
No Zombie Types:
Liveness-Based Justification For

Monotonic Gradual Types

by

Yangtian Zi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Yangtian Zi 2021



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contributions

Yangtian Zi is the sole author for Chapters 1 to 5 and 7 under supervision of Dr. Gregor
Richards.

The original HiggsCheck [14] semantic rules presented in Chapter 6 and Appendix A are
works of Ellen Arteca, presented in her Master’s thesis [5]. The modified semantic rules
presented in Chapter 6 are co-authored by Ellen Arteca and Yangtian Zi. All of the prose
descriptions for the semantic rules in Chapter 6 are the sole work of Yangtian Zi.

iii



Abstract

Gradual type systems with the monotonic dynamic semantics, such as HiggsCheck [14]
implementing SafeTypeScript [13], are able to achieve decent performance, making them
a viable option for JavaScript programmers seeking run-time-checkable type annotations.
However, the type restrictions for objects in the monotonic dynamic semantics are, as the
name suggests, monotonic. Once a typed reference is defined or assigned to refer to an
object, the contract carrying the type obligation of the reference is part of the object for
the remainder of execution. In some cases, such contracts become “zombies”: the reference
that justifies a contract is out of scope, yet the object still retains the type obligation.

In this thesis, we propose a novel idea of contract liveness and its implementation.
Briefly speaking, contracts must be justified by live stack references defined with associ-
ated type obligations. Our implementation, taking inspiration from how garbage collectors
approximate object liveness by reachability of objects, approximates contract liveness by
reachability of contracts. Then, to achieve a much closer approximation to contract live-
ness, we introduce a poisoning process: we nullify the stack references justifying the violated
contract, and associate the location that triggered the contract violation with a poisoned
reference for blame.

The implementation is compared with the original implementation of HiggsCheck. The
comparison shows our system is fully compatible with code that raised no errors, with a
small performance penalty of 8.14% average slowdown. We also discuss the performance of
the contract removal process, and possible worst cases for the liveness-based system. Also,
the semantics of HiggsCheck SafeTypeScript is modified to formalize the liveness-based
type system. Our work proves that relaxations of contractual obligations in a gradually
typed system with the monotonic semantics are viable and realistic.

iv



Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Gregor Richards, not
only for his guidance in both academic research and prose composition but also for being
a great friend.

I would like to also thank Ellen Arteca, for without her help in formal semantics, this
work would not be complete.

Thank you, Dr. Peter Buhr and Dr. Werner Dietl, for agreeing to read my thesis and
providing valuable feedback.

I would like to extend my gratitude for friends in the Programming Languages Group
and other people in University of Waterloo for the support. More specifically, I would like
to say thank you to Dr. Marianna Rapoport, Abel Nieto, Dr. Nomair Naeem, Dr. Gang
Lu, Dr. Prabhakar Ragde and Alexi Turcotte.

During my graduate career in University of Waterloo, there are a few people who
helped me to discover my passion for teaching: Dr. Carmen Bruni, Dan Wolczuk, Dr.
Sandy Graham and Dr. Graeme Turner. Thank you!

I would like to thank my friends who supported me throughout my graduate career:
Josh Yang, Dylan Cheng, Luke Yao, Sherry Zhu, Yao Lu, Linqing Liu, Yuan Chen,
Zhongling Wang and many more.

Last but not least, I would like to thank my parents, Jian Zi and Quanfang Yang, and
my relatives, for their immense encouragement and assistance in completing this degree.

v



Dedication

I dedicate this thesis to訾应举 (Yingju Zi), my grandfather, the first person who obtained
a university degree in my family.

vi



Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1

2 Background 5

2.1 Gradual Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Just-In-Time Compilation and Dynamically Typed Languages . . . . . . . 9

2.3 SafeTypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Intrinsic Object Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 HiggsCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Rechability-Based Obligation Removal 21

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Approximating Liveness Using Reachability . . . . . . . . . . . . . . . . . 22

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Changing Contracts In An Object . . . . . . . . . . . . . . . . . . . 27

3.3.2 Heap Scanning for Contracts . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Unexpected Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



4 Poisoning 33

4.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Comparison with existing semantics . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Comparison With The Monotonic And Transient Semantics . . . . 37

4.3.2 Comparison With The Guarded Semantics . . . . . . . . . . . . . . 39

4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Evaluation and Results 41

5.1 Performance on Monotonic Code . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Performance On Code With Poisoning . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Poisoning At A Distance . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 Recursive Stack Frames . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Slowdowns Related To Iteration . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Performance Comparison With Other Semantics . . . . . . . . . . . . . . . 47

6 Formal Semantics 48

6.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Reduction Rules For The Untyped Language . . . . . . . . . . . . . . . . . 50

6.4 Typing Judgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Closing Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Conclusion and Future Work 55

References 57

APPENDICES 59

viii



A Full Semantics 60

A.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.1.1 Typed Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.1.2 Runtime Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Typing Judgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2.2 Fields and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.2.3 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3 Reduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.3.1 Rules for Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.3.2 Rules For Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



List of Figures

1.1 Venn diagram showing relationships in different semantics of gradual typing. 3

2.1 A shape tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A shape tree increment with a field addition. . . . . . . . . . . . . . . . . . 12

2.3 A shape tree increment with an new object. . . . . . . . . . . . . . . . . . 13

2.4 A typed shape tree. The first item of the pair is the index. The second item
is the tag of the value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 A contract tree. The dashed arrows represent the explicitly included obli-
gations, and the solid arrows represent the parent-child relationship. . . . . 16

2.6 Shapes with contracts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Possible contract states in program execution. . . . . . . . . . . . . . . . . 19

3.1 State of memory in Listing 3.1. . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Direct and indirect contract justification. . . . . . . . . . . . . . . . . . . . 27

3.3 Changing contracts in shapes. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Venn diagram showing relationships of our liveness-based system with other
semantics for gradual typing. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

x



List of Tables

5.1 Performance results for comparing the original HiggsCheck implementation
and the liveness-based system. . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Performance comparison of poisoning at a distance . . . . . . . . . . . . . 44

5.3 Performance results of recursive stack frames. . . . . . . . . . . . . . . . . 45

xi



Chapter 1

Introduction

Most programming languages need a notion of types to distinguish one piece of binary data
from another. In statically typed languages, variable types are checked during compilation
and seldomly checked during run-time. Code generation in such languages is often based
on an assumption that a variable is some given type, and that assumption is based on the
results of type checking. Alternatively, variables in dynamically typed languages usually
are not type-checked before the program is run; types are still checked, but they are checked
at run-time, i.e., at the time of use. One major implication of this dynamic checking is that
programs in dynamically typed languages are more amenable to be compiled and executed
by Just-In-Time compilers. Such compilers often assign to each value a tag, a run-time
value indicating the type of the object, before generating the code that uses values.

With the proliferation of the software ecosystem based on the Web, dynamically typed
languages such as Ruby and JavaScript have become increasingly popular among program-
mers. However, programs in dynamically typed languages are often prone to errors related
to types and challenging to debug. More specifically, some type errors, which would typ-
ically be caught before compilation in a static language, could be detected much later in
the execution path of a dynamic program, or not detected at all. For example, while pro-
grams in statically typed languages often check for types of function arguments at function
calls, programs in dynamically typed languages do not automatically check the value of
the parameter. As a consequence, type errors in dynamically typed languages usually are
not detected during function calls but often somewhere later in the program execution.

Erroneous execution of code might lead to unintended side effects. However, dynami-
cally typed languages are still widely used due to their flexibility of the type system and
straightforward syntax, which makes them a good choice of language for building prod-

1



uct prototypes and minimum viable products, the products ready for users with minimal
features.

Programmers who prefer dynamically typed languages, yet would like to add type
annotations, could use optionally typed languages. Furthermore, those who wish to make
sure type annotations in the programs are checked could use gradually typed languages.
For example, JavaScript developers might turn to TypeScript [3] if they wish to add type
annotations. However, TypeScript does not check its type annotations at run-time; it is
optionally typed, i.e., no type checks are actually checked at run-time. This phenomenon
implies that while static code in TypeScript can still be type checked, but there is no type
checking for dynamic code. SafeTypeScript [13], a gradually typed language, should be
used instead if those developers want to have their type annotations checked in dynamic
code.

Type annotations in a gradually typed language are enforced in static parts of the pro-
gram, just like static languages. However, the design goal of gradually typed languages is
that statically and dynamically typed parts of the program can interact. More specifically,
type annotations in the static part of the program can become obligations, to which the
dynamic part of the code has to adhere. Different gradually typed languages have different
definitions regarding how such obligations are checked, and the definitions are encoded in
their respective operational semantics. Among these semantics, the most popular ones in
the gradual typing literature are called the transient, guarded, and monotonic [19] dynamic
semantics.

The transient semantics is the least strict, since type obligations follow the specific
location of access and are never passed around. The guarded semantics is in between the
transient and monotonic semantics in terms of strictness, for there are possibilities for
type obligation to pass from one reference to other, in the case of reference assignment.
The monotonic semantics is the most strict, since the type obligation follow the object; in
other words, each time an object flows through typed code, the type obligations defined on
references which referred to the object will be part of the object. Figure 1.1 summarizes
the relationship of these semantics of gradual typing, in terms of sets of type errors they
detect.

The monotonic semantics, which SafeTypeScript adopts, is able to achieve decent per-
formance in the HiggsCheck implementation [14]. However, building type obligations in
the objects, the key characteristics of this semantics, implies that type obligations obtained
through references are permanent to the object once assigned. This property could produce
counter-intuitive behavior to programmers. Consider the following example:

1 function sort(lst: List <number >) {

2 ...

2



Monotonic Type Errors

Guarded Type Errors

Transient
Type Errors

Figure 1.1: Venn diagram showing relationships in different semantics of gradual typing.

3 }

4 List <any > nums = {1,2,3,4};

5 sort(nums);

6 nums.first.elem = "discarded ";

The function sort() has given the obligation that every element in the list must be a
number. In HiggsCheck, the program does not pass the run-time type check at line 6. This
behavior might appear strange: on line 5, there is a parameter assignment of a list having
type List<any>, which is not compatible with the expected type List<number>. However, this
hidden assignment in the function call succeeds in HiggsCheck due to the laziness property
of contract checking, which we will explain in section 2.4.2. Instead, the type check fails at
line 6, due to the list contains the type obligations of List<number> after the call to sort().
Effectively, the type of the list has been changed by the function sort(), and there is no
way to remove this obligation, despite the fact that the context (i.e., execution of function
sort()) for this obligation no longer exists. Type obligations like this are hence considered
“zombies”: they are no longer relevant, yet still part of an object’s type obligations.

By extension, the monotonic semantics preserves these zombie type obligations in ob-
jects. This relevance, putting it more specifically, is the liveness of the references which
defined the type obligations. This observation provides us a new angle regarding how types
are defined in a gradually typed system: the type obligations of an object are defined by
the live references that refer to them. We could alternatively say that live references justify
the type obligations in objects. This thesis presents a liveness-based type system based

3



on HiggsCheck. The key differences between a traditional monotonic gradually typed sys-
tem and the proposed system is introduced. We discuss how type checking is done in the
monotonic semantics, how the liveness-based gradually typed system changes the mono-
tonic system, and what the costs are. In addition, we will present a modified semantics for
the liveness-based system derived from the semantics of HiggsCheck.

4



Chapter 2

Background

The work presented in this thesis is based on HiggsCheck, an implementation of SafeType-
Script. SafeTypeScript is a gradually typed system using a monotonic dynamic semantics.
This chapter will introduce these concepts and related topics.

2.1 Gradual Typing

Gradual typing, introduced by Taha and Siek [15], is a term to describe any type system
that accepts typed code, untyped code, and any program in between [16]. That is, a
programming language with a gradual type system usually inherits characteristics of both
dynamically and statically typed languages. Note that the definition is broad: it includes
optionally typed systems where type annotations are not checked at run-time; we will
confine our discussion of gradual typing to the systems where there are run-time checks. A
gradually typed language could derive from a dynamic language, hence having a semantics
that is more akin to dynamic languages, such as SafeTypeScript [13]; alternatively, a
gradually typed language could be based on a static language and with semantics closer
to a static language, such as Groovy [1].

For example, the following function definition is valid in SafeTypeScript:
1 function trace(exn , message: string) : string {

2 return exn + " threw " + message;

3 }

In this example, the variable exn is untyped, but message and the return values are typed
and have type string. In gradually typed systems, untyped variables are treated as having
the type any.

5



Implicit type checks might be performed at run-time. The following example checks if
lst is an array or array-like object at run-time:

1 function access(lst: any[], index : number){

2 return lst[index];

3 }

One problem with interactions between typed and untyped code is type compatibility
of function calls. Typically, in a traditional statically typed language, subtyping is used
to match arguments and parameters of functions. However, using subtyping relations in
gradually typed languages poses a problem: interoperation between typed and untyped
code would break. Gradually typed languages use any for untyped entities, and interfacing
typed code to untyped code would make any both the top and bottom type of the type
system, creating a cycle. For the sake of practicality, gradually typed languages do not use
subtyping relations when checking types; instead, they use a compatibility relation [15]1,
in which any is compatible with any type. For example, the following code would pass the
static type check, and only raise an error in gradually typed systems if y’s run-time type
is not number:

1 // input() gets the first token from input stream.

2 // Return the token as a number if the token can be parsed into one ,

string otherwise.

3 function input () : any { ... }

4

5 function factorial(x : number) : number { ... }

6

7 var y : any = input();

8 var fac_y = factorial(y);

It was not until 2015 that Siek et al. [16] stated a more concrete goal and definition
for gradual typing: a gradually typed language should satisfy the Gradual Guarantee [16].
The Gradual Guarantee describes three characteristics a gradual language should have:

• A well-typed program remains well-typed if any of the type annotations are removed;

• A correct program remains correct if any of the type annotations are removed;

• Adding type annotations only causes errors if they are incorrect.

Along with the Gradual Guarantee, Siek et al. also introduced the Gradually Typed
Lambda Calculus (GTLC) [16]. It augments the Simply Typed Lambda Calculus (STLC)
by adding a set of casting-based gradual type and semantic rules. In summary, GTLC

1Also called consistency relation.

6



introduces a new type ∗ which denotes the “dynamic type” any, which is consistent with
any type. Every function application f x is modified so casts are inserted into f and x.
Casts for functions are split into two parts: one part for the argument(s) and one part for
the return value.

The variant of gradual typing mentioned above is said to employ a guarded dynamic
semantics, as named by Vitousek et al. [19]. Objects in the guarded semantics can be mod-
eled in message-passing style, where field access is also a method call on the object, which
in turn can be modeled by applying a function on the object and a symbol representing
the field. A reference-to-reference assignment will pass the type obligations of the right
hand side reference to the reference being assigned. Type checks in the guarded semantics
are often done through a “chaperon” object or “proxy” [19] that acts as an access guard.
Proxies represent not a single cast but a compressed series of casts [19]; this is to improve
the efficiency of nested casts.

In statically typed code, the type for data does not change unless explicit casting is
performed. If there is a type violation, programmers will refer to the type definition for
the entities involved to check for type inconsistencies. Data in gradually typed systems,
on the other hand, does not always obtain type obligations from their definition. Type
obligations might be obtained much earlier in the program execution and carried along.
For example, in the guarded semantics, the following assignments pass the type obligation
defined by class A to reference d:

1 var a : A = new A();

2 ...

3 var b = a;

4 ...

5 var c = (function (x) {return x})(b);

6 ...

7 var d = c;

If there is a type violation on the obligation of class A in d, the definition of a should
be considered the culprit. Thus, there is a need to separately record the location of type
obligation acquisition in gradually typed systems. In GTLC, each cast also carries a unique
label referring to the application that created the cast; those labels serve the purpose of
recording the cast creation location in case a cast fails. Such labels serve to locate blame,
i.e., the culprit where a type violation originated, and as a marker of the positions where
the type obligations are acquired in gradually typed systems.

Unlike the guarded semantics, which places the checks in references, the monotonic
semantics will check the consistency of such type information during each field read and
write from the run-time type information in the object. Recall the example shown in the
introduction:

7



1 function sort(lst: List <number >) {

2 ...

3 }

4 List <any > nums = {1,2,3,4};

5 sort(nums);

6 nums.first.elem = "discarded ";

The type check occurs at the line 6 will test the assignment against type obligations of both
List<any> and List<number>, despite the fact that the reference of access, nums, is defined
as List<any>. The list object did not obtain its type obligation for List<number> until the
program execution reached the call to sort, so the blame for List<number> being obliged on
the list object would be the assignment of the parameter reference lst in the function sort.

Vitousek et al. also introduced the transient dynamic semantics [19], which places the
obligation on the code that accesses the field itself. The check will only be performed at
the time objects are accessed through typed references. In the above example, since lst

is defined as an List<any>, the access on line 6 will not fail in the transient semantics.
The transient dynamic semantics does not have a definition for blame, but it is possible
to implement blame in the style of the monotonic dynamic semantics with the casting
semantics of the transient dynamic semantics[18].

The following example shows how the three semantics compare to each other. Consider
the following code:

1 class A { elem : any };

2 class B { elem : number };

3

4 function f(obj : B) {

5 obj.elem = 0;

6 return obj;

7 }

8

9 var a = new A();

10 var a1 = a;

11 var b = f(a);

12 b.elem = 2;

13 var c = b;

14 c.elem = 3;

15 a1.elem = 4;

In this example, the only access of elem through the parameter obj is checked against the
obligation { elem : number } in the transient type system, since they are the references
that have explicitly defined their type definition. In addition to a and obj, accesses of elem
through b and c are all checked against that obligation in the guarded type system since
the proxy objects are passed around in definitions, assignments, and return values. In the

8



monotonic dynamic semantics, all of the accesses, including access of elem through a1, are
checked, since the object referred to by a1 has obtained that obligation in the call f(a).

2.2 Just-In-Time Compilation and Dynamically Typed

Languages

A compiler is a program that translates a program in one programming language (the source
language) into a machine language or another programming language (the target language).
A Just-In-Time (JIT) compiler accomplishes not only exactly what a conventional compiler
would do, but also executes the compiled code, which is stored in memory. A compiler
that is not Just-In-Time is usually referred to as Ahead-of-Time (AOT), that is, an AOT
compiler will compile to target code first, without executing it. The JIT architecture
enables non-conventional code optimizations based on profiling information of previously
executed code sections. A well-implemented JIT compiler can interleave compilation and
execution, so that the newly compiled code can make use of such profiling information.
There are even some JIT compilers that execute the code and compile upcoming code in
parallel [12].

An AOT compiler makes use of type information included in the language to perform
optimizations and analysis. Dynamically typed languages, due to their lack of type infor-
mation, have to collect this information through profiling at run-time. Hence, they would
naturally benefit more from a JIT architecture than statically typed languages. A typical
implementation of a dynamic language with JIT compilation includes optimizations such
as inline caches [11] and shape trees [20].

Usually, despite the lack of types in the language, a JIT compiler keeps its own record
of what the type of an entity is. The “types” assigned here are called tags, which are stored
in the memory alongside values or pointers to values and is read when type information
is needed. For objects, we need to further distinguish them by their fields, using hidden
classes [4] or shapes [20]. For example, for the expression var + var2, a naive approach to
compile this expression would enumerate all possible types of var and var2:

1 if (is_int(var)) {

2 if (is_int(var2)) {

3 add_int_int(var , var2);

4 } else if (is_string(var2)) {

5 add_int_string(var , var2);

6 } else if (...) {

7 ...

9



8 }

9 } else if (is_string(var)) {

10 ...

11 }

12 ...

One way we could optimize this code is to have a global or per-value cache that records
the recently seen type of value. Inline caches [10] take this idea further by storing recently
seen tag information of a given value in the code data structure, so the code generation
step can make assumptions based on the tag of the value given the recent type tag seen for
the values. Code generation may make use of these assumptions to compile code that could
potentially be more efficient, if the assumption holds true. Suppose based on previous code
execution that var and var2 have the type int in the inline cache. Then, the generated
code could look like:

1 if (is_int(var) && is_int(var2)){

2 add_int_int(var , var2);

3 } else {

4 // Type assumption failed.

5 add_recompile(var , var2);

6 }

This code is likely faster, since in most program executions, the tag of a variable never
changes. When the type assumptions fail, the code falls into the else case, which handles
all other pairs of types. Note that since a JIT compiler can interleave compilation and
execution, instead of running the already compiled code, the else case could be just a
prompt to go back to compilation mode to compile the actual code for the else case. A
variation of this technique, the polymorphic inline cache [11], stores multiple recently seen
tags in a store site. Suppose that, in the above example, we see the types of var and var2

now have type of int and string respectively. The generated code could look like this in a
polymorphic inline caching system:

1 if (is_int(var) && is_string(var2)){

2 string_concat(var , var2);

3 }

4 else if (is_int(var) && is_int(var2)){

5 add_int_int(var , var2);

6 } else {

7 // Type assumption failed.

8 add_recompile(var , var2);

9 }

Object-oriented languages have objects that contain fields and methods. In implemen-
tations of dynamic languages, we need to also have a data structure that keeps the locations
of fields and methods within an object. Clearly, having a per-object record would be a

10



shape 0
{}

shape 1
{elem: 0}

shape 5
{next: 0}

shape 2
{elem: 0, 
next: 1}

shape 3
{elem: 0, 
next: 1, 
prev: 2}

shape 4
{elem: 0, 
next: 1, 

skip_next: 2}

shape 6
{next: 0, 
elem: 1}

Figure 2.1: A shape tree.

waste of memory, as many object share the same list of fields and methods. A solution
commonly seen in JIT compilers implementing such languages is to assign each object a
shape that represents the arrangement of fields and methods in the object. Since such lan-
guages often allow new fields to be added to existing objects, different shapes are organized
into a tree. The shape tree starts with the empty shape, which represents empty objects.
Each time there is a new shape created by extending an existing object with an additional
field, the shape tree is grown by adding a child to the node that represents the shape of
that existing object. As illustration, a sample shape tree is presented in Figure 2.1. In this
shape hierarchy, shapes 2, 3 and 4 could represent a simple linked list, a doubly linked list,
and a skip list respectively. Due to the incremental nature of the shape tree, shape 2 and
shape 6 are considered different shapes, despite having the same fields and thus interface;
the only thing that differs is the index of fields within the object.

Here is another example, illustrating the incremental nature of the shape tree. Suppose
we have an object that is defined as follows:

1 var obj = { a: 1, b: 2 };

Later the object has an additional field c added in, and the shape tree is changed to include

11



obj.c = 10;

shape 0
{}

shape 1
{a: 0}

shape 2
{a: 0,
b: 1}

shape 0
{}

shape 1
{a: 0}

shape 2
{a: 0,
b: 1}

shape 3
{a: 0,
b: 1,
c: 2}

Figure 2.2: A shape tree increment with a field addition.

the new shape {a, b, c}, as shown in Figure 2.2.

Suppose we create another object obj2, this time only having one member c. The shape
tree is going to create a new branch from the empty shape, as shown in Figure 2.3.

One important observation is that one can generalize the concept of inline caching for
not only tags but other run-time properties as well. As a result, inline caches usually also
cache the shape, in the case that the tag cached is an object. This type of optimization is
referred to as speculative compilation, or simply speculation.

There are many other JIT compilation techniques that are widely seen in JIT compilers
like On-Stack Replacement and Tiering; however, they are not discussed here, as they are
not relevant to the work presented.

2.3 SafeTypeScript

TypeScript is a typed variation of JavaScript that has recently gained popularity. Its goal
is to bring types to JavaScript programmers in order to provide stronger assurance that
their programs are correct. However, TypeScript is intentionally unsound, since its goals
are to be compatible with JavaScript and compile to it. It is an optionally typed language.

SafeTypeScript [13] is a “safe” compilation mode for TypeScript. SafeTypeScript en-
forces stricter type checking in TypeScript; in addition, SafeTypeScript inserts code in

12



var obj2 = {c : 0};

shape 0
{}

shape 1
{a: 0}

shape 2
{a: 0,
b: 1}

shape 3
{a: 0,
b: 1,
c: 2}

shape 0
{}

shape 1
{a: 0}

shape 2
{a: 0,
b: 1}

shape 3
{a: 0,
b: 1,
c: 2}

shape 4
{c: 0}

Figure 2.3: A shape tree increment with an new object.

the generated JavaScript that checks for type errors that arise at run-time. These checks
make SafeTypeScript a gradually typed language; more specifically, it employs a mono-
tonic dynamic semantics. However, the additional type checking reduces performance over
equivalent JavaScript code.

2.4 Intrinsic Object Contracts

2.4.1 Higgs

Higgs [7] [9] is a JIT compiler for JavaScript for research purposes. It is known in academia
due to its relatively light implementation compared to industry-grade JIT compilers. Higgs
is built on a few new ideas in the implementation of dynamic languages, notably typed
shapes [8] and lazy basic block versioning [7].

As mentioned in the previous section, a shape tree keeps track of all the seen object
layouts in a program execution. Higgs makes use of typed shapes, a system in which
objects are considered to be the same shape if all the fields are added in the same order
and their types match. The shape tree’s children are created once a new pair of name and

13



shape 0
{}

shape 1
{elem: (0, number)}

shape 5
{next: (0, object)}

shape 7
{elem: (0, object)}

shape 2
{elem: (0, number), 

next: (1, object)}

shape 6
{next: (0, object), 
elem: (1, number)}

shape 8
{elem: (0, object), 
next: (1, object)}

shape 3
{elem: (0, number), 

next: (1, object), 
prev: (2, object)}

shape 4
{elem: (0, number), 

next: (1, object), 
skip_next: (2, array)}

Figure 2.4: A typed shape tree. The first item of the pair is the index. The second item
is the tag of the value.

type is seen. Figure 2.4 illustrates the object shape hierarchy described in Figure 2.1 under
a typed shape system. Note that shape 2 in Figure 2.1 represents a linked list for all kind
of types of elem, but a typed shape system would need a separate hierarchy for each kind
of node holding elements with different tags. This difference is illustrated in shapes 7 and
8. Typed shapes are a description of the fields and its tags the compiler has seen in the
execution of the program so far, but are not a promise for the future; an object with shape
2, upon the assignment of elem to an object, will change to shape 8.

Lazy basic block versioning is the key technique Higgs uses to perform speculative
compilation. Essentially, each basic block contains small snippet of code in an intermediate
representation. A basic block contains the general logic of the code, but the actual assembly
code is generated from basic block versions. Each version carries assumptions regarding
values, such as known tags, shapes, and register allocation data, obtained from previous
contexts. Before entering a basic block, the assumptions are checked against run-time
information. If the assumptions match the run-time contexts in the basic block version,
Higgs proceeds to execute the code. Otherwise, Higgs will generate and compile another
version of the basic block matching the current context. The generation of new block
versions is on-demand, due to the possibly enormous number of versions possible for a

14



basic block.

Higgs’ memory management is basic. The stack is tagged—every value on the stack
will have a tag value associated with it. The heap is divided in two spaces of equal size,
and the garbage collection algorithm is Cheney’s algorithm [6], the classic algorithm for a
copying garbage collector. The garbage collector roots are just the references on the stack.
Closures are implemented as objects in Higgs, so they do not need to be specifically treated
for garbage collection purposes.

2.4.2 HiggsCheck

HiggsCheck [14] is a re-implementation of SafeTypeScript. The design of this alternative
implementation is to build the type obligations, which are manifested as run-time checks in
the original implementation, into the shape of the objects. The obligations in this case are
referred to as intrinsic object contracts [14] (or simply contracts), since the obligations are
part of the shape, which is intrinsic in the object. HiggsCheck consists of two components:
a modified Higgs JavaScript compiler to implement intrinsic object contracts [14], and a
modified TypeScript compiler in order to generate the runtime functions that add contracts
to objects.

Contracts are run-time values built into the shape of an object but not indicating the
presence of a field; they serve as an indicator of the set of type obligations for fields of
the object. There are two kind of contracts: the first kind, the primitive contracts, simply
represents the requirement that a field should be of some primitive type, and the higher-
order contracts, which specifies that a field should reference an object, and the contract
that object should follow. The contracts also follow a hierarchy: the child contract is seen
as also having the obligations of its parent contracts. The contracts are checked only at
field accesses. Similarly to shape trees, we can also arrange the hierarchy of contracts into
a tree. To illustrate how contracts work, consider the Figure 2.5. We can see that contract
3 has both the obligations of contracts 2 and 0 through parent contracts. In addition, since
contract 2 has, outside of the hierarchy, also expressed that the member elem must exist
and must be a number, contract 3 also contains this obligation. The obligation a contract
defines can also be recursive: contract 3 explicitly defines that the field next should follow
all obligations of contract 3 itself. Essentially, contract 3 is the contract for a node of
List<number>.

Contracts are added to the shape of the object. Adding a contract to an object is
thus considered a shape change. In Figure 2.6, shape 3 is the shape for a List<number> in
SafeTypeScript with HiggsCheck.

15



contract 0
obligation: object

contract 1
obligation: number

contract 2
obligation: object

member elem: contract 1

contract 3
obligation: object

member elem: contract 1
member next: contract 3

Figure 2.5: A contract tree. The dashed arrows represent the explicitly included obliga-
tions, and the solid arrows represent the parent-child relationship.

shape 0
{}

shape 1
{elem: (0, number)}

shape 1a
{elem: (0, string)}

shape 2
{elem: (0, number), 

next: (1, object)}

shape 2a
{elem: (0, string), 
next: (1, object)}

shape 3
{elem: (0, number), 

next: (1, object),
contract 3}

shape 3a
{elem: (0, string), 
next: (1, object),

contract 3} contract 0
obligation: object

contract 1
obligation: number

contract 2
obligation: object

member elem: contract 1

contract 3
obligation: object

member elem: contract 1
member next: contract 3

Figure 2.6: Shapes with contracts.

16



Shapes like 3a are contradictory at first glance: the shape indicates that elem is a string,
but the contract indicates that elem must be a number. Such shapes are allowed to exist
in HiggsCheck due to the fact that the contracts are checked during field access, so an
object could have a shape that contains conflicting contracts. This design also allows the
commonly-seen TypeScript paradigm of converting objects of type A to type B by adding
fields or changing their types after the object has been initialized [14]. As an example, the
conversion of an object of shape 3a to the non-self-conflicting shape 3 would be possible
by just assigning elem with a number.

As mentioned in the previous section, code compilation in Higgs relies on the previous
context, including known shape information. In HiggsCheck, contracts are considered part
of shapes, so Higgs can naturally make a lot of compile time optimizations with regards
to contract checks. For example, consider the following code for the implementation of
getProp, which produces the value of the field prop of an object obj, in HiggsCheck [14]:

1 function getProp(obj , prop) {

2 while (! capture_shape(obj)) {}

3 var val = obj_get_prop(obj , prop);

4 if (contract_can_fail(obj , prop , val)) {

5 while (! capture_shape(val)) {}

6 if (contract_can_fail(obj , prop , val)){

7 contract_check(obj , prop , val);

8 }

9 }

10 return val;

11 }

The code at line 2, 4, 5 and 6 can be partially or completely evaluated at compile-time.
More specifically: lines 2 and 5 capture the shape of obj and val respectively. capture_shape

is Higgs’ implementation of an inline cache. If the shape of obj is already known, then no
code is emitted for it; otherwise, the code generated would be a comparison of the shape
of obj with the cached value. If there is no code emitted or the shape of obj is the cached
shape, the code proceeds to the following line. In the case of an unexpected shape, a
recompilation of the code will be triggered.

contract_can_fail(obj, prop, val) in line 4 and 6 checks if a contract has the potential
to fail. A contract can fail for three reasons: either the shape of obj or the tag of val is
unknown to the context, the tag of val does not match one of the primitive obligations
on prop, or the shape of val is not known in the case the obligation on prop is a higher-
order one. All of those checks are performed at compile-time. In addition to checking for
potential failures, contact_can_fail also emits code that applies higher-order contracts in

17



obj on prop to val.

Finally, contract_check is the function that checks the run-time field values against the
run-time contract value in the object. In fact, both contract_can_fail and contract_check

perform contract checking, except that the former checks the compile-time assumptions and
the latter checks the run-time state. For both functions, primitive contracts are checked
against the tag of the value val immediately. Higher-order contracts are not immediately
fully checked; instead, the contract for the type obligation of obj’s field prop is applied to
val. Lines 5 and 6 are not needed in terms of correctness, but serve as an optimization: if
there is a higher-order contract applied to val, the shape of val needs to be checked.

This implementation detail implies that the contracts are lazily applied to fields: for
objects that have not been explicitly assigned a contract (e.g.,the subsequent nodes in a
linked list), the contract is not applied to their shape unless the field referencing them
is contract checked. Figure 2.7 illustrates two possible internal states of contract-applied
objects, both representing the same user-observable state, using a linked list lst as an
example. lst is defined to have contract List<number>; that is, every node object should
be regarded as having the type obligation of List<number>. More specifically, every node
object is obliged to have an element with type number, and have a field next with type
List<number>. However, HiggsCheck lazily applies contracts to objects; therefore, when lst

is created, only the head node object of the list have the contract in its shape.

Now, suppose the element from the third node of lst is accessed through the head node.
The access proceeds as follows:

1. The second node lst.next is accessed from the head node. The head node object
has contract List<number>, and the contract has an entry indicating the object’s next

field should have contract List<number>. Contract List<number> is thus applied to the
second node.

2. The third node lst.next.next is accessed from the second node. In a way similar
to step 1, contract List<number> is applied to the third node, since the contractual
obligation for List<number> is present in the second node.

3. The element in the third node is checked against the primitive contract for number.
If the check succeeds, the value is produced; otherwise an error is raised.

The access itself did not change the state of lst from the user perspective; however, the
internal state of the object has changed: the contract is now applied to the first three
nodes of the list.

18



Stack Heap

lst: List<number>

Before Recursive Contract Application

Shape 2
{elem: (0, number),

next: (1, object)}

Shape 2a
{elem: (0, number),

next: (1, object),
contract for List<number>}

Shape 2a Shape 2

Shape without contract Shape with contract

Shape 2 Shape 2

Stack Heap

lst: List<number>

After Recursive Contract Application

Shape 2a Shape 2a Shape 2a Shape 2

Object accessed
triggering contract

application

Figure 2.7: Possible contract states in program execution.

19



The method presented above is also generalized into other run-time functions associ-
ated with contracts. Ultimately, HiggsCheck builds the obligations into the shape, which
is cached as part of the run-time information available at compile-time. As a result,
HiggsCheck can eliminate a lot of unnecessary run-time checks. HiggsCheck achieved an
average slowdown of 7%, and 45% in the worst case, compared to 22x slowdowns from the
original implementation [14]. However, the original implementation of SafeTypeScript and
HiggsCheck are both implementing the monotonic dynamic semantics, hence both inherit
all of its limitations, which we will investigate in detail in the next chapter.

20



Chapter 3

Rechability-Based Obligation
Removal

3.1 Motivation

To motivate the discussion about our proposed type system, we will formalize the example
mentioned in the previous chapter. Consider the definition of a List<T> that supports
indexing and literal initialization syntax:

1 class List <T> {

2 elem: T;

3 next: List <T>;

4

5 // constructors and methods omitted

6 }

7

8 var l1 : List <any > = new List <any >();

9 var l2 : List <number > = {1,2,3};

Also, if a reference is defined as typed, we would say that the reference justifies the
obligation (or the contract) carried by the type annotation. In the above example, we
would say that l1 justifies the contract for List<any> on the created object.

Here is a concrete example:
1 function foo(nums : List <number >) {

2 var n: number = getTime ();

3 console.log(n + " nums: " + nums [0]);

4 }

5

21



6 var a : List <any > = {1,2,3};

7

8 foo(a);

9 a[0] = "hello !"

Listing 3.1: An error in the monotonic semantics.

In this example, the assignment at line 9 will fail in the monotonic semantics; the
definition of foo ensures that the list a possesses the obligation that the elements in the list
must be numbers, even after returning from foo. However, the reference nums which justified
this obligation is defined as a parameter of foo, and hence is already out of scope at the
time type checking fails. Although this is the defined monotonic behavior, a programmer
may find the change of type by a function call surprising: foo does not appear to mutate
any state, nor does it obviously need to be a mutating function, but the type obligations
for the parameter mutated the type obligation of the object to which it refers. After calling
foo, the object referred to by a now has type obligations of List<number>. In this case, a
“type relaxation” could be possible, since the justifying reference does not exist anymore.

Formally, instead of saying some data “does not exist”, such data is said not to be live.
Liveness is the minimum lifespan of a value required for correct execution of the program.
In this example, the stack frame of the function call in line 8, which hosted the contract
justifying reference, has been popped. The contract-justifying reference, nums, is no longer
live after the stack reference have been popped. Note that the converse of this statement
is not true: a reference might still be in a stack frame, yet it is not live; this case will
be discussed in detail in section 3.4. The key observation here is that we could remove
obligations that none of the live references justify.

In this chapter, we are going to define the notion of live and reachable contracts, present
a system where types are justified by reachable contracts, and describe when the system
will be applied. We will discuss the concept first, followed by the implementation.

3.2 Approximating Liveness Using Reachability

The first question we ask ourselves is: how do we check for liveness? Unfortunately,
determining the liveness information of a reference at any given code location is impossible;
to do so would require predicting the future. Even the best liveness analysis tools are unable
to provide liveness information for certain code, e.g., branches based on external data such
as user input. The following example shows that there is no way for any compiler to predict
if the reference lastSeen is live or not.

22



1 if (input() == 0){

2 print(lastSeen [0])

3 }

One way we could approach this problem is to look for existing systems for inspiration.
Garbage collectors use an overestimation of liveness of variables to determine liveness of
objects on the heap; in fact, it assumes all of the objects that can be reached from references
in root objects and the stack might be live. This property is called reachability. A reference
ref is said to be reachable if one of the following two conditions is met:

• ref is on the stack.

• ref is the field of some object1, and the object is referred to by a reachable reference.

This definition is recursive, in a way that every reachable reference must have a chain of
references from the stack to itself. Consider the following example in JavaScript:

1 var obj = {a : {b : {c : {d : 0}}}};

We say that obj is reachable since it is defined on the stack. Consequently, a is reachable,
since it is the field of an object {a : ...} which is referred to by obj. It is then evident
that references b and c are both reachable. In addition, we say that a is directly referred to
by obj, and b and c are indirectly referred to by obj. To access b from the stack reference
obj, one must access a, a reference on the heap. This means b and c are reachable from the
stack by the reference chain obj → a → b and obj → a → b → c, respectively. Extending
our definition, an object referred to by a reachable reference is a reachable object.

Direct reference and indirect reference are not mutually exclusive: a reference or an
object can be both directly and indirectly referred to by stack references at the same time.
The following code shows the object referred to by obj2 being an example:

1 var obj2 = {a : 0};

2 var obj = {b : obj};

Our reachability-based type system is in fact very simple: the object’s type is the
intersection of types from contractual obligations of its reachable references. We say that
these references justify the type of the object. A reference ref is said to have contractual
obligation of type T (or simply have contract T ) if one of the following two is true for the
reference:

• The reference is on the stack and is defined to have type T ; or

1This fact implies that ref is on the heap.

23



Stack Heap

elem: 1 elem: 2

Foo

Top Level

a: (object, List<any>)

nums: (object, List<number>)
n: (number)

Figure 3.1: State of memory in Listing 3.1.

• an object with field ref has a contractual obligation of type U that contains the
obligation ref : T .

An object is said to have contract T if there is a reachable reference having contract T
referring to the object. For example, in Listing 3.1, in function foo, the object referred to
by a should have both type obligations for List<int> and List<any>, which resolves to List

<int>. After the call, at line 8, this object should only have type obligations for List<any>.

Before explaining the details of the design, we need to make sure the stack is aware of
the types the program has assigned to references. This step is done by adding an element
to a stack entry, which keeps track of the contract assigned to the object referred to by the
stack reference. Now, a stack entry is a 3-tuple, consisting of the value, the tag, and, if
applicable, the contract of the object referred. Contracts will only be assigned to references
with object as their tag. Figure 3.1 shows the state of memory in Listing 3.1 with contracts
on the stack added in.

A possible design for this type system is to undo the contract application for a function
at the end of its scope (i.e., when the stack frame is popped); however, this solution
does not scale. In the case that the contract is applied only to the top level object, this
algorithm would be sufficient. Closures are implemented as objects in Higgs, so they are
automatically taken into account. However, there is a possibility that the contract has
been applied to some of the non-directly-reachable objects due to a contract check. In
fact, there is no way to easily know the set of contract justifying objects for any object.
Static points-to analyses yield inaccurate results, leaving the only option of scanning the
whole heap during program execution, which is an extremely expensive operation. Here,

24



we take the assumption that calling and returning from a function is frequent, so heap
scanning for each function return will put a prohibitive toll on program execution time.

Recall that the design of the contract system is based on lazy contract application.
Contracts are applied on objects only if it is directly referenced from the stack or if a field
referencing the object is accessed. Contract checking will be performed if the fields with
non-object tags are accessed, since contract checking for objects is potentially expensive.
To check if an object is following contractual obligations, it is necessary to check the
contractual obligation for all of its members, which might be objects themselves. This
approach ensures that contracts checks occur only on an as-needed basis.

Back to the initial principle: we want the contract removal process to happen as infre-
quently as possible. To make contract checks for objects occur as infrequently as possible,
the fields are checked on-demand at the time of access. Following the virtue of laziness,
this can be done at the time when a contract violation is about to happen in the monotonic
semantics. Consider this hypothetical problem: in SafeTypeScript, when an object flows
into more strictly-typed code, the stricter obligation is usually given by the (potentially
unsafe) downcasting of the object, so it can interface to the more strictly-typed code.
Consider the following class definitions:

1 class Foo {

2 x: any;

3 y: any;

4 }

5

6 class Point {

7 x: number;

8 y: number;

9 }

In this example, Foo is the less strict obligation and Point is the stricter obligation. The
following code illustrates the downcast from Foo to Point:

1 function manhattan_distance(a: Point , b: Point) {

2 return abs(a.x - b.x) + abs(a.y - b.y);

3 }

4

5 var objFoo : Foo = new Foo({x: 0, y: 0});

6 var pt : Point = new Point({x: 3, y: 4});

7 var distance = manhattan_distance(objFoo , pt);

In this example, the object referred to by objFoo is downcasted to Point, when it flows into
the manhattan_distance function. The downcast is safe within the function, since the actual
type of members x and y of objFoo also conform to the type obligation for Point. However,
accessing the Foo object via objFoo after this function call in a way that violates the type

25



obligations for Point results in an error, as this object now contains the contract Point:
1 objFoo.x = "hello "; // ERROR

The contract violation often means that we are attempting to upcast an object that has
previously been downcasted, so the object can resume its original, less strict obligations.
We assume that the transition to a more strict obligation and back to a less strict obligation
for any object occurs very rarely, and so it follows that the point of the contract violation
is a good candidate for the contract removal process to happen.

Since each type in SafeTypeScript has a unique contract, in the case there is a contract
violation, it suffices to find all stack references with the contracts that directly or indirectly
justifies the obligation for the object involved in order to reaffirm the type of that object.
The following example illustrates both such references.

1 class A {

2 b : B

3 constructor (b : B) {

4 this.b = b;

5 }

6 }

7

8 class B {

9 ...

10 }

11

12 var objB : B = new B();

13 var objA : A = new A(objB);

There are two paths of contract justification for the object created on line 12:

1. Via objB, which is a direct justification.

2. Via objA, which is an indirect justification. objA is justifying the contract of an object
A, which in its own contractual obligation states that its field b must have contractual
obligation for B.

Both of the contract justification paths can be seen in Figure 3.2. If the object created in
line 12 needs to remove the type obligation in the object itself, both contract justification
paths needs to be broken. This condition will only be met if both objB and objA have gone
out of scope.

The above example showed the possibility that type obligations in objects can be justi-
fied by any stack references regardless of the contractual obligation of that reference defined

26



Stack Heap

objB: (object, B)
objA: (object, A)

Object

Shape for class A

b: B

Object

Shape for class B

...

Legends

Reference
Indirect
Contract

Justification

Direct
Contract

Justification

Figure 3.2: Direct and indirect contract justification.

in the code. Therefore, the whole heap must be scanned so that all objects justifying the
violating contract will be checked, due to the possibility of indirect references.

In summary, to approximate contract liveness by reachability, we need to reaffirm the
contracts that are reachable for the whole heap when a contract violation occurs.

3.3 Implementation

3.3.1 Changing Contracts In An Object

The monotonic semantics builds contracts into the shapes of objects, so we need to have
a mechanism to change their type obligations. More specifically, there needs to be a
mechanism to change the contracts in objects to a provided list of contracts, which is
expected to be the set of contracts justified by reachable references. Shapes in HiggsCheck
are built by adding either fields (and their tag information) or contracts into the existing
shape. In Figure 3.3, shape 4 is built by adding the field elem, next, contract 3, and prev
into an empty shape, in this order. The contract changing process is just rebuilding the
shape of the object in the order the fields are inserted, followed by contracts. This process

27



shape 0
{}

shape 1
{elem: (0, number)}

shape 2
{elem: (0, number), 

next: (1, object)}

shape 3
{elem: (0, number), 

next: (1, object),
contract 3}

shape 4a
{elem: (0, number), 

next: (1, object),
prev: (2, object)}

shape 4
{elem: (0, number), 

next: (1, object),
contract 3,

prev: (2, object)}

shape 5
{elem: (0, number), 

next: (1, object),
prev: (2, object),

contract 5}

shape 6
{elem: (0, number), 

next: (1, object),
prev: (2, object)},

contract 5,
contract 6}

Figure 3.3: Changing contracts in shapes.

might create a new shape. In Figure 3.3, shape 4a is derived from shape 4 if an object in
shape 4 removes its only contract (i.e., no justified contract for it). Shape 6 is the result if
the same object has contract 5 and 6 by the contract justification process.

The following would be a possible implementation:
1 function change_contract_from_obj(obj , justified_contracts) {

2 var new_shape = get_empty_shape ();

3

4 var shapes_seen = new Stack();

5

6 for (var curr_shape = obj.shape;

7 curr_shape != EMPTY_SHAPE;

8 curr_shape = curr_shape.parent ()) {

9

28



10 if (curr_shape is not a contract) {

11 shapes_seen.push_back(curr_shape);

12 }

13 }

14

15 while (! shapes_seen.empty ()) {

16 new_shape = new_shape.get_next_shape(shapes_seen.back());

17

18 shapes_seen.pop_back ();

19 }

20

21 for (var contract: justified_contracts) {

22 new_shape = new_shape.get_next_shape(contract);

23 }

24

25 obj.shape = new_shape;

26 }

The rebuilding of the shape takes a stack to remember all of the field-and-tag-pair
shapes (i.e., no existing contract shapes), with the first shape inserted being the current
shape, representing the most recent field-and-tag pair or contract into obj. A new shape
for obj is created out of the shapes from the stack, starting from the most recently inserted
field-and-tag pair. get_next_shape method of shapes returns an existing shape on the shape
tree or a new shape if one does not exist already. After the shapes from the field-and-tag
pair stack are emptied, the justified contracts are written into the new shape. Then, the
new shape for obj is built, and the shape change is written into obj.

In the context of Figure 3.3, if new_shape is shape 1 and the shapes_seen.back() produces
a shape that contains the field-and-tag pair next: (1, object), get_next_shape returns shape
2, instead of creating a new identical shape. The subsequent field-and-tag pair insertion
will be prev: (2, object). Since there is no shape representing the new state of the object
yet, shape 4a is created, added to the shape tree, and then returned by get_next_shape.
After the field-and-tag pair insertion completes, contract 5 and 6 are inserted into new_shape

, and at this time new_shape is shape 6 in the figure. At last, the new shape is assigned to
the object.

3.3.2 Heap Scanning for Contracts

Scanning memory for contracts might seem to be a lot of work, but we already have a
component in Higgs that scans all of memory: the garbage collector. Inspired by this idea,
the first step for contract justification is a garbage collection cycle. After that, we need

29



to obtain a list of all objects with the violated contract that either directly or indirectly
refer to the object involved in the contract violation. This step is done through two parts:
first, during the stack scanning in garbage collection, the garbage collector records all of
the objects with their contracts directly justified by the stack. For each justified object,
we keep track of the justifying objects or references per contract justified. Given the initial
sets of objects with justified contracts from the stack, we expand this set by scanning the
fields of existing objects for references that have obligations associated with them. After
finding all justification relationships, we just need to write the justified contract into the
shape of each object, analogous to garbage collection.

Our logic can be summarized into the following pseudo-code:
1 function gc_collect_with_contract_justification(vm) {

2 Normal garbage collection , with contract justifications

3 directly from the stack recorded

4

5 // Find all justified contracts for all objects in the heap

6 do {

7 for each object that has a justified contract {

8 for each justified contract found for the object {

9 for each (field , obligation_on_field) in contract {

10

11 if field is an object {

12 record a new justifying entry:

13 (object.field has

14 obligation_on_field justified by object)

15 }

16

17 }

18 }

19 }

20 } while no new justified contracts has been found

21

22 for each object and their justified_contracts {

23 change_contract_from_obj(object , justified_contracts);

24 }

25 }

Last but not least, the contract_check function, for checking contracts, will now proceed
as follows: first perform the check, and if it fails, perform the garbage collection, and check
the contracts once again to see if the contract violation has been cleared.

30



3.4 Unexpected Behavior

This implementation indeed removes undesired contracts in the case of a contract violation;
however, contract invalidation has a surprising behavior. Consider the following example:

1 var lastSeen : List <int > = null;

2

3 function f(nums : List <int >) {

4 lastSeen = nums;

5 }

6

7 var a : List <any > = {1,2,3};

8

9 f(a);

10 a[0] = "hello "; // contract failure

Listing 3.2: An example showing reachable references justifying contracts in a contract
violation.

In the above example, the function f is defined to include a global variable lastSeen,
which carries the type obligation of List<int>. The call f(a) does nothing except to assign
the value of a to lastSeen. In the scope of function f(a), a has the contracts of List<any> and
List<int>. The following assignment operation immediately violates the latter obligation
by assigning a string to the first element of a. Our system detects the contract error, and
invokes the garbage collector with the goal of attempting to removing contracts that are
no longer reachable, thus possibly removing the contract representing the obligation of
List<int>. The attempt will fail due to the variable lastSeen, with a contract of List<int>,
referencing to the same object as a. The assignment would then raise an error. However,
in this example, it would be okay to remove the contract being violated when the error is
about to occur, as the variable lastSeen is never used.

The above example illustrates an issue with respect to the system we just described:
the implementation of the contract removal process depends on garbage collection to tell
us which contracts are live. Recall that the liveness of an object or a variable is its minimal
lifespan needed so the program will execute correctly. The garbage collector, in fact, does
not compute the liveness of objects; it computes the reachability of objects in the heap,
based on variables (i.e., references) that are on the stack. Note that not all variables on
the stack are live at the time of garbage collection. In the example above, lastSeen, with
respect to referring to the object a, is no longer live after the call f(a), because lastSeen

will no longer be accessed under the context of referring to a. Reachability is an over-
approximation of liveness. If an object is live, it must be reachable, but the converse is
not true: a reachable reference may not be live. Reachable-yet-not-live references exists,

31



as there are a path from stack references that are not live to those references. Following
the same logic, reachable-yet-not-live contracts exist, as there are stack references that are
not live justifying those contracts.

lastSeen is still on the stack at the time of the contract-failure-induced garbage collec-
tion, so our system will still justify the contract List<int> from this reference. Yet, in this
case, the removal of this contract would be perfectly reasonable, since contracts that are no
longer live should not contribute any type information to the objects (including closures)
it directly or indirectly refers to. This means in the semantic model we would have to
model reachability, which is managed by the garbage collector. However, the concept of
reachability should not be exposed to the semantics, since a garbage collector should be
transparent in the semantics of the language. Our goal is to model liveness of contracts,
not reachability. In the next chapter, we will propose a modification of the implementation
to take account of references that are no longer live, yet still reachable.

32



Chapter 4

Poisoning

Who controls the past controls the future: who controls the present controls the
past.

– George Orwell, Nineteen Eighty-Four

The last chapter presented a way to approximate contract liveness by reachability.
However, we also showed that reachable-yet-not-live stack references still act as certification
of contracts. Although the system was sufficient, we have not yet achieved honest-to-
goodness liveness for contracts. This chapter will discuss an additional method, reference
poisoning, which allows us to bypass this restriction by changing the program execution
state.

4.1 Rationale

As mentioned in the previous chapter, it is impossible to compute liveness, which requires
predicting the future. What can be done instead, by applying the principles of branch
prediction and inline caches, is to assume a path first, and recover from the falsely-assumed
state later if the assumption is wrong. In this case, we are taking the assumption that if an
object is accessed with a reference and a contract violation occurs, the references justifying
the contract in question are always no longer live. Broadly speaking, we are changing
the state of the program, so the contract being justified in the contract violation is no
longer justified. More concretely, any root (i.e., stack) reference justifying the violated
contract will not be considered live and will be an “unreference”, i.e., invalidated. We call

33



this operation reference poisoning. A poisoned reference is equivalent to a null reference in
semantics when it is evaluated. Note that the reference in the contract violation itself might
also be poisoned, if this reference is also justifying the violated contract. Consequently, in
the case of a contract violation, the contract-violating operation will be allowed to proceed,
so long as the reference involved in the contract violation is not poisoned.

Recall the example presented in the last chapter, Listing 3.2. Program execution re-
mains the same until the contract violation at line 14. In the system with reference poi-
soning, lastSeen will be poisoned when the contract reaffirmation is invoked. The program
is then allowed to proceed with lastSeen poisoned, until it is potentially reassigned later
to another object. Suppose Listing 3.2 is modified in function f, and the code is run in a
system with poisoning:

1 function f(nums: List <int >) {

2 if (lastSeen){

3 print(lastSeen [0]);

4 }

5 lastSeen = nums;

6 }

This time, the error will not occur at the assignment a[0] = "hello". Instead, the operation
will be allowed to proceed, with lastSeen poisoned. Note that the error occurs not at the
point of contract removal, but at the time any of the poisoned variables is accessed. That
means that any programmer attempting to debug any contract related run-time errors now
needs three code locations: where the contract is initially assigned to the object, where
the obligation associated with the contract is violated, and where the poisoned variable
is accessed. Since the error happens at the access site of the poisoned variable, there
is no need to remember this location. Furthermore, the contract information carried by
the objects already contains blame information pointing to the code location where the
contract was initially given to an object. What’s left for the implementation is to keep
track of the locations of contract violation at the time they happen, and to associate them
with the poisoned references.

At this time, we have a system that enforces the liveness of contracts by enforcing
contract justification from the stack references, in a reactive way: programs that do not
have a contract violation will run without any changes to the execution state. When there
is a contract violation, instead of immediately raising an error, our system will poison the
stack references that justify the violated contract for the object involved.

34



4.2 Implementation

The implementation of poisoning needs to perform two tasks during a contract violation,
mentioned above:

• Mark stack references that contain the contracts justifying the violation as poisoned.

• Record the location of contract violations and assignments, and associate them with
poisoned references.

To mark the stack references, we just need to scan the stack after contract collection,
and replace the value of stack references with the offending contract to null. This would
functionally be correct to achieve the first goal. The second goal is to retain the contract
violation location and associate it with the poisoned references. Code locations are rela-
tively easy to obtain from the basic blocks in Higgs; the question is where to store them.
Luckily, the above poisoned references are nulled, so they only have one value, null in
terms of interfacing with the rest of the code. This design means that the actual value
slot for a poisoned reference is just a word-sized location free to take over. To make use
of this slot, poisoned values are given a memory address to the string representing the
contract violation location. So far, our poisoned stack references will look like a value with
the object tag, an associated contract, and a pointer to a string as value. This leaves a
few opportunities where the compiler could misinterpret the poisoned references and treat
them as actual objects. To get around this, a new tag for poison is created to distinguish
poisoned references from other references.

Note that unlike the traditional implementations of garbage collectors, the garbage
collector will change the state of the stack as perceived by the program in our liveness-
based system with poisoning. This could invalidate Higgs’ run-time contexts since we
are directly modifying the values themselves. Hence, we must, as an overapproximation,
invalidate all of the contexts for the current execution.

Here is the contract collection algorithm, now with poisoning:
1 function gc_collect_with_contract_justification(vm, obj_failed ,

offending_contract , offending_location) {

2 Normal garbage collection , with contract justifications

3 directly from the stack recorded

4

5 // Find all justified contracts for all objects in the heap

6 do {

7 for each object that has a justified contract {

8 for each justified contract found for the object {

35



9 for each (field , obligation_on_field) in contract {

10

11 if field is an object {

12 record a new justifying entry:

13 (object.field has

14 obligation_on_field justified by object)

15 }

16

17 }

18 }

19 }

20 } while no new justified contracts has been found

21

22 for each object and their justified_contracts {

23 if (object == obj_failed) {

24 remove offending_contract from justified_contracts

25 }

26 change_contract_from_obj(object , justified_contracts);

27 }

28

29 for each reference in the stack {

30 if (reference justifies offending_contract for the obj_failed){

31 reference.value = offending_location

32 reference.tag = POISON

33 }

34 }

35

36 invalidate all run -time contexts

37 }

4.3 Comparison with existing semantics

The description of the system is now complete. However, no discussion would be complete
without a comparison with existing systems.

We will use the following example to motivate the discussion:
1 var m: List <any >;

2 var p: List <int >;

3

4 function printer(lst: List <any >) {

5 print(lst [0]);

6 }

7

36



8 function foo(x: List <int >) {

9 printer(x);

10 m = x;

11 p = x;

12 }

13

14 var l: List <any > = {1, 2, "hello "};

15 foo(l);

In this example, we have a reference of the list l with type List<any> with the first
and second elements as ints and third one as a string. Then, the function foo is called
with the list l. foo will in turn call printer with argument x, the list, which prints the
first element of that list. Then foo will assign x to two “global” references m and p with
type List<any> and List<int>, respectively. As reminder, downcasting assignments, such as
passing l, an object with type List<any>, to x, a parameter reference expecting List<int>,
is valid in HiggsCheck; contracts are checked lazily, so the type inconsistency in l[2] will
only be detected if this element is accessed.

In JavaScript, we can recover from any errors (even type errors!) using exception
handling, and SafeTypeScript (hence HiggsCheck) inherits this property. To keep our
discussion of the semantics using shorter examples, we also assume that if any given line
is reached, the previous lines have always been executed per the dynamic semantics of
JavaScript, unless described otherwise. To keep our examples succinct, the error handling
code is not shown.

In the following discussion, we will present different snippets of code that would run
right after the above to illustrate the differences of the proposed dynamic semantics to
existing ones. We will start with the monotonic semantics and the transient semantics
first; then we will compare our proposed system with the guarded dynamic semantics.

4.3.1 Comparison With The Monotonic And Transient Seman-
tics

We will start with a comparison of our liveness-based dynamic semantics with the mono-
tonic dynamic semantics.

1 l[0] = "world ";

2 printer(p);

3 p[0] = 1;

In this example, if the code is to run in the monotonic dynamic semantics, it would
fail at l[0] = "world";, since the object referred to by l already contains the contract of

37



List<int> from the call to foo. The liveness-based semantics will not fail at the first line;
however, p will be poisoned, which causes the second line to fail, since it’s using a poisoned
reference. For comparison, m is not poisoned since it does not justify the contract List<int>,
which is violated by the assignment. The monotonic semantics, on the other hand, will
never fail when executing the second and third line, regardless of whether or not a contract
violation occurred previously.

In summary, our system relaxes the restriction of using a reference pointing to an
object that has flowed through strictly typed code, at the cost of rendering all of references
justifying the violated type obligations invalid. What we observed here is that less strictly
typed code could proceed after the object passed through a more strictly typed code under
the liveness-based system, unlike a system following the monotonic semantics. Based on
this observation, our liveness-based semantics is less strict than the monotonic semantics.

The transient semantics only fails if an object fails to conform to its obligation at the
access site. That is, the check will only be performed at the line of code where a read or
write is performed, and the type used is the declared type of the reference. There is no
run-time type checks in the objects in the transient semantics. Looking at the example
above, a type system with the transient semantics would undergo these type checks:

• In l[0] = "world", checking if "world" is consistent with any, given that l has type
List<any>.

• In the call printer(p), checking if p is consistent with List<any>.

• In p[0] = 1, checking if 1 is consistent of the member type of p, being int.

None of the above type checks fail. A program written in the transient semantics will only
fail if there is a type violation when there is a direct violation to the type annotation.
Indirect type obligation violations exist in the form of using an untyped or less strictly
typed reference to change the state of the object. One example is the assignment p[0] = "

hello". As a result, our liveness-based semantics is more strict than the transient dynamic
semantics.

The transient dynamic semantics is designed to only check for the expected type of
the object at the time of dereference. There is no way to know when an object has been
casted to some types in a system with the transient semantics. Hence, it is impossible
to implement blame information in the transient semantics. Our liveness-based system
can support blame, and HiggsCheck already implements blame information; furthermore,
we are able to record the “poisoning blame” information which represents the location of
contract failure that triggered the poisoning.

38



4.3.2 Comparison With The Guarded Semantics

The guarded dynamic semantics is similar to the transient dynamic semantics in terms of
the location where checks are created. However, unlike the transient dynamic semantics,
in which the checks are at access sites of typed references, the guarded dynamic seman-
tics passes checks through reference assignments. In the guarded semantics, checks are
accomplished by creating proxy objects; a reference-to-reference assignment does not as-
sign the original object to which the right-hand-side reference refers, but the proxy object.
The following example illustrates the differences between the guarded semantics and our
system:

1 l[0] = "world ";

2 m[0] = "world ";

3 printer(p);

4 p[0] = 1;

The assignment l[0] = "world" does not give an error under either guarded or our liveness-
based semantics. The assignment m[0] = "world", however, will throw an error in the
guarded semantics, since the assignment m = x in the foo(l) call has passed the check
contained in x to m. Similar to the case mentioned above in subsection 4.3.1, the assignment
of m[0] also poisons p in our liveness-based semantics (if not poisoned already by the first
line); this will cause both subsequent lines of code to fail under the liveness-based semantics,
again due to the fact that p is poisoned. However, under the guarded semantics, only the
call to printer(p) will fail, due to the fact that lst inherited the obligation in p (i.e., List<
int>) through parameter passing. The assignment p[0] = 1 will not fail under the guarded
semantics, in a similar way that this does not fail in the transient dynamic semantics.

Our goal is to closely approximate contract liveness; the guarded semantics would align
with our liveness-based system in some cases, as seen above with the behavior of both
systems in the first line. Nonetheless, if the more strictly typed code ever escapes into
the continuation of execution through either reference-to-reference assignments or return
values, the guarded semantics will regard objects as still more strictly typed, and raise an
error if those types are violated. As shown in the above example, there are cases where
the liveness-based system raises an error due to the effect of poisoning even if the type
obligation is respected on the read or write itself, while the guarded semantics lets the
operation proceed. Therefore, our liveness-based system is neither more nor less strict
than the guarded dynamic semantics, as there are cases where the liveness-based system
raised an error but the guarded semantics did not, and vice-versa.

39



Monotonic Type Errors

Transient
Type Errors

Guarded
Type Errors

Liveness
Type Errors

Figure 4.1: Venn diagram showing relationships of our liveness-based system with other
semantics for gradual typing.

4.3.3 Summary

We have shown that the gradually typed system based on liveness is more restrictive than
transient, yet less restrictive than monotonic. Furthermore, our liveness-based system
agrees with the guarded semantics to raise type error in some cases, but also disagrees
with it in some other cases. To summarizes this information, we added our liveness-based
semantics into Figure 1.1, obtaining Figure 4.1. Still, it is worth noting that our system
does involve reference liveness and its extension, contract liveness, which is a completely
new dimension. None of the existing semantics take liveness of references, objects or type
obligations into account; they are only different in terms of how references or objects obtain
type checks throughout program execution.

40



Chapter 5

Evaluation and Results

The liveness-based system, just like all new software systems, needs to be evaluated. How-
ever, it is challenging to propose a suitable method to produce a fair evaluation: The
proposed type system is one-of-a-kind, and there is very little meaningful existing code
that would be readily available for use under the proposed system: Programs that raise
type errors in gradually typed systems using the monotonic semantics are extremely rare.
SafeTypeScript code is written to not have type errors under a monotonic typed system,
and retrofitting JavaScript programs requires complete inspection of code so meaningful
type annotations can be inserted into them. Nevertheless, this chapter attempts to evaluate
the implementation and provide an analyses of the performance.

5.1 Performance on Monotonic Code

When there is no contract violation in the monotonic semantics, the liveness-based system
should function exactly like HiggsCheck. An expectation for the implementation is that the
contract collection and poisoning system should not increase the time spent running the
code that raises no errors under the monotonic dynamic semantics. In order to evaluate this
criterion, the precursor system, which is implemented by Richards et al. [14], serves as the
baseline for the comparison. The benchmarks will be run with the original implementation
and the system which we implemented. The source code of the original implementation
has been minimally modified in order to allow compilation with the newest compiler for
D1, the language in which both systems are written.

1At the time of writing, the newest version for DMD compiler, which we use, is version 2.097.0 .

41



Original Implementation Liveness-Based System
Slowdown

Mean Std. Dev. Mean Std. Dev.
crypto 112 1.944 135.6 2.011 21.07%
navier-stokes 167.9 2.470 189.3 2.497 12.75%
raytrace 72.1 1.449 78.3 1.889 8.60%
richards 108 1.886 110.6 2.119 2.41%
splay 648.1 8.103 666.4 5.562 2.82%
gregor 3483.9 45.975 3728.8 230.808 7.03%
morse 158 2.582 167.8 3.259 6.20%
sieve 828.5 12.349 804.9 14.693 -2.85%
snake 3649 41.891 3957.7 51.848 8.46%
suffixtree 1093.2 16.267 1175.2 19.820 7.50%
tetris 1117.1 14.731 1346.3 27.845 20.52%
tsc 43296.8 388.557 44665.4 546.771 3.16%
Average 8.14%

Table 5.1: Performance results for comparing the original HiggsCheck implementation and
the liveness-based system.

The benchmarks used will be the ones used in the original HiggsCheck paper by
Richards et al. [14], and consist of benchmark programs from the original implementa-
tion of SafeTypeScript [13], programs adopted from benchmarks used by Takikawa et al.
[17], and the TypeScript compiler (tsc) itself. Only the version with intrinsic object con-
tracts is included. The pessimal configuration listed in the HiggsCheck paper is not used,
as the aspect of pessimal configuration is not relevant in our work. Each benchmarks has
a warm-up phase to maximize the capabilities of JIT optimizations. Also, we raised the
stack size of our liveness-based system from 2MB to 16MB, to accommodate the need of
adding a contract value for each stack slot.

The benchmarks were performed on a machine with an AMD Ryzen 5800X CPU at
3.8GHz for base clock, 32GB RAM and Arch Linux with kernel 5.10.42-1-lts 2. Each of
the benchmarks is run 10 times. The mean and standard deviation are recorded for each
setup and the slowdown for each of the benchmarks is recorded. The results are shown in
Table 5.1 The unit for the average run time in Table 5.1 above is milliseconds.

2The benchmarks were also run on another machine with AMD Opteron(TM) 6274 at 1.4GHz with
64GB memory, running Ubuntu 20.04 LTS. However, the results were deemed abnormal, for the baseline
performance was enormously worse than on similarly-specced machines. The cause of this behavior is
considered future work.

42



As the figures show, the majority of the benchmarks run with less than 10% slowdown.
The benchmarks that achieve less optimal performance are navier-stokes, tetris and crypto,
with the worst being crypto with 21.07% slowdown.

The results are promising in the sense that most of the benchmark programs run without
too much slowdown; however, the worse performance in some benchmarks hint of the
possibility of pessimal configuration that could introduce a worse slowdown. This slowdown
could be caused by the extra instructions and the extra space required tracking contracts
on the stack; in fact, the existence of inline caching means that contract tracking across
contexts might load and unload contracts on and off the cache. The liveness-based system
will take a harsher penalty on inline cache invalidations since this loading and unloading of
contracts is necessary. The increase of the stack size could also contribute to the slowdown;
more code is needed to manage the stack, and the stack may not fit into the first-level cache.

5.2 Performance On Code With Poisoning

The design goal of the liveness-based type system is to make sure that contracts are actu-
ally justified by liveness on the basis of a monotonic semantics configuration. As discussed
in the previous section, the recovery from a contract violation, which is the direct conse-
quence of using a lazy approach, comes with an expensive cost of a full scan of memory.
We are curious about the performance impact of the work presented in the paper under
different circumstances. This section attempts to provide the analysis by investigating the
performance of some specific cases.

5.2.1 Poisoning At A Distance

One of the cases we are inspecting is the performance impact of poisoning at a different
point of program execution: How is the performance of poisoning in the middle of execution
of the code with lots of execution contexts (e.g.,stack frames) compared to poisoning after
the execution of such code?

To evaluate this, we used the gregor benchmark [17] with a definition of a basic
linked list inserted. To create a test in which the defined linked list is poisoned after the
benchmark, the following code is inserted around the benchmark function:

1 var lst_poison = new List <any >(...);

2 benchmark ();

3 violate_contract(lst_poison);

4 if (typeof lst_poison !== "poison "){

43



Poison Location Mean Std. Dev
Original gregor (no added code) 3728.8 230.808

After the benchmark 4215.6 86.558
During the benchmark 4288.6 64.234
Slowdown (after vs. during) 1.70%

Table 5.2: Performance comparison of poisoning at a distance

5 throw new Error();

6 }

The version which poisoning happens during the benchmark is similar to the code
snippet above, except the call to violate_contract which is moved to a deeper stack frame
inside benchmark(), with a guard variable to ensure that violate_contract is executed only
once. We expect that poisoning references during the benchmark is going to be slower
than poisoning after the benchmark, as the reachable memory space should shrink after
the benchmark.

These benchmarks are run 10 times each, and their average running time is recorded.
The performance results of those two versions is shown in Table 5.2, with the original
gregor results listed for reference. The first column is the average running time for both
configurations. The third row indicates the slowdown of poisoning during the benchmark
versus poisoning after the benchmark.

As shown in the table, the mean execution time for poisoning during the benchmark is
1.7% slower than poisoning after the benchmark, which we consider as not significant.

5.2.2 Recursive Stack Frames

To further evaluate the correctness and performance of poisoning, testing is performed on
recursive functions. The test is helpful to know the performance of poisoning in relation
to the size of the stack. We designed the following benchmark for this purpose:

1 class A {

2 a : string;

3 }

4

5 function violateContract(a: any): number {

6 a.a = 1;

7 return 0;

8 }

44



RECURSE_TIMES Mean Execution Time
32 24.9
64 25.4

128 26.5
256 29.8
512 40.8

1024 83.7
2048 252.6
4096 896.1
8192 3486.0

16384 13695.7

Table 5.3: Performance results of recursive stack frames.

9

10 function foo(objA : A, n: number): number {

11 if (n > 0) {

12 foo(objA , n - 1);

13 } else {

14 return violateContract(objA);

15 }

16

17 if (typeof objA != "poison "){

18 throw new Error ("Fail: expected objA to be poison ");

19 }

20 return 0;

21 }

22

23 // Warmup and time recording code omitted

24

25 var obj = new A();

26 obj.a = "hello world";

27 var retCode = foo(obj , RECURSE_TIMES);

In this example, we have a recursive function foo that contains a reference objA, a
reference to an object of class A, and n. The class A contains a definition of string a. foo

in the recursive case will call foo once again with n decremented by one. In the base case,
this function will call violateContract, which violates the contract for the member a. foo

recurses RECURSE_TIMES times; before the execution of the program, RECURSE_TIMES is replaced
by the actual number of recursions performed.

The performance result is shown in the Table 5.3. The first column is the value of

45



RECURSE_TIMES, and the second column is the corresponding mean execution time of the
benchmark out of 10 runs. The set of data correlates to a quadratic relation with R2 = 1.
This correlation is due to our heap scanning algorithm being quadratic; this inefficiency
is to avoid adding bookkeeping values in the heap or using extra storage. However, we
believe the performance of the liveness-based system can be improved further by changing
to a faster or a more space efficient algorithm, or performing implicit contract relation
detection in the garbage collection process.

5.3 Slowdowns Related To Iteration

The liveness-based type system we implemented reduces the number type errors relative
gradually typed languages with the monotonic semantics, hence accepts more programs.
We also stated that the flexibility comes with a cost of a garbage collection cycle and a
contract reaffirmation cycle, which is somewhat expensive. This expense in time could
be amplified if a contract failure happens at the wrong time. More specifically, repeated
contract violations in a loop will result in repeated poisoning. Consider the following
example:

1 function mean(lst: List <number >) : number { ... }

2

3 for (i = 0; i < n; i++) {

4 var lst = new List <any >();

5 var input: number = parse_input ();

6 while (input !== undefined) {

7 lst.insert_back(input);

8 input = parse_input ();

9 }

10 var lst_mean = mean(lst);

11 lst.insert_front (" benchmark_results ");

12 lst.insert_back(lst_mean);

13 csv_file.output(lst);

14 }

This example shows a program that accepts some input, stores it in a list lst, and uses
lst as the output list for the destination csv_file. Since mean takes a list of numbers as its
argument, the object referred to by lst has the contract List<number> when this object is
passed into mean, and retains the contract after returning from it. The contract will then be
removed as part of the liveness check, due to a contract violation at line 11. As the whole
process of contract assignment and violation occurs in a loop, the contract collection will
run at each iteration of the for loop. This will lead to a significant performance reduction.

46



In this example, there are a number of ways to avoid repeated poisoning: create a new
list for storing the string and numerical data together instead of using lst, or relax the
type obligation for the parameter in mean. Readers familiar with the monotonic dynamic
semantics may point out that those are exactly the workarounds for a program running in
the original SafeTypeScript; the message here is that our attempt at making monotonic-
semantics-based programs more intuitive comes at a cost that might be prohibitive if it
happens frequently, and idioms for writing programs in the monotonic dynamic semantics
still apply.

5.4 Performance Comparison With Other Semantics

Our performance discussion with the liveness-based system and the monotonic semantics is
very detailed, since our implementation is directly on top of a system with the monotonic se-
mantics. We are not presenting a similar study here for the guarded and transient dynamic
semantics since there is no equivalent TypeScript-derived system available to benchmark.
Instead, we will try to discuss potential comparison of performance theoretically.

Our system is built on the works of HiggsCheck [14], implementing the monotonic
semantics. HiggsCheck is capable of using run-time information, which the JIT compiler
collects, to optimize dynamic type checks. However, a transient type system is unable to
utilize most of the JIT profiling information for optimization, since the transient semantics
does not insert run-time values in objects. The guarded semantics, however, is expected
to be the worst performer, due to its use of proxy objects; allocation of proxy objects will
blow up very fast in terms of execution time and memory overhead.

Another consequence of our implementation being based on HiggsCheck is that our
system suffers from degradation of performance if the code is typed. In fact, the more
type annotations a program has, the worse the performance gets in our system. This
phenomenon is causes by the need to assign contracts on every object directly referenced
in the code. The transient semantics also has a worse performance over the increase of
number of type annotations; however, the performance impact is caused by an increase in
the numbers of type checks. In fully typed code, there is usually no downcasts or casts
to any. This phenomenon implies that the guarded semantics does not need to create
any proxies and performs well in fully typed code. On the other hand, interleaving typed
and untyped code makes a system with the guarded semantics repetitively pack objects
into proxies in typed code and then perform the cast (i.e., unpack the object) in untyped
code. As a result, the performance of the guarded semantics degrades when there are many
interleaved sections of typed and untyped code.

47



Chapter 6

Formal Semantics

The formal semantics of the liveness-based contract system mostly follows the semantics of
the SafeTypeScript implementation outlined in Formal Semantics and Mechanized Sound-
ness Proof for Fast Gradually Typed JavaScript by Arteca [5], implementing the monotonic
dynamic semantics. This chapter will highlight the changes to the semantics to support
the changes described in this thesis, being a liveness-based system on top of the monotonic
semantics. The complete semantic rules are available in Appendix A.

6.1 Rationale

Compared to the original implementation of HiggsCheck, the modification of the semantics
should reflect the changes implemented in our liveness-based system. In particular, a few
aspects of the system must be covered:

• Instead of adding contracts to the object themselves, there must be a mechanism to
keep track of the live references from the stack. The contract of an object should
consequently be defined by the contract of the live references that refer to the object.

• Contract checking inspects the contracts from the set of live references. If this op-
eration succeeds, the program proceeds normally; otherwise, the live reference that
carry the contract for which an obligation is violated are modified to a poison value.

• The poison value is able to associate with the contract that failed and the location
of the code in which the reference is poisoned. Trying to access the poisoned value
yields an error associated with this information.

48



Although the removal of contracts is performed lazily in the implementation, there is
no need to keep this laziness in the semantics, so long as the behavior is indistinguishable
to the user. Following the same principle, garbage collectors are generally not modeled in
semantics. Thus, despite the fact that most of the implementation is done in the garbage
collector, there no need to model it in the semantics.

An alternative way to approximate liveness is needed, since liveness can not be directly
modeled, as explained previously. The approach taken here is to approximate the liveness
of contracts by a stack-like data structure. The contracts are pushed onto the stack when
a new reference with contracts is defined, and removed when the contracts are invalidated
as a result of contract check failure. This data structure is inserted as a stack, but with
arbitrary removal order. A contract check will then be checking for the associated locations
on the contract stack for the presence of the obligations.

6.2 Basic Definitions

HiggsCheck’s semantics [5] is a re-implementation of SafeTypeScript’s semantics [13]. The
liveness-based system is not very different from HiggsCheck’s, with only a few differences
in interaction with objects. Here are the relevant parts of the semantics, with modification
to model the liveness-based dynamic semantics.

Runtime Object O ::= {l; M̂ ; {fe, ft}; lk}

Objects in the semantics of HiggsCheck are modeled by the runtime object, comprising
the location of the object, method and field declarations, and a list of locations of the
contracts on the contract stack.

Contract stack K ::= X
| K1, K2

Context X ::= lk 7→ {c, lb}
| X1, X2

The contract stack is defined to contain contract contexts X, which itself contains one
or more pairs consisting of contract c and poison blame location label lb. The context is
used to separate contracts defined in different scopes.

49



Runtime heap H ::= l 7→ O
| l 7→ v
| l 7→ w
| H1, H2

Poison w ::= poison label

The runtime heap allows a location l to map to either a runtime object O or a primitive
value v. For the liveness-based system, we add the poison value w to the possible values
in the runtime heap, which contains a poison label representing blame information.

Last but not least, the contract stack K needs to be added onto the execution state:

State C ::= S;H;L;K

6.3 Reduction Rules For The Untyped Language

Most of the proposed changes are in the untyped language, as the untyped language is
where most of the contract-related operations take place. As mentioned, it is needed to
change how contracts are assigned to objects. The function for the contract check in the
semantics of HiggsCheck, contract_assign, needs to be redefined. contract_assign accepts
a value v and a type t. If v is an object, contract_assign adds the contract to v, or checks
the contract immediately if v is primitive. The latter case will only happen at the time a
contract is being checked against an object that refers to v through one or more reference
accesses, due to the fact that contract assignment and checking is done lazily.

Previously, the rule for contract assignment, E CA onLoc runObj, adds the contract
onto the runtime object.

findHeapContsAtLoc(H, l1) = {l; M̂ ; F̂ ; c}
isObjType(t) H ′ = updateObjWithContract(H, l1, t)

(S;H;L)/contract assign(l1, t) −→e (S;H ′;L)/l1
(E CA onLoc runObj old)

The updated rule for the liveness-based system defines the contract assignment on a
heap location l1. In particular, contract_assign will add the contract c, with the poison
label lb, onto the current context of the contract stack, and modify the runtime object to

50



include the location of the contract entry on the contract stack. Note that the function
contract_assign in the semantics is different than the contract assignment function in the
HiggsCheck implementation: this semantics meta-function is used for both contract assign-
ment and checking. Hence, lb is created for each contract check, satisfying our requirement
regarding poisoning blame location.

C.H[l1] = {l; M̂ ; F̂ ; lk}
isObjType(t) c = toContract(t) lc = C.K.length
X = C.K.top() X ′ = X[lc 7→ {c, lb}] K ′ = K CX

H ′ = C.H[l1 7→ {l; M̂ ; F̂ ; lk, lc}]
C/contract assign(l1, t, lb) −→e C CH ′, K ′/l1

(E CA onLoc runObj)

The rule for primitives of the original HiggsCheck is straightforward: if the type of the
value and the expected type matches, produce the value; otherwise, an error is raised.

t = primType tp

C/contract assign(tp p, t) −→e C/tp p
(E contAssign onPrim old)

t 6= primType tp

C/contract assign(tp p, t) −→e C/ε
(E contAssign onPrim ERR old)

In the liveness-based system, if l1 points to a value that is of a primitive type, that
means we need to check the obligation right away. If t is some primitive type tp and the
value on the heap indeed has type tp, the check is successful and the original value is
returned:

C.H[l1] = tp p t = primType tp

C/contract assign(l1, t, lb) −→e C/l1
(E contAssign onLoc prim)

If the check fails or t is an object type, the heap location of the contract assignment is
immediately poisoned:

C.H[l1] = tp p t 6= primType tp H ′ = C.H[l1 7→ lb]

C/contract assign(l1, t, lb) −→e C CH ′/l1
(E contAssign onLoc prim ERR)

The other error case, where t is a primitive type and l1 is an object, also needs to be
handled. Originally in HiggsCheck, an error will be raised immediately:

51



findHeapContsAtLoc(H, l1) = {l; M̂ ; F̂ ; c}
isObjType(t) = false

C/contract assign(l1, t) −→e C/ε
(E CA onLoc obj badType old)

Now we poison the heap location:

C.H[l1] = {l; M̂ ; F̂ ; lk} isObjType(t) = false

H ′ = C.H[l1 7→ lb]

C/contract assign(l1, t, lb) −→e C CH ′/l1
(E CA onLoc obj badType)

Next, the way a contract is checked on an object needs to be changed as well. Originally,
for a member access, the list of obligations is retrieved from the runtime object, then each
obligation is tested against the retrieved member value via contract_assign. This test is
done through a helper function applyListOfContsFromTypes.

value(ev) ∃ l | ev = l findHeapContsAtLoc(H, l) = obj
e = getMemberFromRunObj(obj, s) t = getTypesFromRunObj(obj, s)

{S;H;L}/check contract(ev, s) −→e {S;H;L}/applyListOfContsFromTypes(S, t, e)
(E checkCont obj member old)

In the liveness-based system, given some value v which should be referring to an object
and some field s, checking the contracts is just applying all of the contracts that are live
based on the contract stack. In the spirit of HiggsCheck, the contracts are lazily applied
to the fields of the object.

value(v) ∃ l | v = l C.H[l] = {l; M̂ ; F̂ ; lk}
m = getMemberFromRunObj(M̂ ; F̂ , s)

t = (lb, tj) li ∈ lk ∩ (
⋃

Xi∈C.K Xi) (ck, lb) = Xk[li]
(s, tj) ∈ ck Xk ∈ C.K

C/check contract(v, s) −→e C/propagateContract(t,m)
(E checkCont obj member)

Here, a helper function propagateContract is called to achieve the goal of assigning all
applicable contracts on m, the member value of the object. The other argument t is a list
of pairs; more specifically, it is a grouping of all type obligations from every “live” contract
imposed onto the field s, indexed in the first element of the pair by their poison label lb.

52



What propagateContract needs to do is simply apply every type obligation t ∈ tj for all
tj. This contract application is achieved through another helper function, assignContractLstTypes.

e′ = assignContractLstTypes(tj, e, l)

C/propagateContract((l, tj) :: t, e) −→e C/propagateContract(t, e
′)

(E propCont rec)

e′ = assignContractLstTypes(tj, e, l)

C/propagateContract((l, tj), e) −→e C/e
′ (E propCont base)

e′ = contract assign(e, t1, lb)

C/assignContractLstTypes((t1 :: tj), e
′, lb) −→e C/assignContractLstTypes(tj, e

′, lb)
(E contTypeList rec)

e′ = contract assign(e, t1, lb)

C/assignContractLstTypes((t1), e, lb) −→e C/e
′ (E contTypeList base)

There is one thing left to do: make sure accessing a poison label yields an error.

C.H[l] = w

C/l −→e C/ε
(E poison access)

6.4 Typing Judgement

In HiggsCheck, the typing judgement determines how a typed term becomes an untyped
term with the necessary setup so that the contract can be embedded into the object. The
only typing judgement rules to change for the liveness-based system are the ones that
assign contracts to objects, and the only change needed is to pass the poison label into
contract_assign. Here are the typing judgement rules for new expression, cast and field
declaration:

(S,Σ,Γ) (e, t′) ↪→e e
′ Ĉ = getClass(S,Cn) F = getF ieldDeclFromClass(Ĉ)

F = (fe, ft) t <: ft lb = poison label

(S,Σ,Γ) (new Cn(e), Cn) ↪→e contract assign(new Cn(CA list(e, t)), lb)
(T New)

T (e, t) ↪→e e
′ t <: t′ lb = poison label

T (< t′ > e, t) ↪→e< t′ > contract assign(e′, t, lb)
(T Cast)

53



T (e1, t
′
1) ↪→e e

′
1 t′1 <: t1

T (fnt, fe) ↪→fd (fnt, f ′
e) lb = poison label

T ((fn, t1) :: fnt, e1 :: fe) ↪→fd ((fn, t1) :: fnt, (contract assign(e′1, t1, lb)) :: f ′
e)

(T FDs Cons)

6.5 Closing Thoughts

In short, we have modeled the two aspects of our liveness-based system in the semantics:
reachability-based types are implemented using the contract stack, and poisoned references
are implemented using a poisoning label on the heap, replacing the original reference value.

From intuition, our liveness-based system satisfies the Gradual Guarantee, since it is
derived from an existing system [5] satisfying the Gradual Guarantee and strictly more re-
strictive than the transient dynamic semantics, which also satisfies the Gradual Guarantee
[18]. However, no formal statement can be made at this time, as the proof for our claim is
considered future work and yet to be completed.

54



Chapter 7

Conclusion and Future Work

This thesis presented an implementation that defines gradual types based on liveness. In
addition, we also show the modifications required for the monotonic dynamic semantics
to model the liveness-based type system. We have shown that our system is compatible
with existing code written for a monotonically gradually typed system. Furthermore, our
system imposes only a small performance penalty. We have compared our system with
existing gradually typed systems in both behavior and performance.

The idea of poisoning presented in this thesis is entirely new; in fact, in existing imple-
mentations, it is highly unusual that a type error in the code modifies the run-time state,
let alone invalidates all other references that justify the type for the object. However, the
program is allowed to proceed from a contract violation only if the violated contract is not
justified by the object involved in the contract violating access. Thus, such underestimation
of contract liveness does not hinder the correctness of the type system.

As explained, recovering from a contract violation is costly due to the need for contract
scanning of all reachable values. There are a few possible paths to reduce the number
of occurrences of contract violations. For example, if it is confirmed that a reference
with contractual obligations of a class A never escapes the context of some scope, we can
immediately remove the contract of class A when that scope has finished execution. One
way to obtain such confirmation is through static analyses such as escape analysis. In
addition, Higgs has frameworks for approximating liveness of variables; despite that, we
have not made use of this system in the work presented in this thesis. In the future, we
may investigate ways of incorporating static analyses with our system, with the goal of
improving the performance.

During the introduction of our implementation, we explained the necessity of associating

55



contract values with stack references. This modification triggered another modification for
how inline caching is implemented in Higgs: now we need to put the contracts on the cache
to make sure the contract is properly stored. This change presents a new opportunity
for Just-In-Time compilation optimization: is there some way to make use of this in-cache
contract information to further optimize code generation, just like in-cache tag information?

Liveness-based type systems are rarely considered in academic literatures due to the
impossibility of keeping liveness information in program execution. We present a new
approach for implementing liveness in a lazy way. Types are added monotonically onto
objects; the only time that types are justified through liveness is when a type error is en-
countered under the monotonic typing scheme. One potential topic for future investigation
is the possible use of the technique presented here to other gradually-typed systems, or
broadly, any type system with run-time type information.

In this thesis, we presented the possibility of recovering from what would be a run-
time type error in a system employing the monotonic dynamic semantics. Although such
errors can occur, they are mostly hypothetical, without any observations in real code. One
question we can ask here is how applicable our liveness-based type system is in day-to-day
code. To answer this question, a user study needs to be conducted. Such a user study
would inspect a large quantity of dynamic code with type annotations (e.g.,Python code
with type annotations or TypeScript code). The goal is to ascertain the frequency of
liveness-based type obligation relaxation required to complete execution if the program is
to be run under a monotonically gradual type system.

We have described the semantics for the system on the basis of the semantics for Hig-
gsCheck [5]. However, unlike this previous work, we did not prove any standard theorems.
We believe that our liveness-based system is sound by satisfying the soundness property,
including the Gradual Guarantee, yet are unable to make the claim due to lack of for-
mal proof. We will be looking at integrating the rules into the existing mechanized proof
for progress and preservation for HiggsCheck [5], in order to prove our modification to
HiggsCheck keeps the soundness of the type system.

Ultimately, we explored integrating the idea of liveness of references and objects in
the monotonic semantics of gradual typing. Discussions of liveness in type system are few
and far between. We hope this thesis serves as an attempt to begin the study of other
techniques by which liveness can improve type systems.

56



References

[1] The Apache Groovy programming language. groovy-lang.org.

[2] Documentation - type compatibility. www.typescriptlang.org/docs/handbook/

type-compatibility.html.

[3] TypeScript. www.typescriptlang.org.

[4] Wonsun Ahn, Jiho Choi, Thomas Shull, Maŕıa J. Garzarán, and Josep Torrellas.
Improving JavaScript performance by deconstructing the type system. page 496–507,
2014.

[5] Arteca, Ellen. Formal semantics and mechanized soundness proof for fast gradually
typed JavaScript. Master’s thesis, University of Waterloo, 2018.

[6] C. J. Cheney. A nonrecursive list compacting algorithm. Commun. ACM,
13(11):677–678, November 1970.

[7] Maxime Chevalier-Boisvert and Marc Feeley. Simple and effective type check removal
through lazy basic block versioning. CoRR, abs/1411.0352, 2014.

[8] Maxime Chevalier-Boisvert and Marc Feeley. Extending basic block versioning with
typed object shapes. CoRR, abs/1507.02437, 2015.

[9] Maxime Chevalier-Boisvert and Marc Feeley. Interprocedural type specialization of
JavaScript programs without type analysis. CoRR, abs/1511.02956, 2015.

[10] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the Smalltalk-80
system. page 297–302, 1984.

[11] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. pages 21–38, 1991.

57

groovy-lang.org
www.typescriptlang.org/docs/handbook/type-compatibility.html
www.typescriptlang.org/docs/handbook/type-compatibility.html
www.typescriptlang.org


[12] Ross McIlroy. Background compilation. https://v8.dev/blog/

background-compilation, Mar 2018.

[13] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris.
Safe & efficient gradual typing for TypeScript. SIGPLAN Not., 50(1):167–180, Jan-
uary 2015.

[14] Gregor Richards, Ellen Arteca, and Alexi Turcotte. The VM already knew that:
Leveraging compile-time knowledge to optimize gradual typing. Proc. ACM Program.
Lang., 1(OOPSLA), October 2017.

[15] Jeremy Siek and Walid Taha. Gradual typing for functional languages. Scheme and
Functional Programming, Janurary 2006.

[16] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Re-
fined Criteria for Gradual Typing. 32:274–293, 2015.

[17] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias
Felleisen. Is sound gradual typing dead? SIGPLAN Not., 51(1):456–468, January
2016.

[18] Michael Vitousek, Cameron Swords, and Jeremy Siek. Big types in little runtime:
open-world soundness and collaborative blame for gradual type systems. ACM SIG-
PLAN Notices, 52:762–774, 05 2017.

[19] Michael M Vitousek, Andrew M Kent, Jeremy G Siek, and Jim Baker. Design and
evaluation of gradual typing for Python. pages 45–56, 2014.

[20] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Du-
boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One
VM to rule them all. page 187–204, 2013.

58

https://v8.dev/blog/background-compilation
https://v8.dev/blog/background-compilation


APPENDICES

59



Appendix A

Full Semantics

This complete semantics for HiggsCheck with liveness-based types is derived from the
original semantics of HiggsCheck SafeTypeScript [5].

60



A.1 Grammar

A.1.1 Typed Grammar

Field name f ::= field name identifier

Method name m ::= method name identifier

Class name C ::= class name identifier

Interface name I ::= interface name identifier

Primitive type tc ::= number number type
| string string type
| bool boolean type
| void void type

Type t ::= tc primitive type
| {M ;F} struct type
| Any dynamic type
| C nominal class type
| I nominal interface type

Field decl F ::= ( f, t) field declaration

Method decl M ::= ( m, tm) method declaration

Method type tm ::= ( t) , t method type

Literals vc ::= number literal
| string literal
| boolean literal
| undefined

61



Location l ::= nil invalid location
| n n ∈ N

Variable x ::= variable identifier

Interface defn Î ::= baseI root interface
| interface I implements Ii {M ;F} I with body

Class defn Ĉ ::= baseC root class

| class C extends C ′implements Ii {M̂ ;F} C body

Method Defn M̂ ::= ( m, tm) ; ( ( x, t) : t {s; ret e})} method defn

Field defn F̂ ::= ( f, t) ; e field defn

Value v ::= l location
| tc vc primitive

Exp e ::= v value
| x variable

| {M̂ ; F̂} struct
| new C( ei) new class
| e.m( ei) method call
| e1[ e2] ( ei) dynamic method call
| e.f field access
| e1[ e2] dynamic field access
| < t > e explicit cast

| {l; M̂ ; F̂ ; t} rep’n of runtime object
| contract assign( e, t) assign type contract t to e
| check contract( e, f) check f field contract on e
| check contract( e,m) check m method contract on e

62



Stat s ::= e expression
| skip no op
| s1 ; s2 sequence of statements
| var x : t := e variable assignment
| x := e variable reassignment
| e1.f := e2 field assignment
| e1[ e2] := e3 dynamic field assignment
| if ( e) {s1} else{s2} if statement

63



A.1.2 Runtime Grammar

Runtime obj O ::= {l; M̂ ; {fe, ft}; lk}
Prim shape ps ::= tp primitive type

| m method name
| C class name
| struct shape

Obligations k ::= ps primitive obl
| fn, t field obl
| m, tm member fct obl
| t fct arg obl
| t fct return obl

Contract stack K ::= X context
| K1, K2 recursive case

Context X ::= lk 7→ {c, lb} contract and poison/blame label
| X1, X2 recursive case

Runtime heap H ::= l 7→ O runtime object
| l 7→ v primitive value
| l 7→ w poison value
| H1, H2 recursive case

Poison w ::= poison tag

Signature S ::= Î | Ĉ interface or class defn
| S1, S2 recursive case

Local store L ::= x 7→ l var position on heap
| L1, L2 recursive case

State C ::= S;H;L;K

A.2 Typing Judgement

A.2.1 Expressions

t = Σ[l]

(S,Σ,Γ)(l, t) ↪→e l
(T Loc)

64



t = Γ[x]

(S,Σ,Γ)(x, t) ↪→e x
(T Env)

(S,Σ,Γ)((tpp), tp) ↪→e (tp, p)
(T Const)

T F̂ ↪→f F̂
′ T M̂ ↪→m M̂ ′

T ({M̂, F̂}, getStructTypeFromDefns( {M̂, F̂}) ) ↪→e {M̂ ′, F̂ ′}
(T Rec)

(S,Σ,Γ) (e, t′) ↪→e e
′ Ĉ = getClass(S,Cn) F = getF ieldDeclFromClass(Ĉ)

F = (fe, ft ) t <: ft lb = poison label

(S,Σ,Γ) (new Cn( e)) , Cn) ↪→e contract assign( new Cn( CA list( e, t) ) , lb)
(T New)

T (e, t′) ↪→e e
′ (T (e, t′) ↪→e e′

t′ <: t (mn) ∈ t′

T (e.mn(e, t) ↪→e e
′.mn(CA list(e, t))

(T SMCall)

T (e, t′′) ↪→e e
′ t′′ <: t′

T (contract assign(e, t), t′, lb) ↪→e contract assign(e′, t, lb)
(T ContAssign)

T (fe, ft) ↪→e f ′
e

T ( l; M̂ ; fe, ftcs, getStructTypeFromDefns( M̂, fe, ft) ) ↪→e l; M̂ ; M̂
(T ObjNotation)

T (e, t) ↪→e e
′ t <: t′ lb = poison label

T (< t′ > e, t) ↪→e< t′ > contract assign(e′, t, lb)
(T Cast)

T (e, t′) ↪→e e
′ T (e.s, t) ↪→e e

′.s

T (check contract(e, s), t) ↪→e check contract(e′, s)
(T CheckCont)

T (e, t′) ↪→e e
′

t (e.f, tf ) ↪→e e
′.f

(T FldRd)

T ([ ], [ ]) ↪→e [ ]
(T ListExp Empty)

65



T (e, t) ↪→e e
′ T (e, t) ↪→e e′

T (e :: e, t :: t) ↪→e e
′ :: e′

(T ListExp Cons)

A.2.2 Fields and Methods

T ([ ], [ ]) ↪→fd ([ ], [ ])
(T FDs Empty)

T (e1, t
′
1) ↪→e e

′
1 t′1 <: t1

T (fnt, fe) ↪→fd (fnt, f ′
e) lb = poison label

T ((fn, t1) :: fnt, e1 :: fe) ↪→fd ((fn, t1) :: fnt, (contract assign(e′1, t1, lb)) :: f ′
e)

(T FDs Cons)

T ([ ], [ ]) ↪→md ([ ], [ ])
(T MDs Empty)

T ′ (e1, t
′
1) ↪→e e

′
1 T s1 ↪→s s

′
1

T (mnt,mc) ↪→md (mnt,m′
c) T ′ = T,Γ updated with v

T ((mn, t1) :: mnt, {v, t1, s1, e1} :: mc) ↪→md ((mn, t1) :: mnt, {v, t1, s′1, e′1} :: f ′
e)

(T MDs Cons)

A.2.3 Statements

T (e, t) ↪→e e
′

T e ↪→s e
′ (T Exp)

T skip ↪→s skip
(T Skip)

T (e, t′) ↪→e e
′ e′ 6= ε t′ <: t

T (x : t := e) ↪→s x : t := e′
(T VDef)

T (x, t) ↪→e x T (e, t′) ↪→e e
′ t′ <: t

T x = e ↪→s x = e′
(T VAssign)

T (e1, t1) ↪→e e
′
1 T (e2, t2) ↪→e e

′
2 t1 <: t2

T e1.f = e2 ↪→s e
′
1.f = e′2

(T SFAssign)

66



T (e, t) ↪→e e
′ T s1 ↪→s s

′
1 T s2 ↪→s s

′
2

T if(e) s1 else s2 ↪→s if(e′) s′1 else s
′
2

(T If)

T s1 ↪→s s
′
1 T s2 ↪→s s

′
2

T s1; s2 ↪→s s
′
1; s

′
2

(T Seq)

A.3 Reduction Rules

A.3.1 Rules for Statements

Given metavariables s and C over untyped statements and runtime states respectively,
define the following relation as “statement s with runtime state C will step to s′ with
runtime state changed to C ′”.

C/s −→s C
′/s′

The runtime states is defined as a combination of four entities:

C ::= S;H;L;K

Where S is the signature (list of existing nominal types and their definitions), H is the
runtime heap, L is the variable store, and K is the contract stack.

Value:

v 6= ε value(v)

C/v −→s C/skip
(S Val)

Sequences:

C/skip; s −→s C/s
(S Seq Skip)

C/s1 −→s C
′/s′1 s′1 6= ε

C/s1; s2 −→s C
′/s′1; s2

(S Seq canRed)

C/s1 −→e C
′/ε

C/s1; s2 −→s C/ε
(S Seq canRed ERR)

C/ε; s −→s C/ε
(S Seq ERR)

67



Variable definition:

C/e −→e C
′/e′ e′ 6= ε

C/var x : t := e −→s C
′/var x : t := e′

(S VarDef canRed)

C/e −→s C/ε

C/var x : t := e −→s C/ε
(S VarDef canRed ERR)

primTypeMatches(p, t) H ′ = C.H[C.L(x) 7→ (p, t)]

C/var x : t := t p −→s C CH ′/skip
(S VarDef Prim OK)

! primTypeMatches(p, t)

C/var x : t := t p −→s C/ε
(S VarDef Prim badType)

isObjType(t)

C/var x : t := t p −→s C/ε
(S VarDef Prim objType)

C/var x : t := ε −→s C/ε
(S VarDef ERR)

Variable update:

C/e −→e C
′/e′ e′ 6= ε

C/x ::= e −→s C
′/x := e′

(S VarUpd canRed)

C/e −→s C/ε

C/x := e −→s C/ε
(S VarUpd canRed ERR)

C.L(x) 6= nil H ′ = C.H[C.L(x) 7→ (p, t)]

C/var x : t := t p −→s C CH ′/t p
(S VarUpd Prim)

C/x := ε −→s C/ε
(S VarUpd ERR)

value(v) C.L(x) = nil

C/x : t := v −→s C/ε
(S VarUpd BadLoc)

Static field update:

68



C/e1 −→e C
′/e′1 e′1 6= ε

C/e1.f := e2 −→s C
′/e′1.f := e2

(S SFldUpd firstRed)

C/e1 −→e C/ε

C/e1.f := e2 −→s C/ε
(S SFldUpd firstRed ERR)

value(v) @ l ∈ C.H | v = l

C/e1.f := e2 −→s C/ε
(S SFldUpd firstBadVal)

C/e −→e C
′/e′ e′ 6= ε

C/l.f := e −→s C
′/l.f := e′

(S SFldUpd canRed)

C/e −→e C/ε

C/l.f := e −→s C/ε
(S SFldUpd canRed ERR)

H ′ = updateObjF ieldWithV al(C.H, f, l, (t p))

C/l.f := t p −→s C CH ′/t p
(S SFldUpd prim)

H ′ = updateObjF ieldWithV al(C.H, f, l1, l2)

C/l1.f := l2 −→s C CH ′/l2
(S SFldUpd loc)

Dynamic field update:

C/e −→e C
′/e′

C/l[v] := e −→s C
′/l[v] := e′

(S DFldUpdLit canRed)

f = toString(v) H ′ = updateObjF ieldWithV al(C.H, f, l1, l2)

C/l1[v] := l2 −→s C CH ′/l2
(S DFldUpdLit loc)

f = toString(v) H ′ = updateObjF ieldWithV al(C.H, f, l, (t p))

C/l1[v] := t p −→s C CH ′/t p
(S DFldUpdLit prim)

C/l1[v] := ε −→s C/ε
(S DFldUpdLit ERR)

If statements:

69



v = bool true

C/if(v){s1} else{s2} −→s C/s1
(S If boolVal true)

v = bool false

C/if(v){s1} else{s2} −→s C/s2
(S If boolVal false)

value(v) @ b | v = bool b

C/if(v){s1} else{s2} −→s C/ε
(S If badVal)

C/e −→e C
′/e′ e′ 6= ε

C/if(e){s1} else{s2} −→s C
′/if(e′){s1} else{s2}

(S If canRed)

C/e −→e C/ε

C/if(e){s1} else{s2} −→s C/ε
(S If canRed ERR)

Expression:

C/e −→e C
′/e′

C/e −→s C
′/e

(S E steps)

Method call:

value(e) ∃ l ∈ C.L | e = l @ vi ∈ v | vi = ε

C.H[l] = {l, M̂ ; F̂ ; lk} vt, t, s, e1 = getMethDefnFromRunObj(M̂,m)

C/e.m(v) −→s C/subst stat((vt, v), s)
(S SMCall M S)

70



A.3.2 Rules For Expressions

Given metavariables e and C over untyped expressions and runtime contexts, define the
following expression as “expression e with runtime state C will step to e′ with runtime
state changed to C ′”.

C/e −→e C
′/e′

Object literals:

C/fe −→e C
′/f ′

e @ ei ∈ f ′
e | ei = ε

C/{M̂ ; (fnt, fe)} −→e C
′/{M̂ ; (fnt, f ′

e)}
(E objLit canRed)

C/fe −→e C
′/f ′

e ∃ ei ∈ f ′
e | ei = ε

C/{M̂ ; (fnt, fe)} −→e C
′/ε

(E objLit canRed ERR)

fieldIsV al(F̂ )

C/{M̂ ; F̂} −→e C
′/{length(C.H); [M̂ ]; F̂ ; [ ]}

(E objLit isVal)

objIsV al({l; M̂ ; })
C/{M̂ ; (fnt, fe)} −→e C

′/ε
(E objLit redToRunObj)

Contract assignment:

C/e1 −→e C
′/e′1

C/contract assign(e1, τ, lb) −→e C
′/contract assign(e′1, τ, lb)

(E contAssign canRed)

C.H[l1] = tp p t = primType tp

C/contract assign(l1, t, lb) −→e C/l1
(E contAssign onLoc prim)

C.H[l1] = tp p t 6= primType tp H ′ = C.H[l1 7→ lb]

C/contract assign(l1, t, lb) −→e C CH ′/l1
(E contAssign onLoc prim ERR)

C/contract assign(ε, t, lb) −→e C/ε
(E contAssign ERR)

71



C.H[l1] = {l; M̂ ; F̂ ; c} isObjType(t) = false

H ′ = C.H[l1 7→ lb]

C/contract assign(l1, t, lb) −→e C CH ′/l1
(E CA onLoc obj badType)

C.H[l1] = {l; M̂ ; F̂ ; lk}
isObjType(t) c = toContract(t) lc = C.K.length
X = C.K.top() X ′ = X[lc 7→ {c, lb}] K ′ = K CX

H ′ = C.H[l1 7→ {l; M̂ ; F̂ ; lk, lc}]
C/contract assign(l1, t, lb) −→e C CH ′, K ′/l1

(E CA onLoc runObj)

C.H[l1] = nulObj

C/contract assign(l1, t, lb) −→e C/ε
(E CA onLoc badLoc)

Contract checking:

C/e1 −→e C
′/e′1 e′1 6= ε

C/check contract(e1, s) −→e C
′/check contract(e′1, s)

(E checkCont canRed)

C/e1 −→e C
′/e′1 e′1 = ε

C/check contract(e1, s) −→e C
′/ε

(E checkCont canRed ERR)

value(ev) @ l | ev = l

C/check contract(ev, s) −→e C/ε
(E checkCont notLoc)

value(ev) ∃ l | ev = l C.H[l] = tp p

C/check contract(ev, s) −→e C/ε
(E checkCont loc prim)

value(ev) ∃ l | ev = l C.H[l] = {l; M̂ ; F̂ ; lk}
None = getMemberFromRunObj(M̂ ; F̂ , s)

C/check contract(ev, s) −→e C/ε
(E checkCont loc noMember)

value(ev) ∃ l | ev = l C.H[l] = {l; M̂ ; F̂ ; lk}
e = getMemberFromRunObj(M̂ ; F̂ , s) q = lk ∩ all Xi ∈ C.K
t = (lb, tj) li ∈ q (ck, lb) = Xk[li] (s, tj) ∈ ck Xk ∈ C.K

C/check contract(ev, s) −→e C/propagateContract(t, e)
(E checkCont obj member)

72



Poisoning-related auxiliary functions:

e′ = assignContractLstTypes(tj, l, e)

C/propagateContract((l, tj) :: t, e) −→e C/propagateContract(t, e
′)

(E propCont rec)

e′ = assignContractLstTypes(tj, l, e)

C/propagateContract((l, tj), e) −→e C/e
′ (E propCont base)

e′ = contract assign(e, t1, lb)

C/assignContractLstTypes((t1 :: tj), lb) −→e C/assignContractLstTypes(tj, e
′, lb)

(E contTypeList rec)

e′ = contract assign(e, t1, lb)

C/assignContractLstTypes((t1), lb) −→e C/e
′ (E contTypeList base)

C.H[l] = w

C/l −→e C/ε
(E poison access)

List of expressions:

C/e −→e C
′/e′

C/(e :: e) −→e C
′/(e′ :: e)

(LR one)

C/e −→e C
′/e′

C/(e :: e) −→e C
′/(e :: e′)

(LR cons)

73


	List of Figures
	List of Tables
	Introduction
	Background
	Gradual Typing
	Just-In-Time Compilation and Dynamically Typed Languages
	SafeTypeScript
	Intrinsic Object Contracts
	Higgs
	HiggsCheck


	Rechability-Based Obligation Removal
	Motivation
	Approximating Liveness Using Reachability
	Implementation
	Changing Contracts In An Object
	Heap Scanning for Contracts

	Unexpected Behavior

	Poisoning
	Rationale
	Implementation
	Comparison with existing semantics
	Comparison With The Monotonic And Transient Semantics
	Comparison With The Guarded Semantics
	Summary


	Evaluation and Results
	Performance on Monotonic Code
	Performance On Code With Poisoning
	Poisoning At A Distance
	Recursive Stack Frames

	Slowdowns Related To Iteration
	Performance Comparison With Other Semantics

	Formal Semantics
	Rationale
	Basic Definitions
	Reduction Rules For The Untyped Language
	Typing Judgement
	Closing Thoughts

	Conclusion and Future Work
	References
	APPENDICES
	Full Semantics
	Grammar
	Typed Grammar
	Runtime Grammar

	Typing Judgement
	Expressions
	Fields and Methods
	Statements

	Reduction Rules
	Rules for Statements
	Rules For Expressions



