of the
plant’s state over a single period.

Proposition 3. There exist constants T > 0 and c > 0 so that for every T ∈ (0, T ), wd ∈ PC∞,
α ∈ PS1(A, T0, δα), and x[k] ∈ Rn, when the controller given by (15), (17)–(19), and (21), (22)
is applied to the plant (14):

‖x(t)− x[k]‖ ≤ cT

(
v[k] +

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ ‖s[k]‖∞ + ‖wd‖∞

)
, t ∈ [kT, (k + 1)T ].

Proof of Proposition 3.
Let wd ∈ PC∞, α ∈ PS1(A, T0, δα), and x[k] ∈ Rn be arbitrary. The solution x(t) to (14) with

initial condition x[k] satisfies

x(t)− x[k] =

∫ t

kT

(
A(α(τ))x[k] +B(α(τ))u(τ) + wd(τ)

)
dτ +

∫ t

kT

A(α(τ))
(
x(τ)− x[k]

)
dτ.

Taking norms and substituting the expression for u(t) over [kT, (k+1)T ], we get the upper bound

‖x(t)− x[k]‖ ≤T
(

max
α∈A
‖A(α)‖ ‖x[k]‖+ max

α∈A
‖B(α)‖ (max

α∈A
‖H(α)‖+ ρ) ‖z[k]‖

+ max
α∈A
‖B(α)‖ (max

α∈A
‖K(α)‖ ‖M‖+ ρ) ‖r[k]‖+ max

α∈A
‖B(α)‖ ρv[k] + ‖wd‖∞

)
+ max

α∈A
‖A(α)‖

∫ t

kT

‖x(t)− x[k]‖ dτ, t ∈ [kT, (k + 1)T ].

Using the definition of x̄, z̄, and s given in (24) and invoking the Bellman-Gronwall inequality,
there exist constants c1 > 0 and c2 > 0 so that

‖x(t)− x[k]‖ ≤ c1T

(
v[k] +

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ ‖s[k]‖∞

)
ec2T + c1T ‖wd‖∞ ec2T .

Then, for sufficiently small T , there exists a constant c > 0 so that, for all T ∈ (0, T ),
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‖x(t)− x[k]‖ ≤ cT

(
v[k] +

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ ‖s[k]‖∞ + ‖wd‖∞

)
. (47)

Proof of Lemma 2.
Fix ε > 0 and δ > 0; let wn ∈ PC∞, wd ∈ PC∞, α ∈ PS1(A, T0, δα), k ∈ Z+, and x0 ∈ Rn be

arbitrary. We start with a claim.

Claim 1. There exist constants c > 0 and T > 0, so that if T ∈ (0, T ), v[k] + ‖z[k]‖ + ‖r[k]‖ >
ε ‖x[k]‖, and α(t) is a.c. for t ∈ [kT, (k + 1)T ], then∥∥∥C(α((k + 1)T ))B(α((k + 1)T ))− ĈB[k + 1]

∥∥∥ ≤ cT + c
‖wd‖∞
δ[k]

+ cT−1‖wn‖∞
δ[k]

. (48)

Proof of Claim 1.
By hypothesis, v[k] + ‖z[k]‖+ ‖r[k]‖ > ε ‖x[k]‖, which implies that δ[k] 6= 0. Then

−2hĈB[k + 1]δ[k] = y(kT + 2h)− 2y(kT + h) + y(kT )

=
(
ynf (kT + 2h)− ynf (kT + h)

)
−
(
ynf (kT + h)− ynf (kT )

)
+wn(kT + 2h)− 2wn(kT + h) + wn(kT ), (49)

where, with some abuse of notation, ynf (t) := C(t)x(t) is the noise-free output signal. By this
definition of ynf (t), it follows that

ẏnf (t) =
(
Ċ(t) + C(t)A(t)

)
x(t) + C(t)B(t)u(t) + C(t)wd(t)

for almost every t ∈ [kT, (k + 1)T ]. Then, by the Fundamental Theorem of Calculus and the
structure of the control signal (19), we have

ynf (kT + h)− ynf (kT ) =

∫ kT+h

kT

(
Ċ(τ) + C(τ)A(τ)

)
x(τ)dτ +

∫ kT+h

kT

C(τ)B(τ)dτδ[k]

+

∫ kT+h

kT

C(τ)B(τ)dτ

(
H(α̂[k])z[k] +K(α̂[k])Mr[k]

)
+

∫ kT+h

kT

C(τ)wd(τ)dτ.

In a similar fashion,

27



ynf (kT + 2h)− ynf (kT + h) =

∫ kT+2h

kT+h

(
Ċ(τ) + C(τ)A(τ)

)
x(τ)dτ

−
∫ kT+2h

kT+h

C(τ)B(τ)dτδ[k]

+

∫ kT+2h

kT+h

C(τ)B(τ)dτ

(
H(α̂[k])z[k] +K(α̂[k])Mr[k]

)
+

∫ kT+2h

kT+h

C(τ)wd(τ)dτ.

Substituting the previous two expressions into (49) yields

−2hĈB[k + 1]δ[k] =

∫ kT+2h

kT+h

(
C(τ)A(τ) + Ċ(τ)

)
x(τ)dτ +

∫ kT+2h

kT+h

C(τ)wd(τ)dτ

+

∫ kT+2h

kT+h

C(τ)B(τ)dτ
(
H(α̂[k])z[k] +K(α̂[k])Mr[k]

)
−
∫ kT+h

kT

C(τ)B(τ)dτ
(
H(α̂[k])z[k] +K(α̂[k])Mr[k]

)
−
∫ kT+2h

kT

C(τ)B(τ)dτδ[k]−
∫ kT+h

kT

(
C(τ)A(τ) + Ċ(τ)

)
x(τ)dτ

−
∫ kT+h

kT

C(τ)wd(τ)dτ + wn(kT + 2h)− 2wn(kT + h) + wn(kT )

= −2hC(kT + 2h)B(kT + 2h)δ[k]

+

∫ kT+2h

kT

(
C(kT + 2h)B(kT + 2h)− C(τ)B(τ)

)
dτδ[k]

+

∫ kT+2h

kT+h

((
C(τ)A(τ) + Ċ(τ)

)
x(τ)−

(
C(τ − h)A(τ − h) + Ċ(τ − h)

)
x(τ − h)

)
dτ

+

∫ kT+2h

kT+h

(
C(τ)B(τ)− C(τ − h)B(τ − h)

)
dτ
(
H(α̂[k])z[k] +K(α̂[k])Mr[k]

)
+

∫ kT+2h

kT+h

C(τ)wd(τ)dτ −
∫ kT+h

kT

C(τ)wd(τ)dτ

+wn(kT + 2h)− 2wn(kT + h) + wn(kT ).

Then we have∥∥∥C(kT + 2h)B(kT + 2h)− ĈB[k + 1]
∥∥∥ ≤ 1

2h

∫ kT+2h

kT

‖C(kT + 2h)B(kT + 2h)− C(τ)B(τ)‖ dτ
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+
1

2hδ[k]

∫ kT+2h

kT+h

∥∥∥(C(τ)A(τ) + Ċ(τ)
)
x(τ)−

(
C(τ − h)A(τ − h) + Ċ(τ − h)

)
x(τ − h)

∥∥∥ dτ

+
1

2hδ[k]

∫ kT+2h

kT+h

‖C(τ)B(τ)− C(τ − h)B(τ − h)‖ dτ
(
H(α̂[k])z[k] +K(α̂[k])Mr[k]

)
+

1

2hδ[k]

∥∥∥∥∫ kT+2h

kT+h

C(τ)wd(τ)dτ −
∫ kT+h

kT

C(τ)wd(τ)dτ

∥∥∥∥
+

1

2hδ[k]
‖wn(kT + 2h)− 2wn(kT + h) + wn(kT )‖ .

Utilizing order notation, Proposition 3, and applying Assumption 5 to bound6 the Lipschitz con-
tinuous functions, we can write this concisely as

∥∥∥C(kT + 2h)B(kT + 2h)− ĈB[k + 1]
∥∥∥ = O(T ) +O(T )

v[k] + ‖x[k]‖+ ‖z[k]‖+ ‖r[k]‖
δ[k]

+O(1)
‖wd‖∞
δ[k]

+O(T−1)
‖wn‖∞
δ[k]

.

By hypothesis we have

‖x[k]‖+ v[k] + ‖z[k]‖+ ‖r[k]‖
δ[k]

≤
(1

ε
+ 1
) (v[k] + ‖z[k]‖+ ‖r[k]‖

)
ρ(v[k] + ‖z[k]‖+ ‖r[k]‖)

=
1

ρ

(1

ε
+ 1
)
,

so for all T ∈ (0, T ), with T sufficiently small, we get the desired result:

∥∥∥C((k + 1)T )B((k + 1)T )− ĈB[k + 1]
∥∥∥ = O(T ) +O(1)

‖wd‖∞
δ[k]

+O(T−1)
‖wn‖∞
δ[k]

.

By hypotheses (i) and (iii) and Claim 1, the bound (48) holds. By hypothesis (ii) and the definition
of δ[k],

‖wn‖∞
Tδ[k]

+
‖wd‖∞
δ[k]

<
1

ρc
. (50)

With c1 the constant from Claim 1, substituting (50) into (48) yields

∥∥∥C((k + 1)T )B((k + 1)T )− ĈB[k + 1]
∥∥∥ < c1

(
T +

1

ρc

)
. (51)

We want to bound ‖C(α((k + 1)T )B(α((k + 1)T ) − ΠF(ĈB[k + 1])‖, so we must account for
the effect of the projection, ΠF . To ensure that ΠF projects onto the interval of F containing
C((k + 1)T )B((k + 1)T ), it is sufficient that the upper bound in (51) be less than half the
minimum distance between intervals of F . By Assumptions 3 and 5, the image of A under f has

6It is important to note that by using Proposition 3 the estimation error will be upper bounded by the entire
closed-loop state, including v(t).
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the form F = [f
1
, f 1] ∪ · · · ∪ [f

q
, f q], where f i < f

i+1
, i = 1, . . . , q − 1, for some q ∈ N. Let

dmin := min
j

(f
j+1
− f j), j = 1, . . . , q − 1, and let T1 := 1

c1
min{dmin

4
, δ

2`
}, where ` is the Lipschitz

constant of f−1 on F . Then, from (51), for any c > c1
ρ

max{ 4
dmin

, 2`
δ
} and any T ∈ (0, T1), we get∥∥∥C((k + 1)T )B((k + 1)T )− ĈB[k + 1]

∥∥∥ < c1dmin

4c1

+
c1ρdmin

4c1ρ
=
dmin

2
,

so it follows that∥∥∥C((k + 1)T )B((k + 1)T )− ΠF(ĈB[k + 1])
∥∥∥ ≤ ∥∥∥C((k + 1)T )B((k + 1)T )− ĈB[k + 1]

∥∥∥ .
By Assumption 4 we have

‖α((k + 1)T )− α̂[k + 1]‖ ≤ `
∥∥∥C((k + 1)T )B((k + 1)T )− ΠF(ĈB[k + 1])

∥∥∥
< c1`

(
T +

1

ρc

)
<
c1`δ

2c1`
+
c1`ρδ

2c1`ρ
= δ,

where we have used the fact that ρc > 2c1`
δ

.

A.3 Proof of Lemma 3

Let wn ∈ PC∞, wd ∈ PC∞, α ∈ PS1(A, T0, δα), k ∈ Z+, and x0 ∈ Rn be arbitrary.

Proof of (iii)

In order to accomplish this, we proceed as follows:

• Analyze all states at the sample points (Steps 1, 2, and 3),

• Upper bound a transformed closed-loop state (Step 4).

Step 1 - Filter Sample Point Analysis

At the sample points, the filter (15) satisfies

v[k + 1] = eλTv[k] +

∫ (k+1)T

kT

eλ((k+1)T−τ) ‖u(τ)‖ dτ +

∫ (k+1)T

kT

eλ((k+1)T−τ) ‖y(τ)‖ dτ.

By (19), the input term satisfies

∫ (k+1)T

kT

eλ((k+1)T−τ) ‖u(τ)‖ dτ = −1

λ

(
1− eλh

)[
‖H(α̂[k])z[k] +K(α̂[k])Mr[k] + δ[k]‖ eλh

+ ‖H(α̂[k])z[k] +K(α̂[k])Mr[k]− δ[k]‖

]
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≤ −1

λ

(
− λT

2

)(
2(max

α∈A
‖H(α)‖+ ρ) ‖z[k]‖+ 2(max

α∈A
‖K(α)‖ ‖M‖+ ρ) ‖r[k]‖+ 2ρv[k]

)
.

Employing order notation, we can write this compactly as∫ (k+1)T

kT

eλ((k+1)T−τ) ‖u(τ)‖ dτ = Tρv[k] +O(T )

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+O(T ) ‖s[k]‖∞ ,

where x̄, z̄, and s are defined in (24). The output term satisfies

∫ (k+1)T

kT

eλ((k+1)T−τ) ‖y(τ)‖ dτ ≤
∫ (k+1)T

kT

eλ((k+1)T−τ)dτ

=O(1)‖x[k]‖︷ ︸︸ ︷
‖C(α(kT ))x[k]‖

+

∫ (k+1)T

kT

eλ((k+1)T−τ)
(
‖C(α(τ))− C(α(kT ))‖ ‖x[k]‖︸ ︷︷ ︸

=O(T )‖x[k]‖

+ ‖C(α(τ))‖ ‖x(τ)− x[k]‖︸ ︷︷ ︸
bound using Proposition 3

+ ‖wn‖∞
)

dτ.

Employing order notation, and utilizing Assumption 5 and Proposition 3, we can write this com-
pactly as∫ (k+1)T

kT

eλ((k+1)T−τ) ‖y(τ)‖ dτ = O(T )

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+O(T 2)v[k] +O(T 2) ‖s[k]‖∞

+O(T ) ‖wn‖∞ +O(T 2) ‖wd‖∞ .

Combining these upper bounds, for sufficiently small T there exist constants e1 > 0, γ1 > 0,
γ2 > 0, and w1 > 0 such that, for all such T and all k ∈ Z+,

v[k + 1] ≤
(
1 + (λ+ ρ)T + e1T

2
)
v[k] + γ1T

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ γ2T ‖s[k]‖∞

+w1T ‖wn‖∞ + w1T
2 ‖wd‖∞ . (52)

Step 2 - Controller Sample Point Analysis

Starting with z[k + 1], define

ez1[k] := T
(
F (α̂[k])− F (α(kT ))

)
z[k] + T

(
G(α̂[k])−G(α(kT ))

)
Mr[k],

so that we can write

z[k + 1] =
[
0 I + TF (α(kT )) TG(α(kT ))M

] x[k]
z[k]
r[k]

+ ez1[k].

By Assumptions 5 and 6 (see Remark 1), there exists a constant `1 > 0 so that we have
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‖ez1[k]‖ ≤ T`1 ‖α̃(kT )‖
∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ T`1 ‖α̃(kT )‖ ‖s[k]‖∞ ,

where α̃(kT ) = α(kT )− α̂[k] denotes the parameter estimation error at time kT . By hypothesis
‖α̃(kT )‖ ≤ δ, so

‖ez1[k]‖ ≤ T`1δ

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ T`1δ ‖s[k]‖∞ . (53)

We can treat r[k + 1] similarly and define

ez2[k] :=− T
(
L(α̂[k])− L(α(kT ))

)
C(α(kT ))x[k]

+ TR
(
B(α̂[k])H(α̂[k])−B(α(kT ))H(α(kT ))

)
z[k]

+ T
(

(Q(α̂[k])−Q(α(kT ))) +R(B(α̂[k])K(α̂[k])−B(α(kT ))K(α(kT )))
)
r[k]

− TL(α̂[k])wn[k],

so that

r[k + 1] = −TL(α(kT ))C(α(kT ))x[k] + TRB(α(kT ))H(α(kT ))z[k]

+
(
I + T

(
Q(α(kT )) +RB(α(kT ))K(α(kT ))M

))
r[k]

+ez2[k].

Again, by Assumptions 5 and 6, there exists a constant `2 > 0 such that

‖ez2[k]‖ ≤ T`2δ

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ T`2δ ‖s[k]‖∞ + T`2 ‖wn‖∞ . (54)

Finally, we will use

eu[k] :=
(
H(α̂[k])−H(α(kT ))

)
z[k] +

(
K(α̂[k])−K(α(kT ))

)
Mr[k],

to write

u[k]− δ(t) = H(α̂[k])z[k] +K(α̂[k])Mr[k]

=
[
H(α(kT )) K(α(kT ))M

] [z[k]
r[k]

]
+ eu[k], t ∈ [kT, (k + 1)T ).

Again, by Assumptions 5 and 6, there exists a constant `3 > 0 such that

‖eu[k]‖ ≤ `3δ

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ `3δ ‖s[k]‖∞ . (55)

Step 3 - Plant Sample Point Analysis

The value of the plant state at time t = (k + 1)T is
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x[k + 1] = x[k] +

∫ (k+1)T

kT

A(α(τ))x(τ)dτ +

∫ (k+1)T

kT

B(α(τ))u(τ)dτ +

∫ (k+1)T

kT

wd(τ)dτ,

so that, using the structure of the control signal (19),

x[k + 1] = (I + TA(α(kT )))x[k] + TB(α(kT ))

([
H(α(kT )) K(α(kT ))

] [z[k]
r[k]

]
+ eu[k]

)

+

∫ (k+1)T

kT

(A(α(τ))− A(α(kT )))dτx[k] +

∫ (k+1)T

kT

A(α(τ))(x(τ)− x[k])dτ

+

∫ (k+1)T

kT

(B(α(τ))−B(α(kT )))dτ
(
H(α̂[k])z[k] +K(α̂[k])Mr[k]

)
+

∫ (k+1)T

kT

B(α(τ))δ(τ)dτ +

∫ (k+1)T

kT

wd(τ)dτ.

Define

ep[k] :=

∫ (k+1)T

kT

(A(α(τ))− A(α(kT )))dτx[k] +

∫ (k+1)T

kT

A(α(τ))(x(τ)− x[k])dτ

+

∫ (k+1)T

kT

(B(α(τ))−B(α(kT )))dτ
(
H(α̂[k])z[k] +K(α̂[k])Mr[k]

)
+

∫ (k+1)T

kT

B(α(τ))δ(τ)dτ +

∫ (k+1)T

kT

wd(τ)dτ,

to be able to compactly write

x[k + 1] =
[
I + TA(α(kT )) TB(α(kT ))H(α(kT )) TB(α(kT ))K(α(kT ))M

] x[k]
z[k]
r[k]


+ TB(α(kT ))eu[k] + ep[k].

By Assumptions 5 and 6 (see Remark 1) and Proposition 3, there exists a constant `4 > 0 such
that for small T

‖ep[k]‖ ≤ T 2`4v[k] + T 2`4

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ T 2`4 ‖s[k]‖∞ + T`4 ‖wd‖∞ . (56)

Step 4 - Closed-Loop Difference Inequality

Combining the analysis of the plant and the controller, we obtain

x[k + 1]
z[k + 1]
r[k + 1]

 =

(
I + T

 A(α(kT )) B(α(kT ))H(α(kT )) B(α(kT ))K(α(kT ))M
0 F (α(kT )) G(α(kT ))M

−L(α(kT ))C(α(kT )) RB(α(kT ))H(α(kT )) Q(α(kT )) +RB(α(kT ))K(α(kT ))M

)x[k]
z[k]
r[k]


+

TB(α(kT ))eu[k] + ep[k]
ez1[k]
ez2[k]

 .
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In (x̄, z̄, s)-coordinates, making use of (9) and (13), we have

x̄[k + 1]
z̄[k + 1]
s[k + 1]

 =

(
I + T

P (α(kT )) −
[
X
Z

]−1 [
B(α(kT ))K(α(kT ))M

G(α(kT ))M

]
0 0 Q(α(kT ))

)x̄[k]
z̄[k]
s[k]


+

 [XZ
]−1 [

TB(α(kT ))eu[k] + ep[k]
ez1[k]

]
TRB(α(kT ))eu[k] +Rep[k]− ez2[k]

 .
To construct the decrescent norm, we define a difference inequality and apply two similarity
transformations. We start by upper bounding the transformed plant and controller states:

∥∥∥∥[x̄[k + 1]
z̄[k + 1]

]∥∥∥∥
1

≤ ‖I + TP (α(kT ))‖1

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+T

∥∥∥∥∥
[
X
Z

]−1 [
B(α(kT ))K(α(kT ))M

G(α(kT ))M

]∥∥∥∥∥
1

‖s[k]‖1

+

∥∥∥∥∥
[
X
Z

]−1 [
TB(α(kT ))eu[k] + ep[k]

ez1[k]

]∥∥∥∥∥
1

.

Next we take advantage of the H1 property that P (α) enjoys: by Proposition 1 there exists a
constant λ1 < 0 so that ‖I + TP (α)‖1 ≤ 1 + λ1T for all sufficiently small T ; similarly, we can
take advantage of the H∞ property that Q(α) enjoys: there exists a constant λ2 < 0 so that
‖I + TQ(α)‖∞ ≤ 1 + λ2T for all sufficiently small T ; clearly we can choose λ1 and λ2 so that
λ2 < λ1 < 0. Then using (53), (55), and (56), there exists constants e2 > 0, γ3 > 0, and w2 > 0
such that for small T

∥∥∥∥[x̄[k + 1]
z̄[k + 1]

]∥∥∥∥
1

≤
(
1 + λ1T + e2T (δ + T )

) ∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+
(
γ3T + e2T (δ + T )

)
‖s[k]‖∞

+e2T
2v[k] + w2T ‖wd‖∞ . (57)

In a similar fashion, we have an upper bound on s[k + 1]:

‖s[k + 1]‖∞ ≤ ‖I + TQ(α(kT ))‖∞ ‖s[k]‖∞ + T ‖RB(α(kT ))eu[k]‖∞ + ‖Rep[k]‖∞ + ‖ez2[k]‖∞
≤ (1 + λ2T ) ‖s[k]‖∞ + T ‖RB(α(kT ))‖ ‖eu[k]‖∞ + ‖R‖ ‖ep[k]‖∞ + ‖ez2[k]‖∞ ,

and using (54), (55), and (56), there exist constants e3 > 0 and w3 > 0 such that for small T

‖s[k + 1]‖∞ ≤
(
1 + λ2T + e3T (δ + T )

)
‖s[k]‖∞ + e3T (δ + T )

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+ e3T
2v[k]

+w3T ‖wn‖∞ + w3T ‖wd‖∞ . (58)

Now we combine the bounds on the states. Recall that the controller parameter ρ was chosen to
satisfy ρ ∈ (0,−λ), which means that λ+ ρ < 0; now fix

λ̄ ∈ (max{λ1, λ2, λ+ ρ}, 0) ,
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which means that
λ2 < λ1 < λ̄ < 0. (59)

Combining the bounds given in (52), (57), and (58) yields, for small T :
v[k + 1]∥∥∥∥[x̄[k + 1]
z̄[k + 1]

]∥∥∥∥
1

‖s[k + 1]‖∞

 ≤

1 + λ̄T + e1T
2 γ1T γ2T

e2T
2 1 + λ1T + e2T (δ + T ) γ3T + e2T (δ + T )

e3T
2 e3T (δ + T ) 1 + λ2T + e3T (δ + T )




v[k]∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

‖s[k]‖∞


+

w1T w1T
2

0 w2T
w3T w3T

[‖wn‖∞
‖wd‖∞

]
.

So, with E ∈ R3×3 suitably chosen and T sufficiently small, we have


v[k + 1]∥∥∥∥[x̄[k + 1]
z̄[k + 1]

]∥∥∥∥
1

‖s[k + 1]‖∞

 ≤

(1 + λ̄T γ1T γ2T
0 1 + λ1T γ3T
0 0 1 + λ2T


︸ ︷︷ ︸

=:Λ

+T (δ + T )E

)
v[k]∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

‖s[k]‖∞



+

w1T w1T
2

0 w2T
w3T w3T


︸ ︷︷ ︸

=:W (T )

[
‖wn‖∞
‖wd‖∞

]
. (60)

Next we define three states as upper bounds of the above states at periods k and k + 1.
This allows us to get equality, so we can solve and transform a difference equation rather than
inequality. Define ψ := (ψ1, ψ2, ψ3) ∈ R3

+ via

ψ1[k] := v[k], ψ2[k] :=

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

, ψ3[k] := ‖s[k]‖∞ ,

ψ[k + 1] := (Λ + T (δ + T )E)ψ[k] +W (T )

[
‖wn‖∞
‖wd‖∞

]
.

It is clear that v[k+1] ≤ ψ1[k+1],

∥∥∥∥[x̄[k + 1]
z̄[k + 1]

]∥∥∥∥
1

≤ ψ2[k+1], and ‖s[k + 1]‖∞ ≤ ψ3[k+1] because


v[k + 1]∥∥∥∥[x̄[k + 1]
z̄[k + 1]

]∥∥∥∥
1

‖s[k + 1]‖∞

 ≤ (Λ + T (δ + T )E)


v[k]∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

‖s[k]‖∞

+W (T )

[
‖wn‖∞
‖wd‖∞

]

= (Λ + T (δ + T )E)ψ[k] +W (T )

[
‖wn‖∞
‖wd‖∞

]
= ψ[k + 1].

Next we perform two similarity transformations with the objective of diagonalizing the matrix Λ
in (60). The first is a constant transformation of the form
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V :=

1 0 0
0 1 v23

0 0 1


so that under similiarity transformation we have

V (Λ + T (δ + T )E)V −1 =

1 + λ̄T γ1T (γ2 − v23γ1)T
0 1 + λ1T (γ3 + v23(λ2 − λ1))T
0 0 1 + λ2T

+ T (δ + T )V EV −1.

Choose v23 = γ3/(λ1 − λ2) so that we are left with

V (Λ + T (δ + T )E)V −1 =

1 + λ̄T γ1T (γ2 − v23γ1)T
0 1 + λ1T 0
0 0 1 + λ2T

+ T (δ + T )V EV −1.

To complete the diagonalization of Λ consider a transformation of the form

Y :=

[
1 Ȳ
0 I

]
∈ R3×3, Ȳ ∈ R1×2,

so that, with γ4 := γ2 − v23γ1,

Y V (Λ + T (δ + T )E)V −1Y −1 =

1 + λ̄T
[
γ1 γ4

]
T + Ȳ

[
1 + λ1T 0

0 1 + λ2T

]
− (1 + λ̄T )Ȳ[

0
0

] [
1 + λ1T 0

0 1 + λ2T

]


+T (δ + T )Y V EV −1Y −1.

Choose Ȳ =
[ γ1
λ̄−λ1

γ4
λ̄−λ2

]
to get

Y V (Λ + T (δ + T )E)V −1Y −1 =

1 + λ̄T 0 0
0 1 + λ1T 0
0 0 1 + λ2T

+ T (δ + T )Y V EV −1Y −1.

Defining N := Y V , we have

Nψ[k + 1] =

(1 + λ̄T 0 0
0 1 + λ1T 0
0 0 1 + λ2T

+ T (δ + T )NEN−1

)
Nψ[k] +NW (T )

[
‖wn‖∞
‖wd‖∞

]
.

It follows from (59) that all elements of N are non-negative, which can be used to prove that

‖Nψ[k + 1]‖ ≥

∥∥∥∥∥∥∥∥N


v[k + 1]∥∥∥∥[x̄[k + 1]
z̄[k + 1]

]∥∥∥∥
1

‖s[k + 1]‖∞


∥∥∥∥∥∥∥∥ = ‖p[k + 1]‖ .
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Taking the ∞-norm of p[k + 1], there exist constants γ > 0 and c > 0 such that for small T

‖p[k + 1]‖∞ ≤ ‖Nψ[k + 1]‖∞ ≤
(

1 + λ̄T + γT (δ + T )
)
‖Nψ[k]‖∞ + cT ‖wn‖∞ + cT ‖wd‖∞

=
(

1 + λ̄T + γT (δ + T )
)
‖p[k]‖∞ + cT ‖wn‖∞ + cT ‖wd‖∞ .

Now choose δ > 0 so that
λ̂ := λ̄+ 2γδ < 0;

it follows that for small T , we have

‖p[k + 1]‖∞ ≤
(

1 + λ̂T
)
‖p[k]‖∞ + cT ‖wn‖∞ + cT ‖wd‖∞

≤eλ̂T ‖p[k]‖∞ + cT ‖wn‖∞ + cT ‖wd‖∞ ,

which means that (iii) holds.
Proof of (i)

By the definition of p,

p(t)− p[k] = N


|v(t)| − |v[k]|∥∥∥∥[x̄(t)

z̄(t)

]∥∥∥∥
1

−
∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

‖s(t)‖∞ − ‖s[k]‖∞

 , t ≥ 0.

Taking the 1-norm and using the reverse triangle inequality, for t ∈ [kT, (k + 1)T ) we get

‖p(t)− p[k]‖1 = O(1)|v(t)− v[k]|+O(1) ‖x(t)− x[k]‖
+O(1) ‖z(t)− z[k]‖+O(1) ‖r(t)− r[k]‖ . (61)

The solution to (15) with initial condition v[k] is

v(t) = v[k] +

∫ t

kT

λ(v(τ)− v[k])dτ + (t− kT )λv[k] +

∫ t

kT

(‖u(τ)‖+ ‖y(τ)‖)dτ.

Rearranging and taking the absolute value, we have

|v(t)− v[k]| ≤ |λ|
∫ t

kT

|v(τ)− v[k]|dτ + T |λ|v[k] +

∫ t

kT

(‖u(τ)‖+ ‖y(τ)‖)dτ,

and by applying the Bellman-Gronwall inequality and using Proposition 3, it follows that

|v(t)− v[k]| = O(T )v[k] +O(T )

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+O(T ) ‖s[k]‖∞

+O(T ) ‖wn‖∞ +O(T 2) ‖wd‖∞ , t ∈ [kT, (k + 1)T ). (62)

For t ∈ [kT, (k + 1)T ) we also have ‖z(t)− z[k]‖ = 0 and ‖r(t)− r[k]‖ = 0. Using these bounds
on (61), along with Proposition 3 and (62), we get

‖p(t)− p[k]‖ = O(T ) ‖p[k]‖+O(T )(‖wn‖∞ + ‖wd‖∞), t ∈ [kT, (k + 1)T ).
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So, for t ∈ [kT, (k + 1)T ), there exists a constant c > 0 so that for sufficiently small T .

‖p(t)− p[k]‖ ≤ cT ‖p[k]‖+ cT ‖wn‖∞ + cT ‖wd‖∞ , t ∈ [kT, (k + 1)T ).

Proof of (ii)

The bound (61) derived in the proof of part (i) remains valid. Additionally, using (17) we have

z[k + 1]− z[k] = TF (α̂[k])z[k] + TG(α̂[k])r[k],

so taking the norm and employing order notation,

‖z[k + 1]− z[k]‖ = O(T )

∥∥∥∥[x̄[k]
z̄[k]

]∥∥∥∥
1

+O(T ) ‖s[k]‖∞ = O(T ) ‖p[k]‖ .

We can also upper bound ‖r[k + 1]− r[k]‖. We have, again from (17),

r[k + 1]− r[k] = TRB(α̂[k])H(α̂[k])z[k] + T
(
Q(α̂[k]) +RB(α̂[k])K(α̂[k])M

)
r[k]

−TL(α̂[k])
(
C(α[k])x[k] + wn[k]

)
,

so taking the norm and employing order notation,

‖r[k + 1]− r[k]‖ = O(T ) ‖p[k]‖+O(T ) ‖wn‖∞ .

Applying these bounds to (61), along with Proposition 3 and (52), we have

‖p[k + 1]− p[k]‖ = O(T ) ‖p[k]‖+O(T ) ‖wn‖∞ +O(T ) ‖wd‖∞ .

So there exists a constant c > 0 so that, for all T sufficiently small,

‖p[k + 1]‖ ≤ (1 + cT ) ‖p[k]‖+ cT ‖wn‖∞ + cT ‖wd‖∞ .
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