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Abstract

Fully homomorphic encryption (FHE) has been regarded as the “holy grail” of cryp-
tography for its versatility as a cryptographic primitive and wide range of potential appli-
cations. Since Gentry published the first theoretically feasible FHE design in 2008, there
has been a lot of new discoveries and inventions in this particular field. New schemes
significantly reduce the computational cost of FHE and make practical deployment within
reach. As a result, FHE schemes have come off the paper and been explored and tested
extensively in practice. However, FHE is made possible with many new problems and
assumptions that are not yet well studied. In this thesis we present a comprehensive and
intuitive overview of the current applied FHE landscape, from design to implementation,
and draw attention to potential vulnerabilities both in theory and in practice. In more
detail, we show how to use currently available FHE libraries for aggregation and select
parameters to avoid weak FHE instances.
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Chapter 1

Introduction

1.1 A Brief History of (Fully) Homomorphic Encryp-

tion

“Privacy homomorphism”, antecedent of the modern notion of fully homomorphic encryp-
tion (FHE), was proposed in 1978 by Rivest et al. [88], only one year after their publication
of RSA, one of the first public-key cryptosystems. Rather than providing a solution, Rivest
et al. posed a question on how to resolve the conflict between user privacy and data and
computation delegation demands. They envisioned such an encryption scheme that makes
computation possible directly on its ciphertexts. At the time of its proposal, they might
not have foreseen that it took nearly three decades for this idea to manifest its feasibility
and that its applications extend so far beyond cloud computing that it is often treated as
a powerful cryptographic primitive.

Many existing public-key cryptosystems already have certain homomorphic properties.
For example, the RSA cryptosystem [89] is multiplicatively homomorphic because (x1 ·
x2)

e = xe1 · xe2; similarly, the ElGamal cryptosystem [47] is multiplicatively homomorphic;
and the Goldwasser-Micali cryptosystem [57] is homomorphic with respect to exclusive-or.
There are even schemes that support both modular addition and multiplication, as long
as the number of operations is below a predetermined threshold. However, none of them
is fully homomorphic, supporting the computation of arbitrary functions on ciphertexts.

The search for an FHE scheme persisted until Gentry’s breakthrough in 2009 [51].
Gentry’s design appears to have taken a circuitous route. He starts from a somewhat
homomorphic encryption scheme – namely, one that can only support functions of limited

1



m0,m1 c0, c1

f(m0,m1) Evalf (c0, c1)

Encpk

Evalf

Decsk

f

Figure 1.1: A paradigm of homomorphic encryption illustrated with a bivariate func-
tion f over plaintexts, and Evalf is a function performed over ciphertexts, defined by
Eval(pk, f, c0, c1).

complexity; he bases his scheme on ideal lattices, since they are essentially polynomial
rings, and addition and multiplication – two operations sufficient for the construction of
any functions – are inherently to polynomial rings; finally, he expresses the operations
with circuit language – in fact, if implemented in binary, the operations are indeed XOR
(addition) and AND (multiplication) gates.

Gentry’s major innovation that makes FHE possible is the so-called “bootstrapping”
process, which he describes as the homomorphic evaluation of the scheme’s own decryption
function. Further details of bootstrapping is discussed in Section 3.3.

Since Gentry’s design, there have been many new and more efficient FHE schemes, par-
ticularly based on Learning with Errors (LWE) and Ring-LWE. However, all known FHE
schemes follow the same approach of using noise to achieve security, letting noise accumu-
late through operations, and bootstrapping to remove excessive noise so that computation
can continue indefinitely. Even designing FHE schemes with similar techniques may still
be a tricky problem, as the failure of BL scheme [24], which tries to adapt Gentry’s design
to code-based schemes, shows.

Vaikuntanathan classfies the development of homomorphic encryption schemes into four
generations [95], with Gentry’s design as the first one.

The first notable second-generation FHE scheme is BGV [25]. Based on Ring-LWE,
the BGV scheme is much easier to understand and implement. Its efficiency is also a
significant improvement over Gentry’s initial design, both theoretically and practically. It
incorporates some novel techniques such as modulus switching, which slows down the noise
built-up, and key switching, which allows the change of secret key without decryption and
can be utilized to facilitate multi-party computation. Many later schemes were developed

2



with the same techniques. The BGV scheme is implemented in the open-source library,
HElib [60]. Since its publication, it has been widely used, tested, and actively maintained.

Another second-generation FHE scheme with efficiency comparable to BGV is FHEW,
designed by Ducas et al. [44]. Different from typical schemes, FHEW supports NAND gates
and NAND gates only (NAND gate itself forms a universal set, meaning any combinatorial
circuits can be redesigned into an equivalent one with only NAND gates). A single NAND
operation is extremely efficient in FHEW, but a bootstrapping step has to follow each of
them and thus putting its efficiency into the same level as BGV.

There is no clear cut between the second- and third-generation FHE schemes, but
improvements are constantly made to their efficiency. For example, Fan and Vercauteren
developed the FV scheme that is similar to but faster than BGV, and the test of its practical
use is also in progress – an implementation, SEAL, of a slightly modified FV scheme was
brought out by a Microsoft Research group [32]. Their earlier versions implemented YASHE
(Yet Another Somewhat Homomorphic Encryption) scheme is another example with better
efficiency, and it is designed based on NTRU.

There are also faster FHE schemes built upon the idea of FHEW. For example, Biasse
and Ruiz relaxed the parameter and gate restrictions of original FHEW [19]; Chillotti et
al. reduced the bootstrapping time by over 90% through the use of a different algebraic
structure [38, 39]; Gao et al. further reduced its storage and communication overhead [50,
30].

Recently, with its optimization of homomorphic encryption on real numbers, the CKKS
scheme [37], considered as the fourth generation of FHE, finds popularity in the applications
of machine learning [66, 80].

1.2 Applications of Homomorphic Encryption

Applications of homomorphic encryption are plentiful. As Rivest pointed out, homomor-
phic encryption can lead to secure cloud computing—cloud servers are able to compute on
ciphertexts without decrypting them, and therefore the computation can be done without
leaking the knowledge about data or results. Apart from that, since such privacy-preserving
computation is closely related to cryptographic notions such as zero-knowledge proof, many
such primitives can be constructed from homomorphic encryption schemes.

Note that the original FHE with only one set of keys is insufficient for multi-party
computation (MPC). Hence a new notion of multi-key FHE was created [78, 43]. A repre-
sentative of such schemes, LTV, is described in Section 4.1.3.
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Specific discussions of applying FHE to practical scenarios mainly involve MPC and
privacy-preserving data mining/machine learning. While MPC protocols with FHE are
mostly general, data-mining and machine-learning algorithms must be specially optimized
according to the selected scheme. Examples of the former include [78, 43, 14], and the
latter [66, 80, 42, 64]. Recent efforts pushing FHE into practice from the academic soci-
ety and industrial practitioners have resulted in the process of homomorphic encryption
standardization [9].

1.3 Organization

This thesis is organized as follows. Chapter 2 provides necessary mathematical foundations
for the discussion of FHE througout the whole thesis. Chapter 3 lays out the general
framework that every FHE design has followed. Chapter 4 explores some major schemes
in depth. Chapter 5 provides latest development of FHE in practice. Our contribution are
Chapters 6 and 7. Finally, Chapter 8 concludes the thesis and provide some outlook on
the future.

4



Chapter 2

Preliminary

Lattice-based cryptography has gained much popularity in recent years. On one hand,
it has proven to be useful in the construction of new cryptographic tools, in particular,
quantum attack resistant cryptosystems and homomorphic encryption schemes. On the
other hand, cryptanalysis based on lattice theory is very effective on some encryption
schemes, even though they may not be originally described in lattice language (see, for
example, lattice attacks against RSA [75]).

Lattice problems are also deeply connected with coding problems. They are similar
in mathematical descriptions and properties (e.g., quantum resistance). The reduction of
learning with errors problem further reveals their close relationship in hardness.

2.1 (Integer) Lattices

In cryptography, a lattice refers to a discrete additive subgroup of a Euclidean space.

Definition 1 (Lattice). Let B = {v0,v1, . . . ,vk−1 | vi ∈ Rn, 0 ≤ i ≤ k − 1 } be a set of k
linearly independent vectors, then

Λ(B) =

{
k−1∑
i=0

aivi

∣∣∣∣∣ ai ∈ Z, 0 ≤ i ≤ k − 1

}
(2.1)

is called the lattice generated by basis B. The dimension of Λ(B) is n, and the rank of
Λ(B) is k.

5



We usually consider full-rank lattices, where k = n in the above definition.

Viewing lattice Λ(B) as an additive subgroup of Rn, we can consider the quotient group
Rn/Λ(B). It is called a fundamental parallelepiped of the lattice; its volume is an invariant
of the lattice regardless of the basis and will play an important role in the hardness of lattice
problems of our interest.

Definition 2 (Fundamental parallelepiped). Given a basis B = {v0,v1, . . . ,vk−1 } of a
lattice Λ, then

F(Λ) =

{
k−1∑
i=0

bivi

∣∣∣∣∣ bi ∈ [0, 1), 0 ≤ i ≤ k − 1

}
(2.2)

is called the fundamental parallelepiped of Λ with respect to B. The volume of F(Λ) is
called the determinant of Λ and denoted det(Λ).

2.1.1 Successive Minima

Associated with a lot of lattice problems and defining their difficulties are the successive
minima of lattices, in particular, the first one, λ1(Λ) – it is so frequently used that the
subscript is often dropped and its notation written just λ(Λ).

Definition 3 (Successive Minima). Given a lattice Λ with basis B = {v0,v1, . . . ,vk−1 },
λi(Λ) is defined as the length of the shortest vector(s) in Λ such that Λ-vectors no longer
than λi(Λ) span an i-dimensional sublattice:

λi(Λ) = inf { r | dim(span(Λ ∩B(0, r))) ≥ i } ,

where B(0, r) is the closed ball of radius r centered at 0.

In particular, λ1(Λ) equals to the length of the shortest nonzero vector(s) in Λ:

λ1(Λ) = min { ‖v‖ | v ∈ Λ,v 6= 0 } .

Apparently, 0 < λ1(Λ) ≤ λ2(Λ) ≤ · · · ≤ λn(Λ) in any lattice Λ of rank n.

Bounds of successive minima are given in two Minkowski theorems.

Theorem 2.1.1 (Minkowski’s First Theorem). For a full-rank lattice Λ with rank n,

λ1(Λ) ≤
√
n (det(Λ))1/n

Theorem 2.1.2 (Minkowski’s Second Theorem). For a full-rank lattice Λ with rank n,(
n∏
i=1

λi(Λ)

)1/n

≤
√
n (det(Λ))1/n

6



2.2 Ideal Lattices

Ideal lattices are a special type of lattices with extra algebraic structures. The additional
structure usually results in a much more efficient scheme with smaller expansions, but it
can also introduce new vulnerabilities.

An ideal lattice is obtained by mapping the elements of an ideal to Rn by an additive
homomorphism. Naturally, not every ring can facilitate such a mapping. Since we are also
mostly concerned with integers and polynomials, the structure of our interest is the ring of
integers in an algebraic number field. Details of the theory about algebraic number fields
and ring of integers can be found on any standard algebraic number theory textbook, for
example, [45]. Here we briefly review definitions and results directly pertaining to ideal
lattices.

A complex number ω ∈ C is called algerbraic if it is a root of some p(x) ∈ Q[x]. The
minimal polynomial of ω is the monic rational polynomial m(x) ∈ Q[x] with the lowest
possible degree.

Definition 4 ((Algebraic) number field). Let ω ∈ C be algebraic, then

K = Q[ω] = { a+ bω | a, b ∈ Q }

is an (algebraic) number field.

K is a field, Q ⊂ K ( C. If m(x) ∈ Q[x] is the minimal polynomial of ω, then

K ∼= Q[x]/(m(x)).

All the elements in a number field K are algebraic numbers, which have minimal poly-
nomials with rational coefficients; if an algebraic number has integer-coefficient minimal
polynomial, then it is called an algebraic integer. All the algebraic integers of K form its
ring of integers.

Definition 5 (Ring of integers). The ring of integers OK of a number field K is the set

OK =

{
α ∈ K

∣∣∣∣ there exist c0, c1, . . . , cn−1 ∈ Z such that

αn +
∑n−1

i=0 ciα
i = 0

}
.

7



2.2.1 Number Fields and Rings of Integers

Due to the precision limit of computers, lattice problems used in cryptography are usually
defined over a finite ring consisting of either integers or integer-coefficient polynomials.

Polynomial rings are of particular interest in the design of LWE-type encryption schemes
because they are associated with ideal lattices, which is often used to shorten the lengths
of the key and ciphertext and improve the efficiency of LWE-based schemes [91]. Ideal
lattices will be discussed in Section 2.2. Such improvement usually involves the use of
Chinese Remainder Theorem (CRT).

Basic Concepts of Ring Theory

Rings are a type of algebraic structures modelled after integers.

Definition 6 (Ring). A ring is a set R with two binary operations + and · that satisfies
the following properties:

1. Additive subgroup: (R,+) is an abelian group; the additive identity is usually de-
noted 0;

2. Multiplication: (R, ·) satisfies all group axioms except invertibility; the multiplicative
identity is usually denoted 1;

3. Distributive property: for any a, b, c ∈ R,

a · (b+ c) = (a · b) + (a · c). (2.3)

The operations + and · are generalized from addition and multiplication of integers,
and we will call them so for simplicity. Note that since (R, ·) is not required to satisfy
invertibility property, elements in R, except 1, may not have inverses. A ring where all
elements except 0 are multiplicatively invertible is called a field. Henceforth when we call a
structure a ring, it always contains at least one element other than 0 that is not invertible.
We also restrict our scope to commutative rings, i.e., in addition to the above properties,
multiplication is also commutative, since there has not been non-commutative rings in such
applications.

Although (R, ·) is not a group, there are still interesting substructures pertaining to
multiplication. One of such structures is ideals, which are derived from products and
factors in integers.

8



Definition 7 (Ideal). An ideal of ring R is a subset I such that

1. Closure on addition: (I,+) is a group;

2. Absorption on multiplication: for any element a ∈ R and binI, ab ∈ I.

Some ideals are generated by a single element. They are called principal ideals. For
example, (a) = aR = { ab | b ∈ R } is a principal ideal of R generated by a.

We can add or multiply ideals by adding or multiplying their elements. For any two
ideals I, J ⊂ R,

I + J = { a+ b | a ∈ I, b ∈ J } ,
IJ = { ab | a ∈ I, b ∈ J } .

The results of ideal addition and multiplication are still ideals in the same ring. If an ideal
I ⊂ R cannot be written as the product of two ideals not involving itself, then it is a prime
ideal.

Definition 8 (Prime ideal). A proper ideal P ( R is prime if for any elements a, b ∈ R,
their product ab falling in P implies that at least one of a and b is in P .

We can rephrase some properties of the multiplication of integers with the language
of ideals. Each integer a can be seen as a principal ideal (a) generated by itself; the
multiplication between two integers a, b are then equivalent to the ideal multiplication of
(a) and (b); therefore, a number p > 0 is prime if and only if (p) is a prime ideal in Z. Note
that (0) is a prime ideal but 0 is not a prime; (1) = R cannot be decomposed, but it is
not a proper ideal in R and hence not a prime ideal. There is a one-to-one correspondence
between prime numbers and maximal ideals in Z. A maximal ideal M ⊂ R is defined as
having no other ideals between R and itself.

Definition 9 (Maximal ideal). If M ⊂ I ⊂ R and I is an ideal in R, then either I = M
or I = R.

An ideal I ⊂ R can induce a quotient ring R/I, which consists of the cosets of I.
Operations in the quotient ring R/I are then operations on R modulo I. Quotient rings
of the form R[x]/(f(x), n) are often used as plaintext and ciphertext spaces in encryption
schemes involving rings because of multiple benefits: the ideal (f(x), n) can induce a finite
set, which makes implementation more convenient; the operations are still easy to define
and compute; and performance can usually be improved with the decomposition of such
rings.

9



Chinese Remainder Theorem on Integers Modulo n

Theorem 2.2.1 (CRT on integers modulo n). If n = pq, where 1 < p, q, and p is coprime
with q, then Zn can be decomposed as

Zn ∼= Zp × Zq.

This decomposition is an isomorphism ψ : Zn → Zp × Zq, and there are efficient
algorithms (Euclidean algorithms) to compute the mappings ψ and ψ−1. The implication
is that, for a, b ∈ Zn, we can find (ap, aq), (bp, bq) ∈ Zp × Zq and have

ψ(a+ b) = ψ(a) + ψ(b),

ψ(a · b) = ψ(a) · ψ(b),

and vice versa. Such decomposition has a lot of applications in cryptography, among
which are the RSA and Rabin cryptosystems. Since a typical n is large, operations on
Zn are usually more costly to perform than those on Zp, Zq, and the conversion overhead
combined. Therefore, we can speed up the computation on Zn by taking the decomposition
and perform the operations on Zp and Zq instead.

Note that it is not required that either p or q is a prime in CRT, and the decomposition
can certainly be generalized to the product of more than two factors by using the theorem
repeatedly.

Chinese Remainder Theorem on Polynomial Rings

For any ring R, we can construct a polynomial ring R[x]. R[x] consists all the formal sums

a0 + a1x+ a2x
2 + · · ·+ anx

n,

where n ≥ 0 and ai ∈ R. Operations on R[x] are polynomial addition and multiplication.

We have CRT on polynomial rings similar to that on integers.

Theorem 2.2.2 (CRT on polynomial rings). Let f(x), g(x), and h(x) be polynomials over
R. If f(x) = g(x)h(x), where both g(x) and h(x) have degree > 0, and g(x) and h(x) are
coprime with each other, then

R/(f(x)) ∼= R/(g(x))×R/(h(x)).
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Likewise, there is an isomorphism ψ : R/(f(x)) → R/(g(x)) × R/(h(x)) that can be
efficiently computed.

Both the integer and polynomial ring CRTs above involve only principal ideals. This is
sufficient for integers, since all ideals in Z are principal; but polynomial rings can contain
non-principal ideals, for example, (2, x) ⊂ Z[x] cannot be generated by any single element.
In that case, we need to generalize the theorem with ideals.

Coprime integers or polynomials correspond with comaximal ideals. Two ideals I, J ⊂
R are comaximal if I + J = R. If I and J are comaximal, then IJ = I ∩ J .

The theorem can then be written as follows.

Theorem 2.2.3 (CRT on polynomial rings). Let I, J be comaximal ideals in R, then

R/(IJ) ∼= R/I ×R/J.

Chinese Remainder Theorem on Dedekind Domains

The most generalized form of CRT used throughout this thesis is over Dedekind domains.
We briefly introduce some definitions here in order to properly define a Dedekind domain,
but in practice we always use rings associated with number fields, and the ring of integers
of any number field is a Dedekind domain, guaranteed by Theorem 2.2.4, therefore the
properties always apply. Further expositions on these subjects can be found on many
algebra textbooks, such as [45].

A module can be seen as a generalization of vector spaces. A vector space is based on
a field, while a module is based on a ring.

Definition 10 (R-module). Let R be a commutative ring with identity 1. An R-module is
an abelian group (M,+) with an action R×M →M denoted by rm, for all r ∈ R (scalar
multiplication), which satisfies

1. (r + s)m = rm+ sm, for all r, s ∈ R,m ∈M ;

2. (rs)m = r(sm), for all r, s ∈ R,m ∈M ;

3. r(m+ n) = rm+ rn, for all r ∈ R,m, n ∈M ; and

4. 1m = m, for all m ∈M .
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Definition 11 (Noetherian ring). A Noetherian ring R is a ring whose every ascending
chain of ideals is finite, i.e., for any chain of ideals

I1 ⊂ I2 ⊂ · · · ⊂ R,

there is a positive integer N such that for every k ≥ N , Ik = IN .

Definition 12 (Noetherian module). Let R be a Noetherian ring. A finitely generated
R-module M is a Noetherian module, i.e.,

M = R[α1, . . . , αn]

for a finite integer n.

Noetherian modules are analogous to vector spaces of finite dimensions.

Definition 13 (Integral domain). An integral domain D is a commutative ring with iden-
tity 1 and no zero divisors, i.e., if ab = 0 ∈ R, then either a = 0 or b = 0.

Definition 14 (Integral closure). An integral domain D is integrally closed if{
α =

a

b
: a, b ∈ D

∣∣∣∣ there exist c0, c1, . . . , cn−1 ∈ D such that

αn +
∑n−1

i=0 ciα
i = 0.

}
= D.

Definition 15 (Dedekind domain). A Dedekind domain D is an integral domain that
satisfies all of the following conditions:

1. D is Noetherian;

2. D is integrally closed; and

3. Every prime ideal in D is maximal.

Theorem 2.2.4. The ring of integers, OK, of a number field K is a Dedekind domain. [82,
Chapter 1, Theorem 3.1].

Theorem 2.2.5 (CRT on Dedekind domains). Let I, J be comaximal ideals of Dedekind
domain D, then

D/(IJ) ∼= D/(I)×D/(J)

12



2.2.2 Ideal Lattices

Definition 16 (Ideal lattice). Let K be an number field and R its ring of integers. Let
I ⊂ R be an ideal. Let σ be an additive homomorphism

σ : K → Rn,

then σ(I) ⊂ Rn is an ideal lattice.

Note that Definition 16 is general. A ring of integers is not necessarily monogenic –
namely, it may not be of the form Z[x]/(f(x)). In that case, we usually resort to using a
subring that is monogenic to simplify the handling of elements; however, the properties of
the corresponding number field and mappings still hold. Many newer scheme designs use
cyclotomic fields for enhanced performance; their ring of integers are always monogenic [82,
Chapter 1, Proposition 10.2].

For every problem on a general lattice, we can define its counterpart on an ideal lattice.
For example,

Definition 17 (Ideal-SVP). Given I, an ideal of the ring of integers of a number field
K, and σ, an additive homomophism from K to Rn, the ideal-SVP problem is to find an
a 6= 0 ∈ I with the smallest ‖σ(a)‖.

Embeddings of Ideal Lattices

In Definition 16 of ideal lattices, the only restriction on the mapping σ is that it must be
an additive homomorphism. Such a mapping does not necessarily capture the multiplica-
tive structures of number fields. Therefore, some mappings better preserve the structures
and properties in an ideal lattice. This turns out to be an important factor in noise man-
agement in the context of homomorphic encryption, since noise is measured by the norm
defined over the lattice. Notably, two types of embeddings have been widely used and dis-
cussed: coefficient embeddings and canonical embeddings (the latter are called Minkowski
embeddings in some literature).

The ring R of consideration in homomorphic encryption is of the form Z[x]/(f(x)),
where deg(f) = n. Each element a in the ring can be written as a polynomial

a(x) = a0 + a1 + · · ·+ an−1x
n−1.

A coefficient embedding simply maps the polynomial a to a vector, [ a0, a1, . . . , an−1 ], of its
coefficients. An ideal lattice constructed with coefficient embeddings, therefore, has points
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whose coordinates are determined by the coefficients. In contrast, a canonical embedding
will use the evaluation of a(x) on each root of f(x). Assuming f(x) has r real roots,
α1, . . . , αr, and s complex roots, αr+1, . . . , αr+s, then we define the embedding σ as

σ(a) = [σ1(a), . . . , σr(a),Re(σr+1(a)), Im(σr+1(a)), . . . ,Re(σr+s(a)), Im(σr+s(a)) ] ,

where σi(a) = a(αi). One way to understand canonical embeddings is to view them as a
result of Chinese Remainder Theorem; alternatively, when f(x) is a cyclotomic polynomial,
the mapping σ is equivalent to a discrete Fourier transform.

Whenever convenient, canonical embeddings are preferred over coefficient embeddings
for two reasons. Firstly, polynomial multiplication is faster since there are O(n) number
multiplications, as opposed to O(n2) in naive implementation of a coefficient-embedding
multiplication, and without the need of reducing against f(x). Secondly, the original hard-
ness result for RLWE is based on sampling noise from a joint, n-dimensional Gaussian
distribution with diagonal covariate matrix on canonical embedding. Sampling from such
a distribution is equivalent to sampling from n independent univariate Gaussian distribu-
tions; changing from a canonical embedding to a coefficient embedding necessarily intro-
duces distortion of through a linear transformation [72]. However, canonical embeddings
of general polynomial rings can contain real numbers, which are not favoured in implemen-
tations due to precision and efficiency problems. As a result, many schemes restrict their
ciphertext and plaintext spaces to quotient rings generated by cyclotomic polynomials to
take advantage of their neat decompositions.

Prime Decomposition of Cyclotomic Rings

When the schemes are implemented on a computer, we often prefer embeddings that can
be represented by integers to those relying on real numbers (floating point) for the ease
of implementation and efficiency. Since the ring of integers OK of a number field K is
a Dedekind domain, by Chinese Remainder Theorem, there is an isomorphism between
the decomposition of the ideal (q) ⊂ OK , generated by a prime integer q ∈ Z, and the
decomposition of OK/qOK :

OK/qOK = OK/(q) ∼= OK/Ie11 × · · · × OK/Ienn ,

where I1, . . . , In are prime ideals and

(q) = Ie11 · · · Ienn .

Recall that prime ideals are maximal in OK , Ii’s are pairwise comaximal, and so are
their powers; therefore the application of Theorem 2.2.5 here is appropriate. Furthermore,
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the number and size of those quotient rings can be related to the degree of irreducible
factors of Φn(x) modulo q. As a result, Theorem 2.2.6 [85, Result 1.2.7] gives the prime
decompositions in cyclotomic fields. Similar results can be found in standard algebraic
number theory books (for example [82]). We shall see an application of result in the
parameter selection process of the open-source FHE package “HElib” for an optimized
performance.

Theorem 2.2.6. Let p be a prime in Z and Φn(x) be the n-th cyclotomic polynomial. ζn
is a primitive n-th root of unity in C. Write n = pen′ with gcd(n′, p) = 1, then the prime
ideal decomposition of (p) over Q(ζn) is

(p) = (I1 · · · Ik)ϕ(p
e),

where I1, . . . , Ik are distinct prime ideals and k = ϕ(n′)/ordn′(p). If t is an integer not
divisible by p and t ≡ ps (mod n′) for some integer s, then the field automorphism ζn 7→ ζtn
fixes the ideals Ii.

2.3 Hard Problems from Lattices and Rings

2.3.1 Lattice Problems

Lattice problems in cryptography are usually variants of Shortest Vector Problem (SVP)
and Closest Vector Problem (CVP). Both SVP and CVP over general lattices are NP-
hard [16, 2], but for some variants, the exact computational complexity remains an open
problem.

To describe the problems, we need a measurement of the length of vectors. By con-
vention, we use Euclidean norm (l2 norm) ‖·‖2, unless otherwise specified. For a vector
a = [ a0, a1, . . . , an−1 ], its Euclidean norm is

‖a‖2 =

√√√√n−1∑
i=0

a2i .

Definition 18 (SVP). Given a basis B = {v0,v1, . . . ,vk−1 }, the SVP problem is to find
the shortest nonzero vector in the lattice Λ(B), whose length is λ(Λ), i.e.,

arg min
06=w∈L(B)

‖w‖ (2.4)
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Definition 19 (CVP). Given a basis B = {v0,v1, . . . ,vk−1 } and a vector u ∈ Rn, the
CVP problem is to find a vector w ∈ Λ(B) with the shortest distance to u, i.e.,

arg min
w∈L(B)

‖u−w‖ (2.5)

Both SVP and CVP have approximation versions (apprSVPδ and apprCVPδ) and gap
versions (GapSVPβ and GapCVPβ). Here δ = δ(k) and β = β(k) are fixed functions of k,
the dimension of the lattice in a problem instance.

2.4 Learning with Errors

Regev described the learning with errors (LWE) problem and discovered its relation to
random codes and to standard lattice problems such as GapSVP [86]. The LWE problem
asks the following question: given N approximate linear equations of vector s

〈s, a1〉 ≈χ b1 (mod p),

〈s, a2〉 ≈χ b2 (mod p),

...

〈s, aN〉 ≈χ bN (mod p),

where x ≈χ y means that y = x+ e with e a random noise drawn from the distribution χ,
can we solve the equations for s? It turns out that if LWE is efficiently solvable then hard
lattice problems such as GapSVP can be solved efficiently, too.

Definition 20 ((Search) LWE). Given integers n = n(λ) and q = q(λ) ≥ 2, and distri-
bution χ = χ(λ) over Z. Fix secret s ←χ Znq , obtain N samples [ ai | bi ] , 0 ≤ i ≤ N − 1
by letting ai ←U Znq , ei ←χ Zq, and computing bi = ais

> + ei. The samples form an
N × (n+ 1) matrix. The (search) LWE problem is to find the secret s.

An algorithm A is said to (N, t, ε)-solve the (search) LWE problem if it runs for at most
time t, takes N samples and outputs the correct s with probability ε.

Note that the running time is at least O(N) (input size), which means an upper bound
of running time implies an upper bound of the number of samples. Specifically, an al-
gorithm that efficiently solves LWE problem, which runs in polynomial time, must take
only polynomially many samples. Thus the number of samples is often omitted in some
descriptions of LWE. Here we use both interchangeably.
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The belief that LWE is intractable can be established by two observations. First of all,
the search LWE problem is equivalent to the decoding of a random code. Suppose there
are N samples [ a0 | b0 ] , . . . , [ aN−1 | bN−1 ], we have the relationship b0

...
bN−1

 =

 a0

...
aN−1

 s> +

 e0
...

eN−1

 = As> + e>.

If we view A as the generator matrix, s as the message, and e as the error vector, then
clearly an algorithm that decodes a random linear code could obtain s and hence solve
(search) LWE.

The second observation is the reduction of LWE to worst-case lattice problems, e.g.,
GapSVP and SIVP. The first such reduction was contributed by Regev but it involves
quantum algorithm [86]; Peikert came up with a classical one that only works for large q
(exponential of n) [83]; an average-case classical reduction was finally done by Brakerski
et al. in 2013 [26].

Definition 21 (Decisional LWE). Given integers n = n(λ) and q = q(λ) ≥ 2, and distri-
bution χ = χ(λ) over Z, the decisional LWE problem is to distinguish the following two
distributions of [ ai | bi ]:

1. Uniform distribution: [ ai | bi ]←U Zn+1
q

2. Fix secret s←U Znq , compute [ ai | bi ] by

ai ←U Znq ,
ei ←χ Zq,
bi = ais

> + ei

It has been shown that the search and decisional versions of LWE are equivalent for
q = pe, where p is a prime, in the sense that search LWE can be reduced to decisional
LWE with only polynomial overhead [15]. We will not distinguish between them in later
sections.

The Ring Learning with Errors (RLWE) problem is the extension of the LWE problem
on ideal lattices [72]. Combining LWE and RLWE, Brakerski et al. also defined the General
Learning with Errors (GLWE) for the general version of their BGV homomorphic encryption
scheme [25]. GLWE problems with parameter d = 1, n > 1 are LWE problems, GLWE
problems with parameter d > 1, n = 1 are RLWE problems, yet little research has been
done for other cases.
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There is another name, Polynomial Learning with Errors (PLWE), for specific cases of
RLWE [28]. The biggest difference between the two notions is that PLWE uses coefficient
embedding, while RLWE uses canonical embedding.

Definition 22 (RLWE). Given polynomial f(x) of degree d = d(λ), integer q = q(λ), ring
R = Z[x]/(f(x)), uniform distribution U , and discrete Gaussian distribution χ = χ(λ)
over R. Let Rq = R/qR = Zq[x]/(f(x)), the RLWE problem is to distinguish the following
two distributions of [ ai | bi ]:

1. Uniform distribution: [ ai | bi ]←U R
2
q ;

2. Fix secret s←U Rq, compute [ ai | bi ] by
ai ←U Rq

ei ←χ Rq

bi = ai · s+ ei

.

Definition 23 (GLWE). Given integer dimension n = n(λ), polynomial f(x) of degree
d = d(λ), integer q = q(λ), uniform distribution U , and distribution χ = χ(λ) over
R = Z[x]/f(x). Let Rq = R/qR = Zq[x]/f(x), the GLWE problem is to distinguish the
following two distributions of [ ai | bi ]:

1. Uniform distribution: [ ai | bi ]←U R
n+1
q ;

2. Fix secret s←U R
n
q , compute [ ai | bi ] by

ai ←U Rn
q ,

ei ←χ Rq,
bi = ais

> + ei

.

In some newer articles, for example [7], GLWE is also referred to as the module LWE
problem.

2.4.1 Noise Distributions

To guarantee a unique solution to LWE-type problems, which is important to many cryp-
tographic applications of LWE, we need the noise e to be sufficiently small. Otherwise, the
noise combined with reductions modulo q can produce arbitrary values and, as a result,
incorrect decryptions.

Hardness proofs in [86] and [72] rely on discrete Gaussian distributions, but in the
practice of FHE, subgaussian distributions, with increased likelihoods for smaller noises,
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behave similarly and are often used to give more room for noise growth. Using these
distributions may result in a weaker problem, other parameters unchanged; but with the
enormous sizes of parameters needed to enable even moderately complicated homomorphic
evaluations, they are unlikely to severely compromise security.

2.5 Miscellaneous Utilities and Notations

In most lattice-based encryption schemes, modulo-q residues are taken not in the range of
[0, q) but the range of (−q/2, q/2]. We will denote such a modular operation by [·]q for
simplicity. Formally,

[a]q = (a mod q)−
⌈q

2

⌉
+ 1. (2.6)

Decomposing polynomial coefficients is one of the effective noise management tech-
niques and has been used across various schemes, and therefore we describe the notations
here. Let q be the modulus of the polynomial ring Rq = Zq[x]/f(x), where deg(f) = n.
A polynomial a(x) =

∑
i=0,n−1 aix

i ∈ Rq can be written as a vector of its coefficients,
a = [ a0, a1, . . . , an−1 ]. Decompb,q(a) then extracts each digit of ai under base b.

Decompb,q(a) = [ w0,w1, . . . ,wblogb qc ], (2.7)

where
wj = [ a

(j)
0 , a

(j)
1 , . . . , a

(j)
n−1 ]

such that

ai =

blogb qc∑
j=0

a
(j)
i bj.

When a decomposed vector, a1, need to be multiplied by another vector, a2, we can process
the second vector a2 by multiplying powers of b to it, hence preserving the inner product
operation. Namely,

PowersOfb,q(a) =
[

[a]q , [ba]q , . . . ,
[
bblogb qca

]
q

]
, (2.8)

and [〈
Decompb,q(a1),PowersOfb,q(a2)

〉]
q

= [〈a1, a2〉]q .
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Chapter 3

General Approaches to FHE Schemes

3.1 Definitions

A fully homomorphic encryption scheme allows arbitrary functions to be evaluated over
the ciphertext.

A basic encryption scheme is described by three algorithms:

1. The key generation algorithm KeyGen(1`) returns a pair of keys (pk, sk) for the given
security level `. Note that this gives us a symmetric-key scheme when pk = sk and
a public-key scheme otherwise. Known symmetric-key FHE designs can usually be
converted into a public-key version by setting the public key as encryptions of zero [8].

2. The encryption algorithm Enc(pk,m) encrypts m under the key pk.

3. The decryption algorithm Dec(sk, c) decrypts c under the key sk.

Regardless of security, we require the scheme to be correct in the sense that it always
decrypts successfully:

Dec(sk,Enc(pk,m)) = m.

This condition implies that the encryption map is injective.

A homomorphic encryption scheme is a basic encryption scheme with an evaluation
function Eval(pk, f, c). The parameters are the public key pk (sometimes a different nota-
tion, ek – the evaluation key – is used, but we do not distinguish them here because ek
is also public), a description of the function f to be computed, and some ciphertexts c as
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the arguments of f . For such an encryption scheme to qualify as a homomorphic one, we
require the evaluation function to satisfy two conditions [51]:

1. (Correctness) if c = (c1, . . . , ct) = (Enc(pk,m1), . . . ,Enc(pk,mt)), then

Dec(sk,Eval(pk, f, c)) = f(m1, . . . ,mt),

and

2. (Performance) given that f is a polynomial-time computable function, the output
length of Eval(pk, f, c) must be O(poly(`)), where ` is the security parameter.

The performance condition is placed to rule out trivial schemes that do not actually com-
pute the function f but instead append the input to Eval to the ciphertext, waiting for the
computation to be processed at decryption.

Note that the description of f may vary depending on the model of computation adopted
by a particular homomorphic encryption scheme. For example, the boolean circuit model
appeared in Gentry’s initial design and is still the most widely used one; later, the Turing
machine model was also explored by Goldwasser et al. [56]; for the BGV scheme [25]
introduced in Section 4.1.1, a polynomial model is more accurate.

Depending on the types of functions f that can be evaluated by Eval, we can categorize
homomorphic encryption schemes by their evaluation capability:

� If f contains only addition or multiplication, the scheme is called additively ho-
momorphic or multiplicatively homomorphic, respectively. RSA is an example of
multiplicatively homomorphic encryption scheme. One special case is that when
the scheme supports addition and scalar multiplication, the scheme is called linearly
homomorphic.

� If f can be any function up to certain complexity, i.e., some restrictions apply to the
input length of f , then the scheme is called somewhat homomorphic.

� If f can be an arbitrary function with no restriction on input length or complexity,
then the scheme is called fully homomorphic.
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3.2 General Framework of Homomorphic Encryption

Schemes

Current constructions of FHE schemes all follow the same paradigm: starting from a
somewhat homomorphic encryption scheme, a FHE scheme is obtained through the boot-
strapping process, in which the decryption algorithm of the scheme is evaluated over the
ciphertext [51]. This paradigm is developed by Gentry in his ground-breaking work of the
first FHE scheme. However, Gentry’s scheme is complicated, slow, and difficult to boot-
strap; the principal ideals with a short generator, which it is based on, are later found to
introduce vulnerability [20]. It was soon replaced by simpler and more efficient designs.

To successfully perform bootstrapping, the scheme must be able to evaluate circuit with
depth larger than its own decryption function; the difference between these two will be the
remaining evaluation capability after bootstrapping.

There is also an intermediate state between somewhat homomorphic and fully homo-
morphic schemes – leveled homomorphic encryption schemes. In leveled schemes, every
bootstrapping switches the keys to a different set; when all pre-determined keys are ex-
hausted, no more bootstrapping can be performed – hence the name “leveled.” Details of
leveled and fully homomorphic encryption schemes regarding bootstrapping are discussed
further in Section 3.3.

3.2.1 Somewhat Homomorphic Encryption Schemes

The construction of somewhat homomorphic encryption scheme usually involves an un-
derlying ring (lattice) and added noise. The ring inherently supports addition and mul-
tiplication, and the noise acts as a secure mask. This type of scheme is only somewhat
homomorphic because the noise will accumulate along with evaluations and finally to a
magnitude such that decryption will fail to produce a correct plaintext.

3.3 Bootstrapping

Bootstrapping is an evaluation of the decryption function Dec(sk, c). But one of its input,
c, should not be encrypted once more, otherwise we will eventually obtain c′ = Enc(pk, c),
a ciphertext different from c, the one to be refreshed. Since c is known, we can rewrite the
decryption function as a function of the secret key, selected by the ciphertext: Decc(sk), as
shown by Figure 3.1. Note that the diagram depicts a change of the key set, as indicated
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by the different subscripts. To facilitate an indefinite number of bootstrapping procedures,
the key sets can be made the same, i.e., pk1 = pk2 and sk1 = sk2, but that introduces an
encryption of the secret key under its corresponding public key, often requiring assumptions
of key-dependent message security [28] as a result.

sk1 m

Encpk2(sk1) Encpk2(m)

Decc

Encpk2

Evalpk2,Decc

Decsk2

Figure 3.1: General paradigm of bootstrapping.

Bootstrapping is the key step in Gentry’s framework. It is also the most difficult to
design. Intuitively, there seems to be a never-ending race – the complexity (or depth of cir-
cuit) of decryption increases as parameters gets larger; and to evaluate a more complicated
decryption circuit, parameters has to become larger in order to support the evaluation.

Gentry’s success in bootstrapping his very first scheme depends on two factors:

1. Selecting a scheme with low decryption complexity;

2. Giving information of the secret key in the evaluation key, thus further lower the
decryption complexity – this is typically referred to as “squashing circuit” in early
FHE literature [51].

We will look at them separately.

3.3.1 Decryption Complexity

One of the reasons that successful FHE schemes are often based on LWE or similar lattice
problems is that they often allow a simple decryption function of the form

m = Dec(s, c) = f(c · s),

where c is a ciphertext encrypting m under the secret key s, “·” is the inner product
of vectors, and f is a rounding function that reduces a range of values to a point based
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on some predefined metric of closeness. By the formula, this type of decryption involves
several ring multiplications and additons (for the inner product), and a mapping for f .

3.3.2 Circuit Squashing

Circuit squashing is an idea that Gentry borrowed from server-aided secure computation
protocols. Specifically, the ring multiplications, introduced by the inner product c · s, were
eliminated from decryption by pre-computing a list of products whose subset sum is exactly
c · s.

To make it possible, firstly a set S ′ = { s′i }i is made public, where a subset of S sums
to s. If A = { ik }k are the indices of such a subset, i.e.,∑

k

s′ik = s.

Then the decryption function can be rewritten as

Dec(s, c) = f

(∑
k

c · s′ik

)
= f

(∑
i

1A(i)c · s′i

)
,

where 1A is the indicator function of set A, i.e.,

1A(x) =

{
0 x 6∈ A,
1 x ∈ A.

Since the set S is public, the inner products c · s′i can be calculated in the clear and do
not introduce any additional noise to the ciphertexts; meanwhile the indicator function
1A values are dependent only on s and set S ′ and can be encrypted fresh, with a minimal
amount of noise.

3.3.3 Bootstrapping with GSW-Type Schemes

Another general method to bootstrap LWE-based FHE schemes is to use the GSW scheme
or adaptations of it [29, 13]. Here we describe the adapted version used by Alperin-Sheriff
and Peikert [13].
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Gadget Vector and Matrix

To describe the GSW scheme, we first define the gadget matrix, a tool to implement
randomized (binary) decomposition, in GSW-related literature.

Definition 24 (Gadget vector and gadget matrix). For parameters q, n, let l = dlog2 qe:

� The gadget vector over Zq is

gq =


1
2
. . .
2l−1

 .
� The gadget matrix of size n× nl over Zq is the tensor product g>q ⊗ In, i.e.,

G =


1, . . . , 2l−1

1, . . . , 2l−1

. . .

1, . . . , 2l−1

 ∈ Zn×nlq .

By an inner product, the gadget vector induces a mapping from Zlq to Zq:

φg : Zlq → Zq,
x 7→ 〈g,x〉 .

There are exactly ql−1 preimages x ∈ Zlq such that φg(x) = y ∈ Zq.

Similarly, the gadget matrix G induces a mapping from Znlq to Znq :

φG : Znlq → Znq ,
x 7→ Gx.

For any y ∈ Znq , there are qn(l−1) preimages x ∈ Znlq such that y = Gx, and they are easy to
compute. In most literature, a procedure that generates a random subgaussian preimage for
φg and φG are denoted simply by g−1(·) and G−1(·), respectively, but to avoid confusion,
here we use the language of sampling from subgaussian distributions χφ−1

g (·) and χφ−1
G (·)

instead.

The basic scheme of GSW is as follows.
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Setup The plaintext space is { 0, 1 } ⊂ Z; the ciphertext space is Zn×nlq , where n and q
are instantiation parameters of the GSW scheme, and l = dlog2 qe; noise is sampled
from a subgaussian distribution χ over Z.

KeyGen Let s′ ←χn−1 Zn−1 and secret key sk = s = [ s′ | 1 ] ∈ Zn.

Enc Sample C ′ ←U Z(n−1)×nl
q and e←χ Zr. Let b> = e>− s′>C ′ (mod q). The ciphertext

is

C =

[
C ′

b>

]
+mG.

Dec Let c be the second last column of C. The plaintext is obtained by

m = b〈sk, c〉e2 .

Like most HE schemes based on LWE, the GSW scheme supports the homomorphic
evaluation of both additions and multiplications of its plaintexts, as are described below,
with multiplication noise growth much higher than that of additions. But the GSW scheme
also has an interesting property that its multiplication noise growth is asymmetric with
respect to the noise magnitude by the two operands, as is demonstrated by Lemma 3.3.1.
This property often allows us to rearrange operands in a circuit cleverly to minimize overall
noise growth.

Given two GSW ciphertexts C1 and C2, its two basic homomorphic evaluation opera-
tions are

Addition C� = C1 + C2; and

Multiplication C� = C1 ·X, where X ←χ
φ−1
G

(C2)
Znl×nlq .

Lemma 3.3.1. If GSW ciphertexts C1 and C2 has noise vectors e1 and e2, respectively,
then C� has noise vector

e� = X>e1 +m1e2,

where X is the matrix used for evaluation and m1 is the plaintext of C1. The components
of X>e1 are independent and subgaussian with parameters O(‖e1‖) [13].
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3.3.4 Additional Security Concerns: Circular Security

Besides the problem of reducing the complexity of decryption functions, bootstrapping also
creates a security dilemma. In order to compute Decc(sk), an encryption of the secret key
under itself could be passed over to an untrusted server, and the security implication of
this encryption is little known. Gentry offers a mitigation of switching to a different set
of keys in the process, which means the secret key will be encrypted under a new key. If
client-server interactions during computation are allowed, then new keys can be generated
and sent on the fly; if client is absent in the process, then the keys have to eventually
form an encryption circle to support indefinitely many operations. In the latter case, key-
dependent message security, or circular security, must be considered, and so far it usually
exists as an assumption, potentially weakening the strength of encryption.

Circular encryptions of keys have been shown to potentially compromise the indistin-
guishability of LWE-type ciphertexts for almost any reasonable length key chain, even if the
scheme has been shown to be IND-CPA secure without circular encryption [67, 5]. Since
these results are derived on a different design, they do not necessarily mean it is impossible
to achieve KDM security with LWE assumptions – rather, they separate KDM security
from CPA security, meaning that they are independent assumptions, but they also show
that schemes relying on KDM security need to be carefully designed and analyzed.

3.4 Avoiding Bootstrapping

Bootstrapping is considerably more costly than the other components of an FHE scheme
following Gentry’s blueprint. Many applications opt for only leveled homomorphic en-
cryption for this reason. The high cost calls for a search for new design approaches to
circumvent bootstrapping.

One such direction is secure multi-party computation (MPC). Assuming two-party in-
teractions are allowed in the evaluation process, Couteau et al. created a protocol that
does not need bootstrapping [40]. They convert ciphertexts between additively and mul-
tiplicatively homomorphic encryption schemes, with the help of communication, to match
the operation to be executed. Without the requirement to support both operations, such
schemes are readily available, very efficient, and noise-free. Therefore, the noise reduction
problem, which prevails most FHE schemes and which bootstrapping was invented to solve,
no longer exists. The tradeoff is communication overhead and security and availability con-
cerns inherent to MPC protocols.
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Chapter 4

Major FHE Schemes

This chapter describes three major categories of fully homomorphic encryption schemes.
These selected schemes have relatively good performance and readily available implemen-
tations.

All of the following schemes have both symmetric and asymmetric forms. In fact, due
to their homomorphic property and similar constructions, there is a generic transformation
from the symmetric form of an encryption scheme to an asymmetric one [8, Section 5] (but
the asymmetric form may not be unique or the most efficient). Let E(k,m) and D(k, c)
be the symmetric encryption and decryption functions, respectively; then an asymmetric
scheme can be generated as such:

KeyGen Generate t random ciphertexts c0, c1, . . . , ct−1 of zero (ci = E(k, 0) for all 0 ≤ i <
t), then

sk = k,

pk = [c0, c1, . . . , ct];

Enc Select t random coefficients r0, r1, . . . , rt−1, and the encryption function is

Enc(pk,m) = m+
t−1∑
i=0

rici;

Dec Decryption function remains the same:

Dec(sk, c) = D(k, c).
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4.1 Classification of Schemes

4.1.1 The BGV Scheme and Its Variants

Brakerski et al. described two similar schemes [28, 27] based on LWE-type problems. Then
in [25] they proposed a generalized version of LWE (GLWE) to provide a unified framework
for these schemes. However, we note that current research is still mostly on the special
cases, LWE and RLWE, rather than GLWE.

The BGV scheme is of central interest here because many of its techniques – plaintext
batching (also called SIMD), relinearization, and modulus switching and its related scale
invariant perspective – are also applicable to other designs, as we will demonstrate in the
following sections.

The Basic Scheme

Here we describe the BGV scheme with the language of GLWE and treat LWE and RLWE as
two special cases. In the description, we assume that vectors are column vectors; sometimes
the transpose of row vectors are omitted if the omission does not cause confusion; 〈x,y〉
denotes inner product; [x]q falls into the interval (−q/2, q/2].

The setup of the scheme is as follows:

� Let t � q be two coprime integers: t and q will be the parameters for the rings
forming plaintext space and ciphertext space, respectively.

� Let Φu(x) be the u-th cyclotomic polynomial;

� Let Rt = Zt[x]/(Φu(x)) be the plaintext space M , and Rq = Zq[x]/(Φ(x)) be the base
of ciphertext space C;

� Let N be the number of samples (or, equivalently, the number of approximate linear
equations in the LWE-type problem);

� Let χ = DZn,σ be a discrete Gaussian distribution with zero mean and standard
deviation σ = αq for 0 < α < 1/2t: sampling from χ is equivalent to sampling from a
continuous Gaussian distribution and rounding the sample to the nearest integer. In
other words, χ can be seen as a discrete approximation to the Gaussian distribution
with similar cumulative distribution functions;
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� Let U be the uniform distribution.

KeyGen Sample a matrix A′ ←U RN×n
q and a vector s′ ←χ Rn

q . Obtain e by sampling
ei ←χ Rq, 0 ≤ i ≤ N − 1. Let b = A′s′ + te and A = [ b | − A′ ];
Public key: pk = A;

Private key: sk = s = [ 1 | s′ ];

Enc Expand plaintext m ∈ Rt to an (n + 1)-dimensional vector over Rt by adding zeros:
m′ = [m | 0 ]. Sample r←χ R

N
q , then

c = Enc(pk,m) = r>A+ m′;

Dec Decryption is done by

m = Dec(sk, c) =
[
[〈c, s〉]q

]
t
.

Note that there is a slight difference of the RLWE-based scheme (d > 1, n = 1) – in
encryption, small additional random errors must be added to both components of the
ciphertext due to a lack of random errors in the public key.

The Evaluation Function

As is mentioned earlier in this chapter, computable functions can be represented as combi-
nations of additions and multiplications. Here we describe how the BGV scheme supports
these two operations. We also provide a summary of the key switching and modulus switch-
ing technique for the multiplication case. For the sake of simplicity, we will use the PLWE
problem with coefficient embedding and L∞ norm.

Before we proceed, we need a measurement of noise magnitude in order to assess the
growth in each operation. Consider the decryption function

m =
[
[〈c, s〉]q

]
t
.

Since the noise is what eliminated by modt, the noise term e can be expressed as

e = 〈c, s〉 −m.

Apparently e is a polynomial

e(x) =
d−1∑
i=0

eixi
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with integer coefficients. As long as |e| < q/2, we can decrypt correctly. Hence we can
measure the noise by the l∞ norm ‖e‖∞ (sometimes just ‖e‖ for brevity), which is the
largest absolute value among the coefficients of e(x):

‖e‖∞ =
d−1

max
i=0
|ei| .

To derive the Eval function, we first notice that the decryption function of the BGV
scheme is a modular inner product, which can be viewed as a linear polynomial of the secret
key s with coefficients from the ciphertext c. Hence we have plaintext corresponding to the
point-value representation and ciphertext corresponding to the coefficient representation
of the same polynomial. Additions and multiplications on plaintexts are equivalent to
polynomial additions and multiplications on ciphertexts.

Let c = [ c0, c1, . . . , cn ] and c′ = [ c′0, c
′
1, . . . , c

′
n ] be two ciphertext on which we will

perform our operations. Let e and e′ be the noise terms associated with them. With
coefficient representation, assuming that no decryption error occurs, we can write

m = Decc(s) =

(
n∑
i=0

cisi mod q

)
mod t,

m′ = Decc′(s) =

(
n∑
i=0

c′isi mod q

)
mod t.

Then addition is trivial (component-wise addition modulo q)

c + c′ = [c0 + c′0, c1 + c′1, . . . , cn + c′n],

because

m+m′ = Decc+c′(s) =

(
n∑
i=0

(ci + c′i)si mod q

)
mod t.

It is obvious that the noise magnitude of the sum, ‖e+‖ is bounded by the sum of the noise
magnitudes of two addends:

‖e+‖ ≤ ‖e‖+ ‖e′‖ .

The formula for multiplication can be deduced in the same way, but it is slightly more
complicated because the result is a tensor product c⊗c′ encrypted under the tensor product
s⊗ s of the secret key s:

c · c′ = c⊗ c′ = [c0c
′
0, c0c

′
1, . . . , c0c

′
n, c1c

′
0, c1c

′
1, . . . , c1c

′
n,

c2c
′
0, . . . , cn−1c

′
n, cnc

′
0, cnc

′
1, . . . , cnc

′
n]
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The upperbound of the noise magnitude of the product, ‖e×‖, is given by

‖e×‖ ≤ ‖e · e′ +m · e′ +m′ · e‖
≤ ‖e‖ ‖e′‖+ t (‖e‖+ ‖e′‖)

Relinearization and Key Switching

Multiplication brings another problem: after one multiplication, the length of ciphertext
(and also the secret key) squared due to the tensor product. To solve this problem, key
switching is invented to eliminate the growth of ciphertext size and key size by transform-
ing the ciphertext c1 under s1 ⊗ s1 to c2 under s2, preserving the inner product. During
the transform, we have two sets of parameters. We will denote them by subscripts cor-
responding to s1 and s2. Note that we can let s2 be the same as s1, but nevertheless it
involves issues regarding key-dependent message (KDM) security [74].

Here we demonstrate the idea of key switching with a straightforward construction first.
This construction has some problem, but the problem and a fix (the construction in [25])
will be mentioned later.

Since we can sample as many times with the same secret key s as we need in the
generation of public key, we can add the components of s1 ⊗ s1 to the first column of such
a public key. If we set N2 = (n1 + 1)2, the length of s1 ⊗ s1, sample A′2 ←U RN2×n2

q and
e2 ←χ R

N2
q , computer b2 = A′2s2 + e2, and let A2 = [ b2 | −A′2 ] to be the generated public

key, then apparently
B = [ b2 + (s1 ⊗ s1) | −A′2 ]

satisfies
[[

c>1 Bs2
]
q

]
t

=
[
[〈c1, s1 ⊗ s1〉]q

]
t

if the noise is sufficiently small. Therefore we can

let c2 be c>1 B, and B is called a key switching matrix.

The above procedure has one problem: the noise growth is not predictable since cipher-
text c1, which can have a large norm, gets multiplied by the added noise contained in b2.
One way to fix this is to decompose each coefficient of each component in c1 into digits
in base b, Decompb,q(c1) (see (2.7)), when key switching is conducted. It also requires us
to include in the public key an encryption of PowersOfb,q(s1 ⊗ s1) (see (2.8)). After this
change, each component of c1 is an element in Rq, which can be either Zq or a polynomial
ring over Zq; the decomposition yields at most (blogb qc + 1) terms, and they amplify the
noise by a factor of at most (b− 1)(blogb qc+ 1), i.e.,

‖e2‖ ≤ (b− 1)(blogb qc+ 1) ‖e1‖ .
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Therefore, the relinearization key switching matrix can be generated with N2 = (n1 +
1)2(blogb qc+ 1) and

B′ = [ b2 + PowersOfb,q(s1 ⊗ s1) | −A′2 ] .

And the corresponding relinearization process is

Relinear(c×) = Decompb,q(c×)>B′.

Note that b can be arbitrary but has a slight effect on additional noise brought by
key switching. The base b = 2 is chosen in [25]. The above procedure can also be used
to switch keys when no relinearization is required; in this case, simply generate the key
switching matrix with PowersOfb,q(s1) instead of PowersOfb,q(s1⊗ s1) under new secret key
s2 (the two secret keys may be the same).

Noise Management – Modulus Switching

The core technique of noise management in the BGV scheme is called “modulus switching”.
Lemmas 1 and 4 of [25] show that if we scale a ciphertext vector c by the ratio p/q, where
p < q are two moduli, and round it to the closest vector c′ such that c ≡ c′ (mod r), then
the magnitude of noise will be roughly p/q of the original. Though the noise-modulus ratio
does not improve, the noise growth will be much slower for multiplication. For example,
if p ≈ q/2 and Eq is the upperbound of the noise magnitudes of two ciphertexts c and c′

that we will multiply, then with modulus q we have

‖e×,q‖ ≤ E2
q + 2tEq ≈ E2

q ,

but with modulus p, Ep ≈ p/qEq ≈ Eq/2 and

‖e×,q‖ ≤ E2
p + 2tEp ≈ E2

q/4 + tEq ≈ E2
q/4. (4.1)

This gives us an noise magnitude upperbound with respect to p approximately a quarter
of that with respect to q, and the noise-to-modulus ratio is reduced to roughly a half.

Modulus-switching is usually only performed after a multiplication evaluation, following
a key switching. Figure 4.1 is an illustration of this process.
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Figure 4.1: An illustration of the execution of BGV scheme. Integers qi are moduli and
si are corresponding keys. Light gray and dark gray bars are key switching and modulus
switching procedures, respectively.

The Scale-Invariant Technique and the FV Scheme

The design of the FV (or BFV in some literature) scheme is essentially the same to that of
the BGV scheme based on RLWE but with an application of the scale-invariant technique
introduced in [23] specifically designed to mimic the effect of modulus-switching after a
homomorphic multiplication without one. The technique involves inverting the parity of
plaintext and noise in an encryption and homomorphic multiplication with an additional
coefficient t/q. Despite the equivalence in normal LWE-based encryption schemes, such an
inversion turns out to be an optimization for homomorphic evaluations. In some occasions
it also allows truncation of the least significant bits of keys and ciphertexts [50, 30], lead-
ing to smaller storage and communication overhead. These desirable properties makes it
ubiquitous in the more recent schemes designed for practicality.

In Table 4.1 we describe the FV scheme in contrast to the BGV scheme to demonstrate
this technique. For the ease of description, a symmetric version is adapted from FV.
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FV BGV

Parameters

- Select f(x) = Φu(x) with degree ϕ(u), q, and t based on the security parameter;
- R = Z[x]/(f(x)), Rq = R/qR and Rt = R/tR, respectively;
- Select a subgaussian distribution χ over R based on the security parameter;
- U is uniform distribution

KeyGen k = [ 1 | s ], where s←χ Rq

Enc
- a←U Rq;
- e1, e2 ←χ R;
- c =

[
as+ e1 +

⌊
q
t

⌋
m,−a+ e2

] - a←U Rq;
- e1, e2 ←χ R;
- c = [ as+ te1 +m,−a+ e2 ]

Dec m =
[⌊

t
q

[〈c,k〉]q
⌉]

t
m =

[
[〈c,k〉]q

]
t

E
va
l

Parameters c0 = [ c00, c01 ] , c1 = [ c10, c11 ], secret key k2 = [ 1 | s2 ], decomposing base b

Addition c+ = c0 + c1

Multiplication
c× = t

q
[ c00c10, c01c10 + c00c11, c01c11 ]

with secret key [ 1, s1, s
2
1 ]

c× = [ c00c10, c01c10 + c00c11, c01c11 ]
with secret key [ 1, s1, s

2
1 ]

RLKeyGen Method 1:
same as BGV

Method 2:
- Select p, a scaling factor;
- a2 ←U Rpq;
- e21, e22 ←χ′ Rpq;
- B′ = [ a2s2 + e21 + ps21 | −a2 + e22 ];
- B =

[
I
∣∣ B′> ]

- a2 ←U R
blogb qc+1
q ;

- e21, e22 ←χ R
blogb qc+1
q ;

- b2 = s2a2 + e21;
- B = [ b2 + PowersOfb,q(s

2
1) | −a2 + e22 ]

Relinearization/
key switching

c′× = B>c× c′× = B>Decompb,q(c×)

Modulus
switching

N/A
Return cp, the closest vector to p

q
cq s.t.

cp ≡ cq (mod t)

Table 4.1: Comparison between the FV and BGV schemes.
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4.1.2 The FHEW Scheme and Its Variants

Among the many FHE schemes developed so far, FHEW-type schemes are unique in two
aspects:

1. They provide evaluation for NAND gates rather than addition and multiplication
(XOR and AND gates, respectively, in binary cases);

2. The evaluation of NAND gates is achieved by computation in an extension ring of the
ciphertext space; at some point the ciphertext must be brought back to its original
space, and this is exactly the bootstrapping process of FHEW-type schemes.

Basic Scheme

The basic scheme is similar to that of the LWE-based variant of BGV, but instead of
decryption by parity (reduction modulo t), its decryption is done by rounding to the nearest
plaintext points, which are evenly distributed in the interval (−t/2, t/2]. Decryption is
correct as long as the noise magnitude does not exceed q/2t.

The setup of FHEW basic scheme is as follows.

� Let t = 2, q an integer divisible by t (the authors of FHEW did not mention whether
t must divide q, but the condition will make the distribution of plaintext points per-
fectly even, and it also holds for their proposed parameters; to support the evaluation
function, t must be doubled to 4 and q need to be divisible by 16 to tolerate the noise;

� Let χ be a discrete Gaussian distribution with zero mean and standard deviation
σ = αq for 0 < α < 1/2t;

� Let U be the uniform distribution.

We describe the symmetric version of FHEW, as the authors did in their original paper.
An asymmetric version can be obtained through the conversion at the beginning of this
chapter. The description is modified to be close to the other schemes presented here to
maintain the consistency of the notations so that the reader can conveniently compare
them. For example, the ciphertext vector components are switched to match the typical
definition of LWE problems and other LWE-based schemes, and its randomized rounding
function is also replaced with sampling from a distribution.

KeyGen Sample a vector s←χ Znq , and let the secret key be k = (1, s);
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Enc Sample a vector a←U Znq and noise e←χ Zq, and compute the ciphertext

c = (c0, c1) = Enc(k,m) = (〈a, s〉+mq/t+ e,−a).

Note that our description of the encryption is equivalent to that in the original paper
only when t divides q;

Dec Decryption is done by rounding t
q
(〈c,k〉) to the nearest integer modulo t:

m =

[⌊
t

q
〈c,k〉

⌉]
t

.

As the FHEW scheme is still based on LWE, the same key switching and modulus
switching techniques (see Section 4.1.1) apply.

Evaluation Function

To support the evaluation, we start from encryptions for plaintexts embedded in a slightly
larger ring Z4 (setting t = 4 in the basic scheme but keeping the plaintext binary). The
evaluation function of FHEW supports only the NAND gate. From the plaintext’s point of
view, the evaluation computes the sum of two plaintexts. So the sums 0 and 1 correspond
to NAND output 1, and the sum 2 corresponds to NAND output 0. By carefully shifting
the values, a decryption with t = 2 can reveal the NAND output for the two inputs:

NAND(c, c′) = (5q/8− c0 − c′0,−c1 − c′1).

Unlike BGV, where noise can grow quickly in multiplication, this summation will only
increase the noise by a small amount since it involves only addition. But FHEW faces a
different problem: the evaluation result must be lifed back into an encryption of plaintexts
from Z4, otherwise the computation is not sustainable. The bootstrapping of FHEW is
essentially solving this problem.

4.1.3 The LTV Scheme and Its Variants

López-Alt et al. present their design of a SWHE scheme based on the NTRU cryptosystem
in [71]. Their scheme is capable of handling a multitude of keys, thus becoming an ideal
candidate for encrypted multi-party computation, given that the number of keys needed is
known at parameter selection time.
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One drawback of their scheme is that, on top of RLWE assumption and KDM security
assumptions, it also needs a rather unconventional assumption that the Decisional Small
Polynomial Ratio (DSPR) problem is hard in their chosen parameter range. DSPR as-
sumption states that the ciphertext of their scheme is indistinguishable from a uniformly
random element.

The Basic Scheme

The setup of the scheme is as follows.

� Select integer u a power of 2 and prime q based on the security parameter;

� Let Φu(x) = xu/2 + 1, the u-th cyclotomic polynomial; let n = deg(Φu) = u/2;

� Let R = Z[x]/(Φu(x)) and Rq = R/qR;

� Let χ = DZn,r be the truncated discrete Gaussian distribution with standard devia-
tion r > 0, whose sample gives an element in R by representation of its coefficients;

� Let M = { 0, 1 } be the plaintext space;

� Let C = Rq be the ciphertext space;

KeyGen For the i-th participant, sample gi ←χ R; sample f ′i ←χ R until fi = 2f ′i + 1 is
invertible in Rq; let hi = 2gif

−1
i ∈ Rq;

Public key: pki = hi;

Private key: ski = fi;

Enc Sample s, e←χ R, then the ciphertext is obtained by

ci = hisi + 2ei +m ∈ Rq;

Dec The plaintext is recovered by

m =
[
[f1 · · · fN · c]q

]
2
,

where f1, . . . , fN are all of the N private keys.
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The Evaluation Function

An NTRU ciphertext encrypted by the public key h with corresponding private key f can
potentially be decrypte by αf , a multiple of f , given that α ∈ Rq is sufficiently small
so that [αf · c]q does not cause the constant term to wrap around q. This observation
naturally leads to the multikey property of the LTV scheme. Below we will demonstrate
how addition and multiplication are evaluated by the LTV scheme, under two sets of keys.

Assuming we have ciphertexts

c1 = h1s1 + 2e1 +m1

and
c2 = h2s2 + 2e2 +m2,

then c1 + c2 and c1c2 decrypt to m1 +m2 and m1m2, respectively, under private key f1f2,
given that f1f2 is sufficiently small to not cause a wrap around in the constant term. Since

f1f2(c1 + c2) = 2(f2g1s1 + f1g2s2) + 2f1f2(e1 + e2) + f1f2(m1 +m2),

we have
[f1f2(c1 + c2)]2 = m1 +m2.

And since

f1f2(c1c2) = 4g1g2s1s2 + 2f1g2s2(2e1 +m1) + 2f2g1s1(2e2 +m2)

+ 2f1f2(2e1e2 +m1e2 +m2e1)

+ f1f2m1m2,

we have
[f1f2(c1c2)]2 = m1m2.

Note that multiplying a ciphertext by another under the same private key f will result in
one that has to be decrypted under f 2, but this can be mitigated by the relinearization
technique provided by BGV, detailed in Section 4.1.1.

YASHE

Since the LTV scheme also involves modulus switching, the scale invariant technique (see
Section 4.1.1) can also be applied to replace the overhead caused by the modulus ladder.
One such result is YASHE [22].
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YASHE also draws results from [93] to eliminate the DSPR assumption by using a
wider Gaussian distribution. To achieve this, YASHE optimizes LTV multiplication with
the decomposing technique in key-switching (Section 4.1.1) to reduce noise growth and,
hence, allows the key generating polynomials to be sampled from a wider distribution. On
the down side, the multi-key feature is no longer available due to increased noise.

Table 4.2 shows a side-by-side comparison between the two schemes.
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YASHE LTV

Setup

- Select Φu(x) with degree ϕ(u), 1 < t < q based
on the security parameter;
- R = Z[x]/(Φu(x)), Rq = R/qR and Rt =
R/tR, respectively;
- Select two subgaussian distributions χkey and
χerr over R based on the security parameter;

- Select Φu(x), where u is a power of 2, with
degree ϕ(u) = 2u−1, and prime q based on the
security parameter;
- Plaintext modulus t = 2;
- R = Z[x]/(Φu(x)), Rq = R/qR;
- Select a truncated discrete Gaussian distribu-
tion χ over R based on the security parameter

KeyGen

- Sample f ′ ←χkey
R until tf ′ + 1 is invertible

modulo q; sample g ←χkey
R;

- sk = f ;
- pk = h = [tgf−1]q;

- Sample f ′ ←χ R until 2f ′ + 1 is invertible
modulo q; sample g ←χ R;
- sk = f ;
- pk = h = [2gf−1]q;

Enc c =
[⌊

q
t

⌋
m+ e+ hs

]
q

c = [m+ 2e+ hs]q

Dec m =
[⌊

t
q

[fc]q

⌉]
t

m =
[
[fc]q

]
2

E
va
l

Setup c1 with secret key f1 =
∏

i f1i, c2 with secret key f2 =
∏

j f2j; decomposing base b

Addition c+ = [c1 + c2]q with secret key f = lcm(f1, f2)

RLKeyGen
For each key f ,
- Sample e, s←χerr R

blogb qc+1

- Bf = PowersOfb,q(f) + e + hs

Multiplication c′× =
[⌊

t
q
c1c2

⌉]
q

c′× = [c1c2]q

Relinearization/
Key switching

For each fk ∈ { f1i }i ∩ { f2j }j, where
∣∣∣{ f1i }i ∩ { f2j }j∣∣∣ = L,

c× =
〈
Decompb,q

(〈
· · ·
(〈

Decompb,q(c
′
×), Bfk1

〉)
, · · ·

〉)
, BfkL

〉
with secret key f = lcm(f1, f2)

Table 4.2: Comparison of YASHE and LTV schemes. Note: when the two schemes share one cell, the parameter of LTV is
always set at t = b = 2 and χerr = χkey = χ
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4.2 Known Attacks

Since the security of lattice-based cryptosystems are directly related to hard lattice prob-
lems, if we can solve the problem or approximate the solution, the same algorithm can
be used to launch general attacks on such cryptosystems. Solving hard lattice prob-
lems exactly requires exponential time unless P = NP [16, 2]. These attacks produce
a spectrum between polynomial-time approximations (with poor approximation factor)
and exponential-time exact solutions.

Algorithms solving lattice problems usually consist of two distinct steps: lattice basis
reduction and a search for solutions. Both steps affect their speeds and approximation
factors.

For lattice reduction, the LLL algorithm [68] is very efficient and produces good ap-
proximations. It is still widely in use today, often in the form of its BKZ variant [90],
which uses exact SVP solvers for “blocks” of small sub-lattice. By controlling the block
size, BKZ-LLL achieves an adjustable tradeoff between running time and approximation
factors.

Although SVP and CVP are both NP-hard, CVP seems to be harder to approximate [55].
All CVP algorithms can be directly applied to SVP, but SVP can be solved faster or with
smaller approximation factors [62]. The output of lattice reduction algorithms can be
sorted and the shortest picked as an approximate solution to SVP; Babai’s nearest plane
algorithm [17] is a well-known and easy to implement approximation algorithm for CVP;
while exact solutions of SVP and CVP can be found with a number of enumeration and
sieving algorithms [77].

Another approach exploits the similarity between lattices and codes. BKW algo-
rithm [21] is essentially a partial decoding by reducing the dimension of the generator
matrix A until the noise reaches a predetermined threshold, and then the algorithm it-
erates over all possible values of the secret s′ (with a reduced length) and examine the
noise distribution. Lindner and Peikert also suggested a combination of lattice reduction
and decoding to solve LWE problems [70]. A recent algorithm based on BKW performs
asymptotically better than Linder and Peikert’s attack [59] and breaks their parameters,
but the authors did not suggest new parameters.

Although general lattice problems are NP-hard with appropriate parameters, ideal lat-
tices may provide weaker in security. No efficient quantum algorithm is known to solve
generic CVP and SVP problems with good approximation factor, but such quantum algo-
rithm has been found for ideal lattices with greatly reduced approximation factor [20, 41].
Some ideal lattice choices are particularly vulnerable and can be exploited in weak-instance
attacks [46, 48, 35].
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Chapter 5

FHE in Practice

This chapter provides a summary on the practical aspect of FHE including library imple-
mentations and optimization techniques, applications, and standardization efforts.

5.1 Open Source FHE Implementations

5.1.1 HElib

HElib is an object-oriented implementation of the BGV scheme in C++ with number theory
computation support from NTL. In addition to all the basic functions that are specified in
the BGV scheme, HElib also implements the SIMD optimization described in [92] and [52].
By decomposing the ring Rt with Chinese Remainder Theorem into many “slots”, they
are able to pack multiple plaintexts into a single element of Rt; they also implemented the
permutation of slots via an extension of key switching. Due to the parallelization, SIMD
operations bring much better amortized performance.

HElib is developed based on the RLWE variant of BGV scheme. In the parameters,
the plaintext space is the ring Rt = Zt[x]/(Φu(x)), where t is prime or prime power and
Φu(x) is the u-th cyclotomic polynomial; similarly, the base ring of the ciphertext space is
Rq = Zq[x]/(Φu(x)), where q is some odd integer coprime with t, and the ciphertext space
is R2

q . In particular, integers reduced modulo q take values in (−q/2, q/2].
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5.1.2 FHEW

The FHEW scheme was implemented, also in C++, by its inventors, Ducas and Micciancio,
and made available under the same name. Most of the implementation retained the design
in their paper [44], and an update was made to improve the efficiency and add support for
gates other than NAND.

The FHEW project is much smaller and simpler compared with HElib. Such simplicity
is gained in part by sacrificing the flexibility in parameter selection: the FHEW interface
accepts no argument and the scheme is initialized with hard-coded parameters when used
as is.

5.2 Optimization Methods

5.2.1 Chinese Remainder Theorem and Fast Fourier Transform

Chinese Remainder Theorem (CRT) may be the most cited number theory theorem in
cryptography. Even before the FHE problem was solved by Gentry, CRT had played an
important role in improving the efficiency of cryptographic applications. The isomorphic
decomposition of a ring element (or ideal) under CRT leads to several smaller parts, and
hence the computation on each of them becomes simpler and faster.

For example, in an RSA decryption of ciphertext c with secret key (n = pq, d), instead
of computing cd mod n, the ciphertext can be decomposed into (cp, cq), and we obtain the
decomposed plaintext by

(mp,mq) = (cd mod (p−1)
p , cd mod (q−1)

q ).

When d is large compared with p and q, the number of multiplications, an expensive
operation, can be significantly reduced, especially given the current recommended key size
of 2048 bits.

Application in HElib

For an efficient implementation, HElib has further requirements for their moduli q’s. More
specifically, HElib picks L + 1 distinct primes pi (0 ≤ i ≤ L) such that pi ≡ 1 (mod u)
and makes q = p0 · · · pL [60]. This decision allows them to represent an element of Rq by
“double CRT” – the usage of CRT in two levels.
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With q constructed in such a way, Φu(x) has φ(u) distinct integer roots ζi modulo q,
and the canonical embedding of an element in Rq can be computed efficiently by evaluating
the element, seen as a polynomial, at each root ζi. This is the first level of CRT.

The second level of CRT is in the representation of the integers resulted from the
polynomial evaluation. Since q is the product of L+ 1 distinct primes, by CRT, an integer
modulo q can be decomposed into L+ 1 components modulo each of q’s prime factors.

With double CRT, both addition and multiplication can be done component-wise. Fast
Fourier transform (FFT) is also applied to speed up the evaluation.

5.2.2 Single Instruction Multiple Data (SIMD) Operations

Another CRT application frequently referred to in FHE research borrowed the term Sin-
gle Instruction Multiple Data (SIMD) from a classification of the architecture of parallel
computers. It is also called batching in some articles.

Similar to the decomposition above of the ciphertext spce Rq, the plaintext space Rt

can be decomposed as well. Since we do not operate directly on the plaintext space, it
is less relevant to the running time, but the decomposition allows us to pack multiple
messages into a single plaintext through the CRT mapping, which gives rise to the SIMD
or batching operations:

Rt = Zt[x]/(Φm(x))
∼= Zt[x]/(F1(x))⊕ Zt[x]/(F2(x))⊕ · · · ⊕ Zt[x]/(Fs(x)),

where Φm(x) ≡
∏s

i=1 Fi(x) mod t. Each Zt[x]/(Fi(x)) is called a “plaintext slot”. The
decomposition of Rt usually does not result in Zt slots as t is small.

After packing, an operation (addition or multiplication) on the ciphertext can be seen
as simutaneously applied to every plaintext slot, as long as the decryption is correct.

5.3 Current Development on FHE

This section contains recent progress on fast implementations of existing FHE schemes
for privacy-preserving computations and the development of the FHE standard. Current
research on FHE can be broadly categorized as

1. applications or developing protocols relying on FHE and
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2. accelerate the performance of the known FHE schemes.

In the recent years, several HE schemes, namely, BFV, BGV, TFHE, and CKKS have
received attentions where the security of the schemes are based on the hardness of LWE
or RLWE. Microsoft SEAL supports the BFV and CKKS schemes. From a development
perspective, SEAL recently released a .NET standard wrappers. Lattigo also implemented
the BFV and CKKS and supports secure multiparty computation based on the threshold
or distributed key. PALISADE supports the BGV, BFV, CKKS, and FHEW schemes.

5.3.1 Privacy-preserving Machine Learning using FHE

This subsection summarizes some recent schemes developed for performing machine learn-
ing on confidential data using fully homomorphic encryption. In the recent years, there
has been a number of protocols and frameworks developed to perform machine learning
algorithms on encrypted data based on FHE. These work demonstrate the potential and
practicality of current FHE schemes and their implementations. Graepel et al. in [58]
first proposed techniques to use an FHE scheme to train machine learning classification
algorithms outsourced to a cloud. CryptoNets is proposed to train neural networks over
encrypted data where the training task is outsourced to a cloud [54]. In [42], Crawford
et al. proposed a system for training logistic-regression models on genomic data using
the BGV scheme. The work of [12] proposes a protocol for a collaborative evaluation of
random forests over a dataset contributed by multiple data owners based on a multi-key
somewhat homomorphic encryption scheme. Nandakumar et al. [81] proposed a scheme for
training deep neural networks on data encrypted in a non-interactive way using an FHE
scheme. Badawi et al. developed a training protocol based on FHE where they accelerate
the performance of CNNs on encrypted data by exploiting the GPU computation power
[18]. Takabi et al. [94] also used GPUs to accelerate the computation of FHE schemes to
provide efficient and scalable MLaaS. Hesamifard et al. [65] proposed CryptoDL, a client-
server privacy-preserving deep neural network training protocol where the FHE scheme is
instantiated with HELib. In a follow-up work, Hesamifard et al. in [63] considered training
a convolutional neural network over an encrypted data. Badawi et al. [3] proposed PrivFT,
a system for text classification using FHE, which serves the tasks of encrypted inference
services and training an model on an encrypted dataset.

5.3.2 Accelerating Performance of FHE Schemes

There is another line of work that put effort to accelerate the computation of FHE schemes
by leveraging hardware. Riazi et al. recently proposed a hardware architecture for accel-
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erating the computation of underlying functions such as fast modular arithmetics and
number-theoretic transform (NTT) in the CKKS homomorphic encryption scheme [87].
This results in improved performance of the SEAL library. Microsoft SEAL team is working
on improve the performance of its library by implementing them in FPGAs at the server.
Mert et al. proposed an NTT-based polynomial multiplier architecture for accelerating
computations in SEAL [76]. Inspired by cuHE, Badawi et al. [4] developed a high-speed
implementation of the FV somewhat homomorphic encryption scheme in CUDA.

5.3.3 Standardization Efforts

Due to the significant advancement of proposing new efficient schemes, open-source im-
plementations and applications and growing demands from industry, there is a standard
for FHE initiated to standardize FHE scheme(s) to have an unified and simplified API,
and clear and understandable security properties for use by non-experts as well as experts.
The homomorphic encryption standards meetings are held once a year at different loca-
tions. The participants to the standardization meetings are from industry, academia and
government [6, 10, 11].

List of Candidates Below are a list of candidates (not an exhaustive list) submitted to
the HE standard.

� HELib: An early and widely used library from IBM that supports the BGV scheme
and bootstrapping.

� Microsoft SEAL: A widely used open source library from Microsoft that supports the
BFV and the CKKS schemes.

� PALISADE: A widely-used open source library from a consortium of DARPA-funded
defense contractors that provides lattice cryptography building blocks and supports
leading homomorphic encryption schemes.

� FHEW / TFHE: (Torus-FHE) GSW-based libraries with fast bootstrapped opera-
tions. TFHE is designed from FHEW, which is no longer actively being developed.

� HeaAn: This library implements the CKKS scheme with native support for fixed
point approximate arithmetic.

� Λ ◦Λ (pronounced “L O L”): This is a Haskell library for ring-based lattice cryptog-
raphy that supports FHE.
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� NFLlib: This library is an outgrowth of the European HEAT project to explore
high-performance homomorphic encryption using low-level processor primitives.

� HEAT: This library focuses on an API that bridges FV-NFLib and HeLIB.

� HEAT: A HW accelerator implementation for FV-NFLlib.

� cuHE: This library explores the use of GPGPUs to accelerate homomorphic encryp-
tion.

� Lattigo: This is a lattice-based cryptographic library written in Go.
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Chapter 6

Arithmetic and Data Aggregation
with HElib

We use HElib to implement integer arithmetics, study the performance and possible opti-
mization when applied to data aggregations on the cloud. To our best knowledge, this is
the first implementation involving operations on integers, and thus it shows the usage of
FHE to some practical problems such as data aggregation.

Organization This chapter is organized as follows. Section 6.1 summarizes some related
work and provides related background about HElib and integer full adder circuit; Sec-
tion 6.2 describes the implementation, discusses alternative implementation approaches
and optimizations, and estimates the levels of multiplications, an important parameter
measuring the complexity, of arithmetic functions; Section 6.3 discusses parameter se-
lection and measures the performance with experiments; finally, Section 6.4 summarizes
the work, compares it with other privacy enhancing techniques on data aggregation, and
proposes some future work.

6.1 Preliminary

6.1.1 Related Work

AES has been implemented a few times, for example in [53] and [36], to demonstrate
the capability of homomorphic encryption schemes. However, the successful homomorphic
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evaluation of AES does not fully represent the potential applications of FHE since the AES
operations are defined over the finite field GF (28), which are almost natively supported by
most schemes, and the complexity of AES functions are also limited by its block size and
key size.

Polynomial evaluation over a base ring (or field) is included in the HElib source, but it
also falls short in demonstrating FHE in practice for similar reasons since they only involve
operations reduced modulo p and/or some polynomial.

The possibility of using FHE on data aggregation is also discussed in [79]. They make
their scheme support (a limited number of) integer additions and multiplications by en-
larging the base of plaintext. The advantage of their technique is the simplicity, but it also
has shortcomings: one is that it does not support division, and hence they are forced to
return the numerator and denominator separately wherever division is involved; another is
that once encrypted, it is very difficult to extract individual bits from the ciphertext.

We also note that a popular choice of masking sensitive data in data mining is data
obfuscation such as that considered in [1]. This approach hides sensitive data fields with
noise drawn from a designed distribution so that the impact on the aggregation result can
be calculated and controlled. Data obfuscation introduces much less overhead compared
with our approach, but the latter still has a few advantages—the general framework can
be easily adapted to any specific computation, and, moreover, it also provides protection
to the aggregation result and does not impact the accuracy.

6.1.2 HElib Features

Table 6.1 lists HElib interfaces that are used most frequently in implementations; the table
also include shorthands that we will use to describe our algorithms. We note that the public
key contains information for key switching and therefore must be passed to FHE.Mult; the
public key is also passed to other evaluation functions for the uniformity of interfaces. The
exact usage of HElib can be found in its document [60] coming with the source code.

6.1.3 Full adder circuit

Integer addition can be implemented as a full adder circuit (Figure 6.1. In this circuit,
the i-th 1-bit full adder takes summands Ai and Bi and carry from the last bit Ci−1, and
computes a sum for the current bit Si and the carry Ci by

Si = Ai +Bi + Ci−1,

Ci = Ai ·Bi + Ci−1 · (Ai +Bi).
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Category HElib Interface Abbr.

Basic scheme

FHESecKey::GenSecKey
FHE.KeyGen

add1DMatrices

EncryptedArray::encrypt FHE.Enc
EncryptedArray::decrypt FHE.Dec

Evaluation
Ctxt::addCtxt FHE.Add

Ctxt::addConstant FHE.addConstant
Ctxt::multiplyBy FHE.Mult

SIMD
EncryptedArray::encode

EncryptedArray::decode

EncryptedArray::rotate

EncryptedArray::shift

Table 6.1: HElib interfaces in categories. “Abbr” is the shorthand used in this chapter for
simplicity.

1-bit
full adder

A0 B0

C−1

S0

1-bit
full adder

A1 B1

C0

S1

1-bit
full adder

A2 B2

C1

S2

C2

Figure 6.1: A full adder circuit

6.2 Implementation of Integer Arithmetic

In this section, we assume that the numbers are written in a little-endian base-b represen-
tation and encrypted digit by digit with the same public key pk.

6.2.1 Binary integer arithmetic algorithms

A binary (t = 2) plaintext space will naturally support binary arithmetic. Although
t = 2k (k > 1) can also be used, an additional reduction modulo 2 is necessary to produce
the bits of the final output, and more importantly, the input to Cout during computation.
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Furthermore, larger t does not seem to provide any advantage for our approach. Therefore,
we avoid this complication by restricting the scope of our experiment to t = 2. This is
usually not a problem since this parameter can be set manually and most demos in HElib
and applications of FHE have binary plaintext space. Other bases will be discussed in
Section 6.2.3.

In the following algorithms, the numbers are in two’s complement representation for
the ease of subtraction and division. The number of digits in A is denoted by |A|.

Addition, Subtraction and Multiplication

We implement addition as Algorithm 1 so that it can be reused in subtraction with two’s
complement representation. To subtract, we just need to negate the subtrahend and pass
the minuend as A, the negation of subtrahend as B, and C−1 = Enc(pk, 1) to the algorithm.

Algorithm 1: Homomorphic full adder

Input: Public key pk, FHE encrypted summands A,B, initial carry C−1
Output: Sum S, highest carry C

1 len← max{|A|, |B|};
2 Sign extend the shorter one of A and B by copying the most significant digit;
3 C ← C−1;
4 for i← 0 to len− 1 do
5 temp← FHE.Add(pk,Ai, Bi);
6 Si ← FHE.Add(pk, C, temp);
7 C ← FHE.Add(pk,FHE.Mult(pk,Ai, Bi),
8 FHE.Mult(pk, C, temp));

9 end
10 return S,C;

As for multiplication, we need to be careful with two’s complement representation be-
cause in order to ensure correctness we must sign extend both multiplicand and multiplier.

Division

For division, we adopt the non-restoring division algorithm. The algorithm starts from the
most significant bit of the dividend, tries to subtract the divisor from each digit and com-
pute the quotient and remainder accordingly. To deal with the conditionals, we introduce
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two auxiliary functions NOT and Cond. NOT can be implemented as adding 1 to each digit
by calling FHE.addConstant; Cond is described in Algorithm 3. The division algorithm is
shown in Algorithm 4.

Algorithm 2: NOT gate

Input: Public key pk, FHE encrypted value V
Output: The bit-wise negation V̄

1 for i← 0 to |V | − 1 do
2 V̄i ← FHE.addConstant(pk, Vi, 1);
3 end
4 return V̄ ;

Algorithm 3: Computing the conditionals

Input: Public key pk, FHE encrypted condition bit c, FHE encrypted values VT
and VF for c being true and false, respectively, with |VT | = |VF |

Output: A value V , V = VT if c is an encryption of 1 and V = VF otherwise
1 c̄← NOT(pk, c);
2 for i← 0 to |VT | − 1 do
3 Vi ← FHE.Add(pk,FHE.Mult(pk, c, VT,i),
4 FHE.Mult(pk, c̄, VF,i));

5 end
6 return V ;

6.2.2 Complexity of the implementation

Without bootstrapping, the parameters of a homomorphic encryption scheme is directly
related to the depth of the circuit, in particular the maximum number of multiplications
along an execution path, which we usually call the “level” of the HE scheme with specific
parameters. HElib, for example, will compute a suitable u (for the cyclotomic polynomial)
given level L and other parameters.

Since the circuit is a directed acyclic graph, given the algorithms, we can derive the
maximum number L(·) of multiplications (AND gates) by a simple iteration. Let the
inputs to the gate be X and Y , and let the output of that gate be Z, then for any
XOR gate (addition), L(Z) = max{L(X), L(Y )}; for any AND gate (multiplication),
L(Z) = max{L(X), L(Y )}+ 1.
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Algorithm 4: Homomorphic division algorithm

Input: Public key pk, FHE encrypted dividend A, FHE encrypted divisor B
Output: Quotient Q, remainder R

1 R← A|A|−1;
2 Zero extend R to the same length of B;
3 R← Subtract(pk,R,B);
4 Q|A|−1 ← NOT(pk,R|B|−1);
5 for i← |A| − 2 to 0 do
6 B′ ← Cond(pk,R|B|−1, B,
7 FullAdder(pk,NOT(B),FHE.Enc(pk, 1)));
8 Truncate R to the last |B| − 1 digits, and concatenate Ai to R as the least

significant digit;
9 R← FullAdder(pk,R,B′);

10 Qi ← NOT(pk,R|B|−1);

11 end
12 R← FullAdder(pk,R,
13 Cond(pk,R|B|−1, B,FHE.Enc(pk, 0)));
14 return Q,R;

Below we analyze the integer addition and division algorithms. Analysis for other
algorithms are similar.

Addition

For convenience of analysis, we label C in the i-th iteration Ci. According to the above
formulae, in each iteration,

L(Si) = max{L(Ai), L(Bi), L(Ci−1)},
L(Ci) = max{L(Ai), L(Bi), L(Ci−1)}+ 1

= L(Si) + 1.

(6.1)

Recurrences (6.1) can be further simplified to

Si = max
0≤j≤i

{max{L(Aj), L(Bj)}+ (i− j)},

Ci = max
0≤j≤i

{max{L(Aj), L(Bj)}+ (i− j)}+ 1.
(6.2)
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It is not difficult to see that Ci dominates the level. If both A and B are fresh encryptions
(L(Ai) = L(Bi) = 0 for all i), then L(Ci) = i + 1; furthermore, if the longer of A and B
has n digits, then the carry from the most significant digits will have level n.

Division

Division is slightly more complicated, but the same computation with iteration still applies.
Note that our NOT implementation does not increase the level.

We label B′ and R computed the i-th iteration B′i and Ri, respectively. Note that
division starts from the most significant digit. Then we can apply the conclusions for
integer addition above and obtain

L(R|A|−1,k) = max

{
L(A|A|−1) + k,

max
0≤j≤k

{L(Bj) + (k − j)}}

}
,

L(Q|A|−1) = L(R|A|−1,|B|−1)

(6.3)

in the initialization. In each subsequent iteration, due to the conditional computation of
B′, we have

L(B′i,k) = max

{
L(Bk), L(Ri+1,|B|−1),

max
0≤j≤k

{L(Bj)}+ (k − j)

}
+ 1. (6.4)

Therefore, the level of Qi and Ri can be determined by

L(Ri,k) = max


max
1≤j≤k

{L(Ri+1,j−1), L(B′i,j)}

+ (k − j),
max{L(Ai), L(B0)}+ k

 ,

L(Qi) = L(Ri,|B|−1).

(6.5)

The final remainder R has level

L(Rk) = max
0≤j≤k

max


L(R0,j),

L(R0,|B|−1) + 1,

L(Bj) + 1

+ (k − j)

 . (6.6)

In (6.4) and (6.5), Ri,|B|−1 dominates the level. If both A and B are fresh encryptions, and
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let R̂i denote Ri,|B|−1, then

L(Q|A|−1) = L(R̂|A|−1) = |B| − 1,

L(B′i,k) = L(R̂i+1) + 1,

L(Qi) = L(R̂i) = L(R̂i+1) + |B|.
For the final remainder R:

L(R̂) = L(R̂0) + |B|.
Further simplifying the above formulae and taking the highest level only, we have

L(Q0) = L(R̂0) = |A||B| − 1,

L(R̂) = (|A|+ 1)|B| − 1.

This also indicates that we can save some levels if we do not need the remainder.

6.2.3 Nonbinary integer arithmetic

When our arithmetic is not binary (namely, the base b > 2), we can still build our al-
gorithms, but we have to be careful since we are operating on a ring modulo b and the
usual binary circuit no longer applies in this case. For example, to implement a ternary
full adder, we can first determine the formulae for each digit in the sum and carry through
polynomial interpolation.

However, there is an important difference between binary and nonbinary implementa-
tions: the complexity estimation will change with the base b. For example, if we use the
same full adder design, then for b = 3, we have

Cout = A ·B · Cin
− A2 · (B + Cin)−B2 · (A+ Cin)− C2

in · (A+B)

− (A ·B +B · Cin + A · Cin),

whose degree is 3, which means every carry has two more multiplication levels than the
input. Similarly, for b = 5, we have a degree 5 polynomial for carry, which increases the
level of multiplications of each carry by 4.

With a multiplication level of about 4, we can compute 4-bit addition for b = 2, 2-trit
addition for b = 3, and only 1-digit addition for b = 5. From this small empirical example
we can observe that representing numbers in a nonbinary form does not necessarily slow
down the noise growth relative to the size of operands, nor does it reduce the parameter
size, since the noise tolerance has a significant influence in parameter selection. A formula
to predict the degree of Cout with respect to the base b is left as future work.
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6.2.4 Bootstrapping

As we can see from the above computation, in order to perform division of integers with
a moderate number of digits, we must select HE parameters such that the scheme can
evaluate functions with a high level of multiplications. Such parameters will in turn lead
to large key size and slow evaluation. One way to overcome this problem is bootstrapping.

In [61], Halevi and Shoup implement and test bootstrapping of HElib. Although their
method pose special requirements to the parameter u, they comment that such u’s are not
difficult to find. They also include a table which shows that for various settings, where
the scheme evaluates up to 20–24 levels, bootstrapping requires only 10–13 levels. Hence if
bootstrapping is used, the minimum overhead it introduces is about 50% of the computa-
tion. The problem of optimizing the placement of bootstrappings has also attracted some
research, for example [69]. It is also possible to find optimal solutions for the evaluation
of specific algorithms such as the integer arithmetic in this chapter, but we leave this as a
future work.

6.2.5 Application to data aggregation

With integer arithmetic, we can perform some of the basic statistical analyses on encrypted
data, e.g., average, standard deviation, and correlation. The extra work is just computing
the level. Minimizing the number of multiplication levels through alternative implemen-
tations, such as those exploiting bitwise operation, is another interesting problem and is
somehow related to hardware design.

Taking average as an example: if we have two 3-bit integer and want to calculate the
average, one way is to directly apply addition and division algorithms, where the division
requires roughly level-10 evaluation capability; a shortcut would be finding the sum with
the addition algorithm and then truncating the last bit (equivalent to a right shift in terms
of bitwise operation). However, the shortcut will not work if we want to find the average of
three integers, but the division algorithm applies for general cases: to compute the average
of three 3-bit integers, we calculate the sum with addition algorithm, and then we encrypt
3 bit by bit and feed the sum and the encryption of 3 into the division algorithm to obtain
the average. This approach requires about 7 levels for addition and 5 levels for division.
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6.3 Performance

6.3.1 Parameter selection

HElib provides many parameters to fine-tune the system and make compromise between
security and performance: security level `; level of ciphertexts L; prime p and exponent
r for the base ring Z/prZ of plaintext space; SIMD related parameters, including the
number of plaintext slots s and the degree of each slot d. Given these parameters, HElib
can automatically pick a suitable u (the u-th cyclotomic polynomial is used to define the
plaintext and ciphertext space) by computing a bound of φ(u) with the aforementioned
parameters.

The slight difference between the estimated L in Section 6.3.2 and that passed to
HElib is caused by the definition of L: what we compute in Section 6.2.2 is the number of
multiplications, while in HElib L refers to the “level of ciphertext”. Each multiplication
switches the level of the ciphertext once, e.g., to accommodate 4 multiplications, we need
5 levels of ciphertexts available.

In our experiment below, there is no restriction on d or s; we choose parameters ` = 128,
L according to our estimation in Section 6.2.2, p = 2, and r = 1 and let HElib decide u for
us. The prime factors of the moduli chain of each parameter setting is shown in Table 6.3.
The construction of moduli, by default of HElib, uses a small prime p0 and a few large
primes p1, . . . , pk. The large primes are of roughly the same size and p0 has about half the
number of bits of the large primes. The chain of moduli altenates between moduli with p0
as a factor and those without:

qL = p0p1 · · · pk,
qL−1 = p1 · · · pk,
qL−2 = p0p1 · · · pk−1,
qL−3 = p1 · · · pk−1,

...

6.3.2 Timing of integer arithmetic with HElib

Table 6.2 shows the actual timing for integer arithmetic operations with HElib. The
experiments are run on a machine that has 8 Intel Xeon E7-L8867 2.13 GHz processors,
each with 10 cores, and 512 GB RAM. However, each experiment can use only one core
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# Bits L u
Timings (s)

Add. Sub. Mult.* Div.

2
3 4051 0.042425 0.087679 - -
5 5461 0.141112 0.266649 0.572857 -
7 7781 0.233375 0.429262 0.893516 1.6482

3
4 4051 0.07215 0.138559 - -
7 7781 0.390965 0.665168 2.20332 -
13 13981 1.33441 2.37028 7.93776 12.4933

4
5 5461 0.334383 0.563787 - -
9 8191 0.720608 1.21162 5.7184 -
21 18631 5.80991 10.0834 47.327 67.9477

Table 6.2: Timings for integer arithmetic at security level 128, binary plaintext.
*Multiplication is implemented as unsigned

due to the lack of thread safety of NTL. In all the operations, both operands are fresh
encryptions and have the same number of digits, shown in the first column; L is taken as
the minimum level to ensure correct evaluation for each function in HElib. We also note
that these experiments do not exploit SIMD: they use only one slot in the plaintext. If we
pack multiple plaintexts into one, then we can perform the same operation simultaneously
on all the slots and attain a much shorter amortized running time.

From the “Add” column in Table 6.2 we can see that the execution time for the same
operation increases quickly with the parameters L and u. We have also shown in the
analysis in Section 6.2.2 that the level of multiplications is proportional to the number of
digits in addition, but for division it shows a quadratic growth, which in turn requires much
larger parameters with just a slight increase in the input size. The parameters that HElib
can handle are bounded (in its parameter-finding routine, it immediately gives up when
φ(u) is beyond a bound posed by NTL). These facts combined shows that the division of
large numbers cannot be supported without bootstrapping, even with reduced amortized
running time brought by SIMD operations.

6.4 Conclusion and Future Work

Our work shows that the homomorphic evaluation of precise binary integer arithmetic and,
furthermore, data aggregation functions can be practical only with small numbers. SIMD
operations can be used to parallelize the computation for an better amortized performance.
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# Bits L u Prime Factors of Moduli

2

3 4051 2333377 4893444145153 32079244951553

5 5461
2099089 14673688657921 11412868956161 127824132308993
119998165024769

7 7781
3050153 17231744335873 11748916592641 11226742521857
131587865837569 119055688138753

3

4 4051 2333377 4893444145153 32079244951553 19573776580609

7 7781
3050153 17231744335873 11748916592641 11226742521857
131587865837569 119055688138753

13 13981
2348809 14073735413761 11962675101697 9851614789633
8678803505153 7740554477569 7036867706881 454464372737
432474161153 366503526401

4

5 5461
2446529 16491667783681 10994445189121 105546673815553
52773336907777

9 8191
2293481 16490661150721 13742217625601 9619552337921
7970486222849 2013020161 1945919489 1543315457

21 18631

2459293 15003662942209 14378510319617 13440781385729
8439560404993 14847374786561 11721611673601 4532356513793
1406593400833 16644688576513 14612942553089 2070818062337
1992673984513 1758241751041 1484737478657 1133089128449

Table 6.3: Prime factors of the moduli chain
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When we need to deal with large numbers, bootstrapping must be included to fix the
problem of growing parameters. The effect of using nonbinary bases is complicated and
needs more study. One extension of this work could be the computation over real numbers,
e.g., floating-point numbers with FHE.

Compared with other techniques such as data obfuscation and the one in [79], this
approach has the advantage of flexibility in that it can be easily adapted to support any
function, in particular those with conditionals. The disadvantage is that the computational
cost is relatively high. How to choose among them and how to select parameters for them
in order to achieve the optimal trade-off remain interesting directions to explore.
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Chapter 7

Homomorphic Attacks against RLWE

7.1 Introduction

Since Regev proposed Learning with Errors (LWE) [86], it has found many applications in
cryptography. It is conceptually simple but also enjoys worst-case hardness like some other
lattice problems [86, 26]. Unfortunately, with the benefits of LWE usually come large keys
and ciphertexts that add to communication and storage overhead. In the search of a better
alternative that is more competitive in terms of key size, Ring-LWE (RLWE) emerged [72]
as a promising candidate. RLWE accomplishes its higher efficiency by exploiting additional
algebraic structure of polynomial rings, but this approach is followed by attacks that can
find weak instances, for the same reason. Similar to LWE, RLWE enjoys worst-case hardness,
but only on ideal lattices.

Due to its efficiency, RLWE has been applied to many cryptographic constructions [27,
49, 22]; therefore, it has become more urgent to understand its strengths and weaknesses.

7.1.1 Related Work

Since RLWE can be reduced to lattice and LWE problems, all lattice reduction attacks such
as LLL and general decoding attacks such as BKW apply to RLWE. However, people gen-
erally believe and the weak-instance attacks described below show that the RLWE problem
is potentially easier to tackle than the LWE problem because of the additional algebraic
structure.

Weak instances of RLWE are analogous to weak primes in factorization: their special
properties significantly reduce the difficulty of the problem so that specialized algorithms
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can be designed to launch an attack. Weak RLWE instances usually involve some ring
homomorphism, under which the image of the error distribution can be distinguished from
a uniform distribution.

Generally, weak instance attacks involve three steps:

1. Exploiting the algebraic property to reduce the search space for Step 2;

2. Exhausting the secret s;

3. Testing if the samples agree with a certain distribution generated with the guessed
secret.

Considering different rings with special properties, leads to various weak instance attacks.

Algebraic Structures

The first such attack was developed by Eisenträger et al. [46] on Polynomial-LWE (Poly-
LWE or PLWE), which is similar to RLWE but uses coefficient embedding instead of canon-
ical embedding (see Section 2.2.2 for more details). They consider polynomial rings of the
form Zp[x]/(f(x)), where p is prime and f(x) is irreducible over Q but has a low-order root
α modulo p. Their attack exploits a ring homomorphism induced by α into the finite field
Fp. When p is small enough, it becomes feasible to search for the image of secret s in Fp.

Similar attacks were soon carried out on RLWE cases [48, 31]. The conditions for their
attacks are similar, but the attacker is faced with bigger distortions. The distortion is
introduced by the conversion of ring element representations from canonical embedding
to coefficient embedding. This conversion is necessary to prepare for the evaluations of
polynomials at α, in order for the original attack to work.

A more delicate attack was delivered by Chen et al. [33, 34] on RLWE instances
based on families of Galois number fields whose ring of integers can be decomposed into
orthogonal subspaces, where their homomorphism will likely nullify a component of the
error drawn from a discrete Gaussian distribution.

Distinguishing Distributions

In Step 3 of the attack, we need to decide which distribution fits the one computed from
the guessed secret and samples better: uniform or the error distribution (under the homo-
morphism). All previous works achieve this by comparing the sampled distribution with
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uniform under the assumption that the mapped error distribution will be far enough apart
from uniform.

For this particular task, there are general purpose distinguishers available such as the
Chi-square test. Another distinguisher with dual lattices is considered by Peikert [84] and
can be used in conjunction with all existing weak instance attacks.

7.1.2 Our Contribution

In this chapter we consider how the homomorphism attacks proposed in [46] and [48] can
be modified to work against a Poly-LWE variant where the error polynomials are defined by
drawing the coefficients from independent discretized Gaussian distributions rather than
using a discrete Gaussian distribution over a lattice. We show that while these attacks can
be modified for this variant, several changes must be considered. In particular, the mapped
error distribution to be considered may be very different from what that the algorithms in
[48] are designed to handle. We show how the mapped error distribution can be computed
directly and used to create effective distinguishers.

This chapter is organized as follows: Section 7.2 summarizes the RLWE problem and
other related background. Section 7.3 shows the image of error distribution under the
homomorphism and introduces our method to compute it. Section 7.4 discusses different
methods to distinguish distributions with samples and demonstrates our simulation results.

7.2 Background

Let f(x) be a monic irreducible polynomial in Z[x] of degree n (not necessarily cyclotomic).
Let q ∈ Z (not necessarily prime). If we let p ∈ Z it will always denote a prime. For the
integers modulo q we use the notation Zq := Z/qZ. We will be working in the following
polynomial ring Zq[x]/(f(x)) which we denote as

Rq := Zq[x]/(f(x)).

Observe that there are qn elements in Rq that are of the form

d0 + d1x+ d2x
2 + · · ·+ dn−1x

n−1 + (f(x)),

where di ∈ Zq 0 ≤ i ≤ n − 1. Roots of f(x) (mod q) will be denoted as α1, . . . , αi for as
many roots as there are. If only one root is being considered, it may be denoted as just α.
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Since a root α is in Zq, we can talk about its order with respect to the multiplication in
Zq,

ord(α) := min
{
m ∈ Z+

∣∣ αm = 1
}
.

In general we will not assume that f(x) factors completely mod q; however, we will assume
that f(x) has at least one root α mod q.

On the ring Rq, we consider the following discrete probability distributions. Let URq

denote the discrete uniform distribution on Rq, i.e. coefficients of the polynomials coming
from the discrete uniform distribution on Zq. Let χRq denote the discretized Gaussian
distribution on Rq, i.e. coefficients of the polynomials coming from a discretized Gaussian
distribution on Zq. The precise formulation of a discretized Gaussian on Zq is as follows
where we try to keep the definitions consistent with [86].

Definition 25. For β ∈ R+ the continuous distribution Ψβ on [0, 1) is obtained by sampling
from a normal distribution with mean 0 and standard deviation β√

2π
and reducing the result

mod 1. This probability distribution is given as

∀r ∈ [0, 1), Ψβ(r) :=
∞∑

k=−∞

1

β
· exp

(
−π
(
r − k
β

)2
)
.

Now using Ψβ, the discretized Gaussian distribution on Zq is defined as follows.

Definition 26. The discretization of a Gaussian distribution on Zq (we denote as Gq,β) is
obtained by sampling from Ψβ and multiplying by q. This probability distribution is give
by

Gq,β(i) =

∫ (i+ 1
2
)/q

(i− 1
2
)/q

Ψβ(x)dx.

Note that one can easily generate random values from Gq,β, and one can numerically
approximate the probability distribution of Gq,β by using approximations for the infinite
sum and the integral. We now introduce the two main problems of interest.

Problem 1 (Search Poly-LWE Problem). Let s(x) ∈ URq be secret. The Search Poly-LWE
Problem is that of finding s(x) given a poly(n) number of samples of the form

(aj(x), bj(x) := aj(x) · s(x) + ej(x)) ∈ Rq ×Rq

where aj(x) ∈ URq and ej(x) ∈ χRq. We call ej(x) the error.
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A related problem is to distinguish samples coming from a Search LWE Problem from
uniform samples on Rq ×Rq, and our attack can be extended to work against this variant
as well.

Problem 2 (Decision Poly-LWE Problem). Given poly(n) samples from one of the fol-
lowing two distributions on Rq × Rq the Decision Poly-LWE Problem is to decide which
distribution the samples are coming from

1. samples from a Search Poly-LWE Problem, i.e. of the form

(aj(x), bj(x) := aj(x) · s(x) + ej(x)) ,

where aj(x) ∈ URq and ej(x) ∈ χRq, or

2. samples that are uniform, i.e. of the form

(aj(x), bj(x)) ,

where aj(x), bj(x) ∈ URq.

Note that these problem definitions are a slight variant on the RLWE problem in [73, 48]
as here the error is coming from a discretized Guassian distribution on Zq rather than being
taken from a discrete Gaussian over a lattice. Yet another variant is possible if we draw
the coefficients from a bounded uniform distribution on Zq.

Attack

In [48] they develop the following attack against the Decision Poly-LWE Problem, which
we describe here with a couple adjustments. For a polynomial f(x) that is irreducible over
Z let p ∈ Z be a prime such that f(x) has at least one root α mod p. Note that in [48]
the authors assume that f(x) factors completely mod p which is often the case in practice
so that fast multiplication can be done in the ring using the Chinese Remainder Theorem,
but we will not need this assumption for our attack.

Given access to L := poly(n) samples from a Decision Poly-LWE Problem

(aj(x), bj(x)) ∈ Rp ×Rp,

we want to transfer the problem to Zp. To do this, we will build a well defined ring
homomorphism

φ̄ : Zp[x]/(f(x))→ Zp.
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Since we are assuming we have a root α of f(x) mod p, we can consider the ring homo-
morphism

φ : Zp[x]→ Zp,

y(x) 7→ y(α).

It is clearly well defined, and one can check it is a ring homomorphism. Moreover (f(x)) ⊆
Ker(φ), which gives a well defined ring homomorphism

φ̄ : Zp[x]/(f(x))→ Zp,
z(x) + (f(x)) 7→ φ(z(x)) = z(α).

Now we take the samples and map them according to φ̄:

(aj(x), bj(x)) 7→ (aj(α), bj(α)) .

If the samples are coming from the Search Poly-LWE distribution, φ̄(s) = s(α) will be some
element in Zp. For the attack we will guess s(α). For each g ∈ Zp we assume g is the
correct guess for s(α) and compute

bj(α)− aj(α)g.

Since both multiplication and addition are preserved by φ̄, this gives us

ej(α) = bj(α)− aj(α)g

for a correct guess g = s(α). If we can successfully distinguish the distribution of ej(α)
from uniform, then we can test for the correctness of our guesses.

We can now analyze the distribution of ej(α) to decide which distribution the samples
came from. The error polynomial ej(x) can be written as

ej(x) =
n−1∑
i=0

eijx
i, eij ∈ Gp,β,

which when evaluated at α is

ej(α) =
n−1∑
i=0

eijα
i, eij ∈ Gp,β.

From now on we will be considering ej(α) for a particular guess g and will drop the j
subscript and just write

e(α) =
n−1∑
i=0

eiα
i, ei ∈ Gp,β.
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This can be simplified by considering the order of α, which we denote as r. For simplicity
of notation assume r divides n. This gives

e(α) =(e0 + er + · · ·+ en
r
) + (e1 + er+1 + · · ·+ en

r
+1)α + · · ·

+ (er−1 + e2r+(r−1) + · · ·+ en
r
+(r−1))α

r−1.

It can be further simplified to

e(α) = v0 + v1α + · · ·+ vr−1α
r−1,

where

v0 = e0 + er + · · ·+ en
r

v1 = e1 + er+1 + · · ·+ en
r
+1

...

vr−1 = er−1 + e2r+(r−1) + · · ·+ en
r
+(r−1).

The v`’s are distributed as G
p,
√

n
r
β
. Now depending on the value of α and the order of α,

this distribution e(α) may be either a discretized Gaussian or a periodic distribution, and
depending on the parameters either one may be very close to a uniform.

In [48, Section 3.2 Case 2] the authors state that when α has small order ≥ 3, e(α) will
be Gaussian given their starting choice of error for RLWE; this does not match with what
we see when we start with error from a discretized Gaussian. Rather we will show in the
next section that when α has small order ≥ 3, e(α) will be neither Gaussian nor uniform
but more like a kind of periodic Gaussian (see the pictures below), hence the cosine test
in [86] and [84] may not work well. We shall see that Chi-square test will suffice for our
purposes.

7.3 Error Distribution

7.3.1 Computing probability distributions

In the above attacks, we need to understand the probability distribution of e(α). More
generally, we consider

e = e0 + e1a1 + · · ·+ en−1an−1 ∈ Zp,
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where ai ∈ Zp are fixed and ei’s are chosen according to a given probability distribution
on Zp.

What is the probability distribution of e? We shall see below that, in general, if n is
large or ai’s are large, then e is approximately uniform random on Zp. We first show how to
compute the exact distribution of e in time O(np2), and then demonstrate several possible
distributions of e on Zp, including distributions that are neither Gaussian nor uniform.

Lemma 7.3.1. Let u and v be independent random variables on Zp with probability dis-
tributions (a0, a1, . . . , ap−1) and (b0, b1, . . . , bp−1), respectively. Let

a(x) =
∑
i∈Zp

aix
i, b(x) =

∑
i∈Zp

bix
i.

Then the probability distribution of u + v can be computed as the coefficients of the poly-
nomial a(x)b(x) (mod xp − 1).

The proof is simple since, for any k ∈ Zp, the probability

P (u+ v = k) =
∑
i∈Zp

P (u = i)P (v = k − i mod p) =
∑
i∈Zp

aibk−i,

where the subscript k − i of b is computed modulo p.

Theorem 7.3.2. Suppose e0, e1, . . . , en−1 are independent random variables on Zp with
the same probability distribution (c0, c1, . . . , cp−1). Let c(x) =

∑
i∈Zp cix

i. Then, for any
a1, . . . , an−1 ∈ Zp, the probability distribution of e = e0 + e1a1 + · · ·+ en−1an−1 mod p can
be computed as the coefficients of the polynomial

c(x)c(xa1) · · · c(xan−1) (mod xp − 1).

The theorem follows from the above lemma, since the random variables e0, e1a1, . . . , en−1an−1
are independent and c(xai) represents the probability distribution of eiai. Also, the prod-
uct can be computed by a simple loop: t := c(x); and for i from 1 to n − 1 do t :=
t · c(xai) mod xp − 1. This takes at most O(np2) operations in Zp.

7.3.2 Intuition for the error distribution

In this section we give several examples of the computed distribution
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(a0e0 + a1e1 + · · ·+ an−1en−1) mod p,

where ei, 0 ≤ i < n, are independent identically distributed Gp,β distributions on Zp and
ai ∈ Zp, 0 ≤ i < n, are fixed constants. The number of terms n and the sizes of the ai’s
greatly affects the shape of the above distribution. To get an idea of what one should
expect, we look at three general cases.

Case 1: small coefficients

The first case we consider is when all the a0, ..., an−1 coefficients are 1 and the standard de-
viation is fixed; in this case we consider how varying n affects the shape of the distribution.
As n grows large, the distribution remains Gaussian but approaches uniform.

Example 1. Let β = 0.01, p = 331. The distribution e1+e2+ · · ·+en for n = 1, 20, 40, 100
with ej iid Gp,β is shown in Figure 7.1.
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Figure 7.1: Sum of n iid discretized Gaussian distributions on Z331.

Case 2: large coefficients

The second case we consider is when all the a0, ..., an−1 coefficients are large and the
standard deviation is fixed; in this case we consider how varying n affects the shape of the
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distribution. We want to answer the question of how large n needs to be for the distribution
to be almost uniform. In this case n can be quite small and the distribution already be
very close to uniform. However, note that the distributions in the following example are
neither Gaussian nor uniform.

Example 2. We consider the distributions of 23e0 + 45e1 and 23e0 + 45e1 + 43e2 and
23e0 + 45e1 + 43e2 + 95e3 where β = 0.01 and p = 331 and ej iid Gp,β. For each additional
term in the sum the distributions gets considerably closer to uniform while remaining
periodic. The three graphs are shown in Figure 7.2.
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Figure 7.2: The distributions of 23e0 +45e1 and 23e0 +45e1 +43e2 and 23e0 +45e1 +43e2 +
95e3 where ej are iid discretized Gaussians on Z331

Case 3: root of small order

In the third case we consider a situation where the coefficients are all powers of a root α

e0 + αe1 + α2e2 + α3e3 + · · ·+ αn−1en−1,

where ej are sampled from i.i.d. discretized Gaussian distributions. We want to specifically
consider what effect the order of α has on the distribution. We choose f = xn + ax+ b to
be an irreducible polynomial over Z that has a root α mod p.
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We want to specifically consider the case when α has small order mod p and n is not too
large. When α has low order, the distribution will be considerably farther from uniform
compared to when α has large order. Consider the following example where f has one root
of low order and another of high order.

Example 3. The polynomial f = x9 + 11x− 11 is irreducible over Z but has a two roots
α1 = 31, α2 = 82 mod 331 with α1 having order 3 and α2 having order 165. Consider the
following distribution which arises if α1 is used to define the homomorphism in the attack

e0 + α1e1 + α2
1e2 + α3

1e3 + · · ·+ α8
1e8.

Here we are assuming ej are iid Gp,β for β = 0.01. The graph of the distribution is show
in Figure 7.3. It is neither Gaussian nor uniform.

When using the root α2 with larger order, we see that the distribution e0 + α2e1 +
α2
2e2 + α3

2e3 + · · ·+ α8
2e8 is much closer to uniform as seen in Figure 7.4.
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Figure 7.3: The distribution of e0 + α1e1 + α2
1e2 + α3

1e3 + · · ·+ α8
1e8 for α = 31 of order 3

and ej iid discretized Gaussians on Z331.

Summarize Cases

Considering these three cases, we note that if the distribution e(α) appears like Case 1 it
can be fairly easily distinguished from the uniform for small n. For Case 2 distinguishing
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Figure 7.4: The distribution of e0 + α2e1 + α2
2e2 + α3

2e3 + · · · + α8
2e8 for α2 = 84 of order

165 and ej iid discretized Gaussians on Z331.

from the uniform gets much harder because when adding a large number terms with large
coefficients, the distribution rapidly approaches uniform. For Case 3 when α has small
order this is similar to Case 2 with a small number of terms, but if the order of α is small
enough and n not too large, we can hope to be able to distinguish this from uniform; we
will consider this case further in the next section. In Case 3 when α has large order, this
is similar to Case 2 when there are a large number of terms, and it is unlikely one would
be able to distinguish this from uniform.

7.4 Statistical Tests and simulation

7.4.1 Distinguishing statistical tests

In this section we will discuss how one can decide if a guess g in the attack is correct. If
the guess g is correct, we have shown in the previous section how we can compute what
the distribution of the error will be; we denote this computed error distribution as E . If
the guess g is not correct then the samples will be uniform, which we denote as U .

Assume that we have L samples of RLWE public keys:

(ai(x), bi(x)), bi(x) = ai(x)s(x) + ei(x), i = 1, . . . , L,

73



where ai(x) ∈ URp, ei(x) ∈ χRp. Let A and B be two random variables taking samples

A ∈ {ai(α) | i = 1, . . . , L}
B ∈ {bi(α) | i = 1, . . . , L}.

In general, (A,B) cannot be distinguished from (A,B′), where B′ is uniform. But the
homomorphism attack lets us the consider the distribution

S(g) := B − Ag, g ∈ Zp.

Property 1. S(g) ∼ E if g = s(α); otherwise S(g) ∼ U if g 6= s(α).

Now if E is not too close to U , we will be able to decide which one S(g) matches by
considering a reasonable number of samples. There are several methods one might use to
decide which distribution S(g) fits.

Method 1: Chi-square Tests

First we will use a Chi-Square goodness-of-fit test to test the S(g) against a uniform
distribution.

Let ẽk denote the number of ej(α)’s equal to k mod q. Let L denote the total number
of samples. We set up our null hypothesis to be that S(g) is distributed according to a
uniform distribution

H0 : S(g) ∼ U ,
H1 : S(g) 6∼ U .

Then we compute the Chi-square statistic as

V =

p−1∑
k=1

(ẽk − L/p)2

L/p
,

where there are q−1 degrees of freedom. If V is too large or too small based on our choice
of Type 1 error rate, we reject H0. For this test to be considered reliable we need L/p ≥ 5
samples, i.e. L ≥ 5p.

Second, we test S(g) against our computed distribution E using a Chi-squared test in
a non-traditional way.

H0 : S(g) ∼ E ,
H1 : S(g) 6∼ E .
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Let Ek := Pr[E = k ∈ Zp]. Then we compute the Chi-square statistic as

V =

p−1∑
k=1

(ẽk − LEk)2

LEk
,

where there are p − 1 degrees of freedom. We then reject or accept based on V and our
desired Type 1 error rate. In this setup, we are inverting the usual setup for a Chi-square
test. Here we are making the probability of rejecting when we should not equal to the
Chi-squared test’s Type 2 error. But this problem is also unusual in that it is a promise
problem, giving us that the S(g) must be one of two know distributions, which is not an
assumption generally considered for most statistical tests like the Chi-square test.

Method 2: Expected Value of Cosine

A distinguisher, which is described by Regev in [86] and which Peikert in [84] uses to
describe a general distinguisher working with the homomorphism attacks of [46, 48, 33, 34],
can also be modified to work with this homomorphism attack, but in our case knowing the
computed error distribution can let one choose the optimal threshold value for test. The
test is to compute the following expected value: n

x̄ := E
ej(α)∈S(g)

[cos(2πej(α))] .

If S(g) ∼ U , this should be approximately 0. If S(g) ∼ E and E is not too close to U ,
this may be non-zero and can be used to distinguish. Since we know the computed error
distribution E , we can compute

µ := E
e∈E

[cos(2πe)]

and use this to determine the best threshold for the test T := µ/2. Then if x̄ ≤ T we
decide that S(g) ∼ U , and if x̄ > T we decide that S(g) ∼ E . However, if the error is
periodic, this test will not necessarily perform well.

Method 3: Statistical Distance

For another test making use of the computed error distribution, we consider the statistical
distance from S(g) to U and E for each guess g and take the guess for which S(g) is closest
to E . Let the distribution of S(g) be {ti(g) | i ∈ Fp}, i.e.,

P [S(g) = i] = ti(g), i ∈ Fp.
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Let

ε(g) =
∑
i

∣∣∣∣ti(g)− 1

p

∣∣∣∣ ,
δ(g) =

∑
i

|ti(g)− Ek| .

Decode s(α) = g, where
g = arg max

g∈Fp
ε(g) (7.1)

or
g = arg min

g∈Fp
δ(g). (7.2)

This gives us a good idea of what the correct guess probably is if the samples are from
Poly-LWE. If no one guess differed from the rest by more than some threshold, we would
decide the samples were uniform. However, how this threshold should be chosen is unclear
at this moment. We will leave that as a future work.

Type 1 Errors

One further thing that must be considered when using any tests like Methods 1 and 2 with
a fixed Type 1 error probability is that using the test repeated for each of the p guesses will
result in a much higher overall Type 1 error probability. To see this in detail, if γ is set to
be the Type 1 error probability for a single test, then 1−γ is the probability of not having
a Type 1 error on that test. If one runs p such tests, the probability of no Type 1 errors
in all p tests is (1− γ)p. Thus the probability of at least one Type 1 error is 1− (1− γ)p;
to be clear, this is an upper bound on probability of a Type 1 error and in practice a test
may have a true Type 1 error rate much lower, but we may no longer have a very good
upper bound.

To see how much the Type 1 error bound can grow, consider that if γ = 0.02 and
p = 331, then 1− (1− 0.02)331 ≈ 0.9987.

It is possible to keep the overall Type 1 error bound to an desired rate. One way is
to use a Bonferroni correction, which is a way of setting the Type 1 error rates on the
individual tests to guarantee a particular overall Type 1 error. In particular if set the new
Type 1 error for each test at βγ := γ

p
, the overall Type 1 error will still be bounded by

γ. However, this may result in an impractically high Type 2 error rate, so in practice we
would recommend using the tests at multiple levels and using a variety of tests as described
above.
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7.4.2 Simulations

We simulate these Chi-square methods and look at the there true Type 1 and Type 2
error rates, the expected value of cosine test does not perform well on either of these two
examples.

Example 4. Continuing with the earlier Example 3, we show how we can use Method
1 of the Chi-square tests to tell for which guess of g the distribution e(α) follows the
computed error distribution rather than a uniform distribution. With 2000 samples and
the individual Chi-Square tests’ Type 1 error rates set at 2%, the overall test is successful
at rejecting the null hypothesis that the error are from the uniform every time out of ten
independent simulations while only every giving two false rejections.

For those same ten simulations the Chi-square test against the uniform with Type 1
error rates set at 1 × 10−9 (corresponding to this tests Type 2 error rates because of the
inverted setup) rejects all guesses correctly without giving any false rejections.

Example 5. Next we consider a new example. Let f = x15+125x−334 which is irreducible
over Z but has a root α = 396 of order 3 mod 607. The distribution E is shown in Figure
7.5; clearly it is neither Gaussian nor uniform.

Using the Chi-square test against uniform with 5000 samples and having the individual
tests set at a Type 1 error rate of 2%, we are able to reject the correct the guess correctly
for every one of ten independent simulations while only every giving one false rejection.

For those same ten simulations the Chi-square test against the uniform with Type 1
error rate set at 1 × 10−9 (corresponding to this tests Type 2 error rate because of the
inverted setup) is not helpful on this example as it never rejects anything.

Example 6. We used Method 3 (statistical distance) on the following instance: f(x) =
xn + p − 1, where n = 8, p = 257, and β = 0.2. In this setup, f(x) has root α =
1 mod p. With 1200 samples, the test is successful at finding the image of s in all of the
ten independent simulations, when either of (7.1) and (7.2) is used.

This instance has been attacked successfully by [46], because of its simplicity, our
method may be able to improve the efficiency of their attack by computing s(α) directly
from the error distribution under the homomorphism. We leave that as a future work.

7.5 Conclusion

In summary, we have shown how the homomorphism attacks from [46, 48] can be extended
to another variant of the Poly-LWE problem with several modifications. The main dif-
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Figure 7.5: The distribution of e0 + αe1 + α2e2 + α3e3 + · · ·+ α12e12 for α = 396 of order
3 and ej iid discretized Gaussians on Z607.

ference being that the mapped error distributions in the two variants behave differently
requiring new approaches to distinguishing the distributions. By computing the probability
distribution directly and using Chi-squared tests, we have shown how such distinguishing
can be accomplished.

7.5.1 Future Work

Although we have discussed different statistical tests, their relative accuracy has not been
thoroughly analyzed. We will leave that as future work. In another future work, we can
consider a potential improvement to the weak-instance attack in [46] and [48], where we
may multiply f(x) by another polynomial g(x), such that the number of terms in f(x)g(x)
is smaller than the order of α and f(x)g(x) has small coefficients.
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Chapter 8

Conclusions and Future Work

FHE has come a long way. With new, efficient schemes becoming more and more available,
the future of FHE applications looks very promising. But we should not ignore the caveats:
most of the foundations and techniques used in FHE had been developed in the past
two decades, and they are not as well understood as some classical problems used in
cryptography. The randomness ubiquitous in FHE designs makes the calculation of exact
security level difficult. KDM security may be a weak link in many popular FHE schemes
based on LWE and RLWE. Large gaps still exist between theory and reality.

Our work shows that in BGV, homomorphic evaluation of integer arithmetic and, fur-
thermore, data aggregation functions can be practical only with small numbers. SIMD
operations can be used to parallelize the computation for an better amortized performance.
When we need to deal with large numbers, bootstrapping must be included to fix the prob-
lem of growing parameters. Schemes that support real numbers, such as CKKS [37], may
improve the performance and can be investigated. Overall, choosing the right scheme to
suit the need of the nature of secure computation in any project, instead of looking for a
one-size-fits-all solution, is still the current strategy for applications.

We have also shown that even though lattice problems are generally NP-hard, a par-
ticular lattice instance may still have structural weaknesses, especially for those chosen for
efficiency reasons. Further investigatoin is urgently needed to assess the security level of
lattices. And users of FHE schemes should pay close attention to ensure proper parameters
are selected.

79



References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In ACM
Sigmod Record, volume 29, pages 439–450. ACM, 2000.

[2] Miklós Ajtai. The shortest vector problem in l 2 is np-hard for randomized reductions.
In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
10–19. ACM, 1998.

[3] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin Mi Mi
Aung. Privft: Private and fast text classification with homomorphic encryption. IEEE
Access, 8:226544–226556, 2020.

[4] Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun, and Khin Mi Mi Aung.
High-performance fv somewhat homomorphic encryption on gpus: An implementation
using cuda. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 70–95, 2018.

[5] Navid Alamati and Chris Peikert. Three’s compromised too: Circular insecurity for
any cycle length from (ring-) lwe. In Annual International Cryptology Conference,
pages 659–680. Springer, 2016.

[6] Martin R Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin E Lauter, et al. Homo-
morphic encryption standard. IACR Cryptol. ePrint Arch., 2019:939, 2019.

[7] Martin R Albrecht and Amit Deo. Large modulus ring-lwe ≥ module-lwe. In In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, pages 267–296. Springer, 2017.

[8] Martin R Albrecht, Pooya Farshim, Jean-Charles Faugere, and Ludovic Perret. Polly
cracker, revisited. In Advances in Cryptology–ASIACRYPT 2011, pages 179–196.
Springer, 2011.

80



[9] Martin Albrecht et al., 2017-2020.

[10] Martin Albrecht et al., 2018.

[11] Martin Albrecht et al., 2019.

[12] Asma Aloufi, Peizhao Hu, Harry WH Wong, and Sherman SM Chow. Blindfolded eval-
uation of random forests with multi-key homomorphic encryption. IEEE Transactions
on Dependable and Secure Computing, 2019.

[13] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In Annual Cryptology Conference, pages 297–314. Springer, 2014.

[14] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Multi-
key fully-homomorphic encryption in the plain model. In Theory of Cryptography
Conference, pages 28–57. Springer, 2020.

[15] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Ad-
vances in Cryptology-CRYPTO 2009, pages 595–618. Springer, 2009.
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