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Abstract

Models of infectious processes are a common feature in the landscape of applied math-
ematics. It is rare that these processes are isolated from other significant dynamics in
nature, and therefore we can incorporate some of the complexity inherent in real systems
by coupling infections to major features of the ecosystems they inhabit. Infectious pro-
cesses can take many forms, but in this thesis we consider three: the COVID-19 pandemic,
the invasion of eastern North American forests by wood-borne pests, and the outbreak
cycles of an endemic forest pest. The first chapter covers a model of Sars-CoV-2 in a
structured population, coupled with a replicator equation representing sentiment towards
the use of non-pharmaceutical interventions. We use this human-environment model of
to compare the efficacy of vulnerable-first and transmission-preventing age structured vac-
cination strategies. The buildup of natural immunity in a population combined with a
low vaccination supply is shown to cause a transmission-preventing vaccination strategy
to be more effective. The second chapter considers a spatially structured model of forest
pest contagion over an empirically-derived network of forest patches in eastern Canada.
Since these pests can frequently be spread long distances by wood transport, we couple
this model to the sentiment of local populations towards avoiding firewood transport from
outside their area. Three possible countermeasures to the spread of the invasive pest are
compared: social incentives, direct interception of infested firewood, and quarantine of
patches. The level of effort needed to significantly reduce forest damage with any of these
methods is substantial and unlikely to be implemented. The final chapter extends a model
of mountain pine beetle (MPB) in western north american pine forests to incorporate tree
mortality due to wildfire. We find that wildfire acts as a disturbance that increases the
heterogeneity in age structure, and therefore is able to increase the resilience of the for-
est to outbreaks of MPB. A targeted thinning procedure aimed specifically at increasing
heterogeneity in the forest age structure is proposed and shown to be highly effective at
reducing the severity of outbreak. The effectiveness of targeted thinning in the manner
described further emphasizes the importance of heterogeneity in forest stand structure.
Each model tests the importance of indirect protection in preventing the spread of an in-
fectious agent through a specific host population, with respect to key parameters. Models
let us use counterfactuals to gain potentially invaluable understanding of these complex
human-environment systems.
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Chapter 1

Introduction

I am writing this introduction sitting in my living room in Kitchener, Ontario, staring
at the dead ash tree which overlooks the empty lots bordering my home. Ash (Fraxinus
sp.) were a common group of trees planted along city streets in the eastern Unites States
and Canada until the introduction of the emerald ash borer (Agrilus planipennis, EAB) to
North America in the 1990s [52]. In the past two decades, the emerald ash borer (Agrilus
planipennis, EAB) has spread throughout the region, killing about 99% of the ash trees in
the regions they invade [51, 95]. Once a prominent feature of deciduous woodlands in this
area, Fraxinus is now limited to rare pockets that have escaped the insect, and seedlings
too small to be infested. This narrative is a familiar one. The American chestnut (Castanea
dentata) was once a major part of the carolinian forests, an important source of lumber and
food. It was almost completely wiped out as the chestnut blight (Cryphonectria parasitica)
spread throughout eastern North America in the 19th and 20th centuries. Infectious agents
in this way shape the landscapes we inhabit and the ecosystems we exist within. Of course,
infectious agents are not limited to arboreal hosts: I have been in my living room staring
at this dead ash tree for the past year, sheltering from the global COVID-19 pandemic.

The various waves of the Black Death, the 1918 influenza pandemic, the HIV/AIDS
pandemic, and the current COVID-19 pandemic, have irreversibly shaped our culture.
Endemic infectious disease was a massive driving force in the formation of human societies
everywhere until very recently. Only in the past century have some parts of the world
been able to escape the spectre of endemic diseases such as malaria, polio, influenza, and
measles, primarily through the invention of vaccination and understanding of disease spread
dynamics. John Snow is considered to be one of the first epidemiologists, for his study of
the spatial distribution of London Cholera outbreaks [194, 42], but the tools used in the
field have evolved considerably since that time. Compartmental models have been one of

1



S I R
βSI γI

Figure 1.1: Diagram of population
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Figure 1.2: An infection represented by an SIR
model, with β = 0.4, γ = 0.08, S(0) = 0.99, and
I(t) = 0.01.

the main tools used to forecast outcomes and mitigation strategies during recent outbreaks
of infectious agents [41]. Due to the ongoing pandemic, the general public is probably more
aware than ever before of these models.

Compartmental models for the spread of infectious diseases are usually considered to
have been introduced to the field by public health researchers, such as Hamer, Kermack,
and McKendrick [91, 115, 42, 72]. This class of models divides the population into homoge-
nous compartments, and describe the rate of movement between these compartments. The
quintessential compartmental model is the SIR model (equations 1.3), so-called for its di-
vision of a population into susceptible (the S(t) variable), infected (the I(t) variable), and
recovered (the R(t) variable) compartments.

dS

dt
= −βSI (1.1)

dI

dt
= βSI − γI (1.2)

dR

dt
= γI (1.3)

The SIR model (Figures 1.1,1.2) describes a population undergoing an infection that
confers complete immunity after one has been infected, under a great number of simpli-
fying assumptions: each compartment is homogenous, the probability that an individual
recovers is constant per unit time, and the law of mass action. The law of mass action
assumes that each individual in the I compartment is infected at a rate β of infecting any
given individual in the S compartment per unit time. It follows that for each infected
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individual, βS people are expected to be infected per unit time, and therefore the total
number of infections is expected to be βSI, which is the term removed from the S compart-
ment and added to the I compartment. However, except during office icebreaker games,
people do not mix homogeneously, so the assumption of homogeneity is a major drawback.
Therefore, a common extension to this model is to add more structure, usually through
further subdivision of the compartments [97]. For example, heterogeneity primarily de-
pendent on population age can be represented by a chain of compartments [96]. This idea
can be also taken to its continuum limit yielding a system of hyperbolic partial differential
equations [15] which describe the evolution of a continuous population age distribution.
Spatial heterogeneity in host populations can be treated with reaction diffusion equations
[176], but it can also be represented by systems of ordinary differential equations connected
in a network, sometimes called a metapopulation model [103, 126, 60, 153]. In contrast to
a continuum of hosts distributed through space, this network formulation represents ho-
mogenously mixed groups that exchange hosts or infections with other homogenous groups.
The popularity of this approach is probably due to their ability to easily represent different
spatial topologies, and its resemblance to modern population patterns as tight communi-
ties of individuals connected by transport [24]. From the initial work on these models, the
invention of computers and numerical integration methods have enabled researchers to get
useful results from even the most complex elaborations on this theme.

1.1 Sars-CoV-2

It is difficult to overstate the damage and loss of life that the ongoing COVID-19 pandemic
has caused or exacerbated in the past year [144, 1]. The first human case of Sars-CoV-2
occurred in late 2019 in central China, almost certainly transmitted from an animal host,
very likely a bat [13, 175, 224]. The virus soon spread throughout the world, and was
declared a pandemic by the World Health Organization (WHO), on March 11th, 2020
[2]. Prior to the development, manufacture, and distribution of an effective vaccine, non-
pharmaceutical interventions (NPIs) were the only option for control of the virus. We
can distinguish two types of NPIs, scalable NPIs which require population participation
(e.g. face masks, social distancing, hand washing) and those that do not (e.g.surface
cleaning, increased ventilation). Compartmental models have been invaluable in modeling
the spread of Sars-CoV-2 [200] and assessing the planning and efficacy of NPIs. Anderson et
al. [16] use a compartmental model to assess efficacy of provincial lockdown restrictions on
infection rates in British Columbia, Canada. They define two SEIR (Susceptible-Infected-
Recovered-Exposed) models, one which corresponds to individuals using NPIs (primarily
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contact reduction), and another where NPIs are absent. Data from British Columbia, at
least when the study was conceived, only contained the number of reported cases for each
day, so the authors also include a stochastic model for estimating the delay from the actual
case occurrence date to case report date. Fitting these models to the data they show
that indeed, physical distancing policy was able to reduce the contact rate of people in
British Columbia, more than was necessary to push the effective reproduction ratio below
1. In the months prior to widespread immunization, people around the world endured
various levels of NPI policy. Government policy on NPIs has ranged from comprehensive
quarantine procedures (in e.g. New Zealand, South Korea, Singapore, Vietnam) to almost
nothing at all (e.g. some of the United States, Sweden, Brazil). In the outcomes of the
aforementioned countries, empirical research, and modelling studies, NPIs have been shown
to be an effective method for the control of COVID-19 [76, 75, 66].

1.2 Imitation dynamics

The demonstrated effectiveness of NPIs implies that the massive morbidity and mortality
over the past year is not simply a natural disaster but a humanitarian one. Since our
survival depends on our ability to construct a world in which people are incentivized to
centre the well-being of others, any attempt to model human outcomes of the pandemic
should also attempt to model the incentive structures we operate within (under the incen-
tive theory of behavior). Game theory provides a simple, but effective framework for many
of the aforementioned systems [17, 111]. In a game theoretical sense, scalable NPI usage
can be viewed as a prisoners dilemma in that everyone either cooperates or defects with
the practice of using certain NPIs, and the decision to defect or to cooperate is based on a
combination of the perceived payoff to do so, and the influence of the rest of the population
[178]. Table 1.3 shows the payoff matrix of this 2-player game. Of course in real life, we
are all playing this game, all the time, with everyone.

The simplest way to approximate the time evolution of a such a game is with the
one-dimensional replicator equation, which approximates these dynamics in terms of the
population average [100]. Specifically, we introduce a variable x(t) which represents the
proportion of people adopting a strategy, then the replicator equation 1.4 gives the time-
evolution of x(t) in terms of the payoff for cooperating over defecting, p(x, t). We see
immediately that this equation, disregarding p(x, t) = 0, has two steady states: x = 1 and
x = 0. Given p(x, t) constant, the population will approach whichever point it is initially
closer to.
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P1
P2 use NPI don’t use NPI

use NPI

low risk,
NPIs unpleasant

low risk,
NPIs unpleasant

med risk,
NPIs unpleasant

med risk

don’t use NPI

med risk

med risk,
NPIs unpleasant

high risk

high risk

Figure 1.3: NPI adoption as a two-player game (between P1 and P2).

dx

dt
= σx(1− x)p(x, t) (1.4)

This formulation has been also used to model vaccination sentiment in a variety of
scenarios [156, 29, 27, 28]. In this context, “cooperation” refers to the strategy of getting
a widely-available vaccine, and the cooperation payoff function is usually of the form in
equation 1.5. The population is assumed to have a constant payoff to avoid vaccination
(in many cases, just due to inconvenience) and a payoff to vaccinate proportional to I, the
prevalence of infection in the model.

p(x, t) = −c+ ρI (1.5)

A prisoner’s dilemma formulation and model based upon equation 1.4 coupled to an
application-specific model (in the above case, disease dynamics), can also be applied to
human-environment models in ecology. In particular, it has been used to model conserva-
tion responses coupled to ecosystem dynamics in contexts such as forest-grassland mosaics
[104, 94], global climate [48], coral reefs [199], agricultural land use [85]. I will focus on
the application of imitation dynamics to forest pest transport, and the use of NPIs in the
context of the COVID-19 pandemic.
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1.3 Forest pests in eastern North America

The term “forest pests” covers a broad range of infectious agents that are responsible for
forest tree damage and mortality. Major invading forest pests in eastern North America
include: the Asian longhorned beetle (Anoplophora glabripennis), the butternut canker
(Ophiognomonia clavigignenti-juglandacearum), Lymantria dispar dispar, dutch elm dis-
ease Ophiostoma ulmi, and the aforementioned EAB (Figure 1.4). Together, these non-
native pests kill 5.53 teragrams of carbon worth of trees each year, on an order of magnitude
comparable to forest fires in North America [74]. Non-native insect invaders are usually
introduced by accident. The majority of recently introduced species are a result of careless
global trade, with new individuals arriving in lumber, live plants, or similar goods [43].
Models for the spread of these insects are often inspired by models for infectious diseases
in humans. Research in mathematical ecology generally uses the related Lotka-Volterra
model for host-parasitoid dynamics [72], but SIR models can be a natural choice because
they focus on the time-evolution of the host populations, which is often the more useful
quantity [72].

Barlow et al. [25] couple a compartmental model of an invading forest pest to hu-
man travel patterns. Humans have been shown to be a common vector for forest pests
[46, 117, 217], so our effect on the long-distance spread of forest pests is important to under-
stand. They assume that forests occur as homogenously mixed patches, each with its own
compartmental dynamics. Transport between each patch is assumed to be proportional to
local sentiment towards firewood transport. Their model for human travel behavior uses
imitation dynamics, where the payoff for travel is a function of the price of firewood and
the perceived level of pest infestation in a patch. Barlow et al. show that, at least with
a small number of patches, lowering the cost of firewood is generally effective at reducing
equilibrium infestation. Education on the risk of firewood transport, corresponding to an
increase the level of concern for infestation levels in a local patch, can also be effective in
their model. They find that a drawback of education as a tactic is that resilience to pest
reintroduction is low, because transport behavior returns to normal after pests populations
have dropped. In chapter 3 we extend their model to a realistic transport network, and
include pest mitigation strategies that explicitly use the spatial heterogeneity in the model.
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Figure 1.4: An EAB on a penny [180]

Figure 1.5: MPB-killed lodgepole pines
in Manning Park, British Columbia,
Canada [216]

1.4 Mountain pine beetle (MPB) and fire-driven for-

est ecosystems of the Western Cordillera

The coniferous forests of the western cordillera of North America are the subject of the
model presented in chapter 4. The Canadian section of these forests are primarily composed
of a mixture of Pinus sp., namely lodgepole pine (Pinus Contorta), but also ponderosa
pine (Pinus ponderosa) [44]. The fire regimes in these forests are generally characterized
by frequent, low to mixed severity fires depending on elevation and climactic conditions
[3, 19]. In these regions, there are also a few other dominant forest types: those dominated
by Douglas Fir (Pseudotsuga menziesii), and those dominated by subalpine spruce (Abies
lasiocarpa). These other forest types become dominant in areas which experience wetter
or cooler climates, as they are less drought tolerant, and also less fire resistant [109].
Therefore, the lodgepole pine forests are dependent on a frequent fire regime to maintain
climax lodgepole forests. They are very rapidly growing when young, possess (usually)
serotinous cones, and maintain massive seed banks in the soil to rapidly colonize the area
after disturbances [133, 134].

Besides wildfire, MPB (Dendroctonus ponderosae) is the most significant disturbance
in these forest types. Endemic to this ecosystem, MPB most commonly attacks lodgepole
pine in Canada [183] (Figure 1.5), but it can attack and reproduce within all of the pine
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species in North America, and during outbreaks has been recorded to attack spruce and
fir trees within its range [81]. MPB, and bark beetles more generally, exhibit highly cyclic
lifestyles. For most of the year, they exist in the phloem of the tree first as eggs, then
as larvae, until they are mature enough to emerge and fly to new hosts. The emergence
of MPB occurs in late summer, although it is heavily dependent on the climate that year
[32]. While their flight capability is limited, MPB can use air currents to colonize trees
over 20km away from their place of birth [190]. When individuals find a suitable host, they
release pheromones that attract other flying beetles and triggering a mass attack behaviour.
This behaviour functions to overwhelm the defenses of the host tree. A successful attack
results in the MPB laying their eggs in the phloem of the new host tree, and the cycle
repeats. Older trees with thicker phloem are most susceptible to MPB attack, and they
are generally the first to be colonized, with MPB attacking progressively less suitable
hosts as population densities rise [183]. Endemic periods of low MPB density give rise to
outbreaks based on a variety of factors, such as density of good hosts, climate, and possibly
wildfire damage [183]. Although MPB has always exhibited outbreak cycles, in the past two
decades, outbreak sizes have exceeded historically recorded levels probably due to increases
in winter temperatures and higher densities of mature trees [33, 183]. Recently, jack pine
Pinus banksiana stands in northern Alberta, and the Northwest Territories, have been
attacked by MPB as they expand their range north and eastward [65, 52]. Understanding
the holistic dynamics of these ecosystems, and the role that MPB takes within them, will
be key to understanding the causes and effects of these unprecedented population levels.

An early model of bark beetle (a larger group to which MPB belongs) dynamics is that
of Berryman et al. [34]. Their model is not a compartmental one, rather they explicitly
represent tree (host) and MPB (pathogen) populations. It is assumed that trees T (t) ex-
hibit logistic growth up to a constant carrying capacity, and die according to a function
g(T (t), B(t)) where B(t) is the population of bark beetles at time t. Bark beetles also
exhibit logistic growth, but their carrying capacity is proportional to g(T,B). The crux of
this model is the shape of the function g. This function exhibits a threshold in T that de-
creases as the beetle population B increases, describing the ability for outbreak bark beetle
populations to more easily overcome defenses of vigorous trees. They conclude from this
model that thinning forest stands is useful to maintain resilience to bark beetle outbreaks.
Their approach is reflected in a more recent model by Lewis et al [127], which extends the
idea to an integral project model that explicitly represents the vigor distribution of the
stand, and its effect on beetle reproduction.

Mechanistic population models are widespread in bark beetle dynamics, but most wild-
fire modelling has a distinctly different flavour. In the past few decades, the field has largely
converged to physics based models which explicitly represent combustion chemistry, forest
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geography, and atmospheric fluid dynamics [130, 143, 23]. This comes from a need to
produce detailed forecasts on the precise extent, severity, and velocity of wildfires, often
in real time. There are some examples of compartmental-style models explicitly modeling
wildfires [54], but when they are coupled to forest pests often fire is modeling implicitly
[58].

1.5 Thesis Outline

In the first chapter, an age-structured impulsive differential equation model of COVID-
19 is coupled to the aforementioned imitation dynamics for physical distancing. It is
parameterized with case data from Ontario, Canada and population location data from
Google. Two primary categories of vaccination strategy were considered in this model:
vaccination of the most vulnerable populations (older age groups), or vaccination of the
most transmitting populations (according to contact distribution estimates). We analyze
how the timing, supply rate, and shutdown policies will affect the best vaccination policy
through numerical simulation of the model.

The second chapter extends the forest pest and firewood transport model of Barlow et
al. [25] to a large empirically derived network of human movement patterns between suscep-
tible forest patches. Numerical analysis of this model is done to compare the effectiveness
of three major policy categories in reducing the spread of invasive pests throughout forested
areas in Eastern Canada. We consider direct interception of human-mediated transport of
forest pests, changing behavioural incentives to transport firewood, and quarantine of the
most central areas, and combinations thereof. These strategies are assessed with respect
to total tree infections over periods of 5, 10, and 20 years.

The third chapter extends an age-structured, discrete time model of mountain pine bee-
tle population [68] to include a simplified model of yearly burn sizes. The effect of changing
fire disturbance regimes on the forest stand structure is explored through numerical simu-
lations of the parameter space. Since MPB outbreak patterns seem to strongly depend on
the density of mature trees, they are therefore sensitive to stand structure, in particular the
creation of large-even aged stands created by severe forest fires. We discuss the dynamical
regimes of this system, and argue that outbreak dynamics can be significantly influenced
by heterogeneity in stand structure. The final chapter will summarize and contextualize
these results, discuss their limitations, and outline opportunities for future work.

Each chapter studies a compartmental model of a contagious process in a human-
environment system, where the host population is given structure in either age or space.
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We compare various mitigation strategies such vaccine prioritization for Sars-CoV-2, and
forest stand thinning in our MPB-wildfire model. Counterfactuals are used to determine
the most effective mitigation strategies for each system. The three chapters are followed by
a synthesis and summary of the results from each chapter, discussion of their limitations,
and opportunities for future work.
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Chapter 2

Prioritising COVID-19 vaccination in
changing social and epidemiological
landscapes: a mathematical
modelling study

During the COVID-19 pandemic, authorities must decide which groups to prioritise for
vaccination in a shifting social–epidemiological landscape in which the success of large-
scale non-pharmaceutical interventions requires broad social acceptance. We aimed to
compare projected COVID-19 mortality under four different strategies for the prioritisa-
tion of SARS-CoV-2 vaccines. We developed a coupled social–epidemiological model of
SARS-CoV-2 transmission in which social and epidemiological dynamics interact with one
another. We modelled how population adherence to non-pharmaceutical interventions re-
sponds to case incidence. In the model, schools and workplaces are also closed and reopened
on the basis of reported cases. The model was parameterised with data on COVID-19 cases
and mortality, SARS-CoV-2 seroprevalence, population mobility, and demography from
Ontario, Canada (population 14.5 million). Disease progression parameters came from the
SARS-CoV-2 epidemiological literature. We assumed a vaccine with 75% efficacy against
disease and transmissibility. We compared vaccinating those aged 60 years and older first
(oldest-first strategy), vaccinating those younger than 20 years first (youngest-first strat-
egy), vaccinating uniformly by age (uniform strategy), and a novel contact-based strategy.

This chapter is based on the paper: Jentsch, Peter C., Madhur Anand, and Chris T. Bauch. ”Prioritis-
ing COVID-19 vaccination in changing social and epidemiological landscapes: a mathematical modelling
study.” The Lancet Infectious Diseases (2021).
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The latter three strategies interrupt transmission, whereas the first targets a vulnerable
group to reduce disease. Vaccination rates ranged from 0.5% to 5% of the population per
week, beginning on either Jan 1 or Sept 1, 2021. Case notifications, non-pharmaceutical
intervention adherence, and lockdown undergo successive waves that interact with the tim-
ing of the vaccine programme to determine the relative effectiveness of the four strategies.
Transmission-interrupting strategies become relatively more effective with time as herd
immunity builds. The model predicts that, in the absence of vaccination, 72000 deaths
(95% credible interval 40000–122000) would occur in Ontario from Jan 1, 2021, to March
14, 2025, and at a vaccination rate of 1.5% of the population per week, the oldest-first
strategy would reduce COVID-19 mortality by 90.8% on average (followed by 89.5% in the
uniform, 88.9% in the contact-based, and 88.2% in the youngest-first strategies). 60000
deaths (31000–108000) would occur from Sept 1, 2021, to March 14, 2025, in the absence of
vaccination, and the contact-based strategy would reduce COVID-19 mortality by 92.6%
on average (followed by 92.1% in the uniform, 91.0% in the oldest-first, and 88.3% in
the youngest-first strategies) at a vaccination rate of 1.5% of the population per week.
The most effective vaccination strategy for reducing mortality due to COVID-19 depends
on the time course of the pandemic in the population. For later vaccination start dates,
use of SARS-CoV-2 vaccines to interrupt transmission might prevent more deaths than
prioritising vulnerable age groups.

2.1 Introduction

The COVID-19 pandemic has imposed a massive global health burden as waves of infection
to move through populations around the world [144]. Both empirical analyses and math-
ematical models conclude that non-pharmaceutical interventions (NPIs) are effective in
reducing COVID-19 case incidence [16, 160, 205]. However, pharmaceutical interventions
are highly desirable given the socio-economic costs of lockdown and physical distancing.
Hence, dozens of vaccines are in development [136], and model-based analyses are exploring
the question of which groups should get the COVID-19 vaccine first [45, 47].

Vaccines have become available in a very different epidemiological landscape from the
early pandemic. Many populations have already experienced one or more waves of COVID-
19. As a result of natural immunity, the effective reproduction number Reff (the average
number of secondary infections produced per infected person) should be reduced from its
original value of approximately R0 = 2.2 in the absence of pre-existing immunity [98],
although viral mutations can significantly change this picture. Epidemiological theory
tells us that as R (or R0) decline toward 1, the indirect benefits of transmission-blocking
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vaccines become stronger. For instance, if Reff ≈ 1.5, such as for seasonal influenza, only
an estimated 33% percent of the population needs immunity for transmission to die out
in a homogeneously mixing population [14, 69]. This effect was evidenced by the strong
suppression of influenza incidence in Australia in Spring 2020 due to NPIs targeted against
COVID-19 [20].

This effect has stimulated a literature comparing the vaccination of groups that are
responsible for most transmission to vaccination of groups that are vulnerable to serious
complications from the infection. Natural immunity to SARS-CoV-2 will likely continue to
rise in many populations on account of further infection waves. Given these likely changes
to the epidemiological landscape before the vaccine becomes available, we suggest this
question is worthy of investigation in the context of COVID-19.

The social landscape will also look very different when vaccines become available and
this aspect is crucial to understanding the pandemic. Scalable non-pharmaceutical inter-
ventions (NPIs) like physical distancing, hand-washing and masks are often one of the few
available interventions when a novel pathogen emerges. Flattening the COVID-19 epi-
demic curve was possible due to a sufficient response by populations willing to adhere to
public health recommendations. Therefore, pandemic waves are not simply imposed on
populations – they are a creation of the population response to the pathogen. They exem-
plify coupled socio-epidemiological systems exhibiting two-way feedback between disease
dynamics and behavioural dynamics interact with one another [161].

Approaches to modelling coupled social-epidemiological dynamics vary[178, 185, 79,
210, 80]. Some models have used evolutionary game theory to model this two-way feed-
back in a variety of coupled human-environment systems [161, 27, 104, 48, 10, 223, 6].
Evolutionary game theory captures how individuals learn social behaviours from others
while weighing risks and benefits of different choices. In this framework, individuals who
do not adopt NPIs can “free-ride” on the benefits of reduced transmission generated by
individuals who do adopt NPIs [178].

Here, our objective is to compare projected COVID-19 mortality under four strategies
for the prioritisation of COVID-19 vaccines: older individuals first, children first, uniform
allocation, and a novel strategy based on the contact structure of the population. We use
an age-structured model of SARS-CoV-2 transmission, including evolutionary game theory
to model population adherence to NPIs and changes to mobility patterns. We use scenario
and sensitivity analysis to identify how strategy effectiveness responds to possible changes
in the social-epidemiological landscape that may occur before and after vaccines become
available.
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Table 2.1: Definitions of state variables
Notation Definition
Si(t) Susceptible, ith age class
S2,i(t) Vaccinated but still susceptible, ith age class
Vi(t) Vaccinated and immune, ith age class
Ei(t) Exposed, ith age class
Pi(t) Pre-symptomatic, ith age class
Ia,i(T ) Infectious and asymptomatic, ith age class
Is,i(t) Infectious and symptomatic, ith age class
Ri(t) Recovered, ith age class

2.2 Model Overview

2.2.1 Structure and parameterisation

We developed an age-structured SEPAIR model (Susceptible, Exposed, Presymptomatic,
Asymptomatic, Symptomatic, Removed) (eg.[219]) with ages in 5-year increments. Upon
infection, individuals enter a latent period where they are infected but not yet infectious
(“Exposed”). After the latent period, individuals become presymptomatically infectious,
and then either symptomatically or asymptomatically infectious, before finally entering the
Removed compartment when their infectiousness ends. State variables are summarized in
Table 2.1 We did not model testing or contact tracing explicitly, although we assume
infected individuals are ascertained at some rate. Transmission occurs through an age-
specific contact matrix, susceptibility to infection is age-specific, and we include seasonality
due to changes in the contact patterns throughout the year. To infer model parameters, we
fitted the model to Ontario COVID-19 case notifications stratified by age and time, Ontario
seroprevalence data, and Ontario mobility data. Use of seroprevalence data ensured that
our estimates of transmission were not biased by case under-reporting. Remaining model
parameter values were fixed using Ontario demographic and mortality data, and literature
on COVID-19 serial interval and incubation periods. The system of differential equations
comprising our model is solved numerically with a Tsitouras 5/4 Runge-Kutta method
implemented in DifferentialEquations.jl [173, 35].

Both schools and workplaces are closed when the number of ascertained active cases
surpasses 50%, 100%, 150%, 200%, or 250% of the peak ascertained active cases that
occurred during the first wave (the “shutdown threshold”, T), and are re-opened again
when cases fall below that threshold. Individuals interact with other individuals at a
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Figure 2.1: Compartments of the model, each block consists of 16 sub-compartments rep-
resenting age structure.

specified rate and switch between adherence and non-adherence to NPIs, including mobility
restrictions, by comparing the cost of practicing NPIs against the cost of not practicing
NPIs and thereby being subject to an increased risk of infection according to the prevalence
of ascertained cases. Both school and workplace closure and population level of adherence
to NPIs reduce transmission according to a specified efficacy.

2.2.2 Model Equations

Transmission dynamics are given by a deterministic SEPAIR model [219], modified to take
population adherence to NPIs and school/workplace closure into account, and divided into
age classes i ∈ [1, 16], where each age class contains a 5 year cohort, except for the oldest
age group which comprises the ages 75 and over. Other structure in the population, such
as family structure, was not included in the model for simplicity.

The model equations are:
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dS1
i

dt
= −rρis(t)S1

i

16∑
j=1

Cij(t)

(
Isj + Iaj + Pj

Nj

)
− τS1

i − vt (2.1)

dS2
i

dt
= −rρis(t)S2

i

16∑
j=1

Cij(t)

(
Isj + Iaj + Pj

Nj

)
− τS2

i (2.2)

dEi
dt

= ris(t)(S
1
i + S2

i )
16∑
j=1

Cij(t)

(
Isj + Iaj + Pj

Nj

)
− σ0Ei + τ(S1

i + S2
i ) (2.3)

dIai
dt

= ησ1Pi − γaIai (2.4)

dIsi
dt

= (1− η)σ1Pi − γsIsi (2.5)

dRi

dt
= γaIai + γsIsi (2.6)

dDi

dt
= Ω(D(t)) (2.7)

where ξ(t) (see Eq. 2.8) determines the seasonally varying transmission rate with
phase φ and amplitude s. vt is an impulsive term referring to the people removed from the
compartment each day from the impulsive vaccination procedure.

ξ(t) =

[
1− s cos

(
2π

365
(t− φ)

)]
(2.8)

Parameter values are defined in Table 2.2. The vaccination dynamics are an impulsive
process applied each day, described below. S1

i is the number of unvaccinated susceptible
individuals in age group i, and S2

i is the number of susceptible individuals in age group i
who have received a standard two dose course of vaccination but were not immunized. Ei(t)
is the number of exposed but not yet infectious individuals in age group i (i.e., individuals in
the latent period). Iai(t) is the number of asymptomatic infectious individuals in age group
i and Isi(t) is the number of symptomatic infectious individuals in age group i. Ri(t) is the
number of Removed (recovered, vaccinated, and deceased) individuals in compartment i.

The variable D(t) ∈ [0, 1] in the model equation dD(t)/dt = Ω(D(t)) represents the
public health authority’s reaction to the prevalence of ascertained cases and it evolves

16



according to:

Ω(D(t)) =

{
k1(1−D(t))

∑16
i=1 αi(Iai + Isi) > T

−k2D(t)
∑16

i=1 αi(Iai + Isi) ≤ T
(2.9)

This represents closure being triggered when ascertained cases exceed a threshold T , and
being lifted when cases drop below that threshold again.

The proportion x of individuals who practice NPIs such as mask wearing, handwashing,
and physical distancing, starts off at x(0) = 0.01 and evolves as:

dx

dt
= κx(1− x)

(∑16
i=1 αi(Iai + Isi)∑16

i=1Ni

− cx

)
+ pul(1− 2x) (2.10)

where κ is the social learning rate, c is the incentive to not practice NPIs, and αi is the
fraction of total cases (Ia+Is) that are reported, also known as the ascertainment rate. The
pul term is a phenomenological term that represents the effects of social heterogeneity and
influence from external populations that prevents the system from remaining arbitrarily
close to x = 0 or x = 1 for unrealistic periods of time. These equations describe a
population where individual sample other individuals at some time rate and switch between
adherence and non-adherence to NPIs with a probability proportional to the expected gain
in utility

∑16
i=1 αi(Iai + Isi) − cx. We refer the reader to existing literature for details on

the derivation of this equation [27, 104, 199, 28, 156].

Cij(t, x) is the average number of contacts per day and consists of contacts at work-
places, schools, households, and other locations, which vary depending on government
shutdown policies as well as indivdual adherence to NPIs like physical distancing and
mask use:

Cij(t, x) = CW
ij (t) + CS

ij(t) + (1− εPx)(C
O

ij + C
H

ij ) (2.11)

The contacts in each of the aforementioned places can vary as follows. At workplaces,
which can be closed by public health authorities:

CW
ij (t) =


(1− εW )C

W

ij t− tdelay > twclose, t− tdelay < twopen
C
W

ij t− tdelay < twclose
(1−D(t)(1− εW ))C

W

ij t− tdelay > twopen

(2.12)

where C
W

ij is the normal (non-pandemic) number of contact-hours per day between indi-

viduals of age i and j at the workplace [222]; C
W

ij (1 − D(t)εP ) is the reduced rate under
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workplace closure efficacy 0 < εW < 1 and closure level D(t); and tdelay represents the
delay between the decision to adopt NPIs and their impact on transmission [128]. Lower
than perfect efficacy may stem either from occasional use of workplace for critical needs
or non-authorized access, workplaces that remain open because they provide essential ser-
vices, etc. tWclose and tWopen are the times of closing and re-opening workplaces, respectively.
Similarly, for schools we have:

CS
ij(t) =


0 t− tdelay > tsclose, t− tdelay < tsopen
C
S

ij t− tdelay < tsclose
(1−D(t))C

S

ij t− tdelay > tsopen

(2.13)

All other places of exposure are governed by social processes with imperfect ability of public
health authorities to enforce mandates, and hence are governed by voluntary population
adherence to NPIs such as mask use and physical distancing as per the εPx(t) term in the
equation, where εP is efficacy of individual adoption of NPIs. In principle, contact hours
spent at home should increase as workplaces and schools are closed, but we assume that
infection probabilities will saturate rapidly with contact hours in the home. Each of the
conditional functions in equations (2.12,2.13), are represented in the model as a smoothed
step function with a steep slope, and we restrict them between 0 and 1 if the smoothing
process would cause the closure level D(t) to exceed 1.0. Finally, our interventions (school
and workplace shutdown) do not distinguish between preventing contacts in “home” versus
“other” locations. We assume the same efficacy of NPIs in home as in ”other” locations.
On one hand, individuals are less likely to use NPIs at home. On the other hand, contacts
at home are repeated and thus there is a saturating effect that can somewhat reduce the
infection risk, compared to the diversity of contacts experienced in the general community.
Additionally, our case notifications are not broken down by the location of infection and
thus we have limited ability to parameterize two difference NPI efficacy in home and ”other”
locations. As a result, we assume the same efficacy in both settings.

2.2.3 Vaccination process

Each day, the total number of individuals vaccinated is equal to
∑16

i=1 φ
Si(t)
Ni

, and the

number of individuals immunized against transmission of the virus is
∑16

i=1 vTi
Si(t)
Ni−Vi on

account of imperfect vaccination. The factor Si(t)
Ni−Vi represents vaccination of each person

with equal probability, so the probability of vaccinating a susceptible person decreases with
the fraction of susceptible individuals out of the non-vaccinated people. If there are less
than φi individuals in group S1

i , then the remainder of the vaccine is spread evenly among
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the remaining non-vaccinated groups. Individuals who are vaccinated but not immunized
due to imperfect efficacy are moved to the corresponding S2

i . We assume that a course of
vaccination will not be administered to a person more than twice.

The fraction of people who are vaccinated against disease but not against transmissi-
bility is vDi − vTi . We assume this fraction of people is still able to transmit the disease
normally, and therefore we account for them by reducing the mortality rate (see Supp.
Mortality computation).

2.2.4 Differences between parameters in the first and second
wave

To account for the differences in social response, to the first and second waves of the
infection, we assume that the social dynamics variables κ (the social learning rate), and
c (the incentive not to distance). We assume that these variables are functions of time,
which transition between two values at a time tswitch = 160 days after the beginning of the
pandemic.

κ = κ(t) = κ2

(
tanh (ks(t− tswitch)) + 1

2

)
+ κ1

(
1− tanh (ks(t− tswitch)) + 1

2

)
(2.14)

c = c(t) = c2

(
tanh (ks(t− tswitch)) + 1

2

)
+ c1

(
1− tanh (ks(t− tswitch)) + 1

2

)
(2.15)

We chose the rate of switch, ks = 0.05 to take 2 - 4 weeks.

2.2.5 Case under-ascertainment

Case under-ascertainment of the ith age group is represented by the following function:

αi(t) =

{
αi,2 t > tswitch

αi,1

(
tswitch−t
tswitch

)
t ≤ tswitch

(2.16)

where where α1,1, α2,1, α3,1 corresponds to the ascertainment in the age groups (0, 20), (20, 60), >
60 at t = 0, respectively. We assume that the ascertainment rises to a value of α1,2, α2,2, α3,2

in the age groups (0, 20), (20, 60), > 60 respectively, at t = tswitch, denoting the increase
in ascertainment throughout the first wave and into the second wave. We multiply the
infections in each age group i at time t by the corresponding αi(t) after the simulation is
finished.
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2.2.6 Baseline transmission rate

We can compute r as a function of the next-generation matrix, M = −ΘΣ−1 [67], where Θ
and Σ are defined as in equations 2.17,2.18, and soM is a function ofR0, σ0, σ1, γa, γs, η, C(t),
and N . These matrices come from the rate at which infected individuals enter and leave
the infection compartments when the system is linearized about the Ia = 0, Is = 0, P = 0
equilibrium. The basic reproduction ratio, R0, of the infection is the spectral radius of M ,
written ρ(M). We can pull r out of this expression, giving a new matrix M̂ , and write r
in terms of the other parameters: r = R0

ρ(M̂)
.

Θ =



0 . . . 0
rC1,1(0)N1

N1
. . .

rC1,n(0)N1
Nn

rC1,1(0)N1
N1

. . .
rC1,n(0)N1

Nn

rC1,1(0)N1
N1

. . .
rC1,n(0)N1

Nn

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

0 . . . 0
rC1,n(0)Nn

N1
. . .

rCn,n(0)Nn
Nn

rC1,n(0)Nn
N1

. . .
rCn,n(0)Nn

Nn

rC1,n(0)Nn
N1

. . .
rCn,n(0)Nn

Nn
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0



(2.17)
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(2.18)

2.2.7 Disease progression parameters

Transition rates for the duration of the asymptomatic infectious period and the proportion
of symptomatic cases were obtained from COVID-19 epidemiological literature [151, 123,
201]. We computed the mortality due to COVID-19 by applying the case fatality rate
obtained from [154], interpolated to 16 age groups.
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2.2.8 Initial conditions

The point t = 0 was chosen to be the day at which the province of Ontario recorded more
than 50 cases, March 10th 2020, to reduce the effects of stochasticity in the early case
counts. Let the number of observed cases of COVID-19 in age group i on March 10th 2020
be ωi. We use the age distribution of ωi to determine the age distribution for Ia(t) + Is(t).
The true number of cases that day is ωi/αi, where αi is the ascertainment rate of cases in
group i. Since we do not know the actual number of active cases, Iai(t)+Isi(t) at t = 0, we
assume the number of active cases is equal to the true number of incident cases multiplied
by a constant I0, which is also treated as a model variable to be fitted. Therefore, Isi(0) =
ηI0

ωi
αi

and Iai(0) = (1−η)I0
ωi
αi

. Similarly, we assumed that the numbers of presymptomatic
and exposed cases at t = 0 are proportional to the number of ascertained incident cases in
each age group, ωi. We fit the variables P0 and E0 so that P (0) = P0

ωi
αi

and E(0) = E0
ωi
αi

.

We assumed thatS1
i (0) = Ni − (Ia(0) + Is(0) + E(0) + P (0)), so the total number of

susceptible, unvaccinated individuals
∑16

i=1 S
1
i (0) is the population of the region (minus

the number who begin in the infected compartments), and S2
i (0) = 0, Ei(0) = 0, Ri(0) = 0

for all i. Lastly, we assumed that at t = 0, only 1% of individuals are physical distancing,
so x(0) = 0.01, and that D(0) = 0.

2.2.9 Particle filtering

We calibrated the model with data from Ontario, Canada. Since the workplace closure
opening and closing rates, k1 and k2, are not coupled with the model, we fit a step function
of the form

f(t) = εW
(
tanh k1(t− tWclose)− tanh k2(t− tWclose)

)
to the ”workplaces percent change from baseline” field of the Google mobility data [86]
for the province. We applied a particle filtering approach using intervals around selected
parameters. Intervals used for sampling appear in Table 2.2. We fit the 7-day moving
average of incident cases on each day across all age groups to the number of cases registered
by Public Health Ontario on that day [204], and also the total number of cases at the end
of the fitting window for each age group. The decrease in contact-hours due to social
distancing, x(t), was fit to the decrease in the ”Retail and Recreation” hours recorded by
Google mobility [86]. The 1.1 % (0.8 %, 1.3 %) of Ontario residents seropositive for COVID-
19 in June 2021 was also used as a fitting criterion [172]. The posterior distribution of the
parameters was estimated with the approximate Bayesian computation scheme described
in [207], with uniform priors, using the KissABC [9] library for the Julia language. The
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acceptance threshold was chosen to given acceptable variation and evaluation time. Results
are evaluated over 200 parameter points drawn from the posterior distributions.

2.2.10 Vaccination refusal dynamics

In an extension to the model explored the dynamics of the model with the added com-
plication of vaccine refusal. We introduce a variable y(t) to represent that fraction of the
population willing to be vaccinated for the virus, governed by imitation dynamics similar
to the social distancing equation 2.10. We add the following equation 2.19 to the rest of
the model equations [27, 28].

dy

dt
= κvacy(1− y)

(∑16
i=1 αi(Iai + Isi)∑16

i=1 Ni

− cvac

)
(2.19)

In the above equation, the vaccination decisions of the population are governed by a payoff
function, where cvac is the payoff not to vaccinate, and the payoff to vaccinate is propor-
tional to current the number of ascertained active infections. The initial condition for this
variable, y0 is assumed to be 0.67 from [139].

The population in age group i that refuses to be vaccinated is Ni(1− y(t)). We imple-
ment this mechanic in the model by assuming that the number of people vaccinated each
day in age group i, ψi is unchanged, except that the compartment S1

vi
is considered to be

empty when Ni(1− y(t)) people remain.

2.2.11 Model extension for vaccine efficacy against disease only

We conducted the sensitivity analysis scenario distinguishing vaccine efficacy against dis-
ease only versus vaccine efficacy against both infectivity and disease by adjusting the
case fatality rates according to vaccine coverage in the population and assumed effica-
cies. The adjustment factor is determined by the relative sizes of S1(t) and S2(t). Let
ξ1(S1(t)) = ξS1(t) be the rate at which individuals in S1(t) are infected, and similarly
ξ2 = ξS2(t) the rate at which individuals in S2(t) are infected. Let S3(t) be the number of
people at t who are immunized but still able to transmit the virus, and ξ3 = ξS3(t). We
also assume that

ξ1(t)

ξ3(t)
=

1− vDi
vDi − vTi

(2.20)

which applies given that the timescale of infection in individuals is fast compared to the
whole duration of the pandemic. The proportion of unvaccinated people who are infected
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at t is ξ1(t)
ξ1(t)+ξ2(t)+ξ3(t)

, and the fraction of vaccinated but not immunized people infected

at t is ξ2(t)
ξ1(t)+ξ2(t)+ξ3(t)

. From equation 2.20, and the model equations, we can adjust the
probability that a given person who is infected also dies at time t as

Adjusted mortality at t for age group i =
S1i(t) + S2i(t)

S1i(t) + S2i(t)
1−vTi
1−vDi

× Cases at t× µi (2.21)

2.2.12 Vaccine scenarios

We considered two dates for the onset of vaccination: 1 March 2021 and 1 September 2021.
These correspond to the end dates of a two-dose course of vaccination lasting two weeks.
We assumed it was possible to vaccinate 0.5%, 1.0%, 1.5%, 2.5%, or 5.0% of the population
per week (the “vaccination rate”, 0). Our baseline scenario assumed a vaccine with 75%
efficacy in all ages, against both infection and transmission.

The “oldest first” strategy administers the vaccine to individuals 60 years of age or
older, first. After all individuals in this group are vaccinated, the vaccine is administered
uniformly to other ages. The “youngest first” strategy is similar, except it administers
the vaccine to individuals younger than 20 years of age first. The “uniform” strategy
administers vaccines to all age groups uniformly, from the very start. The “contact-based”
strategy allocates vaccines according to the relative role played by different age groups in
transmission. This tends to prioritise ages 15-19 primarily, 20-59 secondarily, and the least
in older or younger ages. The “oldest first” strategy targets a vulnerable age group while
the other three strategies are designed to interrupt transmission.

2.3 Results

The Google mobility data that we use as a proxy for adherence to NPIs closely mirrors the
COVID-19 case notification data over the time period used for fitting (2.4, open orange
circles). Since a heightened perception of COVID-19 infection risk simulates the adoption of
NPIs, which in turn reduces SARS-CoV-2 transmission [16, 160], this exemplifies a coupled
social-epidemiological dynamic. The mirroring may furthermore represent convergence
between social and epidemiological dynamics, which has been predicted for strongly coupled
systems [191]. Moreover, the fit of the social submodel to the mobility data is as good as
the fit of the epidemic submodel to case notification data (Figure 2.4), despite the fact
that our social model consists of significantly fewer equations and a similar number of
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Table 2.2: Parameter definitions, values, particle filtering ranges, and sources.
Parameter Meaning Value [Range] Source Appears in
Ni Population in age group i see Figure 2.2 [196], interpolated Eqs. 2.1,2.2
µi COVID-19 case fatality rate in age group i see Figure 2.3 [154], interpolated section 2.2.11
Cij contact rate between class i and j see Methods [170] Eq. 2.1,2.2
R0 basic reproduction rate of infection calibrated,

[1.5, 2.5]
[98, 86, 204] section 2.2.6

r probability of transmission per contact see section 2.2.6 [67] Eq. 2.1,2.2
σ0 inverse of latent period for exposed individ-

uals
calibrated,
[0.3, 2.0]

[86, 204, 151, 123, 201] Eq. 2.3

σ1 inverse of latent period for presymptomatic
individuals

calibrated,
[0.3, 2.0]

[86, 204, 151, 123, 201] Eq. 2.4, 2.5

γa inverse of infectious period for asymptomatic
individuals

0.25/day [151, 123, 201] Eq. 2.4

γs inverse of infectious period for symptomatic
individuals

calibrated,
[0.0, 0.05]

[86, 204, 151, 123, 201] Eq. 2.5

α1,1 Ascertainment rate of class i in the first wave
(before tswitch)

calibrated,
[0.01, 1.0]

see Methods section 2.2.5

α1,2 Ascertainment rate of class i in the first wave
(before tswitch)

calibrated,
[0.01, 1.0]

see Methods section 2.2.5

α1,3 Ascertainment rate of class i in the first wave
(before tswitch)

calibrated,
[0.2, 1.0]

see Methods section 2.2.5

α2,1 Ascertainment rate of class i in the second
wave (after tswitch)

calibrated,
[0.01, 1.0]

see Methods section 2.2.5

α2,2 Ascertainment rate of class i in the second
wave (after tswitch)

calibrated,
[0.01, 1.0]

see Methods section 2.2.5

α2,3 Ascertainment rate of class i in the second
wave (after tswitch)

calibrated,
[0.2, 1.0]

see Methods section 2.2.5

ρ1 Age-specific susceptibility modifier, ages 0-
20

calibrated,
[0.25, 3.0]

see Methods Eq. 2.1,2.2

ρ2 Age-specific susceptibility modifier, ages 20-
60

calibrated,
[0.25, 3.0]

see Methods Eq. 2.1,2.2

ρ3 Age-specific susceptibility modifier, ages
60+

calibrated,
[0.25, 3.0]

see Methods Eq. 2.1,2.2

η fraction of symptomatic infections 0.15 [145] Eqs. 2.4, 2.5
εP efficacy of physical distancing calibrated,

[0.3, 0.9]
[86, 204] Eq. 2.11

κ social learning rate calibrated,
[1000, 16000]

[86, 204] Eq. 2.10

s seasonality calibrated,
[−0.3, 0.3]

[86, 204] Eq. 2.10

φ seasonality phase −30 days see Methods Eq. 2.8
vTi

Vaccine efficacy against transmissibility and
disease for individuals in group i

75% [157] section 2.2.11

vDi
Vaccine efficacy against disease only for in-
dividuals in group i

75% [157] section 2.2.11

I0 Initial ratio of active cases to incident cases calibrated, [1, 10] [86, 204] section 2.2.8
P0 Initial ratio of presymptomatic cases to inci-

dent cases
calibrated, [1, 10] section 2.2.8

E0 Initial ratio of exposed cases to incident
cases

calibrated, [1, 10] section 2.2.8

ψi Number of vaccines allocated for individuals
in group i each day

varied by scenario section 2.2.3

T Threshold in active reported cases for
school/workplace closure

varied by scenario Eq. 2.9

k1 Workplace shutdown rate, first wave 0.31432 fitted, see Methods Eqs. 2.9,2.15
k2 Workplace opening rate, second wave 0.0056 fitted, see Methods Eqs. 2.9,2.15
c1 Incentive not to distance, first wave calibrated,[0.0, 0.5] [86, 204] Eqs. 2.9,2.15
c2 Incentive not to distance, second wave calibrated,[0.0, 0.5] [86, 204] Eqs. 2.9,2.15
pul social heterogeneity parameter calibrated,

[0.00, 0.05]
[86, 204] Eq. 2.10

tsclose School shutdown date March 14th, 2020 [84] Eq. 2.13
tsopen School opening date September 8th,

2020
[83] Eq. 2.13

twclose Work shutdown date March 17th, 2020 [171] Eq. 2.12
twopen Work opening date June 12th, 2020 [171] Eq. 2.12

εw Work shutdown effectiveness 0.86 fitted, see Methods Eq. 2.12
tswitch Beginning of second wave 160 days see Methods Eq. 2.15
tdelay Delay in impact of interventions on transmis-

sion
28 days [128] Eqs. 2.13,2.12

ks Rate of change from first to second wave 0.05 see Methods Eq.2.15
κvac Social learning rate of vaccination [3e5, 20e5] fitted, see Methods Eq.2.15
cvac Incentive not to vaccinate [1.0e-9, 15e-9] fitted, see Methods Eq. 2.19
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Figure 2.2: Population age distribution
of Ontario, interpolated to 16 age classes
[196].

Figure 2.3: Case fatality of COVID-19
by age, mu, interpolated to 16 age classes
[154].

parameters as our epidemiological model. This shows how modelling population behaviour
during a pandemic can be accomplished with relatively simple models.

The model predicts additional pandemic waves from Fall 2020 onward, not only with
respect to COVID-19 cases but also population adherence to NPIs and periods of school and
workplace closure (Figure 2.5). The impact of the four strategies on COVID-19 cases and
deaths depends on when the vaccine becomes available and how quickly the population can
get vaccinated. Across a large parameter regime, vaccinating 60+ year-olds first prevents
the most deaths out of all four strategies if vaccination begins in January 2021, whereas
the uniform or contact-based strategies prevent the most deaths if vaccination begins in
September 2021, unless the vaccination rate is very small or very large. More specifically,
we identify three regimes for model dynamics. We explore them through plots of infection
incidence over time (Figure 2.6); plots of the percentage reduction in mortality under all
four strategies, as they depend on the vaccination rate (Figure 2.7) and shutdown threshold
(Appendix, Figure 10, 11); and plots showing which of the four strategies prevents the most
deaths as a function of the shutdown threshold and the vaccination rate (Figure 2.3).

In the first regime, vaccination starts soon and the vaccination rate is relatively high
(January availability, vaccinating 1.0% or more of the population per week). A third
wave in Fall 2021/Winter 2022 is thereby prevented (Figure 2.6a and Appendix, Figure
7). In this regime, enough people are vaccinated sufficiently far in advance to prevent a
third wave, but the “oldest first” strategy prevents more deaths than the other strategies
(Figure 2.7a, 2.3a).

In the second regime, either vaccination starts early but the vaccination rate is too
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Figure 2.4: A proxy for adherence to NPIs mirrors COVID-19 case reports in both data and
model. (a) COVID-19 case incidence by date of report in Ontario, 7-day running average
(circles) and ascertained case incidence from best fitting models (lines). (b) Percentage
change from baseline in time spent at retail and recreation destinations (orange circles) and
at workplaces (green circles) from Google mobility data, and proportion of the population
x adhering to NPIs (orange line) and workplace shutdown curve (green line) from fitted
model. Parameter values are provided in table 2.2. Shaded regions contain %95 of the
solutions, taken over particles sampled from posterior.
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Figure 2.5: Social and epidemiological dynamics interact to determine pandemic waves
and vaccine strategy effectiveness. (a) Number of ascertained incident COVID-19 cases,
(b) proportion x of the population practicing NPIs, (c) level of school and workplace
closure (note that curves for different vaccination strategies overlap), and (d) number of
individuals with natural or vaccine-derived immunity versus time. Ontario Population size:
14.6 million. Shutdown occurs at T = 200% of peak cases in the first wave, vaccination
starts in January 2021, vaccination rate is ψ0 = 0.5% per week. Other parameter values
are provided in table 2.2. Shaded regions contain %95 of the solutions, taken over particles
sampled from posterior.
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Figure 2.6: Three model regimes: (a) timely vaccination prevents third wave, (b,c) partial
vaccination and indirect protection help during the third wave, and (d) slow and late
vaccination fails to prevent third wave. Projections of ascertained incident COVID-19
cases if vaccination begins in (a,b) January or (c,d) September, and if vaccinating (a,c)
1.5% or (b,d) 0.5% of the population per week. Ontario Population size: 14.6 million.
T = 200%. Other parameter values are provided in table 2.2. Shaded regions contain %95
of the solutions, taken over particles sampled from posterior.
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Figure 2.7: Percentage reduction in mortality for four strategies depends on vaccination
start date and the vaccination rate. Violin plots of the percent reduction in mortality
under the four vaccine strategies, relative to no vaccination, as a function of the vaccination
rate φ0, for (a) January and (b) September 2021 availability. Horizontal lines represent
median values of posterior model projections. Shutdown threshold T = 200% and other
parameter values are provided in table 2.2. The projected number of deaths in the absence
of vaccination was 72000 (95% credible interval 40000–122000) from Jan 1, 2021, to March
14, 2025, and 60000 (31000–108000) from Sept 1, 2021, to March 14, 2025.
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[Best of four strategies depends on shutdown threshold T and vaccination rate φ0.]Best
of four strategies depends on shutdown threshold T and vaccination rate φ0. A later
start to vaccination favours transmission-interrupting strategies for moderate vaccination
rates. Each parameter combination on the plane is colour coded according to which of the
four strategies prevented the most deaths, on average across all model realizations, for (a)
January and (b) September 2021 availability. Other parameter values are provided in table
2.2.
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Figure 2.8: More pre-existing natural immunity makes transmission-interrupting strategies
more effective. Frequency histogram of the percentage of the population with natural
immunity for each strategy, taken from simulations where that strategy reduced mortality
most effectively, for (a) oldest first, (b) youngest first, (c) uniform, and (d) contact-based
strategies. The most effective strategy is defined as the one that reduced mortality the
most across the largest number of model realizations. Vertical dashed lines denote median
values of the distribution. Other parameter values are provided in table 2.2.
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low (January availability, 0.5% or less vaccinated per week, Figure 2.5, 2.6b, 2.7a), or
vaccination starts late but the vaccination rate is high (September availability, vaccinating
1.5% or more per week, Figure 2.6c, 2.7b and appendix, Appendix, Figure 8). In this
intermediate scenario, a sufficient proportion of the population is vaccinated for indirect
protection from the vaccine to become important during the third wave, but not enough
individuals are vaccinated to completely prevent it. As a result, the uniform and contact-
based strategies are more effective than the 60+ first strategy, but the “youngest first”
strategy does worst of all (Figure 2.5b, 2.6c, 2.7, 2.3). The under-performance of the
youngest first strategy occurs because in populations with strong age-assortative mixing,
the indirect benefits of vaccination are “wasted” if vaccination is first concentrated in
specific age groups before being extended to the rest of the population. The 60+ first
strategy is less affected by this because the COVID-19 case fatality rate is high in this age
group. However, as the vaccination rate becomes very high, the effectiveness of all four
strategies converges, since the entire population is vaccinated quickly (Figure 2.7b).

In the third regime, vaccination starts late and the vaccination rate is low (September
availability, 1.0% or less vaccinated per week; Figure 2.6d and Appendix, Figure 9). This
scenario does not allow enough time for indirect protection from vaccination to become
strong. As a result, the oldest first strategy prevents more deaths than the other three
strategies (Figure 2.7b, 2.3b). Overall mortality is higher for all strategies, on account of
the delayed rollout of the vaccine. The relative performance of the strategies in these three
regimes is generally unchanged across the full range of values for the shutdown threshold
(Appendix, Figure 10, 11).

Frequency histograms across all stochastic model realizations showing what percentage
of the population has natural immunity at the start of a vaccine program, when a particu-
lar strategy was shown to work best, illustrate the role of indirect protection (Figure 2.8).
In simulations where the “oldest first” strategy did best, the percentage of the population
with natural immunity tends to be relatively low. This is expected, since indirect protec-
tion from vaccines is weaker when few people have natural immunity upon which vaccine
indirect protection can build. But when the uniform or contact-based strategy does best,
more simulations exhibit a high level of natural immunity at the start of vaccination. We
note that the variance in these histograms is high, which underscores the role of other
factors in the model such as timing and interaction between social and epidemiological dy-
namics. In a similar vein, if we plot the percentage reduction in mortality for hypothetical
vaccination start dates ranging from September 2020 to September 2021, we observe that
the transmission-interrupting strategies become relatively more effective than the “oldest
first” strategy for later vaccination start dates, because herd immunity has time to increase
before the start of the vaccine program (Appendix, Figure 12).
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We also studied how the best strategy changes depending on vaccine efficacy ranging
from 40-90% in 60+ year-olds and in < 60 year-olds (Appendix, Figure 13). For January
vaccine availability, the “oldest first” strategy is best, even when vaccine efficacy is lower in
60+ year-olds than in those under 60 years of age. For September vaccine availability, the
uniform or contact-based strategies do best, except when vaccine efficacy in 60+ year-olds
is higher than 70% and also exceeds the vaccine efficacy in < 60 year-olds.

We modelled dynamics of vaccinating behaviour after vaccines become available (Ap-
pendix, Figures 14, 15, 16). Due to lack of empirical data, we explored a wide range for
the social learning rate and the perceived relative cost of vaccination versus infection. The
results suggest that a sufficiently high perceived cost of vaccination allows the uniform or
contact-based strategies to outperform the “oldest first” strategy, especially for January
vaccine availability, except when the vaccine social learning rate is also high (Appendix,
Figure 14). Vaccine refusal increases as the vaccine cost rises (Appendix, Figures 14, 15,
16). Since vaccine refusal in the targeted age group forces vaccination of other age groups
instead, it makes all strategies behave more like the uniform strategy, although age-specific
behaviours could change these predictions.

We ran simulations with R0 = 2.5 for December 2020 onward and found that “oldest
first” was more effective across a broader region of parameter space for September availabil-
ity, particularly at higher vaccination rates (Appendix, Figure 18). This is expected, since
indirect protection is less effective when R0 is higher. We also ran simulations with 30%
higher and lower ascertainment for December 2020 onward to capture potential changes to
COVID-19 testing and found that it had little impact on which strategy was most effective
(Appendix, Figures 19, 20). Similarly, higher or lower social learning rates for NPIs had
little impact on the predictions (Appendix, Figures 21, 22).

We also analyzed a scenario where the vaccine efficacy against disease can be greater
than the vaccine efficacy against infectivity. We found that increasing the efficacy against
disease up to 95%, while holding the efficacy against infectivity constant at 75%, caused
a slight improvement in the effectiveness of all four strategies, especially for the “oldest
first” and uniform strategies (Appendix, Figure 23). Finally, we generated results for our
baseline scenario, but using a more stringent acceptance threshold for our Bayesian particle
filtering algorithm. We found that our results were qualitatively unchanged (Appendix,
Figure 25).
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2.4 Discussion

Our social-epidemiological model suggests that if a COVID-19 vaccine becomes available
sufficiently late in the pandemic, using SARS-CoV-2 vaccines to interrupt transmission
might prevent more COVID-19 deaths than using the vaccines to target those 60+ years
of age, depending on when the vaccine becomes available and how quickly the population
can be vaccinated. These results are driven by the fact that the vaccine may only become
available after populations have had one or more waves of immunizing infections. As a
result, the effective reproduction number Reff could be significantly closer to 1 than the
basic reproduction number R0 ≈ 2.2 that applies to susceptible populations. In this regime,
vaccines that reduce transmission have disproportionately large indirect protective effects
[14].

The Google mobility data that we use as a proxy for adherence to NPIs closely mir-
rors the COVID-19 case notification data over the time period used for fitting (Figure 1,
open orange circles). Since a heightened perception of COVID-19 infection risk stimulates
the adoption of NPIs [218], which in turn reduces SARS-CoV-2 transmission [16, 160],
this exemplifies a coupled social-epidemiological dynamic. This mirroring may represent
convergence between social and epidemiological dynamics, which has been predicted for
strongly coupled systems [191]. Moreover, the fit of the social submodel to the mobility
data is as good as the fit of the epidemic submodel to case notification data, despite the
fact that our social model consists of significantly fewer equations and a similar number of
parameters as our epidemiological model. This shows how modelling population behaviour
during a pandemic can be accomplished with relatively simple models.

Several studies have used compartmental models to study prioritisation of age groups
for COVID-19 vaccination [45, 47, 141]. These models vary widely in terms of study
populations, representation of population heterogeneity, interventions, and assumptions
about when vaccination starts. Similar to our results, Matrajt et al [141] find that the
level of pre-existing immunity strongly dictates outcomes: when pre-existing immunity
is high, strategies that distribute the vaccine more evenly across age groups rather than
prioritising older age groups are more effective. Buckner et al [47] find that targeting
60+ year-olds is best for reducing mortality. They assumed that vaccination begins in
December 2020, and they base initial conditions on case notifications in the United States
in that month. Similarly, Bubar et al [45] find that vaccinating 60+ year-olds works best for
reducing mortality for vaccine programs starting in July 2020 in Belgium, or August 2020
in New York City. Our results agree with Refs. [45, 47] for the scenario of January 2021
vaccine availability. However, we find more deaths can be prevented by first vaccinating
other age groups for a September 2021 start. Such a late vaccine start date was not
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analyzed in [45, 47] although their findings might change if the models were re-initialized
to accommodate vaccination starting in September 2021.

Our analysis was limited by its focus on prioritisation of age groups. We did not
model other sources of heterogeneity such as geography, socio-economic status, sex, or
race–all of which are important determinants of disease burden in this highly unequal
pandemic. We did not model outbreaks in long-term care facilities, where the dynamics of
transmission and indirect protection differ from the general population. Similarly, we did
not distinguish healthcare or other essential workers. However, many of these individuals
are working age adults, and thus vaccinating them first among other working adults is
consistent with our uniform and contact-based strategies. For our baseline analysis we
assumed the vaccine blocks transmission as well as it prevents COVID-19 disease. But in
general, vaccines have differing efficacy in this regard [99]. This can reduce the relative
benefits of strategies intended to interrupt transmission. We used a single population
model, but inter-population mobility can influence transmission dynamics: a large influx
of infectious persons from another population can weaken the indirect protection afforded
by vaccines.

We used changes to baseline time spent at retail and recreational outlets to represent
population adherence to NPIs. Such mobility data is an imperfect proxy for physical
distancing and will not capture mask use or hand-washing. We did not have high resolution
mobility data on these practices, although in future it may be possible to infer information
about these practices by combining information from phone surveys with online social
media data. Our simple ascertainment process in the model was designed to implicitly
capture the effects of COVID-19 PCR testing, contact tracing and isolation (TTI). But
without explicitly representing them, it is impossible for us to study combined strategies
of vaccination and TTI, or to anticipate how specific changes to TTI would influence our
findings.

Finally, the model was parameterised with data from Ontario, Canada. For instance,
the emergence of a more transmissible strain of SARS-CoV-2 would weaken the indirect
protection provided by a vaccine that reduces transmission. At the same time, we note
that our findings rely upon a robust epidemiological effect that occurs when Reff becomes
sufficiently small. Therefore, the only thing that may change in other settings is the timing
of the switch to vaccine strategies that interrupt transmission.

We opted for a coupled social-epidemiological model on account of the importance of
interactions between population behaviour and disease dynamics for the control of COVID-
19 in the absence of preventive pharmaceutical interventions. Our model generated sig-
nificantly different projections in our sensitivity analysis where population behaviour was
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assumed constant, which is similar to conventional approaches to transmission modelling.
Our social model is less complicated than our epidemiological model and despite this, the
coupled social-epidemiological model fitted population-level behaviour as readily as it fitted
the epidemic curve. Predicting behaviour is fraught with uncertainty, but so is predicting
an epidemic curve. Moreover, digital data on behaviour and sentiment that can be used
to model social dynamics is increasingly available [184]. Given this, we suggest a role for
more widespread use of social-epidemiological models during pandemics.

To apply these results to COVID-19 pandemic mitigation, large-scale seroprevalence
surveys before the onset of vaccination could ascertain the level of a population’s natural
immunity. Age-structured compartmental models could be initialized with this information
to generate population-specific projections. In populations where SARS-CoV-2 seroposi-
tivity is high due to a Fall/Winter 2020 wave, vaccinating to interrupt transmission may
reduce COVID-19 mortality more effectively than targeting vulnerable groups.

36



Chapter 3

Go big or go home: a model-based
assessment of general strategies to
slow the spread of forest pests via
infested firewood

3.1 Abstract

Invasive pests, such as emerald ash borer or Asian longhorn beetle, have been responsible for
unprecedented ecological and economic damage in eastern North America. These and other
wood-boring invasive insects can spread to new areas through human transport of untreated
firewood. Behavior, such as transport of firewood, is affected not only by immediate
material benefits and costs, but also by social forces. Potential approaches to reduce the
spread of wood-boring pests through firewood include raising awareness of the problem
and increasing the social costs of the damages incurred by transporting firewood. In order
to evaluate the efficacy of these measures, we create a coupled social-ecological model of

This chapter is based on the paper: Jentsch PC, Bauch CT, Yemshanov D, Anand M (2020) Go big
or go home: A model-based assessment of general strategies to slow the spread of forest pests via infested
firewood. PLOS ONE 15(9): e0238979
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firewood transport, pest spread, and social dynamics, on a geographical network of camper
travel between recreational destinations. We also evaluate interventions aimed to slow the
spread of invasive pests with untreated firewood, such as inspections at checkpoints to
stop the movement of transported firewood and quarantine of high-risk locations. We find
that public information and awareness programs can be effective only if the rate of spread
of the pest between and within forested areas is sufficiently slow. Direct intervention via
inspections at checkpoints is likely to be successful only if a large proportion (over %
80) of the infested firewood is intercepted. Patch quarantine is only effective if over 200
patches can be included in the quarantine, the quarantine begins at most one year after
pest introduction, and lasts at least three years. Our results indicate that the current,
relatively low levels of public outreach activities and lack of funding are likely to render
inspections, quarantine and public outreach efforts ineffective.

3.2 Introduction

Invasive species pose a significant economic and ecological threat to Canada’s forest ecosys-
tems [217, 106]. In North America, significant funding has been allocated by federal, state
and provincial agencies for large-scale control programs to prevent or mitigate these dam-
ages with mixed success [202, 148]. Controlling the spread of invasive pests can be difficult
because the long-distance spread of invasive organisms is often assisted by human activities
[117, 217]. For example, introduction and spread of Emerald ash borer, a harmful forest
pest in the North America [118, 119, 165] has been attributed to human factors, such as
vehicle transport [46] and recreational travel [116].

The growing problem of invasive species is broadly associated with human mobility,
including recreational travel [117, 217, 129, 169]. Outdoor recreation is widespread in
North America, and the extent of recreational activities is expected to increase [64, 62, 63].
In North America, national, provincial and state parks, national forests, and state and
Crown lands are common destinations for recreational activities [70, 192]. In Canada,
recreational activities, especially camper travel, often take place in forested areas and may
contribute to spread of harmful invasive pests. In particular, the movement of untreated
firewood by campers has been widely acknowledged as a potential introduction pathway
for invasive forest pests [25, 203, 163, 116, 106]. Movement of untreated firewood has
been linked to the spread of two harmful wood-boring pests, the Asian longhorned beetle
(Anoplophora glabripennis Motschulsky) and the emerald ash borer (Agrilus plannipennis
Fairmaire), in the United States and Canada (USaC) [88, 164].

Firewood is often moved to distant locations by campers for recreational purposes
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[106, 209]. For example, Haack et al. (2010) has found live bark- and wood-boring insects
in 23% of the firewood pieces, surrendered at the checkpoint station at Mackinac bridge
connecting Michigan’s Lower and Upper Peninsulas and an additional 41% had signs of
prior borer infestation. Jacobi et al. (2011) reported the emergence of live insects from
47% of the firewood bundles purchased from various US retailers. To reduce the risk
of future pest infestations, USaC have implemented various regulations on movement of
untreated firewood, including bans for out-of-province movement of untreated firewood
and restrictions for its transport by short distances [203, 209, 89, 155]. Also a number of
public outreach campaigns have been undertaken to educate the general public about the
threats associated with the movement of untreated firewood and its potential to spread
harmful invasive pests. Several strategies have been developed to prevent (or minimize)
the movement of firewood with recreational travel, including outreach campaigns in public
media, enforcements with the inspections at check points for transported firewood, and
area quarantine with the restrictions on firewood movement from/to the area of concern.
In particular, public outreach campaigns have become widespread with significant funding
by local, municipal, and provincial governments on measures such as advertisements along
major highways and in public media and educational information in websites and printed
media. The use of enforcement and quarantine options is less common but is gaining
acceptance as a last resort measure and was implemented at least a few times over the past
decade, to varying degrees of success [25, 116, 155].

Assessing the efficacy of the measures aimed to prevent the movement of firewood
with recreational travel is a daunting task. Outreach campaigns may spread information
widely but there is no guarantee that campers will pay attention and comply with the
firewood restriction warnings. Many outreach activities (such as posting ads in public
media or distributing flyers) are often implemented sporadically at local scales using local
municipal and provincial budgets [203], which makes the assessment of their efficiency
difficult. These activities may simultaneously occur in different places and times with
little or no coordination, and are difficult to track in time and space.

Alternatively, the enforcement options (such as quarantine or checkpoint inspections for
illegal movement of firewood) are gaining acceptance and may be perceived as more effective
localized means to stop the movement of untreated firewood by campers. Nevertheless,
assessing the effectiveness of enforcement actions is challenging due to a very small scale
of enforcement actions (often implemented by individual states or provinces at selected
locations) and lack of compliance data.

Mechanistic models of forest invasions have been studied for decades [135], but explicit
modelling and consideration of human factors, and the feedback between humans and the
environment is relatively new. Ali et al. and Barlow et al. [25, 8] proposed two models
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of forest pest spread through firewood transport. The first study presented a differential
equation model, and the second an agent-based model, both assuming that humans are
the primary long-distance movers of forest pests. The models proposed in [25, 8] coupled
infestation dynamics with the social dynamics. However both studies considered a small
and idealized spatial structure: two patches in Barlow’s et al. [25] study and ten patches
in Ali‘s et al. model [8]. Often, illegal movement of firewood occurs over large distances
and may involve visits to multiple recreational destinations that are connected differently
to one another.

In this study we consider movement of infested firewood to multiple recreational des-
tinations over a complex recreational travel network. We explore the efficacy of common
measures aimed to stop the movement of untreated firewood by recreational travelers. To
accomplish this, we propose a differential equation model that combines human-mediated
movement of forest pests through a camper travel network that includes nonlinear feedbacks
from social factors, such as population response to strategies preventing the movement of
untreated firewood. We identify three basic methods to stop or slow the spread of invasive
pests by transport of infested firewood: public awareness campaigns, direct interception
of transported firewood at checkpoints near recreational destinations, and quarantining
recreational destination sites for movement of firewood. While the first option is more
common, the latter has been implemented seldom over the past decade due to legal and
liability constraints [177, 214, 149, 89]. We implement the options for intercepting the
movement of firewood to slow the spread of invasive pests in a mechanistic metapopu-
lation model, and use the replicator equation to represent social learning dynamics (see
[93, 25, 27, 100]). We also evaluate local quarantine at recreational destinations as an alter-
native control method. Quarantine means closing the site to visitors for a length of time, in
order to reduce the amount of transported firewood and slow spread of invasive organisms
from other infested locations. Our implementation of quarantine measures follow common
practices aimed to slow the spread of invasive species (such as the spread of emerald ash
borer in USaC [147, 87]). We apply our mechanistic model to explore the effectiveness of
these control measures to slow the spread of an idealized wood-boring invasive pest moved
to a set of recreational destinations by recreational travelers transporting untreated fire-
wood. We apply the model to a network of provincial parks and campgrounds in three
provinces of central Canada - Manitoba, Ontario, and Quebec. The model is parameterized
by matching the extent and duration of the recent emerald ash borer outbreak in this area.

40



3.3 Materials and methods

We consider a landscape of N patches, where a patch is represented as i ∈ [1, N ]. Each
patch represents a recreational destination (eg. provincial parks and campgrounds) with
associated neighboring human population centres. Each patch undergoes its own internal
pest and social dynamics. We describe the spread of an invasive pest with the move-
ment of firewood through the network of N patches with a metapopulation model based
on [25] that captures the spread of an infestation between the patches. The advantage
to metapopulation models in this context is suitability for capturing dynamics of a highly
fragmented population spread over a broad geographic region. Using the data documenting
reservations of provincial campgrounds in Ontario, Manitoba and Quebec [221], we created
a graph of camper travels which depicts a spatial travel network between origin locations
(which correspond to residential addresses of camper travelers) and recreational destina-
tions (campgrounds in provincial parks and historic sites). The camper travel network
is described by a graph where the edge weights are the average number of trips between
origin locations j and recreational destination locations i (see more details on spatial data
in section 3.3.4). Specifically, for a given location j, Pi,j is the fraction of trips that go

from j to i each year, so we have
∑N

i=1 Pi,j = 1 and Pii = 0 . Consider a patch i with an
enforcement intervention, such as firewood movement quarantine, or a voluntary firewood
surrender checkpoint aimed to stop the flow of untreated firewood from that location. We
define Ce as the proportion of infested firewood that can be intercepted on a route between
two locations i and j, 0 ≤ Ce ≤ 1. Interception at i may reduce the movement of infested
firewood from a patch i to other patches j, so Ce indicates, in relative terms, the magnitude
of interception efforts.

We also consider a public outreach campaign that can take place at a patch i. It is
common that only a portion of campers visiting a patch i may be aware of and decide to
comply with the public outreach message. We model the social awareness campaign as
an increase of the net social cost of transporting firewood. We further conduct sensitivity
analyses to compare the efficacy of enforcement vs. outreach measures aimed to stop the
movement of firewood and reduce the rates of infestation.

3.3.1 Pest Spread Model

We begin with defining the equation for a population of susceptible host trees that may
be attacked by an invasive pest. The pest can be introduced though untreated infested
firewood. Variables, their interpretations, and corresponding baseline ranges are shown in
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Table 3.1. We assume that a tree population that is susceptible to pest attack undergoes
logistic growth in the absence of infestation to a carrying capacity K. The population of
susceptible trees, Si(t), at a patch i is being infested from firewood arriving with campers
at i at a rate A:

dSi
dt

= rSi

(
1− (Si + Ii)

K

)
︸ ︷︷ ︸
Logistic Growth Of Forest

−ASi(Ii +Bi)θk(Ii − Ia)︸ ︷︷ ︸
Infestation term

(3.1)

where θk(Ii) is a sigmoid function

θk(x) =
1

1 + e−kx
(3.2)

chosen as in [25]. Terms Si and Ii are the number of susceptible and infected trees,
respectively, at patch i. Bi is the quantity of infested firewood in patch i, which we assume
has the same probability of pest transmission within patch as infested trees. We choose the
carrying capacity K to be the same in each patch for simplicity. The term ASiIiθk(Ii− Ia)
represents intra-patch infestation with a density dependent population, parameterized by
k and Ia, where Ia determines population of infested trees at which transmission is halved,
and k is is a constant which affects the sharpness of the transition of θk(x) at Ia. We
assume that there is an influx of pest organisms entering a patch i with firewood which
defines the propagule pressure at i. Infested trees at i are assumed to die at a constant
rate γ, giving the following equation for the infested tree population of a patch.

dIi
dt

= −γIi︸︷︷︸
Death of infested trees

+ASi(Ii +Bi)θk(Ii − Ia)︸ ︷︷ ︸
Susceptible become infested

(3.3)

The patches are spatially coupled through the transport of firewood by recreational
travelers. The infestation rate at i depends on the number of visitors transporting infested
firewood to i, which is also a function of the social dynamics at i, such as the enforcement,
or public outreach measures described by a utility function, presented in [27], and applied
to forest modelling in [25, 187]. Let Li be the proportion of visitors to patch i who do not
transport firewood and buy it locally, and d rate of exportation of infested logs. d is the
same for all patches to simplify analysis. The rate of infested wood coming into patch i
can be estimated as:
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d(1− Ce)
N∑

j=1,j 6=i
Pi,j(1− Lj)Ij

The dynamics of Li (the number of local transporters in patch i), is modelled by a
replicator dynamics model that is suitable for describing systems where social learning
occurs [27, 100], and is described in the section below.

3.3.2 Social Dynamics Model

We model the proportion of visitors who choose to use local firewood, Li as a function of
both the perceived threat of introduced pests, and the social cost of illegally transporting
infested firewood. We refer to visitors who choose to use local firewood as local strategists,
and visitors who do not use local firewood as transport strategists hereafter. Let Ct be
the cost of transporting firewood and Cl the cost to obtain it locally (and therefore avoid
moving invasive pests to a patch i). We adopt the social influence model from [25], which
is based on models of [27] and [100], which we will summarize below. We define the social
utilities corresponding to the strategies of transporting firewood (ρt) and buying it locally
(ρl) as

ρt = −Ct + s(0.5− Li)− fIi
ρl = −Cl + s(Li − 0.5)

Transportation becomes a less attractive strategy if infestation is more prevalent, de-
pending on the size of f . The parameter f controls the extent to which a local infestation
causes behaviour change in that population. The parameter s controls the degree to which
individuals are influenced by the the majority opinion in their patch (i.e. peer pressure).
We assume that both local strategists and transport strategists in a patch i, given by
Li and 1 − Li respectively, decide whether to change their strategy at the same rate, σ.
Their decision is made by considering which strategy will maximize their utility ρl − ρt at
that point, leading to the following expression for the rate of change of the local strategist
population:

dLi
dt

= σLi(1− Li)(ρl − ρt)
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We replace the individual costs of Ct, Cl with the net utility value U = Ct − Cl. The
cost difference U abstracts from the explicit definition of costs of using firewood [25] and
allows including exogenous social incentives and motivation, such as awareness about the
problem or any other form of social influence from outside each location i. A term Bi is
introduced to represent the amount of local firewood available in patch i. For simplicity,
we assume that the tree mortality rate at a patch i is only caused by infestation, so the
mortality rate is the same as the death rate of the infested trees

dBi

dt
= −γBi︸ ︷︷ ︸

Decay of fallen wood

+ d(1− Ce)
N∑

j=1,j 6=i
Pi,j(1− Lj)Ij︸ ︷︷ ︸

Import of fallen wood

(3.4)

Because the infested wood imported into patch i in Eq 3.4 must come from another
patch in the system, we subtract the corresponding term for leaving wood, d

∑N
j=1,j 6=i Pj,i(1−

Ce)(1 − Li)Ii from Eq 3.6 which describes the rate of change of infested population in a
patch i. Using the notation in equations (3.5, 3.6, 3.7, 3.8), we formulate the problem
of buying firewood locally vs. transporting it from other potentially infested locations as
follows:

dSi
dt

= rSi

(
1− (Si + Ii)

K

)
︸ ︷︷ ︸
Logistic Growth Of Forest

−ASi(Ii +Bi)θk(Ii − Ia)︸ ︷︷ ︸
Infestation term

(3.5)

dIi
dt

= −γIi︸︷︷︸
Death of

infested trees

+ASi(Ii +Bi)θk(Ii − Ia)︸ ︷︷ ︸
Susceptibles become infested

− d(1− Ce)
N∑

j=1,j 6=i
Pj,i(1− Li)Ii︸ ︷︷ ︸

Total infested wood
leaving due to transport

(3.6)

dBi

dt
= −γBi︸ ︷︷ ︸

Decay of firewood

+ d(1− Ce)
N∑

j=1,j 6=i
Pi,j(1− Lj)Ij︸ ︷︷ ︸

Import of fallen wood

(3.7)

dLi
dt

= σLi(1− Li)( U︸︷︷︸
Net cost to

transport firewood

+ s(2Li − 1)︸ ︷︷ ︸
Social influence term

+ fIi︸︷︷︸
Impact of infestation

) (3.8)

Table 3.1 lists the model notation.
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Name Default Value, (Range ex-
plored)

Units Interpretation

N 2250 Patches Number of patches in the network
Si Site specific Trees Number of susceptible trees in patch

i
Ii Site specific Trees Number of infested trees in patch i
Bi Site specific Trees Infested firewood in patch i
Li Site specific Unitless Fraction of local strategists in patch

i
r 0.02, [0.01, 0.06] New trees per tree per year Tree growth rate
A 0.001, [0.00065, 0.0014] Number of infested trees per

susceptible-infested contact per
year

Transmission rate of pest

γ 1.4, [0.8, 1.8] Trees per year Decay rate for infested trees
K 5000 Trees Carrying capacity of each patch
U 0, [-5, 5] Utility Social cost to transport firewood, or

incentive to buy locally
Ce 0, [0.0, 1.0] Unitless Interception fraction
f 0.1, [0.01, 0.13] Utility per capita Impact of local infection on strategy
s 0.1 Utility per capita Strength of social norms
σ 0.1 Strategy changes per capita per

year
Rate of social learning

Pi,j See below Unitless Fraction of trips that go from j to i
each year.

d 0.1, [0.05, 0.3] Logs per year Rate of transmission of infested fire-
wood between patches

Ia 1, [0.5, 5] Trees Value at which transmission rate of
pest is halved due to density depen-
dence

k 1 Unitless Steepness of sigmoid function
V Empty, [0 patches, 500

patches]
Patches Set of patches to be quarantined

∆t 0, [0, 5] Years Length of quarantine
t0 0, [0, 5] Years Time between initial infestation and

patch quarantine

Table 3.1: Parameters and default values

45



3.3.3 Patch-quarantine strategies

Let V ⊂ [1, N ] be a set of patches under a quarantine. We use the patches (nodes of the
camper travel network) with the largest (shortest-path) betweenness centrality [77, 40],
which is a common approach for selecting quarantine nodes in vaccination studies [212].
Betweenness centrality measures the extent to which a node lies on paths between other
nodes and is used to detect the amount of influence a particular node has over the flow of
information in a graph. The measure is often used to find nodes that serve as critical links
between different parts of a graph. Formally, the shortest-path betweenness centrality of
a node i ∈ V on a weighted graph G is

g(i) =
∑

i 6=s 6=t;s,t∈G

gst(i)

gst

where gst is the number of shortest paths between nodes s, t and gst(i) is the number
of geodesic paths between nodes s, t that go through node i. Both of these measurements
calculate path length with respect to the weights of G,. In words, the betweenness centrality
g(i) of a node i is the probability that i lies on a shortest path between some two nodes
in G. In our camper travel network, higher weights denote more frequent trips, so for
the purposes of determining the betweenness centrality, the weight of each edge (i, j) is
maxi,j(Pij) + 1− Pij.

We model the implementation of firewood quarantine strategies at patches V by intro-
ducing a time-dependent term in Eqs (3.6),(3.7). Let t0, and ∆t be the starting time of
the quarantine and the length of the quarantine respectively. Let Hc(x,∆t), defined as

Hc(x,∆t) =


1 x < 0

0 0 ≤ x ≤ ∆t

1 x > ∆t

be an upside-down boxcar function of length ∆t. This function acts as a switch which is
”off” whenever x ∈ [0,∆t]. With this function, we can modify equations (3.6),3.7) so that
patches i ∈ V do not import or export firewood whenever x ∈ [0,∆t].

If i ∈ V ,

dIi
dt

= −γIi +ASi(Ii +Bi)θk(Ii +Bi)− d(1− Ce)Hc(t− t0,∆t)
N∑

j=1,j 6=i

Pj,i(1− Li)Ii (3.9)

46



dBi

dt
= −γBi + d(1− Ce)Hc(t− t0,∆t)

N∑
j=1,j 6=i

Pi,j(1− Lj)Ij (3.10)

Note that the only difference in the new equations (3.9),(3.10) from (3.6),3.7) is in the
last term denoting the interactions with neighbouring nodes. The equations for patches
not in under quarantine (i.e., not in V ) require us to distinguish arcs that connect to and
from nodes under quarantine in V .

If i /∈ V ,

dIi
dt

= −γIi +ASi(Ii +Bi)θk(Ii +Bi)−
N∑

j=1,j 6=i,j /∈V

Pj,i(1− Ce)(1− Li)Ii (3.11)

− dHc(t− t0,∆t)
N∑

j=1,j 6=i,j∈V

Pj,i(1− Ce)(1− Li)Ii

dBi

dt
= −γBi+

N∑
j=1,j 6=i,j /∈V

dPi,j(1−Ce)(1−Lj)Ij +dHc(t−t0,∆t)
N∑

j=1,j 6=i,j∈V

Pi,j(1−Ce)(1−Lj)Ij (3.12)

In equations (3.11),(3.12) we split the summation term into two summations, one over
all patches which are not under quarantine (i.e., not in the set V ) and patches under
quarantine in V . The latter summation is multiplied by a term, Hc(t − t0,∆t) which
switches on and off the quarantine conditions.

3.3.4 Parameterization

We used data from [116] and [221], to quantify the risk of firewood transport to recreational
destinations in Central Canada. The data documented the movements of campers to
provincial campgrounds in Ontario, Quebec and Manitoba. Such data are maintained by
provincial ministries of natural resources (MNRs). The dataset included a large number
of potential origin sites (i.e., approximately 9000 locations). To reduce the computational
burden, we reduced the size of the camper travel network by including all recreational
destination locations but considering only the origin locations in the Canadian provinces
of Ontario, Manitoba, and Quebec. We further reduced the size of the network by selecting
most travelled routes. We selected the largest subgraph with a minimum degree of 10 (the
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10-core of the graph) which considered only the most connected nodes, with largest impact
on pest transmission. We implemented the procedure using the NetworkX library [90].
The final camper travel network included 2250 sites (Fig 3.1).

Figure 3.1: Camper travel network in Ontario, Quebec and Manitoba. Darker (more
orange) lines represent more trips.

Because the model uses a large camper travel network it has a very large parameter
space, and many of the parameters, especially those in Eq 3.8, are difficult to estimate
directly from data. In this study we are exploring the region of parameter space that
most closely approximates the dynamics in real infestations, such as the typical size and
duration of the recent emerald ash borer outbreak in eastern Canada. To select the most
relevant range of the social influence parameters, σ, s, f , which are difficult to estimate
from the literature, we did sensitivity analyses over a wide range of these parameters, and
identified the parameter space where these parameters had the largest effect on the model
dynamics, and where the course of the invasion was realistic. The inter-patch and intra-
patch infection rate parameters, d,A, were selected to infest and eventually kill at least
95% of the tree population within 10 to 15 years.

We integrated equations (3.5-3.8) using code written in the Julia language, using the
JuliaDiffEq library [173]. The integration was run on the Compute Canada clusters. Our
primary focus was to explore the relative impacts of firewood enforcement versus public
outreach and their abilities to reduce pest infestation rates across the camper travel net-
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work. We consider a hypothetical scenario where a harmful invasive pest is introduced in
the largest urban center in eastern Canada with foreign imports (Greater Toronto Area,
GTA) and assume that the bulk host tree population in the GTA is infested. This scenario
is based on a history of past entries of invasive wood-boring pests to the GTA with for-
eign imports (such as introduction of Asian longhorned beetle in Toronto and Mississauga
[206]).

3.3.5 Assessing intervention efficacy

The primary statistic we use to assess the total mortality of an infestation after t years is the
average cumulative infested population, 1

N

∑N
i=1 Ti(t). To calculate Ti(t), the cumulative

infested population at patch i and time t, we solve the following equation in addition to
the model equations.

dTi
dt

= ASi(Ii +Bi)θk(Ii − Ia) (3.13)

The right-hand side of equation 3.13 is the only positive term of equation 3.6, so it
increases when new infested trees are added to Ii(t), but does not decrease when infested
trees die, thereby counting the total number of infestations.

Since it is difficult to determine what utility value U , which defines the social cost of
transport, corresponds to the current level of funding, we try to answer whether it would
be beneficial to increase the funding, which we call the marginal benefit of increasing U .
Given a time t̄, we calculate T (t̄) for a set of U ∈ [−5, 5], then we fit a linear function
of U to these points. We find a first-order approximation of T (t̄) change per unit U (Fig
3.4) for a given set of parameters and time t̄. A positive slope indicates that total infested
tree population increases when U is increased, which means that increasing U does not
reduce the impact of the pest (at least, to a first approximation). In figures (3.4) - (3.6)
this method is used to show how the total number of infested trees changes with respect
to an increase in U , as a function of parameters and time.

3.4 Results

In our baseline scenario (Fig 3.2, parameters as in table 3.1), the model shows a typical
pest outbreak originating in the GTA infesting all campgrounds in Ontario, Manitoba and
Quebec over 10-20 years. This agrees with the observed timescale of the recent infestation
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of emerald ash borer (EAB) which entered Ontario in 2002 and now has infested most
major populated places in the province [53].

First we discuss the timeseries plot of the baseline parameters (Table 3.1), where the
model variables are averaged over all of the patches for easier visualization (Figure 3.2).
Accordingly, we define I(t) = 1

N

∑N
i=1 Ii(t), B(t) = 1

N

∑N
i=1 Bi(t), L(t) = 1

N

∑N
i=1 Li(t),

to be the average infested tree population at t, the average quantity of infested logs at t,
and the average fraction of local strategists at t, respectively. In figure 3.2, we find that
increasing U (the social cost to transport firewood) increases the number of local strategists
L(t) (Fig 3.2h) —people who choose not to transport firewood between patches— and also
reduces the size of the invasion, (Fig 3.2f) and the average number of infested logs, B(t)
(Fig 3.2g). Although the reduction in B(t) is significant (as shown by the large differences
in light red and dark red time series in Fig 3.2g), the flattening of the curve for infested
trees (Fig 3.2f) is comparatively less significant. We can compare this with the result
of increasing the fraction of infested logs intercepted between patches, Ce (3.2a,b,c,d).
Increasing Ce decreases the number of infested trees, the delays the peak of the outbreak
(Fig 3.2b,c). The delay in the peak of the outbreak also appears to cause the lag in L(t)
(Fig 3.2d). Social incentives appear to be very effective at reducing B(t) while being less
effective at reducing I(t). This indicates that a shift from transport strategists to local
strategists primarily occurs in areas that have already been infested. This effect does not
occur with direct interception of infested firewood. Notably, direct interception is difficult
to implement effectively, as even after intercepting high proportions of the infested wood
transport, the corresponding decrease in I(t) remains low (Fig 3.2b).

In Fig 3.3 we show the total number of infested trees at time t, T (t), with respect
to combinations of U , the social cost to transport firewood, and the fraction of infested
firewood intercepted, Ce. If the fraction of intercepted infested firewood, Ce, is greater
than 80%, we see a sharp reduction in the total infestation, T , even after 20 years (Fig
3.3 c), but lower interception rates have little effect unless the social cost to transport U
is above the threshold seen in panel c) (Fig 3.3). Over a shorter time scale, increasing Ce
appears to be effective at all interception rates.

The parameter f controls how the proportion of strategists in a given patch i (Li(t))
responds to the population of infested trees (Ii) in that patch (eqn 3.8). Since social
incentives (such as an intervention to human-mediated pest transport) tend to be less
effective because they prevent firewood transport mostly in the areas that have already
been colonized by pests (as suggested in Fig.3.2), we consider how the parameter f affects
the marginal returns on U over time (Fig3.4). The shade of the blue region in Fig.3.4
represents the degree to which increasing U is beneficial, corresponding to a negative slope
in the linear approximation of the change in T with respect to U (Fig 3.4 inset). Similarly, a
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Figure 3.2: Time series of model variables as a function of interventions, direct (raising Ce,
panels a - d) and through social pressure (raising U , panels e - h). The former interven-
tion, panels a-d, means an increase of social pressure on people who choose to transport
firewood (i.e. increasing the U value), and the latter refers to direct interception of fire-
wood (i.e. increasing the Ce value). Terms L(t) = 1

N

∑N
i=1 Si(t), I(t) = 1

N

∑N
i=1 Ii(t),

B(t) = 1
N

∑N
i=1Bi(t), L(t) = 1

N

∑N
i=1 Li(t) are the averages of the state variables over all

patches. S(t) has been omitted for brevity.
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red cell indicates non-negative slope and therefore a neutral or detrimental marginal effect.
We begin to see the benefit of increasing U after about 10 years, shown by the transition
from lighter blue to dark blue as we move from the bottom of the image to the top (Fig
3.4. This relationship is only affected slightly by altering the impact of local infestation
on local strategy, f , where we begin to see slightly detrimental marginal returns after 10
years if f < 0.04.

Similarly, we have compared the marginal returns on increasing U with respect to
the intra-patch transmission rate A and time t (Fig 3.5). When A is small (A ≤ 0.0009,
beneficial marginal returns on U can be observed over the whole duration of the infestation.
We further explore the impact of varying the rate of transmission of infested firewood
between patches, d (Fig 3.6). We find a roughly parabola-shaped region in the parameter
plane of intra-patch and inter-patch transmission rates (A and d respectively), above which
the marginal returns of increasing U are zero or possibly detrimental to the size of the
total infested population after 10-20 years. Larger intra-patch transmission rates enable
the pest population to establish earlier in a given patch by propagules. We see good
marginal return in parameter regimes where few transport strategists (high L(t)) would
reduce the reproductive ratio of the infection below 1. For instance, at the point (A, d) =
(0.00126, 0.103) , increasing U is able to delay and eventually prevent a second wave, which
decreases the total number of infected trees significantly (SI Fig 1). If the transmission
rates A, d are high enough that even with no transport strategists, we get a second wave of
infection, the effect of increasing U can be slightly detrimental (SI Fig 2). Panel f) of the
aforementioned figures plots the number of patches where I ≥ 1 over time, showing that
the detrimental effect is largely due to the infection persisting longer in the network.

Figure 3.3: Total infestation per node over 5, 10 and 20 years. Neither increasing U nor
Ce are effective at long time scales.
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Figure 3.4: Efficacy of social incentives on infestation after time T . Inset graph shows
an example of cross-section along the line f = 0.11. The influence of infestation on
transport strategy, f , can hinder the intervention by public outreach, in the long-term
(after approximately 20 years). The inset figure illustrates how one column in the heat
map, shown by the dotted line, is constructed from the slopes of linear approximations of
T (t) over U ∈ [−5, 5]. The blueness of the lines going left to right is a function of their
slope, corresponding to the color of the cells in the heatmap.

We also explored the effectiveness of patch quarantine by replacing model equations
(3.6) and (3.7) with equations (3.9)-(3.12). This replacement prevents individual patches
(nodes in a set V ) with the highest betweenness centrality (with respect to the weights
Pij) from interacting with their neighbours during the time of the quarantine (t ∈ [t0, t0 +
∆t]). Imposing quarantine on these nodes is expected to have the greatest impact on pest
transmission rate. If the quarantine is initiated one year after the pest is introduced into
the system (that is, t0 = 1.0) then we find a significant reduction in total infestation even if
only 50 patches are quarantined (|V | = 50) assuming they are quarantined for more than a
year, shown in Fig 3.7. However, in our model, we find that quarantines need to be longer
than approximately three years, and involve more than 150 nodes to still be effective in
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Figure 3.5: Efficacy of social incentives on infestation after time period T with respect to
A, the intra-patch infestation parameter. This intervention becomes ineffective over time
if A is sufficiently large.

Figure 3.6: Efficacy of social incentives on infestation after time T intra-patch spreading
rate A, affects infestation outcomes. The social incentive to not transport firewood, U , is
more effective with lower pest spread rates.

reducing the total infested population after 20 years T (20). An interesting result in our
quarantine plots is that we see a slightly larger range of effective parameter values if the
quarantine begins after two years, t0 = 2.0 (Fig 3.8), rather than one, t0 = 1.0. This effect
is probably due to the delay in infestation after the model is initialized, which can be seen
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by the local minimum in the infestation timeseries (Fig 3.2b,f).

Figure 3.7: Average total infested trees (T (t)) after 5, 10 and 15 years (panels a),b), and c)
respectively), assuming the quarantine begins one year after the pest is introduced.Total
infestation plotted with respect to the number of nodes quarantined (|V |) and the length
of the quarantine (∆t). The quarantine is effective over 5 years with only 50 patches,
provided they are closed for over a year.

Figure 3.8: Average total infested trees (T (t)) after 5, 10 and 15 years (panels a),b), and c)
respectively), assuming the quarantine begins two years after the pest is introduced. Total
infestation plotted with respect to the number of nodes quarantined (|V |) and the length
of the quarantine (∆t).
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3.5 Conclusion

We presented a model coupling human social behaviour regarding transport of infested
firewood through recreational travel with a model of the spread of an invasive forest pest.
Our main focus was to compare, in relative terms, common measures for slowing the spread
of invasive species with firewood transport, such as public outreach campaigns aimed to
raise awareness about the problem, and enforcement measures, including inspections at
checkpoints to control the movement of firewood, and location-specific quarantine. The
model is parameterized with campground reservation data for provincial parks and camp-
grounds in the provinces of Ontario, Manitoba and Quebec, Canada and incorporated
spatial information on the topology and geographical configuration of the camper travel
network.

Under the assumptions of our model and a particular camper travel network configu-
ration used in our model, checkpoints to control the movement of untreated firewood are
unlikely to be effective at slowing the spread of invasive forest pests with firewood trans-
port given typical moderate levels of funding and long delays in the response measures.
We find the rate of interception to halve the total infested tree population after 5 years
is about 30% (Fig 3.3), which is unlikely to be achieved in practice given typical limited
budgets and personnel constraints in present-day firewood control programs. Given that
our model uses somewhat simplified assumptions and does not account for fine-scale logis-
tical constraints (which inspectors may face in various spatial locations) the actual rate
of interception is likely to be lower in practical conditions. While a previous study [25]
that used a similar model has demonstrated that social incentives may improve outcomes
in a two-patch model under equilibrium conditions, we have found that in our complex
landscape network, the outcomes of infestation and invasion control measures are highly
dependent on the time scale and the characteristics of the invaders, such as the inter-patch
and intra-patch infestation rate. Social incentives (which aim to decrease the transport
of firewood, U), are generally able to reduce the infestation rate in the short term but its
effectiveness is highly dependent on the ability of the pest to spread and infest other loca-
tions (Fig 3.6,3.5) under the conditions we have explored. Humans in our model tend to
reduce their transport of firewood between patches in already infested areas, which causes
the pest to persist longer in the network (Fig 3.2). Our results show that there could exist
a threshold in the pest transmission rate A and the proportion of the infested wood which
is turned into firewood, d (Fig 3.6). Below this threshold, it would not be beneficial to
increase social outreach (i.e., increase U). This insight could be helpful in determining the
spatial allocation of firewood movement control efforts for a particular pest species. We
have also found that the location-specific quarantines that aim to restrict the movement
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of firewood to/from a particular location, might only be effective at slowing the invasion
spread if a sufficiently large number (at least 140 in our case) of highly connected locations
is quarantined, and the quarantine is established at early stages of infestation (Fig3.7,3.8).

Given the typical cost limitations and logistics constraints faced by today’s firewood
control programs, and the assumptions made in our modeling framework, it is unlikely
that local quarantine measures could significantly slow the spread of invasive pests through
firewood unless drastic control and quarantine measures are undertaken. Public outreach
campaigns, while helping increasing awareness of problem, cannot reliably slow the spread
of pests within the parameter values tested, when the invasion spreads through a network
based on camper travel data in Manitoba, Ontario and Quebec. Within our model, public
outreach could be more effective for slow-spreading pests when the organism is able to
kill host trees quickly but does not have significant spread capacity (that is, the inter-
patch and intra-patch infestation rates are sufficiently small). Direct intervention, such
as checkpoint inspections for illegally transported firewood, is also not an option, because
meaningful outcomes can only be achieved if significant fractions of firewood transports
can be intercepted. We find that patch quarantine is effective at slowing, or even stopping,
the spread of an invasive forest pest when a large number of highly-connected patches are
quarantined, for a long enough period. Our results in general terms agree with a present-
day situation when numerous outreach and local quarantine measures had limited impact
on illegal transport of firewood by campers and failed to slow the spread of wood-boring
pests transported with untreated firewood. Our results also indicate that the enforcement
campaigns aimed to intercept illegal movement of untreated firewood can only be effective
if implemented at very large spatial scales in timely fashion (which, in turn, would require
massive amounts of funding and personnel support).

There are some shortcomings to our model that could be addressed in future work. The
interventions we study do not have spatial or time specifications for individual locations
in the camper travel network. Deciding where and when, to deploy the outreach and
enforcement measures in a particular location would be a major enhancement of the model.
Second, our model depicted a general problem of an invasive pest spreading with untreated
firewood moved by recreational travelers. To adapt the problem to a particular pest species,
a more specialized spread model will be required. We simplified the model by assuming that
each infested patch provides similar propagule pressure to recreational travellers leaving
the infested site. This assumption was made because no data about the actual proportions
of infested wood carried by recreational travellers leaving the infested sites were available.
Also, our analysis did not offer much insight at the level of individual spatial locations in
a camper travel network. A simpler mechanistic model that applies unique pest control
decisions at individual spatial locations could potentially address that aspect. Another
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possible way to simplify the model would be to remove the tree growth dynamics —since
it operates on a longer time scale than the infestation spread— and so an invasion model
without the forest growth component could be a reasonable approximation for short-term
planning horizons. This will be the focus of future efforts.

3.6 Acknowledgements

The authors would like to thank Dr. Hanno Seebens and an anonymous reviewer for their
contributions. Their detailed and thorough suggestions have significantly improved the
quality of our paper.

58



Chapter 4

Fire Mitigates Bark Beetle
Outbreaks in Serotinous Forests

Bark beetle outbreaks and forest fires have imposed severe ecological damage and caused
billions of dollars in lost resources in recent decades. The impact of such combined dis-
turbances is projected to become more severe, especially as climate change takes its toll
on forest ecosystems in the coming years. Here, we investigate the impact of multiple
disturbances in a demographically heterogeneous tree population, using an age-structured
difference equation model of bark beetle outbreaks and forest fires. We identify two dy-
namical regimes for beetle and fire dynamics. The model predicts that fire helps dampen
beetle outbreaks not only by removing host trees but also by altering the demographic
structure of forest stands. We show that a stand thinning protocol, which reduces the
population size of the largest few juvenile classes by a small percentage, is able to signif-
icantly reduce beetle-induced tree mortality. Our research demonstrates one approach to
capturing compound disturbances in a mathematical model.

4.1 Introduction

Ecosystems have long been characterized by resilience in the face of large disturbances
such as fire, storms, pathogens, and drought, which are often interacting. For example,
the pine forests of western North America are highly adapted to both wildfires and bark
beetle infestations. Many pine species, including lodgepole (Pinus contorta) and ponderosa

This chapter is based on a paper accepted for publication in Theoretical Ecology
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(Pinus ponderosa) pine, depend on stand replacing fires to maintain healthy populations
in their endemic range [33].

Of the major natural processes influencing lodgepole pine forests, the two with the
greatest potential for large scale disturbance are mountain pine beetle (MPB, Dendroctonus
ponderosae) and fire [114]. It has been noted that “In western North America, insect
outbreaks and wildfires are the two most ecologically and economically significant natural
forest disturbances” [142]. The MPB is a small insect endemic to the pine forests of
western North America. MPB has recently attained previously unrecorded outbreak levels,
probably due to anthropogenic factors [33, 183]. British Columbia’s Ministry of Forests
estimates that British Columbia contains roughly 35 million acres of lodgepole pine forest
(about 23%), and slightly less ponderosa pine forest. They estimate that over the past
20 years, MPB has affected approximately 1.6 million acres of forest annually in British
Columbia, more than forest fire and logging combined [30].

Ecological studies examining the relationship between MPB and wildfire damage are
numerous, but have not reached a strong consensus in all aspects [21, 137, 193, 39, 114,
142, 5, 189, 109]. Lynch et al. [137] used remote sensing data associated with the 1988
Yellowstone National Park fires to investigate the link between fire prevalence and beetle
attack. They found that beetle attack initially lowered the probability of crown fire in a
patch, but bark beetle activity significantly increases fire risk 13-16 years in the future. On
the other hand, Siedl et al. [189] find that wildfire increases spatial variability in stands,
and therefore reduces the susceptibility of the stand to beetle outbreak. To make things
more complicated, some studies have found that measures of burn severity are positively
correlated with beetle damage[193, 39], although the results of Simard et al. [193] have
been disputed by others [146].

MPB, and forest pests more generally, have attracted the attention of mathematical
biologists since the 1970s due to importance of the problem and the dynamical complexity
of outbreaks. The dynamical model of a full forest ecosystem would be intractable, neces-
sitating simplifying assumptions. An early model of forest-pest dynamics by Ludwig and
Holling [135] is a 3-dimensional differential equation model derived from simple population
dynamics principles by separating fast (pest dynamics) and slow (forest dynamics). Pow-
ell, Logan and Bentz [168], derive a 7-dimensional nonlinear partial differential equation
model, incorporating beetle pheromone dynamics, which they then integrate to a local
ordinary differential equation model. Others look at just one facet of the forest ecosystem.
For instance, since beetle lifecycle depends heavily on temperature, Gilbert and Powell
[82] discussed three models which incorporate temperature-dependent emergence and at-
tack. Tree mortality also exhibits sharp transitions as a function of tree vigor. Duncan
et al.[68] incorporated a Leslie matrix to explicitly model multiple vigor categories in a
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discrete time dynamical model, while Lewis, Nelson, and Xu [127] developed an infinite-
dimensional model which accounts for arbitrary vigor distributions. Some recent research
also considers dynamic interactions between forest pest outbreaks and human population
decision-making regarding transport of infested campfire wood [25, 8].

Whether fire suppression changes stand structure in a way that alters susceptibility
to beetle attack is a current topic of research. It has been hypothesized that wildfire
encourages variability in spatial structure[189], which inhibits the ability of the bark beetle
to find hosts and therefore dampens outbreak dynamics. We hypothesize that demographic
variability (in the age structure of tree populations) can have a similar effect on MPB
outbreaks. Age structure is pertinent because MPB mortality is much higher among larger,
and therefore older, trees [22, 181]. This aspect has been studied in at least two previous
models of MPB [127, 68] and has been found to affect system dynamics, although the
additional role of fire was not considered in these models. Our objective is to characterize
the model dynamics of an age-structured tree stand subject to disturbance from both fire
and bark beetles, and to understand how changes in stand age structure due to wildfire or
control measures can influence bark beetle outbreaks.

4.2 Methods

4.2.1 Model Description

Our model is based on a discrete-time model developed by Duncan et al.[68], describing
beetle-tree dynamics in a well-mixed, sufficiently large, single-species stand. We expand
their model to include fire dynamics by introducing a category for burned trees, imple-
mented as a Kermack-McKendrick-style contagious process[71]. We also add stochastic
forcing to both the infested category and the burned category. The discrete-time dynam-
ics are defined in terms of population size in the spring of year n. Trees killed by beetle
infestation die over the course of a few years, becoming a snag (a dead or dying tree that
remains standing), until they decompose enough that they no longer shade the forest floor.
If a tree is infested in the summer of year n, its needles will turn red and it will be a ”red
snag” in the spring of year n + 1. Then, in the spring of year n + 2, a ”grey snag” with
grey needles. After this it will decay sufficiently that new juvenile trees can grow up in it’s
place, in year n+ 3. Wildfire also produces snags: a tree that is standing and shading the
forest floor but no longer alive. We assume that wildfire clears the forest faster than MPB
infections, so a tree that has been sufficiently affected by fire in the summer of year of n
becomes a snag in the spring of year n + 1, and then the following spring, new juvenile
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trees come up in its place. We assume that the forest is at carrying capacity, so new trees
can only come up at the locations where trees have died. The forest is assumed to be a
monospecies lodgepole pine stand, which are common hosts of MPB in western Canada
and the USA.

Age structure is incorporated because beetles cannot effectively infest trees less than a
certain diameter in size [181, 7]. Juveniles grow through the K age categories,at a rate of
one age class per year, with a probability (1− d) of surviving until the next year. Figure
4.2.1 illustrates the cycle each category should move through in any particular year. We
define the following state variables: jn,k is the population of juvenile trees of age k at year

n, Jn =
∑K

k=1 jn,k, the total number of trees in the Juvenile class, Sn is the population of
susceptible trees at year n, In is the population of infested trees at year n, and Fn is the
population of burned trees at year n.

jn+1,1 = dJn + In−2 + Fn (4.1)

New juvenile trees are created each year according to equation 4.1. The number of
juveniles of age 1 is equal to the total number of juveniles that died last year, dJn =
d
∑N

k=1 jn,k, plus the number of grey snags In−2, plus the number of burnt snags (trees that
burned the previous summer) Fn.

The severity of forest fire in year n in the stand as a function of the previously unburned
area is

Pn = T −
n∑
i=1

Fie
−κ(n−i) (4.2)

where the variable κ determines the half-life of decaying fuel. In other words, we define
the severity or size of a fire in the year n as inversely proportional to the amount of land
burned in recent seasons.

The growth of juvenile trees is defined by equation 4.3. A fraction 1−d of juveniles from
class k−1 grows into class k juveniles, minus the trees in this class that burn, proportional
to Pn.

jn+1,k = (1− d)jn,k−1 −
α1

T
Pnjn,k−1, k = 2...K − 1, K (4.3)

The number of susceptibles in the spring of year n + 1 is equal to the number of
susceptibles in the spring of year n, plus the number of juveniles growing into mature trees
((1− d)jn,K). We subtract the trees that were infested in the summer of year n, In, the
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infested and burnt trees, α3

T
PnIn, the trees that were only burnt, α2

T
PnSn, and the juveniles

from class K that would have become mature if they had not caught fire, (α2

T
Pn(1−d)jn,K).

Sn+1 = Sn + (1− d)jn,K − (In +
α3

T
PnIn)− α2

T
Pn (Sn + (1− d)jn,K) (4.4)

In+1 = r1Ine
−β1(T−Sn−(1−d)jn,K+(In+

α2
T
PnIn)+

α2
T
Pn(Sn+(1−d)jn,K) − α3

T
PnIn (4.5)

The model for infested trees is based on ricker-style dynamics, where r1 is the reproduc-
tion rate of beetles, and the exponential term denotes the probability that each individual
will find a susceptible tree. The number of infested trees burned is subtracted after repro-
duction, for simplicity. As in Duncan et al., we have In+1 = r1Ine

In+In−1+Fn+Jn+1 , where
the exponent is the number of current non-susceptible trees. From the conservation of
tree-equivalents T = In + In−1 + Fn + Jn+1 + Sn+1, so the exponent is just T − Sn+1.

Fn+1 = Pn

[
α1

T

K−1∑
k=1

jn,k +
α2

T
(Sn + (1− d)jn,K) +

α3

T
In

]
+ σFγn (4.6)

The burnt snags in the spring of year n+ 1 is equal to the sum of the number of burnt
juveniles (α1

T
Pn
∑K−1

i jn,K), susceptibles (α2

T
Pn(Sn+ (1− d)jn,K)), and infested (α3

T
InPn).

Then, our model is defined by:

jn+1,1 = dJn + In−2 + Fn (4.7a)

jn+1,k = (1− d)jn,k−1 −
α1

T
Pnjn,k−1, k = 2...K − 1,K (4.7b)

Sn+1 = Sn + (1− d)jn,K −
(
In +

α2

T
PnIn

)
− α2

T
Pn (Sn + (1− d)jn,K)− σFγn (4.7c)

In+1 = r1Ine
−β1(T−Sn+1) − α2

T
PnIn + σIξn (4.7d)

Fn+1 = Pn

[
α1

T

K−1∑
k=1

jn,k +
α2

T
(Sn + (1− d)jn,K) +

α2

T
In

]
+ σFγn (4.7e)

Pn = T −
n∑
i=1

Fie
−κ(n−i) (4.7f)

ξn and γn are normal random variates with zero mean and unit variance, drawn indepen-
dently in year n. The model conserves the total number of tree-equivalents, which is a
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Figure 4.1: Conceptual diagram of compartments (state variables) and transitions between
compartments across seasons. See main text and Table 4.1 for definitions of variables and
parameters.

tree, a snag, or an open space in the canopy where a tree will grow the next season. The
conservation equation is T = In−1 +In−2 +Fn+Jn+Sn, which can also be seen as the left or
right column in figure 4.2.1. Descriptions of the variables can be found in Table 4.1. Fire
could have been modelled in a more complex way using a different timescale than seasonal
beetle outbreaks, but we chose to simplify the modelling by matching the timestep of the
pest outbreak cycles instead. Fire prevalence is also dependent on precipitation patterns,
temperature, human activity, and other factors which operate on different time and spatial
scales than our model. We assume this risk is roughly constant each year, and that it
contributes to the environmental noise experienced by the system denoted by σF .

The following lemma demonstrates that the model equations preserve the total tree
equivalent population present in the initial conditions.

Lemma 1. Let I−1 + I−2 +F0 +J0 +S0 = T . The equation In−1 + In−2 +Fn +Jn +Sn = T
is true for all n ≥ 0 under the evolution equations 4.7a-4.7f.

Proof. First, notice that the only individuals leaving the Juvenile compartment Jn are
the surviving oldest juvenile age class (1 − d)jn,K and the sum of the trees burned from

each juvenile age class (except the oldest), α1

T
Pn
∑K−1

k=1 jn,k. The individuals entering the
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Juvenile compartment are the seedlings germinating in the canopy gaps created by the
gray snags In−2 and the trees burned the previous summer, Fn. Therefore we have the
following equation for the total number of juvenile trees Jn+1.

Jn+1 = Jn − (1− d)jn,K + In−2 + Fn −
α1

T
Pn

K−1∑
k=1

jn,k (4.8)

Then, proceed by induction. The base case, I−1 + I−2 + F0 + J0 + S0 = T , is true by
definition. For the inductive step, assume that In−1 + In−2 + Fn + Jn + Sn = T is true,
then we have:

In−1 + In−2 + Fn + Jn + Sn + (1− d)jn,K − (1− d)jn,K = T (4.9a)

=⇒ Jn + In−2 + Fn − (1− d)jn,K + In−1 + Sn + (1− d)jn,K

+Fn+1 −
α1

T
Pn

K−1∑
k=1

jn,k −
α2

T
(Sn + (1− d)jn,K)Pn

− α2

T
InPn − σFγn = T (4.9b)

where we use the definition of Fn+1.

=⇒ Jn+1 + In−1 + Sn + (1− d)jn,K + Fn+1 −
α2

T
(Sn + (1− d)jn,K)Pn

− α2

T
InPn − σFγn = T (4.9c)

(4.9d)

by definition of Jn+1.

=⇒ Jn+1 + In−1 + Sn + (1− d)jn,K + Fn+1

−α2

T
(Sn + (1− d)jn,K)Pn −

α2

T
InPn − σFγn + In − In = T (4.9e)

(4.9f)

=⇒ Jn+1 + Sn+1 + Fn+1 + In + In−1 = T (4.9g)
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where we obtain the conservation equation for the spring of year n + 1 by definition
of Sn+1. Therefore the inductive step is true, and the model equations conserve tree
equivalents.

4.3 Initial conditions

The initial conditions we use in the model are defined as follows.

I0 = 2000 (4.10a)

I−1 = 1000 (4.10b)

I−2 = 0 (4.10c)

S0 = 108000 (4.10d)

F0 = 1000 (4.10e)

j0,k = 0, k = 1...K (4.10f)

(4.10g)

These conditions were chosen to provide reasonable representations of the system being
modeled. The model appears to be robust to the choice of initial conditions and so the
observations in the main text hold for any reasonable set of initial conditions. Note that
I−1 + I−2 +F0 +J0 +S0 = 110000 = T , where T is the parameter that determines the total
number of stems, from the main text.

4.3.1 Forest thinning protocol (FTP) and controlled burning pro-
tocol (CBP)

One of the MPB control methods is to thin the forest, or conduct controlled burns, to
increase the overall resilience of the forest to outbreaks or wildfire.[182, 186, 11]. In this
section we modify our discrete process to include a control protocol, which is a simplified
description of altering the structure of a growing stand to limit susceptibility to MPB.
Define τ as the fraction of juvenile trees removed from the m oldest juvenile age classes,
each year. The removed trees are added to the youngest juvenile class, to model trees
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replaced by seedlings. Since it is not realistic to perform this every year, we also investigate
the effect of performing this protocol every 5 years. We will refer to the preceding protocol
as the forest thinning protocol (FTP).

Xn = arg max
S⊂[1,50]:|S|=m

∑
k∈S

jn,k (4.11)

Let Xn be the set of m largest juvenile age classes defined as in equation 4.11. Math-
ematically, for all age classes k′ ∈ Xn, we change equation 4.7b to equation 4.12b. In
order to thin the fraction τ of trees from each age class in Xn, we add the corresponding
population to jn,0.

jn+1,1 = dJn + In−2 + Fn

+ τ
∑
k′∈Xn

(
(1− d)jn,k′−1 −

α1

T
Pnjn,k′

)
(4.12a)

jn+1,k′ = (1− τ)
(

(1− d)jn,k′−1 −
α1

T
Pnjn,k′−1

)
, k′ ∈ Xn (4.12b)

Fn+1 = Pn

[
α1

T

K−1∑
i=1

jn,k +
α2

T
(Sn + (1− d)jn,K) +

α2

T
In

]
+ σFγn

+ τ
∑
k′∈Xn

(
(1− d)jn,k′−1 −

α1

T
Pnjn,k′−1

)
(4.12c)

Controlled burning is modelled similarly, but instead we add the reduced age compart-
ments to the F compartment as shown in equation 4.12c. We will refer to this modification
as the controlled burning protocol (CBP) in the text from here on. We only consider re-
moving juvenile trees because a tree removed before it is susceptible to MPB has the most
potential effect on reducing MPB infestation size.

4.3.2 Parameters and simulation design

Table 4.1 contains a list of the parameters used in the model, their interpretation, and
their baseline values. Duncan et al. used a similar model with parameters fitted to data as
in [5]. We performed sensitivity analysis on all other parameters (including all fire-related
parameters) as shown in the Results section.
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Table 4.1: Parameters and baseline values of compound fire and pest model. Except for
αi and the noise magnitude, all parameters were obtained from Duncan et al. [68]

Parameter name Default value Interpretation Source

r1 1.8 yearly fecundity of beetles [167]
β1 10.8× 10−6 search failure rate of MPB [167]
d 0.01 annual mortality rate of ju-

veniles
[68]

α1 - burning rate of juveniles -
α2 - burning rate of adult trees -
κ 0.1 decay rate of fuel -
T 110,000 total number of trees in

stand
[167]

K 50 number of juvenile genera-
tions

[68]

σF 20 noise in burned tree
σI 20 noise in infested tree
m 0 number of age classes con-

sidered by FTP and CBP
τ 0 fraction of juvenile trees

removed from the m age
classes with FTP and CBP
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To generate parameter planes, we simulated equations 4.7a-4.7f across a grid of pa-
rameter values. We conducted 100 simulations for each point on the parameter grid and
computed the average outcome for that grid point. We also recorded a representative sam-
ple of the resulting time series. We found the dominant period of the outbreaks by finding
the frequency with maximum modulus via the discrete Fourier transform of the time se-
ries. In the deterministic case (with no noise), this frequency is the period of the periodic
solution. When noise is added and the system becomes stochastic, there is no longer a
clear periodic solution, but it is possible to estimate the mean of the distribution of the
period by averaging the dominant frequency of the system at equilibrium. The period is
assumed to be 1, corresponding to a (stochastic) steady state, if the smallest and largest
values of the susceptible timeseries were sufficiently close together. The model and analysis
of model output were coded in Julia. Throughout the results section, we mostly focus on
the α1, α2 plane. We kept the remainder of the parameters constant as it was possible to
set their values from empirical literature as described above.

4.4 Results

We first characterize the dynamical regimes of the model as a function of the burning rates
α1, α2, and the decay rate κ. Then, we describe how the forest responds to the FTP and
CBP described previously. Note that the susceptible class refers to mature trees, i.e., those
large enough to be susceptible to infestation by MPB. Maximum outbreak sizes and fire
season sizes are taken over a 500 year period.

4.4.1 Dynamical regimes

There are roughly two equilibrium dynamical regimes in the α1, α2 parameter plane, al-
though the sizes of the equilibrium populations varies continuously with the parameters
inside each dynamical regime. The shapes of these dynamical regimes are affected by the
rate of fuel decay, κ.

As α1, α2 increase, the model displays larger, and more frequent fires, and smaller MPB
outbreaks (Figure 4.2). When α1, α2 are small and not equal, years with severe fire seasons
roughly follow the same period as MPB outbreaks (Figure 4.2b,d). The variation in fire
season size is more pronounced when α1 is either much larger or smaller than α2. This is
shown in by the unit period in Figure 4.2d which signifies that the burned tree population
is roughly constant and therefore recurs with period one. The presence of large stands
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Figure 4.2: Approximate dynamical regimes of the system, where α1 is the burning rate
of juvenile trees, and α2 is the burning rate of susceptible (mature) trees. a) Average size
of largest MPB population (over 500 years at equilibrium) b) Average frequency of MPB
outbreaks at equilibrium c) Average size of largest fire season (over 500 years at equilibrium)
d) Average frequency of severe fire seasons at equilibrium. The juvenile burning rate (α1)
and susceptible burning rate (α2) control fire and MPB prevalence. Large α1, α2 implies
low infestation and also more regularity in the fire regime. All other parameters were set
to baseline values (Table 4.1).
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with similar ages is determined by the size of the MPB outbreaks, since they mostly affect
sufficiently old (susceptible) trees (Figure 4.3a,b). This can been seen in the bump at
k = 40, which will age out of the juvenile age classes and become a large concentration of
susceptible trees, triggering an mpb outbreak. Dead trees from this MPB outbreak clear
canopy space for seedlings, which causes another large even-aged stand to arise, and the
cycle repeats.

4.4.2 Impact of forest thinning protocol (FTP) and controlled
burning protocol (CBP)

The model predicts that the FTP described in section 2.2 (remove a fraction τ of trees in the
m largest juvenile age classes each year) is an effective way to control MPB outbreaks, as
long as control intensity parameters are sufficiently large. We consider trimming fractions
τ up to 0.15, and the number of age classes trimmed m up to 8.

The FTP reduces the size of MPB outbreaks differently depending on the values of
α1, α2 (Figure 4.6). The parts of the parameter regime where thinning is most effective
at reducing MPB outbreak sizes occur when α1 is small, where we see approximately
70% smaller MPB outbreaks (Figure 4.6a) for all considered values of α2. Generally,
parameter ranges where MPB is more prevalent experience the largest reductions. With
α1 = 0.02, α2 = 0.0025, there is a reduction in maximum outbreak population of about
30% when thinning the largest 8 stands by 15% each year (Appendix, figure 28a). With
α1 = 0.01, α2 = 0.006, MPB populations are already dampened by the fire regime, but
MPB outbreak peak population sizes are reduced from roughly 1600 infested trees to 800
infested (Appendix, figure 28b). A similar practice conducted every five years is almost as
effective as the yearly trimming (Figure 4.6b). Maximum MPB infestation sizes for FTP
every 5 years and CBP are in the Appendix, figures 28-30. Increasing the heterogeneity
of the age distribution in this way always reduces MPB populations by some amount. If
we apply the CBP instead (see Equation 4.12c), then controlled burns are largely effective
with significant MPB populations, but can worsen outbreaks by up to 80% in regions were
the MPB outbreak size is already small (Figure 4.6c).

FTP, and to a lesser extent CBP, does not simply indirectly reduce the number of sus-
ceptible trees (and therefore available MPB hosts) but rather flattens the age distribution
better to reduce the occurrence of large, even aged, stands. We compare the average sus-
ceptible population (Figure 4.5) with and without FTP/CBP and find that in large parts
of the parameter regime, the susceptible population is unchanged or increased, despite
MPB outbreak sizes being reduced in most areas. Figure 4.4 shows a time-series at the
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Figure 4.3: Time series of each state variable of a single realization where α1 = 0.02,
α2 = 0.0025 , showing the regular outbreaks of pests, periodic shifts in fire prevalence,
and uneven age distribution generated by MPB outbreaks. a) juvenile distribution at time
t = 2050 (note different x-axis), b) susceptible population after year t, c) infested tree
population after year t, d) number of burned trees after year t. All other parameters were
set to baseline values (Table 4.1).
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same parameters as Figure 4.3, except with FTP flattening, to show the flattening of the
age distribution.

4.5 Discussion

In this paper we used a mathematical model of pest and fire dynamics in pine forests to show
how fire can suppress beetle outbreaks. The effect is related not only to the assumption
of competition between fire and beetles in the model, but also due to the impact of fire
on the age structure of stands: fires remove many large, mature trees and make space for
rapidly growing juvenile populations that are not susceptible to forest pest outbreaks. The
behaviour of the fire-beetle system is due to the fact that susceptibility to fire cuts across all
age classes, compared to beetle outbreaks that affect mostly mature age classes. We show
that large outbreaks of wildfires and beetle outbreaks inhabit the same dynamical regime,
and that very small beetle populations are consistent with a regular fire regime. These
results echo ecological evidence from Kaufmann et al.[114] and Seidl et al.[189] showing
that a consistent fire regime can dampen outbreaks of bark beetle in a serotinous forest
stand. Furthermore, we showed how a stand thinning protocol can significantly reduce tree
mortality due to MPB outbreaks in forests prone to both fire and beetle outbreaks. Only
a small intensity of thinning is required to see significant results. Prescribed burning has
a similar, although less significant, effect on the age structure of the forest, and therefore
similarly dampens MPB outbreaks. Prior to the arrival of European colonists, indigenous
americans routinely burned areas in western North America [26], these practices were not
recognized as beneficial by colonial governments, and were outlawed [38].

Implications for Fire/beetle management

Our work provides support for the practice of thinning forest stands to create more
heterogeneity in age structure [110, 150], despite the absence of spatially explicit dynamics
in our model. We show that even small changes to the demographics of forest stands can
result in large shifts in forest dynamics, dampening out oscillating disturbance patterns
and thereby increasing stand resilience. Using an abstract model for this purpose hope-
fully allows the evidence to generalize better over the wide range of possible ecosystem
parameters.

Evidence in literature for dynamical regimes described

Broadly, our model can describe the current dynamical regime of stands of pine forests
in the western interior with low fire susceptibility parameters α1, α2 (the bottom right-
hand corner of Figure 4.2a) depending on the location and time. Our model represents a
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Figure 4.4: Time series showing realization of model under FTP with τ = 0.15 fraction
of m = 8 juvenile stands cleared, conducted each year, where α1 = 0.02, α2 = 0.0025.
a) juvenile distribution at time t = 2050 (note different x-axis), b) susceptible population
after year t, c) infested tree population after year t, d) burned forest after year t. Notice the
flattening of the age distribution compared to the same parameters with no FTP (Figure
4.3)
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Figure 4.5: Percentage change in average susceptible (mature) forest population compared
to no FTP with a) τ = 0.15,m = 8, b) with τ = 0.15,m = 8 applied every 5 years, c)
controlled burning with τ = 0.15,m = 8, with respect to burning rates α1, α2. FTP and
CBP increase the average population of mature trees in many cases, in addition to reducing
outbreak sizes.

single stand with autonomous parameters, and in reality, there are probably many possible
dynamical regimes coexisting across the landscape and through time. Taylor and Carroll
[198] studied the wildfire and MPB history of interior British Columbia, and also found
this dynamic regime, albeit with decreasing prevalence of wildfire and increasing MPB
outbreaks through the 20th century. They find that the low frequency and severity of
wildfire has increased the percentage of pine in susceptible age classes to 55%, consistent
with our estimate for low α1, α2 (see Figure 4.3a for an example of the large susceptible
stands in this dynamical regime). Axelson et al. [21] records that, for their study area in
southern interior British Columbia, there has been a fire-free interval of over 100 years.
While this period is much longer than in our model, a trend towards higher variance in
fire periods does match our model for the aforementioned parameter range, and a more
complex fire model could potentially capture this additional complexity. They also record
an average return time of 36 years for MPB in their area, consistent with our estimate
for sufficiently low burning parameters. Kulakowsi et al. [120] records a similar dynamic
regime as [21] for the 20th century, but more frequent fire outbreaks, more closely matching
this model.

Implications for Forest Ecosystems
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Figure 4.6: Percentage change in maximum MPB infestation size within 500 year period
under FTP with a) τ = 0.15,m = 8, b) with τ = 0.15,m = 8 applied every 5 years, c)
controlled burning with τ = 0.15,m = 8, with respect to burning rates α1, α2. FTP is
always effective at reducing MPB outbreaks, and CBP worsens them if the population of
MPB is already low.
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The dry pine forest ecosystem that we model in this paper is home to many vertebrates
who react to disturbance, biotic and otherwise, in different ways. Many wood-boring birds
use MPB as a food source [152, 166]. Of these bird species, the three-toed woodpecker
(Picoides dorsalis and hairy woodpecker (Leuconotopicus villosus) depend significantly
on bark beetles as a source of food [124]. Accounts estimate that they make up about
23% of the woodpeckers diet on an average year [31], although during outbreak years
the fraction could be much larger [124]. Woodpeckers increase their reproduction rate
during outbreak years of MPB [73], so dampening MPB outbreaks could be detrimental
to bird populations, although there are feedbacks here that warrant further study. At
least one predator of MPB, the black-backed woodpecker (Picoides arcticus), is heavily
dependent on wildfires for habitat. Therefore, improving forest heterogeneity would likely
also improve resilience in woodpecker populations which depend on these disturbances for
habitat. Small mammals that inhabit western pine forests differ on their preference for
burn-cleared habitat [225]. Mammals such as the deer mouse (Peromyscus maniculatus)
strongly prefer burn clearing [226], while the red backed-vole (Myodes gapperi) favors
undisturbed stands [225]. Increasing heterogeneity would improve the availability of both
open stands for species which prefer the former habitat and closed, undisturbed stands for
species which favor the latter. The impact of our results for these ecosystems are likely
to be significant, but due to the complex feedbacks mentioned in these relationships, it is
difficult to know without extending the model and further empirical data on the strength
of these feedbacks.

The primary goal of this paper was to build on work on the age structured models of
beetle-infested stands[68] to a dynamical situation with a more complex disturbance regime
that includes wildfire, a common feature of the forests inhabited by MPB. The modelling
of fire spread is a very complex problem which is dependent on many variables which are
not modelled here. Moreover, the beetle infestation model we used was relatively simple,
necessitating use of a simple fire model as well in order to retain tractability of the model.
We opted for a simple approach derived from the compartmental modelling literature.The
dynamics we see here are an average case, so a more sophisticated fire model would yield
more detailed results. The assumed impact of fire on all age classes, and the mechanism
through which we model fire spread could also be refined in future work. Snags are also
not considered burnable material, which may have an effect on some of the dynamics. We
chose not to include these to reduce the number of parameters, especially parameters for
which we don’t have empirically-derived values. Lastly, the parameters which we drew
from Duncan et al. [68] were not tested for sensitivity, and therefore our findings could be
affected by these values.

A number of other approaches that relax our simplifying assumptions could be explored
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in future research. Other models combine annual difference equations with continuous time
intra-year equations [197, 137, 54]. A continuous time summer phase is one way we could
more accurately explicitly model a wildfire season. The FTP is straightforward and corrob-
orates the findings of similar work with more complex mechanisms [197]. Nevertheless, our
control strategies could be significantly more detailed and take into account fire-regimes
and current susceptible population. Our goal was to illustrate that we can take advantage
of the system dynamics by flattening the age distribution through burning a small percent-
age of juvenile trees, but more complex strategies might be more efficient. Spatial models
would provide even more possibilities for control options. We did not explore the complex
relationship between bark beetle emergence and temperature. MPB life-cycles are heavily
regulated by temperature: warm years can cause more than one generation to emerge in a
season, and severe cold can wipe out large populations. The higher precipitation and tem-
peratures predicted by models of climate change imply conditions more conducive to MPB
reproduction and therefore MPB outbreaks. Fire season intensity is also affected by tem-
perature, and some evidence suggests that increasing temperatures and earlier snowmelts
are probably creating worse fire seasons in this area [215].

Serotinous forests will be subject to very different environmental regimes in coming
decades that involve multiple stressors. We have demonstrated how a model can explore
the impact of fire and control protocols on tree stand age structure and thus MPB out-
breaks. Future models that account for multiple disturbance mechanisms could be useful
for anticipating how forests will respond to novel environmental regimes in the rest of the
twenty-first century.
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Chapter 5

Conclusion

5.1 Summary of findings

I have presented three projects that exhibit extensions of models of complex infectious
systems. The technique used in each chapter was to project the time-evolution of a partic-
ular population with age or spatial structure into the language of dynamical systems and
use the tools we have in that realm to hopefully provide insight about the corresponding
natural system. It is common to imagine complex systems in nature, such as a population
undergoing a pandemic, as a dynamical system with an enormous but finite number of
dimensions. Understanding of such a massive system can be at least partially achieved by
projecting down to the low-dimensional space which preserves the most significant features.

The first chapter presented a model of Sars-CoV-2 spreading throughout a population,
coupled to population opinion dynamics on the use of NPIs. The mortality rate after
Covid-19 diagnosis varies significantly based on age, therefore our research questions for
this model regarded age-based vaccination strategies. We used an age-structured com-
partmental model to represent the population for this reason. Availability of vaccines,
lockdown timing, distancing and the effect of these factors on vaccination planning were
explored in the analysis. Age-specific transmission is proportional to empirically-derived
location specific contact rates given by Prem et al [170]. The contribution of the contact
rates for a given location to the overall contact rate is determined by the fraction of people
using NPIs at that point, and the government lockdown policy. The fraction of people
using NPIs is also treated as a dynamic variable. The evolution over time of NPI use
is determined by a replicator equation where the payoff for using NPIs depends on the
current ascertained case level, and the current population sentiment towards NPIs. We fit
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all parameters, using both case and mobility data from the beginning of the pandemic in
Ontario, until November 12th, 2020. A fraction of the vaccines available in a given day are
allocated to each age group according to a vaccination strategy. Vaccines leftover from the
age groups specified in the strategy are distributed uniformly to the remaining age groups.
The four vaccination strategies considered are: oldest first, youngest first, uniform, and
contact-based. The contact-based strategy determines proportions based upon the groups
most likely to be infected, according the the contact matrices. In contrast, the oldest-first
strategy to represent vaccination of groups most vulnerable to Sars-CoV-2 infection. Our
model shows that under some conditions, such as a low vaccination supply, and an early
vaccination begin date, the contact-based vaccination strategy is most effective at reducing
mortality in the long term. Otherwise, it is best to vaccinate the oldest (most vulnerable)
populations first.

In the second chapter, we extended a model of forest pest spread via firewood transport
of [25] to a network, and analysed the efficacy of various prevention mechanisms. Compart-
mental models are designed to represent populations that are approximately well-mixed,
that is each member of a compartment has the same statistical properties as any other
member. In the case of the forest pest model, we assume that each patch of forest is ho-
mogenous, but that these homogenous patches are connected via human transport of trees
as firewood. It is common in eastern north america to see individuals selling wood from
trees on their property, and this is often more convenient than wood from inside the park
area. Research has shown that at least a few invasive insects harmful to forest ecosystems
in north america are transported this way [116, 203, 89]. Barlow et al. [25] therefore cou-
ple the infection dynamics of the forest pest to the social dynamics of firewood transport.
Their models coupled only a few patches of forest, and only considered altering the price
of firewood as an countermeasure. Our extension of their model to an empirical network
of several thousand patches [116] incorporated other methods of slowing the spread, such
as direct interception, broader information campaigns, and patch quarantine, in order to
inform policy. Our analysis consisted of evaluating these countermeasures over realistic
parameter ranges to determine the conditions under which each is a feasible approach to
slow the spread of invasive species. We found that extraordinary measures are needed to
demonstrably reduce total attack rates of a pest over 20 years from detection, over most
parameter values.

The third chapter of this thesis covered our investigation of a simple fire model coupled
to the MPB model of Duncan et al [68]. As discussion in the introduction, wildfire is a
crucial part of the ecosystem where MPB is native. The host species that MPB prefers
most are highly adapted to frequent wildfires, and depend on these disturbances to out-
compete other tree species and maintain the large monospecific stands that we observe.
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The model we present and analyze is a discrete-time compartmental model, where the host
population is age structured. A discrete-time model is used because MPB lifecycles can be
approximated well as discrete generations. The host population is age-structured because
the susceptibility of a tree to MPB increases sharply at a certain DBH (diameter at breast
height), which we assume to be achieved once a host tree reaches 50 years old. To match
the discrete yearly approximation of forest dynamics, we also use a dynamical model for
the yearly fire burn area. We find that, despite the simplicity of the model, the interac-
tion of these two processes arrives at useful insights. We show that wildfire can increase
heterogeneity of stand structure such that MPB outbreak sizes are small. Specifically,
increase the susceptibility of a stand to stand-clearing fires provides a regular disturbance,
which flattens the age structure of the stand. This confirms old observations made by
forest ecologists [114, 189], but in a very general model. To this end, we show that even
small adjustments to the age structure of juvenile trees in a stand can have large effects in
increasing the resilience of a stand against MPB outbreaks.

These chapters are novel in their application of existing human-environment modeling
ideas to questions pertinent to disease and forest pest dynamics. As discussed in the
introduction, individual participation is critical to the effectiveness of many NPIs against
Covid-19. Age-structure vaccine prioritization has been modelled elsewhere [45, 47], but
not coupled to behavioural dynamics. Chapter 2 addresses this gap in the literature.
Chapter 3 expands upon Barlow et al. [25] to use a large real world network, and introduces
further interventions. Chapter 4 sheds light on the function of stand structure in wildfire-
MBP dynamics. To our knowledge, it is the first analysis of a mechanistic model of
stand dynamics subject to these coupled disturbances. The human aspect of this system
is the form of the control mechanism we suggest. This research addresses the dearth of
models coupling wildfire and MPB in a dynamical system, despite the importance of these
disturbances.

5.2 Discussion

Throughout this thesis we have discussed infections in human-environment systems, rep-
resented with compartmental systems of differential or difference equations. We use this
framework as a way to homogenize attributes of the population for a particular application.
Assuming that there is some spatial or age structure on the hosts lets us further subdivide
the population. Analysis of disease models can be focused on the dynamics of a particular
outbreak, or set of outbreaks, represented by the transient behavior of the underlying dy-
namical system. These are generally characteristics of the model output immediately after

82



the introduction of a small number of infected hosts into the population, until the out-
break has ended because the infection has reached an equilibrium. Our model of Covid-19
(Chapter 2) follows the outbreak transient from the first day with more than 50 cases until
mid-november when the manuscript was submitted for publication. Similarly, our model
for forest pest transport (Chapter 3) considers the outbreak transients arising from the
introduction of a new invasive forest pest into the Greater Toronto Area, and minimizing
the length of these transients with a few methods. In contrast, Chapter 4 covered a model
of an endemic forest pest. MPB has been a naturally occurring part of the ecosystem it
resides in for many thousands of years, and therefore we assume it has reached an equi-
librium solution. Analysis for a disease endemic to humans could follow a similar pattern.
For instance, Chitnis et al. studied conditions for the stability of endemic malaria [59].
Even with systems considering an endemic infection, we can look at transients following
some perturbation to the system, such as outcomes following vaccination against human
papillomavirus [125].

Indirect protection from infection is a consistent theme throughout this thesis. In an
otherwise homogenous model, indirect protection is representable through additional age
structure (chapters 2, 4) or spatial structure (chapter 3) in the host population of an
infectious process. We explicitly discuss indirect protection frequently in the context of
disease models and immunization, but it is also present under the concept of heterogeneity
in ecological systems. Chapter 4 studies the indirect protection created by heterogeneous
age structure, and shows that it can be maintained by wildfire disturbances in a specific
forest ecosystem. Chapter 3 discusses indirect protection, in the form of patch quarantine.
In that chapter we conclude that adequate indirect protection is difficult to achieve in a
model with many perfectly well-mixed pockets (the individual forest patches). Although,
it should be noted that patch quarantine in the forest-pest model context is necessarily a
much weaker form of indirect protection than, for example, vaccination in a disease model.

In all three chapters, methods for increasing resilience of host populations to infectious
agents are compared. Age-based vaccination strategies (chapter 2), forest pest mitigation
strategies (chapter 3), and forest thinning protocols (chapter 4) are evaluated in terms of
their host mortality reduction. We test each strategy over a large range of the parameter
space to understand when each strategy works and why. Furthermore, strategies are often
learned from the structure of the model itself. The contact-based vaccination strategy in
chapter 2, for instance, is derived from the model for contact patterns. Similarly, the stand
thinning protocol (FTP in chapter 4) was created to use features of the stand dynamics
present in the MPB-fire model.
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5.3 Limitations and future work

The work in this thesis is focused on models to understand how dynamics act upon major
features of a given system. Our model of Covid-19 was designed to provide guidance on the
broad strokes of a vaccination response, and since its publication there has been some work
confirming our findings in other settings [57, 101]. There are still some areas where we could
have improved the model, and opportunities for modeling responses to future pandemics.
The vaccination response in our paper is defined by a fraction of vaccines allocated to each
age group, if there are fewer people in that age group than vaccines available for that day,
these vaccines are allocated uniformly over the remaining age groups. A more intuitive
way to allocate available vaccines, and the way that this has been implemented in many
jurisdictions, would be with a priority list. In Ontario, Canada, for instance, vaccines
were made available first to healthcare workers and the very old, and then those with high
risk health conditions. We assume, for simplicity, that the vaccination rate is constant,
but vaccination availability usually ramps up as supply chains are developed. Since the
results of the paper are dependent on the vaccination rate, a non-constant vaccination rate
would improve predictions. An extension of the model that includes vaccine hesitancy is
considered in this chapter, where there is room for additional research. As vaccination
against Covid-19 comes underway in 2021, there have been many more cases of hesitancy
than we initially considered [188, 195, 50].

Socio-epidemic models, particularly those based upon game theoretic assumptions about
belief formation, usually do not account for structural inequalities present in the study pop-
ulation. We refer to inequality as structural when properties inherent to the construction
of health institutions, economic systems, social organizations, and governments result in
worse outcomes for certain groups of people living within these systems [92, 174, 179]. The
Covid-19 pandemic has magnified and exacerbated many of these structural inequalities
[18, 220, 55, 56, 37, 208, 102, 211]. Our model in chapter 2 assumes that NPI usage is
based on a combination of state policy and individual perception of the severity of the
pandemic. While NPI protocols in reality are implemented jurisdiction-wide, actually fol-
lowing these protocols is often a privilege for the wealthy and white for reasons such as
access to transportation, housing conditions, and food insecurity [108, 140]. While we
incorporate essential work in chapter 2, we do not incorporate the fact that essential work-
ers are overwhelmingly marginalized groups [121]. In Ontario, paid sick leave was only
granted to workers on April 29th, 2021, over one year after the beginning of the pandemic
[12]. Behavioral models of vaccination hesitancy are subject to similar criticism. For
marginalized groups, there are reasons to distrust a vaccine that should not be described
as defecting from the co-operative strategy. Among others, black and indigenous people
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in North America have survived many centuries of medical experimentation by european
colonists [159, 213] which could contribute to vaccine hesitancy [107, 36]. A lack of vaccine
uptake could also be due to the significant inequities in vaccine distribution, which we
ignore by focusing on vaccine hesitancy [105, 158, 61]. In short, game theoretic models
generally assume that decisions are based firmly in individual choice, an assumption which
does not accurately describe the social and material landscape many people exist within.
Nevertheless, population behaviour is an important and often neglected aspect of disease
spread. Further research should explore frameworks of behavioural modeling that are able
to incorporate these issues.

Chapter 3 attempts to generally address invasive forest pests in Ontario, Manitoba and
Quebec in a network of well-mixed patches of forest. The model in this section uses available
traffic data to parameterize the relative magnitude of pest spread between patches, but
data on spatial spread of forest pests would be greatly beneficial to calibrate the model
for particular species. The complexity and scale of the patch quarantine in the model
could be increased further. Our model considered closure of a set number of patches for
a fixed time, where patches were closed based upon network centrality. More complex
methods could be implemented where patches are closed partially and reactively, based
on detected pest locations. Given more data, we could use information about specific
pests to better inform patch closure. Beliefs about firewood transport are probably less
susceptible to the limitations of behavioural models mentioned in the previous paragraph.
Our assumption that each patch has its own independent beliefs about firewood transport
was not explored in the chapter. It is likely that the behavioural dynamics are strongly
coupled, and that urban centres are more susceptible to messaging about the dangers of
firewood transport than rural areas. The assumption of well-mixed patches aligning with
campsites could also be relaxed. One approach would be an agent-based model of the
real forested patches in eastern Canada overtop the same campsite network. This method
adds orders of magnitude to the dimensionality of the problem, which would be difficult
to understand without additional data on pest spread.

The core idea of chapter 4 is that age structure in ecosystems, and the way that distur-
bances interact within an age structured population, is a useful perspective in understand-
ing them. Rather than adding complexity to our model of MPB and wildfire, an approach
that has been explored in many detailed agent-based simulations [49, 162, 4, 132], it would
be interesting to explore similar disturbances which might have interactions on a struc-
tured population. For example, periodical cicada populations exhibit different predators
depending on their life stage [131], which can be longer than the life stage of their predators.

Super-spreader events are often key in the spread of infectious agents. For instance,
infested firewood could be taken by one traveller to a large number of sites all in one trip.
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There is evidence that transmission of Sars-CoV-2 is also highly heterogeneous [122, 78].
The distribution of wildfire sizes in North America also tend to follow a power law [138],
which is a property not present in our model. We did not account for these super-spreading
events in our models, but introducing stochastic infection parameters would be one way to
extend the model in this direction.

5.4 Concluding comments

We presented three models aiming to understand the effects of infectious agents within
complex human-environment systems. These approaches are novel in their treatment of
coupled interactions between these infectious agents, and other significant aspects of their
respective systems. Through their application we have gained new insight into the dynam-
ics of such systems, provided actionable policy recommendations, and confirmed patterns
observed in empirical research. We hope that future work will be able to extend our
methodology to address new problems in these areas.
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[7] René I Alfaro, Rochelle Campbell, Paula Vera, Brad Hawkes, Terry L Shore, et al.
Dendroecological reconstruction of mountain pine beetle outbreaks in the chilcotin
plateau of british columbia. In Mountain Pine Beetle Symposium: Challenges and
solutions. TL Shore, JE Brooks, and JE Stone (editors). Kelowna, BC, pages 245–
256, 2003.

87

https://www.who.int/news/item/13-10-2020-impact-of-covid-19-on-people%27s-livelihoods-their-health-and-our-food-systems
https://www.who.int/news/item/13-10-2020-impact-of-covid-19-on-people%27s-livelihoods-their-health-and-our-food-systems
https://www.who.int/news/item/13-10-2020-impact-of-covid-19-on-people%27s-livelihoods-their-health-and-our-food-systems
https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic
https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic
https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic


[8] Qasim Ali, Chris T Bauch, and Madhur Anand. Coupled human-environment dy-
namics of forest pest spread and control in a multi-patch, stochastic setting. PloS
one, 10(10):e0139353, 2015.

[9] Francesco Allemanno. Kissabc.jl. https://github.com/JuliaApproxInference/

KissABC.jl, 2020.

[10] Marco A Amaral, Marcelo M de Oliveira, and Marco A Javarone. An epidemiological
model with voluntary quarantine strategies governed by evolutionary game dynamics.
arXiv preprint arXiv:2008.05979, 2020.

[11] GD Amman and JA Logan. Silvicultural control of mountain pine beetle: pre-
scriptions and the influence of microclimate. American Entomologist, 44(3):166–178,
1998.

[12] Alexandra Anadarajah, Fusco Alessandra, and Andrew Shaw. Paid sick leave in
ontario for reasons related to COVID-19, 2021.

[13] Kristian G Andersen, Andrew Rambaut, W Ian Lipkin, Edward C Holmes, and
Robert F Garry. The proximal origin of sars-cov-2. Nature medicine, 26(4):450–452,
2020.

[14] Roy M Anderson, B Anderson, and Robert M May. Infectious diseases of humans:
dynamics and control. Oxford university press, 1992.

[15] Roy M Anderson and Robert M May. Vaccination and herd immunity to infectious
diseases. Nature, 318(6044):323–329, 1985.

[16] Sean C Anderson, Andrew M Edwards, Madi Yerlanov, Nicola Mulberry, Jessica
Stockdale, Sarafa A Iyaniwura, Rebeca C Falcao, Michael C Otterstatter, Michael A
Irvine, Naveed Z Janjua, et al. Estimating the impact of COVID-19 control measures
using a bayesian model of physical distancing. medRxiv, 2020.

[17] Michael A Andrews and Chris T Bauch. Disease interventions can interfere with
one another through disease-behaviour interactions. PLoS computational biology,
11(6):e1004291, 2015.

[18] Adjoa Anyane-Yeboa, Toshiro Sato, and Atsushi Sakuraba. Racial disparities in
covid-19 deaths reveal harsh truths about structural inequality in america. Journal
of internal medicine, 288(4):479–480, 2020.

88

https://github.com/JuliaApproxInference/KissABC.jl
https://github.com/JuliaApproxInference/KissABC.jl


[19] Stephen F Arno. Forest fire history in the northern rockies. Journal of Forestry,
78(8):460–465, 1980.

[20] Australian Government, Department of Health. Australian influenza surveillance
report. 2(20 April to 3 May 2020), 2020.
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fredi, Matjaž Perc, Nicola Perra, Marcel Salathe, and Dawei Zhao. Statistical physics
of vaccination. Physics Reports, 664:1–113, 2016.

[213] Harriet A Washington. Medical apartheid: The dark history of medical experimen-
tation on Black Americans from colonial times to the present. Doubleday Books,
2006.

[214] Laren Weber. Checkpoint tries to halt wood traffic. The Toledo Blade, 2006.

[215] Anthony L Westerling, Hugo G Hidalgo, Daniel R Cayan, and Thomas W Swet-
nam. Warming and earlier spring increase western us forest wildfire activity. science,
313(5789):940–943, 2006.

106



[216] Wikimedia user Jonhall. Pine beetle in manning park photo. https://upload.

wikimedia.org/wikipedia/commons/7/7c/Pine_Beetle_in_Manning_Park.jpg,
accessed June 10, 2021.

[217] John RU Wilson, Eleanor E Dormontt, Peter J Prentis, Andrew J Lowe, and David M
Richardson. Something in the way you move: dispersal pathways affect invasion
success. Trends in ecology & evolution, 24(3):136–144, 2009.

[218] Toby Wise, Tomislav Damir Zbozinek, Giorgia Michelini, Cindy C Hagan, et al.
Changes in risk perception and protective behavior during the first week of the
COVID-19 pandemic in the United States. 2020.

[219] Joseph T Wu, Steven Riley, Christophe Fraser, and Gabriel M Leung. Reducing the
impact of the next influenza pandemic using household-based public health interven-
tions. PLoS medicine, 3(9):e361, 2006.

[220] Sanni Yaya, Helena Yeboah, Carlo Handy Charles, Akaninyene Otu, and Ronald
Labonte. Ethnic and racial disparities in covid-19-related deaths: counting the trees,
hiding the forest. BMJ Global Health, 5(6):e002913, 2020.

[221] Denys Yemshanov, Robert G Haight, Frank H Koch, Bo Lu, Robert Venette, D Barry
Lyons, Taylor Scarr, and Krista Ryall. Optimal allocation of invasive species surveil-
lance with the maximum expected coverage concept. Diversity and Distributions,
21(11):1349–1359, 2015.

[222] Emilio Zagheni, Francesco C Billari, Piero Manfredi, Alessia Melegaro, Joel Mossong,
and W John Edmunds. Using time-use data to parameterize models for the spread
of close-contact infectious diseases. American journal of epidemiology, 168(9):1082–
1090, 2008.

[223] Shi Zhao, Lewi Stone, Daozhou Gao, Salihu S Musa, Marc KC Chong, Daihai He,
and Maggie H Wang. Imitation dynamics in the mitigation of the novel coronavirus
disease (COVID-19) outbreak in wuhan, china from 2019 to 2020. Annals of Trans-
lational Medicine, 8(7), 2020.

[224] Na Zhu, Dingyu Zhang, Wenling Wang, Xingwang Li, Bo Yang, Jingdong Song,
Xiang Zhao, Baoying Huang, Weifeng Shi, Roujian Lu, et al. A novel coronavirus
from patients with pneumonia in china, 2019. New England journal of medicine,
2020.

107

https://upload.wikimedia.org/wikipedia/commons/7/7c/Pine_Beetle_in_Manning_Park.jpg
https://upload.wikimedia.org/wikipedia/commons/7/7c/Pine_Beetle_in_Manning_Park.jpg


[225] Rafa l Zwolak. A meta-analysis of the effects of wildfire, clearcutting, and partial
harvest on the abundance of north american small mammals. Forest Ecology and
Management, 258(5):539–545, 2009.

[226] Rafa l Zwolak and Kerry R Foresman. Deer mouse demography in burned and un-
burned forest: no evidence for source–sink dynamics. Canadian Journal of Zoology,
86(2):83–91, 2008.

108



Appendix

109



0.0

0.1

0.2

0.3

0.4

0.5

εP1
posterior

1× 104

2× 104

3× 104

4× 104

κ1 posterior
0

1× 104

2× 104

3× 104

κ2 posterior
0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

c1 posterior

0.002

0.004

0.006

0.008

c2 posterior

0.5

1.0

1.5

2.0

γa posterior

1.2

1.4

1.6

1.8

2.0

R0 posterior

0.10

0.15

0.20

0.25

0.30

γs posterior

0.25

0.50

0.75

1.00

1.25

σ0 posterior

0.5

1.0

1.5

2.0

σ1 posterior
0.0

2.5

5.0

7.5

10.0

I0 posterior

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

s posterior
−110

−100

−90

−80

−70

−60

−50

ψ posterior
0.0

2.5

5.0

7.5

10.0

P0 posterior
0

1

2

3

4

E0 posterior
0.0

0.1

0.2

0.3

0.4

0.5

η posterior

125

150

175

200

tswitch posterior

Posterior distribution

Figure 1: Posterior distributions on inferred non-age structured model parame-
ters for baseline model.Posteriors are composed of 200 candidate parameter sets from
the particle filtering, the model was evaluated at these points for all future runs.
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Figure 2: Posterior distributions on inferred age-specific susceptibility modifier
parameter ρi for baseline model. Three age-specific susceptibility parameters shown
here, ρ1, ρ2, ρ3, were also inferred from particle filtering on the case and mobility data,
corresponding to the age brackets 0-20, 20-60, 60+.

110



2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (0.0, 5.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (5.0, 10.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (10.0, 15.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (15.0, 20.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (20.0, 25.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (25.0, 30.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (30.0, 35.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (35.0, 40.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (40.0, 45.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (45.0, 50.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (50.0, 55.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (55.0, 60.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (60.0, 65.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (65.0, 70.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (70.0, 75.0)
Case ascertainment

2020-04-01 2020-06-01 2020-08-01 2020-10-01
0.00

0.25

0.50

0.75

1.00

time (days)

Ages: (75.0, 95.0)
Case ascertainment

Figure 3: Posterior distributions on inferred age-specific ascertainment rate over
time for baseline model. Time dependent ascertainment rates inferred from the data,
corresponding to the fraction of actual cases detected by the Ontario testing system.
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Figure 4: Empirical data of cumulative infections due to COVID-19 by age and
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of June. We used this value to calibrate the model further.
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Figure 7: Social and epidemic dynamics for early vaccine availability and high
vaccination rate. (a) Ascertained incident COVID-19 cases, (b) proportion x of the
population practicing NPIs, (c) Intensity of school and workplace closure, (d) percentage
of population with natural or vaccine-derived immunity versus time. T = 200%, ψ0 = 1.5%
per week, vaccine available in January 2021. Other parameters are in Table 2.2.
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Figure 8: Social and epidemic dynamics for late vaccine availability and high
vaccination rate. (a) Ascertained incident COVID-19 cases, (b) proportion x of the
population practicing NPIs, (c) Intensity of school and workplace closure, (d) percentage
of population with natural or vaccine-derived immunity versus time. T = 200%, ψ0 = 1.5%
per week, vaccine available in September 2021. Other parameters are in Table 2.2.
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Figure 9: Social and epidemic dynamics for late vaccine availability and low
vaccination rate. (a) Ascertained incident COVID-19 cases, (b) proportion x of the
population practicing NPIs, (c) Intensity of school and workplace closure, (d) percentage
of population with natural or vaccine-derived immunity versus time. T = 200%, ψ0 = 0.5%
per week, vaccine available in September 2021. Other parameters are in Table 2.2.

117



50.0% 100.0% 150.0% 200.0% 250.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0% a)

T, shutdown threshold (% of first wave)

%
de

cr
ea

se
in

m
or

ta
lit

y

Vaccine available: Jan 1, 2021
0.5% population vaccinated per week

Contact-based
Oldest first
Uniform
Youngest first

50.0% 100.0% 150.0% 200.0% 250.0%
30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0% b)

T, shutdown threshold (% of first wave)

%
de

cr
ea

se
in

m
or

ta
lit

y 1.0% population vaccinated per week
Contact-based
Oldest first
Uniform
Youngest first

50.0% 100.0% 150.0% 200.0% 250.0%
30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0% c)

T, shutdown threshold (% of first wave)

%
de

cr
ea

se
in

m
or

ta
lit

y 1.5% population vaccinated per week
Contact-based
Oldest first
Uniform
Youngest first

50.0% 100.0% 150.0% 200.0% 250.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

d)

T, shutdown threshold (% of first wave)

%
de

cr
ea

se
in

m
or

ta
lit

y 2.5% population vaccinated per week
Contact-based
Oldest first
Uniform
Youngest first

50.0% 100.0% 150.0% 200.0% 250.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

e)

T, shutdown threshold (% of first wave)

%
de

cr
ea

se
in

m
or

ta
lit

y 5.0% population vaccinated per week
Contact-based
Oldest first
Uniform
Youngest first

Figure 10: Mortality reductions under various values of T and ψ0, early vaccine
availability. Violin plots of the percent reduction in mortality under the four vaccine
strategies, relative to no vaccination, as a function of the vaccination rate ψ0, for Jan-
uary 2021 availability. Horizontal lines represent median values of posterior model pro-
jections. Other parameter values in Table S1. Percentage reductions are relative to no
vaccination. Projected number of deaths in the absence of vaccination were 35597.2 (CI:
57465.9,19507.9); 48518.8 (CI: 86853.9,28335.7), 61339.1 (CI: 106623.0,34613.5), 72007.3
(CI: 121754.0,40483.4); 80707.6 (CI: 126732.0,47755.4) after January 1, 2021, for T=50%,
100%, 150%, 200%, and 250%, respectively.
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Figure 11: Mortality reductions under various values of T and ψ0, late vaccine
availability. Violin plots of the percent reduction in mortality under the four vaccine
strategies, relative to no vaccination, as a function of the vaccination rate ψ0, for Septem-
ber 2021 availability. Horizontal lines represent median values of posterior model pro-
jections. Other parameter values in Table S1. Percentage reductions are relative to no
vaccination. Projected number of deaths in the absence of vaccination were 25478.8 (CI:
45679.0,13006.7); 39149.6 (CI: 73917.1,20290.9); 50775.1 (CI: 95451.2,25980.9); 60250.7
(CI: 108361.0,30721.9); 68594.0 (CI: 107157.0,36063.6) after September 1, 2021 for T=50%,
100%, 150%, 200%, and 250%, respectively.
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Figure 12: A higher level of natural immunity increases the relative advantage of
transmission-interrupting strategies. Median and standard deviation of the percent
reduction in mortality under the four vaccine strategies, relative to no vaccination, as a
function of the vaccination start date and percent recovered at that time, for (a) φ0 =
1.0% vaccinated per week and (b) φ0 = 2.5% vaccinated per week. Shutdown threshold
T = 200%, and other parameter values in Appendix, Table S1.
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Figure 13: Sensitivity analysis exploring a range of vaccine efficacy values, for
vaccination rate φ0 = 2.5% per week. Subpanels are parameter planes for January and
September availability showing the vaccination strategy that reduces COVID-19 mortality
the most as a function of vaccine efficacy in 60+ year-olds versus vaccine efficacy in other
age groups. Other parameter values as in Table S1.
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Figure 14: Sensitivity analysis exploring impact of vaccinating behaviour dy-
namics. φ0 = 2.5% per week, T = 200%. Subpanels are parameter planes for January
and September availability showing the vaccination strategy that reduces COVID-19 mor-
tality the most as a function of vaccine social learning rate κvac and vaccine cost parameter
cvac. Other parameter values as in Table S1.
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Figure 15: Epidemic dynamics and social dynamics for both NPI adherence
and vaccinating behaviour, when vaccine cost is small, cvac = 1.1 × 10−4. (a)
Ascertained incident COVID-19 cases, (b) proportion x of the population practicing NPIs,
(c) Intensity of school and workplace closure, (d) percentage of population with natural
or vaccine-derived immunity versus time. T = 200%, ψ0 = 1.0% per week (maximum rate
in absence of vaccine refusal), vaccine available in September 2021, κvac = 50/day. Other
parameters are in Table 2.2.
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Figure 16: Epidemic dynamics and social dynamics for both NPI adherence and
vaccinating behaviour, when vaccine cost is moderate, cvac = 2.9 × 10−4. (a)
Ascertained incident COVID-19 cases, (b) proportion x of the population practicing NPIs,
(c) Intensity of school and workplace closure, (d) percentage of population with natural
or vaccine-derived immunity versus time. T = 200%, ψ0 = 1.0% per week (maximum rate
in absence of vaccine refusal), vaccine available in September 2021, κvac = 50/day. Other
parameters are in Table 2.2.
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Figure 17: Epidemic dynamics and social dynamics for both NPI adherence
and vaccinating behaviour, when vaccine cost is high, cvac = 3.8 × 10−4. (a)
Ascertained incident COVID-19 cases, (b) proportion x of the population practicing NPIs,
(c) Intensity of school and workplace closure, (d) percentage of population with natural
or vaccine-derived immunity versus time. T = 200%, ψ0 = 1.0% per week (maximum rate
in absence of vaccine refusal), vaccine available in September 2021, κvac = 50/day. Other
parameters are in Table 2.2.
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Figure 18: Sensitivity analysis for the scenario where R0 = 2.5 for December 2020
onward. Subpanels are (left) parameter planes for January and September availability
showing the vaccination strategy that prevents the most COVID-19 deaths as a function
of T and ψ0, and (right) percentage reductions in mortality. Other parameter values are
as in Table S1.
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Figure 19: Sensitivity analysis for the scenario of 30% heightened ascertainment
across all ages from December 2020 onward. Subpanels are parameter planes for
January and September availability showing the vaccination strategy that reduces COVID-
19 mortality the most as a function of T and ψ0 (left) and the corresponding posterior
parameter distributions for the refitted parameters (right). Other parameter values as in
Table S1. 127
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Figure 20: Sensitivity analysis for the scenario of 30% reduced ascertainment
across all ages from December 2020 onward. Subpanels are parameter planes for
January and September availability showing the vaccination strategy that reduces COVID-
19 mortality the most as a function of T and ψ0 (left) and the corresponding posterior
parameter distributions for the refitted parameters (right). Other parameter values as in
Table S1. 128



a)

1.0% 2.0% 3.0% 4.0% 5.0%

100.0%

150.0%

200.0%

250.0%

300.0%

T
,s

hu
td

ow
n

th
re

sh
ol

d
(%

ac
tiv

e
ca

se
s)

Vaccine available on Jan 1, 2021
Oldest first
Youngest first
Uniform
Contact-based

b)

1.0% 2.0% 3.0% 4.0% 5.0%

100.0%

150.0%

200.0%

250.0%

300.0%

Vaccination rate (% per week)

T
,s

hu
td

ow
n

th
re

sh
ol

d
(%

ac
tiv

e
ca

se
s)

Vaccine available on Sep 1, 2021

Figure 21: Sensitivity analysis for the scenario of four times the baseline social
learning rate from December 2020 onward. Subpanels are parameter planes for
January and September availability showing the vaccination strategy that reduces COVID-
19 mortality the most as a function of T and ψ0 (left) and the corresponding posterior
parameter distributions for the refitted parameters (right). Other parameter values as in
Table S1. 129
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Figure 22: Sensitivity analysis for the scenario of one-fourth the baseline social
learning rate from December 2020 onward. Subpanels are parameter planes for
January and September availability showing the vaccination strategy that reduces COVID-
19 mortality the most as a function of T and ψ0. Other parameter values as in Table S1.
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Figure 23: Sensitivity analysis for the scenario where efficacy against disease vD

is not the same as efficacy against transmission vT . Subpanels show percentage
reduction in mortality for the four stategies versus vD when vT = 0.75 but vD ranges from
0.75 to 0.95, for January and September availability. Other parameter values as in Table
S1. Note that mortality in this plot is computed from March 15, 2020 to March 14, 2025.
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Figure 24: Posterior parameter distributions and model outputs for more strin-
gent particle filtering criteria under Bayesian particle filtering algorithm. Top
left panel shows (a) COVID-19 case incidence by date of report in Ontario, 7-day running
average (circles) and ascertained case incidence from best fitting models (lines). (b) Per-
centage change from baseline in time spent at retail and recreation destinations (orange
circles) and at workplaces (green circles) from Google mobility data, and proportion of the
population x adhering to NPIs (orange line) and workplace shutdown curve (green line)
from fitted model. Top right panel shows posterior parameter distribution for age-specific
susceptibility modifier, ρi . Bottom panel shows other posterior parameter distributions.
Other parameter values as in Appendix, pp. 1-11.
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Figure 25: Sensitivity analysis for more stringent particle filtering criteria under
Bayesian particle filtering algorithm. Subpanels are parameter planes for January and
September availability showing the vaccination strategy that reduces COVID-19 mortality
the most as a function of T and ψ0 (left) and violin plots showing percentage reduction
in mortality (right). Horizontal lines represent median values of posterior model projec-
tions. Shutdown threshold T=200 % and other parameter values in Appendix, pp. 1-11.
Percentage reductions are relative to no vaccination. Projected number of deaths in the
absence of vaccination was 72,000 (95% credible interval: 40,000 to 122,000) from January
1, 2021 to March 14, 2025 for (a) and 60,000 (95% credible interval: 31,000 to 108,000)
from September 1, 2021 to March 14, 2025 for (b). Ontario Population size: 14.6 million.
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Figure 26: Model fit to data and baseline projections of mortality reductions
under the four vaccine strategies, when behaviour is held constant over time.
Top left: a) COVID-19 case incidence by date of report in Ontario, 7-day running average
(circles) and ascertained case incidence from best fitting models (lines). (b) Percentage
change from baseline in time spent at retail and recreation destinations (orange circles) and
at workplaces (green circles) from Google mobility data, and proportion of the population
x adhering to NPIs (orange line) and workplace shutdown curve (green line) from fitted
model. Bottom left: Violin plots of the percent reduction in mortality under the four
vaccine strategies, relative to no vaccination, as a function of the vaccination rate 0, for
(a) January and (b) September 2021 availability. Horizontal lines represent median values
of posterior model projections. Shutdown threshold T=200%. Percentage reductions are
relative to no vaccination. Projected number of deaths in the absence of vaccination was
72,000 (95% credible interval: 40,000 to 122,000) from January 1, 2021 to March 14, 2025
for (a) and 60,000 (95% credible interval: 31,000 to 108,000) from September 1, 2021
to March 14, 2025 for (b). Ontario Population size: 14.6 million. Right: Each parameter
combination on the plane is colour coded according to which of the four strategies prevented
the most deaths, on average across all model realizations, for (a) January and (b) September
2021 availability. Other parameter values in Appendix, pp. 1-11.
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Figure 27: Epidemic dynamics and social dynamics for both NPI adherence
and vaccinating behaviour, when behaviour is held constant over time. (a)
Ascertained incident COVID-19 cases, (b) proportion x of the population practicing NPIs,
(c) Intensity of school and workplace closure, (d) percentage of population with natural or
vaccine-derived immunity versus time. T = 200%, ψ0 = 0.5% per week, vaccine available
in January 2021. Other parameters are in Table 2.2.
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Figure 28: Maximum MPB infestation size within 500 year period, under FTP with respect
to τ fraction of m juvenile stands cleared. a) (α1 = 0.02, α2 = 0.0025), b) (α1 = 0.01,
α2 = 0.006.), c)(α1 = 0.03, α2 = 0.0012.)
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Figure 29: Maximum MPB infestation size within 500 year period, under FTP with respect
to τ fraction of m juvenile stands cleared, conducted every five years. a)(α1 = 0.02,
α2 = 0.0025), b)(α1 = 0.01, α2 = 0.006.), c)(α1 = 0.03, α2 = 0.0012.)
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Figure 30: Maximum MPB infestation size within 500 year period, under CBP with respect
to τ fraction of m juvenile stands cleared, conducted each year. a)(α1 = 0.02, α2 = 0.0025),
b) (α1 = 0.01, α2 = 0.006.), c) (α1 = 0.03, α2 = 0.0012.)
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