
Prediction and Planning in Dynamical
Systems with Underlying Markov

Decision Processes

by

SeyedErshad Banijamali

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2021

c© SeyedErshad Banijamali 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Matthew E. Taylor, Associate Professor
Department of Computer Science
University of Alberta

Supervisor: Ali Ghodsi, Professor
Department of Statistics and Actuarial Science
University of Waterloo

Internal Member: Pascal Poupart, Professor
School of Computer Science
University of Waterloo

Jesse Hoey, Professor
School of Computer Science
University of Waterloo

Internal-External Member: Fakhri Karray, Professor
Department of Electrical and Computer Engineering
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Main part of this dissertation is based on some publications that I have co-authored. In
particular, Chapter 2 is based on [4], Chapter 3 is based on [7, 8], Chapter 4 is based on
[11, 9], and finally, Chapter 5 is based on [10].

iv

Abstract

Predicting the future state of a scene with moving objects is a task that humans han-
dle with ease. This is due to our understanding about the dynamics of the objects in the
scene and the way they interact. However, teaching machines such understanding has
always been a challenging task in machine learning. In recent years, with the abundance
of data and enormous growth in computational power, there have been an outstanding
progress in filling the gap between humans and machines perception and prediction.
Deep learning, specifically, has been the main framework to address this problem.

Prediction models are not only crucial problems by themselves but also many down-
stream tasks in machine learning and robotics rely on the quality of output of these
models. Model-based control and planning require an accurate modelling of the under-
lying dynamics of the systems. A common assumption about the underlying dynamics,
which is also the main theme of this thesis, is that it can be expressed using Markov
Decision Processes (MDPs). However, the major portion of the thesis is dedicated to
the problems in which we do not have access to the actual underlying MDP and only
observe some high-dimensional observations from the dynamical system. The objec-
tive is then to model the underlying dynamics from the data and built a model that can
potentially be used for planning and control. We consider both single-agent and multi-
agent systems and employ deep generative models for modelling the dynamics. For
the single-agent problem we propose a model that maps the high-dimensional observa-
tions to a low-dimensional space in which the dynamics of the system is modelled by
a locally-linear function. We find this mapping by a proper modelling of the variables
using graphical models and show that the mapping is robust against dynamics noise
and suitable for control. For the multi-agent problem we provide a formulation that de-
scribes the prediction problem in terms of the reaction of the environment to the action
of one agent (ego-agent) and show that such formulation can improve the prediction
accuracy as well as broaden the range of environment conditions. From a different per-
spective, we also consider the problem in which we have access to the MDP and would
like to obtain the optimal policy. More specifically, given a set of base policies on the

v

MDP, we want to find the best policy in their convex hull. We show that this problem
is NP-hard in general and provide an approximating algorithm with linear complexity,
which outputs a policy that performs close to the optimal policy. This policy can be
found under the condition that base policies have overlap in the occupancy measure
space.

vi

Acknowledgements

First and foremost, I want to express my gratitude to my supervisor, Ali Ghodsi,
who has always encouraged me to explore the problems I am interested in. His im-
mense knowledge in different research fields has inspired me to expand my horizons
and develop new skills. I truly appreciate all his time, patience, ideas, discussions, and
advises.

I would like to thank Mohammad Ghavamzadeh and Yasin Abbasi-Yadkori for their
tremendous help in solving problems that form some parts of this thesis. I also thank
Pascal Poupart for the discussions and his great technical advises.

During the years that I was in Waterloo I had been lucky to spend time with incred-
ible friends. They always made every situation easier and more enjoyable.

Above all, I devote my deepest gratitude to my family for their unconditional love
and support throughout my life and especially during this period. Their endless devo-
tion and patience guided me in this journey.

vii

Dedication

To my beloved parents.

viii

Table of Contents

List of Figures xiv

List of Tables xix

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 2

1.2.1 RQ1: Policy optimization over a known MDP 2

1.2.2 RQ2: Finding a prediction model from high-dimensional observa-
tion of an unknown MDP . 3

1.3 Summary of Contributions . 4

1.4 Document Organization . 7

2 Optimizing over a Restricted Policy Class in Markov Decision Processes 8

2.1 Contributions . 8

2.2 Introduction . 9

2.2.1 Notation . 11

2.3 Preliminaries . 12

ix

2.4 Hardness Result . 14

2.5 Reduction to Convex Optimization . 16

2.6 Experiments . 23

2.6.1 Queuing Problem: 1-Queue . 24

2.6.2 Queuing Problem: 4-Queues . 25

2.6.3 Queuing Problem: 8-Queues . 27

2.7 Summary . 30

3 Representation Learning using VAEs 31

3.1 VAE: An introduction . 31

3.2 Deep Variational Sufficient Dimensionality Reduction 34

3.2.1 Sufficient Dimensionality Reduction 34

3.2.2 Model description . 34

3.2.3 Experiment Results . 37

3.3 Joint Autoencoders for Dis-Entanglement 40

3.3.1 Problem statement and prior works 40

3.3.2 Model description . 42

3.3.3 Experiments . 44

3.4 Summary . 48

4 Robust Locally-Linear Controllable Embedding 49

4.1 Contributions . 49

4.2 Problem statement and prior work . 50

4.3 Preliminaries . 52

x

4.3.1 Problem Formulation . 52

4.3.2 Stochastic Locally Optimal Control 53

4.3.3 The Embed to Control (E2C) Model 54

4.4 Model Description . 56

4.4.1 Graphical Model . 56

4.4.2 Deep Variational Learning . 59

4.4.3 Network Structure . 62

4.4.4 Planning . 62

4.5 Experiments . 63

4.5.1 Planar System . 64

4.5.2 Inverted Pendulum (Acrobat) . 65

4.5.3 Cart-pole Balancing . 66

4.5.4 Three-link Robot Arm . 66

4.6 Disentangling Dynamics and Content . 67

4.6.1 Problem Statement . 68

4.6.2 Model description . 68

4.6.3 Experiment Result . 71

4.7 Summary . 73

5 A Multi-step Action-based Prediction Method for Autonomous Driving 74

5.1 Contributions . 74

5.2 Problem statement . 75

5.3 Related Work . 77

5.4 Prediction by Anticipation . 78

xi

5.4.1 Base model . 78

5.4.2 Difference Learning (DL) . 86

5.5 Experiments . 87

5.5.1 Prediction under different driving situations 88

5.5.2 Prediction for rare actions . 91

5.5.3 Ablation study . 93

5.5.4 SSIM term and ablation . 94

5.6 Summary . 96

6 Conclusion and Future Work 98

6.1 Contributions . 98

6.1.1 RQ1: Policy optimization over a known MDP 98

6.1.2 RQ2: Finding a prediction model from high-dimensional observa-
tion of an unknown MDP . 99

6.2 Future work . 100

References 102

Appendix 114

Appendix A Robust Locally-Linear Controllable Embedding 115

A.1 Objective Function . 115

A.2 Implementation . 118

A.2.1 Planar system . 119

A.2.2 Inverted Pendulum . 119

A.2.3 Cart-pole Balancing . 120

A.2.4 Three-Link Robot Arm . 120

xii

Appendix B Prediction by Anticipation 122

B.1 Terms in the loss function . 122

B.1.1 The ELBO term . 122

B.2 Implementation details of the prediction module 123

B.2.1 NGSIM I-80 dataset . 124

B.2.2 Argoverse dataset . 126

xiii

List of Figures

2.1 Stochastic Subgradient Method for MDPs. 16

2.2 (a) Stationary distribution of the two initial policies. (b) Top: Cost of
the mixture policy versus w. Bottom: Stationary distribution of the best
mixture policy found in the space ofw. (c) Top: Cost of the mixture policy
versus θ. Bottom: Stationary distribution of the best mixture policy found
in the space of θ. Note that by letting θ to take negative values we enlarge
the set of possible mixture policies that our algorithm returns. However,
the resulting policy is not necessarily in the convex hull of the base policies. 25

2.3 A system with four queues and two servers 26

2.4 Cost per iteration for the primal and dual spaces. The policy gradient (b)
for the dual space is the method described in Algorithm 2.1. Horizontal
dashed lines are the costs of the base policies. 27

2.5 A system with 8 queues and 3 servers. 28

2.6 Mean and standard deviation of cost per iteration in the eight queue
problem. (a) Primal space. (b) Dual Space. 29

3.1 Graphical model . 32

3.2 Candidate graphical models for sufficient dimensionality reduction . . . 36

xiv

3.3 (a,b) Reconstructed and generated images using DVSDR with 2-D and
15-D latent space. (c) Fitting a mixture of Gaussian with 10 components
on the latent space and sampling from each component 39

3.4 Fashion MNIST. 10-D latent space . 39

3.5 Graphical models of the method. 42

3.6 Network structure of the method . 43

3.7 (a) variance normalized activations of latent space parameters, averaged over

500 random samples from each of 10 classes in SVHN; when content is fixed,

the part of the latent space that feeds into the classifier exhibits weaker variance

in activations compared to the part of the latent space that seemingly represents

style over the 500 samples. (b) variance normalized activations of latent space

parameters for 2500 random samples from SVHN spanning various style and

content; all 20 latent space parameters fire for random splits of the data. 47

4.1 RCE graphical model. Black arrows show the generative links and dashed
red arrows show the recognition model. Parallel lines mean determinis-
tic links, while single lines mean stochastic links (a link that involves in
sampling). zt and z̄t are two samples from p(z|x). We use a single net-
work (the encoder network) to model the conditional probability of the
links with the hatch marks. 58

xv

4.2 Schematic of the networks that are used for modeling the probabilities
in our model. The gray boxes contain input (observable) variables. (a)
Encoder network that models qϕ(ẑt+1|xt+1) = N

(
µϕ(xt+1),Σϕ(xt+1)

)
. (b)

Transition network that contains two parts. One part, denoted by “back-
ward encoder”, models qϕ(z̄t|xt, ẑt+1) = N

(
µϕ(xt, ẑt+1),Σϕ(xt, ẑt+1)

)
, and

the other part, denoted by “linearization”, is used to obtain Mt, Bt, and
ct, which are the parameters of the locally linear model in the latent space.
(c) Decoder network that models p(xt+1|ẑt+1). In our experiments we as-
sume that this distribution is Bernoulli. Therefore, we use sigmoid non-
linearity at the last layer of the decoder. x̄t+1 is the reconstructed version
of xt+1. (d) The network that models p(zt|xt). According to Eq. 4.13,
since p(zt|xt) = qϕ(zt|xt) and therefore we tie the parameters of this net-
work with the encoder network, p(zt|xt) = N (µϕ(xt),Σϕ(xt)). Note that
p(zt|xt) is the same as p(z̄t|xt). Thus, the KL term in (4.21) can be written
as KL

(
N (µϕ,Σϕ) ‖ N (µϕ(xt),Σϕ(xt))

)
. 61

4.3 (a) Left: The true state space of the planar system. Each point on the map
corresponds to one image in the dataset. (a) Right: A random trajectory.
Each image is 40×40 black and white. The circles show the obstacles and
the square is the agent in the domain. (b) Reconstructed map and pre-
dicted trajectory in the latent space of the E2C model for different noise
levels. (c) Reconstructed map and predicted trajectory in the latent space
of the RCE model for different noise levels. 65

4.4 Graphical models. The black arrows are generative links and the red
dashed ones are recognition links. The parallel lines show the deter-
ministic links. (a) Graphical model for set X . z̄t and zt are two sam-
ples from p(zt|xt). The neural networks that parameterize the links with
hatch marks are hard tied, i.e. p(zt|xt) = p(z̄t|xt) = q(ẑt|xt) . (b) Graphical
model for Y . 70

4.5 Networks of the model . 71

xvi

4.6 (a) Top: The true state space of the system. Middle: estimated locally-
linear latent space from set X . Bottom: The hidden space learned for set
Y . (b): Left: An initial observation from X on top and its next obser-
vations after applying four random actions Right: Reconstruction of the
initial state and prediction of the next observations. (c): Left: An initial
observation from Y on top and its next observations after applying four
random actions Right: Reconstruction of the initial state and prediction
of the next observations . 72

5.1 Computing the effect of actions on the future position, velocity and change in

the direction of the car. 80

5.2 Applying the effect of action on the OGMs: Left: OGM it and corresponding

action at time t. Middle: the output of IOT1, jegot+1, after applying transforma-

tion on the ego-features of it, . Right: the output of IOT2, jenvt+1, after applying

transformation on it+1. 81

5.4 Graphical model at time t: Left: Generative links, p(.). Right: Variational links,

q(.). Observable variables are gray. 83

5.5 The prediction module at the training time. The measurements are encoded

using fully-connected networks, while we use convolutional neural networks to

encode and decode OGMs. 84

5.6 Difference learning module . 86

5.7 Predictions of 10 frames (1 sec) by different models. 89
5.8 Left: OGM prediction of PA-DL for the Argoverse dataset. Top row shows

the target sequence. Middle row shows the sequence of predicted differences,

learned by the model, where red areas (negative values) are erased from the

frame and green areas (positive values) are added to build the next frame. Bot-

tom row shows the final predicted frame. We demonstrate the mechanism to

build the predictions for the first time step. Right: Zoomed-in first predicted dif-

ference. Difference learning allows reasoning about the motion of other agents.

. 90

xvii

5.9 Distribution of actions. 93

5.10 Effect of constantly applying rare actions on the prediction of PA and FM-MPUR

models. 93

B.1 Detailed structure of the prediction module. 123

xviii

List of Tables

2.1 Base Policies for the 4-Queue problem. 26

2.2 Base Policies for eight queue problem . 29

3.1 Classification Error rate . 38

3.2 Classification error rates for SVHN on limited data: 100 samples per each class.

Error rates calculated using the entirety of SVHN’s test set. Results of our ex-

periments are averaged over 3 runs. We observe improved SVHN classification

performance without sacrificing near state-of-the-art performance on MNIST. . . 46

4.1 RCE and E2C Comparison – Planar System 64

4.2 RCE and E2C Comparison – Inverted Pendulum (Acrobat) 66

4.3 RCE and E2C Comparison – Cart-pole Balancing 67

4.4 RCE and E2C Comparison – Robot Arm . 67

4.5 Planar System . 72

5.1 Comparison of different models in terms of MSE for NGSIM I-80 and TP/TN

for Argoverse. For this table predictions for all methods except RNN-Diff2.1 are

generated using the mean value for the latent code. 91

5.2 Comparison of different models in terms of ALL. 91

5.3 Comparison of predictions of PA, PA-DL, and FM-MPUR using rare actions. . . . 92

xix

5.4 Results of ablative study on the contributing factors to the performance of our

models. no RBM: a model without rule-based modules. no BCDE: a CVAE-

based model with unconditioned prior for the latent code. no ME: a module

without motion encoding. 94

5.5 Ablative study in terms of ALL for regular actions. 95

5.6 Ablative study in terms of ALL for low-probable actions in NGSIM I-80 dataset. . 95

5.7 Effect of the SSIM term in terms of MSE for NGSIM I-80 and TP/TN for Argoverse. 96

B.1 Detail of the prediction module for the NGSIM I-80 dataset. The coefficient for

the leaky ReLU activation functions is 0.2. 125

B.2 Detail of the prediction module for the Argoverse dataset as a part of difference

learning module. The coefficient for the leaky ReLU activation functions is 0.2. . 128

xx

Chapter 1

Introduction

1.1 Motivation

Planning and sequential decision making is a crucial task in machine learning and more
generally artificial intelligence with applications in many domains. Teaching machines
how to plan and act independently in the field is probably the biggest step towards
building intelligent agents. With the abundance of data and enormous resources de-
voted to the research in the area of machine learning, especially in the last two decades,
there has been great advancements in developing algorithms and building systems that
can carry out this task. However in many areas such as autonomous driving we are still
far from being done.

There are two major approaches to solve planning problems: Model-based algo-
rithms and model-free algorithm. In model-free algorithms, there is no explicit model
for transition or reward, and policy is directly optimized by interaction with the envi-
ronment. In model-based algorithms, on the other hand, a model of the environment
is first learned that describes the evolution of the states, and then an algorithm is de-
signed to optimize the agent’s behaviour based on the learn model. The main benefit
of model-based planning is that it requires much less data, and therefore much less in-

1

teractions with the environment. This is especially important for the problems in which
interaction with environment is costly, e.g. autonomous driving.

Throughout this dissertation, we assume that the interaction between the agent and
environment can be modelled using Markov decision processes (MDPs). We consider
two problems. First we assume we have access to an MDP and would like to find an
optimal policy over this MDP. In the second problem, we assume there is no explicit
access to an MDP and we only observe data generated using an underlying MDP in
the form of sequences of interactions between and agent and environment. The goal for
the second problem is to approximate the transition probability distribution of the MDP
using a prediction model that can be then used for model-based planning. Our focus,
however, is on finding the so-called world-model [37, 66].

1.2 Research Questions

In this dissertation we address two research questions that are essentially related to two
different aspects of planning but are relevant in the sense that the problems can be cast
in the framework of MDPs.

1.2.1 RQ1: Policy optimization over a known MDP

In the first problem, we assume there is access to the actual MDP that defines our prob-
lem and we are given a set of limited number of policies on this MDP. The goal is then
to find the optimal combination of these policies in the convex hull. This problem is of
great interest in applications in which a number of reasonably good (or safe) policies
are already known and we are interested in optimizing in their convex hull. In chapter
2 we address this problem.

2

1.2.2 RQ2: Finding a prediction model from high-dimensional obser-

vation of an unknown MDP

For the second problem, we assume that we only have access to sequences of data gener-
ated from an underlying MDP in the form high-dimensional observations, e.g. in pixel
space. The goal is to find a probabilistic prediction model that serves as an approxi-
mation of the transition probability distribution of the MDP. In fact, this can be seen as
solving a prediction task.

The probabilistic approach for solving the prediction task is formally defined as find-
ing the probability distribution over the next state of the system, st+1, given the history
of the past states, s1:t, and action, a1:t, of an agent (actor), i.e. p(st+1|s1:t, a1:t). Data
usually comes in large sequences of state-action-state, {s1, a1, s2, a2, ..., sN}. To derive a
prediction model from large sequences of data, a common approach is maximizing the
log-likelihood of the whole data sequences. In fact, by maximizing the log-likelihood
we can discover the generative process that produces the dataset. When the sequence of
data hold Markov property, the maximization can be written in the form of summations
of p(st+1|st, at), which makes the computations much easier. From another perspective,
given the Markov property, maximizing the log-likelihood is equivalent to approximat-
ing the transition probability distribution of an MDP, which can be then used for learn-
ing a policy that can control the system. The better we model the generative process
behind producing the data, the closer we get to the actual transition probability distri-
bution.

With the dawn of deep learning and enormous improvement in computational power,
we have been able to process complicated data for different application. Deep genera-
tive models (DGNs), such as variational autoencoders (VAEs) [48, 79], generative adver-
sarial networks (GANs) [33], and flow-based models [78], are powerful tool to model
the distribution of data. We will be using DGNs and specifically VAEs to tackle the
prediction task.

Two sets of prediction problems are investigated in this dissertation: 1) High-dimensional

3

observation from a single dynamical system for which the prediction problem includes
understanding the dynamics of the systems using the observation and representing that
dynamics in a much lower-dimensional space that can be then used for planning and
control. 2) High-dimensional observation of a multi-agent dynamical system for which
the prediction problem includes capturing the dynamics of the objects as well as inter-
actions among them. We particularly consider the problem of autonomous driving.

1.3 Summary of Contributions

• Contribution 1: Combining a finite number of policies in MDPs: We study the
problem of finding an optimal policy in an MDP under a restricted policy class
defined by the convex hull of a set of base policies. We prove that solving this
problem is NP-hard. We then propose an efficient algorithm that finds a policy
whose performance is almost as good as that of the best convex combination of
the base policies, under the assumption that the occupancy measures of the base
policies have a large overlap. The running time of the proposed algorithm is lin-
ear in the number of states and polynomial in the number of base policies. A
distinct advantage of the proposed algorithm is that, apart from the computation
of the occupancy measures of the base policies, it does not need to interact with
the environment during the optimization process. This is especially important (i)
in problems that due to concerns such as safety, we are restricted in interacting
with the environment only through the (safe) base policies, and (ii) in complex
systems where estimating the value of a policy can be a time consuming process.
In practice, we demonstrate an efficient implementation for large state problems.

• Contribution 2: A probabilistic model for robust controllable embedding based
on VAEs: We present a new model for learning robust locally-linear controllable
embedding (RCE) for high-dimensional observations of an underlying MDP prol-
blem. Our model directly estimates the predictive conditional density of the future
observation given the current one, while introducing the bottleneck [85] between

4

the current and future observations. Although the bottleneck provides a natural
embedding candidate for control, our RCE model introduces additional specific
structures in the generative graphical model so that the model dynamics can be
robustly linearized. We also propose a principled variational approximation of
the embedding posterior that takes the future observation into account, and thus,
makes the variational approximation more robust against the noise. Experimental
results demonstrate that RCE outperforms the existing embed to control model
(E2C), and does so significantly in the regime where the underlying dynamics is
noisy.

• Contribution 3: A probabilistic model for action-conditional multi-step predic-
tion for autonomous driving based on VAEs: We propose ”Prediction by Antic-
ipation”, a method for action-conditional environment prediction for self-driving
cars where the environment is represented in the form of Occupancy Grid Map
(OGM). Our motivation is that accurate modelling and prediction of the driving
environment can efficiently improve path planning and navigation resulting in
safe, comfortable and optimum paths in autonomous driving. Due to the impor-
tance of interactions between the objects in the scene, it is important to model and
predict the driving environment based on the ego-actions to be able to predict the
effect of our actions on other agents decisions and behaviours. We train our model
in the framework of conditional varitional autoencoders (CVAEs) to maximize the
evidence lower bound (ELBO) of the log-likelihood of a conditional observation
distribution. An extension of our model is also presented that explicitly learns the
difference between consecutive frames and is suitable for dense urban traffic. We
evaluate our model on OGM sequences from two important autonomous driving
benchmarks. The results show significant improvements of the prediction accu-
racy using our proposed architectures over the state-of-the-art.

• Contribution 4: Employing VAE-based models for representation learning: As
mentioned in Contributions 2 and 3, the embedding of the high-dimensional ob-
servations in done using VAEs. In Chapter 3 of this thesis we provide an overview

5

of these models and show case their effectiveness in two different problem, which
are formulated using VAEs:

– Sufficient dimensionality reduction: We consider the problem of sufficient
dimensionality reduction (SDR), where the high-dimensional observation is
transformed to a low-dimensional sub-space in which the information of the
observations regarding the label variable is preserved. We propose DVSDR, a
deep variational approach for sufficient dimensionality reduction. The deep
structure in our model has a bottleneck that represent the low-dimensional
embedding of the data. We explain the SDR problem using graphical models
and use the framework of variational autoencoders to maximize the lower
bound of the log-likelihood of the joint distribution of the observation and la-
bel. We show that such a maximization problem can be interpreted as solving
the SDR problem. DVSDR can be easily adopted to semi-supervised learn-
ing setting. Experiment results show that DVSDR performs competitively on
classification tasks while being able to generate novel data samples.

– Disentangle representation for classification: We present a novel method for
disentangling factors of variation in data-scarce regimes. Specifically, we ex-
plore the application of feature disentangling for the problem of supervised
classification in a setting where we have access to only a few labeled samples
exist, and there are no unlabeled samples for use in unsupervised training.
Instead, a similar datasets exists which shares at least one direction of vari-
ation with the sample-constrained datasets. We train our model end-to-end
using the framework of variational autoencoders and are able to experimen-
tally demonstrate that using an auxiliary dataset with similar variation fac-
tors contribute positively to classification performance, yielding competitive
results with the state-of-the-art.

6

1.4 Document Organization

The rest of this thesis is organized as follows. In Chapter 2 we address the policy mix-
ing problem. In Chapter 3, we provide a brief introduction about VAEs and showcase
their effectiveness for discovering the underlying generative features using two repre-
sentation learning problems, i.e. dimensionality reduction and disentangling represen-
tations. In Chapter 4 and 5 we use VAEs to solve the prediction task we mentioned in
RQ2.

7

Chapter 2

Optimizing over a Restricted Policy
Class in Markov Decision Processes

2.1 Contributions

In this chapter we address the problem of finding an optimal policy in a Markov deci-
sion process under a restricted policy class defined by the convex hull of a set of base
policies. We first prove that solving this problem is NP-hard. We then propose an effi-
cient algorithm that finds a policy whose performance is almost as good as that of the
best convex combination of the base policies, under the assumption that the occupancy
measures of the base policies have a large overlap. The running time of the proposed
algorithm is linear in the number of states and polynomial in the number of base poli-
cies. In practice, we demonstrate an efficient implementation for large state problems.
Specifically, we consider queue problems in our experiments.

8

2.2 Introduction

In many control and reinforcement learning problems, a number of reasonable (safe)
base policies are known. For example, these policies might be provided by an expert.
A natural question is whether a combination of these base policies can provide an im-
provement over a default policy. This problem is especially important when the number
of states is large and the exact computation of the optimal policy is not feasible. One
way to formulate the problem is to define a policy space that includes all mixtures of
the base policies. A policy in this class samples a base policy at each state and acts ac-
cording to that, as opposed to sampling a base policy at the initial state and running it
until the end.

A popular method to optimize a parameterized policy is policy gradient, which typ-
ically employs a variant of the gradient descent/ascent method [104, 92, 13, 75, 14].
Although in some applications the quality of the solution is high, the policy gradient
methods often converge to some local minima as the problem is highly non-convex.
Further, computing a gradient estimate can be an expensive operation. For example,
the finite difference method requires running a number of policies in each iteration and
estimating the value of a policy in a complicated system might require a long running
time.

Here, we show a number of results on the problem of policy optimization in a re-
stricted class of mixture policies. First, we show that solving the optimization problem
is NP-hard. The hardness result is obtained by a reduction from the INDEPENDENT-SET

problem for graphs and an application of the Motzkin-Straus theorem for optimizing
quadratic forms over the simplex [67]. This result is somewhat surprising, since the
same problem is known to be easy (in the complexity class P), if the space of base poli-
cies includes all MDP policies (an exponentially large space!) [73]. The critical difference
is that in the unconstrained case an optimal MDP policy is known to be deterministic,
in which case linear programming or policy iteration are known to run in polynomial
time [105], whereas in the restricted case an optimal policy may need to randomize.

9

Although this hardness result is somewhat disappointing, we show that an approx-
imately optimal solution can be found in a reasonable time when the occupancy mea-
sures of the base policies have large overlap. We obtain this result by formulating the
problem in the dual space. More specifically, instead of searching in the space of mix-
ture policies, we construct a new search space that consists of linear combinations of
the occupancy measures of the base policies. Each such linear combination is not an
occupancy measure itself, but it defines a policy through a standard normalization. Im-
portantly, this new policy space also contains the base policies and so finding a near
optimal policy in this class also provides a policy improvement w.r.t. the initial base
policies. The objective function in the dual space is still highly non-convex, but we can
exploit the convex relaxation proposed by [1] to have an efficient algorithm with per-
formance guarantees. [1] study the linear programming approach to dynamic program-
ming in the dual space (space of occupancy measures) and propose a penalty method
that minimizes the sum of the linear objective and a number of constraint violations.

To demonstrate the idea, consider the problem of controlling the service rate of a
queue where jobs arrive at a certain rate and the cost is the sum of the queue length
and the chosen service rate. Consider two policies, one that selects low and one that
selects high service rates. The space of the mixture of these two policies is rich and is
likely to contain a policy with low total cost. We can generate a wide range of service
rates as a convex combination of these two base policies. Now let us consider the dual
space. The occupancy measures of the first and second policies are concentrated at large
and small queue lengths, respectively. It can be shown that the linear combination of
occupancy measures can generate a limited set of policies that are either similar to the
first policy or the second one. In short, although the space of mixture policies is a rich
space (and hence the optimization is NP-hard in that space), the space of dual policies
can be more limited. More crucially, if the base policies have some similarities so that
their occupancy measures overlap, then we can generate non-trivial policies in the dual
space that can be competitive with the mixture policies in the primal space. We show
that this is indeed the case in our experiments in Section 4.5.

Let us compare our algorithm with the traditional policy gradient in the space of

10

mixture of policies. Although the space of the mixture of the base policies is rich and is
likely to contain a policy with lower total cost than any policy that is a mixture of the
occupancy measures of the base policies, our approach has several advantages. First,
policy gradient is more computationally demanding. Gradient descent needs to per-
form several rollouts in each round to estimate the gradient direction. In a complicated
system, the mixing times can be large, and thus, we might need to run a policy for a very
long time before we can reliably estimate its gradient. In contrast, and as we will show,
apart from the initial rollouts to estimate the occupancy measures of the base policies,
the proposed method does not need to interact with the environment when optimizing
in the dual space. Second, our approach is safe ; during the optimization phase, we only
need to execute the base policies that are assumed to be safe. In contrast, policy gradi-
ent in the primal space evaluates many policies in the intermediate steps that some of
them may not be safe to be executed. Note that by a safe policy here we mean a policy
that performs better than a threshold, in terms of the returning value. Furthermore, our
method enjoys stronger theoretical guarantees than the policy gradient method.

2.2.1 Notation

Let Mi,: and M:,j denote ith row and jth column of matrix M , respectively. We denote
by I an identity matrix, and by 1n and 0n, n-dimensional all one and all zero vectors,
respectively. We use 0mm to denote the all-zero m ×m matrix and ei to denote the unit
m-vector (1 at position i and 0 elsewhere). We also use 1 {.} to denote the indicator
function, and ∧ and ∨ to denote the minimum and maximum. We define [v]+ = v ∨ 0

and [v]− = v∧ 0. For vectors v and w, v ≤ w means element-wise inequality, i.e., vi ≤ wi,
for all i. We use ∆S to denote the space of probability distributions defined on the set S.
For positive integer m, we use [m] to denote the set {1, 2, . . . ,m}.

11

2.3 Preliminaries

In this chapter, we study reinforcement learning (RL) problems in which the interaction
between the agent and environment has been modeled as a discrete1 discounted MDP.
A discrete MDP is a tuple 〈S,A, c, P, α, γ〉, where S and A are the sets of S states and A

actions, respectively; c : S → [0, 1] is the cost function; P : S × A → ∆S is the transition
probability distribution that maps each state-action pair to a distribution over states
∆S ; α ∈ ∆S is the initial state distribution; and γ ∈ (0, 1) is the discount factor. We are
primarily interested in the case where the number of states is large. We assume that the
cost does not depend on the action, although a number of our results can be extended
to action-dependent costs. With an abuse of notation, we also use c to denote a (SA)-
dimensional vector such that c(s, a) = c(s) for any s ∈ S and a ∈ A. The restriction that
costs are bounded in [0, 1] interval is to simplify the notation and can be relaxed to other
bounded ranges. Since we consider discrete MDPs, all the MDP-related quantities can
be written in vector and matrix forms.

We also need to specify the rule according to which the agent selects actions at each
state. We assume that this rule does not depend explicitly on time. A stationary pol-
icy π : S → ∆A is a probability distribution over actions, conditioned on the current
state. The MDP controlled by a policy π induces a Markov chain with the transition
probability Pπ and cost function cπ = c. We denote by Jπ the value function of policy
π, i.e., the expected sum of discounted costs of following policy π, and by νπ ∈ ∆S and
µπ ∈ ∆S×A the state and state-action occupancy measures under policy π and w.r.t. the
starting distribution α, i.e.,

νπ(s) = (1− γ)
∑
s′∈S

α(s′)
∞∑
t=0

γtP(St = s|S0 = s′),

and µπ(s, a) = νπ(s) π(a|s). Note that when s0 ∼ α, we may write P(St|S0) = α>P t
π, and

thus, ν>π = (1− γ)α>(I − γPπ)−1, where I is the identity matrix. Given a policy class Π,

1In a remark at the end of Section 2.5, we will discuss extension to continuous-state problems.

12

the goal is to find a policy π ∈ Π that minimizes J(π) = α>Jπ. It is easy to show that
J(π) = ν>π cπ = µ>π c.

In this work, we are interested in the policy optimization problem where the policy
class Π is defined as a mixture of m base policies {π1, . . . , πm}, i.e., Π =

{
πw : πw =∑m

i=1 wiπi, w ∈ ∆[m]

}
. We assume that the transition dynamics of the base policies are

known. This assumption is only used for estimating the stationary distributions and
average costs of the base policies. The extension to the unknown dynamics and costs
(the RL problem), and the extension to the continuous state problems are discussed in a
remark at the end of Section 2.5. We call the policy space Π the primal space. Executing
a policy πw ∈ Π amounts to sampling one of the m base policies from the distribution
w ∈ ∆[m] at each time step, and then acting according to this policy. Finding the best
policy in Π requires solving the following optimization problem

min
w∈∆[m]

J(πw) = min
w∈∆[m]

α>Jπw . (2.1)

We denote by w∗ the solution to (2.1) and use π∗ = πw∗ . For a positive constant R,
we define the dual space of Π as the space of linear combinations of the state-action
occupancies of the base policies, i.e., Ξ =

{
ξθ : ξθ =

∑m
i=1 θiµπi , θ ∈ Θ

}
, where Θ ={

θ ∈ Rm :
∑m

i=1 θi = 1, ‖θ‖2 ≤ R
}

. Here, R is the radius of the parameter space and
restricts the size of the policy class. Note that given the definition of Θ, each ξθ ∈ Ξ is
not necessarily a state-action occupancy measure. However, each ξθ ∈ Ξ corresponds to
a policy πθ, defined as

πθ(a|s) =
[ξθ(s, a)]+∑
a′∈A[ξθ(s, a′)]+

. (2.2)

If ξθ(s, a) ≤ 0 for all a ∈ A, we let πθ(.|x) be the uniform distribution. If ξθ is the state-
action occupancy measure of a policy π, it can be shown that πθ = π. This implies that
the base policies are in the dual space. We denote by µπθ the state-action occupancy of
policy πθ. The policy optimization problem in the dual space is defined as

min
θ∈Θ

J(πθ) = min
θ∈Θ

α>Jπθ = min
θ∈Θ

µ>πθc , (2.3)

13

where πθ is computed from θ using Equation 2.2.

2.4 Hardness Result

In this section, we show that the policy optimization problem in the primal space (Eq. 2.1)
is NP-hard. At a high level, the proof involves designing a special MDP and m base
policies such that solving Eq. 2.1 in polynomial time would imply P=NP.

Theorem 2.4.1. Given a discounted MDP, a set of policies, and a target cost r, it is NP-hard to
decide if there exists a mixture of these policies that has expected cost at most r.

Proof. We reduce from the INDEPENDENT-SET problem. This problem asks, for a given
(undirected and with no self-loops) graph G with vertex set V , and a positive integer
j ≤ |V |, whether G contains an independent set V ′ ⊆ V having |V ′| ≥ j. This problem
is NP-complete [30].

Let G be the m ×m (symmetric, 0-1) adjacency matrix of an input graph G, and let
A = I + G, where I is the identity matrix. The reduction constructs a deterministic
MDP with m + 3 states and m + 3 actions, and m deterministic policies πi that induce
corresponding chains Pπi , for i = 1, . . . ,m, where each (m+3)× (m+3) matrix Pπi reads

Pπi =

0 e>i 0 0

0m 0mm A:,i 1m − A:,i

0 0>m 0 1

0 0>m 0 1

 . (2.4)

A mixture πw of the base policies, with weights w, induces the chain

Pπw =
m∑
i=1

wiPπi =

0 w> 0 0

0m 0mm Aw 1m −Aw
0 0>m 0 1

0 0>m 0 1

 . (2.5)

14

It is easy to see that, for each k ≥ 3, the kth power of Pπw is equal to P k
πw = [0(m+3)(m+2), 1m+3]

(all zeros except for the last column that is all ones), while its square P 2
πw reveals the

quadratic form w>Aw in position (1,m + 2). Hence, for initial state distribution α =

[1, 0, . . . , 0]> (all mass on the first state), state-only-dependent cost vector c = [0, . . . , 0, 1, 0]>

(all zeros except for 1 in the (m + 2)’th state), and discount factor γ < 1, the expected
discounted cost of πw is

J(πw) = (1− γ)α>(I − γPπw)−1c

= (1− γ)α>(I + γPπw + γ2P 2
πw + . . .)c

= (1− γ)γ2w>Aw . (2.6)

For any graph G with m vertices and adjacency matrix G, the following holds [67]:

1

ω(G)
= min

y∈∆[m]

y>(I +G)y , (2.7)

where ω(G) is the size of the maximum independent set of G. Let the target cost be
r = (1−γ)γ2

j
, where j is the target integer of the INDEPENDENT-SET instance. Then the

decision question J(πw) ≤ r is equivalent to w>(G + I)w ≤ 1
j
, where we used (2.6).

Hence, it follows from (2.7) that the existence of a vectorw that satisfies J(πw) ≤ r would
imply ω(G) ≥ j, and thus, |V ′| ≥ j for some independent set V ′ ⊆ V . This establishes
that, deciding the MDP policy optimization problem in polynomial time would also
decide the INDEPENDENT-SET problem in polynomial time, implying P=NP.

Remark 1: The same technique can be used to show NP-hardness of the problem
under an average cost criterion. This only requires changing the last two rows of the
matrices Pπi , by having the 1’s in the first column instead of the last column. In that case,
if νπw = [x, v>, y, z]> is the stationary distribution of Pπw , where v is an m-vector and
x, y, z scalars, we can algebraically solve the eigensystem ν>πw = ν>πwPπw (by elementary
manipulations), to get v = w and y = w>Aw. Hence, for a cost vector c = [0, . . . , 0, 1, 0]>,
the average cost of the MDP under w is w>Aw, and by choosing target cost r = 1

j
the

15

Input: base policies {πi}mi=1,; dual pa-
rameter space Θ; number of rounds T ,
learning rates {βt}Tt=1, penalty parameter
H
Compute occupancy measures of the
base policies, i.e., {µπi}mi=1

Initialize θ1 = 0
for t := 1, 2, . . . , T do

Sample i ∈ [m] and sample (xt, at) ∼
µπi
Compute subgradient estimate gt(θt)
(Eq. 2.9)
Update θt+1 = ΠΘ(θt − βtgt) (ΠΘ is
the Euclidean projection onto Θ)

end for
Compute θ̂ = 1

T

∑T
t=1 θt

Return policy πθ̂
(Eq. 2.2)

Figure 2.1: Stochastic Subgradient Method for MDPs.

Motzkin-Straus argument applies as above.

Remark 2: Optimizing over a restricted policy class essentially converts the MDP
to a POMDP, for which related complexity results are known [73, 68, 99, 52].

2.5 Reduction to Convex Optimization

In this section, we first propose an algorithm to solve the policy optimization prob-
lem in the dual space (Eq. 2.3) and then prove a bound on the performance of the policy
returned by this algorithm compared to the solution of the policy optimization problem
in the primal space (Eq. 2.1).

Figure 2.1 contains the pseudocode of our proposed algorithm. The algorithm takes

16

them base policies {πi}mi=1 and the dual parameter space Θ as input. It first computes the
state-action occupancy measures of the base policies, i.e., {µπi}mi=1. This is done using
the recent results by [23] that show it is possible to compute the stationary distribution
(occupancy measure) of a Markov chain in time linear to the size of the state space.2

This guarantees that we can compute the state-action occupancy measures of the base
policies efficiently. Alternatively, when the size of the state space is very large, these
occupancy measures can be estimated by roll-outs.

Motivated by the approach of [1], we propose minimizing a convex surrogate func-
tion

L(θ) = c>ξθ +H
∑

(x,a)∈X×A

|[ξθ(x, a)]−| , (2.8)

where ξθ is a linear combination of the occupancy measures and H is a positive pa-
rameter that penalizes negative values in ξθ. At each time step t, our algorithm first
computes an estimate of the sub-gradient∇L(θt) and then feeds it to the projected sub-
gradient method to update the policy parameter θt. In order to compute an estimate of
the sub-gradient∇L(θt), we first sample a state-action pair (xt, at) from (1/m)

∑m
i=1 µπi ,

and then compute the function

gt(θt) = c>M −HM(xt, at) 1 {ξθt(xt, at) < 0}
(1/m)

∑m
i=1 µπi(xt, at)

, (2.9)

where M is a SA × m matrix, whose j’th column is µπj , and M(x, a) is the row of M
corresponding to the state-action pair (x, a). Notice that elements of c>M are simply
average costs of the base policies. To sample (xt, at) from (1/m)

∑m
i=1 µπi , we first select

a number i ∈ [m] uniformly at random and then sample a state-action pair (xt, at) from
the state-action occupancy measure of the i’th base policy, i.e., (xt, at) ∼ µπi . If µπi is
approximated by the historical data generated under policy πi, then this last sampling
amounts to sampling one datapoint uniformly at random from historical observations
under policy πi.

2These results can also be applied to the discounted case.

17

We now show that gt(θ) in (2.9) is an unbiased estimate of∇L(θ):

E
[
M(xt, at)1 {ξθ(xt, at) < 0}

(1/m)
∑m

i=1 µπi(xt, at)

]
=

∑
(x,a)∈X×A

M(x, a)P (xt = x, at = a)

(1/m)
∑m

i=1 µπi(x, a)
1 {ξθ(x, a) < 0}

=
∑

(x,a)∈X×A

M(x, a)1 {ξθ(x, a) < 0} .

After T rounds, the algorithm returns the average of the computed policy parameters
{θt}Tt=1, i.e., θ̂ = (1/T)

∑T
t=1 θt. The parameter θ̂ defines an element ξθ̂ of the dual space

Ξ, which in turn defines a policy πθ̂ using Eq. 2.2. We denote by µπ
θ̂

the state-action
occupancy measure of this policy.

The approach of [1] involves minimizing an objective function with an additional
term that measures the distance of ξθ from the space of occupancy measures. The tran-
sition matrix appears in this extra term. In our case, ξθ is a linear combination of oc-
cupancy measures and hence this extra term is zero, and the transition dynamics does
not appear in the objective (2.8). This results in a simpler optimization problem and
improved performance bounds. More importantly, we can use the resulting algorithm
in the reinforcement learning setting as no backward simulator is needed.

Our main result shows that the policy returned by our algorithm, πθ̂, is near-optimal
as long as the occupancy measures of the base policies have large overlap.

Theorem 2.5.1. Let δ > 0 be the probability of error, H = 1/η be the constraints multiplier
in the sub-gradient estimate (2.9), and T = O

(
R2

η2
log(1/δ)

)
be the number of rounds. Let

θ̂ be the output of the stochastic sub-gradient method after T rounds, the learning rate be βt =

S/(G′
√
T), whereG′ =

√
m+Hm, andU(θ) =

∑
(x,a)∈X×A |[ξθ(x, a)]−|. Then with probability

at least 1 − δ, we have the following bound on the performance of the policy πθ̂ returned by the

18

algorithm in Figure 2.1:

J(π
θ̂
)︷ ︸︸ ︷

α>Jπ
θ̂
≤ min

w∈∆[m]

J(πw)︷ ︸︸ ︷
α>Jπw +O(η)

+ min
θ∈Θ

(∑
i

θi(νπi − νπ∗)>c+

(
1

η
+

9

1− γ

)
U(θ)

)
.

Moreover, the computational complexity of the algorithm is O
(
poly(m)A

)
and the constants

hidden in O(η) are polynomials in R, m, and 1/(1− γ).

Before proving Theorem 2.5.1, we show the improvement using a simple example.

Example Let λ be such that for any i, j ∈ [m] and any (x, a) ∈ X ×A,

λ

1 + λ
µπj(x, a) ≤ µπi(x, a) ≤ 1 + λ

λ
µπj(x, a) . (2.10)

A large value of λ indicates large overlap of occupancy measures. Let ε = ‖µπ1 − µπ∗‖1.
Parameters λ and ε provide `∞ and `1 error bounds. We can obtain an easy but non-
trivial bound under the condition (2.10) as follows. Let π1 and πm be the policies with
the smallest and largest values. Choose θ1 = 1 + λ, θm = −λ, and all other elements are
zero. Then

U(θ) =
∑
(x,a)

|[ξθ(x, a)]−|

=
∑
(x,a)

|[(1 + λ)µπ1(x, a)− λµπm .(x, a)]−| .

For each term to be negative, we must have µπ1(x, a) ≤ λ
1+λ

µπm(x, a), which contradicts
our assumption, thus U(θ) = 0. Let E =

∑
i θi(νπi − νπ∗)>c. We get that

E = (1 + λ)(µπ1 − µπ∗)>c− λ(µπm − µπ∗)>c
= (µπ1 − µπ∗)>c− λ(α>Jπm − α>Jπ1) .

19

Thus,
α>Jπ

θ̂
≤ α>Jπ∗ +O(η) + ε− λα>(Jπm − Jπ1) . (2.11)

Let’s compare the above result to the simple bound

α>Jπ1 ≤ α>Jπ∗ + ε . (2.12)

The term O(η) is due to the error of gradient descent in a convex problem and can be
made arbitrarily small by increasing the number of iterations. Thus, the term λα>(Jπm−
Jπ1) in (2.11) shows the amount of improvement compared to the bound in (2.12). This
term is positive since πm has a larger value than π1.

Next, we state a number of results that will be used to prove Theorem 2.5.1. The-
orem. 1 of [1] adapted to the dual space Ξ implies that πθ̂ is near-optimal in the dual
space Ξ.

Theorem 2.5.2 ([1]). Let δ, T , H , and θ̂ be defined as in Theorem 2.5.1. Then with probability
at least 1− δ, we have

J(θ̂) = α>Jπ
θ̂
≤ min

θ∈Θ

(
α>Jπθ +

6
√
mCRη

1− γ

+O(η) +

(
1

η
+

6

1− γ

)∑
(x,a)

|[ξθ(x, a)]−|
)
,

where the constants hidden in O(η) are polynomials in R, m, and C.

Our main technical tool is the following lemma.

Lemma 2.5.3. Let ε = maxi,j∈[m]

∥∥νπi − νπj∥∥1
. Then, for any i ∈ [m] and any policy πw in the

primal space Π, we have ‖νπi − νπw‖1 ≤ ε(1+γ)
1−γ .

Proof. For any i, j ∈ [m], there exists a vector vi,j with ‖vi,j‖1 ≤ ε, such that νπi−νπj = vi,j .
We may rewrite this equation as α>(I − γPπi)−1 = α>(I − γPπj)−1 + v>i,j , and further as

α>(I − γPπi)−1(I − γPπj) = α> + v>i,j(I − γPπj) . (2.13)

20

Now for a policy πw ∈ Π corresponding to the weight vector w ∈ ∆[m], we may write

α>(I − γPπi)−1
(
I − γ

m∑
k=1

wkPπk

)
=

m∑
k=1

wkα
>(I − γPπi)−1(I − γPπk)

(a)
= α>

m∑
k=1

wk +
m∑
k=1

wkv
>
i,k(I − γPπk)

(b)
= α> +

m∑
k=1

wkv
>
i,k(I − γPπk) , (2.14)

where (a) is from Eq. 2.13 and (b) is because w ∈ ∆[m], and thus,
∑m

k=1 wk = 1. From
Eq. 2.14, we have

α>(I − γPπi)−1 = α>
(
I − γ

m∑
k=1

wkPπk

)−1

+
m∑
k=1

wkv
>
i,k(I − γPπk)

(
I − γ

m∑
l=1

wlPπl

)−1

. (2.15)

Since Pπw =
∑m

k=1 wkPπk , we may rewrite Eq. 2.15 as

νπi − νπw = α>(I − γPπi)−1 − α>(I − γPπw)−1

=
m∑
k=1

wkv
>
i,k(I − γPπk)

(
I − γ

m∑
l=1

wlPπl

)−1

.

Let

ε′ = max
i∈[m]

∥∥∥∥∥
m∑
k=1

wkv
>
i,k(I − γPπk)

(
I − γ

m∑
l=1

wlPπl

)−1

∥∥∥∥∥
1

,

21

zk = (I − γPπk)>vi,k, Q =
∑m

l=1 wlPπl , and M−1 = I − γQ. We may now write

‖νπi − νπw‖1 ≤ ε′ ≤
∥∥∥∥∥M>

m∑
k=1

wkzk

∥∥∥∥∥
1

≤
∥∥M>∥∥

1

∥∥∥∥∥
m∑
k=1

wkzk

∥∥∥∥∥
1

≤
∥∥I + γQ> + γ2Q2> + . . .

∥∥
1︸ ︷︷ ︸

≤1/(1−γ)

×
m∑
k=1

wk

≤(1+γ)︷ ︸︸ ︷∥∥(I − γPπk)>
∥∥

1

≤ε︷ ︸︸ ︷
‖vi,k‖1

≤ ε(1 + γ)

1− γ .

This concludes the proof.

Theorem 2.5.1 follows immediately from the above two results.

Proof of Theorem 2.5.1. From Lemma 2 of [1], for any θ ∈ Θ, we have ‖ξθ − µπθ‖1 ≤
3U(θ)
1−γ .

From Lemma 2.5.3, we have ‖νπi − νπ∗‖1 = O(ε), for any i ∈ [m] and π∗ = πw∗ . Thus, for
any θ ∈ Θ, we may write

α>Jπθ = α>Jπ∗ + µ>πθc− µ
>
π∗c

= α>Jπ∗ + ξ>θ c− µ>π∗c+ µ>πθc− ξ
>
θ c

≤ α>Jπ∗ + (ξθ − µπ∗)>c+
3U(θ)

1− γ

= α>Jπ∗ +
∑
i

θi(µπi − µπ∗)>c+
3U(θ)

1− γ

= α>Jπ∗ +
∑
i

θi(νπi − νπ∗)>c+
3U(θ)

1− γ .

22

We used the fact that c(x, a) = c(x) in the 5th step. This last inequality together with
Theorem 2.5.2 gives us the desired result.

The main theoretical contribution of this section is Lemma 2.5.3, which allows us
to relate the primal and dual spaces. Although Theorem 2.5.2 is taken from [1], this
particular presentation using stationary distributions as features is new and provides
an interesting application of the previous result.

Remark: When the reward function and transition probabilities are unknown (the
RL problem), we can run the base policies to estimate their occupancy measures and
average costs. These rollouts introduce an estimation error that will also appear in our
performance bounds. Nevertheless, as we will show in our experiments, the rollouts
provide an effective way to approximate the occupancy measures. Alternatively, we
might have access to historical data from base policies that can be used for this estima-
tion.

To simplify the presentation, we assumed that the state and action spaces are finite.
However, the proposed algorithm can be easily extended to continuous problems; the
occupancy measures can still be approximated using rollouts along with state aggrega-
tion or other function approximation techniques.

2.6 Experiments

We compare the results of combining policies in the policy space (w) and occupancy
measure space (θ), where the base policies have overlapping occupancy measures. We
consider three different queuing problems: 1-Queue, 4-Queue, and 8-Queue systems.
These problems have been studied before by [25] with slightly different parameters.
The results for 1-Queue, 4-Queue systems, and 8-Queue systems are shown next.

In all the experiments, the proposed policy gradient in the dual space produces poli-
cies whose average costs are comparable with solutions of the policy gradient in the
primal space. The notable difference is that the proposed policy gradient is significantly

23

more resource efficient. In both the 4-queue and 8-queue problems, the time complexity
of the proposed method is less than 0.001 of the time complexity of policy gradient in
the primal space. In a RL setting, the proposed policy gradient would be similarly more
sample efficient.

2.6.1 Queuing Problem: 1-Queue

Consider a queue of length L. We denote the state of the system at time t by xt that
shows the number of jobs in the queue. Jobs arrive at the queue with rate p. Action
at each time, at, is chosen from the finite set {0.1625, 0.325, 0.4875, 0.65} that represents
the service rate or departure probability. The transition function of the system is then
defined as: xt+1 = xt − 1 w.p. at; xt+1 = xt + 1 w.p. p; and xt+1 = xt, otherwise. The
system goes from state 0 to 1 w.p. p and stays in 0 w.p. 1− p. Also, transition from state
L to L−1 has probability a(L) and the system stays in L w.p. 1−a(L). The cost incurred
by being in state x and taking action a is given by c(x, a) = x2 + 2500a2.

Consider a queue with L = 99 and two base policies that are independent of the
states and have the following distributions over the set of actions: π1 = [0, 0, 0.50, 0.50]

and π2 = [0, 0.1, 0.45, 0.45]. Consider two scenarios: 1) Mixing the original policies in the
space of w, and 2) Building a policy based on combining the corresponding occupancy
measures (optimization in the space of θ).

Figure 2.2 shows the results of optimization in the two spaces. The costs associated
with π1 and π2 are J(π1) = 831.91 and J(π2) = 777.36. Suppose πw = wπ1 + (1 − w)π2

is our mixture policy. Then for 0 ≤ w ≤ 1, J(πw) is a monotonically increasing function
of w. In other words, there is no gain in mixing the policies when w is between 0 and
1. For this experiment, we let w to take values outside this interval to examine the
lowest possible cost. The best mixing weight is w = −5.49 and the associated cost is
J(πw) = 533.60. However, in the space of occupancy measures, we can build a better
policy. Suppose ξθ = θµ1 + (1 − θ)µ2. Then the cost associated with the policy that
is built based on ξθ decreases monotonically as we decrease θ and saturates at almost

24

state
0 10 20 30 40 50 60 70 80 90 100

P
ro

b
ab

ili
ty

0

0.1

0.2

0.3

0.4

state
0 10 20 30 40 50 60 70 80 90 100

P
ro

b
ab

ili
ty

0

0.1

0.2

0.3

0.4

(a)

,
-10 -5 0 5 10

co
st

0

2000

4000

6000

8000

state
0 20 40 60 80 100

P
ro

b
ab

ili
ty

0

0.05

0.1

0.15

0.2

(b)

-10 -8 -6 -4 -2 0 2 4 6 8 10

co
st

400

500

600

700

800

900

state
0 10 20 30 40 50 60 70 80 90 100

P
ro

b
ab

ili
ty

0

0.05

0.1

0.15

0.2

(c)

Figure 2.2: (a) Stationary distribution of the two initial policies. (b) Top: Cost of the
mixture policy versus w. Bottom: Stationary distribution of the best mixture policy
found in the space of w. (c) Top: Cost of the mixture policy versus θ. Bottom: Stationary
distribution of the best mixture policy found in the space of θ. Note that by letting θ to
take negative values we enlarge the set of possible mixture policies that our algorithm
returns. However, the resulting policy is not necessarily in the convex hull of the base
policies.

J(πθ) = 447, which is much lower than the cost of the optimal policy mixing in the space
of w.

2.6.2 Queuing Problem: 4-Queues

Consider a system with four queues, each with capacity L = 9, shown in Figure 2.3. This
problem has been studied in several papers (e.g., [22, 53, 25]). There are two servers in
the system: Server 1 serves queue 1 and 4 with rates r1 and r4, and Server 2 serves queue
2 and 3 with rates r2 and r3. Each server serves only one of its associated queues at each
time. Jobs arrive at queue 1 and 3 with rate λ. A job leaves the systems after being
served at either queue 1 and 2 or queue 3 and 4. The state of the system is denoted by
a 4-dimensional vector [x1, x2, x3, x4], where xi represents the number of jobs in queue
i at each time. A controller can choose a 4-dimensional action from {0, 1}4 such that
a1 + a4 ≤ 1 and a2 + a3 ≤ 1. The cost at each time is equal to the total number of jobs in
the system: c(x) =

∑4
i=1 xi.

25

� x1 x2

x3x4 �

server 1 server 2

r1 r2

r3r4

Figure 2.3: A system with four queues and two servers

index p1 p2 cost
1 0.9 0.9 16.2950
2 0.9 0.7 17.3926
3 0.8 0.8 15.1535
4 0.7 0.9 13.6525
5 0.7 0.7 14.3266

Table 2.1: Base Policies for the 4-Queue problem.

Assume r1 = r2 = 0.12, r3 = r4 = 0.28, and λ = 0.08. We choose our base policies
from a family of policies for which server i serves its longer queue w.p. pi and its shorter
queue w.p. 1 − pi, i = {1, 2}. Five base policies and their associated costs are shown in
Table 2.1.

Solving this problem in the space of policies using policy gradient will result in the
optimal weight vector w∗ = [0, 0, 0, 1, 0], i.e., giving all the weight to the policy with the
lowest cost. Therefore, the cost of the mixture policy will be J(π∗) = 13.6525. Inter-
estingly, if we solve the problem in the dual space (space of stationary distributions)
using policy gradient and Eq. 2.2, after 200 iterations, the optimal resulting policy will
have cost J(πθ) = 12.84 with θ = [−0.32,−0.68,−0.4, 2.16, 0.24] (note that based on the
definition of Θ, this vector can have negative values). In either of the spaces, in order
to approximate the gradient surface for the policy gradient method, we need to com-
pute the cost of each mixed policy a couple of times (depending on the number of base
policies) in each iteration. Computing the cost involves an eigen-decomposition of the
transition matrix, which makes the whole process computationally costly. Using our
stochastic sub-gradient method, we can approximate the cost very fast and efficiently.

26

0 50 100 150 200
iteration

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

co
st

Policy Gradient (Primal Space)
Policy Gradient (a) (Dual Space)
Policy Gradient (b) (Dual Space)

Figure 2.4: Cost per iteration for the primal and dual spaces. The policy gradient (b) for
the dual space is the method described in Algorithm 2.1. Horizontal dashed lines are
the costs of the base policies.

Our method needs only one eigen-decomposition for the final mixing weights. There-
fore, the computational cost is much lower (in this particular example 1/(8 × 200) of
the policy gradient method, where 8 is the number of points we use for approximat-
ing the gradient surface and 200 is the number of iterations). The policy resulted from
our method will have cost J(πθ) = 13.00 with θ = [−0.23,−1.28, 0.09, 1.54, 0.88]. Fig-
ure 2.4 shows the difference between the costs of policy gradient and the stochastic
sub-gradient method at each iteration.

2.6.3 Queuing Problem: 8-Queues

Consider a system with three servers and eight queues. Similar to 4-queue problem,
each server is responsible of serving multiple queues. There are two pipelines. Jobs in
the first pipeline enter the system from the first queue by rate λ1 and exit the system
from the third queue. Jobs in the second pipeline enter the system from the forth queue

27

�1 = 0.1

�2 = 0.1
r1 = 4/7.5

r2 = 2/7.5
r3 = 3/7.5

r4 = 3.1/7.5

r5 = 3/7.5

r6 = 2.2/7.5

r7 = 3/7.5

r8 = 2.5/7.5

Figure 2.5: A system with 8 queues and 3 servers.

by rate λ2 and exit the system from the eighth queue. Fig. 2.5 demonstrates the system.
The service rate is denoted by ri, i ∈ {1, 2, ..., 8}. There is no limit on the length of
queues. State of the system is determined by an 8-dimensional vector that shows the
number of jobs in each queue. Actions are also 8-dimensional binary vectors, where
each dimension shows if the associated queue is served or not. The cost at each time
step is equal to the total number of jobs in the system. Each server can serve only
one queue at each time. We choose three base policies from a family of policies that is
described below.

Family of base policies: The base policies are parameterized by three components:
p1, p2, and p3, which are associated to each server and satisfy the these properties: 1) If
all of the queues associated to server i are empty the server is idle. 2) If only one of the
queues for server i is non-empty, that queue is served with probability pi. 3) If server
i has more than one non-empty queue, it serves the longest queue with probability pi

and the rest of the non-empty queues with probability (1− pi)/(nq − 1), where nq is the
number of non-empty queues.

The three base policies and their costs are shown in Table 2.2. The cost is computed
by running each policy for 10,000,000 iterations, starting from empty system, and aver-
aging over number of jobs at each iteration.

Solving the problem in the policy space: As opposed to the previous problems,

28

iteration
0 50 100 150 200

co
st

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

(a)

0 200 400 600 800 1000
iterations

20.5

20.6

20.7

20.8

20.9

21

21.1

21.2

21.3

21.4

co
st

(b)

Figure 2.6: Mean and standard deviation of cost per iteration in the eight queue prob-
lem. (a) Primal space. (b) Dual Space.

index p1 p2 p3 cost
1 0.8 0.5 0.5 21.78± 0.16
2 0.5 0.8 0.5 22.47±0.08
3 0.5 0.5 0.8 22.98 ± 0.12

Table 2.2: Base Policies for eight queue problem

the number of states in this domain is not limited. We solve the problem in the primal
space using policy gradient, and specifically a finite differences method. We start from
a random initial weight. At each iteration, we approximate the gradient surface using
four points around the current point and the weights are updated accordingly. For
each point the cost of the mixed policy should be computed by running the policy for a
long time, e.g. 10,0000,000 iterations. Therefore updating the weights in each iteration
is computationally expensive and finding the optimum mixing weight in this space is
very tedious. After 200 iterations the weight converges to w∗ = [0.35, 0.33, 0.32], which
corresponds to J(π∗) = 19.14 (on average).

Solving the problem in the space of occupancy measures: To solve the problem

29

in this space we need to run the base policies for a long time (around 10,0000,000 it-
erations) only once and obtain the stationary distributions. From there, running the
induced mixed policies to estimate their values are not needed and the optimal θ is
obtained using the described algorithm. The optimal value of θ for this problem is:
θ = [1.1246,−0.1143,−0.0102] and the cost of the induced policy is J(πθ) = 20.59. In
fact, by mixing the policies in this space we obtain a lower cost compared to the base
policies. Although, this cost is slightly worse than the cost of the policy obtained in the
primal space, the gain in computation is extremely significant. In this specific exam-
ple the optimization in the dual is almost 300 times faster than the optimization in the
primal space. Figure 2.6 shows the cost per iteration in the two spaces.

2.7 Summary

In this chapter we showed that the problem of finding an optimal policy in convex hull
space of some base policies in an MDP is an NP-hard problem to be solved exactly
or approximated to arbitrary accuracy. We proposed, however, an efficient algorithm
that finds an policy almost as good as optimal policy under the assumption that the
base policies have large overlaps in their occupancy measure space. The proposed al-
gorithm does not require interaction with the environment during its optimization, and
therefore unsafe policies will not cause potentially catastrophic outcomes. We showed
through our experiments for different queue problems that the proposed algorithm can
efficiently output policies that have smaller costs compared to the base policies.

30

Chapter 3

Representation Learning using VAEs

In this chapter we first provide a short overview of variational autoencoder (VAE) as
a deep model that is used for implementing variational inference. Then we show the
effectiveness of using VAEs for two different applications: 1) Learning disentangled
representations. 2) Sufficient dimensionality reduction. VAE is the main tool that we
use for representation learning in the next two chapters.

3.1 VAE: An introduction

In machine learning, probabilistic models are used to model natural and artificial phe-
nomena based on the data. The probabilistic models explain such phenomena in a math-
ematical way that can be useful for understanding the phenomena as well as predicting
unknown future or automated decision making.

Therefore we can formalize the concepts of knowledge and skill using probabilistic
models. Probabilistic models in their complete form present all sorts of correlations and
dependencies between variables in the model. Let’s denote the observed variables by x.
One of the most important applications of probabilistic models is to model the unknown
distribution of x denoted by p(x). To do so a common approach is to discover the un-

31

Figure 3.1: Graphical model

derlying process that generates the observations. It is usually assumed that the observa-
tions can be described by some features in a more simple (lower-dimensional) space. For
example, a set of portraits can be represented in a very high-dimensional pixel space.
However, each portrait can also be described using a much lower-dimensional variable
with only few features, e.g. using few face landmarks, and we can change the portrait
only by tweaking these few features. Since these features are not directly observed in
original observation space (the pixel space), they belong to a latent space and the vari-
able in this space is called a latent variable, which we denote it by z. Inferring the latent
variable z from the observed variable x is an important task in probabilistic modelling.
It also leads to discovering the marginal likelihood of the observed data, p(x).

In Bayesian statistics, the inference problem is formalized by finding the posterior
distribution p(z|x), which is intractable in most cases. Variational inference is a set of tech-
niques to approximate this intractable posterior analytically. Therefore, it can also be used
to approximate the marginal log-likelihood of the observed data. In fact, variational in-
ference provides a lower bound of this log-likelihood, which is called the evidence lower
bound (ELBO).

Relations between the variables in the Bayesian inference are described using graph-
ical models. Fig. 3.1 shows a graphical model with one observed variable, x, and one
latent variable, z. The solid link shows the generative link p(x|z) and the dashed link
shows the variational approximation link q(z|x).

32

Using this model, it can be shown that the ELBO has the following form:

log p(x) ≥ Eq(z|x)[log p(x|z)]− KL
(
q(z|x) ‖ p(z)

)︸ ︷︷ ︸
ELBO

, (3.1)

where p(z) is the prior distribution over the latent variable. Both the prior and the vari-
tional posterior distributions are usually assumed to be from the exponential family, e.g.
Gaussian. The prior is usually a standard Gaussian distribution, i.e. p(z) = N (0,1).

Kingma and Welling in [48] and Rezende et al. in [79], proposed a method for per-
forming variational inference using neural networks that scales to large datasets. The
proposed method is based on an encoder-decoder structure, which is called variational
autoencoder (VAE). The encoder in VAE implements the variational posterior distribu-
tion q(z|x), which given an observed data point outputs the parameters of the posterior
distribution, e.g. mean and variance of a Gaussian distribution q(z|x) = N (µ(x), σ(x)).
The decoder of VAE is a generative network that implements p(x|z). The decoder takes
as input a sample from the variational posterior distribution and outputs a distribution
over the corresponding values of the observed variable. The networks are trained us-
ing stochastic backpropagation to maximize the ELBO in Eg. 3.1. For the example that
we assume both the prior and variational approximating ditributions are Gaussian, the
ELBO has the following form.

ELBO = Eq(z|x)[log p(x|z)]− KL
(
N (µ(x), σ(x)) ‖ N (0,1)

)
. (3.2)

Compared to a regular autoencoder objective, the first term in ELBO can be considered
as a reconstruction error and the KL divergence is an additional regularization term.
It is also worth mentioning that since sampling (from variational posterior) is not a
differentiable process, in [48] the authors proposed a method called reparameterization
trick to make this process differentiable. Please refer to that article for more details.

Since their introduction in 2013, VAEs found their ways in many theoretical and
practical research areas inside and outside machine learning. In the next two sections
we introduce two problems that are formulated in the framework of VAEs.

33

3.2 Deep Variational Sufficient Dimensionality Reduction

3.2.1 Sufficient Dimensionality Reduction

Dimensionality reduction is a long-standing problem in machine learning. The initial
motivation behind dimensionality reduction was to visualize data and many unsuper-
vised, supervised, and semi-supervised algorithms have been designed for this pur-
pose. Recent advancements in the area of deep learning has pushed the boundaries of
the state-of-the-art across a variety of fields including object classification [93, 50, 88],
speech recognition [34, 41], sample synthesis [33, 76, 43], and clustering [5, 6], among
others. Casting classical algorithms in statistical machine learning within the frame-
work of deep learning has been transformative for the aforementioned applications,
e.g. [19]. This inspired us to revisit the problem of sufficient dimensionality reduction
and tackle it using the tools provided to us by deep learning.

Sufficient dimensionality reduction (SDR) [32] is a technique that aims to find a low-
dimensional representation of data that retains predictive information regarding the
label (response) variable. The original paper of SDR presents a way of quantifying this
information using information theoretic notions and introduces an iterative algorithm
for extracting the features that maximizes this information. Although SDR methods are
typically applies to continuous target variables, there exist methods based on distance
covariance that can estimate the central subspace, the intersection of all dimensionality
reduction subspaces, for discrete target variables [84]. Here we consider the discrete
target scenario.

3.2.2 Model description

In this section we first overview SDR and then present a graphical model interpretation
of SDR and propose a deep model in the framework of variational autoencoder that ap-
proximates the posterior in the graphical model and learns the low-dimensional space
efficiently [8].

34

Consider the frequently encountered goal of regression: predicting a future value
for a univariate label y ∈ RD for a given observation x ∈ Rp. In large scale domains, tra-
ditional regression methods may require large amounts of training data to avoid over-
fitting. Therefore, there is a pertinent need for dimensionality reduction methods that
replace the original covariate x with another variable z ∈ Rd that retains most or all of
the information and variation in x. When z retains all the relevant information about y,
the dimensionality reduction is said to be sufficient: p(y|z) = p(y|x).

Alternatively, sufficient dimension reduction (SDR) techniques can be viewed as
methods that find a low dimensional representation such that the remaining degrees
of freedom become conditionally independent of the output values, i.e.:

y ⊥⊥ x | z (3.3)

In other words, z(x) carries all the information of x needed to predict a future value
for y.

SDR, a graphical model interpretation:

The goal in SDR, as stated in above, is to discover a latent space that can be used for
classification. Therefore, compared to the unsupervised dimensionality reduction algo-
rithms, SDR aims to find a latent variable with high predictive power. SDR problem
can be explained by either of the graphical models in 3.2. Although the objective of
SDR might be derived from 3.2b more intuitively, we argue that the latent space that is
learned in Fig. 3.2a carries more information about x and therefore is more generaliz-
able. In fact, deriving p(y|x) from the joint distribution p(x,y) yields a better represen-
tation in the latent space that is more robust against overfitting [86]. This is especially
true when we parameterize these conditional probabilities using neural networks with
hundreds of thousands of parameters. Another benefit of the model in Fig. 3.2a is that
it can leverage unlabeled samples to build the latent space and therefore may be used
for semi-supervised learning. Whereas the model in Fig. 3.2a can only use the labeled

35

(a) (b)

Figure 3.2: Candidate graphical models for sufficient dimensionality reduction

samples.

In fact, we assume that z can not only generate high-dimensional observations, but
can also generate the target variable. Therefore, our objective is to find a latent vari-
able that keeps the information of X and can be used for classification. In the graphical
model of Fig. 3.2a, this is equivalent to maximizing the joint distribution of evidences,
p(X,Y) for all pairs of (xi,yi). One way to maximize this likelihood is using the vari-
ational inference. Based on this graphical model the variational lower bound of the
log-likelihood of the joint distribution can be written as:

log p(x,y) ≥ Eq(z|x)

[
log p(x|z) + log p(y|z)

]
− KL

(
q(z|x) ‖ p(z)

)
(3.4)

We assume that the prior distribution p(z) = N (0, I). Our goal is to maximize this lower
bound. In this model the posterior approximating distribution q(z|x) plays the role of a
probabilistic dimensionality reduction function, z(x) ∼ q(z|x).

Deep Variational Learning:

An encoder network parameter set ϕ models qϕ(z|x), which is transformation function
that maps high-dimensional observation to the latent space. A decoder with parameter
set θ models pθ(x|z), which is mapping from the latent space to observation space. And
a classifier with parameter set ψ models pθ(y|z), which is a mapping from the latent
space to the space of labels. Therefore the lower bound in 3.4, denoted by L(x,y) can

36

be rewritten as:

Lϕ,θ,ψ(x,y) = Eqϕ(z|x)

[
log pθ(x|z)

]
+ Eqϕ(z|x)

[
log pψ(y|z)

]
− KL

(
qϕ(z|x) ‖ p(z)

)
. (3.5)

Our approach to solve the SDR problem is to maximize this lower bound using deep
variational learning, and we call it deep variational SDR (DVSDR). By maximizing
Eqϕ(z|x)

[
log pψ(y|z)

]
for each labeled sample, we build a latent representation that has a

high predictive power and this is exactly what SDR aims for.

Semi-supervised DVSDR:

In many cases in practical problems, the label information is scarce and therefore a semi-
supervised learning method should be exploited. DVSDR can be easily adopted to a
semi-supervised learning setting. Suppose XL ⊂ X is the set of all labeled samples
for which we have the label set Y, and XU = X\XL is the set of unlabeled samples.
Since our latent variable is inferred purely based on our observation variable (and not
label variable), we can split the objective function to two parts, L`ϕ,θ,ψ(x,y) and Lu

ϕ,θ(x),
corresponding to labeled and unlabeled subsets of the data. Therefore:

{ϕ?, θ?, ψ?} = arg max
ϕ,θ,ψ

∑
x∈X`

L`ϕ,θ,ψ(x,y) +
∑
x∈Xu

Lu
ϕ,θ(x) (3.6)

In fact, in the semi-supervised setting, the low-dimensional latent variable for unsu-
pervised samples only reconstructs observations, but for supervised samples generates
both observations and labels.

3.2.3 Experiment Results

We evaluate the performance of DVSDR in two different tasks: Classification and sam-
ple generation.

37

Classification:

We compare the classification performance of the proposed model with Adversarial
Autoencoder (AAE) [61] and semi-supervised learning with deep generative models
[47] that are both deep generative models with bottleneck.

MNIST (All labeled samples) MNIST (1000 labeled samples)
VAE (M1+M2) 0.96 ± 0.03 2.40 ± 0.02
AAE 0.86 ± 0.03 1.60 ± 0.08
DVSDR 0.80 ± 0.04 2.1 ± 0.06

Table 3.1: Classification Error rate

As we can see our model outperforms the other two models when we use all the
label information, but when only 1000 labeled samples are used, AAE performs better.
This is because AAE directly impose a supervised loss on the latent space by matching
the distribution of the latent space with a categorical distribution.

Generation:

Sample generation is a bi-product of the DVSDR algorithm. Using the structure of
DVSDR not only can we preserve the information in the observation set while recon-
structing the input samples, but also we can generate novel data by sampling from the
prior p(z) and feeding it to the decoder. Fig. 3.3 and 3.4 in the appendix show the re-
sults of sample reconstruction/generation for MNIST and Fashion MNIST datasets. For
MNIST we use DVSDR with latent dimension of 2 and 15 and for Fashion MNIST di-
mension of 10. We can generate high quality images using the proposed model. When
we fit a mixture of Gaussian over the latent space of the model for the MNIST dataset,
we can generate samples from different classes, this is because the representations of
the points in each class in the latent space are very well separated.

38

Original Test Images Reconstructed Test Images Generated Images

(a) 2-dimensional latent space

Original Test Images Reconstructed Test Images Generated Images

(b) 15-dimensional latent space

Generated Images

(c)

Figure 3.3: (a,b) Reconstructed and generated images using DVSDR with 2-D and 15-D
latent space. (c) Fitting a mixture of Gaussian with 10 components on the latent space
and sampling from each component

Original Test Images Reconstructed Test Images Generated Images

Figure 3.4: Fashion MNIST. 10-D latent space

39

3.3 Joint Autoencoders for Dis-Entanglement

The problem of feature disentanglement has been explored in the literature, for the pur-
pose of image and video processing and text analysis [26, 96, 45, 40, 21, 2]. State-of-
the-art methods for disentangling feature representations rely on the presence of many
labeled samples. Here, we present a novel method for disentangling factors of variation
in data-scarce regimes. Specifically, we explore the application of feature disentangling
for the problem of supervised classification in a setting where few labeled samples ex-
ist, and there are no unlabeled samples for use in unsupervised training. Instead, a
similar datasets exists which shares at least one direction of variation with the sample-
constrained datasets. We train our model end-to-end using the framework of varia-
tional autoencoders and are able to experimentally demonstrate that using an auxiliary
dataset with similar variation factors contribute positively to classification performance,
yielding competitive results with the state-of-the-art in unsupervised learning.

3.3.1 Problem statement and prior works

In machine learning, samples in a dataset originate via complicated processes driven
by a number of underlying factors. Individual factors lead to independent directions
of variations in the observed samples, while the accumulation of factors give rise to
the rich structure characteristic of these datasets. The underlying factors often interact
in complicated and unpredictable ways, and appear tightly entangled in the raw data.
Being able to tease apart the effect of underlying factors is a fundamental challenge in
understanding these datasets.

For instance, a dataset containing images of natural scenery may be subject to vari-
ation in lighting conditions, camera elevation, and the appearance of the scene itself.
Controlling and restraining variation at data acquisition time is difficult, and limits the
number of acceptable samples in the dataset. On the other hand, capturing annotations
for every direction of variation is time-consuming and infeasible. Therefore, design-
ing methods that automatically learn to separate out underlying factors (known and

40

unknown) is relevant for many applications in machine learning.

One area that has enjoyed tremendous success for separating factors of variation is
supervised learning. The representations learned here aim to satisfy a specific task that
is driven by the explicit labels in the dataset. Therefore, these representations are in-
variant to factors of variation that are uninformative for solving the task at hand. For
example, when identifying individuals in a school yearbook, the identity of the person
is paramount compared to their facial expression. Hence, a simple method that simply
discards the irrelevant variation in expression will perform really well. Learning invari-
ant representations, however, require many samples and comes at the cost of needing to
train a new model for a closely related task that depends on an alternative direction of
variation. It would seem reasonable then to desire a strategy that captures all directions
of variation in a single model in a disentangled manner allowing one to infer all factors
for a given sample in the absence of labels for each factor.

Current state-of-the-art strategies for disentangling factors of variation mostly fall
victim to the challenges in deep learning and rely on the presence of abundant data
samples. In [51], the authors were able to accurately separate out lighting, pose, and
shape while sampling seemingly unlimitedly from an auxiliary generative model that
creates samples with different variations. The results presented in [77, 62] also build
upon datasets containing often hundreds of thousands of samples. Whereas [47, 87]
use very few samples in their training process, these methods are semi-supervised and
have access to unlabeled samples from the same dataset following the same statistical
distribution.

In this work, we explore classification in a data-scarce scenario where not only are
there few labeled samples available, there are also no unlabeled samples from which
one could perform semi-supervised training. These situations commonly arise in med-
ical imaging datasets, e.g., pancreatic cancer MRI images are scarce whereas breast can-
cer MRI images are abundant ([35] and references therein). In such a situation, we ask
whether one can employ a secondary dataset, with many samples, similar content, but
different style, to improve the performance of a benchmark classification model. What

41

remains to be demonstrated is how to learn good intermediate representations that can
be shared across tasks and use the disentanglement process of the secondary dataset to
effectively disentangle the factors of variation in the primary dataset of interest. Essen-
tially we are entangling together the feature disentangling of two similar datasets. This
is the focus of the work below.

3.3.2 Model description

In this work [7], we consider a situation where we are given a labeled dataset, x, with
limited number of points. We denote the label variable by `. We also have access to
another dataset y with a larger number of points that share the same categories as x.
However, the underlying distribution of the datasets are different. Let us denote the
distribution for x and y by p(x) and p(y), respectively. Suppose that our goal is to
classify unseen data points that come from p(x), i.e. to maximize p(`|x). Building a
classifier that simply uses x can lead to low accuracy and overfitting, due to its small
size. Therefore we want to leverage the information of y about the label variable and
build a model that can classify the points from p(x) with higher accuracy.

Our approach to address this problem is to disentangle the features in x and y that
contribute in predicting the label variable (i.e., content) from the features that contribute
to the style of x and y. Consider the graphical model in Fig. 3.5. We assume there are

Figure 3.5: Graphical models of the method.

42

Figure 3.6: Network structure of the method

two pairs of latent variables that describe each of x and y. Based on this figure, suppose
that z1 and z2 generate samples in dataset x and z3 and z4 generated samples in dataset
y. If we assume that z2 and z4 are the latent variables that carry all the information
about the label variable ` then p(`|z2) = p(`|z4). Considering the same prior distribu-
tions over z2 and z4, i.e. N (0, I), we can guarantee the disentanglement of latent features
by asserting that p(z2|`) = p(z4|`). However, these posteriors are intractable. To approx-
imate them we use the framework of variational inference where p(z2|`) and p(z4|`) are
approximated by q(z2|x, `) and q(z4|y, `), respectively. Therefore, by matching these
approximating distribution, we guarantee that only z2 and z4 carry information regard-
ing the label ` (i.e., content) and therefore are disentangled from z1 and z3 respectively
which represent style.

All the conditional distributions on the graphical models in Fig. 3.5 are parameter-
ized by the neural networks depicted in Fig. 3.6. The joint model here builds on ear-
lier work in [82] where an autoencoder and a discriminator were trained in the frame-
work of contractive discriminative analysis for semi-supervised learning. Here, we use
the variational autoencoding [48] approach to jointly train two networks that simul-
taneously extract shared discriminative features present in the primary and secondary

43

datasets. This architecture is reminiscent of Domain Separation Networks [16]. The pro-
posed JADE model, however, focuses on a shared classifier for improved classification
and joint disentanglement instead of a shared encoder and decoder.

The variational lower bound on the joint distribution of the observations is:

log p(x, `) ≥ L(x, `) = E q(z1|x)
q(z2|x,`)

[
log p(x|z1, z2)

]
+ Eq(z2|x,`)

[
log p(`|z2)

]
−KL

(
q(z1|x) ‖ p(z1)

)
− KL

(
q(z2|x, `) ‖ p(z2))

)
log p(y, `) ≥ L(y, `) = E q(z3|y)

q(z4|y,`)

[
log p(x|z3, z4)

]
+ Eq(z4|y,`)

[
log p(`|z4)

]
−KL

(
q(z3|x) ‖ p(z3)

)
− KL

(
q(z4|x, `) ‖ p(z4))

)
(3.7)

We would like to maximize the sum over the above lower bounds. The approximat-
ing distributions are from exponential family (Gaussian) and to match them we assume
that for the samples that are from the same class in the two datasets, we want to mini-
mize KL

(
q(z2|x, `) ‖ q(z4|y, `)

)
. Given this condition, the overall objective of the model

is:
max

Θ
L(x, `) + L(y, `)− KL

(
q(z2|x, `) ‖ q(z4|y, `)

)
(3.8)

where Θ represents the entire parameter set of neural networks.

3.3.3 Experiments

Datasets: Our framework addresses the problem of performing supervised classifica-
tion in data-scarce regimes where there exists a secondary dataset that has at least one
direction of variation in common with the primary sample-constrained dataset. In our
experiments we emulate this scenario with commonly used datasets such as MNIST
[55] and SVHN [69]. Because MNIST is relatively easier to learn, even with very few
samples, we select SVHN as the sample-constrained primary dataset that is difficult to
learn, and use the entirety of MNIST as the secondary dataset. These datasets differ
in appearance and style: whereas MNIST is gray-scale and comes in 28 × 28 pixel im-
ages, SVHN has three color channels and comes in 32× 32 pixel images. However, both

44

datasets represent the same content (i.e., digit values) across different styles. This sim-
ilarity in content of both datasets is what makes MNIST a good secondary dataset to
boost SVHN’s supervised classification performance.

Model Comparison: To evaluate the performance of our framework, we first develop a
benchmark for supervised classification of SVHN. Here, we choose a relatively power-
ful convolutional neural network (CNN) architecture combined with a multi-layer per-
ceptron (MLP) as the supervised classification model. The CNN architecture comprises
of 4 layers of 3 × 3 spatial convolutions ({64, 96, 64, 8} filters respectively) followed by
ReLU and interspersed with 3 layers of 2×max-pooling. The MLP contains 3 blocks of
500-dimensional fully connected layers, followed by ReLU and Dropout (p = 0.5) layers
[90]. A 10-dimensional bottleneck layer was placed in between the CNN and the MLP to
encourage only important features from being retained. A final softmax layer is present
at the end of the network for 10-way classification. The loss for this model is measured
using categorical cross-entropy. This architecture is referred to as single classifier (i.e.,
benchmark).

A simple extension of above setup is a model that jointly trains SVHN and MNIST on
a shared MLP classifiers using features extracted from separate CNN feature extractors,
one per dataset. The CNN used for SVHN and the MLP follow the same architecture
as the benchmark above. The CNN architecture for MNIST comprises of 3 layers of
3 × 3 spatial convolutions ({32, 32, 16} filters respectively) followed by ReLU and in-
terspersed with 3 layers of 2× max-pooling. A 10-dimensional bottleneck layer was
placed in between the CNN for MNIST and the shared MLP to capture the latent fea-
tures of MNIST. Feature-extracted samples from both datasets are fed into the shared
MLP in alternation and trained jointly. The loss of the system is the sum of the categor-
ical cross-entropy losses for both datasets on the shared classifier. This setup is called
paired classifier.

Finally, the proposed model (outlined in Fig. 3.6) extends upon the previous two
methods by adding a decoder network to reconstruct the 10-dimensional latent repre-
sentations from each of the CNN feature extractors. To encourage disentanglement of

45

Method SVHN (1000 samples) MNIST (45K samples)
VAE (M1+M2) [47] 36.02 ± 0.10 -
Siddharth et al. [87] 28.71 ± 2.38 -
Single Classifier (benchmark) 32.31 ± 1.56 -
Paired Classifier 30.17 ± 2.77 0.82 ± 0.05
JADE (proposed) 29.08 ± 0.92 0.72 ± 0.03

Table 3.2: Classification error rates for SVHN on limited data: 100 samples per each class. Error
rates calculated using the entirety of SVHN’s test set. Results of our experiments are averaged
over 3 runs. We observe improved SVHN classification performance without sacrificing near
state-of-the-art performance on MNIST.

features in the latent space, and to perform factor separation in a way that the MLP
classifier is only given content-related features (i.e., digit values), we increase the size of
the latent spaces from 10 to 20 dimensions. However, only 10 of the latent dimensions
resulting from each CNN are passed into the shared MLP, essentially keeping consistent
with the previous method in terms of classifier capacity. All 20 latent dimensions are
used to reconstruct the inputs via a decoder that identically mirrors the corresponding
CNN (2× up-sampling layers used in place of 2× max-pooling). Losses are defined in
Section 2. Due to the autoencoding structure of this model, we refer to it as JADE: Joint
Autoencoders for Dis-Entanglement.

Discussion about the results: The results of our experiments have been presented in
Table 3.2. Here we compare the results of the single classifier (i.e., benchmark model),
paired classifier, and proposed model (JADE) alongside those from Kingma et al. [47]
and Siddharth et al. [87]. It is worth pointing out that the former 3 models are trained
only on 1000 labeled sample from SVHN, whereas the cited models use the remainder
of the SVHN training dataset in an unsupervised fashion. We, on the other hand, use
all of the MNIST dataset to train the paired classifier in JADE.

These results demonstrate that when dealing with sample-constrained regimes with-
out unlabeled samples, one can use a similar dataset with at least one shared direction
of variation to improve classification performance. This can be seen when compar-
ing the performance of a single classifier (32.31/01.56) with that of a paired classifier
(30.17/02.77). On top of this, we see that the JADE model which learns to jointly dis-
entangle SVHN and MNIST features performs even better than the former methods,

46

9

8

7

6

5

4

3

2

1

0

(a)

(b)

Only this part of the latent space is fed into the classifier

The entire latent space is used for reconstruction

Only this part of the latent space is fed into the classifier

Figure 3.7: (a) variance normalized activations of latent space parameters, averaged over 500
random samples from each of 10 classes in SVHN; when content is fixed, the part of the latent
space that feeds into the classifier exhibits weaker variance in activations compared to the part
of the latent space that seemingly represents style over the 500 samples. (b) variance normalized
activations of latent space parameters for 2500 random samples from SVHN spanning various
style and content; all 20 latent space parameters fire for random splits of the data.

sitting at 29.08/00.92. This is in line with our hypothesis that only the directions of
variation shared between MNIST and SVHN (i.e., content) will contribute positively to
classification performance on SVHN, and other factors of variation should be disentan-
gled.

We hypothesize that actively attempting to disentangle variation factors (i.e., in
JADE) is better than allowing the network to attempt to discard uninformative factors
(i.e., paired classifier) given the sample-constrained regime. To assert that the JADE
setup is indeed disentangling variation factors, we conduct the following simple ex-
periment: observe the variation in latent space values as different types of samples are
passed into the network. In Fig. 2a, we have shown how latent activations change when
the SVHN CNN is fed with 500 samples from the same class (i.e., same content but vary-
ing style). These activations are shown for the 20 latent parameters (of which only 10 are
passed into the MLP classifier, and all used for reconstruction) across 10 classes of digits
in MNIST. We observe that in this setup where content is fixed, the normalized variance
of the latent variables that are fed into the MLP classifier is much lower than the vari-
ance of latent variables that are solely used for reconstruction. In Fig. 2b, we observe an
interesting and complementary phenomena when we pass in 2500 randomly selected
test samples into the SVHN CNN. Here, both the style and the content vary between

47

input samples, and we observe that all 20 latent parameters are active given the varying
input. These observations suggest that JADE is able to successfully disentanglement
content and style in low-data SVHN using the help of MNIST as an auxiliary similar
dataset.

3.4 Summary

We presented a brief introduction to VAEs in this chapter and investigated two prob-
lems in this framework. We considered the SDR problem, where the high-dimensional
observation is transformed to a low-dimensional sub-space in which the information of
the observations regarding the label variable is preserved. We proposed DVSDR, a deep
variational approach for sufficient dimensionality reduction, which can be adopted to
semi-supervised learning setting. We showed in our experiments that DVSDR performs
competitively on classification tasks while being able to generate novel data samples.

We also explored the application of feature disentangling for the problem of super-
vised classification in a setting where few labeled samples exist, and there are no unla-
beled samples for use in unsupervised training. Instead, a similar datasets exists which
shares at least one direction of variation with the sample-constrained datasets. We train
our model end-to-end using the framework of variational autoencoders and experimen-
tally demonstrated that using a secondary dataset with similar content to SVHN leads
to improvements in supervised classification performance.

48

Chapter 4

Robust Locally-Linear Controllable
Embedding

4.1 Contributions

Embed-to-control (E2C) [103] is a model for solving high-dimensional optimal con-
trol problems by combining variational auto-encoders with locally-optimal controllers.
However, the current E2C model suffers from two major drawbacks: 1) its objective
function does not correspond to the likelihood of the data sequence and 2) the varia-
tional encoder used for embedding typically has large variational approximation error,
especially when there is noise in the system dynamics. In this chapter, we present a
model for learning locally-linear controllable embedding (RCE) that is robust against
the noise in the dynamics of the system. Our model has a bottleneck encoder-decoder
structure and estimates the predictive conditional density of the future observation
given the current one and the action. Although the bottleneck provides a natural em-
bedding candidate for control, our RCE model introduces additional specific structures
in the generative graphical model so that the model dynamics can be robustly lin-
earized. Our experiment results show that RCE outperforms the existing E2C model,
especially in the regime where the underlying dynamics is noisy.

49

4.2 Problem statement and prior work

Model-based locally optimal control algorithms are popular in controlling non-linear
dynamical systems with continuous state and action spaces. Algorithms from this class
such as differential dynamic programming (DDP) [44], iterative linear quadratic regula-
tor (iLQR) [58], and iterative linear quadratic Gaussian (iLQG) [95] have been success-
fully applied to a variety of complex control problems [3, 94, 57, 72]. The general idea
of these methods is to iteratively linearize the non-linear dynamics around the current
trajectory and then use linear quadratic methodology to derive Riccati-like equations to
improve the trajectory. However, these methods assume that the model of the system is
known and need relatively low-dimensional state representations. These requirements
limit their usage in control of dynamical systems from raw sensory data (e.g., image
and audio), a scenario often seen in modern reinforcement learning (RL) systems.

Although both model-based RL and methods to find low-dimensional representa-
tions that are appropriate for control (see e.g., [15]) have a long history, they have re-
cently witnessed major improvements due to the advances in the field of deep learning.
Deep autoencoders [54, 100] have been used to obtain low-dimensional representations
for control, and deep generative models have been used to develop new model-based
RL algorithms. However, what is desirable in model-based locally optimal control al-
gorithms is a representation that can be used for learning a model of the dynamical
system and can also be systematically incorporated into the existing tools for planning
and control. One such model is embed to control (E2C) [103]. E2C turns the problem of
locally optimal control in high-dimensional non-linear systems into one of identifying
a low-dimensional latent space in which we can easily perform locally optimal control.
The low-dimensional latent space is learned using a model based on variational autoen-
coders (VAEs) [49, 79] and the iLQG algorithm [95] is used for locally optimal control.

While the idea of E2C is intriguing, it suffers from two major statistical deficiencies.
Firstly, to induce the lower-dimensional embedding, at each time step t, E2C models
the pair-marginal distribution of two adjacent observations (xt,xt+1). As a result, its

50

loss function effectively is the sum over the pair-marginals, which is clearly not the data
likelihood for the entire trajectory. Moreover, at every time step t, E2C needs to enforce
the consistency between the posterior of the embedding and the predictive distribution
of the future embedding by minimizing their KL divergence. These all indicate that the
E2C loss is not a lower bound of the likelihood of the data. The practice of modeling the
pair-marginal of (xt,xt+1) using a latent variable model also imposes a Gaussian prior
on the embedding space, which might be in conflict with the locally-linear constraint
that we would like to impose. Secondly, the variational inference scheme in E2C at-
tempts to approximate the posterior of the latent embedding via a recognition model
that does not depend on the future observation xt+1. We believe that this is done out of
necessity, so that the locally-linear dynamics can be encoded as a constraint in the origi-
nal E2C model. In an environment where the future is uncertain (e.g., in the presence of
noise or other unknown factors), the future observation carries significant information
about the true posterior of the latent embedding. Thus, a variational approximation
family that does not take future observation into account, while approximating the pos-
terior, will result in a large variational approximation error, leading to the learning of a
sub-optimal model that underperforms, especially when the dynamics is noisy.

To address these issues, we take a more systematic view of the problem. Instead of
mechanically applying VAE to model the pair-marginal density, we build on the recent
bottleneck conditional density estimator (BCDE) [85] and directly model the predic-
tive conditional density p(xt+1|xt). The BCDE model introduces a bottleneck random
variable zt in the middle of the information flow from xt to xt+1. While this bottleneck
provides a natural embedding candidate for control, these embeddings need to be struc-
tured in a way to respect the locally linear constraint of the dynamics. Our proposed
model, robust controllable embedding (RCE), provides a rigorous answer to this ques-
tion in the form of a generative graphical model. A key idea is to explicitly treat the ref-
erence linearization point in the locally-linear model as an additional random variable.
We also propose a principled variational approximation of the embedding posterior
that takes the future observation into account and optimizes a variational lower bound
of the likelihood of the data sequence. This allows our framework to provide a clean

51

separation of the generative graphical model and the amortized variational inference
mechanism (e.g., the recognition model).

After a brief overview of locally linear control and E2C in Section 4.3, we present
our proposed RCE model in Section 4.4. Unlike E2C, RCE directly models the condi-
tional density of the next observation given the current one via a form of bottleneck
conditional density estimators [85]. In Section 4.4, we first describe the RCE’s graphical
model in details and then present the proposed variational approximation of the em-
bedding’s posterior. In Section 4.5, we apply RCE to four RL benchmarks from [103]
and show that it consistently outperforms E2C in both prediction and planning. Cru-
cially, we demonstrate the robustness of RCE: as the dynamics becomes more noisy,
RCE continues to perform reasonably well while E2C’s performance degrades sharply.

4.3 Preliminaries

In this section, we first define the non-linear control problem that we are interested
to solve, and then provide a brief overview of stochastic locally optimal control and
the E2C model. We also motivate our proposed robust controllable embedding (RCE)
model that will be presented in Section 4.4.

4.3.1 Problem Formulation

We are interested in controlling the non-linear dynamical systems of the form

st+1 = fS(st,ut) + nS , (4.1)

where st ∈ Rns and ut ∈ Rnu denote the state and action of the system at time step t,
nS ∼ N (0,ΣnS) is the Gaussian system noise, and fS is a smooth non-linear system
dynamics. Note that in this case p(st+1|st,ut) would be the multivariate Gaussian distri-
butionN

(
fS(st,ut),ΣnS

)
. We assume that we only have access to the high-dimensional

52

observation xt ∈ Rnx of each state st (ns � nx) and our goal is to learn a low-dimensional
latent state space Z ⊂ Rnz (nz � nx) in which we perform optimal control.

4.3.2 Stochastic Locally Optimal Control

Stochastic locally optimal control (SLOC) is based on the idea of controlling the non-
linear system (4.1), along a reference trajectory {s̄1, ū1, . . . , s̄H , ūH , s̄H+1}, by transform-
ing it to a time-varying linear quadratic regulator (LQR) problem

min
u1:T

E

[
T∑
t=1

(
(st − sf)>Q(st − sf) + u>t Rut

)]
s.t yt+1 = Atyt + Btvt, (4.2)

where sf is the final (goal) state, Q and R are cost weighting matrices, yt = st − s̄t,
vt = ut− ūt, s̄t+1 = fS(s̄t, ūt), At = ∂fS

∂s
(s̄t, ūt), and Bt = ∂fS

∂u
(s̄t, ūt). Eq. 4.2 indicates that

at each time step t, the non-linear system has been locally approximated with a linear
system around the reference point (s̄t, ūt) as

st+1 ≈ fS(st,ut) +

[
∂fS
∂s

(s̄t, ūt)

]
(st − s̄t) (4.3)

+

[
∂fS
∂u

(s̄t, ūt)

]
(ut − ūt).

The RHS of Eq. 4.2 sometimes contains an offset ct resulted from the linear approxima-
tion and/or noise

yt+1 = Atyt + Btvt + ct. (4.4)

Eq. 4.4 can be seen as [
yt+1

1

]
=

[
At ct

0 1

][
yt

1

]
+

[
Bt

0

]
vt,

53

and thus, can be easily transformed to the standard from (4.2) by adding an extra di-
mension to the state as

y′t =

[
yt

1

]
, A′t =

[
At ct

0 1

]
, B′t =

[
Bt

0

]
.

Locally optimal actions in Eq. 4.2 can be computed in closed-form by solving the local
LQRs (4.3) using the value iteration algorithm.

Since the quality of the control depends on the quality of the reference trajectory,
SLOC algorithms are usually iterative (e.g., iLQR and iLQG), and at each iteration gen-
erate a better reference trajectory. At the abstract level, a SLOC algorithm operates as
follows: at each iteration k, a reference trajectory is generated using the current policy
π(k), the LQR approximation of the non-linear system is computed around this refer-
ence trajectory, and finally the next policy π(k+1) is computed by solving this LQR. The
algorithm stops after a fixed number of iterations, e.g., 100.

As mentioned in Section 4.3.1, since we do not have access to the true state s, we
perform the optimal control in the low-dimensional latent space z learned from the
observations x. Thus, all the s’s in this section should be replaced by z in the following
sections.

4.3.3 The Embed to Control (E2C) Model

We now return to the assumption that we only observe a finite number of high-dimensional
sensory data (e.g., images) xt ∈ Rnx from the system. We denote the high-dimensional
observation sequence by X = {x1,x2, ...,xN}. Note that the observations are selected
such that the sequence X is Markovian. For example, x could be a set of buffered ob-
served images of the system that encodes all the information about the past. Depending
on the system, this set may have only one or multiple images.

It is clear that direct control in Rnx is complicated because of its high-dimensional
nature. However, when the true underlying state space is low-dimensional, it would

54

be possible to embed the high-dimensional observations in a low-dimensional latent
space Z , in a way that the dynamics of the system can be captured by a much simpler
model, which can then be used for optimal control. This general strategy is known as
embed to control (E2C) [103]. Note that a suitable embedding function is sufficient for
model-based control, we do not need to recover the true state st.

We denote by zt the low-dimensional embedding of xt. E2C first introduces a new
variable ẑt+1 as the result of applying ut to the latent dynamics fZ , i.e.,

ẑt+1 = fZ(zt,ut) + nZt , (4.5)

where nZt denotes the transition noise in the latent space. E2C employs the pair (zt, ẑt+1)

as the latent variables that model the pair-marginal p(xt,xt+1). It uses the variational
recognition network q(zt|xt), while forcing q(ẑt+1|zt,ut) to be the generative dynamics
of Eq. 4.5. This leads to the following lower bound of the pair-marginal

log p(xt,xt+1|ut) ≥ Lbound
t (xt,ut,xt+1) (4.6)

= Eq(zt|xt)q(ẑt+1|zt,ut)
[

log p(xt|zt) + log p(xt+1|ẑt+1)− KL(q(zt|xt) ‖ p(zt))
]

Local linearization of the dynamics is enforced inside the recognition model q(ẑt+1|zt,ut),
where mapping from a linearization point z̄t to the linearization matrices are estimated
via neural networks.

Finally, we want zt+1 to be both the embedding of xt+1 and the result of applying ut

to zt. E2C attempts to enforce this temporal consistency criterion by encouraging the
distributions of ẑt+1 and the next step embedding zt+1 to be similar (in the KL sense).
Enforcing the temporal consistency leads to the modified objective

Lt = −Lbound
t + λKL

(
q(ẑt+1|zt,ut) ‖ q(zt+1|xt+1)

)
, (4.7)

where λ is an additional hyperparameter of the model. We note that neither of the two
objectives

∑
t Lbound

t and
∑

t Lt is a lower bound of the data likelihood p(X). The fact
that E2C does not optimize a proper lower bound of the data likelihood has also been

55

observed by [46].

Compared to E2C, our method is based on introducing a graphical model that clearly
separates the generative model from the variational recognition model. This enables us
to handle noise in the system and avoid heuristic terms in the objective functions that
need extra hyperparameter tuning. Furthermore, we can optimize a lower bound on
the likelihood of the data sequence using a better-designed recognition model more ro-
bust w.r.t. noise. Note that our goal is not to purely obtain the best predictive power as
in [46], but to design a predictive model that yields a suitable embedding representa-
tion for locally optimal control. Unlike [46] which does not report control performance,
our experiments focus on the performance of the controller under various noise regime.
In the next section, we describe our proposed RCE model and demonstrate how it ad-
dresses the aforementioned issues of E2C.

4.4 Model Description

In this section, we first introduce our graphical model that represents the relation be-
tween the observations and latent variables in our model. We then derive a lower bound
on the likelihood of the observation sequence. The objective of training in our model is
to maximize this lower bound. Finally, we describe the details of the method we use for
planning in the latent space learned by our model.

4.4.1 Graphical Model

We propose to learn an action-conditional density model of the observations x1:N . Sim-
ilar to E2C, we assume that the observation sequence is Markovian. Thus, optimizing
the likelihood p(x1:N |u1:N) reduces to learning an action-conditional generative model
that can be trained via maximum likelihood, i.e.,

max
θ

log pθ(xt+1|xt,ut), (4.8)

56

where the prediction of the next observation xt+1 depends only on the current xt and ac-
tion ut. Note that our generative model is parameterized by θ. For notational simplicity,
we shall omit θ in our presentation.

We first discuss how to learn a low-dimensional representation of x that adheres
to globally linear dynamics by incorporating several constraints into the structure of
our generative model. First, we introduce the latent variables zt and ẑt+1 that serve as
information bottlenecks between xt and xt+1, such that

p(xt+1, zt, ẑt+1|xt,ut) = p(zt|xt)p(ẑt+1|zt,ut)p(xt+1|ẑt+1). (4.9)

Intuitively, it is natural to interpret zt and ẑt+1 to be stochastic embeddings of xt and
xt+1, respectively.

Next, we enforce global linearity of p(ẑt+1|zt,ut) by restricting it to be a deterministic,
linear transition function of the form

ẑt+1 = Azt + But + c, (4.10)

where A, B, and c are matrices that respectively define the state dynamics, control
dynamics, and the offset. To emphasize the deterministic nature of this transition, we
replace all the subsequent mentions of deterministic p(·|·) transitions with δ(·|·).

In order to learn more expressive transition dynamics, we relax the global linearity
constraint to a local one. Unlike global linearity, local linearity requires a lineariza-
tion point. To account for this, we introduce an additional variable z̄t to serve as the
linearization point, which results in a new generative model (see the black arrows in
Fig. 4.1),

p(xt+1, zt, z̄t, ẑt+1|xt,ut) = p(zt|xt)p(z̄t|xt)δ(ẑt+1|zt, z̄t,ut)p(xt+1|ẑt+1), (4.11)

57

𝑥𝑡 𝑥𝑡+1

 𝑧𝑡+1 𝑧𝑡

𝑢𝑡𝑧𝑡

Figure 4.1: RCE graphical model. Black arrows show the generative links and dashed
red arrows show the recognition model. Parallel lines mean deterministic links, while
single lines mean stochastic links (a link that involves in sampling). zt and z̄t are two
samples from p(z|x). We use a single network (the encoder network) to model the con-
ditional probability of the links with the hatch marks.

whose corresponding deterministic transition function for δ(ẑt+1|zt, z̄t,ut) is

ẑt+1 = At(z̄t,ut)zt + Bt(z̄t,ut)ut + ct(z̄t,ut). (4.12)

Here, A, B, and c are functions of (z̄t,ut), and can be parameterized by neural net-
works. The offset vector c plays an important role here. In fact, if a system cannot be
modelled using the above locally-linear function, the offset vector will have high vari-
ance. Therefore c can seen as an indicator of the type of systems that can be handled
using our model. Since the linearization point z̄t is not known in advance, we treat z̄t

as a random variable with distribution p(z̄t|xt). A natural consideration for p(z̄t|xt) is to
set it to be identical to p(zt|xt) a priori. This has the effect of making the iLQR controller
robust to stochastic sampling of zt during planning.

58

4.4.2 Deep Variational Learning

Training the generative model in Eq. 4.11 using maximum likelihood is intractable, since
it requires the marginalization of the latent variables. Therefore, we propose to use
deep variational inference [49, 79] and maximize the variational lower bound of the
log-likelihood, instead. The variational lower bound requires us to define a variational
approximation to the true posterior

q(z, z̄t, ẑt+1|xt,xt+1,ut) ≈ p(z, z̄t, ẑt+1|xt,xt+1,ut).

In adherence to the interpretation of zt and ẑt+1 as stochastic embeddings of xt and
xt+1, it is important to enforce consistency between p(ẑt+1|xt,xt+1,ut) and the next step
probability of the embedding given the observation p(zt+1|xt+1). Since we do not have
access to p(ẑt+1|xt,xt+1,ut), we instead encourage this consistency through posterior
regularization by explicitly setting

qϕ(ẑt+1|xt+1) = p(zt+1|xt+1). (4.13)

Next, we propose a novel factorization of the full variational posterior as

q(z, z̄t, ẑt+1|xt,xt+1,ut) = qϕ(ẑt+1|xt+1)qϕ(z̄t|xt, ẑt+1)δ(zt|ẑt+1, z̄t,ut),

where qϕ(z̄t|xt, ẑt+1) is the backward encoder and δ(zt|ẑt+1, z̄t,ut) is the deterministic re-
verse transition. Our choice of factorization results in a recognition model that contrasts
sharply with that in E2C. First, our recognition model properly conditions the infer-
ence of ẑt+1 on the observation xt+1. Second, our recognition model explicitly accounts
for the deterministic transition in the generative model; inference of the deterministic

59

transition can be performed in closed-form using a deterministic reverse transition that
recovers zt as a function of z̄t,ut and ẑt+1. To be consistent with Eq. 4.12, we require that

zt = A−1
t (z̄t,ut)

(
ẑt+1 −Bt(z̄t,ut)ut − ct(z̄t,ut)

)
. (4.14)

During the training of the generative model, we only need to access the inverse of
At. As such, we propose to directly train a network that outputs its inverse Mt(z̄t,ut) =

A−1
t (z̄t,ut). To make sure that Mt is an invertible matrix and to enable efficient estima-

tion, we restrict Mt to be a rank-one perturbation of the identity matrix, i.e.,

Mt = Inz + wt(z̄t,ut)r
>
t (z̄t,ut), (4.15)

where Inz is the identity matrix of size nz, and wt and rt are two column vectors in Rnz .
We constraint these vectors to be non-negative using a non-negative activation at their
corresponding output layers.

We now formally the give the RCE loss and its lower bound property.

Lemma 4.4.1. Let LRCEt be defined as

LRCEt = Eqϕ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
−Eqϕ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
+H
(
qϕ(ẑt+1|xt+1)

)
+ Eqϕ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
.

(4.16)

Subject to the constraints we explicitly impose on q, LRCEt is a lower bound of the conditional
log-likelihood log p(xt+1|xt,ut).

Proof. See Appendix A.1.

60

µ�

⌃�
sampling

sampling

(a) (b)

(c) (d)

Mt

ct

sampling

Bernoulli
Distribution

encoder
backward

linearization

⌃'

µ'

µ�

⌃�

Figure 4.2: Schematic of the networks that are used for modeling the probabilities in
our model. The gray boxes contain input (observable) variables. (a) Encoder network
that models qϕ(ẑt+1|xt+1) = N

(
µϕ(xt+1),Σϕ(xt+1)

)
. (b) Transition network that con-

tains two parts. One part, denoted by “backward encoder”, models qϕ(z̄t|xt, ẑt+1) =
N
(
µϕ(xt, ẑt+1),Σϕ(xt, ẑt+1)

)
, and the other part, denoted by “linearization”, is used to

obtain Mt, Bt, and ct, which are the parameters of the locally linear model in the latent
space. (c) Decoder network that models p(xt+1|ẑt+1). In our experiments we assume
that this distribution is Bernoulli. Therefore, we use sigmoid nonlinearity at the last
layer of the decoder. x̄t+1 is the reconstructed version of xt+1. (d) The network that
models p(zt|xt). According to Eq. 4.13, since p(zt|xt) = qϕ(zt|xt) and therefore we tie
the parameters of this network with the encoder network, p(zt|xt) = N (µϕ(xt),Σϕ(xt)).
Note that p(zt|xt) is the same as p(z̄t|xt). Thus, the KL term in (4.21) can be written as
KL
(
N (µϕ,Σϕ) ‖ N (µϕ(xt),Σϕ(xt))

)
.

Figure 4.1 contains a graphical representation of our model. We report a complete
derivation of Eq. 4.21 in Appendix A.1. It is important to note that unlike the E2C en-
coder (Eq. 8 in [103]), our recognition model takes the future observation xt+1 as input.
In the case of noisy dynamics, the future state heavily influences the posterior. Thus,
E2C’s failure to incorporate the future state into the variational approximation of the
posterior could be detrimental to the performance of the system in the noisy regime.
We clearly demonstrate this phenomenon in our experiments.

61

4.4.3 Network Structure

For the four problems used in our experiments in Section 4.5, we use feedforward net-
works for encoding, decoding, and transition. Depending on the input image size, the
encoder and decoder can have fully-connected layers or convolutional layers. The tran-
sition networks always have fully-connected layers. According to Eq. 4.21, we need to
model four different conditional probabilities: p(xt+1|ẑt+1), qϕ(ẑt+1|xt+1), qϕ(z̄t|ẑt+1,xt),
and p(zt|xt). Figure 4.2 shows the high-level depiction of the networks and the connec-
tion between different variables used in these probabilities.

4.4.4 Planning

We use the iLQR algorithm to plan in the latent space Z . A good latent space repre-
sentation should allow us not only to reconstruct and predict the images accurately, but
also to plan well in this space using fZ .

The inputs to the planning algorithm are the two high-dimensional observations xi

and xf , corresponding to the initial and final (goal) states si and sf . We encode these
two high-dimensional observations to the latent space observations zi and zf . We sam-
ple a random set of H actions u1:H and apply them to the system, starting from the
initial state si (represented in the latent space by zi). This generates a reference tra-
jectory {z̄1 = zi, ū1 = u1, z̄2, ū2 = u2, . . . , z̄H , ūH = uH , z̄H+1} of size H . We pass this
reference trajectory to iLQR and it returns the set of actions u∗1:H that has been iteratively
optimized to minimize a quadratic cost similar to (4.2) in the latent space Z . We apply
u∗1 to the dynamical system, observe the next state’s observation x2, and encode it to the
latent space observation z2. We then generate another reference trajectory by starting
from z2 and applying the sequence of H actions {u∗2, . . . ,u∗H ,uH+1}, where uH+1 is a
random action. We then run iLQR with this trajectory and apply the first action in the
set of H actions it returns to the system. We continue this process for T (the planning
horizon) steps.

62

4.5 Experiments

In this section, we compare the performance of our proposed RCE model with that of
E2C in terms of both prediction and planning in the four domains of [103]. To generate
our training and test sets, each consists of triples (xt,ut,xt+1), we first sample a state
st and generate its corresponding observation xt. We then take an action ut and add a
Gaussian noise with covariance ΣnS according to Eq. 4.1 to obtain the next state st+1,
which is used to generate the next observation xt+1. We consider both deterministic
(ΣnS = 0) and stochastic scenarios. In the stochastic case, we add noise to the system
with different values of ΣnS and evaluate the models performance under noise.

In each of the four domains used in our experiments, we compare the performance
of RCE and that of E2C in terms of four different factors (see Tables 4.5– 4.4). 1) Re-
construction Loss is the loss in reconstructing xt using the encoder and decoder. 2)
Prediction Loss is the loss in predicting xt+1, given xt and ut, using the encoder, de-
coder, and transition network. 3) Planning Loss is computed based on the following
quadratic loss:

J =
T∑
t=1

(st − sf)>Q(st − sf) + u>t Rut. (4.17)

Note that matrices Q and R are in the form of αI (I is the identity matrix). Therefore
the planning loss function is convex and its lower bound is zero. We apply the sequence
of actions returned by iLQR to the dynamical system and report the value of the loss in
Eq. 4.17. 4) Success Rate shows the number of times the agents reaches the goal within
the planning horizon T , and remains near the goal in case it reaches it in less than T

steps. For each of the domains, all the results are averaged over 20 runs. The details
of our implementations, including the network’s structure, the size of the latent space,
and the planning horizon are specified in Appendix A.2. We also include the number
of data points used for training our model in each of the experiments. During training,
we observed that increasing the size of training data results in a better performance of

63

our model in terms of planning loss. This is an expected phenomenon in model-based
algorithms. However, we did not perform experiments on the effect of size of training
data on the performance of our model.

4.5.1 Planar System

Consider an agent in a surrounded area, whose goal is to navigate from a corner to
the opposite one, while avoiding the six obstacles in this area. The system is observed
through a set of 40 × 40 pixel images taken from the top, which specify the agent’s
location in the area. Actions are two-dimensional and specify the direction of the agent’s
movement.

Table 4.5 shows that RCE outperforms E2C in both prediction/reconstruction and
planning in this domain. The Gaussian noise we add to the system has a diagonal
covariance matrix with equal variance in all dimensions. The values mentioned in the
table for ΣnS are the standard deviation in each dimension.

Figure 4.3 shows the latent space representation of data points in the planar system
dataset for both RCE and E2C models. RCE has clearly a more robust representation
against the noise and is able to predict the defined trajectory with a much higher quality.

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0 RCE 3.6 ± 1.7 6.2 ± 2.8 21.4 ± 2.9 100 %
E2C 7.4 ± 1.7 9.3 ± 2.8 26.3 ± 4.9 100 %

1 RCE 8.3 ± 5.5 10.1 ± 6.2 25.4 ± 3.6 100 %
E2C 19.2 ± 5.1 28.3 ± 10.2 34.1 ± 9.5 95 %

2 RCE 12.3 ± 4.9 17.3 ± 6.2 36.4 ± 10.3 95 %
E2C 37.1 ± 10.5 45.8 ± 13.1 63.7 ± 16.3 75 %

5 RCE 25.2 ± 6.1 27.3 ± 8.2 50.3 ± 14.5 85 %
E2C 60.3 ± 18.2 78.3 ± 15.0 112.4 ± 30.2 45 %

Table 4.1: RCE and E2C Comparison – Planar System

64

No Noise

⌃nS = 1

⌃nS = 2

⌃nS = 5

(a)

(b)

True Map

(c)

Figure 4.3: (a) Left: The true state space of the planar system. Each point on the map
corresponds to one image in the dataset. (a) Right: A random trajectory. Each image is
40 × 40 black and white. The circles show the obstacles and the square is the agent in
the domain. (b) Reconstructed map and predicted trajectory in the latent space of the
E2C model for different noise levels. (c) Reconstructed map and predicted trajectory in
the latent space of the RCE model for different noise levels.

4.5.2 Inverted Pendulum (Acrobat)

This is the classic problem of controlling an inverted pendulum [101] from 48× 48 pixel
images. The goal in this task is to swing up and balance an underactuated pendulum
from a resting position (pendulum hanging down). The true state space of the system
S has two dimensions: angle and angular velocity. To keep the Markovian property in
the observation space, we need to have two images in each observation xt, since each
image shows only position of the pendulum and does not have any information about
its velocity.

Table 4.2 contains our results of comparing RCE and E2C models in this task. Learn-

65

ing the dynamics in this problem is harder than reconstructing the images. Therefore,
at the beginning of the training we set the weights of the two middle terms in Eq. 4.21
to 10, and eventually decrease them to 1. The results show that RCE outperforms than
E2C, and the difference is significant under noisy conditions.

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0 RCE 43.1 ± 13.2 48.1 ± 17.2 14.2 ± 4.6 95 %
E2C 73.2 ± 20.1 79.6 ± 32.6 16.1 ± 2.9 90 %

1 RCE 61.1 ± 16.2 70.2 ± 36.1 17.3 ± 7.1 85 %
E2C 97.1 ± 34.1 109.7 ± 58.2 29.9 ± 9.2 60 %

2 RCE 92.11 ± 35.4 106.4 ± 53.2 27.5 ± 6.6 70 %
E2C 140.2 ± 47.1 179.5 ± 61.1 40.7 ± 11.8 40 %

Table 4.2: RCE and E2C Comparison – Inverted Pendulum (Acrobat)

4.5.3 Cart-pole Balancing

This is the visual version of the classic task of controlling a cart-pole system [91]. The
goal in this task is to balance a pole on a moving cart, while the cart avoids hitting the
left and right boundaries. The control (action) is 1-dimensional and is the force applied
to the cart. The original state of the system st is 4-dimensional. The observation xt is a
history of two 80 × 80 pixel images (to maintain the Markovian property). Due to the
relatively large size of the images, we use convolutional layers in encoder and decoder.
To make a fair comparison with E2C, we also set the dimension of the latent space Z to
8.

Table 4.3 contains our results of comparing RCE and E2C models in this task. We
again observe a similar trend: RCE outperforms E2C in both noiseless and noisy settings
and is significantly more robust.

4.5.4 Three-link Robot Arm

The goal in this task is to move a three-link planar robot arm from an initial position to
a final position (both chosen randomly). The real state of the system S is 6-dimensional

66

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0 RCE 33.2 ± 15.6 42.1 ± 26.9 21.2 ± 6.3 90 %
E2C 44.9 ± 17.0 57.3 ± 22.9 25.3 ± 4.8 85 %

1 RCE 52.1 ± 20.3 63.3 ± 27.2 28.4 ± 5.5 80 %
E2C 70.2 ± 23.7 90.5 ± 42.4 39.8 ± 5.2 70 %

2 RCE 77.6 ± 30.2 88.4 ± 38.3 42.2 ± 8.3 70 %
E2C 112.6 ± 39.2 133.0 ± 56.5 67.2 ± 9.3 40 %

Table 4.3: RCE and E2C Comparison – Cart-pole Balancing

and the actions are 3-dimensional, representing the force applied to each joint of the
arm. We use two 128 × 128 pixel images of the arm as observation x. To be consistent
with the E2C model, we choose the latent space Z to be 8-dimensional.

Table 4.4 contains our results of comparing RCE and E2C models in this task. Similar
to the other domains, our results show that the RCE model is more robust to noise than
E2C.

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0 RCE 60.5 ± 27.1 69.9 ± 32.2 81.3 ± 35.5 90 %
E2C 71.3 ± 19.5 83.4 ± 28.6 90.23 ± 47.38 90%

1 RCE 96.5 ± 34.4 112.6 ± 42.2 106.2 ± 50.8 80 %
E2C 138.1 ± 42.5 172.2 ± 58.3 155.2 ± 70.1 65 %

Table 4.4: RCE and E2C Comparison – Robot Arm

4.6 Disentangling Dynamics and Content

Learning disentangled features has various applications in image and video processing
and text analysis and has been studied in different works [62, 98]. Inspired by our obser-
vation about the effectiveness of using VAEs for learning disentangled representations
in Chapter 3 we tackle the following planning problem using the framework of RCE
[11, 9].

67

4.6.1 Problem Statement

Suppose we have different sets of high-dimensional observations from the states of dy-
namical systems where the underlying dynamics of the systems is the same. For now,
let us assume that we only have one dynamical system and there are just two observa-
tion sets from this system from different angles. We make this assumption just for the
sake of simplicity in notations, but it can be easily relaxed. The two observation sets are
denoted by X and Y that belong to the observation spaces X and Y , respectively. We
assume both observation sets are full depictions of all variables in the actual state space
of the system.

Suppose set X consists of triples (xt,ut,xt+1), i.e. observation of the system at time
t, action that is applied to the system at time t, and the next observation after applying
ut to the system, respectively. Therefore, we know how the actions change our observa-
tions in X . We also assume that the observations in this set have Markov property. Set
Y also has some observations of the system from a different point of view. However,
there is no information about the actions and the effect of the actions on our observa-
tion in this set. We denote the observations in this set by yt. Note that xt and yt are
two different observations of the state st. Since X and Y , are observations from one sys-
tem, the underlying dynamics is the same. Suppose that our goal is to do planning and
long-term prediction in Y . Our approach to achieve this goal is to extract the dynamics
information from X and leverage this information to build a model for Y .

4.6.2 Model description

The RCE model is based on introducing a graphical model for the problem that de-
scribes the relation between pairs of observations and their embedded representations.
Using deep variational learning, the lower bound of the conditional distribution of the
observations is maximized.

We build our model up on RCE . However, instead of using only one latent variable,
we assume that there are two independent variables in the latent space. One of these

68

variables is related to the dynamics of the system and the other one is related to the
content of the observation. Therefore we aim to disentangle the dynamics and content
in the latent space. We follow the same framework of JADE introduced in Chapter
3. Such disentanglement allows us to model the dynamics of the observations, even
though the content of them might be very different. Consider the graphical models in
Fig. 5.4. Fig. 4.4a shows the model for X . In this figure, zt and wx are the two latent
variables that we want to represent the dynamics and content information, respectively.
Similar to RCE, we want to have locally-linear dynamics in the latent space, i.e.:

ẑt+1 = Atzt + Btut + ct (4.18)

where At, Bt, and ct are matrices that are learned during training the model. Building
this locally-linear model will allow us to use iLQR method for control. We use z and ẑ

to distinguish between encoding of x and the variable after transition. Fig. 4.4b shows
the model for Y . This set is encoded with two latent variables vt and wy, representing
dynamics and content, respectively. We would like to have a locally-linear dynamics
similar to Eq. 4.18 for v. All of the conditional distribution on these graphical models
are parameterized by neural networks.

The goal in this work can be interpreted as maximizing the likelihood of observa-
tions, while imposing a further constraint that if xt and yt are two high-dimensional
observations of the same state of the dynamical system(s), then we want q(zt|xt) and
q(vt|yt) be close to each other, e.g. have small KL divergence.

Suppose q? = q(zt, z̄t, ẑt+1,wx|xt,xt+1,ut) and q† = q(vt,wy|yt). Based on the graph-
ical model we can consider these factorizations for q? and q†:

q? = qϕ(wx|xt+1)qϕ(ẑt+1|xt+1)qϕ(z̄t|ẑt+1,xt)δ(zt|ẑt+1, z̄t,ut)

q† = qϕ(wy|yt)qϕ(v|yt)
(4.19)

where ϕ and ϕ stand for encoder and transition network parameters, respectively. We

69

𝑥𝑡 𝑥𝑡+1

 𝑧𝑡+1 𝑧𝑡

𝑢𝑡𝑧𝑡

𝑤

(a)

𝑦𝑡

𝑣𝑡

𝑤

(b)

Figure 4.4: Graphical models. The black arrows are generative links and the red dashed
ones are recognition links. The parallel lines show the deterministic links. (a) Graphical
model for set X . z̄t and zt are two samples from p(zt|xt). The neural networks that
parameterize the links with hatch marks are hard tied, i.e. p(zt|xt) = p(z̄t|xt) = q(ẑt|xt)
. (b) Graphical model for Y

also have the following factorization for the generative links in the graphical model:

p(xt+1, zt, z̄t, ẑt+1,wx|xt,ut) = p(z̄t|xt)p(zt|xt)δ(ẑt+1|z̄t, zt,ut)p(xt+1|ẑt+1,wx)p(wx)

(4.20)

Lemma 4.6.1. Let LDDCt be defined as

LDDCRCEt = Eqϕ(ẑt+1|xt+1)
qϕ(w|xt+1)

[
log p(xt+1|ẑt+1,w)

]
− Eqϕ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
+H
(
qϕ(ẑt+1|xt+1)

)
+ Eqϕ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
− KL

(
qϕ(w|xt) ‖ p(w)

)
+Eq†

[
log p(yt|vt,w)

]
− KL

(
qϕ(vt|yt) ‖ p(vt)

)
− KL

(
qϕ(w|yt) ‖ p(w)

)
(4.21)

Subject to the constraints we explicitly impose on q, LDDCt is a lower bound of the conditional

70

Transition Netowork
Encoder
Network

zt ẑt+1
x̃t+1xt

ut

yt ỹt
Decoder
 Network w

w w

Decoder
 Network

Encoder
Network

(a) (b)

ẑt+1 = Atzt + Btut + ct

vt

Figure 4.5: Networks of the model

log-likelihood log p(xt+1|xt,ut) + log p(yt).

Proof. See Appendix A.1.

As we mentioned above, for the observation from the same state we want to mini-
mize the KL divergence between q(zt|xt) and q(vt|yt) . We can easily impose this con-
straint by considering q(zt|xt) as the prior for p(vt), i.e.:

p(vt) = q(zt|xt) (4.22)

Fig. 4.5 shows the high-level depiction of the networks in our model.

4.6.3 Experiment Result

To evaluate the effectiveness of the proposed model, we consider the planar system
domain. Consider an agent in a surrounded area, whose goal is to navigate from a
corner to the opposite one, while avoiding the six obstacles in this area. The system
is observed through a set of 40 × 40 pixel images taken from the top, which specify the
agent’s location in the area. Actions are two-dimensional and specify the direction of the
agent’s movement. Suppose that the difference between the two observation sets from
this system is in the shape of the agent, as shown in Fig. 4.6. We use the same encoder
and decoder for the two observation sets. We used 8000 samples (triples (xt,ut,xt+1))
in the set X and only 2000 samples in set Y .

71

(a) (b) (c)

True state-space

Estimated space using X

Learned space for Y

Figure 4.6: (a) Top: The true state space of the system. Middle: estimated locally-linear
latent space from set X . Bottom: The hidden space learned for set Y . (b): Left: An
initial observation from X on top and its next observations after applying four random
actions Right: Reconstruction of the initial state and prediction of the next observations.
(c): Left: An initial observation from Y on top and its next observations after applying
four random actions Right: Reconstruction of the initial state and prediction of the next
observations

Dataset Reconstruction Loss Prediction Loss Planning Loss Success Rate
with action (X) 3.6 ± 1.7 6.2 ± 2.8 21.4 ± 2.9 100 %

without action (Y) 3.9 ± 2.2 6.3 ± 3.0 22.0 ± 2.4 100 %

Table 4.5: Planar System

Fig. 4.6 shows the true map of the state-space of this system and the maps that are
estimated using the model for the two observation sets. As we can see, the map that
has been discovered using the information in X is very well preserved for the set Y . In
this figure we can also see some predictions of the position of the agent for both sets
given some actions versus the true position of the agent after applying those action.
This shows that the model is successful in learning the dynamics for Y even though we
did not have any information about the dynamics in this set.

72

To evaluate the performance of the model in planning, we provide different sets
of initial and final observations in X and Y , and use the learned models to find the
policy that leads the agent to reach the final observation within T steps. We present the
performance of the model in table 4.5.

4.7 Summary

We proposed a new method to embed the high-dimensional observations of an MDP in
such a way that both the embeddings and locally optimal controllers are robust w.r.t. the
noise in the system’s dynamics. Our RCE model enjoys a clean separation between the
generative graphical model and its recognition model. The RCE’s generative model
explicitly treats the unknown linearization points as random variables, while the recog-
nition model is factorized in reverse direction to take into account the future observation
as well as exploiting determinism in the transition dynamics. Our experimental results
demonstrate that the RCE’s predictive and planning performance are better and signifi-
cantly more robust than that of E2C in all the four benchmarks where E2C performance
has been measured [103].

73

Chapter 5

A Multi-step Action-based Prediction
Method for Autonomous Driving

5.1 Contributions

In autonomous driving, being able to understand, model and predict the evolution of
the surrounding environment is one of the most important and challenging tasks. This
is due to the complexity of the driving environments, dynamic models of different types
of objects and more importantly the complexity of the interaction between the objects.
We propose Prediction by Anticipation, a method for action-conditional environment pre-
diction for self-driving cars where the environment is represented in the form of Occu-
pancy Grid Map (OGM). Our motivation is that accurate modelling and prediction of
the driving environment can efficiently improve path planning and navigation resulting
in safe, comfortable and optimum paths in autonomous driving.

Due to the importance of interactions between the objects in the scene, it is impor-
tant to model and predict the driving environment based on the ego-actions to be able to
predict the effect of our actions on other agents decisions and behaviours. We train our

Parts of this chapter are reprinted from our paper [10], with permission c©[2021] IEEE

74

model in the framework of conditional varitional autoencoders (CVAEs) to maximize
the evidence lower bound (ELBO) of the log-likelihood of a conditional observation
distribution. An extension of our model is also presented that explicitly learns the dif-
ference between consecutive frames and is suitable for dense urban traffic. We evaluate
our model on OGM sequences from NGSIM and Argoverse dataset. The results show
significant improvements of the prediction accuracy using our proposed architectures
over the state-of-the-art.

5.2 Problem statement

In this chapter, we are interested in solving the prediction task for multi-agent systems
with interacting agents. We propose a new probabilistic approach for action-conditional
prediction. The action-conditional prediction task is defined as finding the next obser-
vation from the scene given a sequence of observations, x1:t, and an action for an agent
(ego agent), at, i.e. optimizing p(xt+1|x1:t, at). Our approach is based on the idea that
sequences of data that include heavy interactions come from a probabilistic generative
process wherein some reacting agents move partly in response to the anticipated motion
of some acting agents. In fact we split the observation into two sets of features: ego-
features, xegot , which contains the features related to the ego agent, e.g. it’s position,
and environment-features, xenvt , which contains all other features than the ego-features
including other agents or fixed objects in the scene. The action has an effect on both
of these feature sets. In most of the previous works p(xt+1|x1:t, at) is learned directly.
This means predicting ego- and environment-features simultaneously, which is difficult
due to interactions among the agents. However, the effect on the ego-features is usually
much easier to model and often does not need to be learned. Hence, we can decompose
p(xt+1|x1:t, at) into two steps: learning p(xegot+1|x1:t, at) and then learning p(xenvt+1|x1:t,x

ego
t+1),

i.e. we first learn how the action changes the ego-features and then learn how the envi-
ronment reacts to this change. We can often use domain knowledge to fix p(xegot+1|x1:t, at)

and then we can learn p(xenvt+1|x1:t,x
ego
t+1) from data. Learning p(xenvt+1|x1:t,x

ego
t+1) is much

easier than learning p(xt+1|x1:t, at) since we only have to learn to predict xenvt+1 based on

75

the effect of action at on the ego-features xegot+1. Conditioning on at or xegot+1 is equivalent
from an information theoretic perspective, but conditioning on xegot+1 allows the model to
reason about interactions more easily since the ego effect is already anticipated. Con-
cretely, at each step of training, we apply the motion of an acting agent to the input
observation, i.e. anticipating the acting agent in its next position, and train a conditional
density estimation model [86] to predict where the other agents accordingly should be
in the target observation, i.e. where they should move to partly in reaction to the antici-
pated motion of the acting agent.

In particular we consider the prediction task in the challenging framework of au-
tonomous driving (AD), where there is a large number of agents in the scene and they
have complicated interactions with each other. By thus recovering the latent generative
process, our model is capable of achieving a higher capacity for prediction, i.e. handling
a wider range of actions and driving situations.

To minimize preprocessing of data that can be costly and time-consuming at training
and inference time, we adopt input and target representations in the form of occupancy
grid maps (OGMs). The anticipating can be done through editing the original input
OGM based on motion tracking of the acting vehicle. Working with OGMs also en-
ables us to easily extend our model to predict the difference between the input and target
frames, rather than predict the target frame directly. We show that such difference learn-
ing works very well when the ego vehicle moves slowly, such as in dense urban traffic.
Our contributions in this chapter include:

• A novel modular model for multi-step action-conditional prediction is proposed,
which factorizes historical sequence data into samples drawn according to an un-
derlying action-conditional distribution that covers a wider range of actions (in-
cluding extreme actions) for predictions better than current state-of-the-art mod-
els. The method requires no labeling and is scalable with data.

• An extension of the model for difference learning that outperforms the state-of-
the-art prediction models in dense traffic.

• Experiment results on two prominent AD datasets (NGSIM I-80 and Argoverse)

76

with different interactions among vehicles, i.e. highway and urban area, demon-
strating effective coverage of a wide variety of driving situations.

5.3 Related Work

A large body of literature on prediction tasks in AD is dedicated to prediction in low-
dimensional space, i.e. position of the cars in the xy coordinates [56, 27, 60, 17, 24, 12,
106, 83, 42, 74, 80, 81, 18, 107, 59]. In most of these works the prediction task is done
by finding the most probable paths for the objects in the environment using generative
models. However, all of these methods need object detection and tracking (at least at
training time), which is computationally expensive and requires labeled data. More-
over, any error in the object detection and tracking can affect the whole system and
result in catastrophic failure.

Unsupervised prediction of OGMs [29, 97] has also been studied recently. These
methods do not model the effect of action in prediction and thus fail to capture the in-
teractions. In [63] and its extension [28] recurrent neural network (RNN)-based models
were employed for OGM prediction. But, both models need data labeling and object
detection. Authors in [65] proposed a model for multi-step prediction of OGMs that
produces state-of-the-art results on the KITTI dataset[31]. By removing the ego-motion
from the whole sequence, all the frames are mapped to a reference frame in which the
ego-vehicle is frozen, i.e. the global location of the car is fixed. This way, only moving
objects in the scene change their locations. There are two major differences between this
work and ours. First of all, their predictions are not action-conditional. Secondly, since
we compensate the ego-motion step-by-step the global location of the ego car is not fixed.
Therefore, in contrast to [65], our model can predict for much longer horizons.

In [70, 71, 36] OGM prediction is used for path planning. However, in [70, 71] only
one object type (human) is considered. [36] relies on object detection and the OGMs
are updated using object models. Model-predictive policy with uncertainty regulariza-
tion (MPUR) [39], is a state-of-the-art prediction and planning approach in this area.

77

Although the model is successful in predicting the effect of existing actions in the train-
ing data, in the case of extreme actions it fails to predict a valid OGM. Alternatively,
in [12] synthetic extreme actions are added to the training data in order to handle rare
scenarios. However, since this is not a theoretically principled way for generalization,
the performance of the algorithm is still limited by actions directly observed in the data.
Moreover, addition of random actions not grounded in real interaction contexts can re-
sult in invalid scenarios that do not happen in real life, as the other cars do not react
to the augmented actions. Finally, the method is an object tracking method with the
aforementioned problems.

5.4 Prediction by Anticipation

The prediction task is described as follows. Given a set of t observations from the scene,
denoted by x1:t, and a set of k actions denoted by at:t+k−1, predict the future k obser-
vations, xt+1:t+k. We try to solve this task by maximizing the conditional likelihood
p(xt+1:t+k|x1:t, at:t+k−1). The observations include (a) A bird’s-eye view (BEV) image,
denoted by it for time step t, in the form of an OGM with fixed position, e.g. in the
middle of the image, for the ego-vehicle. (b) Position and velocity of the ego-vehicle
in each direction, which are denoted by pt and vt, respectively, and are referred to as
measurements. These two parts of the observation are both sensory data from the vehi-
cle. However, we focus on predicting the images, as the position and velocity can be
deterministically computed given the actions, as described in the next sections.

5.4.1 Base model

Let’s assume xt = {xegot ,xenvt }, where xegot includes the features related to the ego-agent
(ego-vehicle), i.e. pt, vt, and parts of the OGM related to the ego-vehicle, denoted by iegot .
Therefore xegot = {pt,vt, i

ego
t }. The environment-features, xenvt , include all other features

in the observation than the ego-features. In our application this includes parts of the

78

OGM that represent other objects in the scene, e.g. other agents, maps, static objects, etc.
Therefore, xenvt = {ienvt }. The actions of the ego-vehicle (ego-actions) affect both ego- and
environment-features. The first-order effect of the action is on the ego-features, which
can be determined using our prior knowledge about the dynamics of the ego-vehicle.
The second-order effect is on the environment-feature that should be learned from data.
Thus, to maximize the conditional log-likehihood of log p(xt+1:t+k|x1:t, at:t+k−1), we first
split it into k autoregressive steps where at each time step the previous prediction is
fed-back to the model. Then for each time step we factorize the log-likelihood into two
terms:

log p(xt+1|x1:t, at) = log p(xegot+1|xt, at) + log p(xenvt+1|x1:t,x
ego
t+1). (5.1)

Note that to determine the next ego-features, we only need the current observation and
action. For the second term, we assume p(xenvt+1|x1:t,x

ego
t+1, at) = p(xenvt+1|x1:t,x

ego
t+1). This as-

sumption is based on the fact that the environment does not observe at directly. In other
words, the other agents only observe the effect of the ego-action and not the actual action
itself. Also, it is worth mentioning that learning p(xenvt+1|x1:t,x

ego
t+1) does not mean that we

assume causality between xenvt+1 and xegot+1. We simply learn a distribution where there is
a non-causal correlation between xenvt+1 and xegot+1. The idea is that other agents anticipate
xegot+1 and act accordingly. The conditional distribution p(xenvt+1|x1:t,x

ego
t+1) models the noise

in this anticipation. But since there is a strong correlation between xenvt+1 and xegot+1, then
conditioning on xegot+1 will be very informative.

To implement this idea, we design a modular model that consists of rule-based and
learning-based modules. The rule-based modules implement the deterministic parts of
Eq. 5.1, which are based on our prior knowledge and geometry of the problem. The
learning-based module, which we call the prediction module, performs the prediction
task by learning the interactions among the agents.

79

⌧t ⇥ |vt| ⇥�t

�pt = vt�t

pt+1 = pt + �pt

|vt+1| = ↵t�t + |vt|
�✓t = arctan(⌧t|vt|�t)

Figure 5.1: Computing the effect of actions on the future position, velocity and change in the
direction of the car.

Rule-based modules

These modules are responsible for factorization according to the presumed underlying
generative process. Both parts of the observations are changed to account for the effect
of the action. This is done using deterministic functions for measurements and deter-
ministic transformations (rotation and translation) for the OGMs.

Measurements estimator module: Given the actions and measurements at each time
step, this module computes the next measurements according to the update rule shown
in Fig. 5.1. Actions are two-dimensional, which include acceleration, α, and rotation of
the steering wheel, τ , at = [αt, τt]. This module also provides elements of translation
and rotation matrices for the image processing modules:

pt+1,vt+1,∆pt,∆θt = fm(pt,vt, at). (5.2)

Input OGM transformation modules (IOTs): In order to apply the first-order effect of
the action in the OGM, we change the position of the ego-vehicle in the current OGM,
it. This transformation takes the ego-vehicle to its anticipated position at time t+ 1 based
on the action. We denote the module that performs this transformation by IOT1, and

80

the output is denoted by jegot+1:

jegot+1 = IOT1(it,∆pt,∆θt). (5.3)

Moreover, at each time step of training we preprocess the target OGM, it+1, to account
for the second-order effect of the action. That is, we transform the whole target OGM in
a way that the ego-vehicle has the same position as in jegot+1 . We denote the module for
this transformation and its output by IOT2 and jenvt+1, accordingly.

jenvt+1 = IOT2(it+1,∆pt,∆θt). (5.4)

Fig. 5.2 shows the output of these two modules for a sequence of current and target
OGMs. Note that after these two transformations, only the position of the moving ob-
jects will be different in jegot+1 and jenvt+1, while map information and structure of the fixed
objects in the OGM, e.g. buildings, tree, parked cars, etc., will be the same. Both jegot+1

and jenvt+1 are fed to the prediction module during training.

We should clarify here that jegot+1 and jenvt+1 notations are used to emphasize the change
after applying the motion of the ego-vehicle. More generally, we will use j to denote
OGMs resulting from deterministic transformations and i to denote the ego-centred
OGMs. In fact, our original goal of optimizing for the stochastic mapping p(ienvt+1|o1:t, i

ego
t+1)

Real state of the
world

Anticipation

State of the world and action of
the ego vehicle at time t

Anticipated position of the ego
vehicle according to the action

Preprocessed target OGM, which
shows how moving objects in

the scene change their position

(Output of IOT1)

(Output of IOT2)

Figure 5.2: Applying the effect of action on the OGMs: Left: OGM it and corresponding action
at time t. Middle: the output of IOT1, jegot+1, after applying transformation on the ego-features of
it, . Right: the output of IOT2, jenvt+1, after applying transformation on it+1.

81

Action-conditional prediction model

Fed-back to the model for the next step prediction

Measurements
estimator

IOT2

IOT1 OOTPrediction module

Figure 5.3: The prediction model with all of its components. The measurement estimation mod-
ule updates the position and velocity of the ego-vehicle and provides transformation parameters
for OGM transformer modules. IOT1 and IOT2 provide information about the first and second-
order effect of action on the OGM, respectively. Prediction module is trained to minimize the
cost in Eq. 5.6.

is equivalent to optimizing for p(jenvt+1|o1:t, j
ego
t+1), up to some deterministic transforma-

tions.

Output OGM transformation module (OOT): This module takes the predicted frame
and transforms the whole frame using ∆θt, and ∆pt such that the ego-vehicle goes back
to its fixed position in i OGMs and environment-features change accordingly. The out-
put should ideally be it+1, which is fed back to the model for the next step prediction.
This module is necessary to close the loop for multi-step prediction.

Learning-based module: Prediction module

The prediction module is the core of our model that predicts how the environment par-
tially reacts to the ego-action, i.e. learns p(jenvt+1|x1:t, j

ego
t+1). Using the IOT1 and IOT2 mod-

ules the geometry of the target frame, jenvt+1, remains the same as the input frame, jegot+1,
at each time step, regardless of the ego-action. Therefore p(jenvt+1|x1:t, j

ego
t+1) is a smoother

function than the original objective function, p(xt+1|x1:t, at). Thus, p(jenvt+1|x1:t, j
ego
t+1) is in-

82

Figure 5.4: Graphical model at time t: Left: Generative links, p(.). Right: Variational links, q(.).
Observable variables are gray.

tuitively easier to learn. Despite this simplification, the two objectives have the same
optimum point, i.e. maximizing one leads to maximizing the other. The first term in Eq.
5.1 is deterministic and can be removed from the optimization. Also, jenvt+1 is uniquely
determined by the action at (given it+1). Consequently, we can re-write the second term
of Eq. 5.1 as log p(jenvt+1|x1:t, j

ego
t+1) .

Bottleneck conditional density estimation: We maximize the conditional log-likelihood
log p(jenvt+1|x1:t, j

ego
t+1) in the framework of variational Bayes. We build our model upon a

Bottleneck Conditional Density Estimation (BCDE) [86] model, a special variant of the
conditional variational autoencoders (CVAEs) [89]. The latent code in BCDE acts as
bottleneck of information and not just a source of randomness. The prior on the latent
variable in BCDE is conditioned on the input. Such conditioning makes the model less
prone to overfitting as it allows learning the distribution of the latent code conditioned
on input, which is especially helpful for prediction with large horizon. We consider
the graphical model in Fig. 5.4 at each time step for this prediction task. According to
our definition of the approximating variational distribution in the graphical model, and
also considering zt as an information bottleneck between the input, x1:t and jegot+1, and
the target, jenvt+1, the ELBO to be maximized will have the following form:

log p(jenvt+1|x1:t, j
ego
t+1) ≥ Eq∗(zt)[log p(jenvt+1|zt)]− KL

(
q∗(zt)||p(zt|x1:t, j

ego
t+1)
)
, (5.5)

where q∗(zt) = q(zt|x1:t, j
ego
t+1, j

env
t+1). We implement each of the conditional probability

distributions in Eq. 5.5 using a neural network and denote the parameters of pψ(.) and

83

OGM
transformations

Shared encoders between and

Unshared encoders

Decoder network
Motion encoder

Deterministic encoder

Combine
codes

Figure 5.5: The prediction module at the training time. The measurements are encoded using
fully-connected networks, while we use convolutional neural networks to encode and decode
OGMs.

qϕ(.) by ψ and ϕ, respectively.

Reconstruction loss and structural similarity: The first term in the ELBO in Eq. 5.5, can
be interpreted as a reconstruction loss in the pixel space that measures the difference be-
tween the target OGM, jenvt+1, and predicted OGM, ĵenvt+1, and we denote it by D(jenvt+1, ĵ

env
t+1).

Depending on the type of values in the OGM being continuous or binary we consider
Gaussian (with identity covariance matrix) or Bernoulli distributions for the output and
replace D(jenvt+1, ĵ

env
t+1) with the mean squared error (MSE) or the cross entropy (CE), re-

spectively. We also add an auxiliary term to our reconstruction loss that computes the
Structural Similarity Index (SSIM) [102] loss between prediction and target. The ex-
periments show the effectiveness of adding this term in improving the quality of the
predicted frames. The weight of the SSIM term, λ, is set using the validation set.

Code splitting and sampling from prior: The second term, is a KL divergence regular-
ization that minimizes the distance between the output distributions of pψ(.) and qϕ(.)

encoders. Since the observations are highly dynamic with many objects in the scene,
merely minimizing the KL divergence does not provide a proper training for the pψ(.)

84

encoder. Therefore we employ two ideas to better match these two distributions.

1) We split the latent code zt into two parts with two different sets of encoders. For
the first part we do not use the target frame as the input of the qϕ(.) encoder and there-
fore its parameters can be shared with the pψ(.) encoder, which guarantees the min-
imization of KL divergence. We call this part, shared code and since it only encodes
the previous and current observations we assume it is partly deterministic. For the
second part, called unshared code, we assume Gaussian distributions for both the con-
ditional prior pψ(zt|x1:t, j

ego
t+1) and the variational posterior qϕ(zt|x1:t, j

ego
t+1, j

env
t+1) and mini-

mize their KL divergence. This part of zt encodes information about the target, jenvt+1, and
its stochasticity represents the uncertainty about the future. By combining this split-
ting idea with the BCDE model we introduce another important difference with the
vanilla CVAE model, i.e. instead of concatenating the stochastic code with our high-
dimensional input, we concatenate it with an encoded version of the input that keeps
only useful information. This makes the structure of the decoder simpler with far fewer
parameters, and therefore easier to train.

2) To make sure that the encoder of pψ(.) for the unshared code is trained properly,
we randomly switch between the stochastic samples of the pψ(.) and qϕ(.) encoders, i.e.
η% of the time the samples are drawn from pψ(zt|x1:t, j

ego
t+1) instead of qϕ(zt|x1:t, j

ego
t+1, j

env
t+1).

This way the pψ(.) encoder is trained by backpropagating both errors of the KL term and
the reconstruction term. In our experiments we set η = 10. The final training objective
to be minimized is:

Lt =D(jenvt+1, ĵ
env
t+1)+λ

(
1− SSIM(jenvt+1, ĵ

env
t+1)
)︸ ︷︷ ︸

Lrec.
t

+ KL
(
qϕ(zt|x1:t, j

ego
t+1, j

env
t+1)||pψ(zt|x1:t, j

ego
t+1)
)︸ ︷︷ ︸

LKL
t

. (5.6)

For a multi-step prediction with horizon k a summation overLt is minimized: min
ψ,ϕ

∑k−1
j=0 Lt+j .

85

5.4.2 Difference Learning (DL)

Prediction module

Figure 5.6: Difference learning module

After the OGM transformations, the difference between jegot+1 and jenvt+1 is only in the
position of the moving objects. Therefore we also propose a variant of our model that
explicitly learns the difference between the two OGMs, denoted by jdiff

t+1 = jenvt+1 − jegot+1.
In fact, jdiff

t+1 represents the motion of other agents in the pixel space. Fig. 5.6 shows the
difference learning module. One issue with this model is that, for incorrect predictions
during training, adding ĵdiff

t+1 to the input frame jegot+1 causes ĵenvt+1 to go out of the range
of the input. This is especially problematic for multi-step prediction when this error
is accumulated. A similar structure has been suggested in [65] for predicting binary
OGMs, where a classifier layer is used after the summation to take the result within
the input range. Although this can potentially resolve the issue, adding such classifier
makes the learning process very slow. This is because the classifier ideally acts as a
(sigmoid-shaped) clipper and the derivative of the clipper for the out of range values,
caused by the actual error, is very small. In our model, we do not use these additional
layers. The first term of our reconstruction loss remains the same as before and for the
SSIM part we simply clip the prediction ĵenvt+1 and then compute the SSIM:

Lrec.
t = D(jenvt+1, ĵ

env
t+1) + λ

(
1− SSIM(jenvt+1, clip(̂jenvt+1))

)
. (5.7)

This enables us to backpropagate the incorrect difference predictions through theD(jenvt+1, ĵ
env
t+1)

term and also to make use of the SSIM term. For future time-steps the clipped output is
fed back to the network.

Motion Encoding: To further enhance the predictive power of our model we capture
the past motion of other agents in the scene by encoding the difference between consec-
utive OGMs in the input sequence. In fact, we built a sequence of jdiff

1:t from the input

86

observations and encode it as a part of the shared code. While i1:t contain information
about motion of other agents relative to the ego-vehicle, jdiff

1:t represent their absolute
motion and therefore encoding jdiff

1:t allows reasoning about higher level motion features
such as intention of other agents. We model these features by a Gaussian distribution
N (µ(jdiff

1:t), εI), where µ(jdiff
1:t) is a neural network and ε is a constant (ε = 0.5 in the exper-

iments). Motion encoding is used in both the base model and the DL variant.

Fig. 5.5 provides a high level architecture of the model. The implementation details
of the prediction module are provided in the supplementary material.

5.5 Experiments

In this section, we evaluate the performance of our model, i.e. prediction by anticipation
and its difference learning extension, referred to as PA and PA-DL, respectively.

Baselines: The proposed model is an OGM-in OGM-out model and therefore we com-
pare its performance with two similar prediction models, which are, to the best of our
knowledge, the state-of-the-art for this unsupervised prediction task:

• Forward Model in Model-Predictive Policy Learning with Uncertainty Regu-
larization (FM-MPUR) [39]: FM-MPUR is a CVAE-based model, which aims to
directly maximize the log-likelihood log p(xt+1:t+k|x1:t, at:t+k−1). Latent code of the
FM-MPUR model has an unconditioned prior. Therefore, latent samples are inde-
pendent of the input frames. This can potentially hurt the prediction accuracy for
longer horizons.

• RNN-based model with Difference Learning component (RNN-Diff) [65]: RNN-
Diff is an encoder-decoder structure that uses an RNN in the code space. Encoding
and decoding are done using convolutional layers. The main idea in RNN-Diff is
removing the ego-actions for a whole sequence of frames as if the ego-vehicle does
not move and the scene is observed by a fixed observer for the whole sequence.
Therefore they can just focus on predicting the movement of dynamic objects in

87

a fixed scene by learning the difference between consecutive frames. We use the
best architecture of their model, named RNN-Diff2.1, for comparison.

FM-MPUR takes 20 frames as its input. However, we found 10 input frames to be
as rich as 20 in terms of information about the past, i.e. the Markov property of the
sequence is preserved by 10 frames. Therefore a sum over the conditional log-likelihood
can result in a log-likelihood of the whole training set. The RNN-Diff2.1 model also uses
10 input frames.

Metrics: For real-valued OGMs we report MSE. For binary OGMs we assign class 1
(positive) to occupied pixel and class 0 (negative) to free pixels and report the results
in terms of classification scores, i.e. true positive (TP) and true negative (TN). This enable
us to distinguish between the accuracy of predicting occupied and free pixels. TP is
the more important metric for safe driving as it shows how well a model predicts the
obstacles in the environment. We also report the results in terms of average log-likelihood
(ALL). In fact, we use kernel density estimation (KDE) by approximating the pdf of the
training data using 10K training samples and then evaluating the approximated pdf on
the predicted frames of the test sequences with different prediction horizons. We use
Gaussian kernel with σ = 0.1.

5.5.1 Prediction under different driving situations

We ran our experiments on two complimentary datasets, one high-speed highway traf-
fic and the other low-speed dense urban traffic. These two datasets cover a large set of
real-life driving scenarios.

NGSIM I-80 dataset: The Next Generation Simulation program’s Interstate 80 (NGSIM
I-80) [38] dataset consists of 3 batches of 15-minute of recordings from traffic cameras
mounted over a stretch of a highway in the US. Driving behaviours are complex with
complicated interactions between vehicles moving at high-speed. This makes the future
state difficult to predict. We follow the same preprocessing proposed in [39] to make the
datasets. The images are real-valued RGB with size 117 × 24. The ego-vehicle is in the

88

Ta
rg

et
FM

-M
P

U
R

PA
-D

if
f.

PA

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1s 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1s

Figure 5.7: Predictions of 10 frames (1 sec) by different models.

center of the blue channel. Other (social) vehicles are in the green channel, which can
also be interpreted as the OGM. The red channel has the map information, e.g. lanes.

We train each model using two batches of the 15-minute recording and test it on the
third batch and repeat this process three times to cover all combinations. For both PA
and PA-DL, we put λ = 0.05 in the reconstruction cost. Results are shown in Tables 5.1
and 5.5. Since the speed of the ego-vehicle is high in this dataset, removing the ego-
motion for the whole sequence to train the RNN-Diff2.1, significantly reduces the size
of meaningful pixels in the input and target frames and make them practically unusable
for training a multi-step model. Therefore the reported results are from a model trained
for single-step prediction. This is why its performance dramatically drops for larger
values of k. As we can see, PA and PA-DL outperform FM-MPUR. Due to high-speed
driving of agents in this dataset, their positions have dramatic changes from one frame
to the next one, in many cases. Consequently, PA-DL performs worse than the base
model. Fig. 5.7 shows a sequence of predictions for different models to allow us to see
PA, PA-DL, and FM-MPUR performances qualitatively.

Argoverse dataset: For the urban area driving, the OGM sequences are obtained
from the Argoverse raw dataset [20]. The dataset contains many different actions and
maneuvers, e.g. stops and turns, in slow pace. The LiDAR point-clouds, collected at
10Hz, are converted to BEV 256× 256 binary OGMs using ground removal proposed in

89

Car ahead of ego-vehicle getting farther
(driving in the same direction as the
ego-vehicle but with higher speed)

Car turning right at the intersection

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s

Ta
rg

et

se
q

u
en

ce

Se
q

u
en

ce
 o

f
P

re
d

ic
te

d

d
if

fe
re

n
ce

s

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s

OIT

P
re

d
ic

te
d

se
q

u
en

ce
b

y
PA

-D
if

f.

Figure 5.8: Left: OGM prediction of PA-DL for the Argoverse dataset. Top row shows the
target sequence. Middle row shows the sequence of predicted differences, learned by the model,
where red areas (negative values) are erased from the frame and green areas (positive values)
are added to build the next frame. Bottom row shows the final predicted frame. We demonstrate
the mechanism to build the predictions for the first time step. Right: Zoomed-in first predicted
difference. Difference learning allows reasoning about the motion of other agents.

[64]. We compare the performance of the models in terms of TP/TN and ALL in Tables
5.1 and 5.5, respectively. Argoverse dataset has more complicated OGM structures and,
unlike NGSIM I-80, the ego-motion is usually small and consecutive frames have slight
differences. Therefore, PA-DL outperforms PA, and both PA and PA-DL outperform
FM-MPUR significantly.

PA-DL and RNN-Diff2.1 perform closely for short-horizon predictions. Again, since
in RNN-Diff2.1 the environment is observed from a fixed point, when k is large the
dynamic objects eventually leave the scene and the predictions deviate from the actual
ground truth. In PA-DL, the difference learning is done step-by-step. As we can see, the
performance gap between RNN-Diff2.1 and PA-DL enlarges as k grows. Fig. 5.8 shows
a sample sequence of the Argoverse dataset as well as the outputs of the PA-DL model.

The results of Tables 5.1 and 5.5 show that the proposed models outperform the two
baselines with a significant margin. Moreover, each of the baselines fails in one of the
two datasets, while PA and PA-DL perform the prediction task successfully for both
datsets, i.e. both driving situations.

90

Dataset→ NGSIM I-80

Method MSE
k = 1 k = 5 k = 10 k = 20

FM-MPUR 3.4 ± 0.1 4.7 ± 0.2 5.2 ± 0.2 7.8 ± 0.1
RNN-Diff2.1 4.2 ± 0.2 14.5 ± 0.3 36.6 ± 1.1 80.2 ± 2.0
PA 2.9 ± 0.2 4.1 ± 0.1 4.7 ± 0.1 6.2 ± 0.2
PA-DL 3.3 ± 0.1 4.6 ± 0.1 5.1 ± 0.2 6.7 ± 0.3
Dataset→ Argoverse

Method TP TN TP TN TP TN TP TN
k = 1 k = 5 k = 10 k = 20

FM-MPUR 96.24 99.68 88.44 97.12 74.62 94.21 65.60 85.31
RNN-Diff2.1 99.21 99.91 93.19 99.85 87.23 99.27 80.55 93.92
PA 99.18 99.89 94.12 99.76 90.14 99.48 83.17 96.87
PA-DL 99.40 99.91 97.13 99.83 92.55 99.71 87.98 98.02

Table 5.1: Comparison of different models in terms of MSE for NGSIM I-80 and TP/TN for
Argoverse. For this table predictions for all methods except RNN-Diff2.1 are generated using
the mean value for the latent code.

Dataset→ NGSIM I-80
Method k = 1 k = 5 k = 10 k = 20

FM-MPUR 212.6 ± 5.3 207.1 ± 6.9 201.4 ± 5.1 187.3 ± 7.5
RNN-Diff2.1 194.2 ± 7.1 141.3 ± 3.6 71.1 ± 3.4 26.6 ± 1.1
PA 236.9 ± 2.7 232.66 ± 3.9 225.4 ± 2.4 211.2 ± 5.2
PA-DL 221.7 ± 1.7 217.5 ± 3.1 210.2 ± 4.8 202.9 ± 5.1
Dataset→ Argoverse
Method k = 1 k = 5 k = 10 k = 20

FM-MPUR 624.3 ± 8.1 609.5 ± 5.6 538.4 ± 6.2 461.7 ± 4.5
RNN-Diff2.1 656.2 ± 2.9 631.0 ± 3.0 603.1 ± 5.6 545.6 ± 5.8
PA 661.1 ± 6.7 657.1 ± 7.9 635.2 ± 5.3 590.7 ± 4.2
PA-DL 674.6 ± 2.2 660.2 ± 2.2 642.2 ± 3.9 603.4 ± 3.7

Table 5.2: Comparison of different models in terms of ALL.

5.5.2 Prediction for rare actions

In this section we study the performance of the PA and PA-DL algorithms in the pres-
ence of rare actions and investigate the effectiveness of employing prior knowledge in
providing robustness against the actions that are rare in the training data. Specifically
we consider the NGSIM I-80 dataset.

91

Method ALL
k = 1 k = 5 k = 10 k = 20

FM-MPUR 197.3 ± 6.2 175.7 ± 5.1 112.1 ± 7.7 76.4 ± 4.1
PA 226.1± 2.3 218.6± 4.1 202.2± 3.8 180.4± 6.6
PA-DL 213.4 ± 6.8 200.4 ± 4.9 192.9 ± 3.5 174.8 ± 7.9

Table 5.3: Comparison of predictions of PA, PA-DL, and FM-MPUR using rare actions.

We use the trained models with each of the batches of 15-minute recordings and
apply actions that are rarely seen in the training set but are still in the maneuverability
range of vehicles. We use the distributions shown in Fig. 5.9 to sample these actions
and apply them to randomly selected sequences of the test set and predict for different
prediction horizons. For comparison, we use the FM-MPUR algorithm. Since there is
no ground truth, we only report the ALL results.

Table 5.6 summarizes the evaluation results. It shows that our models significantly
outperform FM-MPUR for this task, especially for longer prediction horizons. This sug-
gests that learning environment-features based on the anticipated ego-features makes
the prediction task easier to learn for our model, which supports our initial intuition.
In fact, by applying the extreme actions, the OGMs change dramatically from one time
step to the next one. However, we can compensate this change by applying the an-
ticipated modifications to the target OGM. Fig. 5.10 shows the result of applying rare
actions to the same input sequence in Fig. 5.7. We apply a = [−25, 0] for 20 consecutive
steps, which can be identified as a very low-probable action sequence according to the
distributions in Fig. 5.9. This is equivalent to a hard brake in the middle of the road.
As we can see our model can predict almost perfectly, while the FM-MPUR model fails
after a few predictions. Compared to the predictions that correspond to the original ac-
tions in Fig. 5.7, location of the nearby social vehicles show that the model has learned
the dynamics of the traffic: as the ego-vehicle brakes hard, other vehicles continue to
move normally except for the one behind it, which is forced to slow down significantly.

92

RotationAcceleration

D
en

si
ty

D
en

si
ty

1e-2

Figure 5.9: Distribution of actions.

FM
-M

P
U

R
PA

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s 1.1s 1.2s 1.3s 1.4s 1.5s 1.6s 1.7s 1.8s 1.9s 2s

Figure 5.10: Effect of constantly applying rare actions on the prediction of PA and FM-MPUR
models.

5.5.3 Ablation study

There are three main factors contributing to the better performance of our model com-
pared to the baselines: 1) Employing prior knowledge using rule-based modules to set
up the anticipation-interaction training. 2) Employing the bottleneck model that condi-
tions the prior of the latent code on input. 3) Encoding absolute motion of other agents.
We conduct an ablative study on each of these factors for both PA and PA-DL models
and provide the results in Table 5.4 based on MSE and TP/TN . Comparing the results of
this table with Table 5.1, we can see that while all factors are contributing, the rule-based

93

modules contribute more. Since the difference learning is a byproduct of our main idea
of, removing the rule-based modules degrades the performance of PA-DL significantly.
Also motion encoding plays a slightly more important role than the BCDE (conditioned
prior) model. The effect of using conditioned prior becomes more apparent for larger
values of k.

Dataset→ NGSIM I-80

Method MSE
k = 1 k = 5 k = 10 k = 20

PA (no RBM) 3.2 ± 0.2 4.5 ± 0.2 5.0 ± 0.1 7.2 ± 0.4
PA (no BCDE) 3.1 ± 0.3 4.2 ± 0.4 4.7 ± 0.2 6.9 ± 0.3
PA (no ME) 3.1 ± 0.2 4.3 ± 0.4 4.8 ± 0.3 6.7 ± 0.2
PA-DL (no RBM) 4.1 ± 0.4 6.9 ± 0.3 7.3 ± 0.1 10.8 ± 0.2
PA-DL (no BCDE) 3.4 ± 0.2 4.7 ± 0.1 5.6 ± 0.2 8.4 ± 0.2
PA-DL (no ME) 3.6 ± 0.2 4.7 ± 0.1 5.4 ± 0.2 8.1 ± 0.3
Dataset→ Argoverse

Method TP TN TP TN TP TN TP TN
k = 1 k = 5 k = 10 k = 20

PA (no RBM) 97.03 99.74 90.15 97.98 80.12 95.23 72.12 88.63
PA (no BCDE) 99.01 99.84 93.20 99.64 88.18 99.22 80.14 92.20
PA (no ME) 98.65 99.75 92.51 98.50 86.19 98.98 81.35 92.71
PA-DL (no RBM) 95.51 99.83 91.94 97.72 81.25 95.74 70.55 86.30
PA-DL (no BCDE) 99.20 99.88 96.95 99.70 90.62 99.51 83.24 91.95
PA-DL (no ME) 99.05 99.80 96.54 99.71 91.14 99.59 84.64 94.34

Table 5.4: Results of ablative study on the contributing factors to the performance of our mod-
els. no RBM: a model without rule-based modules. no BCDE: a CVAE-based model with uncon-
ditioned prior for the latent code. no ME: a module without motion encoding.

5.5.4 SSIM term and ablation

The SSIM term helps to generate more clear images. Using the validation set the optimal
weights for this term, denoted by λ∗, are λ∗ = 0.05 for the NGSIM I-80 dataset and
λ∗ = 0.1 for the Argoverse dataset. This holds for both PA and PA-DL models.

The SSIM loss is an auxiliary term in our loss function that does not necessary appear
in ELBO. Therefore, we present an ablation study on this term for each of the datasets
and report the result in terms of MSE and TP/TN for the case we don’t use SSIM in

94

Dataset→ NGSIM I-80
Method k = 1 k = 5 k = 10 k = 20

PA (no RBM) 219.4 ± 4.8 214.5 ± 5.4 207.0 ± 6.6 196.7 ± 7.3
PA (no BCDE) 232.5 ± 5.5 228.4 ± 4.9 218.9 ± 6.2 200.1 ± 6.0
PA (no ME) 230.4 ± 4.5 224.3 ± 6.9 217.6± 8.0 203.9 ± 5.2
PA-DL (no RBM) 210.5 ± 3.6 205.8 ± 5.8 196.3 ± 6.8 180.5 ± 7.1
PA-DL (no BCDE) 218.5 ± 3.1 214.2 ± 5.1 204.6 ± 6.6 193.4 ± 6.4
PA-DL (no ME) 218.2 ± 5.0 211.5 ± 7.2 205.8 ± 4.2 195.3 ± 7.5
Dataset→ Argoverse
Method k = 1 k = 5 k = 10 k = 20

PA (no RBM) 632.7 ± 9.2 614.5 ± 4.7 589.9 ± 7.2 535.9 ± 3.9
PA (no BCDE) 657.9 ± 4.5 650.4 ± 5.6 619.8 ± 6.9 573.6 ± 7.0
PA (no ME) 651.2 ± 3.4 636.2 ± 7.2 608.3 ± 3.2 555.1 ± 6.7
PA-DL (no RBM) 645.6 ± 6.2 623.3 ± 5.2 601.4 ± 6.5 557.2 ± 4.8
PA-DL (no BCDE) 668.2 ± 6.1 653.2 ± 4.4 633.1 ± 7.4 585.4 ± 7.8
PA-DL (no ME) 661.2 ± 5.5 641.8 ± 7.6 620.7 ± 5.4 577.1 ± 5.0

Table 5.5: Ablative study in terms of ALL for regular actions.

Method ALL
k = 1 k = 5 k = 10 k = 20

PA (no RBM) 203.5 ± 4.5 182.9 ± 6.3 134.7 ± 3.4 99.7 ± 6.2
PA (no BCDE) 221.2 ± 6.2 211.6 ± 7.5 190.9 ± 5.0 161.2 ± 7.3
PA (no ME) 219.7 ± 6.2 205.2 ± 6.8 188.2 ± 7.2 163.8 ± 9.2
PA-DL (no RBM) 198.6 ± 5.4 172.4 ± 6.8 125.5 ± 6.2 82.3 ± 4.4
PA-DL (no BCDE) 208.9 ± 3.9 194.6 ± 5.6 178.5 ± 4.9 142.5 ± 6.8
PA-DL (no ME) 209.5 ± 4.3 191.5 ± 5.8 180.6 ± 5.0 149.8 ± 6.9

Table 5.6: Ablative study in terms of ALL for low-probable actions in NGSIM I-80 dataset.

the loss function. A comparison between λ = 0, i.e. not using the SSIM term, and λ∗ is
presented in Table 5.7 .

As we can see in both cases, adding the the SSIM term is effective, especially for
larger values of k. This is due to the fact that the error of the prediction is accumulative.

It is worth mentioning that the effect of using a conditioned prior for the latent
(BCDE model) is more significant for low-probable actions, as the model with condi-
tioned code has access to its previous predictions when estimating the parameter of the
latent distribution.

95

Dataset→ NGSIM I-80

Method MSE
k = 1 k = 5 k = 10 k = 20

PA (λ∗) 2.9 ± 0.2 4.1 ± 0.3 4.7 ± 0.3 6.2 ± 0.6
PA (λ = 0) 2.9 ± 0.3 4.0 ± 0.3 4.9 ± 0.2 6.5 ± 0.4
PA-DL (λ∗) 3.3 ± 0.2 4.6 ± 0.3 5.1 ± 0.4 6.7 ± 0.6
PA-DL (λ = 0) 3.4 ± 0.2 4.6 ± 0.2 5.2 ± 0.4 6.9 ± 0.4
Dataset→ Argoverse

Method TP TN TP TN TP TN TP TN
k = 1 k = 5 k = 10 k = 20

PA (λ∗) 99.18 99.89 94.12 99.76 90.14 99.48 83.17 96.87
PA (λ = 0) 99.09 99.88 94.03 99.64 87.56 98.19 82.25 94.03
PA-DL (λ∗) 99.40 99.91 97.13 99.83 92.55 99.71 87.98 98.02
PA-DL (λ = 0) 99.04 99.84 96.35 99.51 90.99 99.47 85.15 96.13

Table 5.7: Effect of the SSIM term in terms of MSE for NGSIM I-80 and TP/TN for Argoverse.

5.6 Summary

We proposed that an observed interaction sequence can be explained by an underlying
generative process wherein some agents act partly in response to the anticipated action
of other agents. Based on this view, we factorized the interaction sequence into antic-
ipated action and anticipated partial reaction, thereby setting up an action-conditional
distribution. We designed a bottleneck conditional density estimation model to learn
the distribution. In comparison to the baselines, our model achieves a higher capacity
for prediction: it reaches higher accuracy, it handles rare actions much better, it is able to
perform well under different driving situations, including high-speed highway driving
and complicated urban navigation. While our experiments are limited to vehicle-vehicle
interaction, insofar as the understanding generative process is pertinent, our method
may also generalize well to other tasks, such as prediction of pedestrian-vehicle interac-
tion, or to other multi-agent domains. Finally, because our model is action conditional,
it can serve as a world model for many downstream tasks.

It is also worth mentioning that in this work we did not need to worry about ego
and social vehicles interactions. This is due to two main reasons: 1) During training
we use the ground truth actions in the dataset. Since these actions come from a human

96

(expert) driver, they already reflect the previous observations and interaction with other
agents. 2) We do not intend to learn the optimal action in this work. We want to have a
model that learns how the environment changes based on the expert’s action during
the training and then use that model to predict xenvt+1 based on other actions, which are
not necessarily optimal or sub-optimal. As we showed in the experiments our model
successfully performs this task even for rare (extreme) actions, e.g. a hard brake in a
highway.

One drawback of prediction in high-dimensional space is the gradual degradation
of the predicted frames’ quality. This can potentially limit the capability of such models
to be used in application like building driving simulators.

97

Chapter 6

Conclusion and Future Work

Here we recap the contributions and discuss possible some future research directions.

6.1 Contributions

In this dissertation we presented several algorithms to tackle different aspects of plan-
ning and sequential decision making. Here we revisit the research questions raised at
the beginning and provide a summary of our proposed solutions.

6.1.1 RQ1: Policy optimization over a known MDP

We proved that the problem of finding an optimal policy in an MDP under a restricted
policy class defined by the convex hull of a set of base policies is an NP-hard problem
to be solved exactly as well as approximated to arbitrary accuracy [4]. We show that
under the condition that the corresponding occupancy measures of the base policies
have large overlaps, there is an efficient approximating algorithm that works in the
dual space and can output an policy almost as good as the optimal policy in the convex
hull. The algorithm has linear running time in the number of states and polynomial

98

running time in the number of base policies. We also showed that due the fact that the
algorithm works completely in the occupancy measure space, there is no need to run
the output of the algorithm in the middle of training to obtain the value of the policies
and therefore we will not have unsafe interactions with the environment.

6.1.2 RQ2: Finding a prediction model from high-dimensional obser-

vation of an unknown MDP

Here we looked at two different problems:

• High-dimensional observations of a single dynamical system: For this problem
we proposed a model that uses VAEs to encode the high-dimensional observations
into much lower-dimensional in which the transition function can be defined us-
ing a locally-linear function [11]. We also showed that this representation can be
efficiently used for locally-linear control, and in particular we used iLQR algo-
rithm for planning in the low-dimensional space. We also showed that due to our
proper definition of the recognition model in the VAE, the model is much more
robust to the noise in the dynamical system, compared to its rival models.

We also showed that using feature disentanglement generalize our model to solve
the problems that have similar underlying dynamics and only differ in terms of
content of the observation.

• High-dimensional observations of a multi-agent system: We considered the prob-
lem of finding a prediction model for autonomous driving, where we have ac-
cess to sequence of high-dimensional observations of the system. We proposed a
model that employs human-level prior knowledge about the problem and splits
the action-based prediction problem into two steps: first using prior knowledge
we apply the first order effect of the action on the ego-agent by changing the ego-
related features in our observations. Then we learn from the data how the envi-
ronment reacts to this change [10]. For such learning we again used a VAE-based

99

framework. The probabilistic nature of this framework helps us capture our un-
certainty about environment reaction to the ego-action. We showed in our experi-
ments that exploiting the prior knowledge makes the prediction task more robust
to the ego-action, and therefore we can handle a wider range of actions and driv-
ing situations using our prediction model. The proposed prediction model can act
as a world model for downstream tasks, such as planning.

6.2 Future work

There are some possible research directions that can extend the proposed methods in
this dissertations.

Combining dissimilar policies in MDPs: In Chapter 2 we proposed an efficient al-
gorithm for combining a set of base policies under the condition that they have large
overlaps in the occupancy measure space. This condition implies the assumption that
the base policies are similar in the sense that they have similar values. This assump-
tion might be too strong in many situations. It would be interesting to investigate this
problem when such assumption is relaxed and design an approximating algorithm for
combining the base policies.

Modelling dynamical systems from high-dimensional observations: In Chapter 4 and
Chapter 5 of this dissertation we used maximum likelihood approach for modelling dy-
namical systems. In fact we used an encoder-decoder structure in which the dynamics
and interactions are learned in a low-dimensional space (explicitly in Chapter 4 and
implicitly 5). We showed that such modelling can in fact helps learning the dynamics,
however, this might not be the optimal solution for planning. In other words, combin-
ing maximum likelihood objective with additional objective that directly consider the
needs of the planner algorithm can potentially improve this line of work. For example,
adding the iLQR algorithm’s objective to the ELBO term during the training of the RCE
algorithm seems to be a rational next step.

Disentangling dynamics and content: In Chapter 4 we showcased how an RCE-based

100

model can be used for disentangling dynamics- and content-related features of the ob-
servations. This model has potential applications in autonomous driving. Self-driving
cars use different sensors to observe the surrounding environment including cameras,
LiDAR, GPS, etc. Transferring knowledge among the domains of these observation can
potentially results in using more accurate modelling of the environment and/or em-
ploying fewer sensors.

101

References

[1] Y. Abbasi-Yadkori, P. Bartlett, and A. Malek. Linear programming for large-scale
Markov decision problems. In International Conference on Machine Learning
(ICML), 2014.

[2] A. Achille, T. Eccles, L. Matthey, C. P. Burgess, N. Watters, A. Lerchner, and I. Hig-
gins. Life-long disentangled representation learning with cross-domain latent ho-
mologies. arXiv preprint arXiv:1808.06508, 2018.

[3] C. Atkeson and J. Murimoto. Non-parametric representations of policies and
value functions: A trajectory-based approach. In Advances in Neural Informa-
tion Processing Systems, 2002.

[4] E. Banijamali, Y. Abbasi-Yadkori, M. Ghavamzadeh, and N. Vlassis. Optimizing
over a restricted policy class in mdps. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 3042–3050. PMLR, 2019.

[5] E. Banijamali and A. Ghodsi. Fast spectral clustering using autoencoders and
landmarks. In International Conference Image Analysis and Recognition, pages
380–388. Springer, 2017.

[6] E. Banijamali, A. Ghodsi, and P. Popuart. Generative mixture of networks. In
2017 International Joint Conference on Neural Networks (IJCNN), pages 3753–
3760. IEEE, 2017.

102

[7] E. Banijamali, A. Karimi, A. Wong, and A. Ghodsi. Jade: Joint autoencoders for
dis-entanglement. In Learning Disentangled Representations, NIPS Workshop,
2017.

[8] E. Banijamali, A.-H. Karimi, and A. Ghodsi. Deep variational sufficient dimen-
sionality reduction. In Bayesian Deep Learning, NIPS Workshop, 2018.

[9] E. Banijamali, A. Khajenezhad, A. Ghodsi, and M. Ghavamzadeh. Disentangling
dynamics and content for control and planning. In Learning Disentangled Repre-
sentations, NIPS Workshop, 2017.

[10] E. Banijamali, M. Rohani, E. Amirloo, J. Luo, and P. Poupart. Prediction by an-
ticipation: An action-conditional prediction method based on interaction learn-
ing. In IEEE/CVF International Conference on Computer Vision. c©[2021] IEEE.
Reprinted, with permission, 2021.

[11] E. Banijamali, R. Shu, H. Bui, A. Ghodsi, et al. Robust locally-linear controllable
embedding. In International Conference on Artificial Intelligence and Statistics,
pages 1751–1759. PMLR, 2018.

[12] M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to drive by
imitating the best and synthesizing the worst. arXiv preprint arXiv:1812.03079,
2018.

[13] J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation. Journal of
Artificial Intelligence Research, 15:319–350, 2001.

[14] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algo-
rithms. Automatica, 45(11):2471–2482, 2009.

[15] W. Böhmer, J. Springenberg, J. Boedecker, M. Riedmiller, and K. Obermayer. Au-
tonomous learning of state representations for control: An emerging field aims to
autonomously learn state representations for reinforcement learning agents from
their real-world sensor observations. Künstliche Intelligenz, 29(4):353–362, 2015.

103

[16] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan. Domain
separation networks. In Advances in Neural Information Processing Systems,
pages 343–351, 2016.

[17] S. Casas, W. Luo, and R. Urtasun. Intentnet: Learning to predict intention from
raw sensor data. In Conference on Robot Learning, pages 947–956, 2018.

[18] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov. Multipath: Multiple proba-
bilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint
arXiv:1910.05449, 2019.

[19] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. Pcanet: A simple deep learn-
ing baseline for image classification? IEEE Transactions on Image Processing,
24(12):5017–5032, 2015.

[20] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, et al. Argoverse: 3d tracking and forecasting with rich
maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8748–8757, 2019.

[21] A. Chartsias, T. Joyce, G. Papanastasiou, S. Semple, M. Williams, D. E. Newby,
R. Dharmakumar, and S. A. Tsaftaris. Disentangled representation learning in
cardiac image analysis. Medical image analysis, 58:101535, 2019.

[22] R.-R. Chen and S. Meyn. Value iteration and optimization of multiclass queueing
networks. Queueing Systems, 32(1-3):65–97, 1999.

[23] M. B. Cohen, J. Kelner, J. Peebles, R. Peng, A. B. Rao, A. Sidford, and A. Vladu.
Almost-linear-time algorithms for Markov chains and new spectral primitives for
directed graphs. In STOC, 2017.

[24] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K. Huang, J. Schnei-
der, and N. Djuric. Multimodal trajectory predictions for autonomous driving us-
ing deep convolutional networks. In 2019 International Conference on Robotics
and Automation (ICRA), pages 2090–2096. IEEE, 2019.

104

[25] D. P. de Farias and B. Van Roy. The linear programming approach to approximate
dynamic programming. Operations research, 51(6):850–865, 2003.

[26] E. Denton and V. Birodkar. Unsupervised learning of disentangled representa-
tions from video. arXiv preprint arXiv:1705.10915, 2017.

[27] N. Deo and M. M. Trivedi. Convolutional social pooling for vehicle trajectory pre-
diction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 1468–1476, 2018.

[28] J. Dequaire, P. Ondrúška, D. Rao, D. Wang, and I. Posner. Deep tracking in the
wild: End-to-end tracking using recurrent neural networks. The International
Journal of Robotics Research, 37(4-5):492–512, 2018.

[29] A. Elfes. Occupancy grids: A stochastic spatial representation for active robot
perception. arXiv preprint arXiv:1304.1098, 2013.

[30] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[31] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti
dataset. International Journal of Robotics Research (IJRR), 2013.

[32] A. Globerson and N. Tishby. Sufficient dimensionality reduction. Journal of Ma-
chine Learning Research, 3(Mar):1307–1331, 2003.

[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neu-
ral information processing systems, pages 2672–2680, 2014.

[34] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and signal processing (icassp), 2013
ieee international conference on, pages 6645–6649. IEEE, 2013.

105

[35] H. Greenspan, B. van Ginneken, and R. M. Summers. Guest editorial deep learn-
ing in medical imaging: Overview and future promise of an exciting new tech-
nique. IEEE Transactions on Medical Imaging, 35(5):1153–1159, 2016.

[36] O. K. Gupta and R. A. Jarvis. Optimal global path planning in time varying en-
vironments based on a cost evaluation function. In Australasian Joint Conference
on Artificial Intelligence, pages 150–156. Springer, 2008.

[37] D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[38] J. Halkias and J. Colyar. Ngsim interstate 80 freeway dataset. US Federal Highway
Administration, FHWA-HRT-06-137, Washington, DC, USA, 2006.

[39] M. Henaff, A. Canziani, and Y. LeCun. Model-predictive policy learning
with uncertainty regularization for driving in dense traffic. arXiv preprint
arXiv:1901.02705, 2019.

[40] I. Higgins, D. Amos, D. Pfau, S. Racaniere, L. Matthey, D. Rezende, and A. Ler-
chner. Towards a definition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

[41] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6):82–97, 2012.

[42] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang. Stgat: Modeling spatial-temporal
interactions for human trajectory prediction. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 6272–6281, 2019.

[43] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with
conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.

[44] D. Jacobson and D. Mayne. Differential Dynamic Programming. American Else-
vier, 1970.

106

[45] V. John, L. Mou, H. Bahuleyan, and O. Vechtomova. Disentangled representation
learning for non-parallel text style transfer. arXiv preprint arXiv:1808.04339, 2018.

[46] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep variational bayes filters:
Unsupervised learning of state space models from raw data. In Proceedings of
ICLR, 2017.

[47] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learn-
ing with deep generative models. In Advances in Neural Information Processing
Systems, pages 3581–3589, 2014.

[48] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[49] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[51] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional in-
verse graphics network. In Advances in Neural Information Processing Systems,
pages 2539–2547, 2015.

[52] A. Kumar and S. Zilberstein. History-based controller design and optimization for
partially observable MDPs. In In International Conference on Automated Plan-
ning and Scheduling (ICAPS), 2015.

[53] P. Kumar and T. I. Seidman. Dynamic instabilities and stabilization methods in
distributed real-time scheduling of manufacturing systems. IEEE Transactions on
Automatic Control, 35(3):289–298, 1990.

[54] S. Lange and M. Riedmiller. Deep auto-encoder neural networks in reinforce-
ment learning. In Proceedings of the International Joint Conference on Neural
Networks, pages 1–8, 2010.

107

[55] Y. LeCun, C. Cortes, and C. J. Burges. Mnist handwritten digit database. AT&T
Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

[56] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting agents. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
336–345, 2017.

[57] S. Levine and V. Koltun. Variational policy search via trajectory optimization. In
Advances in Neural Information Processing Systems, 2013.

[58] W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear
biological movement systems. In Proceedings of ICINCO, pages 222–229, 2004.

[59] M. Liang, B. Yang, W. Zeng, Y. Chen, R. Hu, S. Casas, and R. Urtasun. Pnpnet:
End-to-end perception and prediction with tracking in the loop. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11553–11562, 2020.

[60] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha. Trafficpredict:
Trajectory prediction for heterogeneous traffic-agents. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 6120–6127, 2019.

[61] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoen-
coders. arXiv preprint arXiv:1511.05644, 2015.

[62] M. F. Mathieu, J. J. Zhao, J. Zhao, A. Ramesh, P. Sprechmann, and Y. LeCun. Dis-
entangling factors of variation in deep representation using adversarial training.
In Advances in Neural Information Processing Systems, pages 5040–5048, 2016.

[63] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler. Online multi-target
tracking using recurrent neural networks. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

108

[64] I. Miller and M. Campbell. A mixture-model based algorithm for real-time terrain
estimation. Journal of Field Robotics, 23(9):755–775, 2006.

[65] N. Mohajerin and M. Rohani. Multi-step prediction of occupancy grid maps with
recurrent neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 10600–10608, 2019.

[66] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning
with less data and less time. Machine learning, 13(1):103–130, 1993.

[67] T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem
of Turán. Canadian Journal of Mathematics, 17:533–540, 1965.

[68] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity of finite-
horizon Markov decision process problems. Journal of ACM, 47:681–720, 2000.

[69] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 5, 2011.

[70] H. Noguchi, T. Yamada, T. Mori, and T. Sato. Mobile robot path planning using
human prediction model based on massive trajectories. In Networked Sensing
Systems (INSS), 2012 Ninth International Conference on, pages 1–7. IEEE, 2012.

[71] T. Ohki, K. Nagatani, and K. Yoshida. Collision avoidance method for mobile
robot considering motion and personal spaces of evacuees. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 1819–
1824. IEEE, 2010.

[72] Y. Pan and E. Theodorou. Probabilistic differential dynamic programming. In
Advances in Neural Information Processing Systems, 2014.

[73] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision pro-
cesses. Mathematics of operations research, 12(3):441–450, 1987.

109

[74] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi. Sequence-to-sequence
prediction of vehicle trajectory via lstm encoder-decoder architecture. In 2018
IEEE Intelligent Vehicles Symposium (IV), pages 1672–1678. IEEE, 2018.

[75] J. Peters, S. Vijayakumar, and S. Schaal. Natural actor-critic. In Proceedings of the
Sixteenth European Conference on Machine Learning, pages 280–291, 2005.

[76] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative
adversarial text to image synthesis. arXiv preprint arXiv:1605.05396, 2016.

[77] S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disentangle factors of varia-
tion with manifold interaction. In International Conference on Machine Learning,
pages 1431–1439, 2014.

[78] D. Rezende and S. Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530–1538, 2015.

[79] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of The 31st
International Conference on Machine Learning, pages 1278–1286, 2014.

[80] N. Rhinehart, K. M. Kitani, and P. Vernaza. R2p2: A reparameterized pushfor-
ward policy for diverse, precise generative path forecasting. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 772–788, 2018.

[81] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine. Precog: Prediction condi-
tioned on goals in visual multi-agent settings. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2821–2830, 2019.

[82] S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza. Disentangling factors of
variation for facial expression recognition. Computer Vision–ECCV 2012, pages
808–822, 2012.

110

[83] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Multi-
agent generative trajectory forecasting with heterogeneous data for control. arXiv
preprint arXiv:2001.03093, 2020.

[84] W. Sheng and X. Yin. Sufficient dimension reduction via distance covariance.
Journal of Computational and Graphical Statistics, 25(1):91–104, 2016.

[85] R. Shu, H. Bui, and M. Ghavamzadeh. Bottleneck conditional density estimation.
In Proceedings of the International Conference on Machine Learning, 2017.

[86] R. Shu, H. H. Bui, and M. Ghavamzadeh. Bottleneck conditional density estima-
tion. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 3164–3172. JMLR. org, 2017.

[87] N. Siddharth, B. Paige, V. de Meent, A. Desmaison, F. Wood, N. D. Goodman,
P. Kohli, P. H. Torr, et al. Learning disentangled representations with semi-
supervised deep generative models. arXiv preprint arXiv:1706.00400, 2017.

[88] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[89] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using
deep conditional generative models. In Advances in neural information process-
ing systems, pages 3483–3491, 2015.

[90] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of
machine learning research, 15(1):1929–1958, 2014.

[91] R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.

[92] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in Neural In-
formation Processing Systems, 2000.

111

[93] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[94] Y. Tassa, T. Erez, and W. Smart. Receding horizon differential dynamic program-
ming. In Advances in Neural Information Processing Systems, 2008.

[95] E. Todorov and W. Li. A generalized iterative LQG method for locally-optimal
feedback control of constrained non-linear stochastic systems. In Proceedings of
the American Control Conference, 2005.

[96] L. Tran, X. Yin, and X. Liu. Disentangled representation learning gan for pose-
invariant face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1415–1424, 2017.

[97] E. Tsardoulias, A. Iliakopoulou, A. Kargakos, and L. Petrou. A review of global
path planning methods for occupancy grid maps regardless of obstacle density.
Journal of Intelligent & Robotic Systems, 84(1-4):829–858, 2016.

[98] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz. Mocogan: Decomposing motion
and content for video generation. arXiv preprint arXiv:1707.04993, 2017.

[99] N. Vlassis, M. L. Littman, and D. Barber. On the computational complexity of
stochastic controller optimization in POMDPs. ACM Transactions on Computa-
tion Theory, 4(4):12, 2012.

[100] N. Wahlström, T. Schön, and M. Desienroth. From pixels to torques: Policy learn-
ing with deep dynamical models. In arXiv preprint arXiv:1502.02251, 2015.

[101] H. Wang, K. Tanaka, and M. Griffin. An approach to fuzzy control of nonlinear
systems; stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1),
1996.

112

[102] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al. Image quality assess-
ment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004.

[103] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. In Advances in
neural information processing systems, pages 2746–2754, 2015.

[104] R. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

[105] Y. Ye. A new complexity result on solving the Markov decision problem. Mathe-
matics of Operations Research, 30:733–749, 2005.

[106] R. S. Yichuan Charlie Tang. Multiple futures prediction. arXiv preprint
arXiv:1911.00997, 2015.

[107] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun. End-to-end
interpretable neural motion planner. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8660–8669, 2019.

113

Appendix

114

Appendix A

Robust Locally-Linear Controllable
Embedding

A.1 Objective Function

Proof of Lemma 4.4.1. Suppose q? = q(zt, z̄t, ẑt+1|xt,xt+1). Consider the factorization of q?

based on Eq. 4.14 and also the factorization of p(xt+1, zt, z̄t, ẑt+1|xt,ut) based on Eq. 4.11.
The variational lower bound on the conditional probability distribution p(xt+1|xt,ut)
can be derived as following:

log p(xt+1|xt,ut) ≥ Eq?
[

log p(xt+1, zt, z̄t, ẑt+1|xt,ut)− log q?)
]

= Eqϕ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
− Eq?

[
log qϕ(ẑt+1|xt+1) + log qϕ(z̄t|ẑt+1,xt)

+ log δ(zt|z̄t, ẑt+1,ut)− log p(zt|xt)− log p(z̄t|xt)− log δ(ẑt+1|zt, z̄t,ut)
]

(A.1)

We can simply ignore the δ(.|.) terms, because the cross entropy for these terms are

115

zero. Therefore the lower bound can be written as:

log p(xt+1|xt,ut) ≥ Eqϕ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
− Eqϕ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log

qϕ(z̄t|ẑt+1,xt)

p(z̄t|xt)
]

− Eqϕ(ẑt+1|xt+1)

[
log qϕ(ẑt+1|xt+1)

]
− Eqϕ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
= Eqϕ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
− Eqϕ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
+ H

(
qϕ(ẑt+1|xt+1)

)
+ Eqϕ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
= LRCEt (A.2)

Proof of Lemma 4.6.1.

log p(xt+1|xt,ut) + log p(yt)

≥ Eq?
[

log p(xt+1, zt, z̄t, ẑt+1,w|xt,ut)− log q?
]

+ Eq†
[

log p(yt,vt,w)− log q†
]

= Eqϕ(ẑt+1|xt+1)
qϕ(w|xt+1)

[
log p(xt+1|ẑt+1,w)

]
− Eq?

[
log qϕ(w|xt+1) + log qϕ(ẑt+1|xt+1)

+ log qϕ(z̄t|ẑt+1,xt) + log δ(zt|z̄t, ẑt+1)− log p(zt|xt)− log p(z̄t|xt)

− log δ(ẑt+1|zt, z̄t)− log p(w)
]

+Eq†
[

log p(yt|vt,w) + log p(vt) + log p(w)− log qϕ(vt|yt)− log qϕ(w|yt)
]

(A.3)

116

= Eqϕ(ẑt+1|xt+1)
qϕ(w|xt+1)

[
log p(xt+1|ẑt+1,w)

]
− Eqϕ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log

qϕ(z̄t|ẑt+1,xt)

p(z̄t|xt)
]

−Eqϕ(ẑt+1|xt+1)

[
log qϕ(ẑt+1|xt+1)

]
− Eqϕ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
−Eqϕ(w|xt)

[
log qϕ(w|xt)− log p(w)

]
+ Eq†

[
log p(yt|vt,w)

]
−Eqϕ(vt|yt)[log qϕ(vt|yt)− log p(vt)]

]
− Eqϕ(w|yt)

[
log qϕ(w|yt)− log p(w)

]
= Eqϕ(ẑt+1|xt+1)

qϕ(w|xt+1)

[
log p(xt+1|ẑt+1,w)

]
− Eqϕ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
+H

(
qϕ(ẑt+1|xt+1)

)
+ Eqϕ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
− KL

(
qϕ(w|xt) ‖ p(w)

)
+Eq†

[
log p(yt|vt,w)

]
− KL

(
qϕ(vt|yt) ‖ p(vt)

)
− KL

(
qϕ(w|yt) ‖ p(w)

)
= LDDC

(A.4)

The terms in LRCEt and LDDCt can be written in closed forms:

1. Eqϕ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
Using the reparameterization trick [49], we should first sample fromN (µϕ(xt+1),Σϕ(xt+1)).
Considering a Bernoulli distribution for the posterior of xt+1, the term inside the
expectation is a binary cross entropy.

2. Eqϕ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
Again, we first need to sample from N (µϕ(xt+1),Σϕ(xt+1)). Note that p(z̄t|xt) =

p(zt|xt) and p(zt|xt) = q(zt|xt) = N (µϕ(xt),Σϕ(xt)). For the qϕ network, which is

117

the transition network in our model, we have qϕ(z̄t|ẑt+1,xt) = N (µϕ,Σϕ). The KL
term can be written as

KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)
=

1

2

(
Tr(Σϕ(xt)

−1Σϕ)

+ (µϕ(xt)− µϕ)>Σϕ(xt)
−1(µϕ(xt)− µϕ)

+ log(
|Σϕ(xt)|
|Σϕ|

)− nz
)

(A.5)

3. H
(
qϕ(ẑt+1|xt+1)

)
The entropy term for the encoding network can be easily written as

H
(
qϕ(ẑt+1|xt+1)

)
=

1

2
log
(
(2πe)nz |Σϕ(xt+1)|

)
(A.6)

4. Eqϕ(ẑt+1|xt+1)
qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
Here we first need to sample from N (µϕ(xt+1),Σϕ(xt+1)) and N (µϕ,Σϕ). Given
that p(zt|xt) = N (µϕ(xt),Σϕ(xt)), the log term inside the expectation means that
we want the output of transition network to be close to the mean of its distribution,
up to some constant.

log p(zt|xt) = −1

2

(
log
(
(2πe)nz |Σϕ(xt)|

)
+ (zt − µϕ(xt))

>Σϕ(xt)
−1(zt − µϕ(xt))

)
(A.7)

A.2 Implementation

Transition model structure: xt goes through one hidden layer with `1 units and ẑt+1

goes through one hidden layer with `2 units. The outputs of the two hidden layers
are concatenated and go through a network with two hidden layers of size `3 and `4,

118

respectively, to build µϕ and Σϕ. z̄t is sampled from this distribution and is concatenated
by the action. The result goes through a three-layer network with `5, `6, and `7 units to
build Mt, Bt, and ct.

In the following we will specify the values for `i’s for each of the four tasks used in
our experiments.

A.2.1 Planar system

Input: 40× 40 images (1600 dimensions). 2-dimensional actions. 5000 training samples
of the form (xt,ut,xt+1)

Latent space: 2-dimensional

Encoder: 3 Layers: 300 units- 300 units- 4 units (2 for mean and 2 for the variance of
the Gaussian distribution)

Decoder: 3 Layers: 300 units- 300 units- 1600 units

Transition: `1 = 100- `2 = 5- `3 = 100- `4 = 4- `5 = 20- `6 = 20- `7 = 10

Number of control actions: or the planning horizon T = 40

A.2.2 Inverted Pendulum

Input: Two 48 × 48 images (4608 dimensions). 1-dimensional actions. 5000 training
samples of the form (xt,ut,xt+1)

Latent space: 3-dimensional

Encoder: 3 Layers: 500 units- 500 units- 6 units (3 for mean and 3 for the variance of
the Gaussian distribution)

Decoder: 3 Layers: 500 units- 500 units- 4608 units

Transition: `1 = 200- `2 = 10- `3 = 200- `4 = 6- `5 = 30- `6 = 30- `7 = 12

Number of control actions: or the planning horizon T = 100

119

A.2.3 Cart-pole Balancing

Input: Two 80 × 80 images (12800 dimensions). 1-dimensional actions. 15000 training
samples of the form (xt,ut,xt+1)

Latent space: 8-dimensional

Encoder: 6 Layers: convolutional layer: 32× 5× 5; stride (1,1) - convolutional layer:
32× 5× 5; stride (2,2) - convolutional layer: 32× 5× 5; stride (2,2) -convolutional layer:
10 × 5 × 5; stride (2,2) - 200 units- 16 units (8 for mean and 8 for the variance of the
Gaussian distribution)

Decoder: 6 Layers: 200 units- 1000 units- convolutional layer: 32 × 5 × 5; stride
(1,1)- Upsampling (2,2)- convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)-
convolutional layer: 32× 5× 5; stride (1,1)- Upsampling (2,2)- convolutional layer: 2×
5× 5; stride (1,1)

Transition: `1 = 300- `2 = 10- `3 = 300- `4 = 16- `5 = 40- `6 = 40- `7 = 32

Number of control actions: or the planning horizon T = 100

A.2.4 Three-Link Robot Arm

Input: Two 128×128 images (32768 dimensions). 3-dimensional actions. 30000 training
samples of the form (xt,ut,xt+1)

Latent space: 8-dimensional

Encoder: 6 Layers: convolutional layer: 64× 5× 5; stride (1,1) - convolutional layer:
32× 5× 5; stride (2,2) - convolutional layer: 32× 5× 5; stride (2,2) -convolutional layer:
10 × 5 × 5; stride (2,2) - 500 units- 16 units (8 for mean and 8 for the variance of the
Gaussian distribution)

Decoder: 6 Layers: 500 units- 2560 units- convolutional layer: 32 × 5 × 5; stride
(1,1)- Upsampling (2,2)- convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)-

120

convolutional layer: 32× 5× 5; stride (1,1)- Upsampling (2,2)- convolutional layer: 2×
5× 5; stride (1,1)

Transition: `1 = 400- `2 = 10- `3 = 400- `4 = 6- `5 = 40- `6 = 40- `7 = 48

Number of control actions: or the planning horizon T = 100

121

Appendix B

Prediction by Anticipation

B.1 Terms in the loss function

We re-write the loss function in Eq. 5.6 here:

Lt = D(jenvt+1, ĵ
env
t+1)+λ

(
1− SSIM(jenvt+1, ĵ

env
t+1)
)︸ ︷︷ ︸

Lrec.
t

+ KL
(
qϕ(zt|x1:t, j

ego
t+1, j

env
t+1)||pψ(zt|x1:t, j

ego
t+1)
)︸ ︷︷ ︸

LKL
t

.

B.1.1 The ELBO term

Minimizing the first and last terms is equivalent to maximizing the ELBO in Eq. 5.5.
Considering qϕ(zt|x1:t, j

ego
t+1, j

env
t+1) = N (µϕ,Σϕ) and pψ(zt|x1:t, j

ego
t+1) = N (µψ,Σψ) as Gaus-

sian distributions, the KL term is simply differentiable with the following terms:

KL
(
qϕ(zt|x1:t, j

ego
t+1, j

env
t+1))||pψ(zt|x1:t, j

ego
t+1)
)

=
1

2

(
Tr
(
Σψ
−1Σϕ

)
+
(
µψ − µϕ

)>
Σψ
−1
(
µψ − µϕ

)
+ log(

|Σψ|
|Σϕ|

)− d
)
,

122

where d is the dimensionality of the stochastic latent code.

B.2 Implementation details of the prediction module

Figure B.1 shows a detailed implementation of the prediction module. The structure of
the networks based on this figure are explained below. Convolutional neural networks,
denoted by CNN, have convolutional layers as their core but can also include one or
two fully-connected layers. MLP networks only contain fully-connected layers.

MLP 1

CNN 1

CNN 2

CNN 4

CNN 5

CNN 6

Concatenate

Concatenate

MLP 3

MLP 2

CNN 7

C
o

n
caten

ate

Prediction module

Stack
OGMs

Stack
OGMs

OGM
transformations

CNN 3

Shared encoder

Unshared encoder

encoder

encoder

Figure B.1: Detailed structure of the prediction module.

123

B.2.1 NGSIM I-80 dataset

For the NGSIM I-80 dataset, we use the actions extracted by the authors in [39]. As
stated in the experiment section, the images are 117 × 24 × 3. For the IOTs we zero
pad the images before feeding them to the modules with the padding size of 20 in each
dimension and remove the padding from the output image after processing.

Network Detail of structure

MLP 1 2 layers
1. 256 units- leaky ReLU activation
2. 25 units- ReLU activation

CNN 1 4 layers

1. 64 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 128 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 256 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
4. Fully-connected layer with 768 units, ReLU activation

CNN 2 4 layers

1. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 256 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
4. Fully-connected layer with 768 units, ReLU activation

CNN 3 4 layers

1. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 32 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
4. Fully-connected layer with 32 units with linear activation as the
mean, µ(jdiff

1:t).

CNN 4 5 layers

1. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 16 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
4. Fully-connected layer with 768 units, linear activation
5. Two branches of fully-connected layers with 32 units each, as the
mean and variance
, µψ and Σψ , with linear activation

CNN 5 4 layers

1. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation

124

3. 16 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
4. Fully-connected layer with 768 units, linear activation

CNN 6 4 layers

1. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 16 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
4. Fully-connected layer with 768 units, linear activation

MLP 2 1 layer 1 .256 units, leaky ReLU activation

MLP 3 1 layer
1. Two branches of fully-connected layers with 32 units each, as the
mean and variance
, µϕ and Σϕ, with linear activation

CNN 7 5 layers

1. Fully-connected layer with 768 units, leaky ReLU activation
2. Fully-connected layer with 6144 units, leaky ReLU activation.
Followed by reshaping to a
(12, 2, 256) tensor
3. Deconv. layer with 128 kernels of size 5× 3, stride size = 2, leaky
ReLU activation
4. Deconv layer with 64 kernels of size 6× 4, stride size = 2, leaky
ReLU activation
5. Deconv layer with 3 kernels of size 3× 2, stride size = 2, sigmoid
activation

Table B.1: Detail of the prediction module for the NGSIM I-80 dataset. The coefficient for the
leaky ReLU activation functions is 0.2.

For difference learning model, we use the exact same structure of the networks.
However, since the output of the module is the difference between two consecutive
frames, it can get any values between -1 and 1. Therefore, we use tanh activation for the
last layer of network CNN 7.

125

B.2.2 Argoverse dataset

The images in this dataset are 256 × 256 × 2. They have two channels. One channel
for OGM and the other one for the ego-vehicle. The ego-vehicle is more towards the
left side of the image. Therefore we first zero pad the left side of the image so that the
ego-vehicle is centered and then zero pad the whole image to apply the functions in the
IOTs. To extract the actions, we apply inverse of the functions in Fig. 5.1 to compute the
actions using the xy coordinate of the car at each time. Table B.2 shows the details of the
difference learning model, i.e. the model with the best performance for this dataset.

Network Detail of structure

MLP 1 2 layers
1. 85 units- leaky ReLU activation
2. 25 units- ReLU activation

CNN 1 6 layers

1. 16 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 32 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 64 kernels of size 4× 4, stride size = 2, leaky ReLU activation
4. 128 kernels of size 4× 4, stride size = 2, leaky ReLU activation
5. 256 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
6. Fully-connected layer with 128 units, ReLU activation

CNN 2 6 layers

1. 2 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation
4. 16 kernels of size 4× 4, stride size = 2, leaky ReLU activation
5. 256 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
6. Fully-connected layer with 128 units, ReLU activation

CNN 3 6 layers

1. 2 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation
4. 16 kernels of size 4× 4, stride size = 2, leaky ReLU activation
5. 32 kernels of size 4× 4, stride size = 2, ReLU activation. Followed
by flattening
6. Fully-connected layer with 32 units with linear activation as the
mean , µ(jdiff

1:t).

126

CNN 4 7 layers

1. 2 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation
4. 16 kernels of size 4× 4, stride size = 2, leaky ReLU activation
5. 256 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
6. Fully-connected layer with 128 units, linear activation
7. Two branches of fully-connected layers with 32 units each, as the
mean and variance
, µψ and Σψ , with linear activation

CNN 5 6 layers

1. 2 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation
4. 16 kernels of size 4× 4, stride size = 2, leaky ReLU activation
5. 256 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
6. Fully-connected layer with 128 units, linear activation

CNN 6 6 layers

1. 2 kernels of size 4× 4, stride size = 2, leaky ReLU activation
2. 4 kernels of size 4× 4, stride size = 2, leaky ReLU activation
3. 8 kernels of size 4× 4, stride size = 2, leaky ReLU activation
4. 16 kernels of size 4× 4, stride size = 2, leaky ReLU activation
5. 256 kernels of size 4× 4, stride size = 2, ReLU activation.
Followed by flattening
6. Fully-connected layer with 128 units, linear activation

MLP 2 1 layer 1 .256 units, leaky ReLU activation

MLP 3 1 layer
1. Two branches of fully-connected layers with 32 units each, as the
mean and variance
, µϕ and Σϕ, with linear activation

CNN 7 7 layers

1. Fully-connected layer with 128 units, leaky ReLU activation
2. Fully-connected layer with 9216 units, leaky ReLU activation.
Followed by reshaping to a
(6, 6, 256)

3. Deconv. layer with 128 kernels of size 4× 4, stride size = 2, leaky
ReLU activation.
4. Deconv layer with 64 kernels of size 4× 4, stride size = 2, leaky
ReLU activation

127

5. Deconv. layer with 32 kernels of size 4× 4, stride size = 2, leaky
ReLU activation.
6. Deconv layer with 16 kernels of size 4× 4, stride size = 2, leaky
ReLU activation
7. Deconv layer with 2 kernels of size 3× 2, stride size = 2, tanh
activation

Table B.2: Detail of the prediction module for the Argoverse dataset as a part of difference
learning module. The coefficient for the leaky ReLU activation functions is 0.2.

128

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Questions
	RQ1: Policy optimization over a known MDP
	RQ2: Finding a prediction model from high-dimensional observation of an unknown MDP

	Summary of Contributions
	Document Organization

	Optimizing over a Restricted Policy Class in Markov Decision Processes
	Contributions
	Introduction
	Notation

	Preliminaries
	Hardness Result
	Reduction to Convex Optimization
	Experiments
	Queuing Problem: 1-Queue
	Queuing Problem: 4-Queues
	Queuing Problem: 8-Queues

	Summary

	Representation Learning using VAEs
	VAE: An introduction
	Deep Variational Sufficient Dimensionality Reduction
	Sufficient Dimensionality Reduction
	Model description
	Experiment Results

	Joint Autoencoders for Dis-Entanglement
	Problem statement and prior works
	Model description
	Experiments

	Summary

	Robust Locally-Linear Controllable Embedding
	Contributions
	Problem statement and prior work
	Preliminaries
	Problem Formulation
	Stochastic Locally Optimal Control
	The Embed to Control (E2C) Model

	Model Description
	Graphical Model
	Deep Variational Learning
	Network Structure
	Planning

	Experiments
	Planar System
	Inverted Pendulum (Acrobat)
	Cart-pole Balancing
	Three-link Robot Arm

	Disentangling Dynamics and Content
	Problem Statement
	Model description
	Experiment Result

	Summary

	A Multi-step Action-based Prediction Method for Autonomous Driving
	Contributions
	Problem statement
	Related Work
	Prediction by Anticipation
	Base model
	Difference Learning (DL)

	Experiments
	Prediction under different driving situations
	Prediction for rare actions
	Ablation study
	SSIM term and ablation

	Summary

	Conclusion and Future Work
	Contributions
	RQ1: Policy optimization over a known MDP
	RQ2: Finding a prediction model from high-dimensional observation of an unknown MDP

	Future work

	References
	Appendix
	Appendix Robust Locally-Linear Controllable Embedding
	Objective Function
	Implementation
	Planar system
	Inverted Pendulum
	Cart-pole Balancing
	Three-Link Robot Arm

	Appendix Prediction by Anticipation
	Terms in the loss function
	The ELBO term

	Implementation details of the prediction module
	NGSIM I-80 dataset
	Argoverse dataset

