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ABSTRACT
Polymer self-consistent field theory techniques are used to derive quantum density functional theory without the use of the theorems of density
functional theory. Instead, a free energy is obtained from a partition function that is constructed directly from a Hamiltonian so that the results
are, in principle, valid at finite temperatures. The main governing equations are found to be a set of modified diffusion equations, and the set of
self-consistent equations are essentially identical to those of a ring polymer system. The equations are shown to be equivalent to Kohn-Sham
density functional theory and to reduce to classical density functional theory, each under appropriate conditions. The obtained noninteracting
kinetic energy functional is, in principle, exact but suffers from the usual orbital-free approximation of the Pauli exclusion principle in addition
to the exchange-correlation approximation. The equations are solved using the spectral method of polymer self-consistent field theory, which
allows the set of modified diffusion equations to be evaluated for the same computational cost as solving a single diffusion equation. A simple
exchange-correlation functional is chosen, together with a shell-structure-based Pauli potential, in order to compare the ensemble average
electron densities of several isolated atom systems to known literature results. The agreement is excellent, justifying the alternative formalism
and numerical method. Some speculation is provided on considering the timelike parameter in the diffusion equations, which is related to
temperature, as having dimensional significance, and thus picturing pointlike quantum particles instead as nonlocal, polymerlike, threads in
a higher dimensional thermal-space. A consideration of the double-slit experiment from this point of view is speculated to provide results
equivalent to the Copenhagen interpretation. Thus, the present formalism may be considered as a type of “pilot-wave,” realist, perspective on
density functional theory.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096405

I. INTRODUCTION

Density functional theory (DFT) is a huge field that forms a
central theoretical pillar of modern materials physics and quan-
tum chemistry.1–4 In DFT, the ground state energy of a system is
expressed in terms of a functional of the electron density. The most
widely used variant of DFT is Kohn-Sham theory (KS),5 where the
energy functional is actually dependent on orbitals which are in
turn determined from the density. In this approach, essentially all
approximations are contained in the so-called exchange-correlation
functional, and so most research is rightly devoted to exploring this
functional. A disadvantage of KS-DFT is that a set of eigenvalue
equations must be solved, one equation for every explicit electron
in the system.

An alternative is the computationally more efficient “orbital-
free” (OF) DFT in which only one eigenvalue equation, or the equiv-
alent, needs to be solved.6–10 This approach, which dates from the
ideas of Thomas, Fermi, and Dirac,11–14 is philosophically more con-
sistent with the original spirit of DFT since it works with functionals
of the density directly. A disadvantage of OF-DFT is that, in addition
to approximating the exchange-correlation functional, the nonin-
teracting kinetic energy functional, which in KS-DFT is exact, must
now be approximated. This is a significant drawback because while
the exchange-correlation term is typically the smallest contribution
to the energy, the kinetic energy is generally large.

The purpose of the present paper is neither to improve the
exchange-correlation functional nor the kinetic energy. Rather it
is to derive a different set of DFT equations from first principles
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without the use of the theorems of DFT. The resulting equations
are valid for finite temperatures although here they will only be
solved for temperatures approaching the ground state. Polymer self-
consistent field theory (SCFT) techniques will be used to go from
a Hamiltonian to a partition function and from the partition func-
tion to a free energy functional. The method is first principles, and
the resulting equations are effectively identical to ring-architecture
polymers.15 Standard methods of numerical solution from polymer
SCFT can therefore be applied, and the resulting set of modified
diffusion equations can, in a spectral representation, be solved for
the same computational cost as a single linear polymer. A sim-
ple exchange-correlation functional is used, together with a shell-
structure-based (SSB) Pauli potential, in order to benchmark this
alternative theoretical and numerical approach against an existing
work for (ensembles of) isolated atoms.16 This approach is effectively
an OF-DFT related method, but it is shown to become equivalent to
KS-DFT under appropriate circumstances. It is also shown to reduce
to classical DFT in the appropriate limit.

A possible quantum interpretation of the SCFT equations is
discussed since the same results can be derived from classical sta-
tistical mechanics, using SCFT for ring polymers.15 It is speculated
that by taking an ensemble interpretation of quantum mechanics
(QM) and replacing the wave function postulate by one in which
quantum particles are considered as thermal Gaussian threads in a
four dimensional thermal-space, as suggested by the temperature-
related timelike independent-variable of the SCFT governing diffu-
sion equation, that a pilot-wave related theory for quantum mechan-
ics results. Since the crucial modified diffusion equation can be
experimentally verified, this offers a potential quantum interpre-
tation that would not be in contradiction with any predictions of
standard Copenhagen quantum mechanics.

II. THEORY
The following derivation of the DFT functional and SCFT

equations will be done in the canonical ensemble. Normally, DFT
is approached using the theorems of DFT1 in the grand canonical
ensemble with a constraint to force the chemical potential to give the
correct number of particles.16 Since the number of particles is often
known, the canonical ensemble can be a more convenient choice
and, when working from a first principles partition function without
the theorems of DFT, it is easier to use.

Consider N quantum mechanical particles in a canonical
ensemble of volume V and temperature T. The quantum Hamilto-
nian can be written in terms of the kinetic energy K and potential
energy U as

H = K + U

= −
h̵2

2m

N
∑
i=1
∇

2
i + U({r}), (1)

where ∇2
i is the Laplacian operator acting on the position ri of par-

ticle i and U({r}) is the potential acting on all particle positions
{r} = {r1, . . ., rN}. All the particles are considered to be identical and
indistinguishable with mass m, and h̵ = h/2π is the reduced Planck’s
constant. The quantum partition function for this system is17

QN = ∑
j
e−βEj , (2)

where β = 1/kBT, kB is Boltzmann’s constant, and Ej are the allowed
energy states. The partition function can be written exactly in
classical form, following Kirkwood18,19 as described by McQuarrie:17

QN =
1
h3N ∫ ⋯∫ e−βHw({p},{r},β)d{p}d{r}, (3)

where {p} is the set of all particle momenta {p1, . . ., pN}, d{p} and
d{r} indicate integration over all momenta and positions, respec-
tively, and H is the classical Hamiltonian given by

H =
N
∑
i=1

p2
i

2m
+ U({r}). (4)

Note that Eq. (3) is, for the moment, missing a factor N! caused by
ignoring symmetry considerations following McQuarrie. For clas-
sical systems, the function w({p}, {r}, β) = 1, but in general, for
quantum systems, it must satisfy the relation17

e−βHe
i
h̵ ∑k pk ⋅rk = e−βHe

i
h̵ ∑k pk ⋅rkw({p},{r},β)

≡ F({p},{r},β). (5)

This relation can be expressed instead as

∂F
∂β

= −HF

=
h̵2

2m

N
∑
i=1
∇

2
i F −U({r})F (6)

subject to the initial condition

F(β = 0) = e
i
h̵ ∑k pk ⋅rk . (7)

The function w({p}, {r}, β) can be written in terms of a Hartree
independent particle approximation, with a correlation correction,
as follows:

w({p},{r},β) = gxc({r},β)
N
∏
i=1

w̃(pi, ri,β), (8)

where gxc({r}, β) is taken to include not only quantum correla-
tions but also missing exchange effects required to enforce the
indistinguishability of quantum particles, including the factor of
N!. The gxc dependency on β is not required, given the presence
of β in w̃(pi, ri,β), but it can be trivially included to allow the
rephrasing of this exchange-correlation term in the more convenient
form

gxc({r},β) ≡ e−βUxc({r}). (9)

The partition function (3) thus becomes

QN =
1
h3N ∫ ⋯∫ e−βH̃

N
∏
i=1

w̃(pi, ri,β)d{p}d{r}, (10)

where H̃ ≡ H + Uxc.
There is much experience in the polymer SCFT commu-

nity dealing with partition functions like (10). Using Hubbard-
Stratonovich transformations, the partition function can be
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rephrased, without approximation, into a form involving a den-
sity function n(r) and a conjugate chemical potential field w(r),
expressed using Kac-Feynman path integrals.20–23 A mean field
approximation then gives a partition function which, if classical cor-
relations missing from the mean field are included in the exchange-
correlation term, can be considered exact. The term “exact” is used
throughout this paper in the context of DFT, that is, expressions are
exact if a “perfect” exchange-correlation function is known. A free
energy is readily obtained from the field theory transformed parti-
tion function through F = −kBT ln QN . The details of this process are
widely available,20–23 but for completeness, a summary is provided in
Appendix A.

From Appendix A, the SCFT equations are

w(r) =
δU[n]
δn(r)

, (11)

n(r) =
n0

Q
q(r, r,β), (12)

where

Q =
1
V ∫

drq(r, r,β) (13)

and
∂q(r0, r,β)

∂β
=

h̵2

2m
∇

2q(r0, r,β) −w(r)q(r0, r,β) (14)

subject to the initial conditions

q(r0, r, 0) = Vδ(r − r0). (15)

A factor of the volume is absorbed into q(r, r,β) ≡ Vq̃(r, r,β) (see
Appendix A), n0 ≡ N/V ,and the tilde from the appendix is dropped
on Q. The function q(r0, r, β) may be interpreted as the unnormal-
ized probability of a particle at a high classical temperature (β = 0)
known to be at position r0, being found at position r when at a low
quantum temperature (β > 0). The free energy is

F[n,w] = −
N
β

lnQ + U[n] − ∫ drw(r)n(r). (16)

This set of equations is identical to the SCFT equations describ-
ing ring polymers,15 except in three ways. First, for polymers, the
density of segments is summed (integrated) over all contour val-
ues, whereas for the thermal trajectory of quantum particles, one
is only interested in the density at a single temperature [no inte-
gral over contour in Eq. (12)]. Second, and more importantly, the
potential U[n] in (11) and (16) is, of course, very different between
polymers and quantum particles. For DFT applications, U[n] will
typically include an external potential (the ionic Coulomb poten-
tial), the electron-electron Coulomb interactions and an exchange-
correlation functional. The third difference relates to the exchange-
correlation functional, which is analogous to an equation of state
in polymer SCFT, usually simple incompressibility. As presented
here, U[n] will also need to include the Pauli exclusion princi-
ple. All these potential terms are detailed in Appendix E. If the
exchange-correlation term is assumed to fully enforce the exclu-
sion principle, then the set of equations becomes the same as
KS-DFT. This is shown in Appendix B. In the limit h → 0, the free

energy (16) reduces to the classical DFT expression, as shown in
Appendix C.

Using the same algebra as in the classical limit (Appendix C),
the quantum free energy (16) can be rephrased in terms of thermo-
dynamic components24 giving

F =
1
β ∫

drn(r) ln[
n(r)
n0

] + U[n]

−
1
β ∫

drn(r)[ln q(r, r,β) −w(r)]. (17)

The first term on the right-hand side is the classical translational
entropy of the quantum particles, and the second term includes
all potential terms as discussed previously and in Appendix E. For
polymer systems, the last term on the right-hand side represents
the polymer configurational entropy. For quantum particles, this
corresponds to the noninteracting kinetic energy, in excess of the
homogeneous. Since it is an excess quantity, it does not reduce to the
Thomas-Fermi function, which is exact for homogeneous electron
densities,10 but rather to zero in the uniform limit. This parallels the
polymer case, where the polymer configurational entropy in SCFT
becomes zero for uniform systems, even though there is certainly
configurational entropy present. The homogeneous configurational
entropy can be added, when needed, from known expressions. For
quantum particles, the situation is the same, and as will be discussed
shortly, the Thomas-Fermi energy is not needed for the systems
studied here. For bosonic systems at zero temperature, the quantum
noninteracting kinetic energy term of (17) reduces to the ground
state approximation for polymer configurational entropy as shown
by Matsen,20 which is the mathematically equivalent form to the
von Weizsäcker functional. Expression (17) is an exact expression,
assuming an exact input field w(r). For KS-DFT, the “exact” kinetic
energy is limited by the inexactness of the exchange-correlation
term. Here, the kinetic energy is additionally limited by the approx-
imate Pauli exclusion principle, which is the common problem
for all OF-DFT approaches.6,9,10 There has been progress how-
ever in finding OF-DFT expressions that approach the accuracy of
KS-DFT.25

To obtain the equilibrium electron density, one self-consistently
solves Eqs. (11)–(15) numerically. The computational limiting fac-
tor for doing this is solving the set of diffusion equations (14), one
for each spatial position r0. This is very computationally demand-
ing, as discussed by Kim,15 but Matsen has observed that for ring
polymers, this set of equations can be solved spectrally at the same
numerical cost as solving a linear polymer with a single diffusion
equation.26 This represents an enormous computational saving and
makes possible the study of complicated three dimensional systems
as is routinely done in polymer SCFT.20–23 In the spectral method,
one expands all spatially dependent functions in a superposition
of orthonormal basis functions chosen to be eigenfunctions of the
Laplacian operator and that encode the symmetry of the physical
system. The method is well documented in the polymer SCFT com-
munity,20,27 and for completeness, it is summarized in Appendix D.
The main result is that one must find the eigenvectors and eigen-
values of a single matrix (D10) which, through Eq. (D13), gives
the propagators q(r0, r, β) that solve (14). This is done once for
every iteration toward self-consistency of the set of Eqs. (11)–(15).
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Compared to standard numerical approaches to DFT, this method
requires the computational equivalent of finding the solution to a
single diffusion equation each cycle compared to a single eigen-
value equation per cycle (OF-DFT) or a set of N eigenvalue equa-
tions per cycle (KS-DFT). The method is particularly powerful in
that the symmetry of the problem can be encoded in the basis set.
Therefore, in polymer SCFT, it is the most computationally efficient
method of solving the inhomogeneous density profiles for polymer
self-assembly,27 more so than either real space methods or pseudo-
spectral methods that use fast Fourier transforms (FFTs).28,29 FFTs
are often used in OF-DFT, and it may be that the present spec-
tral method could outperform FFT methods for systems with well-
defined symmetry. Therefore, the best ultimate application for the
present numerical approach to DFT might be to periodic solid state
materials.

A simpler benchmark for the validity of the current set of
Eqs. (11)–(15), in particular, the governing diffusion equation (14),
is the ensemble average electron densities of atomic systems. This
represents at the same time the simplest possible systems as the
ensemble average electron densities must have spherical symmetry
(unlike orbitals),30,31 while still being a rigorous test due to the highly
inhomogeneous nature of the shell structure of atoms.2 A suitable
basis set for spherically symmetric, ensemble average, electron den-
sities are the zeroth order spherical Bessel functions which, when
normalized, are given by

fn(r) =
√

2
3
R
r

sin(
nπr
R

), (18)

where R is the radius of a finite spherical box, chosen large enough
so that the electron densities go to zero on the boundary. In the
limit of an infinite box, the overall electron density tends to zero,
meaning that the Thomas-Fermi uniform electron density expres-
sion vanishes for this system, as previously mentioned.32,56,57 Spher-
ical Bessel functions are not typically used for atomic and molecular
calculations in DFT; Gaussian basis sets are the standard. One may
consider trying to use Gaussians in the present context, but imple-
menting the most scalable or computationally efficient basis set is
not the objective of this paper. Rather, one would like to verify that
the formalism reproduces expected results in the stringent, yet sim-
ple, atomic system. Spherical Bessel functions are very simple in that,
unlike Gaussians, they are an orthonormal and complete set that are
eigenfunctions of the Laplacian. The use of more complicated basis
sets could obscure the results. Various quantities expanded in terms
of the basis set (18) are given in Appendix E.

Equations (11)–(15) are solved numerically and self-consistently
using standard polymer SCFT algorithms, in particular, the spectral
representation of Appendix E. The equations are applied to the set of
atoms, hydrogen (H), helium (He), beryllium (Be), neon (Ne), and
argon (Ar) in order to compare with the results of Finzel.16 Picard
iteration and Anderson mixing are used for convergence following
the work of Thompson,33 and self-consistent cycles are allowed to
continue until the field coefficients stopped changing by less than
one part in at most 10−8 although often to less than 10−9, accord-
ing to the square of an L2-norm. In real space, this corresponds
to the field changing by less than one part in at most 10−6 (often
less than 10−7) according to the criterion of Finzel.16

III. RESULTS
Analytical electron density results are known for the hydro-

gen atom, so the current formalism and, in particular, Eq. (14) can
be given a basic test. The test is somewhat trivial but exact since
there are no electron-electron, exchange or correlation interactions
for the hydrogen system. Figure 1 shows the numerical results of
Eqs. (11)–(15) together with the ground state analytical electron
density curve, plotting the radial electron density against the atomic
radius, both in atomic units. In Fig. 1 and throughout the rest of
this work, β was taken sufficiently large so that the electron den-
sity and the corresponding free energy reached steady state. That
is, the temperature was taken sufficiently low so that the ground
state electron density was found. In principle, one could test tem-
perature dependent results against analytical predictions, but this
would require very high temperatures for a noticeable difference
in the electron distribution. At such high temperatures, ionization
would also be noticeable, making comparisons with the analytical
results awkward. For this reason, the current work will focus solely
on the ground state. Despite this, the finite temperature nature of
the formalism means that it does not suffer some of the ambiguities
of ground-state DFT.34,35 Instead of temperature dependence, one
can check the effect of a finite size box on the hydrogen electron
density as these results are available.36,37 For box radii bigger than
approximately 7 bohrs, the energy of the hydrogen atom approaches
the limit of −0.5 hartree, but as the radius of an enclosing box is
reduced, the energy increases, passing through zero and becoming
positive. In the present calculation, a zero energy is found for a box
radius of 1.835 bohrs, in perfect agreement with the prediction of
Sommerfeld and Welker.36 For noninteracting electrons, the cur-
rent formalism, including Eq. (14), seems to be a correct statistical
mechanical description.

For a less trivial test, the helium atom requires the Hartree
electron-electron potential and an exchange-correlation function. In
this work, the aim is not quantitative precision but rather fidelity
between the current approach and other DFT results. For this rea-
son, the simplest possible local density approximation for exchange

FIG. 1. Plot of radial electron density as a function of radius, in atomic units, for the
hydrogen atom. The solid line is the numerical prediction, and the dotted curve is
the ground state analytical result.
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FIG. 2. Plot of radial electron density as a function of radius, in atomic units, for
the helium atom.

(LDAX) with no correlation is being used which is given by the
functional14,16

Fx[n] = −
3
4
(

3
π
)

1
3

∫ n(r)
4
3 dr. (19)

The density is now calculated self-consistently using (19) and the
Hartree potential given in Appendix E, with results shown in Fig. 2.
This density profile is consistent with standard DFT predictions
using the same LDAX approximation as can be seen from a com-
parison with Fig. 1 in the work of Finzel.16

Helium is also trivial in that it is essentially bosonic, that is, both
electrons can exist in the ground state. Continuing comparisons with
Finzel,16 the density profile for beryllium is shown in Fig. 3. Here, a
shell-structure-based (SSB) potential has been added to the LDAX
to enforce the Pauli exclusion principle. Such potentials have also
been applied to systems more complicated than atoms, for exam-
ple, solid state materials.38 For benchmarking purposes, the simplest

FIG. 3. Plot of radial electron density as a function of radius, in atomic units, for
the beryllium atom.

FIG. 4. Plot of radial electron density as a function of radius, in atomic units, for
the neon atom.

possible SSB potential was used.16 Comparing with Fig. 2 of Ref. 16,
the electron profiles appear identical.

Finzel also gives LDAX-SSB results for neon and argon (Figs. 3
and 4 of Ref. 16). The electron densities for these two atoms are cal-
culated here and are shown in Figs. 4 and 5. Again, the agreement
is excellent. The Ne and Ar profiles are almost identical to Finzel’s
results, except for a slight difference in the tails. Most notably
for argon, the present results show the distribution tail extending
beyond 3 bohrs, whereas for Finzel, the density is approximately zero
by 2.5 bohrs. Related to this, the smallest peak for argon is somewhat
lower in this work than for Finzel. It was confirmed that these slight
differences are not related to the temperature dependence of this
formalism. Finzel notes that her numerical method provides “fast
and reliable convergence” but that any deviation from the exact self-
consistent solution “manifests especially in the tail region.”16 What-
ever the cause of the minor disagreement, it occurs for systems with
higher numbers of electrons and so would not seem to be related to
the validity of the single quantum particle governing Eq. (14).

FIG. 5. Plot of radial electron density as a function of radius, in atomic units, for
the argon atom.
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IV. DISCUSSION
The derivation of DFT using the diffusion equation (14) given

in the Sec. II and Appendix A starts from the partition function of
quantum statistical mechanics but finishes with equations that are
essentially identical to SCFT ring polymers,15 except that instead of
a polymer contour parameter s, which is a spatial parameterization
variable embedded in real space, the contour for quantum particles is
a thermal trajectory of the temperature parameter β = 1/kBT, which
is an independent variable. This justifies some elementary specula-
tion on the relationship between the polymer and quantum particle
pictures.

In polymer SCFT, the diffusion equation (14) gives the proba-
bility of finding a polymer segment s at position r if the first segment
s = 0 is known to be at r0. The field w(r) in (14) causes the poly-
mer to deviate, or stretch, away from the random walk it is known to
have in polymer melts or theta solvent, and this stretching reduces
the configurational entropy of the polymer, contributing to raising
the free energy. By stretching to avoid the field w(r), however, the
polymer reduces interaction energies, contributing to lowering the
free energy. It is this competition, or frustration, between entropy
(stretching) and energy, that determines the polymer behavior in
different environments. This mental picture may be applied to quan-
tum particles, with the polymer stretching entropy interpreted as
the quantum noninteracting kinetic energy. This follows because the
DFT results presented in Sec. II could have been derived using clas-
sical statistical mechanics on an extended, polymerlike object, in a
four dimensional thermal-space, rather than using quantum statisti-
cal mechanics on a pointlike particle in three dimensional space. The
idea of using temperature as a dimension (imaginary time) is not
new;39,40 here, the perspective is suggested by the equivalence of the
quantum, pointlike, derivation to the known, classical, polymerlike,
results.

For this speculative picture to be valid for nonrelativistic quan-
tum mechanics (QM), one needs to follow authors like Ballentine,41

Bransden and Joachain42, or Aharonov et al.43 who recommend an
ensemble interpretation to quantum phenomena. In principle, all
results of QM would be obtained by calculating SCFT on polymer-
like objects using classical statistical mechanics in higher dimen-
sions. Many mathematical postulates of QM would no longer be
necessary, being replaced by the mathematics of classical statisti-
cal mechanics. The wave function postulate would be replaced by
the assumption that quantum particles are polymerlike trajectories
embedded in a four dimensional thermal-space. Again, this is not
novel, in that it is known that a (D + 1) dimensional quantum
field theory can be replaced by a D dimensional quantum statis-
tical mechanical system40 although here, it is being suggested that
a (D + 1) dimensional classical statistical field theory can replace
D dimensional quantum mechanics. Replacing β in the diffusion
equation (14) with the complex time it/h̵ (Wick rotation) and inte-
grating over r0 gives the time-dependent Schrödinger equation with
a static potential. In fact, both the Schrödinger equation and the
wave function map mathematically onto SCFT, as pointed out by
Matsen.20 The wave function could continue to be viewed oper-
ationally as a mathematical tool without physical significance on
its own, as in the Copenhagen interpretation, but now it would
actually be the projection of the four dimensional thermal-space
system onto three dimensional space. By using the wave function,

one would not always have to perform numerically involved, four
dimensional (or five dimensional if time dependent) classical sta-
tistical mechanics to get any results. A “thought calculation” using
the double-slit experiment can demonstrate that the 4D polymeric
view of quantum particles will result in a three dimensional wave
behavior.

In the ensemble picture of QM, a succession of independent
quantum particles shot through a double slit at a screen can be
viewed together as an incident group. Upon hitting the double slit,
classical arguments would predict that most of the incident group
would be blocked, and only two localized spots on the screen directly
aligned with the slits would be observed. The governing equation of
the SCFT approach is the diffusion equation (14) which gives the
probability that a particle will be found at position r at a temperature
β, if it is known with certainty to be at position r0 at a high, classi-
cal, temperature. For large enough β (low enough temperature), the
probability of finding the particle at r starts to diffuse or delocalize.
For the incident ensemble group, the spherical diffusions will sum to
give a plane wave of probability. Upon hitting the screen, however,
only two point sources will continue to diffusively expand on the
other side, giving two spherical probability waves which will inter-
fere in the usual way. This can be pictured as the four dimensional
“polymers” stretching around the slits to give nonzero probabilities
even in regions not directly aligned with the slits. Thus, spatial 3D
probabilities can be viewed in terms of waves, or wave functions,
in agreement with standard QM. This is essentially a realist, “pilot-
wave,” perspective, but with polymeric thermal pilot-trajectories, as
suggested from the QM statistical mechanics derivation, instead of
an actual pilot wave. As such, there are no issues with interpreting
the “collapse” of the wave function, and the quantum particles can
be viewed as having an objective existence outside of observation.
Also, since the quantum particles are viewed as extended, nonlocal
objects, the Bell theorem proscription on hidden variables may not
apply.44

Of course, a classical statistical mechanical view with hid-
den variables begs the question of what the hidden variables are.
In typical classical statistical mechanics, thermal Brownian motion
accounts for a mechanism in which constituents explore the phase
space over the ensemble, or from the ergodic hypothesis, over time.
No explanation is given in the current derivation of why a nonlo-
cal thermal diffusive thread described by (14) for a single quantum
particle should randomly explore configurations in a vacuum. Nor is
there any first principles derivation of the origin of the Pauli exclu-
sion principle since the overall derivation is bosonic, in common
with other OF-DFTs.6–10,16,45 Of course, inherent randomness and
Pauli exclusion are not addressed within nonrelativistic QM the-
ory either, so the current perspective neither adds nor detracts from
standard QM. It does, perhaps, provide an alternative viewpoint
and platform from which such questions might be addressed in the
future.

V. CONCLUSIONS
A derivation of quantum density functional theory has been

given that is mathematically equivalent to a classical statistical
mechanical derivation of ring polymers in a four dimensional
thermal-space. From this perspective, quantum mechanics is viewed
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in the ensemble interpretation as a fundamentally thermal theory,
and one that predicts wavelike behavior in three spatial dimen-
sions. The wave function can be viewed as a mathematical tool
describing the projection of the classical statistical mechanical
results in four dimensional temperature-space to three dimensional
space.

As a first test of the governing equations derived here, the
ensemble average electron densities of isolated H, He, Be, Ne, and Ar
atoms were calculated using an exchange-only local density approx-
imation and a shell-structured-based Pauli potential. A spectral
method, which reduces the set of modified diffusion equations to the
numerical equivalent of a single equation, was used. Since this equa-
tion does not scale with the number of electrons, all-electron calcula-
tions were performed without pseudopotentials. Also, to avoid con-
founding factors, an orthonormal, complete, spherical Bessel basis
set was used rather than Gaussians. Agreement with the results of
Finzel is excellent.16

The atomic system is a rigorous test because of the highly inho-
mogeneous shell structure, and yet it is also a simple benchmark due
to its symmetry. The numerical approach may be particularly well
suited, however, to periodic solid state materials, where a Fourier
basis set can be used that incorporates the symmetry of the crys-
tal. This follows the example of the use of the spectral method in
polymer SCFT, where the spectral method has been shown to be
the most numerically efficient technique, significantly better than
real space and fast Fourier transform pseudospectral methods in
most cases.27 For molecular systems, the use of Gaussian basis
sets would be more practical and their suitability in the present
formalism could be investigated. Spin could also be incorporated
by calculating two densities, one for each spin state. The current
application deliberately uses a simple approximation for the Pauli
potential, but alternative SSB Pauli potentials are possible31,45–49

as are improved approximations for the exchange-correlation
functional.2–4,50
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APPENDIX A: SCFT DERIVATION
Following von Barth,2 a density operator can be defined as

n̂(r) =
N
∑
i=1
δ(r − ri) (A1)

so that the Hamiltonian, including Uxc, can be written as

H̃ =
N
∑
i=1

p2
i

2m
+ U[n̂], (A2)

where U[n̂] is the functional expression of the potential in terms of
the density operator n̂(r). The partition function is then

QN =
1
h3N ∫ ⋯∫ e−βU[n̂] N

∏
i=1

e
−βp2

i
2m w̃(pi, ri,β)d{p}d{r}. (A3)

The definition of the functional Dirac delta is51

∫ DNδ[N − n̂]G[N ] = G[n̂], (A4)

where G is an arbitrary functional. This can be inserted into (A3) to
give

QN =
1
h3N ∫ DNδ[N − n̂]e−βU[N ]

× ∫ ⋯∫

N
∏
i=1

e
−βp2

i
2m w̃(pi, ri,β)d{p}d{r}. (A5)

Using a particular form of functional Dirac delta,51

δ[N − n̂] = ∫
i∞

−i∞
DW exp{β∫ dr′W(r′)[N(r′) − n̂(r′)]} (A6)

allows (A5) to be written as

QN =
1
h3N ∫ DNDWe−βU[N ]+β ∫ dr′W(r′)[N(r′)−n̂(r′)]

× ∫ ⋯∫

N
∏
i=1

e
−βp2

i
2m w̃(pi, ri,β)d{p}d{r}. (A7)

Noting, from Eq. (A1), that

−β∫ dr′W(r′)n̂(r′) = −β∫ dr′W(r′)
N
∑
i=1
δ(r − ri)

= −β
N
∑
i=1

W(ri), (A8)

allows the partition function (A7) to be rewritten as

QN =
1
h3N ∫ DNDWe−βU[N ]+β ∫ dr′W(r′)N(r′)

× ∫ ⋯∫

N
∏
i=1

e−βHeff(pi ,ri)w̃(pi, ri,β)d{p}d{r}, (A9)

where

Heff(p, r) =
p2

2m
+ W(r). (A10)

A single particle partition function may be defined as

Q̃ =
1
h3 ∬ dpdre−βHeff(p,r)w̃(p, r,β), (A11)

which has the same form as the original partition function (3) except
that it is for a single particle subject to the effective Hamiltonian
(A10). It thus obeys the same McQuarrie relation (5), namely,

e−βHKSe
i
h̵ p⋅r = e−βHeffe

i
h̵ p⋅rw(p, r,β)

≡ q̃(p, r,β), (A12)
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where

HKS = −
h̵2

2m
∇

2 + W(r). (A13)

The subscript “KS” on (A13) indicates that this is the same operator
as in the Kohn-Sham equations. Equation (A12) obeys the relation

∂q̃(p, r,β)
∂β

=
h̵2

2m
∇

2q̃(p, r,β) −W(r)q̃(p, r,β) (A14)

subject to the initial conditions

q̃(p, r, 0) = e
1
h̵ p⋅r. (A15)

The single particle partition function Q̃ given by (A11) can therefore
be rewritten using (A12) as

Q̃ =
1
h3 ∬ dpdrq̃(p, r,β)q̃∗(p, r, 0), (A16)

and the full partition function (A9) becomes

QN = ∫ DNDWQ̃Ne−βU[N ]+β ∫ drW(r)N(r). (A17)

The expression (A17) is formally exact to the extent that a “per-
fect” exchange-correlation functional is known. A saddle function
approximation resulting from the first term of a functional Taylor
series expansion of (A17)40 gives the partition function

QN = Q̃Ne−βU[n]+β ∫ drw(r)n(r), (A18)

which may also be considered exact if classical correlations ignored
in the saddle function approximation are included in the exchange-
correlation potential. In (A18), w(r) and n(r) are the mean field
values of the field and quantum particle density, respectively, about
which the Taylor series is expanded.40 The free energy is readily
obtained through F = −kBT ln QN giving

F[n,w]

kBT
= −N ln Q̃ + βU[n] − β∫ drw(r)n(r). (A19)

Again, this free energy is exact to the extent that the exchange-
correlation potential is exact.

The SCFT equations can be found by varying (A19) with
respect to n(r) and w(r). This gives the pair of equations

w(r) =
δU[n]
δn(r)

, (A20)

n(r) = −
N
Q̃β

δQ̃
δw(r)

, (A21)

where it should be noticed that n(r) is also a function of the temper-
ature parameter β as is Q̃. This set of equations would be solved once
the potentials in U[n] are specified—see Appendix E. It is easier to
solve them if one rephrases the diffusion equation (A14) by Fourier
transforming over the p coordinates to give

∂q̃(r0, r,β)
∂β

=
h̵2

2m
∇

2q̃(r0, r,β) −w(r)q̃(r0, r,β) (A22)

subject to the initial conditions

q̃(r0, r, 0) = δ(r − r0). (A23)

Equation (A22) is analogous to the equation of motion for a single
particle quantum propagator.52 Performing the Fourier transform
on the right-hand side of (A16) gives

Q̃ = ∫ drq̃(r, r,β). (A24)

In the above equations, the Fourier transform of q̃(p, r,β) with
respect to p is expressed as q̃(r0, r,β). The functional derivative in
(A21) can be performed giving

δQ̃
δw(r′)

= ∫ dr
δq̃(r, r,β)
δw(r′)

. (A25)

Equations (A22) and (A23) are mathematically identical to the gov-
erning equations for a polymer.53,54 Therefore, the formal Kac-
Feynman solution is the same20,51,54

q̃(r0, r,β) = N∫
r

r0

DrP[r; 0,β]e−∫
β

0 dτw(r(τ)), (A26)

where

P[r′; τ1, τ2] ∝ exp
⎡
⎢
⎢
⎢
⎢
⎣

−
m

2h̵2 ∫
τ2

τ1

dβ∣
dr′(τ)
dτ

∣

2⎤
⎥
⎥
⎥
⎥
⎦

(A27)

and N is a normalization factor. Equations (A26) and (A27) describe
a “thermal trajectory” of a quantum particle. Using (A26), the
functional derivative in (A25) can be performed

δQ̃
δw(r′)

= −βq̃(r′, r,β), (A28)

and so the density (A21) becomes

n(r) =
N
Q̃
q̃(r, r,β). (A29)

APPENDIX B: KOHN-SHAM EQUIVALENCE
The operator on the right-hand side of the diffusion equation

(14) is

HKS =
h̵2

2m
∇

2
−w(r), (B1)

where the subscript “KS” indicates that this is the same form as the
operator in the Kohn-Sham equations. Let �i(r) and εi be the eigen-
functions and eigenvalues, respectively, of the operator (B1). The
eigenvalue equations for HKS is

HKS�i(r) = εi�i(r), (B2)

which are the Kohn-Sham equations. The eigenfunctions can be
chosen to be orthonormal according to

1
V ∫

dr�i(r)�
∗
j (r) = δij, (B3)

where δij is the Kronecker delta. The functions q(r0, r, β) can be
expanded in a basis set of the eigenfunctions of HKS to give

q(r0, r,β) =
∞
∑
i=1

qi(r0,β)�i(r), (B4)
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and this can be substituted into the diffusion equation (14). From
the derivation of Matsen,20 one finds

q(r0, r,β) =
∞
∑
i=1

ci(r0)eεiβ�i(r), (B5)

where

ci(r0) = qi(r0, 0)

=
1
V ∫

dr�∗i (r)q(r0, r, 0)

= ∫ dr�∗i (r)δ(r − r0)

= �∗i (r0) (B6)

using (15). Therefore, (B5) becomes

q(r0, r,β) =
∞
∑
i=1

eεiβ�∗i (r0)�i(r), (B7)

which is analogous to the eigenfunction representation of a quantum
propagator.52 From Eq. (12), the density becomes

n(r) =
n0

Q
q(r, r,β)

=
n0

Q

∞
∑
i=1

eεiβ∣�i(r)∣
2, (B8)

Similarly, the single particle partition function Q from (13) becomes

Q =
1
V ∫

drq(r, r,β)

=
1
V

∞
∑
i=1

eεiβ ∫ dr∣�i(r)∣
2

=
∞
∑
i=1

eεiβ (B9)

using orthonormality (B3). Therefore, the density is

n(r) = n0
∑
∞
i=1 e

εiβ∣�i(r)∣
2

∑
∞
i=1 eεiβ

. (B10)

The probability that a system is in a state R is given by the
canonical distribution55

PR =
e−βER

∑R′ e−βER′
, (B11)

where ER is the energy of state R. The average occupancy n̄i of the
state i will be55

n̄i = ∑
R
niPR. (B12)

Following the Rief derivation of Fermi-Dirac statistics in the canon-
ical ensemble,55 if the Pauli exclusion principle is enforced, compar-
ing (B10) with (B11) and (B12), the density will be

n(r) =
1
V

∞
∑
i=1

f (εi − µ)∣�i∣
2 (B13)

in agreement with the work of Kohn and Sham,5 where f (εi − µ)
is the Fermi-Dirac distribution and µ is the chemical potential. For
T → 0, this becomes

n(r) =
1
V

∞
∑
i=1

∣�i∣
2, (B14)

which is the standard formula for the density in KS-DFT5 apart from
the factor 1/V. [This factor arises because the convention of Mat-
sen20 is being followed in which 1/V is included in the orthogonality
definition (B3).] Note that for this equivalence with Kohn-Sham to
be valid, the field w(r) would have to rigorously enforce the Pauli
exclusion principle. Although this should be, in principle, true—the
exclusion principle arises due to the exchange symmetry of fermions
and so should be encoded in the exchange-correlation potential—in
KS-DFT, the exclusion is put in “by hand” through the sum in (B14)
and the equivalent sum in the kinetic energy term. Thus, typical
exchange-correlation functionals do not enforce the Pauli princi-
ple completely. The formalism presented in this paper is therefore,
operationally, an OF-DFT in that the Pauli exclusion principle needs
to be added to the exchange-correlation functional, as discussed by
Finzel and others.6,9,10,16,45

APPENDIX C: CLASSICAL DFT LIMIT
It can be shown that the set of Eqs. (11)–(16) become equivalent

to classical DFT for classical systems. In the classical limit, h→ 0, the
Laplacian term in the diffusion Eq. (14) disappears, giving

∂q(r0, r,β)
∂β

= −w(r)q(r0, r,β) (C1)

subject to the initial condition (15). Equation (C1) can be solved
analytically to give

q(r0, r,β) = Vδ(r − r0)e−βw(r) (C2)

and
q(r, r,β) = Vδ(0)e−βw(r). (C3)

From (13), the single particle partition function becomes

Q =
1
V ∫

drq(r, r,β)

= δ(0)∫ dre−βw(r). (C4)

Therefore, from (12), the density becomes

n(r) =
n0

Q
q(r, r,β)

= N
e−βw(r)

∫ dre−βw(r) . (C5)

This can be rearranged as

w(r) = −
1
β

ln[
Qn(r)
n0

], (C6)

which can be used in the free energy expression (16) to give

F[n]
kBT

= ∫ drn(r) ln[
n(r)
n0

] +
U[n]
kBT

. (C7)

The first term on the right-hand side of (C7) is recognizable as the
ideal gas free energy Fid of classical particles, assuming the zero of
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free energy is set at ln(n0Λ3
) − 1 = 0, where Λ is the de Broglie

wavelength. The second term on the right-hand side, which is the
functional potential, would contain all other effects, including the
excluded volume of classical particles. Thus, it is identified as Fex,
the free energy in excess of the ideal gas. The functional therefore
takes the usual classical DFT form of F[n] = Fid[n] + Fex[n].

APPENDIX D: SPECTRAL METHOD
Rather than solving the SCFT equations in real space, one

can expand all spatially dependent functions in an infinite basis set
{f i(r)} that has the symmetry of the problem encoded in it.20,27,51 The
basis functions should be eigenfunctions of the Laplacian operator
and are chosen to be orthonormal according to

1
V ∫

drfi(r)fj(r) = δij, (D1)

where δij is the Kronecker delta. An arbitrary function g(r) is
expanded as

g(r) = ∑
i
gifi(r). (D2)

Instead of solving for g(r) at every point in space, one solves instead
for a finite number of the coefficients gi, enough to achieve required
accuracy. For the set of Eqs. (11)–(15), there are also functions of
two spatial coordinates, in which case a bilinear expansion can be
used

g(r, r0) = ∑
ij
gijfi(r)fj(r0). (D3)

Expanding the single particle partition function (13), (D3) gives

Q =
1
V ∫

drq(r, r,β)

=
1
V ∑ij

qij(β)∫ drfi(r)fj(r)

= ∑
i
qii(β). (D4)

The density n(r) [Eq. (12)] can be expanded with either (D2) or (D3)
to give the two relations

n(r) = ∑
i
ni(β)fi(r)

=
n0

Q ∑ij
qij(β)fi(r)fj(r). (D5)

Equating the two expansions, multiplying by f k(r), and integrating
gives

nk(β) =
n0

Q ∑ij
qij(β)Γijk, (D6)

where

Γijk =
1
V ∫

drfi(r)fj(r)fk(r). (D7)

The only unspecified quantity in the above equations is qij(β). These
components are found by expanding the diffusion equation (14)
using

q(r0, r) = ∑
ij
qij(β)fi(r)fj(r0). (D8)

Following the derivation of Matsen,20,27,51 this gives

d
dβ

qnm(β) = ∑
j
Anjqmj(β), (D9)

where

Aij ≡
h̵2

2m
εiδij −∑

k
wkΓijk. (D10)

wk are the expansion coefficients of the field w(r) from (D2) and
εi are the eigenvalues of the Laplacian operator with respect to the
basis set {f i(r)}. Following Matsen,20,27,51 Eq. (D9) can be solved
analytically to give

qnm(β) = ∑
k
eAnkβqkm(0), (D11)

where qkm(0) are the expansion coefficients of the initial condition
(15), which gives qkm(0) = δkm. Therefore, (D11) is

qnm(β) = ∑
k
eAnmβ. (D12)

Matsen has discussed how to solve this exponential of a matrix.27

Equation (D12) is equivalent to

qnm(β) = ∑
l
Unle

λlβUlm, (D13)

where λl are the eigenvalues of the matrix A and the columns of U
are the normalized eigenvectors of A. Thus, the problem of solving
the set of diffusion equations (14) is reduced to finding the eigen-
values and eigenvectors of the matrix A of (D10). For a linear poly-
mer, represented by a single diffusion equation, one must solve the
same matrix. Thus, the computational burden for solving the set of
diffusion equations (14) is, spectrally, the same as solving a single
diffusion equation.

APPENDIX E: SPHERICAL BESSEL EXPANSIONS
AND POTENTIAL TERMS

In order to solve the SCFT equations spectrally, certain quanti-
ties need to be expanded in terms of the basis set. Here, the basis set
is given by (18), which are eigenfunctions of the Laplacian operator,
with eigenvalues given by

λn = −(
nπ
R

)
2
. (E1)

For this basis set, the Γijk tensor (D7) will be

Γijk = −
1
2

√
2
3
{Si[(i + j + k)π] + Si[(i − j − k)π] + Si[(−i + j − k)π]

+ Si[(−i − j + k)π]}, (E2)

where Si(x) is the Sine Integral given by

Si(x) = ∫
x

0

sin y
y

dy. (E3)

Note that (E2) is independent of the spherical box size R or other
system parameters and so is universal for all systems with spherical
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symmetry. Thus, it can be determined once and stored if desired.
From (E1) and (E2), the matrix Aij given by (D10) can be specified
for a given set of field coefficients wi.

The field coefficients wi are determined by the potentials acting
on the quantum particles. The hydrogen atom is particularly simple
since there is only one potential, the “external” potential, which is
the Coulomb interaction between an electron and the nucleus. The
free energy contribution of the external field is

Uext[n] = −N∬ drdr′n(r)V(∣r − r′∣)ρion(r′), (E4)

where V(r) is the Coulomb potential, ρion(r) is the ionic distribution,
and N is the atomic number (number of electrons). Atomic units are
now being used: h̵ = 1, me = 1, 1/4π�0 = 1, where me is the electron
mass and �0 is the permittivity of free space. Applying relation (11),
the external potential will be

wext(r) = −N ∫ dr′V(∣r − r′∣)ρion(r′). (E5)

In terms of (E5), Eq. (E4) can be written as

Uext[n] = N ∫ drn(r)wext(r), (E6)

giving a spectral expansion of

Uext[n] = V∑
i
niwext

i , (E7)

where ni are the components of the electron density and wext
i are the

components of the ion potential. To find the components of wext
i ,

one notes that, ignoring surface terms (due to the finite spherical
box of radius R), the integral expression (E5) can be replaced with
the Poisson equation

∇
2w(r) = −4πρ(r) (E8)

as is often done in electrostatics problems. Equation (E8) is read-
ily expanded in terms of orthonormal basis functions, and using the
eigenvalues (E1), one finds

wi = 4πρi(
R
iπ

)

2

. (E9)

For atomic systems, the ion density distribution will be a Dirac delta
function centered at the origin, so

ρi =
1
V

√
2
3
iπ, (E10)

where V = 4πR3/3 is the size of the finite spherical box. The external
potential components are therefore

wext
i = −

√
6

Riπ
. (E11)

The free energy of the hydrogen atom, expressed in terms of basis
functions, will be, from (16), simply

F = −
1
β

lnQ −
1
R

(E12)

with the external potential Uext[n] canceling with the last term on
the right-hand side of (16). The term 1/R subtracted on the right-
hand side of (E12) is due to the ignored surface term arising from the
solution of the Poisson equation: the integral expression (E5) is only
a solution to the Poisson equation for infinite boundary conditions.
However, since the charge distribution is centered at the origin, one
can easily compute the correction due to the finite boundary at R,
which is the 1/R term.

For helium and higher atomic number atoms, there will be
electron-electron interactions and exchange-correlation terms in
the potential U[n]. The electron-electron term will be a Coulomb
potential like the external potential

Uee[n] =
1
2∬

drdr′n(r)V(∣r − r′∣)n(r′) (E13)

with the factor of 1/2 for double counting. From (11), the electron-
electron potential is

wee(r) = ∫ dr′V(∣r − r′∣)n(r′), (E14)

and so (E13) can be written

Uee[n] =
1
2 ∫

drn(r)wee(r). (E15)

These forms are the same as for the external potential, so the Bessel
expansion of (E15) and (E14) are

Uee[n] =
V
2 ∑i

niwee
i , (E16)

wee
i = 4πni(

R
iπ

)

2

, (E17)

respectively.
The exchange-correlation functional will be taken to be an

exchange only local density approximation, using formula (19), in
order to compare results with the work of Finzel.16 Applying (11) to
Eq. (19), one gets the exchange potential

wx(r) = −(
3
π
)

1
3

n(r)
1
3 (E18)

with which one can write (19) as

Ux[n] =
3
4 ∫

drn(r)wx(r). (E19)

In terms of spherical Bessel coefficients, (E19) will be

Ux[n] =
3
4
V∑

i
niwx

i . (E20)

Due to the nonlinearity of (E18), the coefficients wx
i have to be

determined numerically from the real space formula.
The coefficients w

p
i of the Pauli potential wp(r) can also be

determined numerically from the step-function based potentials
suggested by Finzel.16 The functional would be

Up[n] = ∫ drn(r)wp(r). (E21)

In terms of coefficients, this is,

Up[n] = V∑
i
niwp

i . (E22)
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Overall, the free energy (16), in terms of basis function coeffi-
cients, becomes

F = −
N
β

lnQ − V∑
i
ni(

1
2
wee

i +
1
4
wx

i ) −
N
R

, (E23)

where the fact that the total field coefficients are given by wi
= wext

i +wee
i +wx

i +w
p
i has been used to simplify the expression. The

last term on the right-hand side of (E23) is included to account for
the finite boundary correction of the Poisson equation, as previously
discussed. Note that wext

i and w
p
i do not appear in (E23) because

they are both independent of electron density. This is natural for the
ionic, external potential, but Pauli exclusion should not strictly be
represented as an external potential. There exist other choices for
the SSB Pauli potential that may address this.9,38,45,49
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