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Abstract This paper presents a framework of path following via set stabilization
for mobile manipulator systems. The mobile manipulator is modelled as a single
redundant dynamic system. The mobile base considered belongs to a large class
of wheeled ground vehicles, including those with nonholonomic constraints. Kine-
matic redundancies are resolved by designing a controller that solves a suitably
defined constrained quadratic optimization problem, which can be easily tuned by
the designer to achieve various desired poses. By employing partial feedback lin-
earization, the proposed path following controller has a clear physical meaning.
The desired path to be followed is a spline in the output space of the system. The
controller simultaneously controls the manipulator and mobile base. The result is
a unified path following controller without any trajectory planning performed on
the mobile base. The approach is experimentally verified on a 4-degree-of-freedom
(4-DOF) manipulator mounted on a differential drive mobile platform.

1 Introduction

The problem of designing feedback control laws that make a robot follow a desired
curve in its workspace can be broadly classified as either a trajectory tracking or
path following problem. Trajectory tracking consists of tracking a curve with an
assigned time parametrization [10]. This approach may not be suitable for certain
applications as it may limit the attainable performance, be unnecessarily demanding
or even infeasible [8]. On the other hand, path following or manoeuvre regulation
controllers, as previously defined in [10], drive a system’s output to a desired path
and make the output traverse the path without a pre-specified time parametrization.
In general, path following results in smoother convergence to the desired path com-
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pared to trajectory tracking, the control signals are less likely to saturate [17], and
performance limitations for non-minimum phase systems are removed [1]. Path fol-
lowing controllers can also render the desired path attractive and invariant [11]. This
is a useful property in robotics, since if a disturbance or obstacle is preventing the
output of a robot to proceed along the path, the robot will stay on the path until
the disturbance is removed [11]. Furthermore, if the robot’s output is perturbed so
that it leaves the path, the path following controller will drive the output back to the
desired path. There are several approaches for path following, see [9] for a complete
literature review.

The majority of applications and experiments of mobile manipulators do not si-
multaneously control the manipulator and the mobile base. That is, they control the
manipulator and the mobile base in a sequential, not parallel (as is done in this pa-
per), manner [21, 18, 3, 25]. Mobile manipulator systems can also be modelled as
a single redundant system [26]. Previous works have tackled the trajectory tracking
problem by resolving the redundancies at the kinematic level, but, unlike in this pa-
per, a trajectory for the end-effector as well as the mobile base is specified [22, 12].
In this paper, the motion planning process is simplified since there is no need to plan
separate trajectories (or paths) for the base and the end-effector. Khatib extended
the dynamic-level redundancy resolution developed for torque-input model of robot
manipulators [14] to holonomic mobile platforms [15], whereas the approach in this
paper can also be applied directly to combined motor-input manipulator mounted
on nonholonomic ground vehicles. In [26], the authors look at the coordinated mo-
bile manipulator problem, where, unlike in this paper, the manipulator dynamics are
neglected, to track a reference trajectory in the workspace of the mobile platform
while maximizing the manipulability measure.

In this paper, we apply the path following control approach of [9] to general
mobile manipulator systems. We use dynamic extension [2, 13] to transform the
dynamics of the mobile manipulator system that are tangential and transversal to
the path into linear subsystems, and doesn’t result in a singularity when the base
velocity is zero unlike in previous work [2]. The remaining dynamics, redundant to
following the path, appear as internal dynamics of the closed-loop system. A novel
redundancy resolution technique is used at the dynamic level, and is experimentally
shown to yield bounded internal dynamics, while maintaining a preferred manipu-
lator posture. This scheme can easily be tuned by the designer to achieve various
desired poses. The result is an automatic unified path following controller that com-
pensates for the dynamics of the mobile manipulator system, controlling the mobile
base and manipulator simultaneously, rendering a desired path in the output space
of the system to be attractive and invariant. There is no trajectory that needs to be
planned and tracked by the manipulator nor the mobile base, and the coordination
between the two is done automatically by our proposed path following controller.

Notation: Let 〈x, y〉 denote the inner product of vectors x and y in Rn. The Eu-
clidean norm of a vector and induced matrix norm are both denoted by ‖ ·‖. The
notation s◦h : A→C represents the composition of maps s : B→C and h : A→ B.
The ith element of a vector x is denoted xi, and the row i to j and column k to
l submatrix of A is denoted as Ai: j,k:l . The symbol := means equal by definition.
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Given a C1 mapping φ : Rn → Rm let dφx be its Jacobian evaluated at x ∈ Rn.
If f , g : Rn → Rn are smooth vector fields we use the following standard nota-
tion for iterated Lie derivatives L0

f φ := φ , Lk
f φ := L f (Lk−1

f φ) = 〈dLk−1
f φx, f (x)〉,

LgL f φ := Lg(L f φ) = 〈dL f φx,g(x)〉. Finally, 0n×m is the n by m zero matrix and
In×m is a n by m matrix of zeros with ones on its main diagonal.

2 Class of Systems

We consider a fully actuated manipulator mounted on a mobile ground vehicle. For
simplicity, the combined systems are assumed to be decoupled. This is a valid sys-
tem model assumption for general mobile manipulator systems [4, 15] and for our
experimental platform (Sec. 5).

Manipulator Subsystem: The first subysystem is a fully actuated manipulator
system with N configuration variables and N control inputs. The dynamic model is
of the familiar form [23]

M(q)q̈+C(q, q̇)q̇+G(q) = A(q)um (1)

where um ∈ RN is the manipulator control input (usually motor voltages [23]), and
(q, q̇) ∈ RN×RN are joint positions and velocities1.

The output of system (1), the task space of the manipulator, lives in a P-
dimensional space, and is given in local frame B attached to the vehicle base (see
Fig. 1) as

ym = h(q) (2)

where h : RN → RP is smooth. In addition, let J : RN → RP×N ,q 7→ dhq represent
the manipulator Jacobian [23]. We assume, without loss of generality, that P ≥ 3
and that the first 3 components of h correspond to the Euclidean position of the end-
effector in the local frame B (Fig. 1). Any additional outputs (P > 3) of h represent
orientations of the end-effector in the world frame. For example, if P = 4, the fourth
row of h could represent the end-effector angle with respect to the horizontal ground
plane [20].

Vehicle Subsystem: The position xb ∈ R2 and orientation θ ∈ R of frame B in
an inertial frame O (see Fig. 1) are governed by the vehicle’s dynamics. A general
vehicle kinematic model is given as [5]:[

ẋb

θ̇

]
= R(θ)Σ(σ)γb (3)

σ̇ = γs (4)

1 The results of this paper do not rely on the assumption that the state space be Euclidean. One
could replace RN by a smooth Riemannian manifold. Nonetheless, we assume x ∈ RN to avoid
unnecessarily cumbersome notation.
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where R(θ) ∈ SO(3) is the rotation matrix

R(θ) :=

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (5)

Σ : Rδs → R3×δb is a full rank matrix [5, pg. 283] that depends on the steering an-
gle σ ∈ Rδs of the steering wheels, δs ∈ {0,1,2} is the degree of steerability [5,
pg. 273], δb ∈ {1,2,3} is the degree of mobility of the mobile base [5, pg. 272],
and γb ∈ Rδb ,γs ∈ Rδs are the inputs to the vehicle. The degrees of mobility and
steerability δb,δs depend on the design of the vehicle and satisfy the constraint
δb+δs ∈ {2,3}. The kinematic model (3) encompasses many wheeled-ground vehi-
cle designs including car-like vehicles, unicycles (see Sec. 5), and omnidirectional
vehicles [5, Chapter 7.2]. If the vehicle has no steering wheels, such as those found
on differential drive robots (see Sec. 5), then δs = 0 and Σ is a constant matrix.

Output Model:

qN

q3

q2

q1h(q)1:3

B

O

B

xb
1

xb
2

θ
q4

Fig. 1 Schematic of the mobile manipulator. The end-effector position h(q) is expressed in the
local-frame M attached to the bottom of the mobile base. The position and orientation of the
local-frame in the inertial frame O are determined by xb,θ .

The p-dimensional output of the overall system is taken to be manipulator posi-
tion h(q) in the inertial frame in the following sense

y := H(q,xb,θ) =

[
R(θ)1:2,1:2 02×(P−2)
0(p−2)×2 I(p−2)×(P−2)

]
h(q)+

 xb
1

xb
2

0(p−2)×1

 . (6)

where P≥ p≥ 2 is the dimension of the output space. If p = 2, then only the planar
position of the end-effector in the inertial frame is of concern. If both P > 3 and
p > 3, then a component of the end-effector orientation is also to be specified.

Assumption 2.1 (Dexterity) The mobile manipulator satisfies N +δb ≥ p (see Re-
mark 1), i.e., the system has enough degrees of freedom to follow arbitrary paths in
the reachable space contained in Rp. ut
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3 Problem Formulation

The problem studied in this paper is to find a continuous feedback control law for
um,γb,γs for the mobile manipulator system such that the output y exponentially
approaches a path in the output space Rp and traverses it towards a given desired
position or with a given velocity profile. This will be done via set stabilization [19].
Since the mobile manipulator system is redundant, the redundancy is used to avoid
manipulator joint limits and steering limits (if any) of the vehicle.

We assume that we are given a (p+1)-times continuously differentiable, parametrized
curve in the output space of the mobile manipulator system,

σ : R→ Rp (7)

which can be generated by spline interpolating a series of waypoints [6]. If p >
3, then the path also specifies a desired orientation of the end-effector. Given
[λmin,λmax] ⊆ R, the desired path is the set P := σ([λmin,λmax]). We assume that
the curve (7) is framed:

Assumption 3.1 (framed curves) For all λ ∈ [λmin,λmax], σ ′(λ ), . . . ,σ (p)(λ ) are
linearly independent. ut

Assumption 3.1 allows for the Frenet-Serret frame (FSF) of the path to be well-
defined [16], and the prospect of it being violated is very low when spline-interpolating
waypoints (see Sec. 5). The use of FSFs for control of mobile robots is a well-known
technique [24, 9]. In this paper we use Assumption 3.1 to generate a zero-level set
representation of P in the state space of (12). Assumption 3.1 can be relaxed if a
zero-level set representation of the path is already available, see [9].

The goals of this paper are to determine a control law for um,γb,γs such that

PF 1: The set P is rendered output invariant and locally attractive 2.
PF 2: A desired position or velocity profile (tangent to the path) η ref : R≥0 → R is

tracked.
PF 3: Redundant dynamics (internal dynamics for the closed-loop system) remain

bounded while ensuring joint limits of the manipulator are respected.

4 Path Following Control Design

The control design approach relies on the output y having a well-defined relative
degree of {2, ...,2}. That is, the control inputs um,γb,γs all appear in the second
time-derivative of y. It can be shown that this is not the case: the control inputs γb
appear too soon by one derivative. Hence, by delaying the appearance of this input

2 Invariance: if for some time t = 0 the state x(0) is appropriately initialized with y=H(x(0))∈P ,
then (∀t ≥ 0) H(x(t)) ∈P . Attractiveness: for initial conditions x(0) such that the output H(x(0))
is in a neighbourhood of the desired path P , H(x(t))→P as t→ ∞.
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via dynamic extension, we can make y have the desired relative degree. Then a “vir-
tual” output is constructed that incorporates the desired path (7). Through partial
feedback linearization, the virtual output partitions the system dynamics into con-
trollable transversal and tangential sub-systems that govern the motion transversal
to the path and along the path, respectively, and a redundant sub-system that gov-
erns the motion of the system that does not produce any output motion. A novel
redundancy resolution approach is then used to ensure the redundant dynamics re-
main bounded, while maintaining joint limits of the manipulator. The overall block
diagram can be found below in Figure 2.

σ

Tangential
Controller

Transversal
Controller

Diffeomorphism
(19)

ξ

η

vη

vξ

Feedback
Transform &
Redundancy
Resolution

(33)

um

q, q̇,xb,θ ,σ

η ref(t)

um,γs
γb

ub

Dynamic
Extension

(8)
γbub

x

x
ξ

η
Mobile

Manipulator
(1),(3)

γs

Fig. 2 Path following controller block diagram for mobile manipulator systems.

Dynamic Extension: Dynamic extension amounts to controlling the deriva-
tive(s) of the actual control input. Since γb appears too soon by one derivative when
computing the derivatives of y, we introduce an auxiliary control variable ub ∈ Rδb

as follows

γ̇b = ργb +ub (8)

where ρ < 0 is a damping coefficient. It is typical with dynamic extension [2] to let
ρ = 0, however we will see in Sect. 4 that setting ρ = 0 can result in unbounded
internal dynamics.

To facilitate the control design procedure, we write the dynamics (1),(3),(8)
with output (6) in state-space form. First, let xc := (q,xb,θ) ∈ RN × R2 × R,
xv := (q̇,γb,σ) ∈ RN×Rδb ×Rδs . Then,

ẋc =

[
q̇

R(θ)Σ(σ)γb

]
=: Fc(x) (9)

ẋv =

−M−1(q)(C(q, q̇)q̇+G(q))
ργb

0δs×1

+
M−1(q)A(q) 0N×δb

0N×δs
0δb×N Iδb×δb

0δs×δs
0δb×N 0δb×δb

Iδs×δs

um
ub
γs

 (10)

=: Fv(x)+Gv(x)u (11)
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where x := (xc,xv) ∈ R2N+3+δb+δs is the state of the system, u := (um,ub,γs) ∈
RN+δb+δs is the control input to the system, and y is the output. Note that Fc(x) and
Fv(x) are smooth vector fields, Gv(x) is smooth and has full rank, and ∂H(xc)

∂xv
= 0.

The control inputs of the physical system (1),(3) are um,γb,γs, while (8) constitutes
the dynamic portion of the controller implemented in the control algorithm.

The state space equations can be compactly written as

ẋ =
[

ẋc
ẋv

]
=

[
Fc(x)
Fv(x)

]
+

[
0(N+3)×(N+δb+δs)

Gv(x)

]
u =: f (x)+g(x)u (12)

y = H(xc) (13)

The mobile manipulator system is redundant in the sense that dimu = N +δb +
δs ≥ dimy = p.

Virtual Outputs: The first virtual output, η1(x), is the tangential position of the
output y along the desired path. Denote the parameter of curve σ that corresponds
to the closest point to the output y as λ ∗ ∈ [λmin,λmax]

λ
∗ := ϖ(y) := arg inf

λ∈[λmin,λmax]

‖y−σ(λ )‖ . (14)

The minimization for λ ∗ is done numerically using a gradient-descent-like algo-
rithm [9]. The first virtual output is the projected, traversed arclength along the
curve:

η1 = η1(x) :=
λ ∗∫

λmin

∥∥∥∥dσ(λ )

dλ

∥∥∥∥dλ

∣∣∣∣∣∣
λ ∗=ϖ◦H(xc)

. (15)

This integral does not have to be computed for real time implementation if only
tangential velocity control is required, as in the case of our experiment (see Sec. 5).

The remaining virtual outputs are selected to represent the cross track error to
the path using the remaining FSF normal vectors, known as transversal positions
[9]. The generalized Frenet-Serret (FS) vectors are constructed applying the Gram-
Schmidt Orthonormalization process to the vectors σ ′(λ ), σ ′′(λ ), . . . , σ (p)(λ ):

e j(λ ) :=
ē j(λ )∥∥ē j(λ )

∥∥ (16)

where

ē j(λ ) := σ
( j)(λ )−

j−1

∑
i=1

〈
σ
( j)(λ ),ei(λ )

〉
ei(λ ),

for j ∈ {1, . . . , p}. This formulation is well-defined by Assumption 3.1. If FSF are
not feasible, other frames may work [8].

The transversal positions can be computed by projecting the error to the path,
y−σ(λ ∗), onto each of the FS normal vectors:
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ξ
j−1

1 = ξ
j−1

1 (x) :=
〈
e j(λ

∗),H(xc)−σk∗(λ
∗)
〉∣∣

λ ∗=ϖ◦H(xc)
(17)

for j ∈ {2, . . . , p}.
The tangential and transversal positions are illustrated in Figure 3 for p = 3.

Fig. 3 The tangential and
transversal state positions
when p = 3.

P

σ(λ ∗)
e3

e1e2

y = H(xc)

R3

ξ 1
1 (x)

ξ 2
1 (x)

η1(x)

Dynamics and Control: It will be shown that the virtual output (η1(x),ξ 1
1 (x), . . . ,ξ

p−1
1 (x))∈

Rp has a well-defined vector relative degree of {2,2, . . . ,2} for all x ∈U , where

U :=
{

x ∈ R2N+3+δb+δs | rank
(

∂H
∂xc

∂Fc

∂xv
Gv(x)

)
= p
}

(18)

(see (24)) when (14) is solved numerically [9]. We emphasize that (14) is solved for
numerically by a local search since if the output y is equidistant to multiple points
on the path, then (14) is not well defined and neither is the relative degree. Under
these conditions, there exists a local coordinate transformation

T : U → R2N+3+δb+δs (19)

x 7→ (η1(x),L f η1(x),ξ 1
1 (x),L f ξ

1
1 (x), . . . ,ξ

p−1
1 (x),L f ξ

p−1
1 (x),ϕ(x)) (20)

= (η1,η2,ξ
1
1 ,ξ

1
2 , . . . ,ξ

p−1
1 ,ξ p−1

2 ,ζ ), (21)

which is a diffeomorphism onto its image for a suitable choice of the function
ϕ : R2N+3+δb+δs → R2N+3+δb+δs−2p [13] (which may limit the domain of T by
[13, Proposition 5.1.2], but in practice (see Sect. 5), these functions do not need
to be computed unless one wants to visualize the redundant dynamics or study their
stability properties). Note that since the virtual output η1 represents the tangential
position of the output y along the path, η2 represents the tangential velocity of the
output along the path. Similarly, since ξ

j
1 represents the transversal positions to the

path, ξ
j

2 represents the transversal velocities, j ∈ {1, . . . , p−1}. Note that there will
always be an internal state ζ , since by Assumption 2.1, N + δb + δs ≥ N + δm ≥ p
and δb +δs ∈ {2,3} always implies 2N+3+δb +δs−2p > 0, which is expected as
mobile manipulators are highly redundant systems.

The dynamics in the transformed coordinates are
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η̇1 = η2 ξ̇
j

1 = ξ
j

2
η̇2 = L2

f η1(x)+LgL f η1(x)u ξ̇
j

2 = L2
f ξ

j
1 (x)+LgL f ξ

j
1 (x)u

ζ̇ = L f ϕ(x)+Lgϕ(x)u =: fζ (x,u)
(22)

for j ∈ {1, . . . , p−1} and x = T−1(η ,ξ ,ζ ). The expressions for the Lie deriva-
tives can be found in [7]. Based on the virtual output construction (Sect. 4), the
η-subsystem represents the dynamics tangent to the path, and the ξ -subsystem rep-
resents the dynamics transversal to the path. Thus, the dynamics fζ represent the
dynamics of the system (12) that do not produce any output motion. These are the
redundant dynamics to path following. Next we perform standard partial feedback
linearization for non-square systems Let

α(x) :=
[
L2

f η1(x) L2
f ξ 1

1 (x) . . . L2
f ξ

p−1
1 (x)

]>
∈ Rp (23)

β (x) :=


LgL f η1(x)
LgL f ξ 1

1 (x)
...

LgL f ξ
p−1
1 (x)

 ∈ Rp×(N+δb+δs) (24)

where the terms in β (x) are

LgL f η1(x) = e1(λ
∗)>

∂H(xc)

∂xc

∂Fc(x)
∂xv

Gv(xc) (25)

LgL f ξ
j−1

1 (x) = e j(λ
∗)>

∂H(xc)

∂xc

∂Fc(x)
∂xv

Gv(x)+

(H(xc)−σ(λ ∗))>e′j(λ
∗)

LgL f η1(x)
‖σ ′(λ ∗)‖

(26)

for j ∈ {2, . . . , p} and λ ∗ = ϖ ◦H(xc) [7]. The decoupling matrix β (x) has full row
rank p in the set U (see (18)) since each ei are orthogonal by FSF construction, thus
in U the virtual output has a well-defined relative degree [13].

Remark 1. A necessary condition for β (x) to have rank p is that each matrix ∂H
∂xc

, ∂Fc
∂xv

and Gv(x) have rank of at least p. The matrix ∂H(xc)
∂xc

has the form

∂H(xc)

∂xc
=

[[
R(θ)1:2,1:2 02×(P−2)
0(p−2)×2 I(p−2)×(P−2)

]
J(q)

I2×2
0(p−2)×2

[
R′(θ)1:2,1:2 02×(P−2)
0(p−2)×2 0(p−2)×(P−2)

]
h(q)

]
(27)

and always has rank of at least 2 due to the ground vehicle (thus is always full rank
if p = 2). For p > 2, it has full rank if J(q) is non-singular.

The matrix ∂Fc(x)
∂xv

has the form
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∂Fc

∂xv
=

[
IN×N 0N×δb

0N×δs

03×N R(θ)Σ(σ) R(θ) ∂Σ(σ)
∂σ

]
, (28)

thus N +3 ≥ rank( ∂Fc
∂xv

) ≥ N +δb ≥ p (by Assumption 2.1) and will depend on the

particular ground vehicle. For a unicycle (Sect. 5), for all x, rank( ∂Fc(x)
∂xv

) = N+δb =

N +2. The matrix Gv(x) (see (9)) always has full rank of N +δb +δs ≥ p. �

Next, introduce an auxiliary input v := (vη ,vξ ) ∈ R×Rp−1 such that

v = β (x)u+α(x). (29)

The dynamics (22) then become

ζ̇ = fζ (x,u) η̇1 = η2 ξ̇
j

1 = ξ
j

2
η̇2 = vη ξ̇

j
2 = vξ j

where j ∈ {1, . . . , p−1} and x = T−1(η ,ξ ,ζ ).
In the set U the ξ -subsystem is linear and controllable, and can be stabilized

to ensure attractiveness and invariance of the path P [11], thereby satisfying PF1.
The η-subsystem is also linear and controllable, thus a tangential controller can
be designed for vη to track a desired tangential position or velocity profile η ref(t),
thereby satisfying PF2. Fig. 2 shows a block diagram of the entire control system.

Redundancy Resolution: Once the auxiliary control signal v ∈ Rp is generated
to stabilize the η and ξ -subsystems for PF1 and PF2, the feedback transformation
(29) must be solved to generate the actual control signal u ∈ RN+δb+δs . When N +
δb +δs = p, there is a unique solution to (29), and one must ensure that the internal
dynamics ζ̇ = fζ (x,u) remain bounded.

For most mobile manipulator systems (see Sect. 5 for an example), N+δb+δs >
p. Thus there is some freedom in the choice of the control input u under the feedback
transform (29). This freedom can be used to enforce boundedness of the internal
dynamics. We apply the approach from [9] to mobile manipulator systems. Consider
the static optimization

min
u

(u− r(x))>W (u− r(x)) (30)

s.t. v = β (x)u+α(x)

This is a static minimization of a quadratic function of u under a linear constraint,
for which a closed form solution for u can be found using Lagrange multipliers.
One might be tempted to use inequality constraint over x to respect joint limits, but
it is unclear how to do so since we are optimizing over the control effort u and x is
treated as a parameter. The matrix W ∈ R(N+δb+δs)×(N+δb+δs) is a positive-definite
weighting matrix, and the function r : RN+3→ RN+δb+δs is used to bias the control
input u to achieve desired behaviour in the internal dynamics. For example, if W
is the identity matrix and r(x) is the zero function, then we are minimizing control
effort while achieving PF1 and PF2.



Path Following for Mobile Manipulators 11

In this application, we want to bias u such that the manipulator stays away from
joint and actuation limits (PF3). If a joint qi, i ∈ {1, ...,N} of the manipulator is at
its minimum limit qmin

i , setting the control effort ui, i ∈ {1, ...,N} (i.e., um) corre-
sponding to this joint to be the maximum control effort umax

i will likely increase the
value of the joint, thereby pushing it away from the negative joint limit. These joint
limits can be set artificially to bias the manipulator in a preferred position (so as to
avoid singular configurations of J(q), see Remark 1) or set to their true joint limit
values. For ui, i ∈ {N +1, . . . ,N +δb +δs} (i.e., ub,γs) we’d like to minimize the
control effort so that the mobile base moves as little as possible (however if there
are steering limits on σ , a similar logic used for joint limits on a manipulator can be
applied). The corresponding r function to achieve this behaviour in (30) is

r(x)i :=−
umax

i −umin
i

qmax
i −qmin

i
(qi−qmin

i )+umax
i , i ∈ {1, ...,N} (31)

r(x)i := 0, i ∈ {N +1,N +δb +δs} (32)

Using Lagrangian multipliers, the solution to (30) is

u = β
†(x)(v−α(x))+

(
In×n−β

†(x)β (x)
)

r(x) (33)

where β †(x) :=W−1β (x)>
(
β (x)W−1β (x)>

)−1.
In [9, Conjecture 3.5], we showed via examples and experiments on manipula-

tors that a similar control law (33) seems to provide boundedness of the internal
dynamics while maintaining joint limits of a manipulator when each degree of free-
dom has inherent viscous friction. In this paper, for mobile manipulator systems,
boundedness of internal dynamics and maintaining joint limits of the manipulator
holds when ρ < 0 in the dynamic extension (8) (PF3). If ρ = 0, PF1 and PF2 can
still be achieved, but the internal dynamics change and at least one of the base po-
sition states (xb,θ ) may become unbounded, see Ex. 1. The reason is ub controls
the mobile base acceleration through (8). So although (31) is chosen such that base
acceleration is minimized, ideally keeping ub = 0, then the base velocities remain
at a some constant, not necessarily zero, value, resulting in base states (namely θ )
that continuously grow. Thus, ρ < 0 is used to dampen these dynamics. The same
doesn’t happen for the steering dynamics of σ since the steering dynamics are gov-
erned by a single integrator. So γs is minimized, ideally 0 when possible, implies the
steering position is constant when possible, thus remaining bounded.

Example 1 (Internal Dynamics). Consider the mobile manipulator system of Sec. 5.
In this system and in most systems, umax

i = −umin
i for use in (31). The joint limits

are set to their true values except for the waist joint q1 where qmin
1 := 0◦,qmax

1 := 20◦.
Thus the optimal control effort for the waist r(x)1 = 0 when q1 = 10◦, so that the
desired position of the waist is 10◦, that is, the manipulator should face to the right
of the vehicle (or the vehicle is to stay towards the left of the desired path). The path
is shown in Fig. 4, and η ref

2 = 100mm/sec. Two simulation results are included that
show PF1 and PF2 are achieved, and there is automatic coordination between the
manipulator and the mobile base. When ρ = 0, PF3 is not achieved as the yaw state
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θ of the mobile base continuously increases and the vehicle orbits the end-effector
as the end-effector follows the path.

When ρ < 0, PF3 is achieved as discussed above. At the very start of the run, the
base automatically orients itself by rotating, travels backwards until the end-effector
is at its preferred position while the end effector is on the path P , then proceeds
forward as it achieves PF2. Note that the initial position of the base could have been
placed further away from the path, and the same controller will automatically move
the base to a neighbourhood of the path. Further notice the controller automatically
speeds up the mobile base when the end-effector is traversing the higher curvature
areas of the path in order to maintain the desired constant tangential velocity profile.
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Fig. 4 Example 1: Simulation of ρ = 0 (left) and ρ = −10 (right). When ρ = 0, the mobile base
orbits the output position y = H(xc(t)) such that it maintains the preferred position and is on the
desired path P . Each snapshot of the mobile base is taken every 1.5 seconds.

Remark 2. The weighting matrix W plays an important role to ensure the joint limits
are satisfied. If the associated weights for the manipulator joint actuation are too low,
the controller may not move the mobile base at all before the manipulator reaches
a singular configuration. If the weights are high enough, then the controller will
increase control effort to the base so that the base moves while the manipulator
satisfies its joint limits. �

5 Experiment

System Model: The mobile manipulator system is a platform designed by Clearpath
Robotics (see Fig. 5). The manipulator is a 4-degree-of-freedom system. The com-
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plete modelling procedure can be found in [8], yields the dynamics of the manipu-
lator in form (1) with N = 4 and um representing the vector of control input voltages
to the motors. The mobile platform runs a low level control loop that controls the
vehicle’s heading rate and tangential velocity. The vehicle has no steering wheels.
Thus, for this system δs = 0 and δb = 2 and the general kinematic model (3) reduces
to the standard unicycle equations [5]

ẋb
1 = γb1 cos(θ) (34)

ẋb
2 = γb1 sin(θ) (35)

θ̇ = γb2 (36)

The output space is taken to be the 3-dimensional Euclidian space, that is p = 3.
Path Following Controller: The desired path is generated by spline-interpolating

3-dimensional waypoints using quintic polynomials [6]. The control design ap-
proach then follows from Sec. 4. For this mobile manipulator system, significant
modelling uncertainties arise due to inaccurate manipulator modelling [8] and the
assumption of a perfect kinematic model of the mobile base, as well as ignoring
the coupling dynamics between the two. This results in imperfect cancellation of
the actual system dynamics using (23),(24). The Lyapunov redesign based robust
controller in [8, Eq. (27)] is used to overcome the modelling uncertainties, thereby
achieving PF1.

The η-subsystem is also linear and controllable, thus a tangential controller can
be designed for vη to track some desired tangential position or velocity profile
η ref(t). Our goal is to track a desired constant velocity profile η ref

2 . This can be done
using a PI controller [8, Eq. (24)] where the integral action is used for robustness,
thereby achieving PF2. Fig. 2 has the complete block diagram.

The manipulator has a Labview Real-Time Module® which is used to read the
linear actuator distances using optical encoders and to control the motor PWM am-
plifiers. The encoder readings are converted to joint angles q and numerically differ-
entiated to approximate q̇. This module communicates with ROS via the Rosbridge
package. The Husky is a ROS-enabled robot which takes in γb to control the robot,
and gives out (xb,θ) data based on a sensor fusion of wheel odometry and an on-
board IMU. The path following controller is implemented using MATLAB Robotics
System Toolbox.

Results: The joint limits in (31) are set so that in Fig. 6, the waist of the ma-
nipulator prefers 90◦ (the manipulator is ahead of the vehicle), and again in another
run in Fig. 10, so that the waist prefers 160◦ (the manipulator is to the left of the
vehicle). In all cases, η ref

2 = 100mm.
As shown in the 3D and 2D plots, the proposed path following controller success-

fully satisfies the goals PF1 and PF3. The output y automatically goes towards the
closest point on the path P due to the coordinate transformation employed. A key
advantage of the proposed approach is the automatic coordination of the manipula-
tor and mobile base. Based on the preferred position of the manipulator via (31), the
mobile base automatically orients itself. In the second lap of the path (indicated in
magenta), the mobile base actually moves backwards until xb ≈ (−1000,500)mm,
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at which point the base turns and moves forward in order to keep the manipulator
at its preferred position and to traverse the path at the desired rate η ref

2 , without any
explicit trajectory planning and tracking for the mobile base.

Fig. 5 Clearpath manipulator mounted on a
Clearpath A200 mobile platform.
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Fig. 6 Experiment 3D response – preferred q1 =
90◦.

We see that in the state trajectory (Fig. 8), the manipulator positions q quickly
converge to their preferred positions when possible, in particular, the waist q1 ap-
proaches 90◦. The virtual output trajectories can be found in Fig. 9 and show that the
system is traversing the path at a constant (desired) rate (PF2), while the transversal
errors quickly approach 0 resulting in convergence to the desired path P (PF1). At
steady state, the cross-track errors are less than ≈ 15mm.

When the preferred waist position is adjusted, the mobile base automatically
takes another route for the same desired path P . In Fig. 10, it can be seen that
the mobile base tries to stay to the right of the path in order to respect the artificial
preferred position of the waist of the manipulator. Note that at the high curvature
areas, the mobile base speeds up significantly (apparent by the decreased density of
the mobile base snapshots) in order to respect PF2.

6 Conclusions and Future Work

This paper proposes a unified path following controller for mobile manipulator sys-
tems. The controller automatically moves the mobile base and the manipulator such
that the end-effector traverses a path in the output space towards a given desired
position or with a given velocity profile. There is no explicit trajectory required for
the mobile base or the end-effector to follow. The desired path is rendered invariant
and attractive, and the redundancy resolution scheme employed allows for the ma-
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Fig. 8 Preferred q1 = 90◦. State position xc tra-
jectories.

Fig. 9 Preferred q1 = 90◦. Virtual output trajec-
tories. Notice from η1 just over 2 laps are com-
pleted.
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Fig. 10 Experiment response, top view – pre-
ferred q1 = 160◦. Each snapshot of the mobile
base is taken every 4 seconds.

nipulator to stay away from joint limits. Dynamic extension with damping was used
so that the virtual output employed for path following has a full relative degree and
to ensure boundedness of the internal dynamics.

Dynamically changing the r function in (31) for real-time obstacle avoidance is
a direction for future work. Analyzing when the virtual output constructed in the
mobile manipulator path following controller loses full relative degree (that is when
(24) loses rank) is another direction for future work. This will help determine which
configurations of the mobile manipulator with respect to the path should be avoided.
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