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Abstract

Information technologies based on ML with quantitative imaging and texts are playing an
essential role particularly in general medicine and oncology. DL in particular has demon-
strated significant breakthroughs in Computer Vision and NLP which could enhance disease
detection and the establishment of efficient treatments. Furthermore, considering the large
number of people with cancer and the substantial volume of data generated during cancer
treatment, there is a significant interest in the use of AI to improve oncologic care.

In digital pathology, high-resolution microscope images of tissue samples are stored
along with written medical reports in databases which are used by pathologists. The
diagnosis is made through tissue analysis of the biopsy sample and is written as a brief
unstructured report which is stored as free text in Electronic Medical Record (EMR)
systems. For the transition towards digitization of medical records to achieve its maximum
benefits, these reports must be accessible and usable by medical practitioners to easily
understand them and to help them precisely identify the disease.

Concerning the histopathology images, which is the basis of diagnosis and study of
diseases of the tissues, image analysis helps us identify the disease’s location and allows
us to classify the type of cancer. Recently, due to the abundant accumulation of WSIs,
there has been an increased demand for effective and efficient gigapixel image analysis,
such as computer-aided diagnosis using DL techniques. Also, due to high diversity of
shapes and structures in WSIs, it is not possible to use conventional DL techniques for
classification. Though computer-aided diagnosis using DL has good prediction accuracy,
in the medical domain, there is a need to explain the prediction of the model to have a
better understanding beyond standard quantitative performance evaluation.

This thesis presents three different findings. Firstly, I provide a comparative analysis
of various transformer models such as BioBERT, Clinical BioBERT, BioMed-RoBERTa
and TF-IDF and our results demonstrates the effectiveness of various word embedding
techniques for pathology reports in the classification task. Secondly, with the help of slide
labels of WSIs, I classify them to their disease types, with an architecture having attention
mechanism and instance-level clustering. Finally, I introduced a method to fuse the features
of the pathology reports and the features of their respective images. I investigated the
effect of combination of the features in the classification of both histopathology images
and their respective reports simultaneously. This proved to be better than the individual
classification tasks achieving an accuracy of 95.73%.
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Chapter 1

Introduction

One of the leading causes of death globally is cancer, a group of diseases characterized by
abnormal cell growth and the ability to invade or spread to other parts of the body. Both
researchers and doctors are facing the challenges of fighting cancer [67]. In the United
States, approximately 1.8 million new cancer cases were diagnosed in 2020, with 606,520
cancer deaths. Due to the increase in the mortality rate due to cancer, a rapid advancement
concerning cancer research is being developed [53]. Early identification of cancer is essential
to save the lives of many people. Generally, visual examination and manual techniques are
used for cancer diagnosis, where manual interpretation of medical slides is time-consuming
and prone to errors. In order to bypass the above cases, in the early 1980s [38], computer-
aided diagnosis (CAD) systems were introduced to assist doctors in improving the efficiency
of medical image interpretation.

Histopathology is the analysis and interpretation of size, shape, and patterns present
in the cells and tissues of a patient’s clinical records and other factors to study disease
manifestation. “Histopathology” evolved from combining two of the major branches of sci-
ence, namely, “histology” and “pathology.” While histology involves studying microscopic
structures of tissues, pathology involves the disease diagnosis with the help of microscopic
examinations of surgically removed specimens. Throughout the healthcare delivery system,
histopathology is a vital discipline exclusively studied and practiced by pathologists. The
primary duty is to conduct a microscopic analysis of glass slides containing tissue speci-
mens to render pathology reports. The pathology reports created by the pathologist are
used for various reasons such as development of a diagnostic plan, screening for diseases,
monitoring the disease severity, etc. Understanding and explaining the images of tissues
and cells at high resolutions is the core of histopathology.
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Digital pathology is a digital version of traditional microscopy that is used to exam-
ine glass pathology slides. Though Light Microscopy(LM) is considered as the standard
reference for diagnosis in pathology, recent developments in ML and AI have drastically
improved diagnosing of disease in digital pathology. Thus, in recent times, there has been
an increase in the adoption of digital pathology, with pathology laboratories all over the
world gradually replacing their microscopes with digital scanners and computers.

DL is a type of AI and ML, that imitates the working of human brain in data pro-
cessing and creates patterns for decision making. There has been a significant increase
of computational power and recent advancements in the technology of AI, especially DL,
which is being used in multiple areas of health care like medical image diagnosis, digi-
tal pathology, prediction of hospital admission, drug design, classification of cancer and
stromal cells, doctor assistance, etc. [141]. With the advancing technology, the pathology
community started digitizing glass slides into gigapixel images through virtual microscopy
or Whole Slide Imaging (WSI). The gigapixel images generated via Whole Slide Imaging
are the digital slides, and with a large number of increase in digital slides, resulting in
a massive creation of databases with WSIs. DL methods, along with their outstanding
pattern-recognition capabilities when applied to these digital databases of WSIs, have sig-
nificantly increased the value of digital pathology. In addition, computer-aided operations
like segmentation of tissues and cell nuclei and identifying the cancer type and the severity
have become possible after the glass pathology slides have been digitized.

Apart from the digital databases consisting of a massive number of WSIs related to
unique cases, each of the WSIs is also accompanied by their respective diagnostic reports,
which are written by the pathologists, after the tissue analysis of the biopsy sample. With
the increase in the applications of Digital Pathology for research and teleconsultation,
there is a growing increase in the amount of histopathology data. In this context, this
thesis presents research of applying computer vision, Natural Language Processing and
ML algorithms for the quantitative image and text-based analysis of histopathology images
and reports.

1.1 Classification of Pathology Reports

In almost all cases, the diagnosis of a whole slide image WSI is made through tissue analysis
which is described in a detailed format in a pathology report. Pathology reports hold
important details of the WSI analysis, which is stored in most electronic medical record
systems as unstructured free data. A part of clinical research focuses is on the manual
extraction of data from pathology reports, which is very expensive and time-consuming.
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The data helps identify the case, select the treatment and its plan, risk stratification,
etc. The electronic medical record systems hold the records of essential details of the
patient’s health and pathologist’s elucidation of the findings from the WSIs. It also has
the information that helps physicians understand the details of WSIs and records that
information for future clinical and research use.

For almost 50 years, researchers have worked to develop Natural Language Processing
NLP algorithms to extract details from pathology reports. However, only a limited number
of categorical data elements are typically extracted, and model outputs often lack reliable
uncertainty estimates, limiting the clinical applicability of these systems and only 10% of
which have been reported to be in real-world use [105]. Also, many attempts are being made
to store the pathology report information in a specific template, but most of the information
is recorded in free text. This text is a massive hurdle for immediately extracting and
using the details and information a report holds by clinicians, researchers, and healthcare
information systems. This ambiguity is due to the complexity of natural language, the
complexity of pathology images description explained by a variety of sources [54].

Due to the above reasons, the pathology reports are not feasible in using automated
methods to suggest proper treatment or promote clinical research. On top of that, a mas-
sive volume of pathology reports are produced every year. For instance, an average-sized
laboratory produces more than 50,000 reports annually. Most of these reports have no di-
rect connection to the tissue samples. Also, each patient’s report is a customized document
with high vocabulary discrepancies, such as misspelled words and lack of punctuation. It
is common to find clinical diagnoses intermixed with nuanced explanations and multiple
terminologies used to mark the same malignancy and data about various carcinomas in
a single report [46]. Cancer registries are facing a considerable challenge in the manual
analysis of the enormous quantity of pathology reports, with the rise in the number of pa-
tients with cancer and the improvement in treatment complexity [46] [134]. Moreover, the
process of figuring out the diseases from a pathology report is challenging, time-consuming
and requires extensive training when done manually [46].

The first part of this thesis demonstrates how to extract meaningful numerical embed-
dings from written pathology reports to help classify various types of cancer. One of our
research’s primary focuses is to evaluate and compare the effectiveness of existing machine
learning methods for the automatic classification of a given pathology report to its respec-
tive disease type. We demonstrate that contextualized word embeddings combined with
TF-IDF feature vectors, when given as inputs to a DNN, can be an effective method for
classification, achieving 93.77% accuracy in our study. This study proves the competence
of TF-IDF features and its effectiveness in recognizing essential keywords in a pathology
report. Additionally, our experiments with digital pathology reports will allow researchers
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to develop a versatile way of extracting essential details from free-text pathology reports,
which could benefit various medical diagnostic tasks.

1.2 Classification of Histopathology Images

Histopathology image analysis is used to help pathologists identify tumors and their sub-
types and eases pathologist’s workload. The most recent studies in digital pathology have
found that supervised AI algorithms for classification are compelling and vital use of these
digitized images is used to create diagnostic algorithms or applications which can augment
the diagnostic workflow. Histopathology WSIs contains a massive number of pixels, where
these pixels can now become part of a DL algorithm to look for shapes, features or patterns
utilizing image analysis, DL and AI tools [61]. DL is at the forefront of CV, showcasing
significant improvements over previous methodologies on visual understanding [37] of a
pathology image. The emergence of DL is becoming very beneficial, especially in digital
pathology, where it is practically not very easy to detect, segment and identify a given
WSI having thousands of pixels to a specific disease type.

Recently, the Food and Drug Administration has approved usage of WSIs for primary
diagnosis [108]. On the other hand, though DL is widely used for computer-aided diagno-
sis, there is always a trade-off between the accuracy of the model and its interpretability.
In addition, General Data Protection Regulation (GDPR) has claimed the “right to ex-
planation” for any decision made by artificially intelligent algorithmic systems. Moreover,
in the medical domain, the model’s prediction is given more importance than other fields
because any mishap can become fatal for the patient.

The second part of this thesis demonstrates the result of the experiment performed for
the classification of WSIs into their respective cancer types. The experiment is carried
out in a weakly supervised setting with an attention scoring mechanism and instance-level
clustering, yielding an accuracy of 90.12%.

1.3 Combined Classification of Histopathology Images

and Pathology Reports

Both images and texts are essential for human intelligence to understand the real world.
Many types of researches [43, 48, 83] were performed to bridge these two modalities. In
order to investigate the effectiveness of combining image and language to predict and gain
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Figure 1.1: Combined Image + Text Model

insight, we proposed a method to classify the histopathology images by using associated
metadata, i.e., their associated reports as shown in Figure 1.1. Intending to classify both
histopathology reports and images together as they contain complementary information,
the proposed method combines the features of the report’s texts and images from the
experiments in section 1.1 and section 1.2. These concatenated images and text features
are used to classify images and reports using a DNN classifier. The experiment proved
that the combination of features gave comparatively good accuracy of 95.7% compared to
the individual experiments on histopathology reports and images, respectively.
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Chapter 2

Background

This chapter explains some of the components and building blocks used in our experiments.
Firstly, various classes of ML models are outlined, after which we introduce Deep Learning
DL and ANNs. We also introduce CNNs, class of ANNs which are generally used in CV
and NLP literature and also LSTM networks, which are generally used in NLP literature.
Also, theory regarding regularization, sequence-to-sequence models, attention mechanisms
are introduced as we used them in our image classification model. Also, we brief about
embeddings, which is an important concept in NLP.

2.1 Machine Learning

Machine Learning ML enables computers to learn from data, without being explicitly
programmed, where the data is used to train the system to perform any specific task. In
ML, model recognizes the patterns and intricacies within the data with the help of some
form of mathematical optimization and statistical methods. The trained model can further
automate tasks or guide decision-making based on data and the mathematical model.

ML is being used predominantly in our everyday lives and is developing at a fast pace.
For example, all the email services use ML to filter out spam emails, while online shopping
provides us with recommendations that use ML. In addition, several kinds of research are
being performed daily with new algorithms and methodologies developed and applied in
many areas ranging from the medical field to climate change. These advancements in
intelligent systems are beneficial as it makes all the application’s process more accessible
and at the same time with less human intervention.
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Generally speaking, there are two categories of ML methodologies, which are namely
supervised learning and unsupervised learning, where the primary categorization is based
on the type of learning process carried. The subsection below elaborates on each of the
categories with examples.

2.1.1 Supervised Learning

Supervised learning algorithms are trained with data points containing the features (inputs)
and their respective labels (outputs). This algorithm usually modifies the model parameters
so that the desired output for a given input is obtained. In this algorithm, we have output
labels that correspond to each input used to train the model.

Once the model is trained, it is then provided with new unseen data points as inputs,
where the model will predict the target based on what it has previously learned. A few of
the most popular supervised learning algorithms which are commonly used in classification
and regression studies are linear and logistic regression [29], Support Vector Machine [14],
Naive Bayes Classifier [98], Gradient Boosting [15], [44], classification trees, and random
forest [16], [112].

To better understand the supervised learning method, let us consider an example with
the image classification task. Initially, we feed the ML model with images of Golden
Retriever, huskies, poodles, etc. and label them as dogs. Similarly, we can provide images
of Persian, Maine, British shorthair, etc., all labeled as cats. Given the input images and
the respective labels, the model tries to learn from the image pixel the characteristics that
differentiate dogs from cats. Once after training, the model is then used to classify new
images.

2.1.2 Unsupervised Learning

Unsupervised learning algorithms are fed with training data points containing the features
(inputs) and do not require pre-existing output/labels. These algorithms can identify
hidden patterns based on the distribution of the input data. This learning method can be
used for detecting anomalies, wherein some parts of the data may not fit well with the rest
of the data. One of the most common unsupervised learning methods is Clustering (e.g.,
hierarchical clustering [122], [34], K-means [89], [96]) and few other popular approaches
are Latent Dirichlet Allocation (LDA)[12], principal component analysis (PCA) [45] and
word2vec [102].
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For example, suppose we train a model with unlabelled documents related to various
topics like sports, politics, movies, etc. In that case, a model will automatically cluster
similar documents that belong to similar topics, with the information provided in the
documents, such as word usage and writing style.

2.2 Deep Learning

ANNs are an important class of machine learning models, used for both supervised and
unsupervised tasks, where biological neural networks inspire the structure and their func-
tioning. The brain consists of billions of interconnected neurons, which ANNs try to mimic.
ANNs have multiple layers with simple processing units known as nodes where each of them
are connected by edges with weights [51].

Recently, there has been an increasing interest in neural network architectures consisting
of many layers. With the availability of a large volume of data and powerful hardware for
computation, such model architectures were able to outperform humans in several cognitive
tasks [119][104]. This led to the creation of a sub-field of ML known as DL [81].

The most basic version of an ANN model is a feed-forward neural network, where there
exist other architectures such as RNNs, CNNs, etc., which are explained in detail in the
sections below.

2.2.1 Introduction to Neural Networks

In order to understand the computational model of artificial neural networks, one needs
to begin from its building block, known as the perceptron [117]. Inspired from the brain’s
neurons, a perceptron is a simple computational model that takes in one or more inputs and
provides a single value as output. This is illustrated in Figure2.1. Based on the pre-defined
threshold and its output, the perceptron acts as a binary classifier, i.e., if the output value
is greater than the threshold, the input is assigned to class 1, else it is assigned to class 0.

Let the inputs to the perceptron model be x1, x2, x3 and the series of model weights
corresponding to each input variable be w1, w2, w3. This simple model consists of two
operations:

• First, each input with its weights are multiplied, which is followed by summation,
to which we also add the bias term ‘b’, so that the model has flexibility for location
shift.
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• Next, a class label (0 or 1) is assigned based on a binary activation function.

Figure 2.1: Perceptron Model

The predicted value of output y corresponding to the given set of inputs, and in order
for the predicted output to be close to the desired output (ground truth), we would need
to make adjustments to the weights w1, w2, w3 and bias term b.

However, with the recent advancements, modern neural networks do not use the simple
perceptron anymore. Instead, they consist of computational units known as neurons (or
nodes), which replace the simple binary activation function with non-linear functions,
combining multiple layers of neurons to form a more robust model known as the feed-
forward neural network is possible. Each neuron is connected to every other neuron in
the previous and subsequent layers. However, there are no connections between neurons
within the same layer.

As illustrated in Figure 2.2, there can be multiple inputs and multiple outputs where
they are connected via several hidden layers. The input at each neuron gets transformed
by weighted summation followed by non-linear activation. The computation starts from
the input layer until the output layer and is known as forward propagation. Feed-forward
neural networks are often used for transforming the dimension of inputs and outputs of
different complex models like CNN and RNN. They can learn non-linear representations
of the data and have been successfully applied to many classification and regression tasks.

The non-linear activation functions can be different in each layer of the network. How-
ever, while all the hidden layers have a similar activation function, the final layer can have
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Figure 2.2: Feed Forward Neural Model [7]

a different one. Thus, there are many choices of activation functions, and some of them
are listed below:

• ReLU: ReLU is known as rectified linear unit, is a popular activation function, which
is known for its simple computations. A ReLU function simply returns the input if
the input is bigger than one, and zero otherwise:

f(x) =

{
x if x>0

ax otherwise
(2.1)

The derivatives of ReLU activation function are computed with significantly less
computational power, where it is 1 for values above 0 and 0 otherwise.

• Sigmoid: A sigmoid activation function has an S-shaped curve, and it clips the value
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of input between 0 and 1.

f(x) =
1

1 + e−x
=

ex

ex + 1

• Softmax: Softmax activation function is mainly used when the output of a neural
network is a vector, and the goal is to pick the most probable component. This
function amplifies the maximum value in a vector or an array and lessens or dampens
the rest of the components’ values.

σ(z)i =
ezi∑K
j=1 e

zi
for i = i, ...Kand z = (z1, ...zk) ∈ RK

• Tanh: Tanh activation function is also known as hyperbolic tangent Activation
Function, which is similar to sigmoid activation function, but ranging from -1 to +1.

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x

With no structured methodology to adjust the model weights, other than by trial and
error, there has been significant research [135, 118], which contributed to the development
of the method known as backpropagation of errors, which made it possible to estimate
the weights in an ANN model. Backpropagation computes the gradient of the network to
individual connection weights, given a loss function, such as the mean squared error (MSE)
loss.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) is a type of neural network model which can handle
variable-length data. Each RNN unit has a self-loop and an internal state which helps
process sequential data like audio waveform, stock value, text and video. RNNs help
process sequential data because they can utilize each data point as well as the relation
of that data point with the preceding data points, which results in generating a more
comprehensive and proper textual representation. As a result of their usefulness, RNNs
are used in NLP and CV for various tasks [139].

Figure 2.3 shows an RNN network, where xi denotes the input to an RNN which is
usually the feature vector and hi denotes the hidden state carried forward and outputted
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Figure 2.3: An un-rolled Recurrent Neural Network [1]

at each time-step by the RNN. This figure denotes the simplest form of RNN. In practice
we often use a LSTM [56] or GRU [36] network. Both these networks are complex and
perform much better at language tasks. They consist of internal states and gates combined
with non-linearities to allow better learning of complex functions and mappings.

2.2.3 Long Short-Term Memory

As described in the previous section, RNNs learn representations of the data over temporal
sequences, like text or audio features. However, in practice, RNNs do not seem to assign
priorities to which of the past data they choose to ascribe higher importance, which is
detrimental to their usage in tasks that require the processing of long sequences of data
like in text, audio or video processing. This lack of ability to learn long-term dependencies
in the input features is shown in previous work by [8]. LSTM seeking to address this issue
by explicitly modeling how much to retain and forget at each time-step during the RNNs
training procedure.

The structure of an LSTM is depicted in Figure 2.4. An LSTM unit is comprised of
three distinct gating layers internally - namely, the forget gate, input gate and output gate
- that determine its outputs: the new cell state and hidden state. The three gates are
enclosed within a “cell” that remembers relevant information over different time intervals
and regulates the flow of information into and out of the cell. The gating mechanism helps
the LSTMs to capture distant temporal dependencies.

As can be seen in Figure 2.4, the cell state Ct passes through the LSTM mostly unper-
turbed, which is intended to address the problem of vanishing gradients. The forget gate
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Figure 2.4: Long Short-Term Memory Unit [106]

uses a sigmoid activation to squash the output values of the previous time step between 0
and 1, which can be understood as being semantically equivalent to deciding how much of
the previous cell state to forget.

f t = σ(W f · [ht-1, xt] + bf)

The input gate also uses a sigmoid activation on the previous hidden state, which is
multiplied by the candidate cell state Ĉ. The value thus obtained is then multiplied by the
forget-gated previous cell state to form the next cell state.
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it = σ(W i · [ht-1, xt] + bc)

Ĉt = tanh(W c · [ht-1, xt] + bc)

Ct = f t · Ct-1 + it · Ĉt

Now that we have obtained the cell state, we propagate that through to the next time
step. To obtain the hidden state, we use an output gate, again with a sigmoid activation,
to gate the cell-state and create the hidden state for the next time step.

ot = σ(W o · [ht-1, xt] + bo)

ot = tanh(Ct)

LSTMs outperform simple recurrent neural networks in learning long-term dependen-
cies, making them suitable for various natural language processing tasks. LSTMs have also
been combined with other types of neural networks, such as CNNs, to improve automatic
image captioning [90].

2.3 Regularization

Regularization refers the technique used in machine learning models to improve the model’s
generalization capabilities. A few of the techniques are early stopping, dropout, parameter
norm penalties, etc.

2.3.1 Dropout

One of the most common problems faced by DNN architectures is overfitting, which refers
to the problem of a model learning functions that represent the training set very well but
fail to generalize to the validation/test set. Dropout is used as a regularization technique
to help mitigate the problem of overfitting [127].

Using dropout, neurons and their connections are randomly dropped during training,
where each neuron can be dropped with a fixed probability that is a tunable hyperparame-
ter. Using dropout in DNN helps the model prevent overfitting by limiting the development
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Figure 2.5: Illustration of Dropout [127]

of excessive codependency between units during training. We should remember that during
the testing/inference step, no neurons are to be dropped. Figure 2.5 illustrates the idea
behind dropout.

2.3.2 Batch Normalization

The batch normalization [64] technique is used to improve the training speed and stability of
DNN, which works by reducing internal covariate shift. Internal covariate shift is defined
as the change in the distribution of the network unit outputs due to the change in the
network parameter values, and the reduction is obtained through batch normalization
transformation of a layer’s input defined as:

y =
x− E[x]√
V ar[x]

· γ + β

where x is the layer inputs and γ, β are learnable parameter.
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2.4 Sequence to Sequence Models

Sequence-to-sequence (Seq2Seq) [128] models are mostly made up of an encoder and a de-
coder, which is predominantly used in Natural Language Processing (NLP) and is mainly
used to convert a random input sequence to an output sequence. The sequence can range
from whole documents to individual words. Both the encoder and the decoder are usually
implemented with RNNs (usually an LSTM or GRU), where the encoder learns an inter-
mediate representation of the input sequence, which the decoder will use to generate the
desired output sequence. An overview of a seq2seq network used for translation is shown
in Figure 2.6.

Figure 2.6: Sequence-to-sequence Model [19]

2.5 Attention Mechanism

Attention is a technique that imitates cognitive attention. Likewise, attention mechanism
is used in neural networks to help the training process by indicating to the model what
part of the inputs or features are to be focused upon. Here we will discuss the attention
mechanism used in Natural Language Processing and Computer Vision.

In NLP, two popular attention mechanisms used in Seq2Seq models are Luong Attention
[94] and Bahdanau Attention [6], which were introduced for machine translation, which
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outperformed vanilla Seq2Seq models. This attention is obtained by aligning tokens on
the target side to the tokens on the source side. The attention mentioned in the above
mechanisms used in Seq2Seq models differ in how the context vector is computed where
Luong Attention takes a multiplicative form. In contrast, the Bahdanau Attention takes
an additive form.

On the other hand, the attention mechanism was found to be helpful in CV especially
in image captioning [137] and object detection [13]. Using the whole image in any task,
for instance, in a classification task, will lead to significant noise, thus lowering detection
accuracy. Also, in medical images, where the medical images are made up of thousands of
pixels, identifying the lesion area, which may be small, will be difficult, given the entire
image [49]. Recursive hard attention[49] is used by cropping out the discriminative parts
of the image and classifying both the global image as well as the cropped portion together.
While attention reweighs certain network features, soft attention allows these weights to
be continuous while hard attention requires them to be binary.

2.6 Convolution Neural Network

CNNs are a class of ANNs most popularly used for visual analysis, and in simple terms,
CNNs are regularized multilayer perceptron (MLP). CNNs use the convolution operation
in at least one of their layers instead of general matrix multiplication. While multilayer
perceptron (MLP) is prone to over-fitting due to their fully connected nature, CNNs use
small and simple patterns to learn more extensive and more complex patterns in data,
resulting in less connections and lower complexity.

An input layer, output layer and hidden layer are the three types of layers in CNNs. The
hidden layers consist of a series of convolution operations, which convolve with an operation
such as multiplication or dot product. These layers are commonly followed by additional
convolutional layers, such as pooling and fully connected layers. The pooling layers reduce
data dimension by reducing outputs from a group of data points to a single value. Different
pooling operations result in different types of features. Global pooling [23], max-pooling
[24], and average pooling [103] are the most common pooling operation employed. Figure
2.7 shows an overview of a simple CNN. Even though CNNs was primarily introduced in
the computer vision community, they have been extensively explored for many NLP tasks
[26].
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Figure 2.7: Convolutional Neural Network Architecture [97]

2.7 Embeddings

In ML, embeddings mean the mapping of discrete variables to a vector in continuous space.
The vectors partially represent the semantics of the raw input data, which otherwise may
not be easily comprehensible to a neural network. For example, we cannot directly train
a neural network for image classification with the image pixels without transforming it
into embedding space. We discuss embeddings for inputs from words and images in the
following subsections.

2.7.1 Word Embeddings

In NLP, word embeddings are the vector representation of all the words in the vocabulary.
Techniques used to learn word embeddings are unsupervised, though supervised and semi-
supervised techniques have also been proposed. The embeddings are learned so that words
appearing in similar contexts are close to each other. For example, words like “grapes” and
“banana” will appear close to each other as they belong to the family of fruits. Figure 2.8
shows word embedding space. Various techniques like Word2vec [101], Glove [109], ELMo
[110], FastText [70], Skip-thoughts [76], Quick-thoughts [91], InferNet [27], and Google’s
universal sentence encoder [18].
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Figure 2.8: Word Embeddings [86]

2.7.2 Visual Embeddings

The main goal for pre-trained embeddings for visual modality is to learn a meaningful
representation of images, though the methods used to learn those embeddings are not
completely supervised. Pre-trained visual embeddings are nothing but the feature vectors
extracted from the hidden layers of a neural network trained on any task. For example, a
few popular choices of obtaining pre-trained image embeddings are Inception [130], VGG
[123], SqueezeNet [57], and DeepLoc [79], are all trained on an image classification task.

Learning a joint representation of visual and other modalities like speech and word
embeddings is still an active field of research.
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Chapter 3

Related Work

In recent years, there has been ongoing research in applying ML methods to medical images
and texts. Medical images pose unique challenges due to their significant variations, rich
structures, and large dimensionality. On the other hand, electronic health records are
challenging as they are highly unstructured, with many medical terminologies present in
the text. As a result, researchers have begun to look into various image and text analysis
techniques, and their applications in digital pathology [50].

The first section in this chapter briefs on a few of the past works done on the medical
images. In contrast, the second section discusses the previous NLP techniques used in
medical text data.

3.1 Medical Image Analysis

Recently, DL based approaches were performing better than conventional machine learning
methods in image analysis tasks, automating end-to-end processing [21, 58, 60]. The main
goal of histopathology is to differentiate between normal tissue, non-malignant and ma-
lignant lesions and to perform a prognostic evaluation [40]. Considering medical imaging,
CNNs have been successful in diabetic retinopathy screening [113], bone disease prediction
[132] and age assessment [59], and other problems [21]. DNN models achieved massive suc-
cess in achieving state-of-the-art resulting in histopathology image analysis from disease
grading, cancer classification to outcome prediction [126, 10, 87].

Lately, self-supervised and semi-supervised approaches are becoming increasingly pop-
ular to reduce the annotation burden by leveraging the readily available unlabeled data
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that can be trained with limited supervision. Promising results for the above methods in
CV is seen in [69, 80, 124] and medical image analysis tasks [20, 131, 84].

Initially, most of the DL training on WSIs did not use the whole image as input; instead,
they divided the WSIs into multiple patches and used those patches for training the model
[66, 39, 17, 4]. Since the patch size is tiny compared to the complete WSI, there are
large amounts of background regions that are useless for diagnosis. Hence it is essential
to remove the background regions. However, this problem is often treated as a trivial
part of the research, mostly solved via threshold-based methods. In [68] a threshold was
used on the pixel intensity values to detect the tissue. As another example, [78] removed
blank regions by setting a threshold on saturation and intensity of pixels. Other works
used homogeneity criteria to only select patches containing a considerable part of the tissue
[41]. Apart from threshold-based methods, [115] discusses different U-Net, a light weighted
CNN architectures to segment only the tissue region from the background.

Concerning the pre-processing in medical images, one of the main steps followed in
WSIs is color normalization of stained tissue samples [39]. Despite the standardized stain-
ing protocols, versions in the staining outcomes are prevalent due to variations within the
staining parameters, e.g., Antigen awareness and incubation time and temperature, excep-
tional situations among slide scanners, etc. [140]. Such color versions can adversely affect
the performance and accuracy of the classifier. Therefore, in these papers [65, 74, 85, 95]
stain normalization techniques have been proposed for better performance of the model.
One of the most frequent ways to remove the stains from the patches is to transform the
color appearance of a source image to the target image [133] and [114] presents a method
to transform the color appearance of a source image to the target image.

An efficient classification model was built [77] where the input size equals the patch
size and inception-v3 network is used as the classifier and is trained them from scratch
with an input size of 512 x 512 to detect and discriminate epithelial tumors in WSIs of
stomach and colon and achieved an accuracy of 95.6%. On the other hand, [5] have used
a slightly different CNN model, which was architecturally and conceptually inspired by
AlexNet and VGG16 on a new dataset named “Kimia Path24” and achieved an accuracy
of 44.80%. However, [75] has used the same “Kimia Path24” dataset and has compared
the performance of DenseNet-161 and ResNet-50 pre-trained CNN models. The results
proved that ResNet-50 obtained a validation accuracy of 97.77% which was better than
the 95.79% achieved by DenseNet-161.

Once after classifying the WSIs, it is essential to explain the model’s prediction to justify
their reliability, and more importance is given to the model’s interpretability when it comes
to the medical domain. The paper [93] defines a suitable measure of feature importance in
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the SHAP (SHapley Additive exPlanations) framework. LIME [116] explains the choice by
highlighting or segmenting the critical region in the particular patch on which the classifier
made the decision, thus helping the practitioners to validate the model. In the paper,
[138] heatmap is drawn based on confidence scores of each patch, based on which the
interpretability of the model is explained.

In this thesis, I present an approach for histopathology microscopy image analysis for
cancer type classification. Our approach is by using a weakly supervised method using
instance-level clustering and attention mechanism.

3.2 NLP on Medical Textual Data

In the field of biomedical research, information extraction using NLP spans from rule-based
systems [73] down to domain-specific systems using feature-based classification [134], and
to the recent deep networks for end-to-end feature extraction and classification [46].

Several studies performed for information extraction techniques from pathology reports
belonging to various types of tumor related to lungs, breast, colorectal, prostate, where
[125] mentioned the overview of various tools developed. [25] performed an experiment
to automatically extract diseases from pathology reports belonging to colon cancer. Rule-
based systems in combination with machine learning methods were used to extract nine
different classes from the reports.

While [107] extracted 28 different concepts from pathology reports for primary cu-
taneous melanoma (skin cancer), [99] classified colorectal cancer according to the TNM
(Tumor, Node and Metastases) scale using Näıve-Bayes and Support Vector Machines.
[100] applied rule-based methods to pathology reports for lung cancer, where the results
obtained from the experiments gave F1-Score from 0.7 to 0.9.

[31] on the other hand, used rules to extract concepts in 5,826 breast cancer and 2,838
prostate cancer pathology reports. The experiment extracted around 80 fields and obtained
90-95 percent accuracy, and domain experts evaluated.

Two studies have applied rule-based methods to Norwegian pathology reports on the
reports belonging to a language other than English. [32] extracted values for nine concepts
from 25 pathology reports describing prostate biopsies, where they obtained F-scores rang-
ing from 0.24 to 0.94. On the other hand, [134] extracted values for ten concepts related
to breast cancer with an F-score ranging from 0.67 to 1.0 using 40 reports. Both studies
were done on small data sets, but the results show that rule-based methods are promising
for information extraction from pathology reports written in Norwegian.
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In case of classification tasks or retrieving specific features from reports, successful
studies in NLP for understanding pathology reports have been reported [63]. For example,
The Cancer Text Information Extraction System(caTIES) is a framework developed in a
caBIG project [30] that focuses on the extraction of crucial details from SPR to achieve
high precision and recall. On the other hand, a system named Open Registry [28] was able
to filter out the pathology reports having cancer specified in them, based on the disease
codes.

In 2010, the Automated Retrieval Console(ARC) [33] was introduced, where machine
learning models are used to predict the degree of association of a given radiology or pathol-
ogy report to cancer. The performance of this approach varied from an F-measure of 0.75
for lung cancer to 0.94 for colon cancer. However, this approach utilized domain-specific
rules, which may be disadvantageous when working with a wide variety of pathology re-
ports. Other works have performed a classification of the pathology reports by extracting
the TF-IDF features [71]. The extracted features were given as input to XGBoost, SVM
and Logistic Regression, where improved ensemble results were obtained with the XGBoost
classifier.

In addition, many algorithms that convert words to fixed-dimensional vectors that can
be used to preserve syntactic and semantic relationships in a text corpus were introduced.
These include word2vec [102], and GloVe [109] which use co-occurrences of words in the text
and produce dense vectors such that words appearing in similar contexts have similar word
embeddings. Significant improvements that could be achieved in the NLP field came when
unsupervised model architectures were proposed to represent words as a fixed dimensional
dense vector [102], [101]. The architectures were Continuous Bag of Words(CBOW) that
predicts the target word given the context and the Skip-gram model, which predicts the
context based on the target word. Another significant advance was BERT [35], which im-
proves fine-tuning-based approaches by taking into account both left and the right context,
unlike the traditional algorithms, which used the left-to-right direction only.
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Chapter 4

Dataset

This chapter briefs the dataset used for our experiments and the tool used to extract the
histopathology image and textual data.

4.1 Dataset from The Cancer Genome Atlas (TCGA)

TCGA is a cancer genomics program, having around 20,000 primary cancer and matched
normal samples over 33 cancer types. TCGA is a collaboration between the NCI and
NHGRI, which aims to generate comprehensive, multi-dimensional maps of the fundamen-
tal genomic changes in major types and subtypes of cancer. TCGA has analyzed matched
tumor and normal tissues from 11,000 patients, allowing for the comprehensive character-
ization of 33 cancer types and sub-types, including ten rare cancers and the TCGA data,
are hosted at the NCI GDC [121]. In addition, TCGA has the tissue slides and the report
for different types of cancer for each organ and the tool we used to extract the data is
described in the section below.

4.2 GDC Data Transfer Tool for Querying Dataset

The GDC Data Model is the primary method of organizing all data within the GDC, which
can be thought of as a Directed Acyclic Graph composed of interconnected entities. An
entity in the GDC is a unique component of the GDC Data Model where each entity has
associated some attributes that can be used to describe it. GDC Data Portal allows the
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user to filter available data files according to different criteria. The user can download
files individually or add them to the cart while the search is underway. The GDC Data
Transfer Tool is a standalone client application that runs on the user’s machine, and it
helps download large volumes of data [121]. Due to the high volume of images to be
downloaded, GDC Data Transfer Tool was used, and a manifest file consisting of all the
files to be downloaded was provided. A sample pathology image from the dataset can be
seen in Figure 4.1.

Figure 4.1: Sample Whole Slide Image from the Histopathology Image Dataset

Among the records, we picked a total of 1949 data points belonging to four primary
sites: kidney, lungs, thymus, and testis with 937, 749, 124 and 139 records. Further,
seven different diseases types belonging to the above organs are chosen which are namely,
“Kidney Renal Papillary Cell Carcinoma”, “Kidney Renal Clear Cell Carcinoma”, “Lung
Adenocarcinoma”, “Lung Squamous Cell Carcinoma”, “Testicular Germ Cell Tumors”,
“Kidney Chromophobe” and “Thymoma”. Amongst the medical reports, the main criteria
for choosing the reports are the quality of the PDF reports. Therefore, only those reports
that were quite readable were considered, and the rest were discarded. The number of
samples in each class used for our experiments based on primary site and disease type are
as shown in the Tables 4.1 and 4.2.
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Primary Site Number of samples
kidney 937
lungs 749
Testis 139

Thymus 124

Table 4.1: Total Number of Records based on Primary Site

Disease Type Number of samples
Kidney Renal Clear Cell Carcinoma 537

Lung Adenocarcinoma 372
Lung Squamous Cell Carcinoma 356

Kidney Renal Papillary Cell Carcinoma 283
Testicular Germ Cell Tumors 139

Thymoma 124
Kidney Chromophobe 110

Table 4.2: Total Number of Records based on Disease Type

4.3 Further Extraction of Pathology Reports

Once after selecting 1,949 reports, the next step was to extract the text from those reports.
As it is not practical to type the relevant and valid information from those reports manually,
which will be extensively time-consuming, OCR was implemented. This software converted
all the PDF reports to text files, which we used for the experiments. Once after converting
the image data of the reports to text files, manual inspection of spelling errors and grammar
was inspected on those files. Also, irrelevant characters produced as an artifact by the OCR
system were removed. These cleaned pathology reports are further used for experiments,
and an example of a pathology report from the dataset is as shown in Figure 4.2.
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Figure 4.2: Sample Pathology Report from the Histopathology Reports Dataset
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Chapter 5

Transformer Models used for
Pathology Reports Classification

Transformer-based PLMs is made of the combination of transformers with transfer learn-
ing, and SSL has been booming in the field of NLP from the past few years. With a great
success of PLMs in the general domain, there was an urge felt in the medical and biomed-
ical communities to develop various PLMs in these domains. PLMs can learn language
representations that are useful across tasks, and we can directly use the pre-trained model
without training the models from scratch. These PLMs are trained over a huge corpus
of unlabelled textual data using a self-supervised learning mechanism, learning between
supervised and unsupervised learning. In self-supervised learning, as the labels are not
created manually, they are generated automatically based on the relationship between dif-
ferent sections of the input data. Once after the training of the transformer-based PLMs
over huge corpora of texts of a specific domain, the models can be further used for multiple
downstream tasks just by fine-tuning by adding layers based on the task [35, 72].

Recently, there has been an increasing demand for text mining in the clinical domain,
with a considerable increase in the number of biomedical documents produced with es-
sential details and information in them. This lead to the generation of lots several PLMs
each consisting of millions or even billions of parameters. In this section, we describe
several contextualized word embedding models trained on biomedical and clinical corpora
like BioBERT, Clinical BioBERT and BioMed-RoBERTa along with TF-IDF and their
techniques to convert text into vectors.
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5.1 BioBERT

BERT was a state-of-the-art model in NLP, which was proposed by Google researchers,
which takes into consideration of the bi-directional context of the text in all the layers
of its architecture [35]. These representations are useful for sequential data that depends
heavily on the context in a text. The introduction of transfer learning in this field aids
in carrying encoded information over to strengthen an individual’s smaller tasks across
domains. In transfer learning, we refer to this step as “fine-tuning,” and it means that the
pre-trained model is now being fine-tuned for the specific task at hand. BERT is originally
an English-language model which was pre-trained using 2.5 billion words from Wikipedia
and 0.8 billion words from BooksCorpus corpora. The architecture of BERT is as shown
in the figure 5.1.

BioBERT[82] is an application of the BERT-based model [35], which is popularly used
in the biomedical field. This model is obtained upon pre-training the BERT-base model
on the biomedical corpus. We have used BioBERT-v1.1 for our experiments, which was
obtained by pre-training BioBERT on PubMed Abstracts with 4.5 billion words and PMC
Full-text articles having 13.5 billion words for 1M steps. The vocabulary size of the model
is 28,996, each having 768 features. The output text from the data pre-processing step is
tokenized using the BioBERT tokenizer. This tokenizer uses WordPiece Tokenization [136]
to mitigate out of the vocabulary (OOV) problem that breaks down a word into multiple
sub-words belonging to the BERT vocabulary. For example, the WordPiece tokenization of
the word “penicillin”, which will not be present in the vocabulary directly, is split into the
sub-words, “pen”, “##i” and “##cillin”, which are available in the BERT vocabulary.
The tokenized words are then fed to the classifier model for classification. Figure 5.1 depicts
the overview of pre-training and fine-tuning of BioBERT.

Figure 5.1: Overview of the pre-training and fine-tuning of BioBERT [82]
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5.2 Clinical BioBERT

Clinical textual data such as physician notes have different linguistic features compared to
non-biomedical or general texts. This difference encouraged the necessity for a specifically
trained model for clinical domain texts, and thus Clinical BioBERT was introduced. Clin-
ical BioBERT [2] is initialized from BioBERT model (BioBERT-Base vx1.0 + PubMed
200K + PMC 270K) and is trained on all the MIMIC-III notes (880M words), which is a
database containing health reports of the ICU admitted patients at the Beth Israel Hospital
in Boston, MA. This data is used to pre-train the model for 150k steps with batch-size set
to 32. Like BioBERT, the vocabulary size of Clinical BioBERT is also 28,996 tokens, each
having 768 features following WordPiece Tokenization. The processed data is tokenized
using the “Bioclinical BERT” tokenizer, which is then used as input data to the classifier
model.

5.3 BioMed-RoBERTa

BioMed-RoBERTa [88] is a recent model initialized from RoBERTa-base, is pre-trained
for 12.5K steps with a batch size of 2,048 using 2.68M scientific papers (7.55B tokens)
from Semantic Scholar [52, 3]. The vocabulary size of this model is 50,265 tokens with 768
features, which is acquired using BPE (byte pair encoding[120]) word pieces with \u0120
as the special signaling character. The “biomed roberta base” tokenizer from HuggingFace
is used for tokenization.

5.4 Term Frequency-Inverse Document Frequency

TF–IDF stands for Term Frequency-Inverse Document Frequency is a mixture of two sepa-
rate terms, namely Term Frequency (TF) and IDF. This metric says how important a word
is to a document in a document set. Term Frequency (TF) is defined as the frequency of a
term in a document [39]. Term Frequency (TF) assumes equal weightage to all the words,
including the words which are commonly occurring, while IDF gives more importance to
words that are frequently found in a set of documents. By multiplying the number of
times, a word appears in a document (Term Frequency (TF)) and the number of times a
word occurs in several documents (IDF), the statistical measure is used to evaluate words
based on their value among the rest of the terms. Therefore each sentence should have
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representation according to the meaning of each word in the sentence. The calculation of
TF–IDF for a word is as given below:

tfi,j =
ni,j∑
k ni,j

idf(word) = log(
N

dft
)

With the above two equations the score for every word can be obtained, which is
represented as:

wordi,j = tfi,j × log(
N

dft
)

where the tfm,nis the number of times a word i appear in document j, dfi is the number
of documents with the word i, and the total number of documents is represented by N .
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Chapter 6

Analysis of Language Embeddings for
Classification of Unstructured
Pathology Reports

In order to achieve the best classification for the free-text pathology reports, various trans-
former base models are analyzed and the best medical transformer model for our DNN
architecture is chosen. This chapter explains the data preprocessing steps performed on
the pathology report texts, the experimental setup, evaluation metrics, and results.

6.1 Data Preprocessing

The main challenge in classification with DNN using text data is transforming the data into
a clean format, which can be converted into numerical vectors. Therefore, before initializing
the data preprocessing step, all samples consisting of empty documents were removed.
Further, all bullet numberings, stop-words, and special-, numeric-, or null-characters are
removed. Occurrences of spatial dimensions of tumor or organ size were also standardized
by converting l × b × h cm into a single entity with no spaces (i.e., as lxbxhcm). The
preprocessing steps are summarized as in the Figure 6.1.

After data preprocessing, to estimate the model’s performance on unseen data, we have
performed the k-fold cross-validation with k = 5.
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Figure 6.1: Data Preprocessing steps

6.2 Experimental Setup

In this section, we will discuss the experimental setup of our analysis. Figure 6.2 depicts
the DNN topology we have used. The main purpose of this network is to analyze the
word embeddings as an initial investigation for NLP in Digital Pathology. The proposed
network can be customized with one or two input layers based on the analysis. Firstly, the
data is preprocessed and based on the maximum length of tokens amongst all the prepro-
cessed reports; we chose 300 as the maximum length of each report. To understand the
effectiveness transformer models, respective tokenizers of BioBERT, Clinical BioBERT and
BioMed-RoBERTa are used to tokenize the data. In the case of TF–IDF, the preprocessed
text is vectorized with maximum features of 300 and a minimum threshold value of 5. The
tokenized data is then converted to an array of vectors which is given as the input to the
DNN.

For the DNN having single input, the respective token embeddings from the pre-trained
word embedding model or feature vectors from TF–IDF vectorization along with their
labels are passed to the classifier for training. On the other hand, for the DNN having
dual input, both the token embeddings from the language models and the feature vectors
calculated using TF–IDF, along with their labels, are given as input to the model.

For analyzing the contextualized word embedding models, we have extracted the weights
from the respective pre-trained model’s word embedding layer. The weights are then con-
verted into an embedding matrix, which is later initialized as weights to the embedding
layer in our DNN classifier.
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Figure 6.2: Deep Neural Network Topology
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The word embeddings obtained from the pre-trained model tokenizer are passed through
the Embedding Layer, followed by the Bidirectional LSTM layer. In parallel, the TF–IDF
feature vectors are passed through the dense layer with “ReLU” activation function. The
respective vectors from both the layers are concatenated and are then passed through the
dense layer with “ReLU” activation function, followed by a dropout layer with the dropout
rate of 0.3. The vectors are then finally sent to the dense output layer having the “softmax”
activation function.

The model is trained using Adam optimizer, which uses the stochastic gradient descent
method based on adaptive estimation of first-order and second-order moments. First, the
optimizer is initialized with the default learning rate of 0.01. Regarding the loss function
used for the DNN classifier, we used “categorical cross-entropy”, a multi-class classification
task. Then, the best vectorization method is decided based on the evaluation metrics such
as precision, recall, F1-Score and classification accuracy, calculated as an average of all the
five folds cross-validation. The results obtained are mentioned in Section 6.4.

6.3 Evaluation Metrics

To evaluate the performance of the classification model, precision, recall, F1-score and
accuracy are used as evaluation metrics. Precision is defined as the percentage of pertinent
texts to the number of matches of the human judgment outcomes. Recall is the ratio of the
amount of relevant text and the text in the human judgemental system. F1-score, known as
the harmonic mean of precision and recall, is one of the significant key evaluation metrics
of the whole experiment. Finally, accuracy is defined as the ratio of correctly predicted
observations to the total number of observations. The formulas for precision, recall, F1-
score and accuracy are as follows-

Precision =
TP

TP + FP

Accuracy =
TP+TN

TP+TN+FP+FN

Recall =
TP

TP+FN

F1score =
2*Precision*Recall

Precision+Recall
=

2*TP

2*TP+FP+FN

Where TP is called true positive, TN is a true negative, FP is false positive and FN is
a false negative.
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Vectorization Method Precision Recall F1-Score Accuracy
BioBERT alone 0.76 0.78 0.76 79.76%
BioMed-RoBERTa alone 0.83 0.84 0.83 81.03%
Clinical BioBERT alone 0.80 0.81 0.81 81.29%
TF-IDF alone 0.81 0.78 0.79 88.90%
BioMed-RoBERTa plus TF-IDF 0.90 0.93 0.91 90.58%
BioBERT plus TF-IDF 0.88 0.92 0.90 91.65%
Clinical BioBERT plus TF-IDF 0.91 0.92 0.91 93.77%

Table 6.1: Evaluation of vectorization methods for the classification of disease types with
a DNN classifier

6.4 Results

This section describes the quantitative results obtained by our experiments which show that
our approach of combining contextualized word embeddings along with TF–IDF feature
vectors provides best results than the model with a single input. The results of experiments
using various vectorization techniques using DNN classifier for disease type classification
on unseen data is shown in Table 6.1. Amongst the vectorization techniques used, Clinical
BioBERT embeddings in combination with TF-IDF feature vectors yields the best accu-
racy of 93.77%, the precision of 0.91, F1-score of 0.91 and recall of 0.92. The next best
were the combinations of BioBert with TF-IDF and BioMed-RoBERTa with TF-IDF. We
believe this is because the Clinical BioBERT embeddings are generated from the language
model that is initially pre-trained BioBERT which is trained on a medical corpus and then
further trained on clinical texts with similar terminology, whose words are more likely to
appear in pathology reports. Also, TF–IDF vectorization on these reports contributes to
give important information about the word distributions in a pathology report. Thus the
combination of them performed the best on our classification model. A tedious and error-
prone task in this field is creating an embedding for cancer and tumor detection phrases
from any given pathology report.

Retrieving the disease type is one of the most critical aspects of deciphering a pathology
report, which will be very useful while combining content-based image retrieval with visual
information. In addition, the accuracy obtained by these models supports the use of
machine learning techniques to extract meaningful and relevant information from pathology
reports.
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Chapter 7

Histopathology Image Classification
using Attention Mechanism and
Instance Level Clustering

This chapter explains the idea behind the histopathology image classification architec-
ture, preprocessing steps that include WSI segmentation, patching and feature extraction,
experimental setup and training and finally, the results obtained.

7.1 Computational Hardware and Software

Due to the large memory requirements, the WSIs are stored in Compute Canada in the
home space and project space file system. The initial segmentation and patching steps
are performed using 2 x Intel E5-2683 v4 Broadwell @ 2.1GHz allocating three CPUs per
task. For feature extraction from the patches obtained from the pre-trained neural network
model of ResNet50, we used batch-wise parallelization using P100-PCIE GPUs to speed
up the process. For processing the WSIs, openslide, OpenCV and pillow libraries are used,
and for loading the data and training the DL models, PyTorch is used.

7.2 Histopathology Image Classification Architecture

The main idea behind the architecture is from [92] which built on the Multiple Instance
Learning (MIL) framework and is a DL based weakly-supervised technique. The archi-

37



tecture considers each WSI as a bag that consists of hundreds of thousands of patches,
known as instances. The model is built with two parts. First, the instance level cluster-
ing, which is used to refine the feature space and second, the attention mechanism, which
calculates attention of all the patches, thus informing each patch importance in slide-level
classification. Then, the slide-level representation is calculated as an average of all patches’
attention scores. Then, each slide level representation is examined by the final classifica-
tion layer. Finally, the probability score for each class is calculated using the “softmax”
activation function, thus predicting the class of the whole slide image.

The Multiple Instance Learning (MIL) [62] algorithm was developed for binary-level
classification, for example, positive and negative labels. This algorithm classifies a WSI to
a positive label, even if one patch amongst the instances is classified as positive. Otherwise,
if all the patches are classified into a negative label, the whole WSI is classified as negative.
Despite having thousands of instances or patches, a standard MIL algorithm uses max
pooling operation, thus using the gradient signal from the highest calculated patch to
update the learning parameters of the model, which is a significant drawback. So, instead
of max pooling, attention-based pooling is adopted in the model used. With the attention
scores predicted by the network and the ground truth slide-level labels, pseudo labels are
created to classify the patches into highly attended and weakly attended by the instance
level classifier, thus helping in visualization.

7.3 Pre-processing of Whole Slide Images

Segmentation and Patching

Due to the large dimensions of WSIs, it is not possible to train the deep learning models
directly. The experiments start by tissue segmentation of the WSIs into holes and tissue
boundaries where each of the WSI is downsampled to a lower resolution. The downsampled
images are then converted from RBG to HSV (Hue Saturation Value) scale. The edges are
then smoothed out using median blurring. The binary mask for the tissue regions in the
foreground is calculated, and morphological closing is done to fill up tiny holes and gaps
in the image. Based on the threshold area, the contours on the detected objects identified
in the foreground are filtered. Then images are stored for further downstream processing,
keeping the segmentation mask on each of the WSI available for optional visual inspection.
An example of image segmentation is shown in Figure 7.2. On the other hand, a text file is
also generated, consisting of all the preprocessed files and corresponding edited files with
the set of segmentation parameters used.
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Figure 7.1: A Segmented Pathology Whole Slide Image

Figure 7.2: Downsampled Visualization of Pathology Whole Slide Image

Once the segmentation step is done, all the WSIs are patched with the dimensions of
256 × 256, and the patches are stored with their coordinates along with their metadata
in hdf5 format. The number of patches extracted from each WSI is around hundreds of
thousands as each of them is around 40x magnification.
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7.4 Feature Extraction

Using a deep CNN, a low-dimensional feature representation of each patch is computed
for each slide, which serves as input to the model. This is done to reduce the training
time and reduce the computational cost. For feature extraction, we used a pre-trained
CNN model, ResNet50, which is initially trained on the ImageNet dataset. Then, by using
adaptive mean-spatial pooling after the 3rd residual block of the ResNet50 network, each
patch with dimension 256×256 is converted into a feature vector of dimension 1024. Thus,
by converting raw pixels to low-dimensional features, it is possible to fit all the patches
belonging to a WSI into GPU memory at a time.

7.5 Experimental Setup and Training

Figure 7.3: Model Architecture with Gated Attention Unit and Instance Level Clustering

First, we segment and patch the gigapixel wide WSIs into tiny patches of dimension
256 × 256 from which the features are extracted from the patches using transfer learning
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technique. The features are extracted from the ResNet-50 model with an output feature
vectors of dimension 1024, with the representation ik, where k is the total number of
patches. These features are then passed to a fully connected layer W1 of dimension 512,
jk, where (jk = W1 × zTk ). The 512-dimensional vector jk is passed to the gated attention
network with two layers Ua and Va, also known as the attention backbone.The two layers are
made up of “Tanh” and “sigmoid” activation function and 384 nodes each. The attention
of all the patches belonging to WSI and the slide-level representation from the attention
scores of the all the patches are calculated as shown in the equations 7.1:

ak =
exp[Wa(tanh(Vaj

T
k ) · (sigm(Uaj

T
k )))]∑N

k=1 exp[Wa(tanh(VajTk ) · (sigm(UajTk )))]
(7.1)

The slide-level representation hslideis calculated by aggregrating the attention scores of
all the patches as given in the equation 7.2:

hslide =
N∑
k=1

akjk (7.2)

Sslide = Wch
T
slide (7.3)

The unnormalized slide-level score Sslide, is calculated through the classifier layer Wc,
as shown in the equation 7.3. The probability is calculated for each class using the softmax
function to predict the slide-to-slide level score.

The model also consists of an instance-level classifier after the 512-dimensional fully
connected layer W1. There are “m” classifiers depending on the total number of labels
in our classification problem. In our case, there are seven binary instance classifiers. The
weights belonging to each of the clustering network “m” is denoted as Winst,m ∈ R2×512 and
the score predicted for kht patch is given by Pm,k, where Pm,k = Winst,mj

T
k . The attention

values are used as the pseudo labels for each WSI for every training iteration to supervise
the cluster. Not all the patches of a WSI are used for clustering, rather the patches are
sorted in descending order, and the top-k and bottom-k patches are used for clustering for
a given ground-truth label. While the top-k patches are set out to be positive evidence for
the class, the bottom-k patches are denoted as negative evidence. In our experiment, we
set the ‘k’ value to 15.

While the standard cross-entropy loss function is used for the classification part, smooth
top1 SVM loss is used for the instance-level clustering task. The total loss of a given WSI
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is calculated as the sum of losses obtained from slide-level classification and instance-level
clustering. The total loss is calculated and is backpropagated through the network, and
the weights are updated during training.

The Adam optimizer with L2 decay of 1e-5 and learning rate of 2e-4 is used to train the
model. In order to generalize the model’s performance, ten-fold cross-validation is used,
and the model is trained for 50-200 epochs based on the early stopping criteria. Finally,
the best model with low validation loss is saved and is tested on the test set, and the results
are discussed below, and the classification model is shown in Figure 7.3.

7.6 Results

The results obtained are promising as performance on the test set by the model produced an
accuracy of 90.12%, with the precision of 0.89, recall of 0.90 and F1-score of 0.90. Also, the
visualizations obtained on a few WSIs are shown in the figure 7.4. The attention heatmaps
obtained for the WSIs are used to identify the tumor tissue as Regions of Interest. The
attention scores are normalized between 0 and 1.0, where the value 0 represented negative
evidence of the tumor while 1.0 represented strong evidence of the tumor patch. Using
a diverging colormap, the normalized scores are converted into RGB colors in the slide,
this enabling excellent visualization and interpretability. While high attention regions are
displayed in red color in the attention map, the blue color regions are of low attention
depicting negative evidence of tumor.
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Figure 7.4: Attention Maps of Whole Slide Images
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Chapter 8

Combined Classification of
Histopathology Images and Reports

With the increase in the number of histopathology images and their respective reports
these days, we are interested to know how pathology reports corresponding to a WSI
aid in classification. The goal is to construct a single classification system for WSIs and
pathology reports together, which uses the features of both reports as well as images. First,
the weights are extracted from the second last layer of the DNN which has 512 nodes in
the classification model for text as well as from the image classification model. Then the
extracted features are used as the inputs to the model, which are concatenated and used
for classifying the histopathology images and their respective reports to their disease type.
As we can see, both the histopathology images and their reports are quite varied. Each of
the images is gigapixel wide, and for the texts, each of the reports come in various form
and structure with varying levels of details in it. The ultimate goal of the experiment is
to identify a data point, which is an entire record of a patient at a point in time, to what
disease it is. This chapter elaborates on how we extracted the image and text features and
combined them for classification, experimental setup, and the results.

8.1 Feature Extraction from Images

Understanding the content of images is hard, especially medical-related and, more precisely,
histopathology images. Unless with the help of a pathologist, we cannot easily understand
the information a WSI holds. The images are segmented, patched and the patches are sent
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through a gated attention unit in the network. The weights after training the model are
extracted from the second last layer of the DNN after the instance level clustering. The
weights are saved in a pickle file which is used as image input to our experiment.

8.2 Feature Extraction from Texts

As with medical images, understanding medical reports is very challenging as they consist
of medical terminology, each report is written differently and they are highly unstructured.
In Chapter 6, we leveraged a pre-trained machine learning model using transfer learning,
where one takes a well-trained model from one dataset or domain and applies it to a new
one. Thus clinical BioBERT, which was pre-trained on clinical corpora, was used in our
experiment as its relevant to use it in our reports, which are clinical related. The best
model finalized was having the features from the pre-trained clinical BioBERT and TF-
IDF features. We extracted the features of the trained reports from those reports from
the layer before the final fully connected dense layer. The extracted weights are saved in
a pickle file and are used as text input to our experiment.

8.3 Experimental Setup

This section explains the experimental setup used for our combined analysis. First, each of
the WSI vector along with its report text vector is given as the input to the DNN model.
These features are initially concatenated, and the combined feature vector is passed to the
dense layer. Next, the features are sent to the batch normalization layer, which standardizes
the inputs to a layer for each mini-batch in a DNN. This layer stabilizes the learning process
and dramatically reduces the number of training epochs required to train deep networks.
The normalized batch features are then sent to a series of dense layers, batch normalization
layer and dropout layer, with the number of neurons in the dense layer being 256, 128, 64,
16; while that of the dropout values being 0.8, 0.6, 0.6, 0.4, respectively. Being a multi-
class classification problem, with a total number of classes being 7, our neural network has
the final layer as a dense layer with seven neurons with a “softmax” activation function.
The overall architecture is shown in Figure 8.1.

The model is trained using Adam optimizer, which uses the stochastic gradient descent
method based on adaptive estimation of first-order and second-order moments. The op-
timizer is initialized with the default learning rate of 0.01. Regarding the loss function
used for the DNN classifier, we used “categorical cross-entropy”. Therefore, the combined

45



Figure 8.1: Architecture of the Combined Model
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Table 8.1: Performance accuracy of Histopathology Reports only, Histopathology Images
only and their combination

Histopathology Images Only Histopathology Reports Only Combination
90.12% 93.77% 95.7%

model is different from the model used to classify images and texts alone. The model is
trained with 5-fold cross-validation, and its performance is evaluated based on the average
of all the five folds. The section below elaborates the results obtained.

8.4 Results

This section describes the quantitative results obtained by our experiment, which combines
the image features along with the text features for classification, where the features are
obtained from a layer in the respective DNN models with 512 dimensions. In order to
understand and justify the performance gains of the model, it makes sense to look at each
component separately and compare them to the final model, as in Table 8.1.

Disease Type Precision Recall F1-Score
Kidney Renal Papillary Cell Carcinoma 0.91 0.93 0.92
Kidney Renal Clear Cell Carcinoma 0.98 0.97 0.98
Lung Adenocarcinoma 0.97 0.93 0.95
Lung Squamous Cell Carcinoma 0.91 0.94 0.93
Testicular Germ Cell Tumors 0.96 1.00 0.98
Kidney Chromophobe 0.91 0.88 0.89
Thymoma 0.93 1.00 0.96

Table 8.2: Classification Report of the Image-Text Model

The combined model gave an excellent accuracy score of 95.7% and the classification
report is as shown in Table 8.2 with a precision value of 0.96, recall value of 0.94 and
F1-score of 0.96. The results are quite interesting where the medical text-only analysis is
slightly better than the histopathology image-only analysis (while at the same time being
a lot cheaper to compute). However, it is striking that the histopathology images alone can
also deliver reasonable classifications. Furthermore, given that the two are competitive in
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performance, we expect that the combination of both the images and the text could lead
to increased performance since they are picking up on different things. Indeed, when we
look at the combined model performance, we see a significant boost in accuracy by 5%.
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Chapter 9

Conclusions and Future Directions

9.1 Conclusions

In this paper, we presented three classification tasks and performed a comparative study.
First, we performed histopathology image classification on the TCGA image data. Sec-
ond, we experimented on the pathology reports classification, and finally, we created an
architecture to combine both the images and their reports features to classify. The total
number of classes available for the classification tasks was 7, representing disease types
that belong to the organs kidneys, lung, thymus and testis.

Concerning the pathology images classification, we implemented an architecture that
calculated the patches’ attention scores and has binary instance-level clustering for classi-
fication. Firstly, the images which are gigapixel wide are segmented and patched. Features
are then extracted from the patches from a pre-trained CNN, ResNet-50 model, which is
pre-trained on the ImageNet dataset. Next, the features are extracted from the third resid-
ual block, thus obtaining a 1024 dimensional vector for all the patches. Feature extraction
was performed to increase the training time and to decrease the computational cost of the
model. Finally, the 1024 dimensional vector patches are passed through the fully connected
layer with 512 hidden units sent to the gated attention unit, where the attention scores
are calculated. The attention scores are used to perform instance-level clustering while
sending them to the final output layer for prediction. The test accuracy obtained by the
model is 90.12%.

Concerning the pathology reports classification, we experimented with unstructured
free-text pathology reports with medical terminologies. In order to classify the reports
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into seven different tumor types, we examined the pathology reports. We reported several
experiments by evaluating the word embeddings of the pre-trained models, the TF–IDF
vectorization technique and also the combination of both. We found that the combination
of TF–IDF with pre-trained model word embeddings consistently outperformed contextu-
alized word embeddings and TF–IDF when performed individually. The best performance
for pathology report classification was observed for the model that concatenated the embed-
dings from Clinical BioBERT with the TF–IDF vectors. This seems to form a reasonable
baseline and provides valuable insights into the future of digital pathology report analysis.
The text classification experiment reported accuracy of 93.77%.

Finally, to understand the performance of the classification model when fusing the image
and text features were performed, which gave interesting results. The inputs given to the
final combination classification model were the features extracted from the layer before
the final output layer of both the image and text classification experiments. The features
of the histopathology images and their corresponding pathology reports are concatenated
and are passed through the DNN. This combined model gave a classification accuracy of
95.7%, thus elevating the importance of features.

9.2 Future Studies

The study of histopathology images and reports in machine learning is very vast. The
proposed system can be adapted for diverse tasks associated with histopathology image-
text-based classification relevant to clinical settings. Improved results can be obtained by
changing the model design and its parameters. Future studies will investigate the combined
model’s performance on other datasets with more comprehensive cancer cases. Also, deep
analysis of the words, embeddings and corresponding attention areas of the images can be
performed.

Furthermore, Autoencoder can be implemented to reduce the histopathology image
size by compressing without losing essential features as it can regenerate up to 90% of the
original images. The study can also be extended to the automatic generation of reports
given a histopathology image. Therefore with future perspectives and further development
in this field, we can transform the personalized diagnosis into an improved diagnostic
system, thus reducing the workload of pathologists.
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[4] Guilherme Aresta, Teresa Araújo, Scotty Kwok, Sai Saketh Chennamsetty, Mo-
hammed Safwan, Varghese Alex, Bahram Marami, Marcel Prastawa, Monica Chan,
Michael Donovan, and et al. Bach: Grand challenge on breast cancer histology
images. Medical Image Analysis, 56:122–139, Aug 2019. Elsevier BV.

[5] Morteza Babaie, Shivam Kalra, Aditya Sriram, Christopher Mitcheltree, Shujin Zhu,
Amin Khatami, Shahryar Rahnamayan, and Hamid R. Tizhoosh. Classification and
retrieval of digital pathology scans: A new dataset. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 760–768,
2017.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2016.

51

https://en.wikipedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://en.wikipedia.org/wiki/File:Recurrent_neural_network_unfold.svg


[7] Meriem Bahi and Mohamed Batouche. Deep learning for ligand-based virtual screen-
ing in drug discovery. In 2018 3rd International Conference on Pattern Analysis and
Intelligent Systems (PAIS), pages 1–5, 2018.

[8] Y. Bengio, P. Simard, and P. Frasconi. Learning Long-Term Dependencies with
Gradient Descent is Difficult. IEEE Transactions on Neural Networks, 5(2):157–166,
1994.

[9] Yoshua Bengio. Learning Deep Architectures for AI. Found. Trends Mach. Learn.,
2(1):1–127, January 2009.

[10] Kaustav Bera, Kurt Schalper, David Rimm, Vamsidhar Velcheti, and Anant Mad-
abhushi. Artificial intelligence in digital pathology — new tools for diagnosis and
precision oncology. Nature Reviews Clinical Oncology, 16, August 2019.

[11] E Biganzoli, P Boracchi, L Mariani, and E Marubini. Feed forward neural networks
for the analysis of censored survival data: a partial logistic regression approach.
Statistics in medicine, 17(10):1169—1186, May 1998.

[12] David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, May 2003.

[13] Ali Borji, Dicky N. Sihite, and Laurent Itti. What/where to look next? modeling
top-down visual attention in complex interactive environments. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 44(5):523–538, 2014.

[14] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-
rithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, COLT ’92, page 144–152, New York, NY, USA,
1992. Association for Computing Machinery.

[15] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[16] Leo Breiman. Arcing classifier (with discussion and a rejoinder by the author). The
Annals of Statistics, 26(3):801 – 849, 1998.
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José M. Celaya-Padilla, Jorge I. Galván-Tejada, Hamurabi Gamboa-Rosales,
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