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Abstract

Modern vehicles are becoming more accessible targets for cyberattacks due to the pro-
liferation of wireless communication channels. The intra-vehicle Controller Area Network
(CAN) bus lacks sender authentication, exposing critical components to interference from
less secure, wirelessly compromised modules.

To address CAN’s vulnerability, this thesis proposes vProfile, a sender identification
system based on voltage fingerprints of electronic control units (ECU). vProfile exploits
the physical properties of ECU output voltages on the CAN bus to determine the authen-
ticity of bus messages, which enables the detection of both hijacked ECUs and external
devices connected to the bus. We show the potential of vProfile using experiments on
two production vehicles with precision and recall scores of over 99.99%. We also show the
impact of temperature and battery voltage variations on vProfile and provide a method to
adapt to those changes. The improved identification rates and more straightforward design
of vProfile make it an attractive improvement over existing methods.
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Chapter 1

Introduction

Modern vehicles are becoming more connected, with newer models including cellular net-
work interfaces to augment their comfort and convenience. However, having more connec-
tivity implies new attack vectors [5]. These new entry points allow attackers to remotely
infiltrate systems without physical access, which is particularly concerning when consid-
ering the fundamentally insecure yet widely-used Controller Area Network (CAN) bus for
intra-vehicle communication.

CAN is an unauthenticated channel, designed in an era where cybersecurity was of little
concern for automobiles due to their limited connectvitiy [17]. The lack of authentication
means that a node on the bus, called an electronic control unit (ECU), can imitate any
other ECU without raising suspicion. This deficiency is a significant flaw since ECUs can
control critical system aspects, such as the brakes and airbags in a car.

Authentication methods based on cryptographic schemes, like message authentication
codes, are quick to present themselves but are challenging to implement in CAN commu-
nications. The issue with using cryptography is that CAN has a low bandwidth, allowing
only 8 bytes of data per message. Furthermore, additional computational power would
be needed to achieve the recommended security levels while maintaining real-time con-
straints [19]. Instead of an active approach, one can passively monitor the bus traffic or
its analog-domain information for unusual behavior. This method is typically known as an
intrusion detection system (IDS). Research on IDSs exists in more than just the automotive
industry [4, 35].

This thesis proposes vProfile, a system for verifying the origin of CAN messages by us-
ing the distinct electrical properties of a transmitting ECU. Specifically, we use the CAN
bus voltage as a reputable source of analog-domain information. vProfile can integrate

1



into an IDS to enable message sender identification and the ability to detect unauthorized
transmissions. Because of the versatility of CAN, with use in medical equipment, ma-
rine electronics, and factory automation [31], vProfile’s applicability exceeds the vehicular
domain.

1.1 Problem Statement

As mentioned previously, there are significant vulnerabilities in CAN’s design and current
literature shows several different successful attacks on CAN networks, including the work by
Miller and Valasek on a Jeep Cherokee [24,25]. The authors send arbitrary CAN messages
by infiltrating the infotainment system through the car’s cellular connection. Miller and
Valasek were able to remotely control the engine and brakes of the vehicle, among other
components. Other works also describe this message injection attack [3, 17]. Additional
attack types include:

• Inducing faults to disable an ECU [6,15,32]

• Denial-of-Service (DoS) [3, 20]

• Malicious code injection [3, 17,20]

Electronics contributed to about 10% of a car’s cost in 1980 and [11] anticipates that
this will increase to 50% by 2030, meaning that CAN’s deficiencies are becoming harder
to ignore. This has garnered the attention of both industry, where there exist companies
that specialize in vehicular IDSs [1, 12], and government agencies [10, 30, 33]. With fully
autonomous vehicles on the horizon, the human override disappears, leaving the passengers
of compromised vehicles and other road users entirely at the attacker’s mercy.

Thus, the problem statement for this thesis is: given a system that communicates
through CAN, can we effectively and efficiently monitor the transmissions and detect mes-
sages from sources that should not be authorized to send them (i.e., impersonator devices).

1.2 Related Work

We present some existing literature that also uses analog-domain information to detect
intrusions on CAN networks.

2



1.2.1 Voltage-Based

These works, similar to vProfile, also sample analog CAN voltages and exploit some inher-
ent, immutable properties: a method by Murvay and Groza [28]; Cho and Shin’s Viden [7];
Kneib and Huth’s Scission [19]; a system by Choi, Jo, Woo, Chun, and Park [8]; Choi, Joo,
Jo, Park, and Lee’s VoltageIDS [9]; and Foruhandeh, Man, Gerdes, Li, and Chantem’s
SIMPLE [13]. These are often referred to as voltage-based IDSs. All of the methods
that ran experiments on actual vehicles measured the CAN voltage through an existing
connection in each system, such as the OBD-II port.

Murvay and Groza use a sampling rate of 2 GS/s at 12 bits for a 10 kb/s bus. They
first remove noise from the input voltage data with a low pass filter and then store the
output as a fingerprint for each ECU. They investigate three signal processing techniques:
mean square error (MSE), convolution, and mean-value. This method’s disadvantages are
the high sampling rate and the high false classification rate. Murvay and Groza used an
oscilloscope in their work. However, an with the specifications required for this method
is expensive (e.g., the Texas Instruments ADC12D1000). They performed the MSE and
convolution experiments on two sets of ten CAN transceivers and yielded an average false
positive rate of 3.1% (with a standard deviation of 3.6%) and an average false negative
rate of 6.0% (with a standard deviation of 17.9%).

Viden is not so much an IDS but rather a method to enhance an existing IDS by
providing the ability to identify the attacking device. It uses a sampling rate of 50 kS/s
for a 500 kb/s CAN bus. Viden creates multiple sets of tracking points from non-ACK
voltage samples (voltages not taken from the acknowledgment (ACK) slot of a message)
and uses them to create a voltage profile where each profile is unique to an ECU. When the
IDS detects an intrusion, Viden must first create an attack profile using multiple malicious
messages before identification can occur. This method’s drawbacks include the complicated
voltage profile creation process, the need to create an attack profile before classification,
and the requirement of an underlying IDS.

Scission; Choi, Jo, Woo, Chun, and Park’s method; and VoltageIDS extract features
from the signal to train a machine learning algorithm. Scission samples a 500 kb/s CAN
bus at a rate of 20 MS/s. The message is split into bits and binned into one of three
groups based on certain criteria. It then uses the Relief-F algorithm supplied by the Weka
3 toolkit for time domain feature selection. Scission uses the logistic regression machine
learning algorithm for training and classification. Choi, Jo, Woo, Chun, and Park’s system
samples at 2.5 GS/s and uses a resolution of 12 bits. They use LibXtract to calculate 40
features in both the time and frequency domain and keep the best eight time domain and
best nine frequency domain features as ranked by the FEAST toolbox. Model training
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uses a supervised learning algorithm. This method must first extract its 17 features from
a message before it can be classified. This approach’s two main disadvantages are the high
sampling rate and how it can miss messages due to its long processing time. During the
1.02 ms required to extract all 17 features, the authors found that two messages can be
transmitted on average, assuming a 500 kb/s bus at 50% load. The authors of VoltageIDS
tried sampling rates from 20 MS/s to 2.5 GS/s and found that 250 MS/s at 8 bits for a
500 kb/s bus still produced acceptable results (though 2.5 GS/s did exhibit the highest
scores). They extract and compute the mean for the dominant bit steady states and
the rising and falling edges. Next, up to 20 features are computed for each of the three
sections, resulting in up to 60 total features. They tried Linear Support Vector Machines
and Bagged Decision Trees but found that the former performed more favorably for this
application. For detection, they must first extract the same features used for training from
the incoming CAN message. All three methods use elaborate pre-processing and feature
selection processes that introduce non-negligible delay into the detection pipeline.

SIMPLE uses a 1 MS/s sampling rate at 12 bits for its real-vehicle tests. For a differ-
ential signal, it samples every dominant and recessive state in a CAN message eight times
and then computes their sample-wise averages, resulting in 16 features. SIMPLE does this
for messages from each ECU. Next, it performs Fisher-Discriminant Analysis to reduce
the dimension of the features. It then uses a binary search algorithm to find Mahalanobis
distance thresholds for each ECU based on equal error rates. For detection, incoming CAN
frames undergo the same feature extraction procedure as the training data. SIMPLE then
computes the Mahalanobis distance between the features of the incoming message and
the stored template for the claimed transmitting device and compares the result to the
previously calculated threshold.

1.2.2 Timing-Based

The other main type of system uses timing characteristics present on the network to detect
anomalous behavior. We briefly summarize some existing techniques.

Gutierrez, Juliato, Ahmed, and Sastry propose a message-based time-series IDS which
detects deviations in expected traffic patterns for advanced driver-assistance system mes-
sages [16]. Cho and Shin present Clock-based Instrusion Detection System (CIDS) in [6]
where they estimate each ECU’s accumulated clock offset (the difference between the ideal
and actual arrival time of periodic messages) using the recursive least squares algorithm.
In [34] and [36], the authors, similar to CIDS, fingerprint ECUs using their clock offsets.
However, they additionally consider how the offsets change with fluctuating temperature
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and leverage that in their algorithm. Moreno and Fischmeister attach two differential
amplifiers to the bus, which allows them to locate the position of the transmitting device
using the propagation delay difference [26].

1.3 Contribution

This thesis proposes vProfile, a voltage-based sender identification system for CAN net-
works that exploits the unique analog voltage waveform characteristics of messages sent
from different ECUs. The main contribution is a technique that:

• Uses a lightweight detection algorithm that uses only a single feature

• Exhibits low misclassification rates on two real-life vehicles

• Minimizes latency since it requires analyzing only a section at the beginning of mes-
sages

• Is simple to retrofit because it needs only a connection to the CAN bus

• Has a higher potential to be implemented on less expensive embedded hardware due
to its low sampling rate, resolution, and computational requirements

We also present three enhancements that can improve vProfile’s detection rate and
allow it to react to environmental changes.

1.4 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 gives background on CAN and
concepts relating to vProfile’s operation. Chapter 3 describes vProfile’s implementation;
Chapter 4 shows our experimental procedures and results for classification rate, environ-
mental effects, and latency; and Chapter 5 discusses three optional enhancements to vPro-
file that can improve detection rates, including an online model update algorithm. Finally,
Chapter 6 closes with a summary of the thesis, some limitations of vProfile, and future
work.
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Chapter 2

Background

This chapter presents background information on CAN as well as mathematical and theo-
retical concepts related to our proposed technique. The main topics we discuss are CAN’s
physical and transfer layers and the CAN bus voltage property that inspired vProfile.

2.1 CAN Overview

Robert Bosch GmbH released CAN in 1986, creating a protocol that is now ubiquitous
not only in the automotive industry but also in aerospace and factory control, among
others [29]. We can attribute CAN’s popularity to its low cost, light protocol management,
deterministic arbitration, and its inherent error detection and retransmission features [18,
29].

2.1.1 Physical Layer

There are two main physical layer implementations, single-wire and two-wire. We will focus
on two-wire as described in ISO 11898-2 because it is the most popular variant, including
in the vehicles we used for experiments. Henceforth, all mentions of CAN will mean the
two-wire version.

CAN uses a differential signaling scheme where CAN High (CAN H) and CAN Low
(CAN L) identifies the two wires. The bus can take one of two complimentary values:
dominant or recessive. These represent logical ‘0’ and logical ‘1’, respectively, assuming
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a wired-AND bus implementation (assumed for the rest of the thesis) [2]. The bus holds
the recessive state when idle. Typically, CAN H is driven to 3.5V and CAN L is driven to
1.5V to send dominant and both CAN H and CAN L maintain 2.5V to send recessive, but
the actual state is determined by the differential voltage. This is visualized in Figure 2.1.

  

3.5 V

1.5 V

2.5 V

Recessive Dominant Recessive

CAN_H
CAN_L

Figure 2.1: CAN bus differential signaling.

Synchronization

CAN is asynchronous and uses bit transitions to maintain synchronization. To ensure that
there are a sufficient number of transitions, a bit of opposing polarity is inserted after five
consecutive bits of the same value in a process known as bit stuffing. This is necessary
because CAN uses non-return-to-zero coding [2].

2.1.2 Transfer Layer

The most recent revision of CAN is version 2.0, which specifies two different message
formats: the standard frame format with an 11-bit identifier (ID) (CAN 2.0A) and the
extended frame format with a 29-bit ID (CAN 2.0B) [2]. Because vProfile testing occurred
on vehicles that employ the SAE J1939 protocol, which is based on CAN 2.0B, this thesis
explains only the extended frame format and all future mentions of data fields are with
respect to J1939 [21].

Message Frame Format

CAN specifies four frame types:
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• Data frames

• Remote frames

• Error frames

• Overload frames

We focus on the data frame as it is arguably the most important type for intrusion
detection. Figure 2.2 shows the format of an extended frame and Table 2.1 describes each
field in detail.

  

SOF Base Identifier IDESRR Extended Identifier

18 bits111 bits 10

RTR r1 r0 DLC Data

4 bits 0-64 bits0 0 0

...

CRC ACK EOFCRC 
Delimiter

ACK 
Delimiter

11 bit1 0x7F1115 bits 11

...

Figure 2.2: CAN extended frame format.

Each ID can map to only a single ECU, but each ECU can send multiple IDs. Thus,
the ID can uniquely identify the sender of a legitimate message. The source address (SA)
in the last 8 bits of the 29-bit ID exhibits this property, so vProfile needs only the SA to
detect intrusions.

Arbitration

Whenever the bus is free, any ECU may begin transmitting. If more than one ECU starts
transmitting messages simultaneously, the conflict is resolved by bitwise arbitration using
the arbitration field, consisting of the Base ID, SRR, IDE, Extended ID, and RTR fields.
This arbitration technique guarantees that neither information nor time is lost, making
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Field Length (bits) Description

Start-of-Frame (SOF) 1
Marks the start of a frame and
must be ‘0’.

Base Identifier 11
First part of the unique sender
identifier.

Substitute Remote Request
(SRR)

1
Substitutes the RTR bit in
standard frames. Must be ‘1’.

Identifier Extension Bit
(IDE)

1
Specifies the frame format. Must be
‘1’ for extended frames.

Extended Identifier 18
Second part of the unique sender
identifier.

Remote Transmission
Request (RTR)

1
Specifies the frame type. Must be
‘0’ for data frames.

Reserved Bits (r0, r1) 2
Reserved for future use. Must both
be sent ‘0’ but receivers accept
either value.

Data Length Code (DLC) 4 Length of the data (0-8 octets).

Data 0-64 Transmitted data.

Cyclic Redundancy Check
(CRC)

15
Redundancy check using
Bose–Chaudhuri–Hocquenghem
(BCH) code.

CRC Delimiter 1 Must be ‘1’.

ACK Slot 1
Sent ‘1’ and any receiver can assert
‘0’ for correctly received, valid
messages.

ACK Delimiter 1 Must be ‘1’.

End-of-Frame (EOF) 7
Marks the end of the frame and
must all be ‘1’.

Table 2.1: CAN extended frame fields.
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it suitable for safety-critical systems. During arbitration, every transmitter compares the
value of the bit they are transmitting with the bus’ value. If the values are equal, the sender
may continue. If the values do not match, however, then that unit has lost arbitration and
must stop transmission immediately [2]. Because the bus is wired-AND, it will take the
value ‘0’ if at least one ‘0’ is currently being transmitted. Figure 2.3 illustrates this, where
ECU 1 loses to ECU 0 at bit 7.

  

ECU 0

ECU 1

Bus

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12

...

...

...

ECU 1 backs off

Figure 2.3: CAN bus arbitration example where ECU 1 loses to ECU 0 during bit 7.

Because ‘0’ takes precedence over ‘1’, smaller values preempt larger ones, meaning that
CAN has an inherent message priority scheme. Figure 2.4 shows the format of the J1939 ID
and Table 2.2 describes each field in detail. We see that the Priority field first determines
a message’s priority, then its Parameter Group Number (PGN), and finally its SA. For
example, the SA of the Engine Control Module (ECM) is usually ‘0’ and the PGN for
messages about engine speed is also commonly ‘0’.

  

Priority Parameter Group Number Source Address

18 bits 8 bits3 bits

Figure 2.4: J1939 ID format.

2.2 vProfile Preliminaries

This section will describe some prerequisite concepts behind vProfile’s theory.
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Field
Length
(bits)

Description

Priority 3
Controls the message’s
priority for arbitration.

PGN 18
Indicates the type of message
(e.g., cruise control).

SA 8
Indicates the origin ECU
(e.g., ECM).

Table 2.2: J1939 ID fields.

2.2.1 Immutable ECU Property

Minute inconsistencies in manufacturing introduce random physical differences in each
ECU that are unpredictable and uncontrollable. These variations suggest that each ECU
exhibits unique electrical characteristics. Thus, we can not only uniquely identify ECUs
based on these electrical properties, but they are practically impossible for an adversary
to imitate [14]. Figure 2.5 shows the unique properties of ECUs where we plot the rising
and falling edges (together with the steady state between them, these form an edge set) of
200 voltage traces from two ECUs on a 2006 Sterling Acterra truck.

Though the traces originate from multiple SAs, it is clear that there are two distinct
waveforms, one for each ECU. The authors of [9] also use edge sets in their detection
algorithm because of their unique properties inherent to the transmitting device.

2.2.2 Distance Metrics

vProfile uses a distance metric to determine how similar the waveform of an incoming
message is to what it should be according to its SA. We describe the metrics that we
explored below.

Euclidean Distance

The first iteration of vProfile used Euclidean distance, a well-known and widely-used dis-
tance metric, and measures the distance between two points in Euclidean space. For an
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Figure 2.5: Voltage differences of messages from two different ECUs and the similarities of
messages from the same ECU.

N -dimensional dataset, the Euclidean distance between points x and y is defined by

D
E
(x,y) =

√
(x− y)T (x− y) (2.1)

where x = (x1 , x2 , ..., xN
)T is and y = (µ1 , µ2 , ..., µN

)T. For vProfile, the number of samples
in an edge set defines the dimensionality. Taking Figure 2.5 as an example where each edge
set is 100 samples, the dataset would have 100 dimensions.

Mahalanobis Distance

Mahalanobis distance measures the distance between a point and a distribution d. For an
N -dimensional dataset, Mahalanobis distance is defined by

D
M
(x, d) =

√
(x− µ

d
)T Σ−1

d
(x− µ

d
) (2.2)

where x = (x1 , x2 , ..., xN
)T is the observation, µ

d
= (µ

d,1
, µ

d,2
, ..., µ

d,N
)T is the mean of

the distribution, and Σ
d
is the covariance matrix of the distribution [23]. Note that (2.2)

reduces to the Euclidean distance between the observation and distribution mean if Σ
d
is

the identity matrix.
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Chapter 3

vProfile Overview

In this chapter, we provide a detailed description of vProfile. We explain our threat model,
including the two types of attackers that we detect and their capabilities. We then describe
vProfile’s three operational stages from how it acquires the CAN voltages to model training
and intruder detection.

3.1 Threat Model

Based on how an adversary could gain access to the CAN bus, we consider two types of
intruders:

• Hijack intruders

• Foreign intruders

Hijack intruders gain bus access by hijacking an existing ECU and can then send mes-
sages crafted by the attacker using that ECU. Foreign intruders gain access by connecting
a new device to the bus, which they can then use to send crafted messages. We assume
that the foreign device did not exist during model training.

Both hijack and foreign intruders can craft messages that appear legitimate at the
binary level, including the SA and other metadata bits. Due to the broadcast nature of
CAN, there is no need for an intruder to identify themselves with a unique SA to receive
responses. Intruders that transmit using a unique SA can be trivially detected. However,
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those that transmit under the ID of an existing, legitimate ECU cannot be detected within
the confines of the CAN protocol; this necessitates using information from a different
domain.

3.2 Functionality

This section describes the three main stages of vProfile:

• Preprocessing

• Training

• Detection

Both Training and Detection require the Preprocessing stage.

3.2.1 Preprocessing

During Preprocessing, we sample the CAN bus voltage and then extract an edge set from
every message we encounter. Thus, we can separate Preprocessing into two steps: Sampling
and Edge Set Extraction.

Sampling

First, we must sample the bus to read its voltage level. As observed in Section 1.2, there
are many choices for sampling rate and resolution. Ideally, we want as much information as
possible, but there is a point of diminishing returns. The drawback of increased detail is an
additional computational cost, which may be infeasible on embedded processors. Sampling
rates and resolutions that are too low result in a loss of identifying voltage waveform
characteristics, simplifying attacks on vProfile for foreign intruders as it facilitates imitating
the waveform of target ECUs.

Figure 3.1 shows the effects of changing the sampling rate or resolution while the other
is held constant using an edge set from a 2006 Sterling Acterra with a 250 kbps bus. We
laterally scale the traces for easier comparison in Figure 3.1a. For Figure 3.1b, we drop
the least significant bits for the lower resolutions and the negative voltages are an artifact

14



of the conversion from offset binary to volts. We observe that a sampling rate of around
10 MS/s and a resolution of 8 bits is the limit before we start deviating significantly from
the original shape.

0 20 40 60 80 100
Sample

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Vo
lta

ge
 (V

)

50 MS/s
25 MS/s
10 MS/s
5 MS/s
2 MS/s

(a) Reducing the sampling rate with a constant resolution of 16 bits.

0 20 40 60 80 100
Sample

−0.2

0.0

0.2

0.4

0.6

Vo
lta

ge
 (d

ig
iti

ze
d)

16 bits
12 bits
8 bits
6 bits
4 bits

(b) Reducing the resolution with a constant sampling rate of 50 MS/s.

Figure 3.1: Effects of reducing the sampling rate and resolution on an edge set.
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A good choice for sampling rate and resolution depends on the ECU voltage charac-
teristics of the system on which vProfile runs. For example, a system with many ECUs
with similar edge set waveforms would benefit from a higher sampling rate and resolution.
In comparison, a system with fewer ECUs and distinct waveforms could tolerate a lower
sampling rate and resolution. The experiments in Section 4.3 helped us select sampling
rates and resolutions for our test vehicles.

Edge Set Extraction

Next, we extract edge sets from the sampled bus voltage. Per Section 2.2.1, the interesting
signal characteristics for vProfile reside in edge sets. In the absence of ECU malfunctions,
these characteristics do not change throughout a transmission, so only one edge set is
required for every message [8]. Minimizing the delay from sampling to detection means
that the edge set should be extracted as early in the transmission as possible. Because
of the possibility of collisions during arbitration, any bits within the arbitration field are
considered unstable. Thus, we use the first edge set after the arbitration field. Also,
the message’s SA is decoded and paired with its edge set because we would lose that
information otherwise. We present an algorithm to extract the SA and edge set from the
voltage trace of a CAN message.

First, we define some constants:

• Bit width: The number of samples per bit of the message. For a sampling rate of 10
MS/s on a 250 kb/s bus, we found the bit width to be roughly 40 samples/bit.

• Bit threshold : The value that indicates the presence of an edge. It should approxi-
mately horizontally bisect the rising edge. Sections of a trace that start below this
threshold and end above it are rising edges and the opposite is true for falling edges.
For Figure 2.5, a threshold of 38,000 is a good starting point.

• Prefix length: The number of samples before the threshold point to extract. We
found two samples to be sufficient for a sampling rate of 10 MS/s on a 250 kb/s bus.

• Suffix length: The number of samples after the threshold point to extract. We found
14 samples to be sufficient for a sampling rate of 10 MS/s on a 250 kb/s bus

We use the prefix and suffix lengths to minimize redundant steady-state data while
capturing all of the rising and falling edges since the steady-state values are very stable,
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assuming regular system operation. We also use the lengths to normalize the edge set
length as there could be up to five bits of the same value before a falling edge.

The algorithm traverses the message while counting the number of bits and ignores
any stuffing bits. Referencing Table 2.1 and assuming that SOF is bit 0, we know that
the SA corresponds to bits 24 to 31 and bit 33 is the first bit after the arbitration field.
To maintain synchronization while ingesting the message, we align ourselves to the center
of every edge we encounter. Once we reach bit 33, we iterate until the first rising edge
and extract a prefix-length number of samples before and suffix-length number of samples
after. We then find the falling edge and extract the same number of samples. Algorithm 1
summarizes the extraction procedure.

3.2.2 Training

The Training stage of vProfile uses the collection of edge sets and their corresponding SAs
from Preprocessing to train a model. Since an ECU can send messages using multiple SAs,
we must cluster the edge sets by their SA, where a cluster represents all of the messages
sent by an ECU. If one is fortunate enough to be provided with a database containing
the target system’s ECUs and their valid SAs, it is straightforward to cluster using the
database as a lookup table (LUT). If one does not have access to such information, we can
group the data by SA and then calculate the distance between the edge sets of every pair
of SAs and cluster those with the smallest distance.

The model contains each cluster’s mean and a LUT that maps valid SAs to their cluster.
The model also needs a detection threshold so that vProfile can handle traces that do not
belong to any cluster. We determine this threshold by finding the largest distance from
an edge set to its cluster’s mean for each cluster. Algorithm 2 summarizes the training
procedure.

3.2.3 Detection

Given an edge set to classify, vProfile uses the cluster-SA LUT first to check if the ob-
served SA exists in the system. If it exists, vProfile then uses the LUT to get the cluster
according to the reported SA (the expected cluster), predicts the cluster based on the edge
set’s distance to the cluster means (the predicted cluster), and compares the two results. If
the expected and predicted clusters differ, vProfile raises an alarm. If they match, vProfile
compares the minimum calculated distance to the detection threshold with some config-
urable margin added to account for additional deviation. If the distance is greater than
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the sum of the threshold and margin, vProfile raises an alarm. Otherwise, the message is
considered legitimate. Selecting an appropriate margin is critical to vProfile’s success. A
margin that is too small can result in more false positives and a margin that is too large can
cause additional false negatives. For messages from ECUs in the training dataset, vProfile
can also determine the attack’s origin from the predicted cluster. Algorithm 3 summarizes
the detection procedure.
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Algorithm 1: vProfile edge set extraction procedure.

1 Extract(msg) begin
2 bitValues = Array[0]; // decoded message bits
3 prevBit = 0; // keep track of the previous bit
4 sameBitCount = 0; // number of consecutive bits of the same value
5 bitCount = 0; // number of bits excluding stuffed bits

6 pos = FindSOF(msg) + (bitWidth / 2); // go to middle of first bit
7 bitValues.append(GetBitValue(msg[pos]));

8 while (pos+ bitWidth) < msg.size do
9 pos += bitWidth;

10 bit = GetBitValue(msg[pos]);

11 if bit ̸= prevBit then
12 pos = AlignToEdgeCenter(msg, pos) + (bitWidth / 2);
13 prevBit = bit ;
14 sameBitCount = 1;

15 else
16 sameBitCount += 1;
17 end

18 // ignore stuffed bits
19 if sameBitCount == 5 then
20 sameBitCount = 1;
21 continue;

22 end

23 bitValues.append(bit);
24 bitCount += 1;

25 if bitCount == 31 then
26 sa = ExtractSA(bitValues);
27 else if bitCount == 33 then
28 edgeSet = ExtractEdgeSet(msg, pos);
29 break;

30 end

31 end

32 return sa, edgeSet ;

33 end
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33 GetBitValue(voltageValue) begin
34 if voltageValue ≥ threshold then
35 return 0;
36 end

37 return 1;

38 end

39 ExtractEdgeSet(msg, pos) begin
40 edgeSet = Array[0];

41 // find the next rising edge
42 while msg[pos] < threshold do
43 pos += 1;
44 end
45 while msg[pos] > threshold do
46 pos += 1;
47 end

48 for i from (pos− prefixLen) to (pos+ suffixLen) do
49 edgeSet.append(msg[i]);
50 end

51 pos += (bitWidth / 2);
52 while msg[pos] < threshold do
53 pos += 1;
54 end

55 for i from (pos− prefixLen) to (pos+ suffixLen) do
56 edgeSet.append(msg[i]);
57 end

58 return edgeSet ;

59 end
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Algorithm 2: vProfile training procedure.

1 Train(edgeSets) begin
2 if fortunate then
3 clustSaLut = ClusterByLut(edgeSets);
4 else
5 saLut = GroupBySA(edgeSets);
6 saMeans = GetMeans(saLut);
7 clustSaLut = ClusterByDist(saLut, saMeans);

8 end

9 clustMeans = GetMeans(clustSaLut);
10 clustMaxDists = Array[clustSaLut.size];

11 foreach clust ∈ clustSaLut do
12 clustMaxDists [clust ] = max(CalcDistance(clust, edgeSets, clustMeans));
13 end

14 model = (clustSaLut, clustMeans, clustMaxDists);
15 return model ;

16 end
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Algorithm 3: vProfile detection procedure.

1 Detect(model, testEdgeSet) begin
2 sa = testEdgeSet.sa;

3 if sa /∈ model.clustSaLut then
4 return ANOMALY;
5 end

6 expClust = GetCluster(model.clustSaLut, sa);
7 minDist = ∞;

8 foreach clust ∈ model.clustSaLut do
9 dist = CalcDistance(clust, testEdgeSet, model.clustMeans);

10 if dist < minDist then
11 predClust = clust ;
12 minDist = dist ;

13 end

14 end

15 if (expClust ̸= predClust) ||
(minDist > (model.clustMaxDists[predClust] +margin)) then

16 return ANOMALY;
17 end

18 return OK;

19 end
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Chapter 4

Experiments

This chapter begins with our testing setup on two commercial vehicles and explains the
three types of experiments we use to assess vProfile’s detection capabilities. Next, we
present results from the three experiment types using Euclidean and Mahalanobis distance
and with downsampled and lower resolution data. Finally, we show the effects of vehicle
temperature and battery voltage on vProfile.

4.1 Experimental Setup

We performed experiments on two vehicles, a 2016 Peterbilt 579 truck shown in Figure 4.1
(henceforth known as Vehicle A) and a vehicle belonging to an industry partner (henceforth
known as Vehicle B). Due to our partner’s confidentiality requirements, we omit vehicle-
specific details for Vehicle B and are limited in what we can disclose besides the final
test results. Both vehicles have a 250 kb/s CAN bus using the SAE J1939 protocol. For
test repeatability, we recorded the CAN bus traffic of each vehicle and replayed it into
vProfile. Vehicle A was stationary during the capture and Vehicle B’s driver performed
various maneuvers, such as hard acceleration, sudden braking, gear shifting, and steering.

We ran three types of experiments:

• False positive test

• Hijack imitation test

• Foreign device imitation test
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Figure 4.1: 2016 Peterbilt 579 truck that we subjected to experimentation [27].

For false positive tests, we train vProfile on messages from all of the ECUs and then
replay the CAN bus captures as-is into vProfile. For hijack imitation tests, we also train
vProfile on messages from all of the ECUs but, when we replay the data, we change each
message’s SA in software to one that belongs to another cluster with a 20% chance. This
experiment simulates a test where every ECU can imitate every other ECU. For foreign
device imitation tests, we pick two ECUs with the most similar voltage profiles and remove
the former’s messages from the training set and then replay data into vProfile while having
it imitate the latter. Figure 4.2 shows each ECU’s voltage waveforms for Vehicle A. We
ignore the case where a message has an unknown SA since detection is trivial.

To sample the CAN bus voltage, we use a board that our colleagues developed for
vehicular side-channel projects. Figure 4.3 shows the board’s block diagram where the
input is connected to the vehicle’s OBD-II port.
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Figure 4.2: Voltage profiles for Vehicle A’s ECUs.
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Figure 4.3: Custom board we used to sample CAN voltages.

4.2 Distance Metric

First, we chose a distance metric for vProfile. We explored using Euclidean and Maha-
lanobis distances. We captured data from Vehicle A at 20 MS/s and 16 bits and data from
Vehicle B at 10 MS/s and 12 bits. This discrepancy exists because we used an AlazarTech
PCI digitizer card on Vehicle A and our custom hardware on Vehicle B since we did not
have access to the latter during the preliminary stages of vProfile.
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4.2.1 Euclidean Distance

We tried Euclidean distance first because we thought we could achieve accurate clustering
with Vehicle A’s visually distinct voltage profiles. For the foreign device imitation test,
we selected the two ECUs with the smallest Euclidean distance to imitate each other. For
Vehicle A, these are ECUs 1 and 4 with a Euclidean distance of 3634.96. The next smallest
distance is 6671.10 between ECUs 0 and 1. Table 4.1 shows the confusion matrices for each
of the three types of experiments on Vehicle A. We selected the margin to maximize the
accuracy for the false positive test and the F-score for the other two tests.

Predicted

Anomaly Normal

A
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Anomaly 0 0

Normal 51 841190

(a) False positive test.

Predicted

Anomaly Normal
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l

Anomaly 168014 0

Normal 36 673191

(b) Hijack imitation test.

Predicted

Anomaly Normal

A
ct
u
a
l

Anomaly 128 394240

Normal 49 446824

(c) Foreign device imitation test.

Table 4.1: Confusion matrices for experiments on Vehicle A using Euclidean distance.
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The false positive test yields an accuracy of 0.99994, the hijack test has an F-score
of 0.99989, and the foreign device test’s F-score is 0.00065. If we increase the margin to
remove all false positives, resulting in perfect accuracy and F-score for the first two tests,
the F-score for the foreign device test drops to 0.00013. Table 4.2 shows the results when
we run the same tests on Vehicle B, where we selected the margin the same way as for
Vehicle A.
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Anomaly 0 0

Normal 38813 301833

(a) False positive test.
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Anomaly 66841 1041

Normal 31059 241705

(b) Hijack imitation test.

Predicted

Anomaly Normal
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Anomaly 33500 90455

Normal 1293 215398

(c) Foreign device imitation test.

Table 4.2: Confusion matrices for experiments on Vehicle B using Euclidean distance.

Vehicle B exhibits considerably more false positives overall, with an accuracy of 0.88606
for the false positive test and F-scores of 0.80637 and 0.42205 for the hijack and foreign
device tests, respectively. We could not find a margin that removed all false positives. This
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performance degradation is likely due to Vehicle B having more ECUs with less distinct
voltage profiles.

Next Steps

While experimenting with methods to improve vProfile’s performance, we noticed that
the variance of the edges was much greater than that of the overshoot and steady state.
However, their contribution to the voltage profile is less significant than the latter two.
Figure 4.4 shows the standard deviation of several sample indices for ECU 0 in Figure 2.5.
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Figure 4.4: Standard deviation of some sample indices indicated by the dashed, vertical,
blue lines for ECU 0 in Figure 2.5.

We see that the two edges have significantly higher standard deviations, despite their
limited contribution to ECU 0’s voltage profile, as they are very similar to the edges of
ECU 1 in Figure 2.5. We can also observe this in Figure 4.2. Given our findings, we wanted
to try a weighted distance metric that accounts for the inconsistent variance across an edge
set, which led us to Mahalanobis distance.

4.2.2 Mahalanobis Distance

Similar to the Euclidean distance tests, we selected the two ECUs with the smallest Ma-
halanobis distance for the foreign device imitation test. For Vehicle A, these are ECUs
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1 and 4 with a Mahalanobis distance of 115.17. The next smallest distance is 165.70 be-
tween ECUs 1 and 3. Table 4.3 shows the confusion matrices for each of the three types
of experiments on Vehicle A. We selected the margin using the same way as the Euclidean
distance tests.

Predicted

Anomaly Normal

A
ct
u
a
l

Anomaly 0 0

Normal 2 841239

(a) False positive test.
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Normal 2 673123

(b) Hijack imitation test.
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Anomaly 394368 0

Normal 1 446872

(c) Foreign device imitation test.

Table 4.3: Confusion matrices for experiments on Vehicle A using Mahalanobis distance.

We observe better performance with Mahalanobis distance where the false positive test
received an accuracy of 1.00000 and the hijack and foreign device tests achieved F-scores
of 0.99999 and 1.00000, respectively. If we increase the margin to eliminate false positives,
the F-score of the foreign device test decreases to 0.84289. Table 4.4 shows the results
when we run the same tests on Vehicle B. The performance improvement is more drastic,
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with an accuracy of 1.00000 for the false positive test and F-scores of 0.99999 and 1.00000
for the hijack and foreign device tests, respectively. If we increase the margin to remove
the single false positive, the F-score for the foreign device test drops to 0.61521.
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(a) False positive test.
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Normal 1 272053

(b) Hijack imitation test.
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Anomaly 123955 0

Normal 1 216689

(c) Foreign device imitation test.

Table 4.4: Confusion matrices for experiments on Vehicle B using Mahalanobis distance.

The advantage of using the Mahalanobis distance for CAN voltage traces over other
distance metrics comes from its use of a covariance matrix. Although each waveform
from the same ECU has similar overall characteristics, they are not identical. As seen
in Figure 4.4, the variance can differ significantly across samples, even for neighboring
samples and especially at the rising and falling edges. The covariance matrix captures the
correlation between a sample and its neighbors, which plays a vital role in distinguishing
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traces from different sources. This results in a more accurate clustering metric for this
use case. To visualize the effect of the matrix, we make a deeper comparison between
Mahalanobis and Euclidean distance.

Consider Figure 4.5, which includes the cluster means of Figure 2.5 and a test edge set
originating from ECU 0 (henceforth referred to as Etest). Table 4.5 shows the Euclidean
and Mahalanobis distances from Etest to the means of both ECUs. We observe that both
metrics correctly indicate that Etest is more similar to edge sets from ECU 0. However,
the Mahalanobis distances’ quotient is an order of magnitude larger than the Euclidean
quotient. This difference signifies that Mahalanobis distance sees Etest as considerably
more similar to ECU 0 than ECU 1. In contrast, Euclidean distance sees that it is only
slightly more similar to ECU 0.
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Figure 4.5: Cluster means of two different ECUs and a test edge set from ECU 0.

Updates to vProfile

Because we want to use Mahalanobis distance, we must calculate and store the data’s
covariance matrices where appropriate. In the training algorithm, this occurs when we
cluster SAs. We must also include each cluster’s covariance matrix in the model for use
during detection.

31



Metric
Distance to

ECU 0
Distance to

ECU 1
Quotient

Euclidean 2327.40 5142.84 2.21

Mahalanobis 9.90 182.94 18.48

Table 4.5: Mahalanobis and Euclidean distance from a edge set belonging to ECU 0 to the
means of ECUs 0 and 1 in Figure 4.5.

4.3 Sampling Rate and Resolution

Next, we determine an appropriate sampling rate and resolution for our vehicles. We want
to balance classification performance with computational load.

4.3.1 Vehicle A

We downsampled and reduced the resolution of Vehicle A’s 20 MS/s and 16-bit data in
software and then ran the three tests. We selected a margin that maximized the accuracy of
the false positive test and F-score of the hijack and foreign device tests for each sampling
rate and resolution combination. We tried 20 MS/s, 10 MS/s, 5 MS/s, and 2.5 MS/s
sampling rates with 16-bit, 14-bit, 12-bit, and 10-bit resolutions. We could not reduce the
resolution past 10 bits since it resulted in singular covariance matrices. Table 4.6 shows
the results for every combination of sampling rate and resolution.

Though very slight, we do see a drop in performance with lower sampling rates and
resolutions, but more so for sampling rates, likely due to the voltage profiles not changing
significantly until resolutions lower than 8 bits, per Figure 3.1. These findings suggest
that Vehicle A can tolerate much lower sampling rates and resolutions. However, we had
to lower the margin during each experiment to maintain the high scores, starting with a
margin of 25.0 for the 20 MS/s tests and ending with a margin of 1.0 for the 2.5 MS/s
tests. Since we do not consider negative margins, it leaves little room for fine-tuning. We
decided to use 10 MS/s at 12 bits because it provides ample flexibility and does not impact
vProfile’s detection rate.
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4.3.2 Vehicle B

As mentioned at the beginning of Section 4.2, we used only our custom hardware on Vehicle
B, meaning that we do not have data at sampling rates and resolutions above 10 MS/s
and 12 bits. We also get singular covariance matrices when we use resolutions 10 bits and
lower. Therefore, Table 4.7 shows the effects of downsampling to 5 MS/s and 2.5 MS/s.
As with Vehicle A, we adjust the margin to maximize the accuracy of the false positive
tests and the F-scores of the hijack and foreign device tests.

We see a more pronounced performance drop on Vehicle B with lower sampling rates,
but vProfile still performs very well in all cases with scores over 0.999. These results suggest
that Vehicle B can tolerate lower sampling rates and confirm that our selection of 10 MS/s
at 12 bits works well, even in more challenging conditions.

4.4 Effect of Environmental Variability

Prior research suggests that environmental changes, such as temperature and battery volt-
age, can affect the CAN bus voltage and other analog message characteristics [7,9,13,34,36].
Our tests determine how severe the impact is on vProfile. We performed the experiments
on Vehicle A.

4.4.1 Temperature

During this test, the battery voltage should be as stable as possible. Because the alter-
nator supplies power when the engine is running, the voltage should not experience much
fluctuation while the vehicle is idling and, indeed, the battery stayed at 13.60V ± 0.03V
for all three trials.

Procedure

We let Vehicle A idle and checked the temperature of the ECM (corresponding to ECU
0) every two minutes while recording the bus traffic. We chose the ECM because it is
mounted to the engine block and is easily accessible. We tested temperatures from −5 °C
to 25 °C. We then separated the data from all trials into groups of 5 °C increments and
trained a model using just the data from −5 °C to 0 °C. Next, we replayed the unmodified
data from 0 °C to 25 °C into vProfile.
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Results

Table 4.8 shows the confusion matrix for the described experiment. All four false positives
occurred between 20 °C and 25 °C. If we add data collected at 20 °C during a fourth trial
to the training set, all false positives disappear.

To show the impact of temperature on the waveforms, we use the −5 °C to 0 °C model
and then calculate the mean Mahalanobis distance and 99% confidence interval between it
and each 5 °C group. Figure 4.6 visualizes the percent change from the training data for the
five ECUs. The distance increases with increasing temperature for all ECUs, with a drastic
increase for ECUs 0 and 2 and more subtle increases for the others. We theorize that the
temperature of some ECUs did not rise much throughout the experiments, resulting in
minimal changes in their distances.
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Figure 4.6: Percent delta of Mahalanobis distance means and 99% confidence intervals
between training data from −5 °C to 0 °C and test data from 0 °C to 25 °C.
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4.4.2 Voltage

During this test, the vehicle’s temperature should be as stable as possible. To minimize
temperature fluctuations, all tests were performed in a shaded area within an hour on the
same day. Measuring the temperature of the vehicle before and after each of the five trials
shows that we maintained 28.4 °C± 0.4 °C.

Ideally, we would control the battery voltage and observe its effect on the bus voltage.
To accomplish this, we wanted to switch the batteries with an adjustable power supply,
but our equipment could not meet the current demands of Vehicle A. Thus, our experiment
determines if using vehicle functions that draw a lot of power will affect the bus voltage.
As mentioned in Section 4.4.1, the alternator supplies power when the engine is running,
so we performed testing when Vehicle A is in accessory mode and is operating entirely off
of the batteries. We also consider whether starting the engine affects the bus voltage.

Procedure

Data capture starts with Vehicle A in accessory mode. We then turned on and off all of
the interior and exterior lights, the air conditioning (A/C), and then both together. We
recorded the battery voltage before and after each trial.

Next, we separated the data by event and trained a model using data captured when
Vehicle A was in accessory mode with nothing else turned on. We then replayed the
unmodified data from the other events into vProfile.

Results

The battery voltage before each trial was 12.61V± 0.02V and 12.54V± 0.01V after each
trial, not including when we ran the engine which measured 13.60V ± 0.02V. Table 4.9
shows the confusion matrix for the described experiment. Any changes to the bus voltage
did not affect vProfile as it exhibited a perfect detection rate.

We also calculate the percent change of the Mahalanobis distances for this experiment.
Figure 4.7 shows the percent delta when we trained the model on accessory mode data
from each trial. We see that the high-power functions have a minimal impact on the bus
voltage, even resulting in a decreased distance for some instances. We note that the most
significant increase in distance occurred during and after the most current-consuming event
when both the lights and A/C were on, suggesting that very high loads can affect the CAN
bus voltage.
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Figure 4.7: Percent delta of Mahalanobis distance means and 99% confidence intervals
between training data from accessory mode and test data from high-power vehicular func-
tions.

We observe an interesting phenomenon when running the experiment with a model
trained on accessory mode data from the first trial. Figure 4.8 shows the Mahalanobis dis-
tance percent delta for this case using the accessory mode event of each trial, as the other
events exhibit similar behavior. There is an overall increase in distance over time. We be-
lieve that a rise in temperature might have caused this. Despite our measurements showing
minimal deviation in the vehicular temperature during the experiment, it is possible that
the bus, itself, or other wiring experienced a temperature increase.
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Figure 4.8: Percent delta of Mahalanobis distance means and 99% confidence intervals
between training data from accessory mode of the first trial and test data from accessoy
mode of the other four trials.
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Sampling Rate (MS/s)
R
e
so

lu
ti
o
n

(b
it
s)

2.5 5 10 20

10 0.99998 1.00000 1.00000 1.00000

12 0.99999 1.00000 1.00000 1.00000

14 0.99999 1.00000 1.00000 1.00000

16 0.99999 1.00000 1.00000 1.00000

(a) False positive test accuracies.

Sampling Rate (MS/s)

2.5 5 10 20

R
e
so

lu
ti
o
n

(b
it
s) 10 0.99997 1.00000 1.00000 0.99999

12 0.99999 1.00000 1.00000 0.99999

14 0.99998 1.00000 1.00000 1.00000

16 0.99998 1.00000 0.99999 0.99999

(b) Hijack test F-scores

Sampling Rate (MS/s)

2.5 5 10 20

R
e
so

lu
ti
o
n

(b
it
s) 10 0.99996 1.00000 1.00000 0.99999

12 0.99999 1.00000 1.00000 1.00000

14 0.99999 1.00000 1.00000 1.00000

16 0.99999 1.00000 1.00000 1.00000

(c) Foreign device test F-scores.

Table 4.6: Results with downsampled and low-resolution data on Vehicle A.
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Sampling Rate
(MS/s)

Accuracy

2.5 0.99961

5 0.99999

10 1.00000

(a) False positive test accuracies.

Sampling Rate
(MS/s)

F-Score

2.5 0.99928

5 0.99999

10 1.00000

(b) Hijack test F-scores.

Sampling Rate
(MS/s)

F-Score

2.5 0.99904

5 0.99999

10 1.00000

(c) Foreign device test F-scores.

Table 4.7: Results with downsampled data on Vehicle B.
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Predicted

Anomaly Normal

A
ct
u
a
l

Anomaly 0 0

Normal 4 5775553

Table 4.8: Temperature variance confusion matrix for Vehicle A.

Predicted

Anomaly Normal

A
ct
u
a
l

Anomaly 0 0

Normal 0 840625

Table 4.9: High-power vehicle functions confusion matrix for Vehicle A.
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Chapter 5

vProfile Enhancements

This chapter describes three enhancements to the base vProfile algorithm that can improve
its detection rate. The goal of the first two methods is to reduce the intra-cluster variance
and maximum distances to increase the perceived similarity of traces in the same cluster.
The third method is an online model update algorithm that allows vProfile to adapt to
bus voltage changes that may not warrant training a new model.

5.1 Edge Set Extraction Threshold

The edge set extraction algorithm in Section 3.2.1 uses a constant threshold for the center
of each message’s rising edge. We found that having a different threshold for each cluster
can positively impact the statistics of the resulting traces. To show this, we train models
using both a fixed threshold and cluster thresholds. We used data from Vehicle A. For
demonstration purposes, we use a simple calculation for each ECUs threshold where we
find the mean of the maximum and minimum values from the first half of a message. We
use only the first half because the voltage level of the ACK bit can deviate significantly
from the rest of the message [7].

Table 5.1 shows the standard deviation and maximum distance of a trace to its ECU’s
mean for both model types. For standard deviation, our results show an improvement when
using cluster thresholds for ECUs 2 and 4 but a degradation for the others. For maximum
distance, we see an improvement for ECUs 1, 2, and 4. Though these differences do not
affect vProfile’s performance for our vehicles, the cluster thresholds did impact the values.
A better algorithm for threshold finding could improve vProfile’s performance for different
applications.
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Standard Deviation Maximum Distance

Static
Threshold

Cluster
Threshold

Static
Threshold

Cluster
Threshold

E
C
U

0 168.059 168.065 11.142 11.171

1 171.865 171.879 21.149 21.089

2 176.562 176.542 11.007 10.716

3 152.875 152.972 11.253 12.011

4 190.560 190.558 10.490 10.421

Table 5.1: Standard deviation and maximum distance from the mean using fixed and
cluster thresholds with Vehicle A data.

5.2 Number of Extracted Edge Sets

The edge set extraction algorithm in Section 3.2.1 returns only the first edge after the
arbitration field. We can extract more edges from the same message at the cost of additional
latency and then take their mean. This can reduce the impact of minor inconsistencies
between edge sets from the same source on our distance measurements. Table 5.2 contains
the intra-cluster standard deviation and maximum distance between a trace to its ECU’s
mean for one edge set and three edge sets. For the three edge set case, we extract them
250 samples apart, which is a simple way of sampling multiple message sections.

The results show lower standard deviations for every cluster and lower maximum dis-
tances for all but ECU 1. These improved statistics did not improve detection rates for
our vehicles, but this enhancement could have a more significant impact on other systems.

5.3 Online Model Update

As described in Section 4.4, we confirmed that fluctuations in temperature and battery
voltage can impact the CAN bus voltage. Instead of training a new model, we can update
the existing one with new data. We can update the covariance Σij of samples Ei and Ej

(i.e., the ith and jth samples of an edge set and the element at index [i, j] of the covariance
matrix) with the nth edge set using
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Standard Deviation Maximum Distance

1 Edge Set 3 Edge Sets 1 Edge Set 3 Edge Sets
E
C
U

0 168.065 168.002 11.136 9.671

1 171.879 171.716 21.089 25.472

2 176.542 176.019 10.716 10.463

3 152.972 152.857 12.011 9.619

4 190.558 190.218 10.428 9.329

Table 5.2: Standard deviation and maximum distance from the mean using one and three
edge sets with Vehicle A data.

Σij,n =
[(Ei,n − Ei,n−1) · (Ej,n − Ej,n)]− Σij,n−1

Nn

(5.1)

where Ei,m and Ej,m are the means up to and including the mth edge set for indices i and
j, respectively, and Nn is the new number of edge sets. In this case, Nn = Nn−1 + 1, since
we add only one new edge set. The algorithm requires that we store Nn in the model for
each cluster.

The model update algorithm is as follows, assuming that no new SAs exist. We separate
the new edge sets into clusters using the cluster-SA LUT in the existing model. Next, we
update the edge set count (Nn above), mean, covariance matrix, and maximum distance
for each cluster. Algorithm 4 summarizes the model update procedure.

We caution that a model should not be updated too often using this algorithm because
new data will decrease the update’s impact on the model as Nn increases. Therefore, we
recommend training a new model after Nn reaches some upper bound M . The threshold
can be applied to individual clusters since our findings show that some ECUs transmit
more often than others.
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Algorithm 4: vProfile Online Model Update procedure.

1 UpdateModel(model, newEdgeSets) begin
2 clustNewEdgeSetsLut = GroupByCluster(model.clustSaLut, edgeSets);

3 foreach clust ∈ clustNewEdgeSetsLut do
4 foreach edgeSet ∈ clustNewEdgeSetsLut[clust] do
5 prevNumEdgeSets = model.clustNumEdgeSetsLut[clust ];
6 prevMean = model.clustMeans[clust ];
7 model.clustNumEdgeSetsLut[clust ] += 1;

8 UpdateMean(model.clustMeans[clust ], edgeSet,
model.clustNumEdgeSetsLut[clust ], prevNumEdgeSets);

9 UpdateInvCov(model.clustInvCovs[cluster ], edgeSet,
model.clustMeans[clust ], prevMean);

10 model.clustMaxDists[clust ] =
max(MahDistance(model.clustMeans[clust ], edgeSet,
model.clustInvCovs[clust ]), model.clustMaxDists[clust ]);

11 end

12 end

13 end
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Chapter 6

Conclusion

In this thesis, we explored vProfile, a sender identification system for CAN messages that
exploits the unique voltage characteristics of ECUs. Compared to the existing methods
mentioned in Section 1.2, we proposed a lightweight, single-feature system that exhibits
high detection rates for both hijack and foreign intruders despite having low latency and
using lower sampling rates and resolutions. These characteristics suggest that vProfile has
a higher potential to be implemented in real systems on less expensive embedded hardware.
We also suggested two modifications to vProfile’s preprocessing stage that can increase its
detection rate along with an online model update algorithm.

Our method is similar to [13], but we distinguish ourselves by leveraging the information
possessed by rising and falling edges. We also apply Mahalanobis distance directly to
the raw voltage trace of the first stable edge set without any additional transformations.
This further simplifies the algorithm and reduces latency while still exhibiting excellent
performance.

6.1 Limitations and Future Work

Despite vProfile’s demonstrated detection capabilities, there exist some limitations. As
shown in Section 4.4, variances in battery voltage and ECU temperatures can affect the
CAN bus voltage. However, we can reduce their effect on vProfile with curated training
data from a wide variety of operating conditions and using the online update algorithm
described in Section 5.3. Also, the current implementation of vProfile cannot detect when
a hijacked ECU sends messages with SAs that are within its normal operating set. For
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additional coverage, we recommend using vProfile in an IDS that can detect anomalies
based on other message properties, such as the period and payload.

Though our voltage test produced conclusive results, it was not ideal, so a more thor-
ough experiment with a variable power supply and a way to measure the bus resistance
would be worth investigating. Furthermore, we conducted experiments on vehicles that
use only extended CAN frames, whereas most consumer vehicles use the standard format.
We want to investigate adapting vProfile for standard frames, though we do not anticipate
many required changes.
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