
Workload Balancing for Flight

Dispatcher Scheduling

by

Rebecca Sarah Rayner

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Management Sciences

Waterloo, Ontario, Canada, 2021

c© Rebecca Sarah Rayner 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Unlike other airline operations planning problems, optimization in flight dispatching is

not common in literature. Flight dispatchers are centrally located and monitor multiple

flights in different places simultaneously. Their work involves planning fuel requirements,

routing, and weather monitoring, both before and during a flight. An area of opportunity

exists in the assignment of work amongst dispatchers.

A desk contains a series of flights, and is served by a dispatcher or a series of dispatchers

working consecutive shifts. In this work, we do not consider shifts and instead focus on

assigning flights amongst a set number of desks. Our goal is to balance the workload of

each desk, which is measured by the sum of each desk’s maximum workload throughout

the day.

Two formulations are presented that model the assignment of flights to desks, which we

call the Flight Dispatching Problem. The Flight Dispatcher Schedule Formulation (FDSF)

assigns flights amongst a set number of desks. The Set Covering Formulation (SCF) selects

from known schedules (the assignment of flights to a single desk) to cover all flights with the

specified number of desks (i.e., schedules). The base implementation solves the SCF using

a column generation approach that creates new schedules with each iteration. Additional

variants are also modelled where we limit which flights are assigned to the same desk.

Testing is performed on European Airline Data and American Airlines data. The

instances range in size from 46 to 297 flights in one day. We find that the FDSF solves to

optimality quickly for small instances but not for the larger ones. The base implementation

converges within two hours for the small and mid-size instances. Gaps are reduced using

an improvement heuristic in some cases. For the larger instances, neither implementation

solves within two hours and the gaps after that time are very large. Constraining the

iii

flight assignments provides trade-offs between computation time (which is typically faster)

and solution quality (which is typically worse). We also tested the case where load varies

throughout the flight.

For the base implementation, most of the computation time for larger instances is spent

in the pricing problem. In some cases, this is improved by generating multiple columns in

each iteration instead of just one. The solution of the pricing problem is an area where

future work could be focused to improve the computational performance. Other areas for

future work include modelling dispatch zones instead of decomposing the problem by zones,

changing the balance metric in the objective, incorporating uncertainty, and including the

shift component of the dispatching problem.

iv

Acknowledgements

First, I would like to thank my supervisor Dr. Fatma Gzara for her support and

guidance throughout this process. Even though we could not meet in person, her consistent

feedback and organization provided stability in uncertain times. I also appreciate the

opportunities that she provided for me.

I would like to thank my readers, Dr. Samir Elhedhli and Dr. Houra Mahmoudzadeh

for their insight and feedback.

Additionally, thank you to my fellow members of the Waterloo Analytics and Opti-

mization (WanOpt) lab who shared their experiences with me. In particular, thanks to

Gohram Baloch for helping me get started in the lab and working through problems with

me. Also to Paulo de Carvalho, who always had a positive outlook and helped me solve

any technical problems, especially when I could not access the lab myself.

These last few years have provided a lot of unique challenges, so I want to thank all my

fellow Management Sciences students and friends who helped create a sense of community

and normalcy. They helped me stay motivated and accountable through difficult times,

and for that I am very grateful.

v

Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Background . 2

2 Flight Dispatching Problem 6

2.1 Defining Schedules . 6

2.2 Defining Load . 10

2.3 Measuring Balance . 12

2.4 Conclusion . 14

3 Literature Review 15

3.1 Optimization in Airline Operations Planning 15

3.2 Bin Packing Problem . 18

vi

3.3 Workload Balancing in Other Industries 20

3.3.1 Nurse-Patient-Assignment . 20

3.3.2 Balls-Into-Bins . 22

3.3.3 Machine Scheduling Problems . 23

3.4 Conclusion . 24

4 Modelling and Solution Methodology 26

4.1 Flight Dispatcher Scheduling Formulation 26

4.2 Set Covering Formulation . 29

4.3 Solution by Column Generation . 31

4.4 Adding Flight Overlap Constraints to Schedules 34

4.5 Conclusion . 35

5 Heuristics 36

5.1 Initialization of Column Generation Algorithm 36

5.2 Improvement Algorithm . 41

5.3 Conclusion . 41

6 Testing and Results 43

6.1 Data . 44

6.1.1 American Airlines Dataset . 44

6.1.2 European Airline Dataset . 46

vii

6.1.3 Other Parameters . 46

6.2 Testing . 48

6.2.1 Parameter Tuning . 49

6.2.2 Testing of Base Column Generation Implementation 51

6.2.3 Effects of Changing the Number of Desks 55

6.2.4 Flight Overlap Constraints . 57

6.2.5 Comparing all Models . 61

6.2.6 Limitations . 62

6.2.7 Varying Load Over Time . 63

6.3 Conclusion . 65

7 Extensions and Future Work 67

7.1 Incorporating Dispatch Zones . 67

7.2 Alternative Constraints . 69

7.3 Alternative Objectives . 71

7.4 Uncertainty . 72

7.5 Shift Considerations . 73

7.6 Conclusion . 74

8 Conclusions 75

References 77

viii

APPENDICES 83

A Additional Results 84

A.1 Results of Varying the Number of Desks 85

A.2 CG Results Using a Single Column . 89

A.3 Results Using Varying Load . 90

ix

List of Figures

1.1 Desk split into two shifts. 3

2.1 Flight schedule network representation. 8

2.2 Flight to desk allocation with two desks. 9

2.3 Schedule Gantt chart with two desks. 10

5.1 Columns formed using greedy algorithm. 39

5.2 Columns formed by swapping desks 1 and 3. 39

6.1 Effect of populating multiple columns versus a single Column. 51

6.2 Effect of number of desks on desk workload and computation. 56

6.3 Effect of number of desks on solution quality. 58

6.4 Comparison of varied and constant load results. 64

x

List of Tables

2.1 Sample instance of flights to be assigned to desks. 7

5.1 Example of initialization algorithm with m = 3. 38

6.1 American Airlines zonal data. 45

6.2 Target number of desks per instance. 47

6.3 Problem parameters and solution statistic definitions. 49

6.4 Parameter tuning on EW instance with six desks. 50

6.5 Base implementation computational performance results. 53

6.6 Base implementation solution quality results. 53

6.7 Flight overlap constraints computational performance results. 59

6.8 Flight overlap constraints solution quality results. 60

6.9 Comparison of models for EW instance with six desks. 62

6.10 Comparison of models for EAD instance with three desks. 62

6.11 Comparison of models for CC instance with 12 desks. 63

xi

A.1 Varying m on EAD instance computational performance results. 85

A.2 Varying m on EAD instance solution quality results. 85

A.3 Varying m on WW instance computational performance results. 86

A.4 Varying m on WW instance solution quality results. 86

A.5 Varying m on EW instance computational performance results. 87

A.6 Varying m on EW instance solution quality results. 87

A.7 Varying m on EE instance computational performance results. 88

A.8 Varying m on EE instance solution quality results. 88

A.9 Column generation on EE instance, Computational Performance Results. . 89

A.10 Column generation on EE instance Solution Quality Results. 89

A.11 Varying the load on EW instance computational performance Results. . . . 90

A.12 Varying the load on EW instance solution quality results. 90

xii

Chapter 1

Introduction

In 2020 and 2021, airline earnings before interest and taxes (EBIT) reached negative mar-

gins around the world, however, before COVID-19 these margins were already slim. In

2019, worldwide EBIT margins were 5.2% and have not been above 8.6% in the last 10

years. North America has fared slightly better with recent margins hovering around 9%

(Mazareanu, 2021a). With the high costs of airlines, even a small increase in operat-

ing margins can lead to billions of dollars in savings. This is one area of opportunity

that motivates a lot of operations research work in the airline industry. Research in this

field includes flight scheduling, fleet assignment, maintenance routing, crew scheduling,

and revenue management. Another potential source for improvement is flight dispatching.

Creating flight dispatching schedules can be time-consuming and may not provide the most

effective utilization of dispatchers, and thus presents an opportunity for airlines to reduce

costs. This could arise both from creating schedules that result in lower dispatcher costs

or by reducing the worker-time needed to produce schedules.

1

1.1 Background

A flight dispatcher communicates with pilots and has responsibilities preceding and during

flights to ensure flight safety as well as efficiency. Prior to the flight, their duties include

route planning, creating weather reports and fuel calculations, based on factors such as the

type of aircraft, its maintenance history, and flight altitude (Kennedy, 1987), (American

Airlines Newsroom, 2020). Once flights take-off, dispatchers monitor the flights and any

changes to the flight plan (Air Transport Association of Canada, 2021). Avoiding tur-

bulence is one of their goals (Otley, 2018) and they are responsible for determining safe

landing places when a plane needs to be diverted (Kennedy, 1987). This collection of work

is evaluated by the load, which represents the amount of worker effort to monitor and

serve that flight at a given time. These sets of duties are characterized by two periods: the

planning period and the post-planning period. The planning period is the time leading up

to flight take-off, and the post-planning period is from take-off until landing. There is a

higher load during the planning period (Santos et al., 2011).

Dispatchers are employed by airlines and are centrally located, monitoring flights

around the world. They monitor flights at many different airports rather than track-

ing flights only with an origin or destination at their location, however, qualifications are

different domestically versus internationally. There is extensive training required to be a

dispatcher, and in the US they need to be certified through the Federal Aviation Admin-

istration. The Airline Dispatchers Federation is a volunteer organization that represents

the dispatch profession, which had 2,154 members at the start of 2020 (Airline Dispatchers

Federation, 2021). Dispatchers monitor multiple flights simultaneously, provided that the

total workload required for the set of active flights does not exceed the maximum allowed

workload. Most of American Airlines’ flights are dispatched from the American Airlines’

2

Dallas Fort Worth (DFW) Integrated Operations Centre (IOC) (Otley, 2018), (Dickson,

2019).

Dispatchers work shifts, and over the course of their shift flights may begin and end.

This collection of flights that a dispatcher covers is called a desk. A single dispatcher

works a shift, typically up to 12 hours, however, desks may be active longer than this and

would be covered by multiple dispatchers consecutively without gaps or overlap. Figure

1.1 displays an example of a desk that has eight flights over a 16-hour period, however, the

dispatch duties are split into two shifts. The first shift is covered by a dispatcher from 8:00

- 16:00, at which point a second dispatcher relieves the first and works until the desk closes

at 24:00. Flights D, E, and F are active at the time the shift switches so are monitored

by both dispatchers whereas the other flights are entirely monitored by one dispatcher.

Relieving dispatchers need to be updated on the status of flights including weather reports

and mechanical failures, and could have 30 flights to take over (Kennedy, 1987).

Figure 1.1: Desk split into two shifts.

3

Airlines have agreements with their dispatchers defining when shifts start and end, and

their possible durations. For example, the following shift lengths and restrictions have

been used (Santos et al., 2011):

1. Eight hour shift: Cannot start before 500h

2. Ten hour forty minute shift: Cannot start before 500h or end after 230h

3. Twelve hour shift: Run from 600h to 1800h and from 1800h to 600h

There may be a limit to the number of occurrences of each type of shift used in the full

schedule. Additionally, in some cases, if a desk is closed and there are still active flights,

the remaining load of these flights is switched to another desk (Santos et al., 2011). A

flight may be split onto a second or third desk, provided that the entire planning period is

during the first desk.

Dispatchers may have varied qualifications, for example, domestic and international

qualifications (Otley, 2018). All American Airlines dispatchers are required to have do-

mestic qualifications, and to dispatch flights internationally requires additional experience

and training. Airlines use a separate process to determine which dispatchers will serve

domestic or international flights (Transport Workers Union of America, 2016). Interna-

tionally, flights typically follow a weekly schedule whereas domestic flights typically follow

a daily schedule (Barnhart et al., 2006).

To address a gap in the flight dispatching literature, we develop two formulations to

model the assignment of flights to desks. The first is a full formulation of the problem and

the second is a set covering formulation that is solved using column generation. Heuristic

approaches are also presented. These models create schedules that assign all flights to desks

and capture maximum desk workloads. The full formulation provides optimal solutions

4

for small instances with the column generation providing better solutions on the larger

instances tested.

This thesis is organized as follows. Chapter 2 describes the problem of flight dispatching.

Chapter 3 reviews literature in the airline industry as well as in problems that may have

similar formulations or goals as the flight dispatching problem. Chapter 4 presents several

models and the solution methodology used to solve the dispatching problem. Heuristics

used to initialize and improve solutions are discussed in Chapter 5. Testing results along

with the data used are presented in Chapter 6. Potential extensions are discussed in

Chapter 7, and lastly, conclusions are presented in Chapter 8.

5

Chapter 2

Flight Dispatching Problem

In this chapter, we define the flight dispatching problem. Firstly, in Section 2.1 we define

a schedule with different possible constraints. A sample instance is introduced and used to

demonstrate a feasible solution to the flight dispatching problem using a set of schedules.

Load and workload are defined in Section 2.2, and properties of the load are discussed.

Sample calculations are demonstrated. Possible measures of balance are explored in Section

2.3 to define the objective for the flight dispatching problem.

2.1 Defining Schedules

We define a schedule as the flights assigned to one desk. For this work, schedules are

created at the daily level, containing flights that depart in one workday. Schedules have few

constraints though they must contain at least one flight, otherwise they would correspond

to an empty desk. There are no constraints for when a schedule starts or ends or their

duration, and we do not limit the idle time during a schedule.

6

In creating schedules, limits can be imposed on which flights are allowed to be scheduled

together. In the base case, any flight can be scheduled with any other flight. We consider

the effect of limiting which flights can be scheduled together. One way of doing this

is limiting any flights that depart within a specified time interval from being scheduled

together. For example, any flights that have the same departure time cannot be on the

same schedule. Another way to consider this is to limit the number of flights that depart

within some time interval. We call these flight overlap constraints.

A sample instance of flights with their departure and arrival times, as well as the timing

and load of the planning and post-planning periods is shown in Table 2.1. Each flight i ∈ I

has a departure time, Si, arrival time, and the load required at each time t throughout the

duration of the flight, fit. For example, flight A’s planning period is from time 400-699

with a load of 25 units and A’s post-planning period is from time 700-900 with a load of

15 units. Time is displayed in minutes elapsed since midnight.

Departure Planning Planning Post-Planning Arrival Post-Planning
Time Period End Load Period Begin Time Load

A 400 699 25 700 900 15
B 400 799 20 800 1200 10
C 500 799 20 800 1200 15
D 800 1199 20 1200 1600 10
E 1000 1299 15 1300 1500 10
F 1100 1399 25 1400 1800 15
G 1300 1699 15 1700 2100 5
H 1400 1899 15 1900 2100 10
I 1500 1899 15 1900 2300 5
J 1800 2299 10 2300 2800 5

Table 2.1: Sample instance of flights to be assigned to desks.

The flight dispatching problem can be modelled using a network structure, where nodes

represent flights and an arc between two nodes exists if the corresponding flights can be

assigned to the same desk. Arcs are directed, flowing from earlier flights to later flights.

7

(a) Network with no flight overlap constraints.

(b) Network with flight overlap constraint of 1 hour.

Figure 2.1: Flight schedule network representation.

Ties for flights departing at the same time are arbitrarily broken. Dummy source (s) and

sink (t) nodes are created to represent the start and end of a path. Each path from s to

t represents a feasible schedule. Figures 2.1a and 2.1b show the networks created using

flights A-F from Table 2.1. Depending on how we define the problem, different network

representations are created. In Figure 2.1a, we use the basic definition of a schedule. On

this network, a feasible schedule could be created in which all flights are on a single desk.

In Figure 2.1b, we constrain that flights departing within one hour of each other cannot

be on the same schedule. This means flights A, B, and C must all be scheduled separately

and therefore, at least three schedules/paths are needed to cover all flights.

8

Any path from s to t is a feasible schedule. To solve the flight dispatching problem we

need a set of schedules that cover all flights given a number of desks, say m. This means

that a feasible solution to the flight dispatching problem is one that uses m paths where

each flight node is on exactly one path. Figure 2.2 shows two schedules that together cover

all flights once. One schedule contains flights B, C, E, H, and I, and is labelled as Desk 1.

The second schedule contains flights A, D, F, G, and J, and is labelled as Desk 2. In this

case, two schedules are created, although many other schedules could be created from the

same set of flights and there are other feasible solutions to the flight dispatching problem

with two desks.

Figure 2.2: Flight to desk allocation with two desks.

Another way to visualize these schedules is shown in Figure 2.3, with each desk repre-

senting one schedule. This shows the duration that flights are active, so it allows us to see

the overlap in flights. For example, at the start of flight H, the only other flight active for

Desk 1 is flight E. This visualizes when the desk is closed, which is at 23:00 for Desk 1.

A single schedule corresponds to one desk, however, a desk may be split up and covered

by multiple dispatchers in consecutive shifts. While shifts have time-based regulations,

desks are not restricted. In this work, we only consider the creation of desks and do

not consider how those desks are split into shifts. Theoretically, desks could be open

indefinitely, however, we are creating schedules for a single day. Since domestic flights are

9

Figure 2.3: Schedule Gantt chart with two desks.

typically scheduled at a daily level, the schedules can repeat each day. For longer schedules,

the same modelling could be used, however, any schedule used corresponds to one desk that

is continuously open (that would likely need to be covered by multiple dispatcher shifts)

with its maximum workload representing a single point in time. Longer schedules could

be better modelled by incorporating the shift component where workload is measured for

each shift rather than for a whole desk.

2.2 Defining Load

In Table 2.1, planning and post-planning loads are reported. We define load as the amount

of work required by a single flight at a given time, which in the table is shown as the

departure time until the end of the planning period as the planning load, and the remaining

10

time until arrival as the post-planning load. The planning period has a higher load than

the post-planning period, which is generalized by the rule that the load is non-increasing

throughout the duration of the flight. Conversely, the workload is the sum of the loads of

the collection of flights assigned to a desk, or path, at a given time. Load and workload are

both dependent on time, with the maximum workload defined as the maximum workload

over time experienced by a single desk. Load is a unitless figure, though it could be defined

as the number of minutes of work required in a time range (e.g., an hour) or refer to an

amount of energy/focus needed by a dispatcher. This would allow for meaningful limits

on a desk’s workload.

Desk workload is calculated at the start of any flight assigned to that desk. This is

calculated by adding the planning load of that flight plus the loads of any flights that are

still active on the desk at that time. Since flight load cannot increase, and we are only

concerned with the maximum workload, we only need to consider the workload at the

departure time of flights - the only time it is possible for a desk’s workload to increase.

We denote the workload at the start of a flight by Fi. To illustrate the workload, consider

Desk 1 from Figure 2.2. For this instance, the maximum workload for a desk at any given

time is 40 units. For Desk 1, the workloads at the start of each flight are:

FB = fB,400 = 20

FC = fC,500 + fB,500 = 20 + 20 = 40

FE = fE,1000 + fC,1000 + fB,1000 = 15 + 15 + 10 = 40

FH = fH,1400 + fE,1400 + fC,1400 + fB,1400 = 15 + 10 + 0 + 0 = 25

FI = fI,1500 + fH,1500 + fE,1500 = 15 + 15 + 0 = 30

11

We do not need to check the workload at the times of flights not assigned to this desk

since they do not affect the workload. For example, since flight D is not added to this desk,

we do not consider the workload at time SD = 800. We know that because no flights are

added between time 500 (SC) and 800, the workload cannot exceed 40 during that time.

In order to calculate workload, there must be a way to determine each flight’s load at any

given time. Flights need to be ordered by their departure time for our modelling and load

function to be accurate. This means for any flight i, the only relevant flights for calculating

workload are j : j < i. Ties for flights departing at the same time are broken arbitrarily.

2.3 Measuring Balance

A schedule defines one feasible assignment of flights to desks, and a set of schedules covering

all flights creates a feasible solution to the flight dispatching problem. We need to evaluate

these schedules and solutions to determine the best ones. The goal of this work is to create

balanced schedules for flight dispatchers, however, there are many ways in which balance

could be measured.

First, consider the balance between the dispatchers’ workloads, as defined above. Work-

load balance could be measured as the total workload a desk will require throughout its

duration, i.e., the total amount of work a dispatcher will need to do. However, some dis-

patchers may work longer shifts, so the total amount of work may not be the best metric of

balance. Instead, the balance could be measured at every point in time, or in specific time

epochs, for example, the hourly workload could be compared at each hour. To further con-

sider balance, the entire dispatcher’s shift could be considered. For example, a dispatcher

may be expected to have a lighter load towards the beginning or end of their shift (while

they are getting prepared or finishing/transitioning) than in the middle of their shift. This

12

could be measured if balance considers workload as a function of the dispatcher’s shift

time, and attempts to create fairly equal functions even if this means that at any given

time there is a larger disparity in workload. Another metric is the maximum workload of

each dispatcher, which would likely be the highest stress situation, and attempt to balance

the maximum workload faced. Balance can be measured in any of these ways by finding

the difference between the highest and lowest desk workloads, or by comparing each desk

to the average and minimizing deviation. In the maximum workload scenario, each desk’s

workload is summed and minimized. Each of these metrics of balance may contradict

another, so we must decide what is most appropriate for this work.

While workload is the main focus of this work, there are other components that could

contribute to balancing dispatcher schedules. These elements include the number of total

flights or the active flights at any given time, and the idle time (either cumulative or time-

based). Regardless of the metric for balance, the way it is measured (e.g., cumulative or

time-dependent) is important.

While the goal of this problem is to balance dispatcher schedules, the scope of this work

focuses on desks rather than dispatchers. As such, we focus on minimizing the maximum

workload of each desk. From the instance in Figure 2.2, we determine the maximum

workload for a desk, denoted by F , by comparing the desk’s workload at each time a flight

is added, which in this case is 40.

F = max{20, 40, 40, 25, 30} = 40.

13

2.4 Conclusion

In this chapter, we define a schedule as the flights assigned to one desk. We present a

network representation of the flight dispatching problem where each path from the source

to sink node represents a schedule. Schedules do not have many constraints, so we test the

effect of limiting which flights can be on the same schedule. The scope of our work focuses

on the scheduling of desks and does not consider splitting desks into shifts. Load is defined

as the amount of work required for a single flight at any given time, whereas workload is

the total work required for all active flights on a desk at any given time. An instance with

10 flights is presented and used to demonstrate the flight network, potential schedules, and

a feasible solution to the flight dispatching problem. Lastly, different metrics of balance

used to evaluate flight dispatcher schedules are described. Potential measures of balance

include total workload for a desk, desk workload as a function of time, and maximum desk

workload. Variants of these measures are by number of total or active flights, or idle time.

Balance can be measured through maximum desk differences, minimizing deviation, or

minimizing each desk’s worst case workload. We use the objective of minimizing the sum

of maximum workloads over all desks.

14

Chapter 3

Literature Review

There is extensive operations research literature on the airline industry but little focus on

dispatching. We start with an overview of optimization in airline operations planning and

review problems related to scheduling. We then present a short overview of the bin packing

problem and compare to the flight dispatching problem. Finally, we review applications

involving workload balancing with a focus on nurse-patient-assignment, the balls-into-

bins problem, and machine scheduling problems. Through this review, we discuss the

similarities and differences between the flight dispatching problem and related problem

classes.

3.1 Optimization in Airline Operations Planning

Airline Operations Planning includes four major airline problems that are typically solved

sequentially: Schedule Generation, Fleet Assignment, Maintenance Routing, and Crew

Scheduling (Barnhart et al., 2006). Schedule Generation determines which flights are

15

flown and at what times. These schedules allow for the formation of networks to solve

the remaining problems. Fleet Assignment allocates the type of aircraft which will fly

each of the scheduled flights. A network structure is used for Fleet Assignment where

flight legs are represented by nodes for departure/arrival times and locations, with flight

arcs considering maintenance time and ground arcs depicting idle aircraft (Barnhart et al.,

2003). Maintenance routing assigns a specific aircraft to a sequence of flights while adhering

to maintenance requirements. For maintenance routing, separate networks are formed

by decomposing the flight network by type of aircraft required and they are typically

solved using a network circulation model (Barnhart et al., 2003). Finally, Crew Scheduling

assigns crews to a sequence of flights with restrictions from governing agencies, labour

organizations, and airlines. Crew Scheduling is broken into the Crew Pairing Problem,

where crews are assigned to flights, and the Crew Assignment Problem, where individual

members are assigned to crews. Duty periods are a grouping of flights (typically within

one day), and a sequence of duties along with layovers comprises a pairing. In the crew

scheduling problem, a network structure is used for generating pairings, either in the form

of a flight network - where there are nodes representing the departure and arrival of each

flight and arcs represent possible connections between flights - or a duty period network

- where nodes represent the start or end of a duty period and arcs represent possible

overnight connections between duties (Barnhart et al., 2006).

The Crew Scheduling problem breakdown is similar to how the dispatching problem is

broken down, with flights assigned to desks and then desks split into worker shifts. Airlines

aim to create a balanced workload between crews through this scheduling (Barnhart et al.,

2006). The assignment of flights to desks can be structured as a network where nodes

represent flights, arcs represent flights that can depart sequentially on the same desk, and

a path represents the flights on a single desk, similar to the flight network structure in

16

Crew Scheduling and Fleet Assignment.

Other models that incorporate uncertainty (Yen and Birge, 2006), (Rosenberger et al.,

2002), delays (Shebalov and Klabjan, 2006), and robustness (Ehrgott and Ryan, 2002) have

been explored that aim to minimize the actual costs incurred, rather than the planned costs.

Similar to Airline Operations Planning, the Flight Dispatching Problem is an airline

problem. A key difference is the importance of location. In the planning problems, location

is an important element that defines what is possible. Crews and aircraft take the flights,

so they must service flights in a sequence where each flight departs from the same location

the previous flight arrives. In dispatching, location may be used to decompose the problem,

however, because dispatchers work centrally, there are no limitations on sequencing flights

for a desk based on location. Dispatchers monitor multiple flights at once, whereas a crew

or aircraft are only assigned to one flight at a time. A result of this is that a network

structure may not be the best way to model the dispatching problem. This is because

overlapping flights can be assigned to the same desk and there are few limitations as to

which flights can be assigned consecutively to the same desk. This would likely create a

dense network, and due to the structure of the maximum workload objective, it is not easy

to dominate paths. In planning problems, the location and timing constraints limit the

number of arcs in a network. Balance is measured in a different way, as for crew pairing is it

based on number of hours per worker, whereas for dispatching it is based on the maximum

workload for each desk.

The problem of flight dispatching has been described and modelled where flight dis-

patching is considered a component of a flight planning product from HPES-Agilaire called

Workload Distribution (Santos et al., 2011). They consider flight legs over a 30 day horizon

and use 20 to 30 desks at any given time. Four goals are considered, which are: evenness

of desk workload at any time, consistency of schedules repeating daily, minimizing flight

17

splitting over multiple desks, and completeness of the assignment (not having unassigned

flights). Schedules are created at the weekly level using a mixed integer formulation that

is decomposed and solved heuristically.

They use a heuristic approach by decomposing their Mixed Integer Programming Model

and solving a series of problems. To solve for up to a month, they create a ”meta-week”

to capture repeating flights, solving for the repeating flights and for the remaining flights.

This varies from our approach of solving each decomposed problem for a day. Balance is

measured in workload deviation per desk per hour, rather than as the sum of maximum

workloads. Additionally, switching the desks that flights are assigned to is allowed, which

we do not consider in our approach. We constrain that all flights must be scheduled,

whereas they allow flights not to be scheduled at a penalty.

3.2 Bin Packing Problem

Workload balancing in flight dispatching has some similarities to the Bin Packing Problem

(BPP). The BPP is a problem in which there is a set of items with varying sizes/weights

that must all be packed into bins. The objective of the BPP is to minimize the number

of bins required to pack all items (Delorme et al., 2016). In the standard formulation, all

bins have the same capacity though there are problems that consider bins with varying

capacity (Correia et al., 2008). The basic problem is in one dimension, with extensions to

multiple dimensions, for example, three-dimensional pallet packing (Elhedhli et al., 2019).

In the flight dispatching problem, desks are considered as bins and flights as items, with

the load representing the weight/size. However, instead of minimizing desks subject to a

fixed capacity, the number of desks is fixed with the objective of minimizing the maximum

workload over desks. Alternatively, we could minimize the number of desks needed so

18

that no desk’s workload exceeds some capacity, which would be more similar to the BPP.

There would, however, still be differences based on the structure of taking the maximum

workload over time, rather than a cumulative load measure.

The Generalized Bin Packing Problem (GBPP) allows for compulsory and non-compulsory

items to be packed, where each provides some profit in addition to its weight and the goal is

to minimize the net cost of selecting bins and packing items (Baldi et al., 2012). This could

be useful if there were different classifications of flights - some that need to be dispatched

and others that are not compulsory, for example, flights that might not be offered if they

do not provide enough value. Scheduling of flights is not part of the dispatcher problem as

it is part of the larger system of airline operations planning. To create this type of model,

we would need to know the cost to open a desk and the value (e.g., revenue) from each

flight.

Additional variants of the BPP include the Variable Size Bin Packing Problem (VSBPP)

and the Variable Cost and Size Bin Packing Problem (VCSBPP) which allow for different

capacities and costs to each bin (Crainic et al., 2019), which has been applied to machine

scheduling (Correia et al., 2008). Currently, all dispatchers are considered equal, though it

is possible to consider differences. For example, a dispatcher might be more efficient than

others and therefore experience less load. These variants may be useful when considering

shifts, where dispatchers are scheduled.

There is research on load balancing with the BPP, where it is applied to the Fractional

BPP where an item may be split between multiple bins (Castro-Silva and Gourdin, 2019).

This is not realistic to flight dispatching, as only one dispatcher monitors each flight at a

time and if there is any flight splitting, it is split at the end of a shift rather than the load

shared by multiple dispatchers at the same time.

19

The BPP provides a general structure that is used in flight dispatching, where items

(flights) are assigned to bins (desks), however, the structure of the objectives and con-

straints are different. In the BPP, bins have a fixed capacity that is based on the cumu-

lative weight of the items packed in it. Desks do not have a capacity and their workload

is measured as a function of time, where we are concerned with the maximum workload.

The objective in dispatching is to minimize a function of workload, whereas the BPP aims

to minimize the number of bins needed. The GBPP, VSBPP, and VCSBPP incorporate

variations on the BPP that could be incorporated into the Flight Dispatching Problem.

These variations are outside our scope. The fractional BPP does not provide a structure

that applies to load balancing in dispatching.

3.3 Workload Balancing in Other Industries

There are many problems with balanced-based objectives, often in server allocation prob-

lems. One type of allocation is assigning customers to employees, such as in mail order

firms (Khouja and Conrad, 1995) and nurse-patient-assignment. Another type of allocation

is work assigned amongst machines or stations, such as in machine scheduling problems,

and balance in computers/servers. There are scheduling problems that include balance,

such as the Balanced Academic Curriculum Problem (Hnich et al., 2002). Some of these

problems are further described and compared to the flight dispatching problem.

3.3.1 Nurse-Patient-Assignment

Similar to flight planning, there are several stages to scheduling nurses in a hospital.

These include budgeting, scheduling, rescheduling, and assignment (Acar and Butt, 2016),

20

(Rosenberger et al., 2014). Assignment, or nurse-patient-assignment, is the allocation of

nurses as the primary caregiver to patients. Patients are categorized and require different

amounts of care, so one way to allocate nurses to patients is to attempt to balance their

overall workload. There are other elements to their job that affect their workload as well,

such as the distance between patient rooms for a single nurse which affects the amount of

time needed to switch tasks. There are constraints that limit combinations of patients to a

single nurse (e.g., patients with certain conditions cannot be assigned to the same nurse).

Scoring metrics have been proposed to balance the overall workload of nurses through

nurse-patient assignment (Acar and Butt, 2016). Throughout a shift, patients may be

discharged from or admitted to the system so revised assignments are needed, however,

this typically only involves assigning incoming patients rather than reassigning a patient

to a different nurse. An alternative balance metric is minimizing excess workload per nurse

per time epoch. This means that nurse workload is a function of time (Rosenberger et al.,

2014).

This problem is similar to the flight dispatching problem as there are workers and jobs

that must be assigned, with the goal of balancing workload. The number of nurses is fixed,

as this comes from a previous schedule, and the number of desks is predetermined. Nurse

schedules are not made significantly in advance of when they occur as they are based on

current needs and will change throughout a shift. Conversely, dispatch schedules are ideally

made significantly in advance of their use. Nurse shifts are typically 12 hours in length

and follow a set schedule, which could align with some assumptions of the flight dispatcher

shifts which we do not consider in this work. The stochastic elements of nurse-patient-

assignment could relate to flight delays or cancellations that are possible extensions to this

work. In flight dispatching, limiting which flights can be assigned together is similar to

limiting patients assigned to the same nurse. The key differences are the use of a scoring

21

metric to consider different elements of a nurse’s work, as opposed to just the workload,

and the stochastic nature of the problem.

3.3.2 Balls-Into-Bins

Computer science is another field containing many problems centred around load balancing.

One adjacent problem is the Balls-Into-Bins problem. This is a problem in which there are

m balls and n boxes or bins. Balls enter the system sequentially and must be added to a

bin, using some random process (Berenbrink et al., 2013). By selecting different random

processes for choosing bins for each ball, there are different limits on the maximum load

that any bin might attain (Raab and Steger, 1998). Typically, balls have equal weighting,

with some extensions including varied weighting. An example of this problem is when users

need access to computers or servers that are allocated as users arrive, and users want to

use the computers/servers with the least load and must be allocated accordingly. There is

a trade-off between checking each machine and finding the minimal load, so the random

process balances those needs (Berenbrink et al., 2013).

This is similar to the flight dispatching problem in that flights (i.e., balls) must be

allocated to dispatchers (i.e., bins) with a general goal of balancing load. They both

consider items (i.e., flights or balls) that are not equal in load. A key difference in these

problems is that in the flight dispatching problem, all flights along with their load and

departure/arrival times are known in advance, whereas the arrival time and load of balls

are not known in advance. In dispatching, a model’s output provides the assignment of all

flights to desks. The solution for the balls-into-bins problem is a random process that is

used to assign balls as they arrive.

22

3.3.3 Machine Scheduling Problems

The parallel machine scheduling problem assigns n jobs to m equivalent machines and

determines the sequence of those jobs. Typically, the objective is to minimize the makespan

or schedule length. Alternative criterion include balancing workload or workflow (often

minimizing the difference between the highest and lowest machine loads or the normalized

sum of squared workload deviations), or maximizing expected production rates (Rajakumar

et al., 2004), (Schwerdfeger and Walter, 2018). Each job needs a specified amount of

processing time and may have a release time, preceding tasks, and a target completion

time. Due dates allow for objectives that minimize lateness of job completion (Ouazene

et al., 2011). A lot of the existing research presents heuristics for solving these problems

(Rajakumar et al., 2004), (Schwerdfeger and Walter, 2018), (Chen et al., 1998).

This problem is similar to flight dispatching in that jobs (i.e., flights) are assigned

to servers (i.e., machines and desks) with a goal of balancing the load. There are many

differences as well. Jobs in the machine scheduling problem are not scheduled at a specific

time (though they may have a range) whereas flights are specifically scheduled to start

at certain times with planned end times (we do not consider delays). Jobs measure their

load by the amount of processing time needed, whereas flight load is determined by load

requirements and is time-dependent (though it may represent the amount of time needed

per hour to monitor). While both involve assignment, machines only process one job

at a time whereas desks are intended to have multiple flights at any given time. The

balance metrics are slightly different; in the machine scheduling problem, each machine

has an overall load and the difference between the highest and lowest overall load is what

determines balance. An alternative metric for balance that was proposed is minimizing the

normalized sum of squared workload deviations. While these metrics could apply to flight

23

dispatching, the approach we have taken is to find the highest workload at any given time

for each desk, and minimize the sum of those values.

Another adjacent problem is the Assembly Line Balancing Problem (ALBP) in which

a series of tasks must be allocated to work stations. Tasks do not take the same amount of

time and may have precedence, i.e., there may be some tasks that must be completed before

others, so work stations are ordered. The system is limited to the slowest (highest load)

station, and objectives to this problem include minimizing the number of workstations

(subject to a maximum cycle time) and minimizing balance delay (Kriengkorakot and

Pianthong, 2007). In general, it is about balancing work amongst the stations. This

is similar to flight dispatching because there is work that must be divided into different

stations/desks with a goal of either minimizing workers or balancing work subject to a

number of workers. A key difference is the precedence of tasks requiring ordered work

stations which is not needed for flight dispatching.

3.4 Conclusion

In the airline industry, the existing literature on Airline Operations Planning has a gap in

dispatching. Planning problems as well as the Flight Dispatching Problem are at the airline

level and can utilize a network structure. However, planning problems are dependent on

location and resources are only assigned to one flight at a time. In dispatching, location

does not constrain the problem (though it may be used to break it down), and desks

monitor multiple flights at once. This means the network structure is less advantageous,

and the main similarities are the industry. Instead of using a network structure, Bin

Packing Problems are more similar in structure where flights are packed into desks. The

differences are in the measure of load, which is cumulative in bin packing rather than a

24

function of time, and that the BPP minimizes bins subject to capacity whereas the Flight

Dispatching Problem minimizes workload with a fixed number of desks.

Workload balancing is prevalent in other fields, such as nursing, computing, and ma-

chining, however, they use different definitions of balance, and many of these problems

have different structures that cannot be applied to dispatching. Nurses monitor multiple

patients over a shift, and consider balance through a scoring metric or through excess

workload per time period. In the Balls-Into-Bins problem, the goal is to evenly distribute

the balls between bins, with decisions that are made sequentially using a random process

as balls arrive. The parallel machine scheduling problem assigns jobs amongst a fixed

number of machines with the goal of minimizing schedule length. Alternative objectives

consider balancing machine load through minimizing deviations or the difference between

the highest and lowest machine load. In machine scheduling, each machine only processes

one job at a time and they are not time dependent. The Assembly Line Balancing Prob-

lem is similar in that tasks are assigned to workstations with objectives to minimize the

number of workstations or balance delay. While each of these problems have balance con-

siderations, none of them measure it using the sum of maximum workloads, and there are

other structural differences between these problems. Nurse-Patient-Assignment is the most

closely related problem to flight dispatching.

In the next chapter, formulations are presented along with the solution methodology

used to solve the flight dispatching problem.

25

Chapter 4

Modelling and Solution Methodology

Two different formulations for creating flight-dispatcher assignments are provided and then

solution methodology is discussed. In Section 4.1, the full formulation for the Flight

Dispatching Problem is presented. A set covering formulation is then presented in Section

4.2, and the solution by column generation for that formulation is presented in Section 4.3.

Additional constraints to the formation of schedules are modelled in Section 4.4.

4.1 Flight Dispatcher Scheduling Formulation

The following formulation assigns flights amongst a fixed number of desks, so that each

flight is assigned to exactly one desk, with the objective of minimizing the maximum

workloads. Each desk is denoted by k ∈ K and has a minimum requirement of one flight

assigned to it. Otherwise, it would be equivalent to the desk not being used. We want

to force using the prescribed number of desks, however, we test the effect this has on

the solutions by varying the number of desks. Flights are indexed by i ∈ I, and the

26

information needed about flights are the departure time, Si, and the load required at each

time t throughout the duration of the flight, fit, until the arrival time of the flight. I is

ordered by increasing Si and ties for departure time are broken arbitrarily. This allows us

to only consider flights indexed before flight i in the calculation of load.

The decision variables needed are presented below, followed by the Flight Dispatcher

Schedule Formulation (FDSF).

xik =

1 if flight i ∈ I is assigned to desk k ∈ K

0 otherwise

Fik The workload for desk k ∈ K at the start of flight i ∈ I if it is added to the desk

Fk The maximum workload of desk k ∈ K at any time

[FDSF]: min
∑
k∈K

Fk

s.t.
∑
k∈K

xik = 1 ∀i ∈ I (4.1)

Fik =

fiSi
+
∑

j<i fjSi
xjk if xij = 1

0 otherwise

∀i ∈ I, k ∈ K (4.2)

Fk = max
i∈I

Fik ∀k ∈ K (4.3)

xik ∈ {0, 1} ∀i ∈ I, k ∈ K (4.4)

Fik ≥ 0 ∀i ∈ I, k ∈ K (4.5)

Fk ≥ 0 ∀k ∈ K (4.6)

Constraint 4.1 ensures that each flight is assigned to exactly one desk. The workload

27

of a desk is constrained by 4.2, which takes the active workload of each desk at the start

of flight i if it assigned to that desk, or 0 otherwise. Constraint 4.3 takes the maximum

workload for each desk. Constraints 4.4 - 4.6 are the binary and non-negativity constraints.

To linearize this model, Constraints 4.2 and 4.3 are changed to the following:

Fik ≥ fiSi
+
∑
j<i

fjSi
xjk −M(1− xik) ∀i ∈ I, k ∈ K (4.7)

Fik ≤Mxik ∀i ∈ I, k ∈ K (4.8)

Fk ≥ Fik ∀i ∈ I, k ∈ K (4.9)

where M is a large constant. M sets an upper bound on a desk’s workload. To create

a tighter bound for M instead of using an arbitrarily high number, a dummy schedule is

created with all flights scheduled to one desk. The workload of this schedule is then found,

and it is the maximum possible workload for a desk. This becomes the value of M, as a

larger value is never needed to find appropriate bounds on Fik. Constraints 4.7 and 4.8

are the upper and lower limits to calculate the correct workload value of a desk. When a

flight is not assigned to a desk, there is no workload assigned.

Constraints 4.7 and 4.8 do not, however, tightly constrain the workload actually incur-

ring by desk k when i is allocated to it. Instead it creates a range on Fik with a lower

bound of

max

{
fiSi

+
∑
j<i

fjSi
xjk −M(1− xik), 0

}

and an upper bound of

min{Fk,Mxik}.

28

This forces Fik to 0 when the flight is not added to the desk, and therefore bounds Fik by

fiSi
+
∑
j<i

fjSi
xjk ≤ Fik ≤ Fk

when the flight is added to the desk. The limit is Fk instead of M because any value up to

Fk does not affect the objective.

This model is solved by CPLEX on instances from two datasets with a time limit of

two hours. For small instances, this model typically solves optimality within minutes. For

larger instances, the gap between the lower and upper bounds remains large after two

hours. These results are further discussed in Chapter 6. To solve larger instances, an

alternative formulation is presented.

4.2 Set Covering Formulation

We propose a set covering formulation amenable to column generation to solve large scale

instances. Each possible allocation of flights to a single desk is called a schedule, h ∈ H,

and has a known maximum workload, Ch, and αih denotes the flights, i ∈ I, allocated to

each schedule. αih =

1 if flight i ∈ I is on schedule h ∈ H

0 otherwise

Ch is calculated in a similar way as Fk, replacing the decision variable xik with the param-

eter αih.

Ch = max
i:αih=1

{
fiSi

+
∑
j<i

fjSi
αjh

}
∀h ∈ H

The total number of desks, or schedules selected, is noted by m, where m = |K|. The

new decision variable is:

29

yh =

1 if schedule h ∈ H is selected

0 otherwise.

The Integer Problem (IP) is a set covering formulation that uses schedules to cover all

flights.

[IP]: min
∑
h∈H

Chyh

s.t.
∑
h∈H

αihyh ≥ 1 ∀i ∈ I (4.10)

∑
h∈H

yh = m (4.11)

yh ∈ {0, 1} ∀h ∈ H (4.12)

The objective minimizes the cost of the selected desks. Constraint 4.10 ensures that

each flight is assigned to at least one schedule, and the number of schedules chosen is

constrained by 4.11. Constraint 4.12 is the binary constraint.

By the problem definition, each flight must be assigned to exactly one desk. This would

be a set partitioning formulation, where Constraint 4.10 is set to equality. In practice, we

use the set covering formulation because if any flights are assigned to multiple desks,

they cannot affect the maximum workload of any of those desks. Otherwise, an optimal

solution would be found in which the flight is removed from the desk where it affects the

maximum workload. If a solution is found with a flight assigned to multiple schedules, this

is addressed in post-processing.

30

4.3 Solution by Column Generation

To solve the IP, a column generation approach is used. We need to generate the schedules in

set H. Since the number of feasible schedules is very large we generate schedules iteratively.

The IP is relaxed to form the Relaxed Master Problem (RMP). This solves over only the

set of known schedules, H, and relaxes yh to be continuous in the interval [0, 1] rather than

binary.

[RMP]: min
∑
h∈H

Chyh

s.t.
∑
h∈H

αihyh ≥ 1 ∀i ∈ I (4.13)

∑
h∈H

yh = m (4.14)

yh ≤ 1 ∀h ∈ H (4.15)

yh ≥ 0 ∀h ∈ H (4.16)

Its dual problem is:

[DP]: max mλ0 +
∑
i∈I

λi

s.t. Ch −
∑
i∈I

αihλi − λ0 ≥ 0 ∀h ∈ H (4.17)

λi ≥ 0 ∀i ∈ I (4.18)

The dual variable λi corresponds to each flight i ∈ I, and corresponds to constraints

31

4.13. The dual variable λ0 corresponds to the total number of desks used, and corresponds

to constraint 4.14.

The column generation algorithm starts by solving the RMP on a subset of schedules

H ⊆ H and then checks to see if the solution is optimal to the original problem, IP. If it

is not optimal, a new schedule is generated by solving a pricing problem (PP):

[PP]: min F −
∑
i∈I

λixi

s.t. Fi ≥ fiSi
+
∑
j<i

fjSi
xj −M(1− xi) ∀i ∈ I (4.19)

Fi ≤Mxi ∀i ∈ I (4.20)

F ≥ Fi ∀i ∈ I (4.21)∑
i∈I

xi ≥ 1 (4.22)

xi ∈ {0, 1} ∀i ∈ I (4.23)

Fi ≥ 0 ∀i ∈ I (4.24)

F ≥ 0 (4.25)

The PP creates a schedule for one desk. This is similar to the FDSF, without the need

for the desk index k. Since there is only one desk, we are assigning flights to that desk,

weighing the workload against the value of the flights added. There must be at least one

flight in any schedule.

If the objective value of the PP minus λ0 is negative, then it it not optimal to the IP.

The PP solution defines a new schedule that is added to H, and the process is restarted.

32

Schedules are added to H until no schedule with negative reduced cost is identified, or the

relative gap between the upper bound (UB) and lower bound (LB) is within an acceptable

range, e.g., 10−6. The lower bound of the RMP at iteration n is calculated by

max

{
LBn−1,mπ +

∑
i∈I

λi

}
,

where π is the objective value of the PP. The UB is the most recent objective value of the

RMP. Since H is updated at every iteration, the UB either decreases or stays the same.

The algorithm for column generation is presented in Algorithm 1. This is referred to as

the base implementation. The column initialization is described in Chapter 5. Once the

column generation algorithms stops, the IP is solved on H.

Algorithm 1 Pseudo code for Column Generation

1: Initialize columns, H, and form RMP
2: UB ←∞ . Upper bound
3: LB ← 0 . Lower bound

Main loop
4: while UB 6= LB do
5: Solve RMP . obtain λi, λ0

UB ← RMP objective . Update UB
6: Solve PP using λi . obtain solution xi

LB ← max{LBn−1,mπ +
∑

i λi} . Update LB
where π is the objective value of the PP = F −

∑
i λixi

7: if Ch −
∑

i αihλi − λ0 ≥ 0 then
optimal, stop.

8: else Add new column, h, defined by αih = xi to H
Add load of new column to Ch

9: end if
10: end while

33

4.4 Adding Flight Overlap Constraints to Schedules

In section 2.1, the only constraint for schedules is that they cannot be empty which we

model with constraint 4.22. As more work is involved during the planning period which

occurs at the beginning of a flight, limiting flights with similar departure times from being

monitored by the same desk may lead to more balanced schedules. A second PP formula-

tion is presented in which flights departing within some time interval cannot be assigned

to the same desk. We define τ as the time interval for which flights cannot be dispatched

together. For example, if τ = 0, then flights departing at the same time cannot be sched-

uled to the same desk, and if τ = 5, then flights departing within five minutes of each

other cannot be scheduled to the same desk. This is used to determine the values of a new

parameter:

βij =

1 if flight j ∈ I can follow flight i ∈ I based on τ

0 otherwise.

Then, we use the flight overlap constraint

xi + xj ≤ 1 + βij ∀i ∈ I, j ∈ I, j > i (4.26)

This leads to a minimum number of desks needed to create a feasible solution, where

the minimum number of desks is equal to the maximum number of flights that depart at

the same time. Alternatively, we could limit the number of flights departing within an

interval of time. We denote n as the time interval and V as the maximum number of

34

flights allowed. The constraint then becomes

∑
j:Si≤Sj≤Si+n

xj ≤ V ∀i ∈ I (4.27)

While this constraint only considers flights departing from the start of i to n minutes later,

it does constrain any n minute period through the constraint on previous flights. In this

work, we test the effect of the flight overlap constraint that limits which flights can be

scheduled together.

Adding constraints to the PP does not change the solution methodology, except for the

initialization of columns. The next chapter describes the column initialization for the base

implementation, as well as the adjustments needed to model the flight overlap constraints.

4.5 Conclusion

In this chapter, we provide the full flight dispatcher schedule formulation, as well as a set

covering formulation using schedules. To solve, a column generation approach is taken and

the algorithm is presented as well as the additional models needed to follow the algorithm.

This is the base implementation. Flight overlap constraints which limit the flights that can

be assigned to the same desk are modelled. Heuristic approaches to initialize the algorithm

and attempt to improve solutions are discussed in the next chapter.

35

Chapter 5

Heuristics

Heuristics are used in this work to initialize the columns for the column generation al-

gorithm, and to try to improve upon the integer solutions found. The initialization and

variants for the flight overlap constraints are first presented followed by the improvement

algorithm.

5.1 Initialization of Column Generation Algorithm

To initialize H, a greedy algorithm is used to create the first m columns and a swapping

method is used to create additional columns based on the first m created. The first m

columns create a feasible solution to the IP and RMP. The pseudo code of this algorithm

is shown in Algorithm 2. The indexing used for this algorithm begins at 0. DeskA and

DeskB are the columns being swapped while DeskC and DeskD are the output of the swap.

The pairs for swapping are defined at the end of the algorithm.

Using the data from Table 2.1, the greedy heuristic is shown for three desks in Table

36

Algorithm 2 Pseudo code for Column Initialization

Greedy Heuristic
1: for i from 0 to m− 1 do
2: Assign flight i to desk i
3: end for
4: for i from m to |I| − 1 do
5: Calculate the active load of each desk
6: If necessary, update each desk’s feasibility of adding the current flight
7: Add flight i to the feasible desk with the lowest active load
8: end for

Swapping Algorithm
9: while Swapping Pairs Exist do

10: for i from 0 to swapIndex-1 do
11: DeskC[i] = DeskA[i]
12: DeskD[i] = DeskB[i]
13: end for
14: for i from swapIndex to |I| − 1 do
15: DeskC[i] = DeskB[i]
16: DeskD[i] = DeskA[i]
17: end for
18: end while

Swapping Pairs
19: for i from 0 to |I| − 1 do
20: Swap columns i and i+ 1
21: end for
22: Swap columns 0 and |I| − 1
23: for i from 0 to |I|/2 do
24: Swap columns i and |I| − i
25: end for

37

5.1. The first three flights (A, B, and C) are allocated to the three desks respectively. Each

additional flight is added sequentially to the desk with the lowest active load at the time

of the new flight. Flight D is the first additional flight and it departs at time 800, so the

active flights for desk 1, 2, and 3 are 15, 10, and 15 respectively. This means desk 2 has

the lowest active load and flight D is added to this desk. Moving forward, flights B and D

both contribute to the load of desk 2. This guarantees a feasible solution to the base RMP

and IP in which these m columns are selected.

Desk 1 Desk 2 Desk 3
i Si Flights Load Flights Load Flights Load Min Desk
D 800 A 15 B 10 C 15 2
E 1000 A 0 B, D 30 C 15 1
F 1100 A, E 15 B, D 30 C 15 1
G 1300 A, E, F 35 B, D 10 C 0 3
H 1400 A, E, F 25 B, D 10 C, G 15 2
I 1500 A, E, F 25 B, D, H 25 C, G 15 3
J 1800 A, E, F 15 B, D, H 15 C, G 20 1

Table 5.1: Example of initialization algorithm with m = 3.

Additional columns or schedules are created using a swapping algorithm. This algo-

rithm takes two columns, say column A and B, and an index. Two new columns are created

that contain the flights from column A until the index and column B after, and vice versa.

An example is shown in Figure 5.2 where desks 1 and 3 are swapped from flight F and

beyond (the middle index).

Any columns can be swapped but to obtain a sufficient number of columns and ensure

each of the initial desks is used in a swap, the swaps are performed with:

1. Subsequently indexed columns, I.e., columns 0 and 1, columns 1 and 2, ..., columns

m− 1 and 0.

2. Opposite indexed columns, I.e., columns 0 and m−1, columns 1 and m−2 etc. With

38

Figure 5.1: Columns formed using greedy algorithm.

Figure 5.2: Columns formed by swapping desks 1 and 3.

an odd m, the column indexed by bm
2
c is not swapped.

39

If there are additional constraints in defining schedules, this heuristic needs to be mod-

ified accordingly. When schedules cannot contain flights departing at the same time, the

number of desks must satisfy the minimum requirement which is equal to the maximum

number of flights departing at the same time. If there are fewer desks, then a feasible

solution is not possible. Otherwise, the greedy heuristic follows the same logic but with

an additional feasibility check. In addition to the previous flights assigned and the active

load, each desk keeps track of the departure time of the most recent flight added to that

desk. If this departure time is within τ of the new flight’s departure time, this is not a

feasible desk for that flight. The flight is added to the desk with the lowest active load

amongst those that are feasible.

The swapping algorithm needs to be modified to ensure that swaps do not results in

multiple flights departing within τ on the same desk. To do this, the swap index may be

modified. The departure time of the index is compared to the previous flight’s departure

time. If they are within τ , the index is increased by one and checked again. Once the

index has a sufficient difference in departure time from the previous flight, it is used for all

swaps. If this is not possible, checks for flights around the swap index would need to be

performed post-swap.

Similar modifications would need to be made in the case where the number of flights

within a time interval is limited. For the greedy heuristic, instead of tracking last departure

time, the number of departures within the specified interval would be tracked for each

desk. This is what would define feasibility. The swapping may require post-processing to

eliminate any intervals exceeding the allowed number of flights, If there are consecutive

flights whose difference in departure times is greater than the interval, the latter flight is

used as the swap index and post-processing is not required.

40

5.2 Improvement Algorithm

The improvement algorithm takes a feasible solution and attempts to decrease overall

workload by swapping out flights at the bottleneck of each desk. The bottleneck for each

desk is the flight that produces the highest Fik value. Swaps first try simply removing

a flight from one desk (say Desk A) and adding it to another (say Desk B). If this does

not improve the workload, then a flight is swapped from Desk B to Desk A. The flight

removed from B is taken from the bottleneck, but when this is the same flight that was

just added, the previous active flight is swapped instead. When an improvement is found,

the incumbent is updated and the algorithm is reset since new desks have been created.

Otherwise, the next pair of desks is checked. The pseudo code for this heuristic is found

in Algorithm 3.

5.3 Conclusion

In this chapter, we describe the initialization of columns which uses a greedy heuristic

followed by a swapping algorithm. These are used to start the column generation procedure.

An improvement algorithm that swaps flights from each desk’s bottleneck is described. The

results for each implementation are presented in the next chapter.

41

Algorithm 3 Pseudo code for Improvement Algorithm

Improvement Heuristic
1: Start with an incumbent solution
2: for each desk k do
3: Check that there are enough flights on the desk to perform a swap
4: Find the bottleneck index for desk k, bk
5: for each desk h 6= k do
6: Switch the bottleneck flight from desk k to desk h
7: Calculate the new sum of workloads
8: if Workload decreases then
9: Update the incumbent with the new schedules

10: Reset the algorithm
11: else
12: Get the bottleneck index of desk h, bh.
13: if bh = bk then
14: Set bh to the previous flight assigned to desk h.
15: end if
16: Switch the bottleneck flight from desk h to desk k
17: Calculate the new sum of workloads
18: if Workload decreases then
19: Update the incumbent with the new schedules
20: Reset the algorithm
21: else
22: Reject swaps. Do not update incumbent.
23: end if
24: end if
25: end for
26: end for

42

Chapter 6

Testing and Results

In this chapter, results from testing are presented to compare the performance of the

implementations discussed in Chapter 4. In Section 6.1, we discuss the datasets that

are used for testing instances of the model. One dataset is from European Airline Data

and another is from American Airlines, which is broken into several instances based on

flight locations. The testing focuses on instances with 46 to 163 flights, and explores the

limitations on instance size. Testing results are shown in Section 6.2 and includes parameter

tuning on CPLEX parameters, a comparison of the models and implementations, analysis

on the effect of the number of desks, the performance with the flight overlap constraints, and

results using varied load. We compare solutions by looking at computational performance

and solution quality.

43

6.1 Data

There are two sets of data used for testing, one from American Airlines (AA) and the other

from European Airline Data (EAD). The AA dataset is broken down to obtain instances

with varying numbers of flights per day.

6.1.1 American Airlines Dataset

The AA dataset is available on Kaggle (Mondal, 2019) and comes from the US Department

of Transportation. It contains flight data from 2015 for airlines in the US, with data for

airlines, airports, and flights. It has been used in many analyses, primarily focused on

analyzing and predicting flight delays. As each airline manages its own dispatchers, a

single airline is used for this analysis.

AA is chosen for this analysis because it is an airline with a high number of flights and

some data about their operations is available online. For the US, AA is the airline with the

largest market share of US domestic flights in 2020 (Mazareanu, 2021b), with the American

Airlines Group offering around 6700 flights per day across 50 countries (American Airlines),

(Otley, 2018). From the dataset, AA flights are taken from a single day in which there are

1473 flights, all of which are within the US and its territories.

Additional processing is required for testing the flight dispatching problem. The times

are first converted to be in the 24-hour format. In one day, flight departure times are

found between 5:00 and 23:55 without any significant gaps, but there are flights departing

between 0:00 and 2:00. Instead of considering these flights to be before 5:00 on the same

calendar day, they are considered to occur after midnight and are given times from 24:00

to 26:00. This means the start of the ”day” is between 2:00 and 5:00. The flight times are

44

then converted to minutes elapsed since 0:00, so 5:00 is at 300 minutes.

Dispatch zones can easily be formed by finding regions, as each airport’s state is known.

US states can be categorized into regions based on service areas outlined by the Federal

Aviation Administration (FAA) (Federal Aviation Administration, 2021). These regions

are Eastern, Central and Western. The US territories are categorized separately. Since

there are few of these flights, they are removed for this testing. There are 36 flights

departing or arriving in these territories, so the remaining number of flights is 1437. The

regions of the origin and destination airports are used to determine the dispatch zone,

which allows the data to be decomposed and solved separately for each zone. Flights are

grouped by the pair of their origin and destination airports, but direction is not important.

For example, a flight departing in the East and arriving in the Central, or departing

in the Central and arriving in the East would both be classified as Central-East (CE).

International flights would be served by dispatchers who are classified as international

dispatchers so that would be a separate instance and is not considered for this analysis

(but the process would be the same).

The instances by zones are displayed in Table 6.1, with the time window of flights and

load statistics for each zone included.

Number of Earliest Latest Minimum Maximum Average
Flights Departure Arrival Load Load Load

CC 297 345 1480 1 10 4.63
CE 434 315 1505 4 16 10.24
CW 369 330 1865 5 37 12.63
EE 163 310 1487 2 13 8.08
EW 124 370 2018 17 27 22.61
WW 50 410 1840 2 26 13.44

Table 6.1: American Airlines zonal data.

45

6.1.2 European Airline Dataset

The European Airline Dataset (EAD) contains 173 flights over four days, and it is broken

down into four days with almost identical schedules (Lu and Gzara, 2015). Days 2 and 3

are equivalent, and the primary differences are missing flights at the beginning of day 1

and the end of day 4.

Departure and arrival times are known and given in minutes elapsed since midnight of

day 1 but can be adjusted for each day. Using day 2, there are 46 flights departing between

270 and 1150 which is just below a 15-hour range.

Specific airline information is not included in the data but the flights span seven air-

ports. This data has been used for crew pairing in airline scheduling, which does not need

specific airport information and instead needs potential connections.

6.1.3 Other Parameters

In the flight dispatching problem, the number of desks is an input to the model, and we

can test different desk quantities to compare results. For this testing, we run each instance

with three values for the number of desks. These are determined by targeting the average

number of flights per desk to 15, 20, and 25 flights, and adjusting the desks to rounded,

unique numbers for each instance, with the final numbers shown in Table 6.2.

Two versions of load are tested. The first is where load is constant throughout the

duration of the flight (using the planning load). The second uses the post-planning load

after the first hour of the flight. Load is only considered to start at the departure time

of the flight. In reality, the work would start before the flight departs - often three hours

prior to departure. To capture this work, the modelling would not change but the flight

46

25 20 15
46 2 3 4
50 2 3 4
124 5 6 8
164 7 8 11
297 12 15 20

Table 6.2: Target number of desks per instance.

departure times would be earlier and the time in the planning period would be increased.

Load is not included in either dataset, so we estimate load values. The loads for the

AA flights are estimated by taking a portion of the distance travelled by each flight (which

is related but not directly proportional to flight duration). The planning load ranges from

2 to 37 per flight. Post-planning load is calculated based on the planning load.

Post-Planning Load = max

{⌊
Planning Load

2

⌋
, 1

}

This results in longer flights having a higher load. It does make sense that longer flights

may require more load because there is more to consider, e.g., more climates/regions that

would be passed through. However, this does not take into consideration that flights with

greater distance are longer in duration so while the overall load may be greater, it does

not necessarily mean that the load per hour should be significantly different. The planning

loads for EAD are estimated using a range of 5 to 20, and have an average load of 11.98.

Post-planning loads are calculated the same way as with the AA data.

We model load as a unitless measure, however, load can represent the amount of atten-

tion in minutes per hour that the flight requires from a dispatcher (Santos et al., 2011). In

their report, there is only a single sample datapoint, in which the flight load is 1 minute.

A dispatcher would have a standard capacity of 60 minutes of load per hour but may be

47

able to take on a limited amount of overage. To incorporate this type of load, we would

need to consider each hour of work rather than snapshots in time.

6.2 Testing

Testing is focused on four instances: three from AA and one from EAD. The AA instances

used are East/East (EE), East/West (EW), and West/West (WW). Some testing is also

performed on the Central/Central (CC) instance to explore implementation limitations.

We solve the FDSF by CPLEX, and the IP by column generation with multiple columns

populated, which we refer to as the base implementation. Differences in performance are

explored using the flight overlap constraints and by modifying the number of desks. Most

instances use constant load, and we present differences when using varied load. Models

are coded in C++ Visual Studio 2019 and solved using CPLEX version 20.1.0 on a 64-bit

Windows 10 with Intel(R) Core(TM) i7-4790 3.60GHz processors and 8.00 GB RAM. In

most cases, a two-hour time limit is used.

Statistics are defined in Table 6.3, in which gaps are calculated by the following equa-

tion, where x represents the objective value of the appropriate model

x− LB
LB

.

The gap values given are the percent gap. The Total-T, IH-T, and FDSF-T are given in

seconds, whereas other times are given as the percentage of time spent in that function.

48

S The solution pool populate parameter that limits the number of solutions stored in the solution pool
PopGap The solution pool relative gap parameter that limits the gap in objective in the solution pool
NbCol Total number of columns generated
Iter Number of iterations of column generation
RMP-T Percentage of time solving the RMP
PP-T Percentage of time solving the PP
IP-T Percentage of time solving the IP
Other-T Percentage of time solving in other processes
Total-T Total time in seconds to run column generation implementation
IH-T Time in seconds to run the Improvement Heuristic (IH)
FDSF-T Time in seconds to run the Flight Dispatcher Schedule Formulation (FDSF)
LRB Lagrangian lower bound
IP-T Objective value of the IP solution on H̄
Gap Percent gap between IP and LRB
D-Min Minimum workload over all desks
D-Max Maximum workload over all desks
D-Avg Average workload over all desks
IH Objective value of the IH solution
I-Gap Percent gap between IH and LRB
FDSF Objective value of the FDSF solution
F-Gap Percent gap between FDSF objective and best bound (LB)

Table 6.3: Problem parameters and solution statistic definitions.

6.2.1 Parameter Tuning

There are several parameters in CPLEX that affect the column generation (CG) procedure.

These include S, the solution pool populate parameter that limits the number of solutions

stored in the solution pool, and PopGap, the solution pool relative gap parameter that

limits the gap in objective in the solution pool. This means these parameters affect how

many additional columns can be added in each iteration (however, this is an approximate

limit) and how close in objective to the optimal column they must be. Table 6.4 shows

results from solving the Set Covering Formulation on the EW instance with six desks.

Modifying the parameters S and PopGap has an effect on solution time but not solution

quality. In each case, the IP objective value is 983 and the MP objective value is 981 for

a gap of 0.02%. Additionally, in each solution the minimum desk workload is 154, the

maximum desk workload is 178, and the average desk workload is 163.83. The overall

49

solution time is displayed, as well as the percentage of that time spent in each part of

the problem. The number of columns generated and iterations are affected. For the EW

instance, the fastest solution time came with S = 15 and PopGap = 0.05.

S PopGap NbCol Iter RMP-T PP-T Pop-T Other-T Total-T
5 0.01 2106 240 0.84 94.82 3.32 1.02 5922.4

0.05 2182 216 0.58 97.43 1.15 0.84 8280.0
0.10 2270 197 0.50 97.64 1.00 0.86 7920.0

10 0.01 3292 210 1.52 89.73 6.70 2.06 4640.0
0.05 3042 171 1.76 91.44 3.65 3.15 3040.0
0.10 3002 156 1.13 94.47 2.16 2.24 4170.0

15 0.01 4027 194 3.28 58.80 33.10 4.81 2636.2
0.05 3091 129 1.62 90.23 4.31 3.84 2582.5
0.10 3400 123 0.81 95.62 1.57 2.00 5320.0

Table 6.4: Parameter tuning on EW instance with six desks.

We compare to the implementation without using populate, so only one column is

generated in each iteration. Several problems using the EW instance do not solve within

the two-hour time limit, so we compare the results of EE instance with a varying number

of desks.

Figure 6.1 compares the results when a single column is added in each iteration of

column generation versus when additional optimal or near-optimal columns are populated

in each iteration. The solution values are equivalent (e.g. same objective value, but possibly

different columns chosen) for both cases, so we compare the computational performance.

Figure 6.1a shows the total number of columns and iterations in each case. When only

a single column is added, the only difference between columns and iterations comes from

the initial columns generated. When multiple columns can be added, the total number of

columns generated is greater than when only one is added each time, however, the number

of iterations is lower and are fairly consistent over the number of desks. Similar trends are

50

(a) Number of columns and iterations. (b) Computation time.

Figure 6.1: Effect of populating multiple columns versus a single Column.

present with other instances. Additionally, in Figure 6.1b, we compare the computation

time. For some problems, adding a single column is faster whereas for others, adding

multiple columns is faster. In this instance, adding multiple columns is better overall and

there are greater potential gains from generating multiple columns than just one. The data

for the figures can be found in Tables A.9 and A.10. The remaining tests use the populate

function with parameters S = 15 and PopGap = 0.05 where applicable.

6.2.2 Testing of Base Column Generation Implementation

Each of the instances are tested on the set covering formulation. We solve the LP relaxation

of the IP using column generation to obtain a lower bound. Then the IP is solved on H

to obtain a feasible solution, which is an upper bound to the IP. The base implementation

uses column generation with multiple columns populated and no flight overlap constraints.

The IP bounds are compared to the improvement heuristic (IH) on the feasible solution

51

obtained by solving the base implementation, and the flight dispatcher scheduling formu-

lation (FDSF) solved directly by CPLEX. For the column generation implementations, the

column generation procedure has a two-hour time limit. At that point the IP is solved.

The Lagrangian lower bound (LRB) is displayed, and when the problem is solved within

two-hours, this is equivalent to the upper bound of the Relaxed Master Problem (RMP

UB). The FDSF is solved with a two-hour time limit, so tests that reached optimality in

less than that time have a gap of 0. Otherwise, the best feasible solution is shown along

with the optimality gap after two-hours. The IH does not have any time limits as it solves

within seconds.

The results for the base implementation are shown in Tables 6.5 and 6.6, with ad-

ditional columns to allow a comparison to the other implementations. In Table 6.5 the

computational results are presented for each of the instances tested. The solution quality

results are in Table 6.6. Note that 124 flights with 8 desks is the only instance that exceeds

the two-hour time limit. This means it is the only instance where column generation does

not converge. The RMP UB after two hours is 981.766, so the gap between upper and

lower bounds is 2.68%.

This shows that with smaller instances, optimal solutions are quickly found with the

FDSF. The integer solutions found using the base implementation and IH take longer and

are not optimal. However, with larger instances, the FDSF does not reach optimality in

the time limit and has larger optimality gaps. For these instances, many converge with

column generation within the time limit. The optimality gaps are significantly better using

the base implementation for larger instances. The IH takes less than two seconds in each

case, and sometimes improves on the base solution. This justifies the implementation of

column generation on the set covering formulation in order to achieve better results on the

larger instances.

52

|I| m NbCol Iter RMP-T PP-T Pop-T Other-T Total-T IH-T FDSF-T
46 2 2377 103 39.68 5.28 9.09 45.95 70.51 0.079 0.60

3 884 36 15.77 9.49 26.68 48.06 26.70 0.163 1.80
4 715 35 8.43 8.75 59.02 23.80 46.05 0.242 3.00

50 2 3270 152 47.43 4.88 6.60 41.09 120.07 0.085 0.60
3 967 40 17.36 9.04 20.47 53.14 28.51 0.22 68.40
4 566 22 12.35 10.46 23.38 53.81 17.74 0.157 7568.40

124 5 2786 115 1.03 93.92 2.37 2.68 3330.00 0.361 7203.00
6 3091 129 1.53 90.74 4.14 3.59 2790.00 0.462 7268.40
8 3618 144 0.64 96.30 1.77 1.29 8660.00 0.845 7287.60

163 7 2279 87 0.76 93.53 2.48 3.22 2962.70 1.157 7200.00
8 3134 116 3.35 75.04 9.39 12.21 1200.00 1.236 7237.20
11 2713 105 1.56 73.17 20.21 5.06 2120.00 1.013 7200.00

Table 6.5: Base implementation computational performance results.

|I| m LRB IP Gap D-Min D-Max D-Avg IH I-Gap FDSF F-Gap
46 2 124 128 3.23 57 71 64.0 128 3.23 124 0

3 124 132 6.45 39 51 44.0 128 3.23 124 0
4 124 132 6.45 27 42 33.0 131 5.65 124 0

50 2 291 293 0.69 142 151 146.5 293 0.69 291 0
3 291 296 1.72 64 132 98.7 291 0.00 291 0
4 291 294 1.03 67 76 73.5 294 1.03 291 55

124 5 981 984 0.31 186 203 196.8 982 0.10 981 287
6 981 983 0.20 154 178 163.8 983 0.20 981 528
8 (956.169)* 986 3.12 114 135 123.3 985 3.02 981 474

163 7 340 344 1.18 45 55 49.1 342 0.59 340 295
8 340 347 2.06 42 45 43.4 342 0.59 340 441
11 340 344 1.18 26 37 31.3 344 1.18 340 314

*Did not converge within two hours.

Table 6.6: Base implementation solution quality results.

53

Although the instance using 50 flights and three desks solves to optimality, with four

desks it does not solve in the time limit. This is the first instance in which the base

implementation provides a smaller optimality gap. We also find that the integer solutions

don’t follow a clear trend and the number of desks increase. For example, with 50 flights

the highest IP comes with three desks whereas the highest IH solutions comes with four

desks. Similarly, the optimality gaps from the FDSF also don’t directly correspond to the

number of desks.

By comparing the bounds from column generation with the CPLEX results on the

FDSF, we find that the LRB is tight. In Table 6.6, the LRB is equal to the FDSF solution

(which represents an upper bound) in all instances in which column generation converged.

In the remaining case, the difference between the FDSF solution and the upper bound

from column generation is 0.776. The optimality gaps from the base implementation are

mainly due to the difference between the IP solution and the RMP solution. This is an

area for potential improvement.

In the instances that were not solved by CPLEX within two hours, the incumbent

solutions were all found within the first minute of solving. The remaining time is spent

reducing the gap by increasing the lower bound. In most cases, the initial upper bound

from column generation is close to the final bound but does not reach the final value until

the LB converges as well. Overall, there is much more change in the LB than the UB.

When analyzing the solutions to the RMP, where fractional schedules can be used, we

find that many schedules are selected with low yh values. Most selected schedules have

yh ≤ 0.10 with many at yh ≤ 0.02. This means that we cannot estimate integer solutions

based on the RMP solutions.

54

6.2.3 Effects of Changing the Number of Desks

We perform additional tests to explore the effect of the number of desks and other param-

eters on the solution and computation. We test for m = 2 to 10. While this may provide

unrealistic results in terms of number of desks and therefore flights per desk and overall

workload, it does allow us to see trends in the problem. The data for these figures can be

found in Appendix A.

In Figure 6.2a, we see the minimum and maximum desk workloads as well as the average

workload over the desks for the EW instance. As the number of desks increases, the average

workload decreases and the minimum and maximum workloads are non-increasing as well.

This makes sense as the work is spread to more workers. As we increase the number of

desks from two to five, there is a dramatic decrease in maximum desk workload. From

five to nine, there is a decrease but at a slower pace. The change from nine to ten is very

small. Similar patterns are present for average and minimum workload per desk. This can

demonstrate the marginal benefit on workload of adding one more to desk. Figure 6.2b

shows the computation time of the column generation procedure, which includes the time

spent in the RMP, PP, and populate, and shows the time to solve the IP. Generally, as the

number of desks increases, the computation time increases but this is not always the case

(for example, nine desks solves within the time limit whereas the problems surrounding it

do not).

We find that the PP takes up most of the CG time and the total time. Due the

objective including maximum desk workload, it is not easy to find the optimal schedule.

It is beneficial for a schedule to include any flights that do not increase the maximum

workload as then they do not need to be covered by another schedule and will therefore not

contribute to another schedule’s maximum workload (unless needed to meet the minimum

55

(a) Desk workload by number of desks. (b) Computation time by number of desks.

Figure 6.2: Effect of number of desks on desk workload and computation.

requirement of one flight per schedule). The maximum workload structure also makes it

difficult to dominate solutions because not all time windows contribute to the value of a

desk. This shows that the PP is where we could do further work to try to decrease the

computation time. The data for these figures can be found in Tables A.1 and A.2.

We look at the total workload which is the model’s objective. This can be measured

using the Lagrangian lower bound, the integer solution found from column generation

(which is an upper bound), or the IH. The bounds for the EAD instance are shown in

Figure 6.3a. The LRB is strictly non-decreasing but in this case, is constant from 2 to

7 desks. As the number of desks increases, the sum of maximum workloads increases or

remains the same. This is due to the structure of only considering the maximum workload

of each dispatcher. With fewer desks, each dispatcher has more work but there is more

overlap in their schedules and fewer flights are contributing to the maximum workload

objective. The integer solutions have a generally increasing trend, but this is not strict. As

56

this is just an initial upper bound this does not represent the true optimal solutions. The

optimal solutions should follow the strictly non-decreasing pattern as desks are increased.

With the other instances, the LRB does not change (except when problems do not converge

within two-hours) between two and ten desks. The integer solution values do change.

We explore in Figure 6.3 the differences in optimality gaps by number of desks for each

of the instances. On the base implementation, the problems with the highest gaps are

mostly from the EAD instance which solves to optimality quickly using the FDSF. The

problems on this figure that did not converge are EW with seven, eight, and ten desks,

which represent two of the other peaks in optimality gap. Without EAD and the instances

that did not converge, the integer solutions all have a gap under 5%.

There is a general trend that increasing the number of desks slightly increases the

optimality gap, however, this trend may start to reverse after a threshold number of desks,

similar to EAD. The number of flights in an instance does not have a clear effect, as

the WW and EE instances have a more similar pattern and they have 50 and 163 flights

respectively. This may mean that other characteristics, such as load or flight distribution,

affect the solution quality.

6.2.4 Flight Overlap Constraints

In Section 4.4, additional constraints are presented that limit which flights can be assigned

to the same desk. Two flight overlap constraints are tested: flights departing at the same

time (τ = 0), and flights departing within five minutes of each other (τ = 5). The goal of

these constraints is to balance workload by not assigning flights departing around the same

time to the same desk. These additional constraints may make some instances infeasible

because there is an insufficient number of desks. We pre-process the minimum number

57

(a) Bounds from CG and IH. (b) Optimality gaps by dataset.

Figure 6.3: Effect of number of desks on solution quality.

of desks required for feasibility and only report on those. Tables 6.7 and 6.8 display the

results for the base implementation with these added constraints.

With τ = 0, the only instances that cannot be solved are with 46 flights and 2 desks

(denoted by 46-2) and 124-5. As we increase τ , fewer solutions can be found as more flights

contribute to the maximum departure interval. For τ = 5, in additional to the previous

instances, we cannot solve for 46-3, 50-2, and 124-6.

In most cases, adding this constraint decreases the computation time. It is also true

that as we increase τ from 0 to 5, the more constrained version (τ = 5) generally takes

less time to solve. The instances that took less time with flight overlap constraints than

the base implementation are in the smaller instances, where the total time is less than

one minute. The only instance that did not converge within two hours is 163-11 with

τ = 0, though this instance converges without the constraint and when using τ = 5. We

need to consider solution quality in additional to computational performance. The LRB is

58

|I| m NbCol Iter RMP-T PP-T Pop-T Other-T Total-T
τ = 0

46 3 1202 50 20.58 6.90 25.53 47.00 34.41
4 848 36 10.84 8.89 48.88 31.40 36.63

50 2 2328 104 35.71 6.59 9.30 48.40 70.44
3 1062 46 18.99 8.86 18.40 53.76 31.07
4 820 32 14.51 10.26 24.07 51.16 25.60

124 6 2373 96 4.46 67.14 13.98 14.42 533.53
8 3111 128 0.61 95.37 2.63 1.39 6900.00

163 7 2145 81 8.28 32.10 21.22 38.40 229.88
8 2127 80 5.33 49.46 20.58 24.63 353.13
11 3432 131 0.67 95.25 2.36 1.72 7770.00

τ = 5
46 4 740 33 12.31 8.19 43.88 35.62 29.67
50 3 1285 51 20.51 7.63 19.81 52.05 38.18

4 648 26 12.16 10.07 30.80 46.98 22.69
124 8 2365 99 2.39 76.96 13.92 6.73 1150.00
163 7 2109 82 10.15 20.47 22.00 47.38 193.72

8 2024 78 5.25 48.26 21.93 24.56 351.01
11 2243 88 2.25 75.25 13.57 8.94 1080.00

Table 6.7: Flight overlap constraints computational performance results.

59

|I| m LRB IP Gap D-Min D-Max D-Avg
τ = 0

46 3 124 132 6.45 39 51 44.0
4 124 132 6.45 27 42 33.0

50 2 291 291 0.00 133 158 145.5
3 291 292 0.34 87 105 97.3
4 291 292 0.34 58 82 73.0

124 6 981 1001 2.04 157 178 166.8
8 981 986 0.51 114 135 123.3

163 7 340 346 1.76 44 54 49.4
8 340 348 2.35 39 50 43.5
11 (263.096)* 348 32.27 26 37 31.6

τ = 5
46 4 124 138 11.29 27 48 34.5
50 3 291 292 0.34 84 107 97.3

4 291 294 1.03 58 82 73.5
124 8 981 1000 1.94 99 136 125.0
163 7 340 346 1.76 44 54 49.4

8 340 347 2.06 39 50 43.4
11 340 354 4.12 27 37 32.2

*Did not converge within two hours.

Table 6.8: Flight overlap constraints solution quality results.

60

the same for all instances that converge, so the key difference comes from the IP solution

and gap. We find that the solutions for the WW instance are better or equal to the base

implementation, but in other cases the results are worse or equal to the base solutions. The

gaps for 124-8 with the flight overlap constraints are improved from the base model but this

is due to improvement in the LRB, since it did not converge with the base implementation.

The integer solution from the base implementation is equal to the solution with τ = 0,

which is better than the solution found with τ = 5.

6.2.5 Comparing all Models

Using the data from previous tables, we can compare the performance of the base imple-

mentation, IH, FDSF solved with CPLEX, and base implementation with flight overlap

constraints using τ = 0, and τ = 5. In this section, several instances are highlighted.

In each case, a single instance is displayed with a set number of desks. However,

because not all instances provide a solution to the model with flight overlap constraints,

the smallest feasible number of desks is included in those cases. In Table 6.9, we compare

the results for EW instance with six desks. In this case, the base implementation (and IH)

provide the best gap. The models with flights overlap constraints solve in less time, but

the final integer solutions are larger. These could provide a trade-off between time and

integer solution values. Finally, the FDSF finds the best objective value (that we know is

optimal from the LB of the base model) but does not prove optimality within the two-hour

time limit and ends with a gap of 528%.

For the EAD instance, the smallest tested, all problems solve in under a minute. Results

are presented in Table 6.10. The FDSF finds an optimal solution, whereas each of the

integer solutions from column generation have a gap. The improvement heuristic improves

61

Version SCF IH FDSF τ = 0 τ = 5
|I| 124 124 124 124 124
m 6 6 6 6 8
LB 981 981 156.23 981 981
Objective 983 983 981 1001 1000
Gap 0.20 0.20 527.92 2.04 1.94
Time (s) 2582.46 0.46 7268.66 533.53 1150.00

Table 6.9: Comparison of models for EW instance with six desks.

Version SCF IH FDSF τ = 0 τ = 5
|I| 46 46 46 46 46
m 3 3 3 3 4
LB 124 124 124 124 124
Objective 132 128 124 132 138
Gap 6.45 3.23 0.00 6.45 11.29
Time (s) 26.70 0.16 1.56 34.41 29.67

Table 6.10: Comparison of models for EAD instance with three desks.

the solution but still does not reach optimality.

6.2.6 Limitations

We tested on the CC instance, as this is the next smallest in size. We start with the lowest

target number of desks, which is 12. A comparison of the models is presented in Table 6.11.

We find that this instance is not solved within two hours for any of these implementations

(except the IH, which needs a base solution as input). The optimality gaps remain very

large after two hours. For each of the column generation implementations, over 95% of

the time is spent in the PP. Similar results are found when testing with 20 desks. Further

testing is not performed on this instance or larger instances. Computational improvements

could lead to larger instances, such as this one, converging within two hours. This is where

62

Version SCF IH τ = 0 τ = 5 FDSF
|I| 297 297 297 297 297
m 12 12 12 12 12
LB 26.06 26.06 26.34 30.85 41.47
Objective 275 267 280 276 241
Gap 955.27 924.57 962.84 794.58 481.11
Time (s) 22700.00 5.67 7600.00 7510.00 7206.08

Table 6.11: Comparison of models for CC instance with 12 desks.

future efforts could be focused to improve the implementation for larger instances.

6.2.7 Varying Load Over Time

So far all results are with constant load throughout the duration of the flight. We also

consider when the load decreases during the post-planning period. As discussed in Section

6.1.3, the loads during the post-planning period are decreased by 50% and occur from one

hour after the flight’s departure time until its arrival time.

Results are presented for the EW instance with post-planning load, and we compare to

the results with constant load. Figure 6.4 demonstrates the differences in solution quality

and computational performance when the load is varied throughout the flight. The data

for the varied load can be found in Tables A.11 and A.12.

63

(a) Minimum desk workload. (b) Maximum desk workload.

(c) Average desk workload. (d) Optimality gap.

(e) Iterations. (f) Computation time.

Figure 6.4: Comparison of varied and constant load results.

64

As expected, the minimum, maximum and average desk workloads all decrease when

varied load is used (where the variations are all decreases from the base). In these cases,

the optimality gap is larger with varied load but the computation time is decreased. There

is no clear pattern with the number of iterations. This analysis is not to make conclusions

about the differences in the results, but rather to demonstrate the functionality of varying

load.

6.3 Conclusion

Two different datasets are used for testing, but these can be decomposed into several

instances using dispatch zones. Tests are focused on instances containing 46, 50, 124, and

163 flights in a single day. We tested the base column generation implementation, with a

single column and multiple columns generated in each iteration. In all cases, the solution

quality is equivalent, but there are differences in computation time. While for some cases,

a single column is faster, we find that for the EE instance there are more gains from

populating multiple columns. We tune the populate parameters based on the performance

of the EW instance. These settings are used for the other tests.

The base column generation implementation, and the improvement heuristic performed

on its solution, are compared to the Flight Dispatcher Schedule Formulation (FDSF). We

find that for small instances, the solution of FDSF by CPLEX reaches optimality quickly

but this is not the case for larger instances. For the EE and EW instances, and some cases

with the smaller instances, the FDSF does not converge within two hours and the bounds

provided by the base implementation are tighter. The heuristic finds improvements to the

IP solution in some cases but not all, and always runs quickly. The base implementation

is compared to versions adding the flight overlap constraint with τ = 0 and τ = 5. While

65

no consistent pattern exists, generally this constraint decreases the solution time but the

optimality gaps worsen.

The effects of modifying the number of desks and the load were explored. As expected,

increasing the number of desks decreases the workload per desk but the overall objective

follows a non-decreasing trend. There is a generally increasing trend in computation time

as desks increase. Using load that varies during the flight decreases the desk workload and

the computation time, but increases the optimality gaps on the instances tested.

None of these implementations provide good results when using the next smallest in-

stance, which contains 297 flights. Most of the computation time on the larger instances

is focused on the PP, so this is where future improvements could be made. Other areas for

future work and extensions are presented in the next chapter.

66

Chapter 7

Extensions and Future Work

There are various areas for potential extensions or future work that focus on capturing dif-

ferent elements of the problem. In Section 7.1 we discuss alternative ways for dispatch zones

to be considered in the modelling. Additional or alternative constraints and objectives are

presented in Sections 7.2 and 7.3 respectively. Including consideration for uncertainty are

discussed in Section 7.4. Lastly, Section 7.5 discusses adding the shift problem to capture

both parts of flight dispatcher scheduling.

7.1 Incorporating Dispatch Zones

In our current testing, we break down the AA data into dispatch zones and then solve each

decomposed instance with a specified number of dispatchers for each zone. This breaks

down the dataset in a simple way, but there are other ways in which dispatch zones could

be considered. For example, we may specify a total number of dispatchers, but not how

many will be assigned to each zone. This means that all of the instances we decomposed

67

are linked with a single m. In this case, all flights would be solved in one problem but

the schedules generated would each only contain one zone. This would introduce a new

parameter and decision variable, and add constraints 7.1 - 7.3 to the PP.

let L represent the set of zones, l ∈ L

let σil =

1 if flight i ∈ I is in zone l ∈ L

0 otherwise

let zl =

1 if zone l ∈ L is chosen

0 otherwise

xi ≤ σilzl ∀i ∈ I, l ∈ L (7.1)∑
l∈L

zl∈L = 1 (7.2)

zl ∈ {0, 1} ∀l ∈ L (7.3)

Another way to consider zones would be to have an additional cost for a desk containing

flights from multiple zones. This would essentially act as a penalty, as there could be added

work when flight zones are more diverse. Constraint 7.2 would no longer be included and

the PP objective would be updated to 7.4, where there is a cost function based on how

many zones are included.

min F −
∑
i∈I

λ̄ixi + f(
∑
l∈L

zl) (7.4)

68

Similarly, an alternative form of zonal considerations would be to measure load by

groups of flights. For example, if two flights with very similar flight paths and timing are

assigned to the same desk they would likely require less total load, as some of the work

overlaps, than if they are assigned to two different desks. This sort of measurement of load

would form a non-linear load function as we would need to consider flight load relative to

other flights on a schedule.

7.2 Alternative Constraints

There are alternative constraints that can be added to the definition of a schedule, and

therefore the PP. The total number of flights assigned to a desk can be constrained by

7.5 and 7.6. By adding an additional parameter and decision variable, we constrain the

number of active flights per desk. Constraint 7.8 constrains the active flights, with 7.7

defining the active flights, similar to how the load is calculated.

dit =

1 if flight i ∈ I is active at time t

0 otherwise

wi The number of active flights at Si if flight i ∈ I is added to the schedule

69

∑
i∈I

xi ≥ minNumberOfF lights ∀i ∈ I (7.5)

∑
i∈I

xi ≤ maxNumberOfF lights ∀i ∈ I (7.6)

wi ≥ 1 +
∑
j<i

xjdjSi
−M(1− xi) ∀i ∈ I (7.7)

wi ≤ maxActiveF lights ∀i ∈ I (7.8)

In addition to the number of flights, we can consider the idle time when the desk

contains no active flights. This is something that we want to avoid, especially for long

periods of time, as the dispatcher is getting paid but is not doing any work and there may

be a higher imbalance of load during that time. To do this, additional parameters are

needed to keep track of the time:

ei The idle time leading into the start of flight i ∈ I, if flight i ∈ I is added to the desk

gi The arrival time of the latest flight that is active at the start of flight i ∈ I

ai The arrival time of flight i ∈ I

Idle time is limited by adding constraints 7.10, 7.13 and 7.14 to the PP. We either

constrain the maximum idle time between any two active flights for a dispatcher (i.e., a

single continuous break) by 7.15, or the cumulative idle time throughout a desk by 7.16.

The remaining equations show the derivations which are linearized for the PP.

70

gi = max
j<i

(ajxj) ∀i ∈ I (7.9)

≥ ajxj ∀i ∈ I, j ∈ I, j < i (7.10)

ei = max{Si −max
j<i

(ajxj), 0}xi ∀i ∈ I (7.11)

= max(Sixi − gi, 0) ∀i ∈ I (7.12)

ei ≥ Sixi − gi ∀i ∈ I (7.13)

ei ≥ 0 ∀i ∈ I (7.14)

ei ≤ maxIdleT ime ∀i ∈ I (7.15)∑
i∈I

ei ≤ maxTotalIdleT ime (7.16)

7.3 Alternative Objectives

As discussed with different problems considering balance, there are various ways to define

and measure balance. These could be implemented by adjusting the Flight Dispatcher

Schedule Formulation or IP objectives, but this may affect the dual problem and the

solution methodology which is based on the current formulation.

To consider the difference in workload of the worst desk and the best desk, we modify the

RMP by adding two new parameters; Cmin, the desk chosen with the minimum workload,

and Cmax, the desk chosen with the maximum workload. The the objective is changed to

minimizing Cmax − Cmin where Cmin ≤ Chyh and Cmax ≥ Chyh, ∀h ∈ H.

To compare all chosen schedule workloads to the average workload, the sum of squared

deviations (SSD) is used. To find the SSD, we need to have the mean workload of the

71

selected desks which will be called Cmean. Then we need to find the difference between a

schedule’s workload with the mean, for each desk that is selected.

SSD =
∑
h∈H

[(Ch − Cmean)yh]
2

This could be used as is, or normalized. This makes the problem non-linear as we have

Cmean multiplied by yh but Cmean is already dependent on yh as it is calculated from the

selected schedules.

The alternative constraints proposed in section 7.2 can be converted into objectives.

For example, instead of constraining the maximum number of flights, the objective could

be to minimize the number of flights assigned to the busiest desk. Similarly, the other

types of balance discussed in this section could be applied to the alternative objectives.

7.4 Uncertainty

There are a few areas of potential uncertainty that could affect the workload of these

schedules. A common area of uncertainty in airline operations is flight delays. When a

flight is delayed, the overall load and when it occurs can change. Since dispatchers monitor

weather and safety conditions, they may be doing work before a flight has been delayed and

during the delay period. They would then still need to monitor the flights after departure,

and the timing of this load would not be as planned.

There is potential uncertainty in the amount of load each flight actually incurs. As

mentioned above, one reason may be because of delays, but the conditions of the aircraft

or weather may alter the load of each flight as they are occurring. We do not consider any

overlap in the load that may occur when two flights with similar regions/paths occur at

72

the same time. Some of the dispatcher’s work may be applied to both flights and therefore

the actual workload is decreased.

The last potential area of uncertainty may be in the number of dispatchers who are

actively working at a given time. This could be based on people arriving late or early,

which may just affect shift changeover times, but contingencies could be useful for when a

dispatcher cannot cover their shift. Even during a quick break, a dispatcher needs to ask

another dispatcher to monitor their flights (Kennedy, 1987), so it is a common occurrence

for dispatchers to be covering extra flights.

7.5 Shift Considerations

In defining the problem, there were two key components: assigning flights to desks, and

scheduling dispatcher shifts to cover desks. This work focuses on the former, so shift rules

and guidelines are not considered in this modelling. Including shift considerations would

require a new model either to formulate the whole problem or to connect with this work.

This would entail defining when a desk starts and ends (i.e., when they start work for

the first flight for the desk, and when the last flight arrives and a desk can be closed),

and potentially how that would be broken up if multiple dispatcher shifts are required.

There are specific time constraints with set durations that a dispatcher can work. This

may require looking at a longer period of time since a desk can remain open for more than

24 hours, and the timing of shifts may not perfectly align with the timing of one “day” of

flights.

73

7.6 Conclusion

In this chapter, extensions and future work are proposed that would model different ele-

ments from the dispatching problem. Different ways to incorporate regions into the flight

dispatching problem are discussed. So far, regions are used to decompose problems, but we

could use the pricing problem to limit flights to a single region, add penalties for assigning

a dispatcher flights in multiple regions, or measure workload with flights dependent on

other flights. Additional constraints are presented that would limit the number of flights

or active flights allowed for each dispatcher, or constrain idle time. These are also different

possible objectives, and alternative measures of balance are discussed, such as minimizing

the maximum difference in workload or (normalized) sum of squared deviations. Areas

of uncertainty that could be incorporated in future work include flight delays, uncertain

loads, and number of dispatchers present. Lastly, the inclusion of shifts would address the

complete problem of flight dispatcher scheduling. Conclusions are presented in the next

chapter.

74

Chapter 8

Conclusions

Flight dispatching is an area of opportunity in the literature of airline operations planning.

The problem of dispatching includes assigning flights amongst a set of desks, and splitting

up those desks into dispatcher shifts according to agreed upon rules. We propose models to

address the problem of assigning flights to desks with an objective of balancing workload.

We measure balance by determining each desk’s highest workload throughout the day and

minimizing the sum of the selected desk’s maximum workloads.

We develop the Flight Dispatcher Schedule Formulation (FDSF) which is solved directly

by CPLEX. While this solves quickly for small instances, its effectiveness is limited with

larger instances. A set covering formulation is presented that is solved using a column

generation algorithm to address larger-scale instances. This solves over a subset of of

schedules, where each schedule is the assignment of flights to a single desk. To initialize

the set of schedules, a greedy heuristic and swapping algorithm is used that guarantees

a feasible solution to the Integer Problem (IP) and Relaxed Master Problem (RMP). A

variation to this base column generation implementation adds flight overlap constraints to

75

the Pricing Problem (PP), in which we limit flights that depart within some time interval,

τ , cannot be assigned to the same desk. We present an improvement heuristic (IH) to try to

improve upon the integer solutions found through the column generation implementation.

We test on two datasets, one from European Airline Data (EAD), and one from Amer-

ican Airlines (AA) that is broken down into several instances. We test instances with 46,

50, 124, and 163 flights. We vary the number of desks for each instance to target aver-

age flight per desk values of 15, 20 and 25. The smaller instances are solved directly by

CPLEX on the FDSF in seconds. The larger instances, do not solve within a two-hour

time limit and optimality gaps remain large at the end of this time. Most instances con-

verge in column generation within two hours, though optimality gaps are present from the

integer solutions. By looking at the RMP solutions, we find that many desks are selected

with values of yh ≤ 0.10. This means we cannot estimate integer solutions from the RMP

solutions. The IH provides smaller gaps in some cases. We find that the Lagrangian lower

bound (LRB) is tight when it converges, as it is equal to the FDSF solution which is an

upper bound.

Using an instance from AA containing 297, we find that none of the implementations

converge within the time limit, and the optimality gaps remain very large after this time.

With instances that take longer to solve, we find that most of the time is spent in the

PP. Improving the computation time of the PP would allow us to solve larger instances.

Future work and possible extensions include considering dispatch zones in the PP rather

than as separate instances, adding constraints to define schedules that limit the number

of flights or idle time (at a time or cumulatively), considering different balance objectives,

incorporating uncertainty, and including the shift component of dispatcher scheduling.

76

References

Acar, I. and Butt, S. E. Modeling nurse-patient assignments considering patient acuity

and travel distance metrics. Journal of Biomedical Informatics, 64:192–206, 12 2016.

Adler, M., Berenbrink, P., and Schröder, K. Analyzing an infinite parallel job allocation

process. In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 1461 LNCS, pages

417–428. Springer Verlag, 1998.

Aickelin, U. and Dowsland, K. A. An indirect genetic algorithm for a nurse-scheduling

problem. Computers and Operations Research, 31(5):761–778, 4 2004.

Aickelin, U. and White, P. Building better nurse scheduling algorithms. Annals of Opera-

tions Research, 128(1-4):159–177, 2004.

Air Canada Corporate Communications. Air Canada Corporate Profile, 2020. URL https:

//www.aircanada.com/ca/en/aco/home/about/corporate-profile.html.

Air Transport Association of Canada. Career Pathways: Flight Dispatcher. Fly Canada,

2021. URL https://flycanada.org/career-pathways/flight-dispatcher/.

Airline Dispatchers Federation. About ADF — Airline Dispatchers Federation, 2021. URL

https://www.dispatcher.org/dispatcher/about-adf.

77

https://www.aircanada.com/ca/en/aco/home/about/corporate-profile.html
https://www.aircanada.com/ca/en/aco/home/about/corporate-profile.html
https://flycanada.org/career-pathways/flight-dispatcher/
https://www.dispatcher.org/dispatcher/about-adf

American Airlines. American Airlines Group. URL https://www.aa.com/i18n/

customer-service/about-us/american-airlines-group.jsp#:~:text=Overview,

1%2C000%20destinations%20in%20150%20countries.

American Airlines Newsroom. Dispatching live from the airline’s nerve center,

2020. URL http://news.aa.com/american-stories/american-stories-details/

2017/Straight-to-the-Gate-Andy-Egloff/default.aspx.

Azai, Y. and Epstein, L. On-line load balancing of temporary tasks on identical machines.

In Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems,

pages 119–125, 1997.

Azar, Y. On-line load balancing. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume

1442, pages 178–195. Springer Verlag, 1998.

Baldi, M. M., Crainic, T. G., Perboli, G., and Tadei, R. The generalized bin packing

problem. Transportation Research Part E: Logistics and Transportation Review, 48(6):

1205–1220, 11 2012.

Barnhart, C., Belobaba, P., and Odoni, A. R. Applications of operations research in the

air transport industry. Transportation Science, 37(4):368–391, 11 2003.

Barnhart, C., Cohn, A. M., Johnson, E. L., Klabjan, D., Nemhauser, G. L., and Vance,

P. H. Airline Crew Scheduling. In Handbook of Transportation Science, pages 517–560.

Kluwer Academic Publishers, 2 2006.

Berenbrink, P., Sauerwald, T., Stauffer, A., and Khodamoradi, K. Balls-into-bins with

nearly optimal load distribution. In Annual ACM Symposium on Parallelism in Algo-

rithms and Architectures, pages 326–335, New York, New York, USA, 2013. ACM Press.

78

https://www.aa.com/i18n/customer-service/about-us/american-airlines-group.jsp#:~:text=Overview,1%2C000%20destinations%20in%20150%20countries.
https://www.aa.com/i18n/customer-service/about-us/american-airlines-group.jsp#:~:text=Overview,1%2C000%20destinations%20in%20150%20countries.
https://www.aa.com/i18n/customer-service/about-us/american-airlines-group.jsp#:~:text=Overview,1%2C000%20destinations%20in%20150%20countries.
http://news.aa.com/american-stories/american-stories-details/2017/Straight-to-the-Gate-Andy-Egloff/default.aspx
http://news.aa.com/american-stories/american-stories-details/2017/Straight-to-the-Gate-Andy-Egloff/default.aspx

Castro-Silva, D. and Gourdin, E. A study on load-balanced variants of the bin packing

problem. Discrete Applied Mathematics, 264:4–14, 2019.

Chen, B., Potts, C. N., and Woeginger, G. J. A Review of Machine Scheduling: Complexity,

Algorithms and Approximability. In Handbook of Combinatorial Optimization, volume 3,

pages 1493–1641. Springer US, 1998.

Correia, I., Gouveia, L., and Saldanha-da Gama, F. Solving the variable size bin packing

problem with discretized formulations. Computers and Operations Research, 35(6):2103–

2113, 6 2008.

Crainic, T. G., Fomeni, F. D., and Rei, W. The Multi-Period Variable Cost and Size Bin

Packing Problem with Assignment Cost: Efficient Constructive Heuristics. CIRRELT,

7 2019.

Curran, A. Which Canadian Airlines Have The Largest Fleets? Simple Flying, 2020.

URL https://simpleflying.com/canadian-airlines-largest-fleets/#:~:text=

In%202018%2C%20Air%20Canada%20had,with%20a%2034%25%20market%20share.

Delorme, M., Iori, M., and Martello, S. Bin packing and cutting stock problems: Mathe-

matical models and exact algorithms, volume 255, pages 1–20. Elsevier, 11 2016.

Dickson, G. Up all night at American Airlines – What happens after hours at the Fort

Worth HQ? Fort Worth Star-Telegram, 2019. URL https://www.star-telegram.com/

news/business/aviation/article226769464.html.

Ehrgott, M. and Ryan, D. M. Constructing robust crew schedules with bicriteria optimiza-

tion. Journal of Multi-Criteria Decision Analysis, 11(3):139–150, 2002.

79

https://simpleflying.com/canadian-airlines-largest-fleets/#:~:text=In%202018%2C%20Air%20Canada%20had,with%20a%2034%25%20market%20share.
https://simpleflying.com/canadian-airlines-largest-fleets/#:~:text=In%202018%2C%20Air%20Canada%20had,with%20a%2034%25%20market%20share.
https://www.star-telegram.com/news/business/aviation/article226769464.html
https://www.star-telegram.com/news/business/aviation/article226769464.html

Elhedhli, S., Gzara, F., and Yildiz, B. Three-Dimensional Bin Packing and Mixed-Case

Palletization. INFORMS Journal on Optimization, 1(4):323–352, 2019.

Federal Aviation Administration. FAA Runway Safety Group - Service Areas & Regional

Offices, 2021. URL https://www.faa.gov/airports/runway_safety/regions/.

Hnich, B., Kzfitan, Z., and Walsh, T. Modelling a balanced academic curriculum problem.

08 2002.

Kennedy, J. M. Monitors Every Trip : Air Dispatcher Is Pilot’s Partner in Flight Safety.

Los Angeles Times, 1987. URL https://www.latimes.com/archives/la-xpm-1987-

09-03-mn-5786-story.html.

Khouja, M. and Conrad, R. Balancing the assignment of customer groups among em-

ployees: Zero-one goal programming and heuristic approaches. International Journal of

Operations and Production Management, 15(3):76–85, 1995.

Kriengkorakot, N. and Pianthong, N. The assembly line balancing problem : Review

articles *. The KKU Engineering Journal, Volume 34:133–140, 03 2007.

Lu, D. and Gzara, F. The robust crew pairing problem: model and solution methodology.

Journal of Global Optimization, 62(1):29–54, 4 2015.

Martello, S., Pisinger, D., and Vigo, D. The Three-Dimensional Bin Packing Problem.

Operations Research, 48(2):256–267, 2000.

Mazareanu, E. EBIT margin of commercial airlines worldwide from 2010 to 2021, by re-

gion. Statistica, 2021a. URL https://www.statista.com/statistics/225856/ebit-

margin-of-commercial-airlines-worldwide/.

80

https://www.faa.gov/airports/runway_safety/regions/
https://www.latimes.com/archives/la-xpm-1987-09-03-mn-5786-story.html
https://www.latimes.com/archives/la-xpm-1987-09-03-mn-5786-story.html
https://www.statista.com/statistics/225856/ebit-margin-of-commercial-airlines-worldwide/
https://www.statista.com/statistics/225856/ebit-margin-of-commercial-airlines-worldwide/

Mazareanu, E. Leading airlines in the U.S. by domestic market share 2020. Statistica,

2021b. URL https://www.statista.com/statistics/250577/domestic-market-

share-of-leading-us-airlines/.

Mondal, R. Flight-Delay, 2019. URL https://www.kaggle.com/rahulstephenites2/

flightdelay?select=flights.csv.

Otley, T. Interview: Scott Ramsey, MD of flight despatch and operations control, Ameri-

can Airlines. Business Traveller, 2018. URL https://www.businesstraveller.com/

features/interview-scott-ramsey-md-of-flight-despatch-and-operations-

control-american-airlines/.

Ouazene, Y., Hnaien, F., Yalaoui, F., and Amodeo, L. The Joint Load Balancing and

Parallel Machine Scheduling Problem. In Operations Research Proceedings 2010, pages

497–502. Springer, Berlin, Heidelberg, 2011.

Raab, M. and Steger, A. “Balls into bins” — a simple and tight analysis. In Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), volume 1518, pages 159–170. Springer Verlag, 1998.

Rajakumar, S., Arunachalam, A. V. P., and Selladurai, A. V. Workflow balancing strategies

in parallel machine scheduling. 23:366–374, 2004.

Rosenberger, J., Green, D., Keeling, B., Turpin, P., and Zhang, J. Optimizing nurse

assignment. 05 2014.

Rosenberger, J. M., Schaefer, A. J., Goldsman, D., Johnson, E. L., Kleywegt, A. J., and

Nemhauser, G. L. A stochastic model of airline operations. Transportation Science, 36

(4):357–377, 2002.

81

https://www.statista.com/statistics/250577/domestic-market-share-of-leading-us-airlines/
https://www.statista.com/statistics/250577/domestic-market-share-of-leading-us-airlines/
https://www.kaggle.com/rahulstephenites2/flightdelay?select=flights.csv
https://www.kaggle.com/rahulstephenites2/flightdelay?select=flights.csv
https://www.businesstraveller.com/features/interview-scott-ramsey-md-of-flight-despatch-and-operations-control-american-airlines/
https://www.businesstraveller.com/features/interview-scott-ramsey-md-of-flight-despatch-and-operations-control-american-airlines/
https://www.businesstraveller.com/features/interview-scott-ramsey-md-of-flight-despatch-and-operations-control-american-airlines/

Santos, C. A., Zhang, A., Lopez, I., Herrick, G., and Raper, M. Optimal dispatcher

workload distribution. HP Laboratories Technical Report, (195):1–26, 2011.

Schaus, P. Solving Balancing and Bin-Packing problems with Constraint Programming.

PhD thesis, Ecole polytechnique de Louvain, 2009.

Schwerdfeger, S. and Walter, R. Improved algorithms to minimize workload balancing

criteria on identical parallel machines. Computers and Operations Research, 93:123–134,

5 2018.

Shebalov, S. and Klabjan, D. Robust airline crew pairing: Move-up crews. Transportation

Science, 40(3):300–312, 2006.

Transport Workers Union of America. Agreement between American Airlines, Inc. and

the flight dispatcher, dispatchers in training, and operations specialists in the ser-

vice of American Airlines, Inc. as represented by Transport workers Union of Amer-

ica, AFL-CIO, 2016. URL https://twu514.org/files/2016/04/AA-Dispatchers-

TA-Complete.pdf.

Valério De Carvalho, J. M. LP models for bin packing and cutting stock problems. European

Journal of Operational Research, 141(2):253–273, 9 2002.

Yen, J. W. and Birge, J. R. A stochastic programming approach to the airline crew

scheduling problem. Transportation Science, 40(1):3–14, 2006.

82

https://twu514.org/files/2016/04/AA-Dispatchers-TA-Complete.pdf
https://twu514.org/files/2016/04/AA-Dispatchers-TA-Complete.pdf

APPENDICES

83

Appendix A

Additional Results

84

A.1 Results of Varying the Number of Desks

m NbCol Iter RMP-T PP-T Pop-T Other-T Total-T
2 2377 103 39.68 5.28 9.09 45.95 70.51
3 884 36 15.77 9.49 26.68 48.06 26.70
4 715 35 8.43 8.75 59.02 23.80 46.05
5 800 35 8.56 8.95 56.31 26.18 45.85
6 747 39 7.96 7.27 63.49 21.28 52.23
7 521 48 5.04 9.34 74.78 10.84 88.73
8 622 66 6.80 8.30 73.19 11.71 106.34
9 388 57 3.67 7.85 81.53 6.95 126.10
10 501 84 3.76 7.80 82.39 6.05 204.14

Table A.1: Varying m on EAD instance computational performance results.

m LRB IP Gap D-Min D-Max D-Avg IH I-Gap
2 124 128 3.23 57 71 64.00 128 3.23
3 124 132 6.45 39 51 44.00 128 3.23
4 124 132 6.45 27 42 33.00 131 5.65
5 124 147 18.55 27 35 29.40 132 6.45
6 124 144 16.13 16 35 24.00 137 10.48
7 124 141 13.71 7 33 20.14 140 12.90
8 127 134 5.51 5 22 16.75 134 5.51
9 131 139 6.11 7 20 15.44 138 5.34
10 135 141 4.44 5 20 14.10 141 4.44

Table A.2: Varying m on EAD instance solution quality results.

85

m NbCol Iter RMP-T PP-T Pop-T Other-T Total-T
2 3270 152 47.43 4.88 6.60 41.09 120.07
3 967 40 17.36 9.04 20.47 53.14 28.51
4 566 22 12.35 10.46 23.38 53.81 17.74
5 795 30 13.88 10.41 25.75 49.95 23.75
6 605 23 12.15 10.89 28.82 48.14 19.10
7 539 22 10.77 11.84 33.71 43.68 19.10
8 614 26 9.71 10.69 45.62 33.98 27.64
9 639 25 10.20 9.12 41.49 39.19 25.33
10 522 19 11.26 11.09 30.47 47.18 17.04

Table A.3: Varying m on WW instance computational performance results.

m LRB IP Gap D-Min D-Max D-Avg
2 291 293 0.69 142 151 146.50
3 291 296 1.72 64 132 98.67
4 291 294 1.03 67 76 73.50
5 291 295 1.37 52 73 59.00
6 291 294 1.03 36 56 49.00
7 291 293 0.69 28 51 41.86
8 291 296 1.72 26 53 37.00
9 291 297 2.06 25 50 33.00
10 291 295 1.37 3 56 29.50

Table A.4: Varying m on WW instance solution quality results.

86

m NbCol Iter RMP-T PP-T Pop-T Other-T Total-T
2 3895 164 28.63 6.04 8.46 56.86 224.08
3 4006 172 26.50 11.11 12.93 49.47 257.49
4 3058 133 21.69 13.23 14.74 50.34 192.04
5 2786 115 1.03 93.92 2.37 2.68 3330.00
6 3091 129 1.53 90.74 4.14 3.59 2790.00
7 2397 100 0.26 97.44 1.51 0.79 9190.00
8 3618 144 0.64 96.30 1.77 1.29 8660.00
9 2114 91 1.33 80.30 13.72 4.64 1550.00
10 4745 191 1.04 94.76 2.71 1.49 9250.00

Table A.5: Varying m on EW instance computational performance results.

m LRB IP Gap D-Min D-Max D-Avg
2 981 981 0.00 486 495 490.50
3 981 982 0.10 325 331 327.33
4 981 981 0.00 231 254 245.25
5 981 984 0.31 186 203 196.80
6 981 983 0.20 154 178 163.83
7 (899.82)* 986 9.58 134 155 140.86
8 (956.17)* 986 3.12 114 135 123.25
9 981 1015 3.47 106 117 112.78
10 (896.58)* 992 10.64 92 114 99.20
*Did not converge within two hours.

Table A.6: Varying m on EW instance solution quality results.

87

m NbCol Iter RMP-T PP-T Pop-T Other-T Total-T
2 3574 152 23.53 6.10 4.92 65.45 233.22
3 3304 146 23.35 5.90 5.76 64.98 210.78
4 3183 145 23.56 5.80 7.27 63.36 200.57
5 2455 101 10.46 34.22 16.36 38.95 239.04
6 2510 97 12.23 19.05 20.67 48.06 202.93
7 2279 87 0.76 93.53 2.48 3.22 2960.00
8 3134 116 3.35 75.04 9.39 12.21 1200.00
9 3092 118 1.13 91.56 3.92 3.39 3500.00
10 3446 133 2.86 76.80 12.92 7.42 1780.00

Table A.7: Varying m on EE instance computational performance results.

m LRB IP Gap D-Min D-Max D-Avg
2 340 340 0.00 169 171 170.00
3 340 340 0.00 109 116 113.33
4 340 340 0.00 79 89 85.00
5 340 342 0.59 65 74 68.40
6 340 342 0.59 54 61 57.00
7 340 344 1.18 45 55 49.14
8 340 347 2.06 42 45 43.38
9 340 345 1.47 33 42 38.33
10 340 346 1.76 31 39 34.60

Table A.8: Varying m on EE instance solution quality results.

88

A.2 CG Results Using a Single Column

m NbCol Iter RMP-T PP-T Other-T Total-T
2 3003 2995 15.46 63.67 20.87 5910.00
3 3007 2996 14.77 63.66 21.57 6220.00
4 680 664 11.00 60.36 28.64 365.51
5 332 313 4.42 54.55 41.03 266.90
6 311 287 1.57 76.58 21.85 776.95
7 316 289 1.22 81.33 17.45 1020.00
8 378 346 1.96 67.34 30.70 901.54
9 342 307 1.40 79.69 18.91 997.29
10 515 475 0.54 92.87 6.59 6010.00
11 478 435 0.74 90.17 9.08 3350.00

Table A.9: Column generation on EE instance, Computational Performance Results.

m LRB IP Gap D-Min D-Max D-Avg
2 340 340 0.00 169 171 170.00
3 340 340 0.00 109 116 113.33
4 340 340 0.00 79 89 85.00
5 340 342 0.59 65 74 68.40
6 340 342 0.59 54 61 57.00
7 340 344 1.18 45 55 49.14
8 340 347 2.06 42 45 43.38
9 340 345 1.47 33 42 38.33
10 340 346 1.76 31 39 34.60
11 340 344 1.18 26 37 31.27

Table A.10: Column generation on EE instance Solution Quality Results.

89

A.3 Results Using Varying Load

|I| m NbCol Iter RMP-T PP-T Pop-T Other-T Total-T
124 5 2669 107 7.70 51.55 20.05 20.69 403.52
124 6 3313 132 4.50 60.13 25.14 10.24 997.51
124 8 4517 192 1.20 89.88 7.15 1.76 7510.00

Table A.11: Varying the load on EW instance computational performance Results.

|I| m LRB IP Gap D-Min D-Max D-Avg
124 5 590 608 0.03 113 128 121.60
124 6 590 619 0.05 97 109 103.17
124 8 (571.86)* 624 0.06 70 85 78.00
*Did not converge within two hours.

Table A.12: Varying the load on EW instance solution quality results.

90

	List of Figures
	List of Tables
	Introduction
	Background

	Flight Dispatching Problem
	Defining Schedules
	Defining Load
	Measuring Balance
	Conclusion

	Literature Review
	Optimization in Airline Operations Planning
	Bin Packing Problem
	Workload Balancing in Other Industries
	Nurse-Patient-Assignment
	Balls-Into-Bins
	Machine Scheduling Problems

	Conclusion

	Modelling and Solution Methodology
	Flight Dispatcher Scheduling Formulation
	Set Covering Formulation
	Solution by Column Generation
	Adding Flight Overlap Constraints to Schedules
	Conclusion

	Heuristics
	Initialization of Column Generation Algorithm
	Improvement Algorithm
	Conclusion

	Testing and Results
	Data
	American Airlines Dataset
	European Airline Dataset
	Other Parameters

	Testing
	Parameter Tuning
	Testing of Base Column Generation Implementation
	Effects of Changing the Number of Desks
	Flight Overlap Constraints
	Comparing all Models
	Limitations
	Varying Load Over Time

	Conclusion

	Extensions and Future Work
	Incorporating Dispatch Zones
	Alternative Constraints
	Alternative Objectives
	Uncertainty
	Shift Considerations
	Conclusion

	Conclusions
	References
	APPENDICES
	Additional Results
	Results of Varying the Number of Desks
	CG Results Using a Single Column
	Results Using Varying Load

