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Abstract

Over the last couple of decades, cosmology has become an exciting area to study. Tech-
nological developments in both the computational and observational fronts have propelled
cosmology into the limelight of modern physics. Since cosmology is the study of the Uni-
verse, many areas of physics – such as astronomy, astrophysics, gravitation, fundamental
physics, statistical mechanics, and quantum theory – all couple together and present some
of the most fascinating puzzles in modern physics in a natural meeting place. In this thesis
I will present my research in two very different epochs of our cosmological history.

In order to describe my research, I will first provide a brief introduction to cosmology
and Einstein’s field equations in a cosmological background. I will then review some
of the developments in understanding the very early Universe – a cosmological epoch
that corresponds to the very first moments of what we believe to be our cosmological
history. I will outline the successes and criticisms of the current paradigm, and discuss the
status of alternative proposals that could address some of these criticisms. In particular,
bouncing cosmologies are an interesting alternative to inflation since they naturally resolve
the singularity problem. I will then present my own work on a bouncing cosmology driven
by a modification to general relativity called Cuscuton gravity. In particular, I show the
prospects of this model for producing initial conditions for the ripples of spacetime at early
times are consistent with observational constraints.

In the second half of my thesis, I will drastically shift in time to the “present day”
Universe, only up to about 2 billion years ago, where I will discuss the prospects of using
gravitational waves to extract significant information about the previously hidden sectors
of the Universe. To be specific, since the gravitational waves emitted when a compact
binary system merges provide an opportunity to measure cosmological distances, this in-
formation can then be used alongside previous electromagnetic signals to shed new light on
cosmological mysteries. In particular, by assuming that the binary mergers and galaxies
both come from the same underlying distribution of matter in our Universe, I show that
one can use Bayesian inference methods to infer cosmological parameters without making
an excessive amount of assumptions.
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Chapter 1

Introduction

Throughout human history, our enigmatic universe has never failed to captivate its inhabi-
tants in its deep mysteries. It is only natural then, that with the continuous development of
mathematical physics and the rapid advancement of technology to test those mathematical
models, the study of the universe and cosmology, has become one of the pillars of modern
physics. As many textbooks and journal articles like to state in their introductions, we are
in the “golden era of cosmology”1. This statement, however cliché it may be, is truly an
accurate representation of the current state of cosmology. A common problem in physics
is that the development of theoretical models drastically precedes the technology required
to obtain experimental data to test these models. However, in cosmology the vast amount
of currently available and upcoming observational data from cosmological surveys provide
a healthy harmony of theory and data – making cosmology remarkably exciting to study.

While the study of cosmology is a very diverse field with an abundance of topics and
subcategories, this thesis will focus on topics in two specific topics one in early universe
cosmology and the other related to gravitational wave cosmology. The early universe is
a period in our cosmological history that precedes the formation of galaxies and stars,
considering the very first moments of our universe. The current paradigm for the early
universe is the inflationary model [121]. The inflationary model is a hugely successful
theory, historically being able to answer puzzling cosmological problems such as the horizon
problem and the flatness problem, while also providing a framework to explain the initial
conditions for the large scale structure of the Universe and in the Cosmic Microwave
Background (CMB) that were later confirmed by astronomical observations [22].

1A search on the NASA/ADS database for “golden age” in the body text with keyword “cosmology”
gives 263 results since 1984. This is not including grant proposals, arguably the biggest offender.
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While the early universe has been studied in depth over the last 40 years or so, with infla-
tion having been continuously developed since the 1980s [160, 28, 158, 159], the theoretical
predictions of gravitational radiation are much older. It is only recently that experiments
have caught up to theory and gravitational wave astronomy is coming to fruition. One of
Einstein’s many predictions from general relativity, gravitational waves (GWs) are the rip-
ples in spacetime produced by accelerated masses. With the first detection of gravitational
waves from a binary black hole merger by the Laser Interferometer Gravitational-Wave
Observatory (LIGO) Scientific Collaboration and the Virgo Collaboration in 20152 [2], a
new era of multi-messenger astronomy was realized. While most previous astrophysical
signals were only available in the electromagnetic (EM) spectrum (ie. light) which can be
affected by many obstructions between the us and the source, gravitational waves allow for
an almost unimpeded direct signal to the source since they are distortions of spacetime.
Since then, many subsequent detections of gravitational waves have been observed, with
many more expected to come in the upcoming years. As more gravitational wave data
become available to us, we can then use existing data from electromagnetic signals along
with the gravitational waves to acquire a more complete understanding of our universe.

Despite the recent exciting successes in cosmology, there are still some gaps in our
knowledge of the standard picture of cosmological models. For instance in early universe
cosmology, inflationary paradigm, while successful in explaining some cosmological puzzles,
has shortcomings of its own. In particular, issues such as the trans-Planckian problem and
the singularity problem are just couple of challenges that the inflationary model still faces.
In addition, from an effective field theory perspective, it is an ongoing discussion whether
or not inflation is compatible with the predictions of string theory via the swampland con-
jectures. Meanwhile, in the late Universe we still face conundrums such as understanding
the nature of dark energy and dark matter, and more recently, there is a current ongoing
tension for the local Hubble constant H0 between observational measurements the from
early universe remnants such as the CMB, and late universe observations such as, but not
limited to, supernovae data. With the expected incoming gravitational wave data from
experiments and with the large galaxy surveys available to us, cosmologists hope that
multi-messenger astronomy will shed light on the cosmological parameter debates.

The outline for this thesis is as follows: in chapter 2, I will present a working background
of the standard model of cosmology. Then the thesis splits into two parts. The first part
of the thesis will be on topics in the very early Universe. In particular I will discuss
the inflationary paradigm for the very early Universe and its proposed alternatives in
chapter 3. Then in chapter 4, I will present the predictions for the power spectrum for

2The direct detection was on September 15, 2015, while the announcement from the LIGO collaboration
was made on February 11, 2016.
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an alternative scenario to inflation known as a Cuscuton bounce. In the second part of
the thesis, I will discuss the exciting developments in multi-messenger astronomy using
GWs. In chapter 5, I will briefly introduce GW astronomy as well as some preliminary
background for understanding statistics of the large scale structure of the Universe. Then
I will present my own work on using gravitational wave data from dark sirens to infer
cosmological parameters in chapter 6. I will conclude the thesis in chapter 7 and provide
final discussions.

The primary programming language for any numerical computation for this thesis was
performed in python3, using the NumPy4 [125], SciPy5 [218], Astropy6 [196, 190], astroML7

[214], and the Code for Anisotropies in the Microwave Background (CAMB)8 [152] libraries.
For the rest of the thesis, I will use the (−+ ++) sign convention for the metric tensor. In
addition, in the context of tensors, the Latin indices i, j, k, etc. will correspond to spatial
dimensions i = 1, 2, 3, while Greek indices µ, ν, λ, etc. will correspond to all spacetime
dimensions µ = 0, 1, 2, 3. Spatial vectors will be denoted in bold, ie. v. I will also take the
usual convention of natural units where c = ~ = k = 1. Wherever the Planck mass MP

shows up, it will take the form of MP = 1/
√

8πG, unless otherwise stated.

3https://www.python.org/
4https://numpy.org/
5https://www.scipy.org/
6https://www.astropy.org/
7https://www.astroml.org/
8https://camb.info/
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Chapter 2

Cosmology

In this section I will introduce the standard model of cosmology starting with some basic
results from general relativity. The discussions in this section are inspired by several
reference texts – Sean Carroll’s textbook/lecture notes on general relativity [75], Steven
Weinberg’s textbook/lecture notes on cosmology [219], and Scott Dodelson’s textbook on
cosmology [94].

2.1 The Einstein Field Equations

General Relativity (GR) is one of Einstein’s most significant contributions to modern
physics, and is one of the cornerstones of our current understanding of physics. Originally
proposed in the early 1900s, it is the successor to Newtonian gravity, the previous paradigm
of gravitational physics, and has remained as the most successful theory of gravity to date.

For a proper introduction to GR, one must study differential geometry on manifolds.
For this thesis, I will simply present the relevant equations and provide a brief descrip-
tion of the underlying mathematical implications. Given a spacetime manifold M, one
equips M with a metric tensor gµν

1. In the context of general relativity, the metric is a
symmetric, Lorentzian or pseudo-Riemannian2, (0, 2) tensor. The metric is also often used

1In a widely used convention, the “tensor” Aν1ν2···νmµ1µ2···µn is actually the coefficient of a (m,n) tensor
A, which is a multilinear map from a collection of m dual vectors and n vectors to R. For general purposes
however, physicists often interchange the tensor A and the coefficient Aν1ν2···νmµ1µ2···µn

for brevity.
2A Euclidean or Riemannian metric is a continuous, nondegenerate, positive-definite metric. A

Lorentzian or pseudo-Riemannian metric is a metric that is continuous, nondegenerate, and indefinite.
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interchangably with the spacetime line element:

ds2 = gµνdx
µdxν , (2.1)

where dxµ is a basis dual vector. The inverse metric gµν can also be defined as a symmetric,
Lorentzian, (2, 0) tensor such that

gµνgνσ = δµσ , (2.2)

where δµσ is the four-dimensional Kroenecker delta, such that

δνµ =

{
1 if µ = ν,

0 if µ 6= ν.
(2.3)

If spacetime is flat, then one refers to the associated metric as the Minkowski metric
denoted as ηµν , where

ηµν = diag(−1, 1, 1, 1). (2.4)

The metric and the inverse metric can be used to raise lower indices in tensor calculus.
Given a metric gµν and a generic tensor Aαβγδ,

Aαβγδ = gµγA
αβµ

δ = gαµAµ
β
γδ. (2.5)

One can also contract two indices of a tensor if the same index shows up as an upper and
lower index. For example, given a generic tensor Aαβγδ, the contraction for the second and
third indices is given by

Aαδ = Aαββδ = gβγA
αβγ

δ. (2.6)

This is a useful trick to reduce the ranks of tensors, such as to consider a scalar quantity
from a (1, 1) tensor, oftentimes called the trace.

The Einstein Field Equations (EFE) are given by3

Gµν = Rµν −
1

2
Rgµν = 8πGTµν , (2.7)

3This form is without the explicit cosmological constant Λ. For the rest of this thesis we will assume
this form of the EFE.
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where G is Newton’s constant and Gµν is the Einstein tensor, while the other quantities
are soon to be defined. To compute the left-hand side of the EFE, one first requires the
Ricci scalar, which is defined as

R = gµνRµν . (2.8)

As we see the Ricci scalar itself is a contraction of a quantity Rµν called the Ricci tensor
which is a symmetric tensor defined as

Rµν = Rλ
µλν . (2.9)

The Ricci tensor is also a contraction, this time of the first and third indices of a quantity
Rρ

σµν called the Riemann tensor, defined as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (2.10)

The Riemann tensor is a combination of partial derivatives and products of a quantity
known as the Christoffel symbols, which are given by

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (2.11)

The Christoffel symbols are comprised of products of the metric tensor and derivatives of
the metric tensor. Hence ultimately the Ricci scalar R and Ricci tensor Rµν that show up
in the EFE are determined by the metric gµν . From this, one can see that the left-hand
side of the EFE is encompassed completely by the spacetime geometry of the manifold.

In contrast, the right-hand side of the EFE packages information regarding the content
on the spacetime manifold. In (2.7), Tµν is the energy-momentum tensor. In cosmological
contexts, the perfect fluid description is often a good description, which then gives the
form for the energy-momentum tensor as

Tµν = (ρ+ p)UµUν + pgµν , (2.12)

where Uµ is the spacetime four-velocity of the fluid.

In summary, Einstein’s equations comprise a system of coupled nonlinear second-order
partial differential equations. In the form expressed in (2.7), since the left-hand side is
dependent on the geometry of the spacetime manifold and the right-hand side includes
all dependencies to the matter content in the Universe, the EFE capture the interactions
between spacetime and matter.
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2.2 Einstein Field Equations from Field Theory

By using the Einstein-Hilbert action

SEH =
M2

P

2

∫ √−gR d4x, (2.13)

where MP = 1/
√

8πG in natural units is the reduced Planck mass, one can also derive the
EFE (2.7) from the Lagrangian formalism by using Hamilton’s Principle of Least Action.
Varying this action using standard methods in variational calculus, one finds that the
variation δSEH yields a summation of terms that include variations of the metric and the
Ricci tensor, which by performing integration by parts and simplifying yields [75]:

δSEH = M2
P

∫
d4x
√−g

[
Rµν −

1

2
Rgµν

]
δgµν , (2.14)

where δgµν is the variation of the inverse metric tensor gµν . From this, since the stationary
points of the action are given by δS/δgµν = 0 (gµν is our “field” here), classical field theory
yields

1√−g
δSEH

δgµν
= Rµν −

1

2
Rgµν = 0, (2.15)

and we recover the EFE (2.7) for vacuum, where Tµν = 0. In order to incorporate a non-
empty Universe, we must include it into our action. Hence if the total action is denoted
by S, then

S = SEH + SM , (2.16)

where SM is the action for some cosmological content (ie. matter). Variation of the total
action, ie.

δS = δSEH + δSM , (2.17)

and defining the energy-momentum tensor in this way as

Tµν = − 2√−g
δSM
δgµν

, (2.18)

yields the EFE (2.7) for a general non-empty Universe with energy momentum tensor
defined above. As we will see later on, the Lagrangian formalism is very useful in deriving
how cosmological perturbations behave.
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2.3 The Friedmann Equations

The Friedmann-Lemâıtre-Robertson-Walker metric is given by

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
, (2.19)

where r is a spatial coordinate with dimensions of distance and κ is a curvature parameter
with dimensions of inverse distance squared. a(t) is the scale factor, a quantity that defines
the relative size of the Universe at some time t. If one denotes the time today as t0, then
the usual convention is to take a(t0) = 1. By approximating the matter and energy as an
isotropic perfect fluid, one can write the four velocity for a comoving observer as

Uµ = (1, 0, 0, 0). (2.20)

Hence the stress-energy tensor with one upper and one lower index can be written conve-
niently as

T µν = diag(−ρ, p, p, p). (2.21)

Substitution of the FLRW metric (2.19) and the stress-energy tensor (2.21) into the EFE
(2.7) gives a set of equations known as the Friedmann equations :

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (2.22)

ä

a
= −4πG

3
(ρ+ 3p), (2.23)

where ȧ = da/dt and ä = d2a/dt2. Although these are technically both Friedmann equa-
tions, (2.22) is commonly referred to as the Friedmann equation and (2.23) is known as
the second Friedmann equation. A common quantity in literature is the expansion rate of
the Universe, called the Hubble parameter (or constant):

H =
ȧ

a
, (2.24)

commonly taken to be in units of km/sec/Mpc. With this definition, the Friedmann
equations can be re-expressed in terms of H and Ḣ = dH/dt as

H2 =
8πG

3
ρ− κ

a2
, (2.25)

Ḣ +H2 = −4πG

3
(ρ+ 3p). (2.26)
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2.4 Standard Cosmology

With the Friedmann equations in place, one can now make conventional definitions to
frame the dynamics of the Universe in a convenient way. Still following the perfect fluid
prescription, one can define an equation of state parameter w, such that

p = wρ, (2.27)

where p is the fluid pressure and ρ is the fluid density as usual. This provides a sim-
ple relationship between the pressure and density of the cosmological components. For
convenience, one can define the critical density as

ρc =
3H2

8πG
, (2.28)

and define the dimensionless density parameter as

Ωi =
ρi
ρc
, (2.29)

where the index i is used to denote the type of cosmological content, except for curvature.
For the special case of spatial curvature4,

ρK = − 3κ

8πGa2
, ΩK = − κ

a2H2
. (2.30)

If the total density is made up of the sum of all the individual components, ie.

ρ =
∑

i

ρi, (2.31)

then dividing out the first Friedmann equation by H2 and rewriting in terms of Ωi,

1 =
∑

i

Ωi, (2.32)

where the index i denotes the types of cosmological contents, including curvature. To sim-
plify even further, given the energy momentum tensor Tµν in the perfect fluid description,
one can use conservation of energy 0 = ∇µT

µ
0 with (2.27) to get [75]:

ρ̇

ρ
= −3(1 + w)

ȧ

a
. (2.33)

4The quantities ρK and ΩK are not actual densities like the rest of the components, but are just a
conventional definition that one takes to write the Friedmann equation conveniently.
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Table 2.1: Usual suspects for cosmological content in the Universe following a perfect fluid
description p = wρ.

Type of content w Relationship to a
Matter (m) 0 ρm = ρm0a

−3

Radiation (r) 1/3 ρr = ρr0a
−4

Curvature (K) -1/3 ρK = ρK0a
−2

Vacuum (Λ) −1 ρΛ = ρΛ0

If the equation of state parameter wi for a type of cosmological content is constant, then
integrating (2.33) gives the general solution of the form for each component i:

ρi = ρi0a
−3(1+wi) = ρi0a

−ni , (2.34)

where ρi0 is the constant of integration that corresponds to the value of ρi evaluated at
some initial time t0 (usually taken to be the current day). Table 2.1 shows the equation of
state parameter wi for each cosmological component along with the respective relationships
to the scale factor a. Since each cosmological component evolves at a separate rate with
respect to a, then one can also write the Friedmann equation in terms of the present-day
densities and the scale factor:

H2 =
8πG

3

∑

i

ρi =
8πG

3

(
ρm0a

−3 + ρr0a
−4 + ρK0a

−2 + ρΛ0

)
, (2.35)

of alternatively, if divided out by the current value of the Hubble parameter H0,

H2 = H2
0

(
Ωm0

a3
+

Ωr0

a4
+

ΩK0

a2
+ ΩΛ0

)
. (2.36)

From equations (2.35) and (2.36), one can see that the cosmological components contribute
to the expansion of the Universe at different rates. In particular, different epochs in our
cosmological history will have been dominated by different components. For instance due
to the a−4 scaling for the radiation energy density, one expects that when a was very small
the contribution from the radiation term to have been dominant over the other terms,
barring the radiation density Ωr from being zero. At some value of equilibrium arm, the
a−3 term will start to dominate over the a−4 term, which then the matter component in
the Friedmann equations would contribute the most to the expansion rate. Similarly, the
constant density term ΩΛ will start to dominate over the matter density at some scale amΛ.
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Note that in a general Universe with nonzero spatial curvature, the curvature term would
take over after the matter dominated era before the constant term due to the a−2 scaling.
However, the spatial curvature density has been measured to be nearly zero, and hence we
ignore contributions of curvature in the Friedmann equations5. Thus in their respective
eras, we can isolate the contribution to the Friedmann equation to solve for a as a function
of time t.

2.4.1 Cosmological Distances

Proper and Comoving Distances

Note that there are several notions of distance in a cosmological setting due to the fact that
space is expanding. The first matter at hand is to distinguish between proper (physical)
and comoving distances. A comoving distance is the distance between two points without
the effect of the expansion of the Universe. The proper distance is the actual distance in
physical space, with the effects of spatial expansion included. The relationship between
these two distance measures is simple:

Dp(t) = a(t)r, (2.37)

where Dp(t) is the proper distance and r is the comoving distance, which for an emission
time te and observation time t can be written as (assuming that κ = 0),

r =

∫ t

te

dt′

a(t′)
. (2.38)

Note that this allows one to compute the maximum comoving distance that a light ray
could travel by taking the emission time to te = 0, oftentimes called the (comoving) particle
horizon:

Dp(t) =

∫ t

0

dt′

a(t′)
. (2.39)

Two particles that are separated by comoving distances larger than the horizon Dp(t) will
not be able to communicate in time t. As I will discuss later on, this is an important issue
that comes up in the historical cosmological puzzles.

5A vanishing curvature has deeper implications for cosmology, in the form of the flatness problem. This
will be discussed in more detail in section 3.1.
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Figure 2.1: Comparison of the cosmological components with respect to the scale factor
a for a Universe without spatial curvature (ΩΛ = 0). From this plot one can see that
radiation dominates for a < arm, matter dominates for arm ≤ a ≤ amΛ, and Λ dominates
afterwards for a > amΛ. The initial conditions were given by Ωm0 = 0.3,Ωr0 = 10−5, and
ΩΛ = 0.7.
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Cosmological Redshift

Rather than looking at distances or cosmological pasts using the scale factor, an intuitive
indicator for distance and time is the cosmological redshift of a signal z. Since the Universe
is expanding, the wavelength of an emitted signal will increase as it propagates. Hence
the longer a signal travels, the larger the observed wavelength, which in physics is a phe-
nomenon known as redshift. It is also related to the scale factor in a similar manner, so
that

1 + z =
λo
λe

=
a(t0)

a(te)
, (2.40)

where λ is the wavelength of the signal and the subscript e corresponds to quantities
at emission while the subscript o corresponds to quantities at observation. With this
definition, the Friedmann equation in the form (2.36) can be written as

H2 = H2
0

[
Ωm0(1 + z)3 + Ωr0(1 + z)4 + ΩK0(1 + z)2 + ΩΛ0

]
= E(z)2H2

0 , (2.41)

where E(z) is a commonly defined expression that captures the evolution of the density
parameters. With this, the comoving distance can also be rewritten to be a function of
redshift as

r =
1

H0

∫ z

0

dz′

E(z′)
, (2.42)

which can either by integrated numerically or analytically to acquire the total comoving
distance to an object at redshift z.

Angular Diameter Distance

The angular diameter distance DA is another useful distance measure in cosmology where
one wishes to compare angular sizes with physical sizes. It is defined as the ratio of an
object’s physical transverse size to its angular size, and is given by [128, 219]:

DA =
r

1 + z
. (2.43)

Luminosity Distance

In addition, there is another distance measure known as the luminosity distance, which is
used in the flux-luminosity relation as

F =
L

4πD2
L

, (2.44)

13



where F is the flux at the luminosity distance DL and L is the luminosity6. The luminosity
distance can also be related to the comoving and angular diameter distances for a source
at redshift z by [128, 219]:

DL = (1 + z)r = (1 + z)2DA. (2.45)

While there are other types of distances measurements in cosmology [128, 219], these are
the only ones that are relevant for this thesis. Figure 2.2 shows the different cosmological
distance measures discussed.

2.4.2 Matter dominated era

At early enough times, when a−3 was the dominant term in the Friedmann equation,
the Universe was in a matter dominated era. Ignoring all other terms in the Friedmann
equation, then

H2 =
ȧ2

a2
∝ 1

a3
=⇒ ȧ ∝ 1

a1/2
, (2.46)

which when solved yields

am(t) ∝ t2/3. (2.47)

2.4.3 Radiation dominated era

At even earlier times, when a−4 was the dominant contributing term in the Friedmann
equation, the Universe was in a radiation dominated era. Similar as above, considering
only the dominant radiation term in the Friedmann equation,

H2 =
ȧ2

a2
∝ 1

a4
=⇒ ȧ ∝ 1

a
, (2.48)

which when solved yields

ar(t) ∝ t1/2. (2.49)

6There is also another way to see the luminosity distance using the apparent and absolute magnitudes

of a source. From this perspective, the luminosity distance is defined by DL = 10
m−M

5 +1 pc, where m is
the apparent magnitude and M is the absolute magnitude.
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Figure 2.2: Log-Log Comparison of the different cosmological distances normalized by
the Hubble distance 1/H0. The initial density parameters were taken for simplicity as
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diverge quickly. In particular, the luminosity distance DL grows by an extra power of z
compared to r, while the angular distance DA falls quickly due to the inverse relation to
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2.4.4 Λ dominated era

At late times when a � 1, the contributions of a in the denominator in Friedmann’s
equation forces all of the terms except for the Λ-term to become negligible. In the late
Universe, the dominating contribution to the expansion is from the cosmological constant
Λ. In that case,

H2 =
ȧ2

a2
∝ ΩΛ =⇒ ȧ ∝ a, (2.50)

and so

aΛ(t) ∝ eHt. (2.51)

Hence in a cosmological constant-dominated Universe, the expansion is exponential with
the rate of expansion given by H.

2.4.5 Cosmological history

By separating out the individual components of the Universe and solving the Friedmann
equation, we were able to find the time evolution of the scale factor in those scenarios.
However, for the times in the Universe’s history where multiple components contributed to
the expansion at similar scales, then the approximations for the single component solutions
are not sufficient. In the end for a proper history of our Universe, one must solve the
Friedmann equation with all of the components

H0t =

∫ a

0

da√
Ωm0a−1 + Ωr0a−2 + ΩK0 + ΩΛ0a−2

. (2.52)

Doing so will let us look at the transition eras in between the single component dominated
eras. Figure 2.3 shows the scale factor a as a function of the time parameter H0t, where
H0 is the present day measurement of the Hubble parameter H.

Tracing back in time, one can see that the relative size of the Universe a goes to zero.
This is the fundamental idea of the Standard Big Bang (SBB) model, in which the Universe
is birthed from an initial spacetime singularity. One must take caution in these results for
our cosmological history however; several assumptions were made throughout this first
section to arrive at this model, which are summarized again as [59]:
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Figure 2.3: History of the expansion factor a(t) assuming a multi-component Universe with
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the red dashed line to the right of the blue dot represents the future. One can observe
that in present-day the Universe has just entered the Λ dominated era, hence the Universe
is expanding at an accelerated rate (which has been observationally confirmed as well
[184, 201]. The initial conditions for the density parameters when solving the Friedmann
equation were Ωm0 = 0.3, Ωr0 = 10−5, and ΩΛ = 0.7.

17



1. The cosmological principle says that the Universe is homogeneous and isotropic on
sufficiently large scales. This allowed for a simplification of the expansion rate of the
Universe that we implicitly asserted in the FLRW metric such that

a(t,x) = a(t). (2.53)

In other words, the expansion of space is the same in all directions at every point on
large enough scales.

2. The interactions between spacetime and cosmological content in the Universe are
governed by the EFEs (2.7).

3. The perfect fluid description is a sufficient description to capture the cosmological
components in the Universe.

In summary, the SBB is a result stemming from Einstein’s equations and the FLRW metric,
which together show how our expanding Universe has dynamically evolved over the course
of our cosmological history, starting with a spacetime singularity.

18



Part I

Cuscuton Bounce as an Alternative
to Inflation
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Chapter 3

The Very Early Universe

The early Universe is a moment in our cosmological history that well precedes the formation
of galaxies and stars that make up the cosmos today. While the radiation temperature
is currently sitting at approximately 2.73 K, the early Universe entails the era when the
radiation temperature was roughly 104 K [219]. In this era, the energy density of radiation
was well above the energy density of matter. The early Universe is an epoch that includes
important phases in the history of our Universe such as nucleosynthesis and recombination.

While the physics of the early Universe is generally very well agreed upon, one can turn
back the clock even further to a much more controversial era in our cosmological history
known as the very early Universe. The very early Universe captures the very first moments
in our Universe, even hotter and more dense than the early Universe. In this section I will
introduce the current paradigm for the very early Universe, and note some of the problems
with the model. I will then discuss an alternative to the current paradigm known as a
cosmological bounce, that can address some of the potential issues.

3.1 Cosmological Puzzles

Despite the many successes of the SBB model, two1 cosmological puzzles gathered attention
in the mid-late 1900s for not having a suitable answer from SBB cosmology.

1Some cosmologists refer to a third cosmological puzzles as well – the Monopole problem.
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3.1.1 Flatness Problem

Several cosmological observations favour a vanishing spatial curvature parameter ΩK . How-
ever this is the value of the curvature parameter today, which has evolved over several
cosmological epochs. If one traces this back to when the temperature was about T ≈ 104

K, then |ΩK | . 10−4. Following this argument further, in order to acquire this level of
vanishing curvature at T = 104 K, tracing this back even further to an earlier state of
the Universe gives |ΩK | . 10−16 when T ≈ 1010 K [219]. Although it is possible that the
spatial curvature could have coincidentally taken this initial condition, the SBB model did
not have any physical justifications for it. This challenge to the SBB model is known as
the Flatness problem, appropriately named for the apparent fine-tuning problem of the
initial conditions for the spatial curvature of the Universe.

3.1.2 Horizon Problem

The Nobel prize winning detection of the Cosmic Microwave Background (CMB) [183]
launched cosmology into its golden age, and also pointed out the an issue with the SBB
model. The observed isotropy of the CMB temperature suggests that the patches in the
sky had to have reached thermal equilibrium at some point in their history. In other words,
the patches had to have been causually connected at an instance in time. To be in casual
contact, the particles must be inside their respective comoving horizons, previously defined
as

Dp(t) =

∫ t

0

dt′

a(t′)
. (3.1)

Two patches on the CMB can be associated using the angular diameter distance DA.
However, calculation of the particle horizon size at the time of last scattering gives a result
of order Dp ≈ H−1

0 (1 + zL)−3/2 while calculation of the angular diameter distance gives a
result of order DA ≈ H−1

0 (1 + zL)−1 [219], where zL is the redshift at the surface of last
scattering. Thus the angle in the sky that the horizon at last scattering is today would be

θ =
Dp

DA

≈ (1 + zL)−1/2, (3.2)

which for a last scattering redshift of zL ≈ 1100 gives θ ≈ 1.6◦ [219]. This would imply
that a vast majority of the CMB sky are causually disconnected, and so under the SBB
model, there would be no physical explanation to the homogeneity of the CMB radiation
temperature. This problem is known as the Horizon problem.

21



3.2 Inflation

3.2.1 Physical Intuition

In the 1980s inflation was developed as a potential resolution to the abovementioned prob-
lems [122, 160, 28, 158, 159]. The inflationary paradigm refers to a period of accelerated,
exponential expansion of the Universe in a metastable state called the false vacuum [161] in
which the Universe, although empty, has a very large and approximately constant energy
density.

In order to address the flatness problem, recall that the density parameter for curvature
is given by

ΩK = − κ

a2H2
. (3.3)

One potential possibility to address the very small value of ΩK in the early Universe is
to have a cosmological epoch in which 1/(aH)2 was decreasing, so that the curvature gets
“smoothened” out. In other words, we wish to have

0 >
∂(aH)−1

∂t
=
∂ȧ−1

∂t
= − ä

ȧ2
. (3.4)

Since ȧ2 > 0, we must have that ä > 0 – an accelerated period of expansion. The parameter
1/(aH) is often called in literature as the comoving Hubble radius/horizon [205]. One can
also rewrite the comoving particle horizon in terms of this 1/(aH) (ignoring bounds for
now), so that

Dp(t) =

∫
dt

a(t)
=

∫
da

Ha2
=

∫
1

aH
d ln a. (3.5)

From here, one can see that if the comoving Hubble radius is large, then the comoving
particle horizon would also be large. Hence if this inflationary period had a decreasing
comoving Hubble radius, then it must have been larger in the past. Thus an inflationary
period with an accelerated expansion would solve the flatness problem, while also being able
to solve the horizon problem if the comoving Hubble radius was large enough in the past.
In the next sections, I will present the requirements to solve these problems analytically.
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3.2.2 Background Inflationary Cosmology

By thinking of the inflaton φ as a free scalar field in de Sitter space, the action for the
inflaton is given by

Sφ =

∫
d4x
√−g

[
−1

2
∂µφ∂µφ− V

]
, (3.6)

so that the total action with coupling to gravity is given by

S = SEH + Sφ =
1

2

∫
d4x
√−g

[
M2

PR− ∂µφ∂µφ− 2V
]
. (3.7)

By adopting the definition of the stress tensor in equation (2.18), one can read off the
density ρφ and pressure pφ for the inflaton from (2.21):

ρφ =
1

2
φ̇2 + V (φ), (3.8)

pφ =
1

2
φ̇2 − V (φ). (3.9)

Thus the background evolution of a Universe equipped with a FLRW metric under the in-
fluence of the inflaton is given by substituting (3.8) and (3.9) into the Friedmann equations
(2.25) and (2.26)

H2 =
1

3M2
P

[
1

2
φ̇2 + V (φ)

]
, (3.10)

Ḣ = − 1

2M2
P

φ̇2. (3.11)

Variation of the action respect to the inflaton field also yields the equation of motion (also
called the Klein-Gordon equation)

φ̈+ 3Hφ̇+ V ′(φ) = 0, (3.12)

where the prime here denotes the derivative of the potential V with respect to the inflaton
field φ.

3.2.3 Accelerated Expansion and Slow-Roll

Up to this point, we have treated the inflaton field to just be a free scalar field, in which an
accelerated expansion is not guaranteed. In order to get a phase of accelerated expansion,
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one requires that

ä > 0. (3.13)

Recall from the second Friedmann equation in the form of (2.23) that one requires

ρ+ 3p < 0, (3.14)

in that case. For a approximately exponential expansion, we require that w ≈ −1 so that
the scale factor evolves exponentially as a function of time as we saw in (2.51). If one
wants w ≈ −1, one can then see that for p ≈ −ρ to hold true, then equations (3.8) and
(3.9) show that the potential term must dominate over the kinetic term:

1

2
φ̇2 � |V (φ)|. (3.15)

If the potential term dominates enough to ignore the kinetic term in the first Friedmann
equation (2.25), then it can be approximated by

H2 ≈ 1

3M2
P

V (φ). (3.16)

By moving the potential term to the other side in equation (3.15), the two results from
the Friedmann equations (3.11) and (3.16) gives motivation to define the first slow-roll
parameter ε as

ε = − Ḣ

H2
� 1, (3.17)

called the first slow-roll condition. This condition guarantees accelerated expansion of the
cosmological background, but puts no constraints on the duration of this phase.

We know that the events in the very early Universe must eventually transition into a
radiation dominated era while at the same time, solving the cosmological puzzles presented
in section 3.1. This gives rise to the second slow-roll condition, which requires that the
acceleration of the field itself is sufficiently small enough so evolution of the inflaton is
governed primarily by the friction term in the Klein-Gordon equation (3.12), ie.

φ̈� −3Hφ̇. (3.18)

By differentiating the second Friedmann equation (3.11),

Ḧ = − 1

M2
P

φ̇φ̈. (3.19)
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Isolating for φ̈ and substituting it into the second slow-roll condition (3.18) after moving
all terms to the left-hand side gives motivation to define the second slow-roll parameter η
as

η = − φ̈

Hφ
= − Ḧ

2HḢ
� 1. (3.20)

If the acceleration of the field is sufficiently subdominant to the velocity, this allows one
to ignore the φ̈ term from the Klein-Gordon equation for φ, so that

3Hφ̇ ≈ −V ′(φ). (3.21)

One can also define the slow-roll parameters with respect to the shape of the inflaton
potential V (φ), so that

εV =
M2

P

2

(
V ′

V

)2

, (3.22)

ηV = M2
P

V ′′

V
. (3.23)

Assuming the slow-roll conditions, using the first Friedmann equation in the form of (3.16)
and the Klein-Gordon equation for the inflaton in the form of (3.21), we can see that

εV ≈ ε, (3.24)

ηV ≈ ε+ η. (3.25)

These slow-roll parameters give restrictions on the inflaton potential to guarantee a period
of exponential expansion. The first slow-roll condition (3.17) is equivalent to saying that
we are on a background solution of the Friedmann equations, where H changes slowly with
time, while the second slow-roll condition (3.20) is equivalent to saying that we are on an
attractor solution, so that this period will last sufficiently long [205].

3.2.4 e-folds

While the two slow-roll parameters give conditions for the inflaton background for an
sufficiently long enough period of exponential expansion, the inflationary epoch must end
sometime and eventually transition into other cosmological epochs. Inflation ends when
the approximation w ≈ −1 is no longer valid, which is equivalent to saying ε ≈ η ≈ 1. In
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order to quantify exactly how long the inflationary epoch must be in order to solve the
cosmological puzzles, we define the number of e-folds N as

ae
a

= eN , (3.26)

where ae corresponds to the scale factor at the end of inflation. With this definition,

dN = −d ln a, (3.27)

and so basic change of integration variables gives

N =

∫ ae

a

d ln a =

∫ te

t

H dt =

∫ φe

φ

H

φ̇
dφ. (3.28)

If one uses the slow-roll approximations in the previous section, then we can write the
number of e-folds as a function of the potential shape:

N ≈
∫ φ

φe

V

M2
PV
′ dφ. (3.29)

Thus given a potential for the inflaton field, one can calculate the number of e-folds ex-
pected to gauge the amount of expansion during the inflationary period. To connect the
number of e-folds required with the cosmological puzzles, we start by noting that during
the inflationary period, in the slow-roll approximation where H evolves slowly (ie. ε� 1),
then one can take H = HI to be nearly constant. Hence

ΩK = − κ

a2H2
I

∝ 1

a2
. (3.30)

If we assume that the curvature parameter ΩK had a value of order unity at the beginning
of inflation (ie. ΩK(ai) ∼ 1), then

ΩK(ae) ≈ ΩK(ai)
a2
i

a2
e

∼ a2
i

a2
e

= e−2N , (3.31)

where the subscript i denotes the quantities at the beginning of inflation. Relating this
quantity to the curvature today,

ΩK(a0) ≈ ΩK(ae)
a2
iH

2
I

a2
0H

2
0

∼ e−2N

(
aiHI

a0H0

)2

. (3.32)

26



This allows one to put a lower bound on the number of e-folds required to make ΩK(a0)
sufficiently small:

N & ln

(
aeHI

a0H0

)
. (3.33)

Coincidentally, this lower bound also appears when we try to solve the horizon problem.
Since the horizon problem corresponds with the homogeneous behaviour of the CMB, we
are concerned with the particle horizon at the last scattering surface. If tL denotes the
time of the last scattering surface, then

Dp(tL) = a(tL)

∫ tL

ti

dt

a(t)
≈ a(tL)

∫ te

ti

dt

a(t)
, (3.34)

where we assumed that majority of the integral contribution is from the period of inflation.
Just replacing N with N = Hi(ti − te) in (3.26), we also know that the scale factor a(t)
during inflation can be written as

a(t) = a(te) exp(HI(t− te)). (3.35)

Substituting this into (3.34),

Dp(tL) ≈ a(tL)

aeHI

(eN − 1) ≈ a(tL)

aeHI

eN , (3.36)

since eN is expected to be the dominant term. The angular diameter distance at the last
scattering surface is approximately [219]

DA(tL) ≈ a(tL)

a0H0

. (3.37)

Thus the requirement that Dp(tL) & DA(tL) gives

N & ln

(
aeHI

a0H0

)
, (3.38)

the same as approximately what we needed for the flatness problem. While these values are
just lower bounds for the number of e-folds, a more careful calculation yields a requirement
of around 60 e-folds [155, 219, 38] to solve these problems. Hence as long as the inflationary
epoch lasts sufficiently long, the cosmological puzzles previously mentioned are resolved.
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3.3 Inflationary Perturbation Theory

3.3.1 Perturbation Theory

While there are several frameworks to perform cosmological perturbation theory [174], a
convenient method is to use the Arnowitt-Deser-Misner (ADM) formalism [30] alongside a
comoving gauge choice, which simplifies the calculations in the context of inflation [165].
The ADM formulation is a Hamiltonian formulation, in which spacetime is decomposed
into foliations of non-intersecting spacelike hypersurfaces Σt labelled by their time t [189].
This spacetime decomposition allows for a standard Hamiltonian approach in classical
field theory, where one can consider the field configurations and their conjugate momenta
to derive the momentum and energy constraints. In the case of general relativity, the
Hamiltonian is a functional of the induced spatial metric and its associated conjugate
momentum [189].

The ADM metric is given by

ds2 = −N2dt2 + hij(N
idt+ dxi)(N jdt+ dxj), (3.39)

where N is the lapse function, N i is the shift vector, and hij is the spatial induced metric.
The spatial hypersurfaces Σt are described by the three-dimensional spatial Ricci tensor
R

(3)
µν and the extrinsic curvature

Kij =
1

2N
(ḣij −∇iNj −∇jNi) =

1

N
Eij, (3.40)

where the dot above a variable corresponds to a time derivative. Eij is just a conveniently
defined tensor that is related to the extrinsic curvature Kij with a factor of the lapse
function. Figure 3.1 shows a graphical representation of the ADM decomposition. With
this, the action (3.7) can be written as

S =
1

2

∫
d4x
√
hN

[
M2

PR
(3) − 2V +M2

PN
−2(EijEij − E2) +N−2(φ̇−N i∂iφ)2 − hij∂iφ∂jφ

]
.

(3.41)

Now we will set MP = 1 for brevity. From (3.41), one can vary the action with respect to
the shift N i and lapse N to find the Hamiltonian constraint

R(3) −N2(EijE
ij − E2) = (φ̇−N i∂iφ)2 + hij∂iφ∂jφ+ 2V, (3.42)
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Figure 3.1: Visual representation of the lapse function and shift vector in the ADM de-
composition, reproduced from Ref. [189]. Here γ is used to indicate some curve. Note that
tα is a tangent vector to the curve γ at the hypersurface and eαa are tangent vectors on Σt.
nα is the unit normal to the hypersurfaces.

and the momentum constraint

∇i[N
−1(Ei

j − Eδij)] = 0. (3.43)

While these are technically the equations of motion for the shift and lapse, since no time
derivatives for N i or N are present, the shift and lapse are completely fixed by these
equations.

At this point the only dynamical parameters are the induced metric hij and the inflaton
field φ. Two possible gauge choices are the spatially flat gauge in which the scalar metric
perturbations are taken to be zero, or the comoving gauge in which the inflaton perturba-
tions are vanishing. We will fix our gauge with the comoving gauge. As mentioned, in the
comoving gauge one is “comoving” with the inflaton field φ, and so perturbations for φ are
taken to be zero:

φ = φ0 + δφ = φ0. (3.44)
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Only considering the scalar perturbations to the metric, the metric can be written by2:

hij = a2(1 + 2ζ)δij, (3.45)

where ζ is the comoving curvature perturbation and δij is the spatial flat metric. The lapse
function and the shift vector also carries perturbations3

N = 1 + α, Ni = ∂iβ. (3.46)

By substituting these quantities into the constraint equations (3.42) and (3.43), we get
that [165, 38]

α =
ζ̇

H
, ∂2β = −∂

2ζ

H
+ a2 φ̇2

0

2H2
ζ̇ . (3.47)

One can then substitute these quantities into the inflaton action (3.41) and after several
levels of integration by parts along with using the background equations [38], the second
order action is then given by

S(2) =

∫
d4x a3ε

(
ζ̇2 − 1

a2
∂iζ∂

iζ

)
, (3.48)

where ε = φ̇2
0/(2H

2) is the first slow-roll parameter as before. By introducing the conformal
time τ related to the cosmic time t by

dt = a dτ, (3.49)

the action above can be written as

S(2) =

∫
dτd3x a2ε

[
(ζ ′)2 − (∂ζ)2

]
, (3.50)

where ∂2ζ = ∂iζ∂iζ and the prime denotes the derivative with respect to conformal time.
Varying this action with respect to ζ and then using a Fourier transform to get the equation
of motion for ζk,

ζ ′′k + (3 + η)Hζ ′k +
k2

a2
ζk = 0. (3.51)

2Note that in reality vector perturbations and tensor perturbations would also enter this expression,
but we omit them for brevity.

3Here we use the notation of Baumann [38], which use α and β as the perturbations to the lapse and
shift, while Maldacena [165] uses N1 and ψ as the perturbation quantities. Note that the vector modes
here are already separated out.
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For k � aH, ie. super-Hubble scales, this equation takes the form

ζ ′′k + (3 + η)Hζ ′k ≈ 0, (3.52)

and so ζk = const. is a solution. Since the other solution is decaying in most cases,
this means that super-Hubble modes do not evolve, an important feature to be discussed
shortly.

Although (3.51) gives an ODE for ζk, it is often useful to think of the Mukhanov-Sasaki
variable, which is given in this case as

v = a
√

2εζ = zζ, (3.53)

where we defined z = a
√

2ε. With this definition, the equation of motion for vk can be
derived from (3.50) to be

v′′k +

(
k2 − z′′

z

)
vk = v′′k + ω2

kvk = 0. (3.54)

This is just a harmonic oscillator with frequency

ω2
k =

(
k2 − z′′

z

)
. (3.55)

These expressions give the dynamics for the perturbation quantity ζk and vk. In the next
section we will see how to set initial conditions for these perturbations and see the physical
significance of the results once evolved.

3.3.2 Quantizing Perturbations

Bunch-Davies Vacuum

When dealing with quantum field theory in curved spacetimes, the choice of a physical
vacuum is not always clear. In a de Sitter geometry, there is a conventional choice of a
vacuum called the Bunch-Davies vacuum. Consider a massless, free scalar field φ in a de
Sitter background:

S =
1

2

∫
d4x
√−ggµν∂µφ∂νφ =

1

2

∫
dτd3xa2

[
(φ′)2 − (∂iφ)2

]
, (3.56)
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where τ is again the conformal time defined by dτ = a dt. In this de Sitter universe, the
scale factor is given by

a(τ) = − 1

Hτ
, −∞ < τ < 0. (3.57)

As before, one can define a canonical field (the Mukhanov-Sasaki variable from before) as
v = aφ, so that varying the action in Fourier space gives the equation of motion

v′′k +

(
k2 − a′′

a

)
vk = v′′k + ω2

kvk = 0, (3.58)

where ωk acts as a frequency for the mode’s oscillation. While the general solution of
equation (3.58) is given by

vk(τ) = c1

(
1− i

kτ

)
e−ikτ + c2

(
1 +

i

kτ

)
eikτ , (3.59)

for c1, c2 constants, there is a usual choice of mode functions that is preferred in inflationary
contexts. After the appropriate canonical quantization, if we require that the vacuum state
is also the ground state of the canonical Hamiltonian operator for the field4, then the unique
physical vacuum state called the Bunch-Davies vacuum is given by

vk(τ) =
1√
2k

(
1− i

kτ

)
e−ikτ . (3.60)

The Bunch-Davies mode function corresponds to the initial condition that is physically the
instantaneous lowest-energy vacuum in the τ → −∞ limit [173]. Although the expectation
value of the fluctuations is zero, the variance of the fluctuations is non-zero and can be
encapsulated by the dimensionless power spectrum

Pvkk (τ) =
k3

2π2
|vk(τ)|2. (3.61)

The power spectrum of vacuum fluctuations is the signature produced in the very early
Universe that would sources the anisotropies embedded in the CMB. Although the previous
expression is a general expression for a power spectrum for each mode k, not all modes k
are of physical interest. In particular, the Hubble radius acts as an important boundary
between observable and unobservables modes. The comoving Hubble radius is given by

DH =
1

aH
. (3.62)

4For a review on the necessary canonical quantizations as well as the derivation for the Bunch-Davies
vacuum, see either Mukhanov [173] or Baumann [38].
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Modes with a wavelength larger than the Hubble radius (or k . aH) are called superhorizon
or super-Hubble modes, while modes with a wavelength smaller than the Hubble radius
(or k & aH) are called subhorizon or sub-Hubble modes. Due to the expansion of the
Universe, sub-Hubble modes can cross the horizon and enter the super-Hubble regime. In
a de Sitter background, the sub-Hubble modes oscillate since the k2 term dominates in
the frequency defined in (3.58), while super-Hubble modes have their amplitudes freeze
out [173, 219]. There are thus three separate regions to classify perturbations using the
Hubble radius [173]:

1. The mode stays subhorizon for the duration of inflation. These modes oscillate during
the entire inflationary period, and have their spectra suppressed. Hence these modes
are not of interest.

2. The mode starts in the superhorizon regime and crosses the horizon during the infla-
tionary period. The mode experiences a freeze-out, in which it stops oscillating and
growing, and remains roughly constant afterwards. These are the modes of interest
for cosmological observations.

3. The mode starts in the superhorizon regime and remains superhorizon throughout
the inflationary period. These are modes with wavelengths much larger than the
visible Universe, and are not of interest.

Hence when one considers the observational imprints of inflation in the CMB, they are
interested in the second types of modes generated during inflation. Thus one often takes
the superhorizon limit of the power spectrum.

Scalar Perturbations

For the more general case of massive fields, the equation of motion is given by [173]

v′′k +

(
k2 +m2a2 − a′′

a

)
vk = 0. (3.63)

In de Sitter space, this becomes

v′′k +

(
k2 − ν2 − 1/4

τ 2

)
vk = 0, (3.64)
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where

ν2 =
9

4
− m2

H2
. (3.65)

This has the general solution

vk(τ) =
√
−τ
[
c1H

(1)
ν (|kτ |) + c2H

(2)
ν (|kτ |)

]
, (3.66)

where H
(1)
ν and H

(2)
ν are Hankel functions of the first and second kind respectively and

c1, c2 are constants. Now returning to the context of the inflaton, the term z′′/z in the
ODE (3.54) is an effective mass term, in which

z′′

z
=
ν2 − 1/4

τ 2
, (3.67)

where

ν ≈ 3

2
+ ε+

η

2
. (3.68)

By asserting the Bunch-Davies initial condition, the Bunch-Davies mode function is given
by

|vk(τ)| =
√
π

2

√
−τ |H(1)

ν (−kτ)|. (3.69)

For superhorizon modes, where kτ → 0, the power spectrum for the curvature perturba-
tions is given by

Pζk(τ) = lim
kτ→0

k3

2π2
|ζk(τ)|2 =

1

z2
lim
kτ→0

k3

2π2
|vk(τ)|2 =

1

16π2

H(τ)2

ε(τ)
(−kτ)−2ν+3, (3.70)

where the time-dependence of H(τ) and ε(τ) are expected to cancel the time dependence
in the final factor [38], so that if we let k∗ be a reference scale that exits the horizon at
time τ∗ = −1/k∗, then the power spectrum is given by

Pζk = As

(
k

k∗

)ns−1

(3.71)

where H∗ and ε∗ are those quantities evaluated at τ = τ∗. In the slow-roll approximation,
one can write the parameters As and ns as a function of the potential shape [38]:

As =
1

24π2

1

εV

V

M4
P

, (3.72)

ns = 1− 6εV + 2ηV . (3.73)

34



Tensor Perturbations

Similar to how the curvature perturbations entered the metric, one can also have tensor per-
turbations to the spatial metric. Tensor perturbations are the leftover traceless-transverse
parts of the metric after decomposition into Scalar-Vector-Tensor (SVT) form. These
perturbations can be written as5:

hij = a2(δij + 2γij). (3.74)

Note that we are able to treat the scalar and tensor perturbations separately because to
second order they remain uncoupled [174]. To second order, the action for the tensor modes
is given by

S(2) =
M2

P

8

∫
dτ d3x a2

[
(γ′ij)

2 − (∇γij)2
]
, (3.75)

where ∇ is the spatial derivative operator. By again using Mukhanov variables and setting
the Bunch-Davies vacuum, the superhorizon limit of the power spectrum is given by [38]

Pγk = At

(
k

k∗

)nt

, (3.76)

where

At =
2

π2

H2
∗

M2
P

, (3.77)

nt = −2ε∗. (3.78)

3.4 The Inflationary Paradigm – Current State

The inflationary paradigm is a largely successful theory that not only solves the cosmo-
logical puzzles, but also makes several predictions which can be tested by cosmological
observations. Despite its successes, the inflationary paradigm has been a topic of debate
for cosmologists, with several developments from both sides of the debate [135, 123]. I will
outline some of the successes and criticisms that inflation has come to face in the recent
years below. Then I will briefly discuss an alternative to inflation known as a cosmological
bounce.

5Similar to before, to only consider one type of perturbation quantity, we omit scalar and vector
perturbations in this expression, which would be present in reality.
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3.4.1 Successes of Inflation

Some of the earliest data about our Universe that is available to us is embedded in the
CMB. Inhomogeneities in the CMB are imprints of an early cosmological era that can used
as a probe of the very early Universe. The CMB offers a plethora of data that can be used
to differentiate not only between inflationary models, but between the various very early
Universe models in general.

From the amplitudes for scalar and tensor perturbations, we can define the tensor-to-
scalar ratio as

r =
At
As

= 16ε∗. (3.79)

Inflationary models are generally tested using the scalar spectral index ns and the tensor-
to-scalar ratio r. The Planck collaboration [22] has most recently measure values of

ns = 0.965± 0.004, (3.80)

r0.002 < 0.06, (3.81)

where r0.002 corresponds to the tensor-to-scalar ratio assuming k∗ = 0.002h−1 Mpc. The
slight deviation from 1 for the scalar index is often described as a “nearly scale-invariant
power spectrum with a slight red tilt”. One of the successes of the inflationary paradigm is
that in general, inflationary models are capable of producing a power spectrum for scalar
perturbations that have a scalar index consistent with the observational data. When one
builds a model of the very early Universe, it must at least be able to satisfy these two
requirements from the CMB.

3.4.2 Criticisms of Inflation

Singularity Problem

Inflation does not seem to resolve the initial singularity problem. It has been pointed out
[47, 48, 49], that inflationary cosmologies are still geodesically past-incomplete. Therefore
one must still turn to novel physics in order to properly formulate the physics before
inflation.
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Eternal Inflation

Generic inflationary models also have the issue of eternally inflating [211, 217, 159]. The
false vacuum decays at an exponential rate while also expanding in space. Hence even
though the false vacuum is decaying, it never completely decays away [122]. This means
that pocket universes may start popping out of the false vacuum just like our Universe.
This process can go on forever, indicating an infinite number of pocket universes, often
called the Multiverse. Currently our understanding of Multiverse remains fairly incomplete
– for example it is not well understood how to define probabilities and test if a universe
such as ours is even a likely outcome of inflation, since anything that can happen will
happen an infinite number of times [123].

Smoothing Inhomogeneities

When the Planck 2013 results were released [15, 16, 17], Ijjas et al. [135] claimed that
the inflationary epoch is able to smoothen the inhomogeneities of the Universe only if the
Universe is almost smooth to begin with. Guth et al. [135] followed up with a response to
Ijjas et al., claiming false assumptions. Full numerical relativity simulations have shown
arguments for both camps [112, 100, 79, 131], and is still a topic of recent debate.

Trans-Planckian Problem

As seen in Section 3.3, the framework for describing vacuum fluctuations was quantum
field theory. The trans-Planckian problem refers to the notion that if the inflationary
period lasted even slightly longer than necessary to solve the cosmological puzzles, then
the cosmological perturbations at physical scales today would have to have started in
the sub-Planckian regime [166]. In other words, the wavelengths λ of the fluctuations
generated during inflation would have been λ < `P , where `P is the Planck length. In
this trans-Planckian regime, the semi-classical approximation of gravity could break down
and quantum field theory in curved spacetime may not be a valid theory to describe the
evolution of these initial fluctuations.

Swampland Conjectures

Recently, the inflationary paradigm has started coming under pressure from some in the
string theory community in the form of the Swampland Conjectures. These conjectures

37



propose a criteria for a valid effective field theory that can be compatible with string
theory. Effective field theories that are not compatible with string theory are said to
lie in the swampland. An inflationary model with the necessary parameters taken from
observational data [25] are believed to be in tension with the swampland conjectures [181,
65, 178, 23, 13, 144]. In addition, the previously mentioned trans-Planckian problem
has been promoted to the Trans-Planckian Censorship Conjecture (TCC) [39, 40], which
proposes that models which encounter the trans-Planckian problem are inconsistent with
string theory.

3.4.3 Bouncing Cosmology

To address the several potential problems of inflation, many alternative proposals to this
paradigm have been suggested over the years. While the list of alternatives is fairly long,
for the purpose of this thesis, I will focus on one type of alternative known as a cosmolog-
ical bounce, or a bouncing cosmology. Rather than a big bang, in which the Universe is
believed to be a manifestation resulting from spacetime singularity or some quantum grav-
ity state in the past, the idea of a cosmological bounce is to circumvent it in the regime of
semiclassical gravity6. A cosmological bounce is a scenario in which the Universe under-
went a contraction phase before “bouncing” at a minimal spatial volume, then entered a
phase of expansion as we observe today.

Other than being free of a spacetime singularity, cosmological bounces can also naturally
avoid the trans-Planckian problem. As long as the energy scale of the bounce corresponds to
the energy scales in inflationary models, then the observed wavelengths from the CMB will
always have had wavelengths larger than the Planck length, avoiding the trans-Planckian
regime [55].

Generally in order to generate a bounce, novel physics that go beyond GR or the stan-
dard model must be introduced. While the number of bouncing cosmologies is abundant,
there are generally three types of novel physics from which a cosmological bounce can be
realized [55]. By choosing to stay in the context of Einstein GR, one can introduce modified
matter that violates the null energy condition (NEC), one of the energy conditions from
Einstein GR given by p+ρ ≥ 0. To show why the NEC must be violated for a non-singular
bounce, consider a simple bouncing Universe with zero curvature. In this scenario, H → 0
at the bounce since the Universe must swap from a negative ȧ to a positive ȧ. In this case,
since H also swaps signs, Ḣ > 0. Combining the first and second Friedmann equations

6Although in principle quantum gravity models can also produce bouncing scenarios.
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(2.25) and (2.26) gives

Ḣ = −4πG(ρ+ p). (3.82)

Since Ḣ > 0, then ρ + p < 0 and so the NEC is violated. This approach has historically
been dangerous because violating the NEC can lead to ghost instabilities or a superlu-
minal propagation speeds [95, 200, 197]. Alternatively, one can choose to keep standard
matter and introduce some modifications to GR, but still within the regime of validity
for semi-classical gravity. Finally, there are bouncing cosmologies that are motivated from
(super)string theory in hopes of a UV-complete theoretical background7. Another way
to categorize bouncing cosmologies is from an effective field theory perspective, in which
bounce models are either singular or non-singular.

Just as inflationary models can be constrained or ruled out by recent cosmological ob-
servations, bouncing cosmologies can also be restricted in the same way. For instance,
a cosmological bounce that fails to acquire a nearly scale-invariant power spectrum for
perturbations consistent with observations is not favoured. Another important feature of
bouncing cosmologies is the production of gravitational waves. Although most bouncing
models do not produce an observable spectrum of gravitational waves, bouncing cosmolo-
gies which can generate a spectrum of gravitational waves have also been proposed (for
example, [63, 56, 57]). The detection of a primordial spectrum of gravitational waves can
thus have significant implications for the modelling of the very early Universe [60].

3.5 Summary

In this chapter I presented an introductory background to the very early Universe. In par-
ticular, the inflationary paradigm was discussed. Inflationary models are able to solve the
historical cosmological puzzles while at the same time being able to produce observational
signatures that are consistent with the currently available observational data. Although
several aspects of inflation are still up for debate, it is important to consider alternatives
to inflation that are consistent with observations, such as cosmological bounces. With the
onset of more cosmological data becoming available to us, it is important to preserve con-
sistent models while eliminating inconsistent models to gain more insight about the very
first moments of our cosmological history.

7It is not clear if quantum gravity is the resolution to the singularity problem it would have to be
manifested as bounce. Also note cosmological bounces can also be realized as a hybrid of these classes.
For example, one can implement a modification to both matter and GR.
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Chapter 4

Spectrum of Cuscuton Bounce

It has been recently shown that a cosmological bounce model based on Cuscuton gravity
does not have any ghosts or curvature instabilities. In this chapter we will explore whether
Cuscuton bounce can provide an alternative to inflation for generating near scale-invariant
scalar perturbations. While a single field Cuscuton bounce generically produces a strongly
blue power spectrum (for a variety of initial/boundary conditions), we demonstrate that
scale-invariant entropy modes can be generated in a spectator field that starts in adiabatic
vacuum, and is kinetically coupled to the primary field. Furthermore, our solution has
no singularity, nor requires an ad hoc matching condition. We also study the generation
of tensor modes (or gravitational waves) in Cuscuton bounce and show that while they
are stable, similar to other bounce models, the produced spectrum is strongly blue and
unobservable.

4.1 Introduction

Over the past forty years, the inflationary paradigm [121, 160] has gradually become the
widely accepted theory to describe the initial conditions of the Universe. Originally moti-
vated to mainly address the flatness and horizon problems, inflationary models also provide
an impressive mechanism to generate seeds of fluctuations in the gravitational background
on cosmological scales (length scales of gigaparsecs, ∼ 1060`P ) from vacuum quantum fluc-
tuations on extremely small scales (length scales . H−1 ≈ 10−19Å ∼ 106`P ) [205]. As the
scales corresponding to these fluctuations cross the Hubble horizon during inflation, their
power spectra become nearly scale-invariant (ns ' 1, nt ' 0) for both scalar modes and
tensor modes, and they also have coherent phases which leads to acoustic peaks in the
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temperature, polarization, and matter power spectra. This near scale-invariance predic-
tion is consistent with cosmological observations such as the Cosmic Microwave Background
(CMB) measurements by WMAP [127] and Planck1 [22] as well as the Baryon Acoustic
Oscillation (BAO) in galaxy survey power spectra (e.g., [26]). In addition, the precision
measurement of cosmological parameters such as the value of spectral index ns can be used
to exclude or constrain many inflationary models [25].

From the theoretical perspective, there is no consensus on a theory beyond the Stan-
dard Model of particle physics that can be used to verify or eliminate inflation as a viable
theory. Still, one can test the validity of the effective field theory and semi-classical grav-
ity assumptions that are used in inflation and their consistency with current theoretical
candidates to describe quantum gravity. For example while the effective field theory itself
and loop corrections during inflation seem to be under control [33, 67], it is still important
to understand whether or not inflation faces issues such as the trans-Planckian problem
[166, 61, 62]. The latter can arise from the period of inflation being possibly too long such
that the physical wavelengths of cosmological observations today correspond to sub-Planck
length scales at the beginning of inflation. If that is the case then the Bunch–Davies vac-
uum may not be the correct initial conditions and the theory needs to be further extended
in order to adequately set the initial conditions [32]. Therefore, it is still not clear whether
inflation provides a fully self-consistent theoretical framework for setting initial conditions
in the early Universe.

More recently, the trans-Planckian problem has been promoted to the Trans-Planckian
Censorship Conjecture (TCC) [40, 39], positing that models that encounter the trans-
Planckian problem are inconsistent with string theory, i.e. they lie in the “swampland”
[181, 65, 178, 182]. The swampland conjectures provides a list of criteria for effective field
theories that can arise from string theory. However, constraints on inflationary models
from observational data are believed to be in strong tension with the swampland conjec-
tures [13, 92, 23, 144, 157]. Regardless of whether the swampland conjectures are to be
believed, the question of fine-tuning/naturalness has also been a matter of much contention
in the cosmology communities. In the language of smoothing [112, 79, 131], the dynamical
attractor solution for inflation is a flat, homogeneous and isotropic universe, but it has
been argued that is not necessarily a quantum smoother [211, 217]. In addition to these,

1We note that the Planck collaboration observed a spectral tilt of ns = 0.965 ± 0.004, which is 8σ
away from scale invariance (ns = 1). However, from the model building point of view the more significant
development is getting ns close to one. In the language of inflation that translates into first realizing a de
Sitter back-ground geometry that produces exact scale invariant perturbations, then by slightly deviating
from it and allowing a varying potential rather than a cosmological constant produce the deviation from
one.
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inflationary spacetimes are also eternal in nature [159, 122] and seem to be geodesically
past incomplete, which implies they do not address the singularity problem [47]. To sum-
marize, taking everything into account from theory to observations, one could argue that
in spite substantial circumstantial evidence for an early phase of inflation [117, 115, 116],
its compatibility within a larger theoretical high energy physics framework is far from cer-
tain. With this being said, the trans-Planckian problem is an ongoing topic of discussion
with arguments for both sides of the debate (for a relatively recent argument against the
trans-Planckian problem, see [97]).

With all this in mind, it is natural to ask whether alternative models of the Early
Universe can avoid these suggested shortcomings and/or be less contrived. One natural
alternative that could directly address the horizon and singularity problems is a bounce
scenario in which the Universe initially undergoes a contracting phase, pauses momentarily
and then proceeds to enter an expansion phase. Over the years, many different bouncing
models have also been proposed and studied in detail [106, 64, 191, 70, 68, 69, 113, 73, 71,
72, 149, 140, 134, 133, 93, 98, 80, 83, 82], each with their own set of defining characteristics
and obstacles. These bouncing models can be classified into two main categories, either
singular bounce models or regular (non-singular) bounce scenarios. In particular, the
regular bouncing cosmologies have a finite curvature and energy density at the bounce,
naturally addressing the singularity problem. However, these models generically violate
the Null Energy Condition (NEC) ρ+p ≥ 0, which in general relativity and most theories of
modified gravity leads to either instabilities or a superluminal speed of sound [95, 200, 197,
154, 145].2 Remarkably, it was shown recently that a bouncing cosmology generated by
Cuscuton gravity [51, 52] can work around all these difficulties. Cuscuton gravity [20, 19] is
an infrared modification to gravity, which is implemented though an auxiliary field without
its own dynamical degrees of freedom. Similar to general relativity, in order to induce a
dynamical cosmological background, one has to include other matter fields. At its simplest
form, this auxiliary field is a non-canonical scalar field that is incompressible. The studies
in [51, 52] show that a Cuscuton bounce does not have any ghost instabilities and the
scalar perturbations remain stable throughout the bounce phase. This crucial result relies
on the fact that, while providing a mechanism for the bounce, the Cuscuton field does
not have any dynamical degrees of freedom.3 This allows for an effective violation of the

2A superluminal propagation speed may not necessary imply that causality is violated [34]. However,
for configurations that allow superluminality, UV completeness can also be an issue [14]. For further
discussion on superluminality, interested readers should refer to some of the many papers discussing this
topic and the references therein [99, 154, 34, 14, 93, 169, 170, 171].

3This has been shown for Cuscuton without coupling to gravity and pertubatively around cosmological
backgrounds. However, [118] suggests that a generic inhomogeneous initial condition for Cuscuton may
lead to a propagating degree of freedom. However, whether under such conditions the equations remain
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NEC for the background while the matter fields remain safe. The stability results for
these perturbations were explored in further detail [192] for both Cuscuton gravity as well
its extended version [137]. Note that a bounce scenario need not exclude an inflationary
phase. For example, a bouncing universe followed by an inflationary phase can address
the singularity problem and also generate the seeds for inhomogeneities in the universe.
However, even a more interesting possibility is to see if there is a way to address both of
these aspects without requiring an inflationary phase.

The goal of this work is mainly to investigate that second possibility, i.e. study the
power spectrum of scalar perturbations in a Cuscuton bounce cosmology. We start with
section 4.2 which provides a review of the Cuscuton bounce scenario presented in [52]
and the reason this model is free of scalar instabilities throughout the bounce. Next, we
show in section 4.3 why the tensor perturbations are also free of instabilities through the
bounce. The power spectra for scalar perturbations in single field Cuscuton bounce model
are explored in section 4.4, where we argue despite various initial conditions, the adiabatic
cosmological perturbations cannot produce nearly scale-invariant power spectra. We will
then show in section 4.5 that by adding another scalar field that is kinetically coupled
to the primary matter field, a near scale-invariant power spectrum can be obtained for
entropy perturbations, either before or after the bounce phase. Finally, we return to the
tensor perturbations in section 4.6 and show that they produce an unobservably small, but
strongly blue power spectrum assuming adiabatic vacuum initial condition. We end this
chapter by making our concluding remarks in section 4.7.

4.2 The Single Field Cuscuton Bounce Scenario

In this section, we will review the Cuscuton bounce model and the stability studies that
were carried out in [52]. The general action, including the Einstein-Hilbert term, the
kinetic and potential terms for Cuscuton field ϕ, and a dynamical scalar field π, with
minimal coupling and no potential is given by:

S =

∫
d4x
√−g

[
M2

P

2
R− µ2

√
−DµϕDµϕ− V (ϕ)− 1

2
DµπD

µπ

]
, (4.1)

where Dµ denotes the covariant derivative.4 As demonstrated in [52], choosing a potential
V (ϕ) with some generic features around the bounce and far from it can induce a cosmolog-

well-posed and system is still physical or not is not clear.
4In general, the kinetic term for Cuscuton action can be taken to be negative or positive. However, we

are using the negative sign since only that can induce a regular bounce solution.
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Figure 4.1: Cuscuton potential V (ϕ) for a range of ϕ. For this plot, ϕ∞ = 5m is fixed
while m is allowed to vary. The construction of this potential along with the selection of
the necessary parameters are covered in detail in [52].

ical bounce solution. In this scenario, a potential consistent with those features was taken
to be

V (ϕ) = m2(ϕ2 − ϕ2
∞)−m4

[
e(ϕ2−ϕ2

∞)/m2 − 1
]
, (4.2)

where m,µ and ϕ∞ are free parameters. Figure 4.1 gives a visual intuition about the
shape of the Cuscuton potential for different values of µ and a fixed ϕ∞. For the rest of
the chapter, we will fix values of m = 0.05MP and ϕ∞ = 5m, taking the same values as
the original bounce paper.

Considering a Friedmann–Lemâıtre–Robertson–Walker (FLRW) universe, variation of
the action (4.1) with respect to the Cuscuton field ϕ results in the following constraint
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equation:

V ′(ϕ0)− 3 sgn(ϕ̇0)µ2H = 0, (4.3)

where ϕ0(t) is the homogeneous component of the ϕ-field. Without loss of generality,
in what follows, we only consider self-consistent solutions where ϕ̇0 > 05 This equation
determines the relationship of the Cuscuton field ϕ0 to the Hubble parameter H, and
establishes that the sign of V ′(ϕ0) will determine whether background is in contracting or
expanding phase. Furthermore, as long as V ′(ϕ) is bounded H will not diverge. Note that
since there are no time derivatives of the Cuscuton field ϕ in this equation, this confirms
the lack of dynamical degrees of freedom at zeroth order in perturbations for ϕ around a
flat FRW background. Therefore, a homogeneous FRW background cannot evolve with
just the Cuscuton field and another matter field with dynamical degrees of freedom (in
this case taken to be π) is required. Since π is a free field, its corresponding equation of
motion for the background is given by

0 = 3Hπ̇0 + π̈0, (4.4)

where π0 is the homogeneous component of the π-field. Note that it is from eq. (4.4) that
one can see that ρπ ∝ a−6. This was done intentionally by setting the potential for the
π-field to be zero, which results in the equation of state parameter w ∼ 1. By doing this,
the anisotropies will never take over the background density, which is one of the generic
problems in other bounce models that lead to the BKL instability [42, 156, 37]. Finally,
the Einstein equations for the background lead to the following Friedmann equations:

H2 =
1

3M2
P

[
1

2
π̇2

0 + V (ϕ0)

]
(4.5)

Ḣ = − 1

2M2
P

[
−µ2|ϕ̇0|+ π̇2

0

]
, (4.6)

which when combined with eq. (4.3), provides an expression for the time evolution for ϕ,

ϕ̇0 =

V (ϕ0)

M2
P
− 3H2(ϕ0)

V ′′(ϕ0)
3µ2

− µ2

2M2
P

. (4.7)

In fact, by solving this first order ODE, all of the other dynamics in the background can
be re-expressed in terms of ϕ0, which then acts as a clock. This leads to very efficient
numerical computations.

5Note that our analysis is in the regime where X = −DµϕD
µϕ > 0 is globally satisfied. Therefore, ϕ̇0

cannot be zero. For more discussion about the two different branches of the theory and the cosmological
backgrounds, interested readers should refer to the original Cuscuton papers [20, 19].
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Figure 4.2: Background quantities for Cuscuton bounce. The left figure is the scale factor
a(τ) where the bounce was set at τb = 0 and a(τb) = 1 and τ denotes the conformal time.
The figure on the right is the Hubble parameter H(τ).

Figure 4.2 illustrates how the scale factor a and Hubble parameter H change with
respect to time for different values of µ for this model. For what follows, we will also fix
µ = 0.3MP to match with the original Cuscuton bounce paper [52].

With the background quantities established, the next step is to study cosmological
perturbations in this model. Similar to the standard theory of cosmological perturbations,
the ADM formalism [30, 189] can be applied here by splitting the 3 + 1 spacetime into a
spacelike foliation and a time direction, where the metric is given by:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt). (4.8)

Here N and N i represent the lapse and shift functions while hij is the induced metric
on the three-dimensional spacelike hypersurfaces. After fixing one of the available gauge
choices, hij can be expressed in terms of the curvature perturbations ζ and the tensor
perturbations γij as

hij = a2[δij(1 + 2ζ) + γij]. (4.9)

Expressing the perturbations for the Cuscuton field as ϕ = ϕ0 + δϕ and the canonical
scalar field as π = π0 + δπ, one can fix the leftover gauge choice by working in the unitary
gauge for π where δπ = 0. Next, varying the action with respect to N and N i leads to
Hamiltonian and momentum constraints while varying with respect to δϕ provides the
constraint equation for Cuscuton. Writing this equation in Fourier space, the relationship
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Figure 4.3: Independent solutions for ζk for three different scales. The figure on the left
is with boundary condition set as ζk(0) = 0 and ζ ′k(0) = 1 at the bounce, while the figure
on the right is with ζk(0) = 1 and ζ ′k(0) = 0. Both figures demonstrate that scalar mode
solutions are non-singular and stable through the bounce.

between ζk, ζ̇k, and δϕk reduces to

δϕk = ϕ̇0
(k/a)2Hζk + P ζ̇k

[(k/a)2H2 + P (3H2 + P + Ḣ)]
, (4.10)

where P = 1
2M2

P
π̇2

0.6 Finally, thorough computation of action up to second order in pertur-

bations in Fourier space yields

S
(2)
ζ =

M2
P

2

∫
dt d3k az2

[
ζ̇2
k −

c2
sk

2

a2
ζ2
k

]
, (4.11)

where cs and z are functions that are both time and scale dependent but reduce to their
corresponding standard forms on small scales (large k). The exact form of these functions
are given by

c2
s =

(k/a)4H2 + (k/a)2B1 + B2

(k/a)4H2 + (k/a)2A1 +A2

(4.12)

z2 = 2a2P

(
(k/a)2 + 3P

(k/a)2H2 + P (3H2 + P + Ḣ)

)
, (4.13)

6Note that since for simplicity in our calculations, we are setting a = 1 at the bounce, the comoving
wave number k represents physical scale at the bounce and not the physical scale at present time.
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where the following background dependent quantities were introduced to simplify the above
expressions:

A1 = P (6H2 + Ḣ + P ) (4.14)

A2 = 3P 2(3H2 + Ḣ + P ) (4.15)

B1 = P (12H2 + 3Ḣ + P ) + Ḣ

(
2Ḣ +

HḦ

H

)
(4.16)

B2 = P 2(15H2 − P + Ḣ)− PḢ
(

12H2 − 2Ḣ +
3HḦ

Ḣ

)
. (4.17)

These quantities were studied in detail in [51, 52] and interested readers are encouraged to
refer to them for further discussion. To summarise, it was shown that first of all the sign
of the kinetic term is always positive and hence there are no ghost instabilities. Second,
that the independent solutions for ζk are stable and non-singular across the bounce both
on small and large scales. Figure 4.3 illustrates this for three sets of these solutions for

different scales of k. Note that the scales for k are given in terms of
√
Ḣb ≈ 0.01MP to

give context of the scales in our model. This is by construction since Ḣb depends on the
model parameters.

4.3 Stability of Tensor Perturbations Through the

Bounce

While the thorough investigations discussed in the last section show that the scalar sector of
perturbations in Cuscuton bounce is stable, one could still ask whether the same statement
is valid for tensor mode perturbations as well. In fact, it is often the case that the analysis
of the tensor perturbations is less complicated than the analysis for scalar perturbations.
The reason is that since

√−g that couples to Cuscuton and matter fields only gets ζ
corrections at second order and terms with spatial covariant derivatives are already at
second order in fields variations, the only perturbative contribution to action (4.1) from
γij at second order is through the standard Einstein-Hilbert term. Therefore, action for
tensor modes in our Cuscuton model is no different than the usual standard,

S(2)
γ =

M2
P

8

∫
dτd3k a2(γ′2ij − (∇γij)2), (4.18)

48



−1000 −750 −500 −250 0 250 500 750 1000
τ/tP

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

γ
p

k = 0.10
√
Ḣb
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Figure 4.4: Independent solutions to tensor modes equation of state for three different
scales. The figure on the left is with boundary condition set to γp(0) = 0 and γ′p(0) = 1,
while the figure on the right is with γp(0) = 1 and γ′p(0) = 0. Both figures demonstrate
solutions are non-singular and stable through the bounce.

where the conformal time τ is defined as dt = a dτ and ∇ is the differential operator for
spatial dimensions, so that (∇γij)2 = ∂aγij∂

aγij. The tensor perturbation can be split up
into the appropriate tensor polarizations in the + and × directions,

γij =
∑

p=+,×

γpe
p
ij, (4.19)

where γp represents the distinct amplitudes for the two polarization modes of the gravi-
tational waves p = × and p = +, and epij represent the fixed polarization basis vectors

with the property epije
ij
p′ = 2δpp′ . Without loss of generality, assuming that the propagation

direction for the gravitational waves is in the z-direction, the tensor perturbation can be
written in matrix representation as

γij =



γ+ γ× 0
γ× −γ+ 0
0 0 0


 . (4.20)

Then converting to Fourier space, the action in eq. (4.18) simplifies to

S(2)
γ =

M2
P

4

∑

p=×,+

∫
dτd3k a2(γ′2p − (∇γp)2), (4.21)

Next, similar to scalar modes, one can obtain the equation of motion for γp and then check
to see if the independent solutions for tensor modes are non-singular and stable. Once
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Figure 4.5: Log scale power spectrum for scalar perturbations (left) imposing adiabatic
initial conditions at τi = −108tP and (right) imposing instantaneous minimal energy con-
ditions at the bounce evaluated at a post time τf = 1000tP . Both cases exhibit very blue
power spectra.

again we see that the solutions are healthy for different scales in figure 4.4 for a set of
arbitrary conditions injected at the bounce. Therefore, there is no instability associated
with tensor perturbations in Cuscuton bounce either.

4.4 Power Spectrum for Scalar Modes in Single Field

Cuscuton bounce

As discussed in Section 4.1, while existence of an stable bounce by itself has interesting
implications for early universe and big bang singularity, another intriguing question is
whether it could also provide an alternative for inflation. In particular, if it can provide a
mechanism to produce curvature perturbations consistent with current data from adiabatic
vacuum quantum fluctuations or other initial/boundary conditions. In this section we
investigate this question for single field Cuscuton bounce and argue that this scenario as
it stands, cannot produce a near scale-invariant scalar power spectrum.

To study the generation of scalar perturbations, we start by introducing the Mukhanov-
Sasaki variable

vk = MP z(τ, k)ζk, (4.22)
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and turning the action (4.11) into the canonical form,

S(2)
vk

=
1

2

∫
dτ d3k

[
v′2k +

(
z′′

z
− c2

sk
2

)
v2
k

]
. (4.23)

This enables us to apply the standard field theory quantization scheme, where vk is pro-
moted to operators v̂k. We refer readers to [173] for a review on quantizing cosmological
perturbations in curved space-times. From here on we reserve the notation vk to denote the
mode functions corresponding to that operator, which also satisfy the classical equation of
state,

v′′k +

(
c2
sk

2 − z′′

z

)
vk = 0. (4.24)

In order to calculate the amplitude of perturbations one needs to a make choice about
initial/boundary conditions as well. We investigated the solutions to (4.24) under three
different possibilities and showed that none of them produce a near scale-invariant scalar
power-spectrum.

First, we started by setting the initial conditions at infinite past to adiabatic vacuum
state. Like inflation, one could argue that generating all the structure in the universe out
of vacuum quantum fluctuation is too impressive of an idea not to pursue. However, as we
know, since the cosmological background is time dependent, the state of minimum energy
also changes in time. In adiabatic regimes, where WKB approximations are satisfied, the
adiabatic vacuum initial condition [45] remains close to minimum energy state. In practice,
to impose that condition numerically, we selected the initial time, τi, long before the bounce
such that the condition of k2 � z′′

zc2s
was satisfied and then imposed the following relations

vk(τi) =
1√
2ωS

e−iωSτi , v′k(τi) = −i
√
ωS
2
e−iωSτi , (4.25)

where we have defined

ω2
S ≡ c2

sk
2 − z′′

z
. (4.26)

The second possibility we considered was imposing instantaneous minimal energy condition
at the bounce, τb = 0. Motivation for this choice is that since the model is symmetric in
time around the bounce, an underlying fundamental symmetry may enforce the fluctuation
into ground state at τb = 0, in order to preserve the symmetry7. This condition was set by

7Also see [53] for a different proposal regarding a CPT symmetric universe at big bang.
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imposing,

vk(τb) =
1√
2ωS

, v′k(τb) = −i
√
ωS
2
. (4.27)

For either of the conditions listed above, we solved the equation of motion (4.24) and
estimated the dimensionless power spectrum for ζ at a post bounce time through

Pζkk (τf ) =
k3

2π2
|ζk(τf )|2 =

k3

2π2M2
p

|vk(τf )|2
z2(τf )

. (4.28)

Figure 4.5 demonstrates the logarithmic scale dependence of the scalar power spectrum
against wave number k for the two different initial condition hypotheses. In both cases we
see that scale-invariance is not achieved, and both spectra are strongly blue.

In addition to these two initial conditions, we also considered thermal initial conditions
[164, 104, 163, 21]. If universe existed for a long period of time before the bounce and there
were additional interaction channels for fluctuations, they could have settled into a thermal
equilibrium as well. In this case, we assumed the thermal energy density in fluctuations is
subdominant to the background energy density in order to ignore back reaction effects. If
we assume thermal initial conditions, the resulting vacuum power spectrum will be adjusted
by an additional factor,

Pζkther. ini. = (1 + 2〈nk〉ini)Pζkvac. ini., (4.29)

where 〈nk〉 is the standard Bose-Einstein particle occupation number,

〈nk〉ini =
1

e
csk
aT − 1

. (4.30)

Note that cs, a and T are evaluated at the initial time, assuming that scalar mode excita-
tions were thermalized with temperature T .8 Therefore, taking thermal initial condition,
the power spectrum plotted on the left in figure 4.5 is adjusted by this new factor, which
is demonstrated in figure 4.6 for different values of temperature T .

We can see all three sets of initial conditions for the scalar modes result in power
spectra that exhibit a strongly blue tilt, inconsistent with observations. This is strong
evidence that a Cuscuton bounce using only one matter field is not enough to produce a
scale-invariant power spectrum for adiabatic perturbations, unless some new mechanism
is introduced. We end the discussion for scalar modes in a single field Cuscuton bounce
here. Since the modification to Cuscuton in section 4.5 does not affect tensor modes, we
will return to tensor modes in single field Cuscuton bounce in section 4.6.

8Note again that in our calculations, we are setting a = 1 at the bounce. The comoving wave number
k represents the physical scale at the bounce and not the physical scale at present time.
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Figure 4.6: The power spectrum for ζ in the case of thermal initial conditions. Again the
initial conditions were injected before the bounce at τi = −108tP and evaluated after the
bounce at τf = 1000tP . In this case the temperature of the background determines the tilt
of the power spectrum, but is still unable to acquire scale-invariance.
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4.5 Two Field Cuscuton Bounce and Power Spectrum

for Entropy Perturbations

As we discussed in previous chapter, the power spectrum for curvature perturbations in a
single field Cuscuton bounce is strongly blue. In fact, this result is consistent with what
has been observed in other generic bounce models proposed in the past. For example, in
the Pre-Big Bang scenario [113, 114], inspired by superstring theory, the power spectrum
for curvature perturbations exhibits a strong blue tilt with ns = 4. It has also been shown
that the single field Ekpyrotic models [140], generically produce a blue power spectrum
with a tilt of ns = 3 [81, 213, 36]. As we know, this is contradictory to the observational
precision measurements of the scalar power spectrum, such as those obtained through
CMB measurements [22]. However, note that mathematically speaking, scalar modes can
also include entropy (or isocurvature) perturbations in addition to the curvature (adia-
batic) perturbations. While the observations put very tight constraints on the present
day amplitude of entropy perturbations contributing to scalar anisotropies [25], they still
leave the possibility that given the numerous degrees of freedoms present in early universe,
these entropy modes were generated but then converted to curvature perturbations. In
this section we will provide an example of how entropy perturbations with a nearly scale-
invariant power spectrum could have been generated in Cuscuton bounce. This process is
sometimes referred to as the entropic mechanism [66, 177], in which an additional field in
the model sources the entropy perturbations that would later be converted into curvature
perturbations [150, 132, 153].9

We start by adding a second field, χ, to our action (4.1). Once again we choose the
simplest case such that the additional field only has a stabilized kinetic term (χ̇0 = 0), also
subdominant to the background. This field will not contribute to the Friedmann equations
at zeroth order, and leaves the background dynamics unchanged. Since the field is massless,
we need to allow for non-minimal coupling between this field and the dominant matter field
to produce an effective mass and to source perturbations in χ. In fact, as we see below,
if this coupling F (π̇,∇iπ, . . . ) is proportional to the dominant background matter density,
ρm, then power spectrum will automatically be scale-invariant. In this case, the action is

9Another possible mechanism inspired by S-branes in string theory, that has been more recently sug-
gested in [57, 56, 54] could also lead to near scale-invariant power spectrum. The key difference between the
two mechanisms is that as opposed to adding a new degree of freedom in entropic mechanism, in S-brane
scenario, a delta-function potential gets added to effective potential at the bounce, and is the driving force
for the actual bounce. Since our Cuscuton model gives us a non-divergent solution all across the bounce
without needing an additional mechanism to generate the bounce itself, we explore the implications of the
entropic mechanism for our power spectrum.
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given by

S =

∫
d4x
√−g

[
M2

P

2
R− 1

2
DµπD

µπ − 1

2
F (π̇,∇iπ, . . . )DµχD

µχ− µ2
√
−DµϕDµϕ− V (ϕ)

]
,

(4.31)

where ϕ is the Cuscuton field, π is the scalar field from before, and χ is the new additional
scalar field.10

As before, variation of the action at zeroth order in perturbations π = π0(t) + δπ(x, t)
and χ = χ0(t)+δχ̃(x, t) around the FLRW metric leads to background equations of motion.
The equation of motion for the Cuscuton field remains unchanged compared to the single
field case, while for the scalar fields π0 and χ0 we have

−1

2
χ̇0

2F ′(π̇0) + 3Hπ̇0 + π̈0 = 0 (4.32)

3F (π̇0)Hχ̇0 + F (π̇0)χ̈0 + π̈0χ̇0F
′(π̇0) = 0. (4.33)

Since we are assuming the energy density of the second field to be subdominant to the
preexisting matter field and negligible for the background, this condition is satisfied if we
simply set χ̇0 = 0 which in return makes the π-field and the Cuscuton field resume their
background evolution obtained in previous section. We will show later that this solution
is indeed stable and δχ̃ do not exhibit any instabilities. Therefore our assumption is
self-consistent. To summarize, under this simplification, adding a non-minimally coupled
stabilized scalar field to our Cuscuton bounce model does not change the background
dynamics.

Next, we study the behaviour of the cosmological perturbations under this additional
coupling in the model. In all our numerical calculations we are working in Planck units,
still in order to keep track of dimensions if we take χ to have dimension of mass, then
F (π̇0) is dimensionless. Therefore, from here on what we refer to as entropy perturbations
is described by the dimension-less variable δχ ≡ δχ̃

Mp
. Substituting this back in (4.31) and

calculating the contribution to the second order action from χ-field yields

S(2)
χ =

M2
p

2

∫
dτd3xa2F (π̇0)

[
(δχ′)2 − (∂δχ)2

]
=
M2

p

2

∫
dτd3x q2

[
(δχ′)2 − (∂δχ)2

]
,

(4.34)

10One difference between the Ekpyrotic and Cuscuton entropic mechanisms is that in the Ekpyrotic
scenario, the dynamics are generated from the Ekpyrotic potential for the matter field [140, 66], while in
the Cuscuton scenario, both potentials for the scalar fields are zero and the dynamics are generated from
the Cuscuton potential.
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Figure 4.7: Comparison between the scale-invariance case of 2/τ 2 (blue) and the Cuscuton
q′′/q (red). By construction, q′′/q approaches 2/τ 2 far from the bounce.

56



where we have also defined q2 ≡ a2F (π̇0). Introducing the canonical variable u,

u = Mp q δχ, (4.35)

the action (4.34) can be rewritten as

S(2)
χ =

1

2

∫
dτd3x

[
u′2 − (∂u)2 +

q′′

q
u2

]
. (4.36)

The equation of motion in Fourier space is then given by

u′′k + ω2
u(τ, k)uk = 0, (4.37)

where the effective frequency ωu for these modes is

ω2
u(τ, k) =

(
k2 − q′′

q

)
. (4.38)

Up to this point, we have not yet provided any description on the analytical dependency of
the coupling function F (π̇) to π̇. However, a very important lesson familiar to most early
universe cosmologists is that if

q′′

q
∼ 2

τ 2
, (4.39)

then (4.37) turns into a modified Bessel equation, which upon imposing vacuum initial
conditions leads to nearly scale-invariant power spectrum. This is the magic that occurs
to spectator fields on a de Sitter space-time backgrounds or tensor/scalar modes during
slow-roll inflation which also effectively behave as spectator fields on a quasi-de Sitter
background. Note that in general, equation (4.39) has two independent solutions:

q(τ) =
1

Λτ
+M2τ 2, (4.40)

and different values of constant Λ and M could in principle correspond to different mass
scales [141, 117]. For example, in the case of a slow-roll inflationary model, for scalar modes

q ∼ a
√
ε ∼

√
ε

Hτ
approximately and for tensor modes q ∼ a ∼ 1

Hτ
. Therefore, in this case

M = 0 and the value of Λ ∼ H√
ε

for scalars and Λ ∼ H for tensors determines the amplitude
for perturbations. Similarly in our model, we can also find a general form of the coupling
function F (π̇0) such that entropy modes are nearly scale-invariant. In principle we could
allow for the most generic case, where both Λ and M contributions exist. However, since

57



−1000 −750 −500 −250 0 250 500 750 1000
τ/tP

−40000

−30000

−20000

−10000

0

10000

20000

30000

40000

δχ

k = 0.10
√
Ḣb

k = 1.00
√
Ḣb
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Ḣb

−1000 −750 −500 −250 0 250 500 750 1000
τ/tP

−15

−10

−5

0

5

10

15

δχ

k = 0.10
√
Ḣb
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Figure 4.8: Two independent solutions for mode equation of δχ perturbations. The figure
on the left corresponds to δχ(0) = 0 and δχ′(0) = 1, while the figure on the right is
obtained by setting δχ(0) = 1 and δχ′(0) = 0. Both figures admit non-singular solutions
through the bounce.

τ = 0 corresponds to the time of the bounce, unless Λ contribution is strictly zero then 1
Λτ

will always dominate the behaviour of q. Therefore, we proceed by considering q(τ) ≈ 1
Λτ

and obtain the dependence of F (π̇) to τ ,

F (π̇0) ≈ 1

a2

(
1

Λτ

)2

. (4.41)

Note that at this point, we are simply focusing on solutions that can lead to scale-invariance
itself. However, the next order effects which describe the precision value of spectral index
have to be determined by accuracy of the relation (4.41), which in the language of inflation
is translated to slow variation of Λ(τ) i.e. H(τ) in time, due to slow-roll parameters.

Next taking into account that the bounce transition period, where Cuscuton modifica-
tions become significant for the background, is a very brief period in Planck units (around
250 tp, see figure 4.2) and that it is unlikely to have a significant impact on the power spec-
trum on cosmological scales, we postulated that it should be sufficient that relation (4.41)
be satisfied when ρm is dominant. However, in that regime a2 ∝ τ and ρm ∝ a−6 ∝ τ−3

which implies 1
a2τ2
∝ ρm and we can consider

F (π̇0) ≡ 1

Λ2M2
p

(
1

2
π̇2

0

)
≈
(
H2

Λ2

)

a � ab

. (4.42)

In other words, interestingly in order for the theory to produce a near scale-invariant power
spectrum, χ field needs to have the most natural non-minimal coupling to π, i.e. its energy

58



density. Expressing this relation in terms of the variable q, yields

q(τ) =
1

ΛMp

√
1

2
π̇2

0. (4.43)

Figure 4.7 shows the comparison between q′′

q
≈ 2

τ2
11 and the Cuscuton model obtained

from (4.43). As expected, except in the vicinity of the bounce, the coupling function in
(4.42) leads to q′′

q
tracking 2

τ2
closely.

The magnitude of the coupling constant Λ adjusts the amplitude of the power spectrum
and it can be determined by comparison to the observational constraints. Physically, it
represents the strength of the non-minimal coupling of χ-fields to the density of π which
could arise from the underlying fundamental theory.

Once we assert the form of the coupling function from (4.42), then substituting q(τ)
from (4.43) into (4.38), the mode equation (4.37) can be solved numerically. Again the
advantage of our model is that since q′′

q
does not exhibit any divergences (see Figure 4.7), the

differential equation is non-singular at all times and does not require any ad hoc matching
conditions. As we discussed before, by construction we expect that imposing the adiabatic
vacuum initial conditions would lead to a scale-invariant power spectrum. However, to test
that, we need to impose the initial conditions numerically similar to the single field model.
Therefore, we require

uk(τi) =
1√
2ωu

e−iωuτi , u′k(τi) = −i
√
ωu
2
e−iωuτi , (4.44)

at an initial time τi, such that k|τi| � 1. Then, we estimate the power spectrum for
entropy perturbations at some later “snapshot” time, τf , before and after the bounce by

Pδχk (τf ) =
k3

2π2
|δχk(τf )|2 =

k3

2π2

|uk(τf )|2
M2

p q(τf )
2
. (4.45)

Figure 4.9 displays an example of a pre-bounce power spectrum, where we have set Λ =
10−3.5Mp and τf = −1000tP . The resulting power spectrum is indeed scale-invariant except

for values of k that correspond to modes that do not cross the freezing horizon i.e. k2 & q′′

q
|tf

and remain oscillatory. In our model these modes are close to Planck scale at the bounce
(k & 10−4MP ). Figure 4.10 shows the power spectrum for the same entropy modes after
they have gone through the bounce and evaluated at the time τf = 1000tP . The black

11Which is the approximate time dependence of q′′/q in slow-roll inflationary models.
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Figure 4.9: Pre-bounce power spectrum for χ-field perturbations evaluated at final time
τf = −1000tP before Cuscuton modifications start becoming significant. The adiabatic
vacuum initial condition is set at τi = −10−8tP and with Λ = 10−3.5Mp.
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Figure 4.10: Post-bounce power spectrum for χ-field perturbations evaluated at τf =
1000tP , well after Cuscuton modifications become negligible again. The vacuum initial
conditions are imposed at τi = −10−8tP and Λ = 10−3.5Mp. The smooth red line represents
a best fit through the numerical solution shown in black.
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line is the actual numerical result and red curve shows the best fitted smooth function
through the numerical result. As shown in the figure, the shape of the resulting power
spectrum remains scale-invariant for k . 10−4MP and is not impacted by the transition
trough the bounce. In fact, if we assume the universe transitioned into radiation at this
time, the actual modes of cosmological interest corresponding to CMB scales today would
be more than 10 orders of magnitudes smaller in k than the range showed in this plot
and are therefore even less impacted. Note that at this stage, from the model building
perspective, our goal was simply to check if this model can produce a close to scale-invariant
spectrum 12. Testing for the proximity of the numerical solution to exact scale-invariance,
in the range of 10−7MP . k . 10−4.5MP , we obtain ns − 1 ≈ −0.0036. Although this
result should not be compared to the actual observational tilt13, it achieves our main goal
of producing a solution which is nearly scale-invariant. As we mentioned before, when
producing the actual observational tilt, one also needs to take into account additional
effects such as the details of how the entropy modes are converted into adiabatic modes.
The conversion itself requires some additional mechanism, such as premodulated preheating
or the curvaton process. In Ekpyrotic models, the conversion of the entropy perturbations
have been studied in detail and can happen either before the bounce, during the contracting
phase [150, 151], or after the bounce [105]. We leave the study of these effects in Cuscuton
bounce for future work.

As a final note to end this section, Figure 4.10 demonstrates the impact of the bounce
transition on modes in the range 10−4MP . k . 10−3MP as well. Our result shows that
for these modes, the deviation of q′′

q
from 2

τ2
in vicinity of k2 ∼ q′′

q
crossing is significant.

However, as we pointed out earlier since these scales are near the Planck scale, in a non-
inflationary universe they would not be observable on cosmological scales.

4.6 Power Spectrum of Primordial Gravitational Waves

in Cuscuton Bounce

We now return back to tensor modes and look into the power spectrum of primordial
gravitational waves generated in Cuscuton bounce. While primordial gravitational waves
have not been detected yet, if ever detected, they could play a crucial role in distinguishing

12We reiterate that in analogy to inflationary models, this is similar to first realizing that spectator scalar
fields in de Sitter backgrounds generate scale invariant power-spectra. Then utilizing that observation and
implementing a slowly rolling potential, inflationary models can accommodate quasi-de Sitter backgrounds
where small deviations of ns from one is achieved by adjusting the derivatives of the potential.

13Current observation from PLANCK data [22] require ns = 0.965± 0.004.
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Figure 4.11: Logarithmic scale power-spectrum for tensor perturbations with vacuum
initial conditions set at τi = −108tP . The final time is taken as τf = 1000tP . Power
spectrum has the blue tilt of nt ∼ 2 with an amplitude which is many orders of magnitudes
below observable thresholds at cosmological scales.
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between inflationary and bouncing models. As has been argued in [116], there are some
basic arguments on why extracting enough power from the tensor quantum fluctuations
at extremely small scales and converting them to observable tensor modes at cosmological
scales relies on gaining a large number of e-foldings, which is possible during the inflationary
epoch but by construction is absent in bounce scenarios. Therefore, generally one does not
expect bounce models to produce observable primordial tensor modes. As we show here,
the same argument applies to Cuscuton bounce.

First, note that since χ-field does not couple to metric perturbations at second order,
the action for tensor modes given by (4.21), remains unchanged. Furthermore, since the
background evolution for the single field and two field Cuscuton bounce are the same, the
evolution of tensor modes in both scenarios are also identical. Once again, the quantization
procedure can be carried out by introducing the canonical variable vp for both polarizations
of the tensor modes [174, 58],

vp =
aMP√

2
γp, (4.46)

so that the action in Fourier space can be rewritten as

S(2)
vp =

1

2

∑

p=×,+

∫
dτd3k

[
v′2p (k, τ)−

(
k2 − a′′

a

)
v2
p(k, τ)

]
, (4.47)

and the equation of motion for each polarization vp is given by

v′′p +

(
k2 − a′′

a

)
vp = 0. (4.48)

Next, considering the adiabatic vacuum initial conditions by imposing

vp(k, τi) =
1√
2k
e−ikτi v′p(k, τi) = −i

√
k

2
e−ikτi , (4.49)

at τi such that k2 � a′′

a
|τi , we numerically solve equation (4.48) and evaluate the power

spectrum at some later time τf ,

Pγpk (k, τf ) =
k3

2π2
|γp(k, τf )|2 =

k3

2π2

|2vp(k, τf )|2
M2

P a2(τf )
. (4.50)

Our result shows that tensor modes never freeze out in pre-bounce transition and they
are not affected through the bounce either. Figure 4.11 displays the logarithmic scale
power spectrum for tensor modes evaluated post bounce, at τf = 1000tP and with vacuum
initial conditions set at τi = −108tp. As expected, the produced power spectrum retains its
vacuum sub-freezing tilt, i.e. nt ∼ 2 with an amplitude which is many orders of magnitudes
below observable thresholds at cosmological scales.
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4.7 Conclusion

In this work, we studied the power spectra of curvature, iso-curvature and tensor perturba-
tions in the Cuscuton bounce proposed in [52]. For curvature perturbations, we considered
three different initial conditions: standard adiabatic vacuum initial conditions, instanta-
neous minimal energy condition at bounce, as well as initial thermal condition. In all three
cases, the generated power-spectrum for scalar perturbations were found to be strongly
blue. Next, we investigated the possibility of a two field model, generating a nearly scale-
invariant iso-curvature/entropy power spectrum for scalar perturbations. We found that
this can be done with a very simple model with a spectator field that is kinetically coupled
to the primary matter field. This is a very interesting result since our solution does not
rely on any ad hoc matching condition across the bounce or encounter any instability or
singularities as it passes through the bounce. While this is a significant result, we note
that to explain the observed tilt and amplitude of scalar perturbations [22], the model re-
quires an additional phase that converts entropy modes into adiabatic modes, and similar
to inflation, it requires a reheating phase for the universe to transition into the radiation
phase. We leave the exploration of all these interesting aspects as well other potentially
important features, such as non-Gaussianities or pre-bounce smoothing, for future work.

To complete our work on the generation of the power spectrum, we also investigated
the behaviour of tensor modes in Cuscuton bounce. We first showed that Cuscuton bounce
is stable under tensor perturbations as well. Then we obtained the power spectrum for
primordial gravitational waves produced in a Cuscuton scenario and found that similar
to other bounce models, the tensor index nt is strongly blue, and so the model does not
predict an observable spectrum of primordial gravitational waves.
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Part II

Cosmological Parameter Inference
with Dark Sirens
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Chapter 5

Gravitational Wave Cosmology

On February 11, 2016, the LIGO Scientific Collaboration and the Virgo Collaboration
announced that two detectors of LIGO directly detected gravitational waves for the first
time, from a binary black hole merger [2]. This detection caused tremors in the astronomy,
astrophysics, and cosmology communities across the globe and marked the beginning of a
new era of multi-messenger astronomy. The significance of GW detection in modern age
astronomy is two-fold:

1. GWs can provide access to previously inaccessible sectors in astronomy and cosmol-
ogy, and can be used to further test theoretical models of astrophysics, cosmology,
and fundamental physics.

2. GW data can be used in combination with available EM data to acquire further
understanding of our Universe. This gives rise to the common term multi-messenger
astronomy, where the multiple “messengers” – EM signals at different wavelengths
and GW signals – complement each other to provide a more complete picture.

In this chapter I will first outline how GWs arise as gravitational radiation in the linearized
perturbation theory of gravity, then explain how GWs can be used alongside existing EM
data in multi-messenger astronomy. Finally, I will discuss the prospects of using dark sirens
in cosmology.
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5.1 Gravitational Wave Theory

5.1.1 Linearized Theory in Vacuum

This subsection will go through the basics of linearized theory for GWs. The theo-
retical background is a standard derivation, easily accessible in several review articles
[109, 199, 204, 148]. We consider a flat spacetime (Minkowski metric ηµν) with small
metric perturbations denoted as hµν . Then the physical metric ḡµν can be defined as:

gµν = ηµν + hµν , (5.1)

where we assume that the metric perturbations are small (|hµν | � 1). The inverse physical
metric can also be written as1

gµν = ηµν − hµν . (5.2)

For convenience, one often defines the trace-reversed metric peturbation:

h̄µν = hµν −
1

2
ηµνh, (5.3)

where h is the trace of hµν , taken with the Minkowski metric so that h = ηµνh
µν . We then

enforce the Lorentz gauge

h̄µν,ν = 0, (5.4)

in which the EFE become a set of decoupled linear wave equations:

�h̄µν =

(
− ∂2

∂t2
+∇2

)
h̄µν = −16πT µν , (5.5)

where � is the d’Alembertian operator and ∇ is the usual three-dimensional spatial deriva-
tive operator. In the case where the spacetime is empty, then one acquires the homogeneous
GW equation

�h̄µν =

(
− ∂2

∂t2
+∇2

)
h̄µν = 0, (5.6)

1Even though ηµν is not the physical metric since it is only the background metric to which perturbations
are added, to linear order it can be used as an effective inverse.
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which yields plane wave solutions of the form

h̄µν = Aeµν exp(ikγx
γ), (5.7)

where A is the amplitude of the wave, eµν is the so-called polarization tensor to be discussed
later on, and kγ is the wave vector. Thus a perturbation to the spacetime metric yields
propagating plane waves once substituted into the EFEs (2.7). These waves are what are
called gravitational waves.

Substitution of the plane waves (5.7) into the homogeneous wave equation (5.6) yields

�h̄µν = kγkγh̄µν = 0, (5.8)

which implies that kγkγ = 0, and hence the wave vectors for the GWs are null vectors.
Meanwhile, substitution of the plane waves (5.7) into the Lorentz gauge condition (5.4)
gives

h̄µν,ν = kν h̄
µν = 0 =⇒ kνe

µν = 0, (5.9)

since A 6= 0 for a non-trivial solution. This condition shows that the wavevector and the
polarization tensor are orthogonal.

The linearized equations describe a classical field that has a total of 10 independent
components (since hµν is symmetric), which the Lorentz gauge can be applied to reduce the
number to 6. However, one can note that the Lorentz gauge alone does not uniquely specify
hµν . One can impose another four additional constraints through coordinate transforma-
tions to uniquely fix the solution [148]. A convenient gauge to demand is the transverse-
traceless (TT) gauge, in which

e0µ = 0, (5.10)

ηije
ij = 0, (5.11)

where (5.10) is the transverse condition and (5.11) is the traceless condition [204]. The
transverse condition (5.10) can be rewritten into a more familiar form when combined with
the orthogonality condition (5.9):

kνe
µν = k0e

µ0 + kje
µj = 0 =⇒ kje

ij = 0, (5.12)

where we used the traceless condition twice to get rid of instances of eµ0. Since the trace
is zero in this gauge, one also notes that the trace-reversed metric perturbation h̄µν and
the metric perturbation hµν are equal by (5.3):

h̄µν = hµν (5.13)
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Since our gauge-fixing leaves only two independent polarizations, the polarization tensor
only has two independent components left. By taking an observer at rest and without loss
of generality assuming that GWs propagate in the z-direction, ie.

uµ = (1, 0, 0, 0), kµ = (ω, 0, 0, ω), (5.14)

where ω is the frequency of the wave detected by the observer at rest, the TT gauge
conditions results in a form of the metric perturbation as [148]:

h̄µν = hµν =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 . (5.15)

Hence in terms of the two polarizations p = ×,+, the general solution can be written as a
superposition of wave solutions at different frequencies ω as

h̄µν =
∑

p=×,+

hpe
p
µν exp(ikγx

γ), (5.16)

where hp is the polarization magnitude corresponding to each polarization and epµν is the
associated unit polarization tensors, given in this context as [146]:

e+
µν =




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


 , e+

µν =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 . (5.17)

These GWs can be detected from ground-based interferometers such as the Laser In-
terferometer Gravitational-wave Observatory (LIGO) [1], the Virgo interferometer [74],
or upcoming space-based interferometers such as the Laser Interferometer Space Antenna
(LISA) [29]. Namely, when a GW event is detected, it would correspond to a measurement
of |h̄| through deviations in the length of the arms of the detector. If L denotes the length
of the arm and ∆L is the measured deviation in the arms due to spatial distortions from
the GW packet, then the amplitude can be read off as [109]:

|h̄p| =
2∆L

L
. (5.18)

In what follows, we will use h instead of h̄ whenever we refer to tensor perturbations for
brevity.
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5.1.2 Sources of Gravitational Waves

There are many possible sources of GWs of astrophysical and cosmological interests. In
this subsection I will briefly discuss some of these sources. Note that this is not a complete
list, and for a more comprehensive list, interested readers should refer to Refs. [199] or
[204].

Continuous Gravitational Waves

Gravitational radiation is quadrupole in nature, which means that a spherically symmetric
mass distribution does not radiate gravitationally [199]. Hence a perfectly axially sym-
metric spinning neutron star would not produce GWs. However, if the neutron star has
a deformation so that overall it is axially asymmetric, this deformation can produce grav-
itational waves. These axially asymmetric rotating neutron stars are often referred to as
pulsars. These pulsars are expected to emit GW signals at twice the rotation frequency,
and the EM counterpart signals are assumed to be coupled to the GW signals [6]. Hence
pulsars are an excellent hub for multimessenger astronomy, and can provide rich informa-
tion regarding the physics of rotating neutron stars.

Although pulsars have hinted at the existence of GWs indirectly through the orbital
decay of binary pulsar system PSR B1913+16 due to the loss of energy from gravitational
radiation [130, 220], so far all efforts for directly detecting GW signals from pulsars have
shown to be unsuccessful thus far. The inability to detect the GW signals from pulsars
at the sensitivity of LIGO is not completely in vain, since improved upper limits can be
placed on the expected GW amplitude, quadrupole moment, and ellipticity of the pulsars
[6]. With the upcoming improvements in detector sensitivity, cosmologists remain hopeful
of a first direct measurement of continuous GWs.

Compact Binary Mergers

At this point in time, compact binary mergers are the only sources of GWs that have been
directly detected. While this term can refer to any system of two compact objects that
eventually coalesce, the primary binaries of interest are neutron star-neutron star pairs,
neutron star-black hole pairs, or black hole-black hole pairs, due to their high mass (and
thus luminosity and GW amplitude). Over the last couple of years, the LIGO Scientific
and Virgo Collaborations have detected several binary mergers, resulting in a small zoo of
mergers with different objects and different masses [5, 8]. Although it has been a while since
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the first binary black hole merger [2] and binary neutron star merger [4] detections, only
recently the first detection of two neutron star-black hole binary systems was reported
[10]. As I will discuss in section 5.3.3, the detection of the binary neutron star merger
GW170817 was accompanied by an EM counterpart, allowing for identification of the host
galaxy [4]. This joint gravitational wave and EM event marked the first multi-messenger
observation.

The GW signals from a binary merger are expected to contain rich information about
the astrophysical quantities of the bodies as well as valuable information regarding the
physical processes in the strong gravity regime [84]. In addition, as I will argue in section
5.3.3, binary mergers can provide us a valuable tool to study cosmology. The GW amplitude
can be related to three main characteristic quantities in the following relation [199]:

hp(t) ∼
M5/3f(t)2/3

r
, (5.19)

where f is the frequency of the GW, which is twice the orbital frequency of the inspiral.
Note here for brevity, we have left out the explicit dependence on factors that depend on
the angle the merger is viewed as well as the phase of the GW signal. The variable M is
called the chirp mass, given by

M =
(m1m2)3/5

(m1 +m2)1/5
, (5.20)

named because it sets the rate at which the binary inspirals, setting the chirp (ie. when
the frequency and amplitude of the signal increases drastically) of the signal [129]. Along
with the amplitude of the GW signal, one can also measure the frequency f as well as the
change in frequency ḟ , which can be used in combination to break the degeneracy between
the chirp mass and the distance [199]. Hence if the amplitude of the GW signal is known,
then one can infer the value of its distance as well2. Merging binaries in cosmological
scenarios will be discussed more in-detail in section 5.3.3.

Stochastic Gravitational Wave Background

So far all of the types of GW radiation discussed have been distinguishable signals from
individual sources. However, analogous to the CMB, it is also expected that there is a
background of GW radiation corresponding to the accumulation of indistinguishable GW

2While this is true, these equations are only valid for non-cosmological (z = 0) distances. Binary
systems at cosmological distances require redshifted quantities, which I will discuss in section 5.3.3.
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signals over time called the stochastic gravitational wave background (SGWB) [78]. The
signals that make up the SGWB can be divided into two categories – the astrophysical
background, which entails the superposition of all the signals from the countless number of
discrete coherent and incoherent astrophysical sources, and the cosmological background,
which is comprised of signals from fundamental processes [199].

While the astrophysical background is more easily detectable by our current detectors
and can be used with other probes such as galaxy surveys to extract useful information,
the cosmological background is of greater interest, since this is likely one of the only ways
to probe GWs from certain fundamental processes. For instance, as seen in section 3.3.2,
the very early Universe predicts a specific spectrum of primordial GWs when assuming
the inflationary paradigm. While a non-zero detection on large scales is usually considered
as a smoking gun for inflation (or deviations from general relativity [116]), there are also
arguments that some alternatives to inflation and other processes in the very early Uni-
verse predict primordial GWs as well [60]. Similarly, there are inflationary models with
lower energies that can have non-detectable GWs as well. Nevertheless, efforts to detect
primordial GWs remain inconclusive so far, although the upper bounds are steadily im-
proving [25]. As the experiments get better, and the constraints get tighter, primordial
GWs (or the lack of them) will help constrain different models of the very early Universe.
Deviations from the expected observables for the usual inflationary model can imply that
our understanding of the very early Universe is not yet complete, and that the inflationary
paradigm may need tweaking or reconsiderations [124]. In the extreme case where a back-
ground of primordial GWs is not detected, then the standard inflationary models could
possibly require reexamination.

Inflationary physics are not the only fundamental physics that can be investigated using
a cosmological SGWB. An example of great interest is the existence of cosmic strings [142],
which are one-dimensional topological defects that would have been produced by phase
transitions in the early Universe. These cosmic strings can form loops and as they vibrate,
they emit gravitational waves over our cosmological history, which would leave imprints on
the SGWB [216, 198, 87, 206, 179]. The confirmation of existence of cosmic strings would
verify new physics beyond the Standard Model. In addition there can also be production
of GWs from the phase transitions themselves or from dark sectors [221, 119, 120, 44].

While the SGWB has not been detected yet, LIGO and Virgo have placed constraints
on the energy density of the background in their frequency band [7, 12]. Pulsar Timing Ar-
rays (PTAs) such as the North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) have also been unable to directly detect a background of GWs, only placing
upper constraints in their respective frequency bands [31]. Despite the lack of a detection
thus far, several upcoming surveys are expected to be able to detect a background with
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their improved sensitivities. Space-based detectors such as LISA [29] or the DECi-hertz
Interferometer Gravitational wave Observatory (DECIGO) [138, 139] and next generation
ground-based detectors such as the Einstein Telescope [162] will look for SGWB signals.
Since the background consists of several different sources, the dependence of the signals on
frequency will be important in identifying the possible sources [78].

5.2 Statistics Toolkit

In the modern age of cosmology, it is not enough to get by with the classical cosmological
background in section 2. Indeed, most cosmologists are equipped with a statistics toolkit
that they use for their research, whether for hypothesis testing, parameter estimation, or
model selection. The types of statistical tools that a cosmologist can use are abundant,
and so in this thesis I will only discuss the most relevant ones for the work in Chapter
6. In addition, statistics has varying levels of mathematical rigour. Rather than taking
a very mathematical approach to the definitions, I will follow the mathematical rigour of
Refs. [136, 126] and provide a background relevant for our purposes. In particular, I will
discuss the basics of probability theory, explaining the difference between the frequentist
and Bayesian interpretations. Then I will show how the Bayesian framework is a powerful
tool for cosmology.

5.2.1 Basic Probability Theory

Let us denote Ω to be the sample space which possible outcomes are drawn from, and
A ∈ Ω to be some event drawn from Ω. One can define a probability function p that
associates an event to a probability. Hence for an event A, the probability associated with
the event is given by p(A). For a probability function to be valid, it must obey the following
axioms, usually referred to as the Kolmogorov axioms [136]:

1. The probability of the event A happening cannot be negative:

p(A) ≥ 0. (5.21)

2. If the event in particular is the whole sample space Ω, one must have that

p(Ω) = 1. (5.22)
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3. If Ai ∈ Ω are mutually exclusive events (ie. Ai and Aj are disjoint for i 6= j:
Ai ∩ Aj = ∅), then

p

(
∞⋃

i=1

Ai

)
=
∞∑

i=1

p(Ai). (5.23)

For two general events A and B that are not necessarily mutually exclusive, the third
axiom can be written as

p(A ∪B) = p(A) + p(B)− p(A ∩B). (5.24)

In addition to these rules, the probability of event A and B happening is given by

p(A ∩B) = p(A,B) = p(A|B)p(B). (5.25)

The quantity p(A|B) is a conditional probability, referred to as the probability of A given
B. A and B are called independent events if p(A|B) = p(A), and so p(A,B) = p(A)p(B)
by (5.25). In other words, if the conditional probability of A given B is true is independent
of B then B being true does not affect A, and so A and B are independent. Furthermore,
since p(A,B) = p(B,A) due to the symmetry of the “and” operator ∩, then

p(A,B) = p(B,A) =⇒ p(A|B)p(B) = p(B|A)p(A). (5.26)

Rearranging this gives a very famous relation known as Bayes’ rule:

p(A|B) =
p(B|A)p(A)

p(B)
. (5.27)

In the next subsection, we will see how this important relationship plays out in the context
of cosmological statistical analysis.

Another useful identity is the law of total probability, which says that if Bi ∈ Ω for
i = 1, . . . , k is a partition of Ω (ie. they are disjoint and

⋃k
i=1 Bi = Ω), then

P (A) =
k∑

i=1

P (A ∩Bi), (5.28)

or using conditional probabilities,

P (A) =
k∑

i=1

P (A|Bi)p(Bi). (5.29)
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The law of total probability is also referred to as marginalization, which is a powerful tool
in cosmology as we will see.

Up to this point, I have mainly used events as inputs for the probability functions.
However in most cases, we wish to quantify the physics by mapping events to real numbers
so that probability functions become more mathematically familiar in the sense that the
inputs are also real numbers. For this purpose, random variables are maps from the “event
space” to the real numbers in “state space”. In this case a set of real numbers in state space
corresponding to an output of the random variables is called a realization. These quantities
are often denoted in literature using a capital case X for random variables and lower case x
for the realizations. These random variables can either be discrete or continuous. Finally,
we can define the probability density function (pdf) as the probability function that assigns
a probability to a realization of a random variable. At a low level, the main difference
between the discrete cases and continuous cases is that the summation gets replaced by an
integration.

There is an analogous version of law of total probability for the continuous case, which
instead looks at marginal pdfs rather than marginal probabilities. If p(x, y) is the joint
pdf for the continuous random variables X and Y , we can marginalize over Y so that we
obtain the marginalized pdf for X over Y :

pX(x) =

∫
dy p(x, y) =

∫
dy p(x|y)p(y). (5.30)

As I will show in the next subsection, this is a useful tool in cosmology, since astrophysical
and cosmological models have many parameters that we wish to marginalize over.

5.2.2 Bayesian Inference

When working with experimental data, one must choose a certain interpretation and frame-
work to perform statistical operations. There are two interpretations of probability – the
frequentist interpretation and the Bayesian interpretation. As the name suggests, the
frequentist interpretation pertains to the frequency of outcomes of an experiment. The
Bayesian interpretation refers to using currently available data to perform statistical op-
erations. The key idea of the frequentist interpretation is that experiments are repeatable,
while the fundamental concept of the Bayesian interpretation is information. Different
branches of physics are generally dominated by different interpretations. For instance, ma-
jority of the statistics in particle physics is done from a frequentist interpretation, due to the
repeatable experimental set-ups. Meanwhile astronomy/astrophysics/cosmology mainly
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uses the Bayesian interpretation, since the “labs” in this case are not easily controllable.
Hence for the statistical analysis in this thesis, I will adopt the Bayesian interpretation.

In a cosmological setting, we are often concerned with how theoretical models of as-
trophysical and cosmological phenomena relate to the vast amounts of cosmological data
available to us. The frequentist vs. Bayesian interpretations debate occur once we invoke
Bayes’ rule using the data and the model as our parameters [136]. In general, if we denote
the model as M and the data as D, then Bayes’ rule gives

p(M |D) =
p(D|M)p(M)

p(D)
, (5.31)

which is oftentimes called Bayes’ theorem in literature3. In words, this describes how the
probability of the model given the data depends on the probability of the data given the
model, as well as the probability of the model and the probability of the data.

Adopting the usual convention, if the model is described by k parameters so that
θ = (θ1, θ2, · · · , θk) and x represents the data vector, then Bayes’ theorem is written as

p(θ|x) =
p(x|θ)p(θ)

p(x)
, (5.32)

where each of the factors have special names [126]:

• p(θ|x) is the posterior probability of θ. This is the quantity that we are interested
in for parameter inference.

• p(x|θ) is the likelihood. It is the probability of the data given the model parameters.
Most of the modelling and computation goes into this term, and in simplest cases
this is all we need to maximize to acquire the peak of the posterior. The likelihood
is a special function of θ (it is not a pdf for θ since it is normalized over x and not
θ [212]), labelled specially as L(x;θ) = p(x|θ).

• p(θ) is the prior. This term captures our previous knowledge about the parameters,
either from theoretical arguments or prior experiments.

• p(x) is the evidence or marginal likelihood. This is a term that ensures that the
posterior is normalized to unity:

p(x) =

∫
dθ p(x|θ)p(θ). (5.33)

3Bayes’ rule corresponds to the non-controversial mathematical identity (5.27). Bayes’ theorem corre-
sponds to the choice of interpretation using Bayes’ rule with the model and data as the parameters.
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In this relation we are marginalizing over the model parameters. This factor is
usually not necessary in parameter inference and is usually ignored in calculations,
but is important for model selection since there are multiple models [126].

In the simple cases where we have a flat prior (where p(θ) is a constant), and the evidence
p(x) is just a normalization factor for the posterior, then

p(θ|x) ∝ p(x|θ) = L(x;θ). (5.34)

Therefore as previously mentioned, to get the most probable result for the parameter, one
just has to maximize the likelihood. One should note that flat priors are not necessarily
the case, and oftentimes other priors such as Gaussian priors are used. With general priors,
the above relationship is not as simple, and the peak of the likelihood does not necessarily
coincide with the peak of the posterior.

To report an inferred value for the model parameters, one performs descriptive statistics
on the posterior pdf. There are several methods to acquire the pdf. For a small number of
model parameters, then one can easily calculate the likelihood function as a function of the
model parameters by gridding in parameter space. However, in cosmological settings there
are usually many model parameters, and the statistical modelling of the problem is non-
trivial. In these cases, numerical methods such as Monte Carlo Markov Chain (MCMC)
sampling is an effective way to acquire the posterior distribution4. By taking random walks
in the parameter space and using some sort of acceptance condition (usually Metropolis-
Hastings), one effectively samples from the posterior distribution. These samples can then
be used to generate multidimensional histograms and density plots, allowing us to then
perform descriptive statistics on.

There are several advantages of using Bayesian inference for model parameters [212].
One example is handling nuisance parameters, which are parameters that have an influence
on the data but are not of interest for our purposes. By marginalizing over them, Bayesian
inference easily handles these parameters. Another advantage is the use of the prior. By
using either physically justified intuition or previous experimental results, the prior easily
ensures physically sensible results for model parameters.

Bayesian inference can be summarized as: “Given a model with parameters θ and
some real data x, what are the probability distributions p(θ|x) for the model parameters
given the data? From these probability distributions, what are the most likely values, and

4For a review on MCMC techniques and the different algorithms particularly in cosmological scenarios,
see Refs. [96, 126, 136, 212].
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what are the bars of error?” To conclude, Bayesian inference is a powerful technique to ac-
quire inferred values of important cosmological parameters and their statistical significance,
given different cosmological models. Lastly before moving on, note that the discussion in
this subsection was focused on Bayesian methods for statistical inference of parameters.
Bayesian statistics is a much more powerful tool than just for parameter inference and can
also be used for other significant purposes in cosmology, such as model selection5.

5.3 Cosmology with Standard Sirens

As previously mentioned in chapter 2, the Universe is homogeneous and isotropic on suffi-
ciently large scales. However as we saw in chapter 3, the origins of structure in our Universe
is quantum mechanical in nature. Due to the random nature of the fluctuations, although
the Universe looks the same on large scales, it is generally inhomogeneous and anisotropic
on smaller scales. Regions with higher energy densities or gravitational curvature in the
very early Universe will have overdense regions in the late Universe, which will yield a
higher number of galaxies compared to the average. Similarly, regions with lower energies
in the very early Universe will correspond to underdense regions, and will have a fewer
number of galaxies compared to the average. In this section I will introduce a statistical
formalism to describe the distribution of matter in the Universe, and discuss how GWs are
exciting prospects to probe this distribution.

5.3.1 Information from the Matter Density Field

As previously mentioned the large scale structure of the late Universe is conjectured to be
of quantum mechanical origins in the very early Universe. Due to the random nature of
these initial conditions, we use a random field from a statistical field theory perspective
to model the underlying matter distribution [172, 90]. That is, if we denote x as a point
in three-dimensional Euclidean space, a random scalar field is a set of random variables
ρ(x) with a set of distribution functions Pn(ρ(x1), . . . , ρ(xn)), where xi represents the i-th
point from set of spatial points [90]. Given this, the n-point correlation function is given
by

〈ρ(x1) · · · ρ(xn)〉 =

∫
dρ(x1) · · · dρ(xn) Pn(ρ(x1), . . . , ρ(xn))ρ(x1) · · · ρ(xn), (5.35)

5For interested readers, the use of Bayesian statistics for model selection can be found in Refs. [126, 212].
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where 〈·〉 represents the ensemble average. One can define the (matter) density field δ(x)
as

δ(x) =
ρm(x)

ρ̄m
− 1, (5.36)

where ρm(x) is the matter density at x and ρ̄m is the comoving average (or background)
matter density. With this definition, points in space with higher densities than the back-
ground level are called overdensities, with δ(x) > 0, while regions in space with lower than
average densities are called underdensities, with δ(x) < 0. As seen in Chapter 2, since the
cosmological principle says that the Universe is homogeneous and isotropic, we require that
the matter density field δ is statistically homogeneous and isotropic. In other words, its
moments must be invariant under spatial transformations and rotations [172]. Therefore
since the density field is a random statistical field,

〈δ(xi)〉 = 〈δ〉 = 0, (5.37)

and so its 1-point function, or its mean, is zero. In cosmology, two particular n-point
functions of interest are the 2-point function and the 3-point function, given by

〈δ(x1)δ(x2)〉 = ξ(2)(x1,x2), (5.38)

〈δ(x1)δ(x2)δ(x3)〉 = ξ(3)(x1,x2,x3), (5.39)

where ξ(2)(x1,x2) and ξ(3)(x1,x2,x3) are the 2-point and 3-point connected correlation
functions respectively6. For the density field δ, we can also assert the cosmological principle,
by enforcing homogeneity and isotropy. Homogeneity says that the statistics of the field
should be invariant under spatial translations, so

ξ(2)(x1,x2) = ξ(2)(x1 − x2), (5.40)

while isotropy says that the statistics of δ should be invariant under spatial rotations, and
so

ξ(2)(x1,x2) = ξ(2)(|x1 − x2|). (5.41)

Thus the two-point correlation function between two points for the matter density field
only depends on the distance between the two points.

6In general, for generic statistical fields, the n-point correlation functions and the n-point connected
correlation functions are not the same. In fact, the n-point connected correlation functions are defined so
that the n-point correlation functions can be represented as a sum of these functions [90]. It is only in this
case since 〈δ〉 = 0 that the two functions are equal.
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While so far we have only worked with the three-dimensional Euclidean representation
of statistical fields, it is also convenient to work in Fourier space. By defining the following
convention for the Fourier transform:

δ(k) =

∫
d3x δ(x)e−ik·x, (5.42)

and the inverse Fourier transform as

δ(x) =

∫
d3k

(2π)3
δ(k)eik·x, (5.43)

the power spectrum P (k) is defined as

〈δ(k)δ∗(k′)〉 = P (k)(2π)3δD(k − k′), (5.44)

where δD is the three-dimensional Dirac delta distribution in Fourier space. Similarly, the
bispectrum B(k1,k2,k3) is defined as

〈δ(k1)δ(k2)δ(k3)〉 = B(k1,k2,k3)(2π)3δD(k1 + k2 + k3). (5.45)

The power spectrum and the bispectrum are the Fourier transforms of the 2-point and
3-point correlation functions respectively [90]:

ξ(2)(r) =
1

2π2

∫ ∞

0

dk k2P (k)j0(kr), (5.46)

ξ(3)(x1,x2,x3) = (2π3)

∫

k1

∫

k2

∫

k3

δD(k1 + k2 + k3)B(k1,k2,k3)ei[k1·x1+k2·x2+k3·x3],

(5.47)

where j0(kr) = sin(kr)/(kr) is the zeroth spherical Bessel function of the first kind. Note
that this also means that the 2-point and 3-point correlation functions are inverse Fourier
transforms of the power spectrum and the bispectrum.

One can also add another level of structure to the density field by asserting that it is
a Gaussian random field (for reasons to be discussed in more detail shortly). Gaussian
random fields with zero mean have distribution functions given by multivariate Gaussians:

Pn(y) =
1

(2π)n/2
√
|C−1|

exp

(
−1

2
yTC−1y

)
, (5.48)
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where y is the n-dimensional vector y = [δ(x1), · · · , δ(xn)]T , |C−1| is the determinant of
C−1, the inverse matrix of the symmetric and semipositive definite covariance matrix C,
whose components are defined by

Cij = 〈δ(xi)δ(xj)〉 = ξ(2)(|xi − xj|). (5.49)

Mo, van de Bosch, and White [172] state that there are at least three reasons why Gaussian
random fields are of interest in cosmology:

1. Inflation produces a nearly Gaussian field from quantum fluctuations which retains
its Gaussianity if the evolution is linear. Thus the initial conditions for the large
scale structure is Gaussian.

2. The central limit theorem states that regardless of the (sufficiently well-defined) un-
derlying distribution functions of the random variables, for a large number of samples,
the distribution of the sum of these events asymptotes to a Gaussian distribution.

3. There is no strong evidence against the linear density field being non-Gaussian.

Since the primordial random field produced by inflation is almost perfectly Gaussian, the
power spectrum nearly captures all of the statistical information, which is why in the con-
text of inflation usually only the power spectrum is considered. However, despite the initial
random field being almost perfectly Gaussian, the random field in the late time Universe
from observations such as galaxy measurements is highly non-Gaussian [90]. Hence higher
order n-point functions are required to provide a more complete description of the large
scale structure, and the Gaussian random field formalism is only an approximation.

One should note that although the primordial random field is nearly Gaussian, there
is a growing interest to search for non-Gaussian signatures in the primordial field. Non-
Gaussian signatures in the primordial field can have several implications for the inflaton
as well as other early Universe physics [168]. Information about non-Gaussianities is not
only limited from the CMB, but large scale structure observations are also believed to have
implications for the primordial non-Gaussianities [215, 89, 168].

5.3.2 Tracer Bias

As seen in the previous subsection, the matter density field δ is a very powerful statistical
tool that offers rich information for both the early and late Universe. Unfortunately, it is
difficult to capture the matter density field through direct observations and one must turn

82



Figure 5.1: An example of possible observed samples from an underlying matter distribu-
tion. White circles correspond to one species of samples and the orange squares corresponds
to another species of samples. These species can be any observable tracer of matter – for
example galaxies and binary black hole mergers. The background image of the matter
distribution is a modified image from the Millennium Simulation Project [210]. Bright
regions in the image are overdense regions while dark regions are underdense regions. Note
that this picture is not-to-scale.
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to tracers of the density field instead. Tracers, such as galaxies, are physically observable
objects that are related to the density field. Hence finding a distribution of the tracers
can provide valuable information about the distribution of the matter density field. Since
tracers are countable objects, their density fields are usually written with number densities
instead. For instance, for galaxies, the galaxy density field δg at a point x is given by

δg(x) =
ng(x)

n̄g
− 1, (5.50)

where ng(x) is the number density of galaxies at x and n̄g is the average number density
of galaxies. Figure 5.1 shows a possible result of sampling from the matter distribution,
where we end up with a finite number of detected tracers (hence why we often work with
number densities).

In general, the density field for galaxies can be expanded as7

δg(x, τ) =
∑

O

bO(τ)O(x, τ), (5.51)

where O is an operator that is comprised of the matter density field δ, the gravitational
potential, galaxy masses, and general perturbation quantities, and bO are bias parameters
associated with each operator O [90]. It can be shown that since on sufficiently large scales,
the governing mechanism for structure formation is gravity, the statistics of galaxies can
be written locally and perturbatively as a functional of matter overdensities. Historically,
this relation had the Taylor expanded form such that [111]:

δg(x) = f [δ](x) ≈
∞∑

k=0

bk
k!
δk. (5.52)

We can assume 〈δ〉 = 〈δg〉 = 0 due to the cosmological principle and that taking the
ensemble average of ρ and ng(x) should not depend on position in the Universe. In the
limit where |δ| � 1 and we can ignore higher orders of δ this justifies setting b0 = 0. Thus
in this limit, δg can be approximated as

δg(x) = b1δ(x), (5.53)

where b1 = b is often referred to as the linear galaxy bias in this case. In general, this
Taylor expanded form is a simplified expansion of the local matter density, and in general
it should take on a form with more complicated terms as in Refs. [167, 90].

7Although there is a more general form of this expansion if one considers the influence of small-scale
perturbations on the formations of galaxies, usually modelled by stochastic fields [172, 90]. For the work
in this thesis, we will ignore stochastic effects from small-scales and focus only on large-scale effects.
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In this case assuming we are in the linear bias regime, one can estimate the bias pa-
rameter by comparing the 2-point correlation function for galaxies with that for matter,
so that

bξ(r)
2 =
〈δg(x)δg(y)〉
〈δ(x)δ(y)〉 =

ξ
(2)
g (r)

ξ(2)(r)
, (5.54)

where r = |x− y| and ξ
(2)
g (r) is the galaxy 2-point correlation function, called the galaxy-

galaxy auto-correlation. In Fourier space, one can also find the linear bias parameter by
comparing the two power spectra, so that

bP (k)2 =
Pg(k)

P (k)
, (5.55)

where Pg(k) is the galaxy power spectrum. Although these definitions are not generally
equal are limited by the functions that define them, in the special case where we are in
the deterministic local linear bias limit these definitions are equivalent and can therefore
be used as a tool to estimate the local linear bias given these cosmological tools [147].

To summarize, the bias relates the density field of observable objects such as galaxies
and clusters to the underlying matter density field.

5.3.3 Resolving Tensions with Standard Sirens

In the previous subsection, I discussed how biased tracers of the matter distribution can
be used to extract information about the matter distribution. Although only galaxies and
galaxy clusters were the most commonly used tracers, these are not the only tracers of
matter. Since new avenues of cosmological exploration have been opened with the onset
of GW astronomy, one can consider how GW sources can also act as tracers of the matter
distribution. In particular, the binary mergers of compact objects discussed in section 5.1.2
are relatively new tracers of growing interest.

Before moving onto looking at these mergers from a cosmological perspective, one
must modify the expressions in section 5.1.2, since at cosmological distances (z 6= 0), the
quantities in expression (5.19) are redshifted due to the expansion of space as the GW
signal propagates. In particular, the GW frequency f is modified so that

f → f0 =
f

(1 + z)
, (5.56)
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where f0 is the measured frequency. In this case, the observed amplitude depends on the
usual quantities as [129, 85]:

hp,o ∼
M5/3

z f
2/3
0

DL

, (5.57)

where hp,o is the observed amplitude and DL is the luminosity distance to the source8.
Again we left out explicit dependence on factors that are functions of angle at which the
binary is viewed as well as the phase of the GW signal. Here the new quantity Mz is
defined as

Mz = (1 + z)
(m1m2)3/5

(m1 +m2)1/5
, (5.58)

referred to as the redshifted chirp mass. As previously mentioned in section 5.1.2, one also
measures the frequency f0 and the change in frequency ḟ0 which can be used to break the
degeneracy between DL and Mz [199]. Since one only obtains the luminosity distance of
the source and not the redshift, one requires additional information to extract information
from these mergers. These binary mergers have been coined as standard sirens [129], aptly
named for its analogous EM counterparts – Type Ia supernovae (SNe), a type of standard
candle. The luminosity distance to these supernovae can be extracted if the observed
luminosity is calibrated [187]. The calibration to other astronomical objects is often called
the cosmological distance ladder, in which issues can arise even if one is very careful since
incorrect assumptions in the astrophysical models can propagate throughout.

Standard sirens are of interest because they can provide distance measurements to
cosmologically distant sources without use of the cosmological distance ladder. If an EM
counterpart to the merger event is identified, then one can associate the merger to a host
galaxy, thus acquiring a redshift to the source. Since the redshift and the luminosity
distance to the source is known, one can make use of the redshift-distance relationship to
extract important information required to infer cosmological parameters, such as the local
Hubble parameter H0 [129, 85].

The local Hubble parameter is a much debated topic in recent years, and is arguably
one of the most popular topics in cosmology at the moment. The sides of the debate can be
roughly divided into two halves – direct measurements from the late Universe and indirect
measurements from the early Universe. The two most often quoted measurements are the
measurements of H0 = 67.4 ± 0.5 km/s/Mpc from the Cosmic Microwave Background
(CMB) by the Planck Collaboration [22] and the SH0ES measurement of H0 = 73.2± 1.30

8For a derivation of how the redshifted quantity results in the luminosity distance, see Ref. [77].
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Figure 5.2: Recent reports of H0 from various different datasets and methods. The blue
band corresponds to the most recent H0 value from the SH0ES team (R20) [194] while the
pink band corresponds to the Planck 2018 measurement of H0 [22]. Note that this is not
a comprehensive collection, and it lists only some of the very many reports of H0. This
plot is a reduced version of the one in Ref. [91], produced by the sample code also from
the same work, available at https://github.com/lucavisinelli/H0TensionRealm. Interested
readers are encouraged to see Ref. [91] for a more complete figure and a comprehensive
review of the topic. The method/datasets and measurement for each work are provided in
Table 5.1 with references to the papers.
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Direct (Late Universe) Indirect (Early Universe)

Method/Dataset H0 (km/s/Mpc) Method/Dataset H0 (km/s/Mpc)
Cepheids-SNIa [194] 73.2± 1.3 eBOSS+Planck [188] 69.6± 1.8
TRGB-SNIa [110] 69.6± 1.9 Planck18 [22] 67.27± 0.6
Masers+vpec [50] 69.02.9

−2.8 ACT+WMAP9 [24] 67.6± 1.1
Masers [186] 73.9± 3.0 BOSS+eBOSS+BBN [27] 67.35± 0.97
TFR [202] 75.1± 2.8
SNII [88] 75.85.2

−4.9

HII galaxies [103] 71.0± 3.5
TDCOSMO+SLACS [46] 67.44.1

−3.2

H0LiCOW [222] 73.31.7
−1.8

Standard siren [3] 70.012.0
−8.0

Table 5.1: Tabularized data for Figure 5.2. This is a reduced dataset taken from Ref. [91],
with the only new addition being Ref. [50]. SNIa refers to Type Ia supernovae, TRGB is
an acronym for Tip of the Red Giant Branch, and TFR is an acronym for the Tully-Fisher
Relation. Note that this a very incomplete list of measurements only meant to capture the
idea, and readers should see Ref. [91] for a more comprehensive review.
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km/s/Mpc from SNe [195]. Note that these are not the most recent measurements of
H0, and several additional measurements and improvements have been made since these
measurements. Figure 5.2 shows several recent measurements of H0 from various different
studies, including the first standard siren measurement of H0 [3]. The datasets considered
in Figure 5.2 are provided in Table 5.1. This table and figure are a heavily reduced version
of the ones in Ref. [91].

Identification of the optical counterpart GRB 170817A allowed for the association of
the GW signal detection from the binary neutron star merger GW170817 with the unique
host galaxy NGC 4993, which yielded the first multi-messenger measurement for H0 with
a value of H0 = 70+12.0

−8.0 km s−1 Mpc−1 [3]. As shown in Figure 5.2, the error bars for this
measurement are not competitive with the error bars from the more traditional methods.
However, as additional GW events are detected one can expect that standard sirens can
offer new insight on the ongoing Hubble debate. It is estimated that a sample size of ∼ 50
binary neutron star mergers with optical counterparts can provide a ∼ 2% estimate of
H0 [76, 102]. In addition, while the first neutron star-black hole mergers have just been
detected [10], an optimistic estimate9 shows that they may provide a 1.5-2.4% estimate
of H0 by the year 2030 [101]. Therefore as more standard sirens with electromagnetic
counterparts are detected, we will gain access to information previously not available to
us, making the next few years very exciting for mutli-messenger astronomy. However over
the last six years, only one siren with an EM counterpart (GW170817) has been confidently
detected10. In a crude approximation, if we assume 5 years for a detection of one merger
with an EM counterpart, then it would take over 200 years to get a sample size of ∼ 50
mergers necessary for the ∼ 2% estimate of H0.

While the prospects for standard sirens are promising, it is expected that we will not be
able to detect an electromagnetic counterpart for majority of the detected mergers, making
it difficult to acquire the redshift of the source. Thus even as one gains access to the GW
data from numerous sirens, they will not be usable to measure the Hubble parameter in the
standard way. In particular, so far, since BBH mergers have higher intrinsic luminosities
compared to BNS systems or NS-BH systems [5, 8], they are detected a a much higher rate.
Meanwhile, they are theoretically less likely to have electromagnetic counterparts. Thus
in order to extract cosmological information from these dark sirens 11 alternative methods
must be utilized. In other words, since dark sirens are much more common in nature, they

9The authors of Ref. [101] state that this level of precision is heavily dependent on the modelling for
these types of mergers.

10Although candidates of binary mergers with astrophysical counterparts have been reported [9].
11Yet another dark quantity in astronomy... This “dark” should not be confused with the “dark” used

for dark matter or for dark energy.
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could potentially provide a valuable key to unlock cosmological mysteries in the future.

In his seminal paper, Schutz [203] outlined a method that allowed for association of a
siren with its host galaxy through statistical methods. In this method, by considering each
galaxy in the siren’s sky localization error as a potential host, one can calculateH0. Then by
combining these estimates using statistical methods, one can extract a final measurement
of H0. This method was used with the binary neutron star merger GW170817 (which
had an optical counterpart but was ignored to imitate a dark siren) to give an estimate
of H0 [108]. Since then, several works have made use of this concept to acquire statistical
estimates of H0 using actual dark sirens [208, 107].

Recently, an alternative method for inferring cosmological parameters from dark sirens
was proposed [180, 175, 176, 43]. In these works, rather than associating each siren a host
galaxy and computing statistical inferences for H0 for each host, they make use of the
fact that sirens and galaxies are both tracers of the underlying matter distribution. For
visualization, in Figure 5.1 one could consider the orange squares to be sirens and the white
circles to be galaxies. In this case, one can then make use of the statistical properties of
the density field, and consider the cross-correlation of the galaxies with dark sirens. In the
next chapter, I will present my current work on a new approach to this method which is
built from the most basic assumptions. By using Poisson statistics to model the sampling
of galaxies and sirens from the matter distribution, we present a novel method to infer H0

without the use of any inverse covariance matrices.
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Chapter 6

A Novel Method for Cosmological
Parameter Inference Using Dark
Sirens

6.1 Introduction

The first detection of gravitational waves (GWs) from a binary black hole merger by
the LIGO Scientific and Virgo Collaboration [2] marked the emergence of a new era of
multi-messenger astronomy. GWs provide new information previously unavailable from
electromagnetic (EM) data, opening up entirely new avenues for astronomy, astrophysics,
and cosmology. Since GWs from binary mergers provide an absolute distance measurement
to the source via the luminosity distance [203], if the redshift to the source is also known,
then one can use the redshift-distance relationship to extract information regarding cos-
mological parameters. These binary mergers are often called standard sirens [129, 85] in
analogy to observations of Type Ia supernovae (SNe) [185, 195], which are called standard
candles.

Ideally, an electromagnetic counterpart to the GW event is identified in which the host
galaxy and hence the redshift is obtained. Therefore, in this case the siren can be used to
acquire independent measurements of cosmological parameters. A recent topic of debate
in the cosmological community has been determining the true value of the local expansion
rate of the Universe, known as the Hubble parameter H0. In particular, the SH0ES mea-
surement of H0 from SNe [195] is believed to be in tension with the measurement of H0 from
the Cosmic Microwave Background (CMB) by the Planck Collaboration [22]. Meanwhile,
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the GW signal detection from the binary neutron star (BNS) merger GW170817 with an
electromagnetic counterpart GRB 170817A allowed for identification of the unique host
galaxy NGC 4993, which yielded the first standard siren measurement for H0 with a value
of H0 = 70+12.0

−8.0 km s−1 Mpc−1 [3]. Although this measurement is completely independent
from CMB and SNe measurements and sits right in between SH0ES and Planck measure-
ments, at this time it is not competitive with them because of its large error bar. However,
it is expected that ∼ 50 detections of BNS mergers with electromagnetic counterparts will
provide a 2% measurement of H0 [76, 102], which can play a significant role in resolving
the ongoing tension.

Despite the promising avenues for cosmology with standard sirens, majority of these
events are expected to either be missing an electromagnetic counterpart or have low chances
of one being detected – making it difficult to obtain the redshift distance to the source.
These standard sirens without electromagnetic counterparts are sometimes called dark
sirens in literature, which we shall adopt for this work. One prominent method to perform
the analysis for dark sirens is to identify the host galaxy via the “statistical method” [203].
In this method, the bright galaxies in the GW localization region are potential hosts to
the merger. By assuming that each galaxy is the host for the GW event, one can acquire
statistical estimates of H0, which when statistically combined gives a final H0 best estimate.
This statistical method is expected to be much more useful for BBH mergers since they are
not expected to have electromagnetic counterparts although they are detected at higher
rates. This method was recently utilized with GW1708171 to acquire an estimate for H0

consistent with the electromagnetic counterpart measurement, although less precise [108].
The principle of the statistical method was also used for the binary black hole (BBH)
merger GW170814 to acquire the first estimate for H0 from a BBH using a redshift catalog
from the Dark Energy Survey (DES), albeit with very large error bars [208]. Applying a
variation of this method and correlating GW data from the GWTC-2 catalog [11] and the
GLADE galaxy catalog [86] Ref. [107] has been able to get the tightest estimate for H0

using only dark sirens to date. With the vast amount of incoming data from LIGO and
Virgo, there are expected to be a large number of BBH events since the detection rates
for BBH mergers are generally higher than for BNS mergers due to the higher intrinsic
luminosity of BBHs. Consequently, they are also expected to have a larger observable
volume. However, Schutz’s statistical method is limited by the number of potential hosts
in the siren’s sky localization region. For sirens at higher redshifts, the number of potential
hosts are expected to be too large for this method, and not all potential hosts may be
detected.

1Although an electromagnetic counterpart for GW170817 has been detected, in this analysis the authors
did not take into account the identification of the host galaxy.
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Recently, an alternate method to extract information about cosmological parameters
from dark sirens was proposed [180, 175, 176, 43]. In this method, rather than determining
the potential host galaxies statistically, it takes advantage of the fact that both galaxies
and sirens are tracers of the underlying matter distribution. Hence one can make use of
the correlation function to statistically infer cosmological parameters. In this work, we
present a different method that also makes use of the dark matter distribution. However
in our method, we relieve several assumptions in the derivation of the posterior that the
authors in Ref. [176] considered for the sirens. In particular, we do not assume that
the power spectrum for the cross-correlations of galaxies and dark sirens is Gaussian.
We start by assuming that the galaxies and sirens are sampled from a random Poisson
process, and show that one can construct a data vector comprised of biases rather than
overdensities. We find that there is no need to calculate the inverse of the covariance
matrix that usually appears in Gaussian posteriors for cross-correlations, and instead one
can work with just the covariance matrix of the matter density field instead. This can have
several computational advantages, since the matrix inversion is an expensive part of the
usual posterior calculation. In section 6.2 we will provide the derivations for the likelihood
using Poisson sampling and present the posterior for cosmological parameter inference. In
section 6.3 we will discuss the generation of mock catalogs for this work. In section 6.4 we
will present the main results of our simulations and show that this can be a new tool for
cosmological parameter inference. Finally, we will make our concluding remarks in section
6.5.

6.2 Methods

6.2.1 Modelling via Poisson Statistics

In this subsection we will derive the relevant likelihood for our purposes. A discrete random
variable X is said to have a Poisson distribution if its probability density function (pdf) p
is given by

p(X = k) = e−λ
λk

k!
, (6.1)

where k is the number of occurrences and λ > 0 is a positive parameter, usually related
to the rate of a Poisson process. Now to model galaxies and sirens with Poisson sampling
of nonlinear functions of the matter density field δ, we start by gridding up the comoving
space volume with cells of volume ∆V . Then at a comoving position r, we consider the
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expected number of a species x in a volume of ∆V , given by

〈nx(r)〉∆V = gx[1 + δ(r), r]∆V, (6.2)

where nx(r) represents the number density of species x at position r and gx is a general
non-linear function of the matter density function δ. Since a random variable X following a
Poisson distribution has the property λ = E(X), the probability of obtaining kx number of
events of species x at position r given a matter distribution δ with cosmological parameters
Θc is

p(kx(r)|δ,Θc) = e−〈nx(r)〉∆V [〈nx(r)〉∆V ]kx(r)

kx(r)!
. (6.3)

Thus the joint probability of having kg(r) galaxies at position r and kGW (R) sirens at
position R assuming the set of cosmological parameters Θc is given by2

p(kg(r), kGW (R)|δ,Θc) = p(kg(r)|δ,Θc)p(kGW (R)|δ,Θc)

= e−〈ng(r)〉∆V [〈ng(r)〉∆V ]kg(r)

kg(r)!
e−〈nGW (r)〉∆V [〈nGW (r)〉∆V ]kGW (r)

kGW (r)!
,

(6.4)

where the subscript g corresponds to the galaxies and the subscript GW corresponds to
the sirens. We consider ∆V is sufficiently small such that the chances of having two of
the same species (either both galaxies or both sirens) in one cell are very slim. Hence we
only take the leading order terms kx = 0, 1. In the following, we grid up the total volume
with cells of volume ∆V and label the cells with m = 1, . . . , Ncells. Then the probability of
finding a total of Ng galaxies and NGW sirens located at locations {ri} and {Ra} is given
by

p({ri}, {Ra}|δ,Θc) =

Ncells∏

m=1

p(kg(r
m), kGW (Rm)|δ,Θc)

=

Ncells∏

i=1

p(kg(r
i)|δ,Θc)

Ncells∏

a=1

p(kGW (Ra)|δ,Θc). (6.5)

2Note that the sirens are not taken as a subsample of galaxies but sampled separately from δ.
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Introducing the notation 〈Ng(δ)〉 to represent the expected total number of galaxies and
〈NGW (δ)〉 as the expected total number of sirens, we can expand this as

p({ri}, {Ra}|δ,Θc) = exp [−〈Ng(δ)〉 − 〈NGW (δ)〉]

×
[
Ng∏

i=1

gg[1 + δ(ri), ri]∆V

][
NGW∏

a=1

gGW [1 + δ(Ra), Ra]∆V

]
. (6.6)

This term can be marginalized over all possible realizations of matter densities δ that would
be produced by the cosmology with the set of parameters Θc so that

p({ri}, {Ra}|Θc) ≈
∫
Dδ p({ri}, {Ra}|{δ},Θc)p({δ}|Θc), (6.7)

where p({δ}|Θc) is the probability functional for δ given the cosmology. Here we have
introduced the notation

∫
Dδ =

∫ Ncells∏

i=1

dδi, (6.8)

where δi = δ(rm) for brevity. To simplify further, we can expand the nonlinear functions
gx for each species x by making an expansion as

〈nx(r)〉∆V ≈ gx(1, r)∆V
[
1 + bx(r)δ(r) +O(δ2)

]
, (6.9)

which to leading order can also be approximated as an exponential (see (A.1) for more
details). To first order, this also allows us to write (see (A.2) for more details):

〈Nx(δ)〉 ≈ N̄x +O(δ2). (6.10)

Disregarding any higher order effects3 from δ, the independent probabilities for each species
x has terms that can be separated as:

e−〈Nx(δ)〉
Nx∏

i=1

gx[1 + δ(ri), ri]∆V = e−N̄x

(
Nx∏

i=1

n̄x(r
i)∆V

)
e
∑Nx

i=1 bx(ri)δ(ri). (6.11)

Then excluding the pre-factor that is independent of δ for now, the integration over δ in
the conditional probability can be written as

p({ri}, {Ra}|Θc) ∝
∫
Dδ exp

(
Ng∑

i=1

bg(r
i)δ(ri) +

NGW∑

a=1

bGW (Ra)δ(Ra)

)
p({δ}|Θc). (6.12)

3This means that we are working in the linear bias regime, although these expressions can be left general
for nonlinear bias terms.
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Defining the column vector

δ = (δ(r1), . . . , δ(rNcells), δ(R1), . . . , δ(RNcells)), (6.13)

to be the matter density vector with its components the matter densities at each cell and
the bias vector

b = (bg(r
1), . . . , bg(r

Ncells), bGW (R1), . . . , bGW (RNcells)), (6.14)

so that the biases at cells without any events are zero, the exponential terms in the ex-
pression (6.12) can be simplified and written into a compact matrix multiplication as

p({ri}, {Ra}|Θc) ∝
∫ Ncells∏

m=1

dδm eb
T δp({δ}|Θc). (6.15)

Then assuming that δ is a Gaussian statistical field, the probability functional p({δ}|Θc)
is given by

p({δ}|Θc) =

√
1

(2π)Ncells |C−1|e
− 1

2
δT C−1δ, (6.16)

where |C−1| is the determinant of the inverse covariance matrix. The covariance matrix C
is defined in the usual way as

Cij = 〈δ(ri)δ(rj)〉 = ξ(2)(|ri − rj|), (6.17)

where ξ(2)(r) is the expected 2-point correlation function for δ. Applying an integration
identity for N -dimensional Gaussian integrals with a linear term, we can evaluate the
integral on δ as:

p({ri}, {Ra}|Θc) ∝
∫ Ncells∏

m=1

dδi

√
1

(2π)Ncells |C−1|e
− 1

2
δT C−1δ+bT δ = e

1
2
bT Cb. (6.18)
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Therefore, the desired conditional probability can be estimated as

p({ri}, {Ra}|Θc) ≈
(
e−N̄g

Ng∏

i=1

n̄g(r
i)∆V

)(
e−N̄GW

NGW∏

a=1

n̄GW (Ra)∆V

)

× exp

[
1

2

Ng∑

i,j=1

bg(r
i)Cijbg(r

j)

]

× exp

[
1

2

NGW∑

a,b=1

bGW (Ra)CabbGW (Rb)

]

× exp

[
Ng ,NGW∑

i,a=1

bg(r
i)CiabGW (Ra)

]
. (6.19)

As will be shown in the next subsection, the final posterior will depend on this conditional
probability. This conditional probability does not require inverting the covariance matrix
which is usually the case. Furthermore, this likelihood is still very generic and includes
auto-correlation functions as well but in the following section we will make several assump-
tions in order to only consider the impact of the cross-correlation between the galaxies and
sirens for statistical inference.

6.2.2 General Posterior for Parameter Inference

The final posterior we wish to compute is given by Bayes’ theorem (ignoring the evidence
factor p({xaGW}, {xig}), typical for parameter inference) :

p(Θc|{xaGW}, {xig}) = p(Θc)p({xaGW}, {xig}|Θc), (6.20)

where xaGW is the data for the GW sources a = 1, . . . , NGW and xig is the data for galaxies
i = 1, . . . , Ng. Here, p(Θc) is the prior for the set of cosmological parameters Θc that
we will statistically infer. Let us assume that we have processed the galaxy data into a
readable form xig = (zi,Ωi

g), where zi is the redshift and Ωi
g angular position for a galaxy

with label i.In this case, we can write the posterior as

p(Θc|{xaGW}, {zi,Ωi
g}) = p(Θc)p({xGW}, {zi,Ωi

g}|Θc). (6.21)
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For now for simplicity in our model we assume that data format for xaGW is simply given
as (Da

L,Ω
a
GW ) 4 then we can compute the likelihood above as

p({xaGW}, {xg}|Θc) = p({Da
L,Ω

a
GW}, {zi,Ωi

g}|Θc)

=

∫
DRa Dri p({Da

L,Ω
a
GW}, {Ra}, {zi,Ωi

g}, {ri}|Θc)

=

∫
DRa Dri p({Da

L,Ω
a
GW}, {zi,Ωi

g}|{Ra}, {ri},Θc) p({Ra}, {ri}|Θc)

=

∫
DRa Drip({Da

L,Ω
a
GW}|{Ra},Θc)p({zi,Ωi

g}|{ri},Θc) p({Ra}, {ri}|Θc),

(6.22)

where to get to the last line we used the fact that obtaining the luminosity distance and
angular position of the sirens experimentally is independent of the galaxy positions, and
vice versa. Note that we introduced the notation as before for products of integrals:

∫
Dri =

∫ Ng∏

i=1

dri,

∫
DRa =

∫ NGW∏

a=1

dRa, (6.23)

and integration should be done over the 3D comoving volume for both samples. Further-
more, since we assumed that the auto-correlation between the sirens is negligible as they
are rare and far from each other, we can write

p({Da
L,Ω

a
GW}|{Ra},Θc)p({Ra}|{ri},Θc) =

NGW∏

a=1

p(Da
L,Ω

a
GW |Ra,Θc)p(R

a|{ri},Θc)

(6.24)

where we substituted p({Ra}|{ri},Θc)p({ri}|Θc) for p({Ra}, {ri}|Θc). This finally leads
to

p({xaGW}, {xg}|Θc) =

∫
Dri p({zi,Ωi

g}|{ri},Θc) p({ri}|Θc)

×
NGW∏

a=1

∫
dRa p(Da

L,Ω
a
GW |Ra,Θc) p(R

a|{ri},Θc). (6.25)

4When working with the actual data format from gravitational wave experiments such as LIGO and
Virgo, one needs to incorporate an additional step to turn the data xGW into Da

L,Ω
a
GW by including an

additional factor P (xaGW |Da
L,Ω

a
GW ) in the likelihood as in Ref. [108].
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We can now identify different terms in this result one-by-one by comparing with our estima-
tor from last section while implementing some corrections to take into account anticipated
experimental errors. Expanding out the factor dependent on redshift we get

p({zi,Ωi
g}|{ri},Θc)p({ri}|Θc) = p({zi,Ωi

g}, {ri}|Θc)

= p({ri|{zi,Ωi
g},Θc)p({zi,Ωi

g}|Θc). (6.26)

In what follows we ignore the error in the galaxies’ sky localization as well as redshift
distortions by taking

p({ri}|{zi,Ωi
g},Θc) =

Ng∏

i=1

δ(3)(ri − r̂(zi,Ωi
g,Θc)). (6.27)

In other words we assume that given the data {zi,Ωi
g} and cosmological parameters, one

can directly calculate the position of galaxies in comoving space using the redshift-distance
relation. Then

p({xaGW}, {xg}|Θc) = p({zi,Ωi
g}|Θc)

NGW∏

a=1

∫
dRa p(Da

L,Ω
a
GW |Ra,Θc) p(R

a|r̂(zi,Ωi
g,Θc),Θc).

(6.28)

Note that if galaxies were independent then it would identically result to

p({zi,Ωi
g}|Θc) =

Ng∏

i=1

p(zi,Ωi
g|Θc), (6.29)

and since the likelihood is marginalised over all realizations of δ, this factor would be
independent of the positions r and could be absorbed in the normalization and prior.
However, as we saw in last section in Eq.(6.19), there were additional contributions to the
likelihood from the auto-correlation function for galaxies that can in principle be used to
optimise the estimator. Inspecting the likelihood in Eq.(6.19) and comparing with Bayes’
theorem,

p({ri}, {Ra}|Θc) = p({Ra}|{ri},Θc) p({ri}|Θc). (6.30)

the second factor p({ri}|Θc) on the right hand side is a factor that we identify as the auto-

correlation for the galaxies corresponding to exp
[

1
2

∑Ng

i,j=1 bg(r
i)Cabbg(r

j)
]

in Eq.(6.19).

As we just saw in Eq.(6.28) this term leads to the auto-correlation term in the redshift
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space as p({zi,Ωi
g}|Θc). However, our goal here is not to use the information of the auto-

correlation of the galaxies, which can be done regardless of sirens, instead we like to extract
cosmological constraints only based on the cross-correlations of the galaxies with sirens.
Therefore, we will proceed assuming we can absorb this term as a pre-factor and will
correct for it (to some extent) through our numerical de-biasing scheme discussed in the
next section. Thus the posterior using only the cross-correlation can be written as

p(Θc|{xaGW}, {xig}) ∝ p(Θc)

NGW∏

a=1

∫
dRa exp

[
Ng∑

i=1

bg(r
i)CiabGW (Ra)

]
p(Da

L,Ω
a
GW |Ra,Θc).

(6.31)

To account for uncertainty in the luminosity distance and sky localization of the sirens, we
model the errors for these using a Gaussian for simplicity5:

p(Da
L,Ω

a
GW |Ra,Θc) ∝ exp

[
−(Da

L − D̂L(Ra,Θc))
2

2(σaDL
)2

]
× exp

[
−(Ωa

GW − Ω̂GW (Ra,Θc))
2

2(σΩGW
)2

]
,

(6.32)

where D̂L(Ra,Θc) is the luminosity distance calculated using Ra and Θc as inputs:

D̂L(Ra,Θc) = (1 + z(Ra,Θc))|Ra|, (6.33)

and Ω̂GW (Ra,Θc) just extracts the angular position in the sky for the siren. For the stan-
dard deviations of the two Gaussians, we have that σaDL

is the 1-sigma error in luminosity
distance and σaΩGW

is the 1-sigma error in sky localization. The error in luminosity distance
is taken to be a fractional error:

σaDL
=

1

2
∆Da

L, (6.34)

where ∆DL is the 68% error for the luminosity distance for each source. In addition, to
be consistent with the notation in Ref. [176], we use the following relationship for the sky
localization error given that ∆ΩGW is the 68% interval:

σΩGW
=

[
− ∆ΩGW

2π ln(0.32)

]1/2

. (6.35)

5We comment that this is a rather simplistic modelling of the error for sirens. A realistic modelling of
error for the sirens would also make use of other information than just the spatial positions of the sirens.
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6.3 Catalogs

For this work, we used a modified mock galaxy catalog initially generated using the VELMASS
simulation suite [193]. The VELMASS suite is made up by 10 cosmological simulations, in
which 9 of these use the same initial phases while probing variations of cosmological pa-
rameters, and 1 of them uses the same parameters as the central simulation while varying
different initial phases. The central simulation assumes Planck 2015 [18] values for cosmo-
logical parameters: Ωm = 0.315, Ωb = 0.049, H0 = 68 km s−1 Mpc−1, σ8 = 0.81, ns = 0.97,
and YHe = 0.248. While the VELMASS suite is designed to test the robustness of analysis
tools to different variations in parameter and initial phase space, we will just use the cen-
tral simulation results. The simulation volume is 2000 h−1 Mpc with 20483 dark matter
particles, which was initalized at a redshift of z = 50 and evolved to present time using
GADGET2 [209]. Then the ROCKSTAR halo finder algorithm [41] was used to extract the halos
from the simulation, providing a halo catalogue. For full details of the simulation, we refer
readers to Ref [193].

For our purposes, we use a subsample of this full simulation, by limiting the volume to
500 h−1 Mpc. This leaves a total of 2403465 haloes in the catalog. We also make a mass
cut for M > 5 × 1013M�, where M� is the solar mass, so that we only consider the more
massive galaxies. This reduces the number of galaxies in our sample to 80622. We then
cut this sample into two halves randomly, leaving 40311 galaxies in each half, and selected
one of them to be the actual galaxy catalog we work with. For this work, we have not
considered any error in galaxy positions, hence the simulated positions will be the true
positions for galaxies.

The GW samples in this work are generated using the mock galaxy catalog described
above. After cutting the full catalog as described above, the other half was used as the
potential hosts for the mergers. After randomly picking 300 of the galaxies to be the hosts,
the remainder of the potential hosts were thrown out and not used in the cross-correlation
process, completely hiding the hosts of the mergers. At this point the GW samples are
still “error-free” samples since they are taken at the exact positions of the host galaxies.

For each of the catalogs, the comoving coordinates were converted into the necessary
observed quantities using a true value of htrue = 0.68 as described in Appendix A.2. In
other words, the transformations into observable quantities were:

ri = (xi, yi, zi)→ (zi,Ωi
g), (6.36)

Ra = (Xa, ya, za)→ (Da
L,Ω

a
GW ), (6.37)

for galaxies and sirens respectively. To convert these quantities, while one can use the exact
integral relations to acquire the redshift z, as we are limiting the detection volume to the
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low redshift regime (z . 0.2), we will use the power law expansions discussed in Appendix
A.2. For higher redshift values, one must use the full integral for the redshift-distance
relation assuming some fiducial cosmology.

Next, to generate the mocked positional error in the observational measurements, the
sirens were sampled randomly from a Gaussian probability function with the mean as the
true position of the sirens and varying standard deviations for the luminosity distance errors
and sky localization errors. In line with Ref. [176], the 68% sky localization errors were
taken to be ∆ΩGW = 10, 25, and 100 square degrees. The error in luminosity distances were
taken so that the 68% fractional errors for each source were ∆Da

L/D
a
L = 0.01, 0.05, and

0.1. Hence this new catalog has sources that are offset from the true positions to imitate
experimental uncertainty and error. For this work we did not consider any positional errors
on the galaxy positions due to redshift space distortions or peculiar velocities.

Finally, to assert experimental thresholds from “realistic” galaxy and GW surveys where
a more spherical volume is observed rather than a box, we imposed a cutoff in the redshift
for galaxies and the luminosity distance for sirens6. In this work we choose rather arbitrary
cutoff values of Dc

L = 900 Mpc for the sirens and zc = 0.2 for the galaxies. Since we have
not considered any line-of-sight errors for the galaxies, the number of galaxies inside this
volume of observable redshifts stays fixed with Ng = 29218. For sirens however, since we
are considering an error in luminosity distance prior to the luminosity distance cutoff, the
number of sirens inside the volume of observable luminosity distances will change. Hence
for each result for the posterior in the section 6.4, we will list the number of sirens inside
this volume. We will also consider the effects of changing the number of sirens NGW on
the posterior in section 6.4.

We can compute the linear bias for the galaxies and GWs by computing an estimator for
the 2-point correlation function. By using a modified version of the two-point correlation
function from astroML [214], we obtain ξ

(2)
gg (r) and ξ

(2)
GWGW (r) so that the constant biases

can be approximated as

b2
g =

〈
ξ

(2)
gg (r)

ξ(2)(r)

〉
, b2

GW =

〈
ξ

(2)
GWGW (r)

ξ(2)(r)

〉
, (6.38)

where ξ(2)(r) is the two-point correlation function for matter from CAMB [152]. We found
that bg = bGW = 2 was a good fit to the sample bias, which makes sense since the galaxies
and sirens are produced from the same halo catalog. Hence in what follows, the biases bg

6Note that this a simplification. A realistic dataset will also depend on other criteria such as signal to
noise ratios that will depend on direction and will not in general be isotropic.
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∆DL/DL ∆ΩGW (sq. deg) NGW

0.01 10 180
25 179
100 176

0.05 10 182
25 178
100 172

0.10 10 181
25 181
100 173

Table 6.1: Number of GW sirens NGW given after accounting for experimental error and
DL cutoff for varying values of error for DL and sky localization ΩGW . These correspond
to the number of sirens in Figures 6.1, 6.2, and 6.3. Note that for simplicity, since we are
not considering any uncertainty for galaxies, Ng = 29218 remains fixed.

and bGW that show up in the likelihood will be 2 whenever there is a source and 0 when
the cell is empty.

6.4 Results

Now that the Bayesian framework has been constructed, we can look to infer cosmological
parameters. In this analysis we will limit our set of cosmological parameters Θc only to
Hubble parameter H0 and leave the exploration of other parameters for future work7. We
also will work with h, the dimensionless version of H0, defined by

H0 = 100 h km/s/Mpc. (6.39)

7Our work in the previous section is more general and one could consider multiple parameters to infer.
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Figure 6.1: Posterior calculation for inferring H0 given a catalog of sirens and galaxies
using our method with a constant luminosity distance error of ∆DL/DL = 0.01 for each
siren with luminosity DL. The sky localization errors are varying in this plot, with the
black curve for ∆ΩGW = 10 square degrees, the red curve for ∆ΩGW = 25 square degrees,
and the blue curve for ∆ΩGW = 100 square degrees. The dotted lines represent the median
(50th-percentile) values, which are the reported values in the legend. The uncertainties
reported are the 16th and 84th-percentiles corresponding to the 1σ error bars.

104



0.5 0.6 0.7 0.8 0.9 1.0
h

1

2

3

4

5

p(
h
|{
x
G
W
},
{x

g
})

Posterior with ∆DL/DL = 0.05 and varying ∆ΩGW

h = 0.6880.107
−0.101 at ∆ΩGW = 10 sq.deg.

h = 0.7020.117
−0.110 at ∆ΩGW = 25 sq.deg.

h = 0.7410.146
−0.129 at ∆ΩGW = 100 sq.deg.

htrue = 0.680

Figure 6.2: Posterior calculation for inferring H0 given a catalog of sirens and galaxies
using our method with a constant luminosity distance error of ∆DL/DL = 0.05 for each
siren with luminosity DL. The sky localization errors are varying in this plot, with the
black curve for ∆ΩGW = 10 square degrees, the red curve for ∆ΩGW = 25 square degrees,
and the blue curve for ∆ΩGW = 100 square degrees. The dotted lines represent the median
(50th-percentile) values, which are the reported values in the legend. The uncertainties
reported are the 16th and 84th-percentiles corresponding to the 1σ error bars.
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Figure 6.3: Posterior calculation for inferring H0 given a catalog of sirens and galaxies
using our method with a constant luminosity distance error of ∆DL/DL = 0.1 for each
siren with luminosity DL. Note that this is the largest fractional luminosity distance error
that we consider in this work. The sky localization errors are varying in this plot, with the
black curve for ∆ΩGW = 10 square degrees, the red curve for ∆ΩGW = 25 square degrees,
and the blue curve for ∆ΩGW = 100 square degrees. The dotted lines represent the median
(50th-percentile) values, which are the reported values in the legend. The uncertainties
reported are the 16th and 84th-percentiles corresponding to the 1σ error bars.
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Therefore, we have effectively set Θc = {h}. Next, disregarding the auto-correlation terms
for both galaxies and sirens, the posterior can be written as

p(h|{xaGW}, {xig}) ∝ p(h)

NGW∏

a=1

∫
dRa exp

[
Ng∑

i=1

bg(r
i)CiabGW (Ra)

]

× exp

[
−(Da

L − D̂L(Ra, h))2

2(σaDL
)2

]

× exp

[
−(Ωa

GW − Ω̂GW (Ra, h))2

2(σΩGW
)2

]
, (6.40)

where p(h) is the prior for h that we take as a flat prior in the range [0.5, 1.0]. To obtain the
elements of the covariance matrix or 2-point correlation function, we compute the Fourier
transform of the power spectrum:

Cij = ξ(2)(|ri − rj|) =
1

2π2

∫ ∞

0

dk k2P (k)j0(kr), (6.41)

where r = |ri − rj| and P (k) is the matter power spectrum that we can acquire through
CAMB8 [152]. Here j0(kr) = sin(kr)/(kr) is the zeroth order spherical Bessel function of the
first kind.

Note that in our derivation of the Likelihood for Cross-correlation, there were also pre-
factors that did not depend on position of sirens but still depended on h. If constant,
such terms could be absorbed into the normalization but since they depend on h, they are
essentially introducing additional effects in the prior. Similarly, varying h will also change
the boundary of our sample volumes, which can also introduce additional h-dependent
h-biases which is independent of the cross-correlation. We examined the impact of these
terms more numerically by producing a random sample of galaxies and sirens taken from
a three-dimensional uniform distribution. For example one of the features we noticed was
that for higher values of h the likelihood for random sample was increasing as a non-linear
function.

Therefore we implemented a de-biasing algorithm through calculating the likelihood
given “catalogs” comprised of randomly sampled points from a uniform distribution inside
the luminosity distance volume. Since for a given random distribution there is always
the possibility that the distribution of sampled points can be clustered in a way that
drastically influences the likelihood, we took an average over several bias calculations with a

8http://camb.info
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Figure 6.4: Likelihood calculation for inferring H0 given 30 different randomly sampled
catalog of NGW = 180 sirens and Ng = 30000 galaxies from a uniform distribution in the
volume restricted by the luminosity cutoff Dc

L = 900 Mpc. The red dotted lines represent
the likelihood results for each run while the black solid line represents the pointwise mean
taken from the 30 runs.
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different random sample each time. Then this function was factored out from the likelihood,
numerically removing the underlying bias, so that we obtain an unbiased estimate for h.
Ideally, if one could estimate this function analytically, it would not only result in a better
modelling of the posterior, but would also reduce the amount of computation to get to the
final posterior since we can avoid taking several likelihood calculations. Figure 6.4 shows
our bias calculation for 30 different randomly sampled catalogs of NGW = 180 sirens and
Ng = 30000 galaxies from a uniform distribution. By assuming that the leading order
effects of the bias can be absorbed as a multiplicative prefactor in the posterior, this bias
computation was then subtracted off from the final log-likelihood computation9.

Figures 6.1, 6.2 and 6.3 present our final posterior calculations for inferring H0 with the
bias numerically removed, for a variety of different error assumptions. The number of sirens
in each calculation is provided in Table 6.1. The result displayed in Figure 6.1 indicate that
for a small luminosity distance error of ∆DL/DL = 0.01, the sky localization error does not
affect the posterior shape too much. However, as the luminosity distance error increases
(Figures 6.2 and 6.3), the larger sky localization errors result in posterior shapes that were
significantly more spread out compared to their more localized counterparts. Although
the peaks are sharper for smaller errors as expected, the error bars reported through the
16% and 84% percentiles remain quite large, which we suspect is due to the fact that our
likelihood is non-Gaussian and the behaviour of the tails can increase the error10. A better
understanding of the underlying bias may also give more insight to why the tails do not
fall off to zero.

In addition to changing the sky localization error and error in luminosity distance for the
sirens, we also see how the number of sirens NGW is important in determining the posterior
shape. Figure 6.5 shows the difference in posterior shape for h when changing NGW while
leaving the luminosity distance error and sky localization error fixed. As expected, for this
catalog the spread of the posterior increased as the number of sirens decreased, a pattern
consistent with Ref. [176].

9Some of the bias present in our method will be due to a Malmquist bias, where one usually corrects
for this by dividing out a volumetric distance prior p0(R) ∝ R2 as in Ref. [108]. However, there are
additional bias effects that are not all from volumetric effects. Hence for now we treat all of the bias as a
prefactor in the posterior so that it can be removed numerically, and leave more careful considerations of
the de-biasing scheme for future work.

10Note that in general for non-Gaussian likelihood/posteriors the tails will increase the error but often
times in the literature, likelihood is only estimated around the peak as a Gaussian distribution, therefore
this error is underestimated [35].
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Figure 6.5: Posterior calculation for inferring H0 given a catalog of sirens and galaxies using
our method with a fixed luminosity distance error of ∆DL/DL = 0.05 and sky localization
error of ΩGW = 25 sq. deg. for each siren with luminosity DL. The only difference between
the curves plotted are the number of sirens in each consider catalog NGW . The dotted lines
represent the median (50th-percentile) values, which are the reported values in the legend.
The uncertainties reported are the 16th and 84th-percentiles corresponding to the 1σ error
bars.
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6.5 Conclusion

To summarize, in this work we presented a statistical framework to infer cosmological
parameters given a dataset for gravitational wave detections from dark sirens and electro-
magnetic data from galaxies. By assuming that the sirens and galaxies are Poisson-sampled
events of the underlying matter distribution, we showed that one can perform a real-space
cross-correlation with the galaxies and sirens to infer h (and hence H0). Since dark sirens
on cosmological scales are rare events we think Possion sampling is theoretically more
suited to describe their statistics. From a computational perspective, the advantage of this
method is that although one computes element of the covariance method via the Fourier
transform of the matter power spectrum, there is no need to invert the covariance matrix
due to the set-up of our posterior. Matrix inverses are generally very expensive in compu-
tational work, and oftentimes hoard a lot of memory. Since our method lacks the need for
an inverse, the only memory hog would be to calculate the distances between each galaxy-
siren pair (and potentially galaxy-galaxy and siren-siren pairs if the auto-correlations are
considered). While keeping discrete counts for each siren is desired due to the sparse num-
ber of sirens in the catalog, one possible avenue to pursue in the future is to smooth the
galaxy distribution due to their abundance and work with larger cells of comoving volumes
for the galaxies instead.

Furthermore, so far we have tested our method with very simple Gaussian models for
error and ignored effects such as redshift space distortion and errors in galaxy surveys. The
next stage would be to test this method given sets of mock data with more realistic GW
and galaxies error, and finally test if this method could give an unbiased estimate for H0

given the current available data. In particular, it would be interesting to see how well our
statistical model can handle sky localization probability maps such as BAYESTAR [207]. For
future work, we hope to properly implement astrophysical effects in the posterior similar
to Refs. [108, 176, 43] which would improve our statistical inference.

Last but not least, implementing our work in section 6.2 to increase the number of
parameters to infer is not difficult. Currently with only H0 to infer, we are computing
the posterior by directly computing the likelihood and the necessary terms on a linearly
spaced grid in H0. As one increases the number of parameters to infer, a more convenient
method would be to run Monte Carlo Markov Chain (MCMC) simulations to sample the
parameter space. We leave this generalization for future work.
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Chapter 7

Conclusion

In this thesis, we investigated recent developments in modern cosmology for very different
epochs in our cosmological history. In chapter 2 a gentle introduction to general relativity
and cosmology was discussed, in which we saw how the Einstein Field Equations of general
relativity can be used to describe the evolution of our Universe when equipped with the
appropriate spacetime background. In chapter 3 we looked closer into the very beginnings
of Universe, zooming in to the very first seconds that we call the very early Universe.
By looking at the current paradigm called inflation, I discussed some of the very many
successes of the model as well as the criticisms. This led to a discussion about one of the
many alternatives to inflation known as a cosmological bounce. In chapter 4, I presented
a specific bouncing scenario generated by Cuscuton gravity, in which I showed the first
considerations for observables of the theory through the power spectrum. Shifting gears
in chapter 5, we discussed the exciting developments in gravitational wave cosmology and
the promising outlook for multi-messenger astronomy in the near future. In chapter 6,
we looked a new framework built from the ground-up to infer cosmological parameters by
taking advantage of fact that sirens are tracers of the underlying matter distribution in the
Universe.

With the recent advancements in observational technology and the massive amounts
of incoming data, the future prospects for cosmology look brighter than ever. As mea-
surements become more precise and next-generation observatories and interferometers
are developed, we will unlock previously unavailable information regarding our Universe.
Whether it be fundamental physics, general relativity, or the recent ongoing Hubble tension,
future cosmological observations will have significant implications for our understanding of
various different fields of physics and mathematics. Cosmology is truly at the forefront of
modern physics, with its apex yet to come.
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Appendix A

Further Calculations for Dark Sirens

A.1 Expansions of Non-Linear Functions of the Den-

sity Field

We can expand the nonlinear functions gx for each species x by making an exponential
expansion (corresponding to expression (6.9) in the main text):

〈nx(r)〉∆V = gx(1 + δ(r), r)∆V

= gx(1, r)∆V exp(bx(r)δ(r))

≈ gx(1, r)∆V
[
1 + bx(r)δ(r) +O(δ2)

]
. (A.1)

And so expression (6.10) can be expanded in detail as:

〈Nx(δ)〉 =

Ncells∑

m=1

〈nx(rm)〉∆V

≈
Ncells∑

m=1

gx(1, r
m)∆V

[
1 + bx(r

m)δ(rm) +O(δ2)
]

= N̄x +
∑

rm

gx(1, r
m)∆V



bx(r

m)
∑

r̂m

δ(rm, r̂m)

︸ ︷︷ ︸
=0

+O(δ2)




≈ N̄x +O(δ2), (A.2)
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where we used r̂ to indicate the angular direction of the vector r, and the fact that at a
fixed radius,

〈δ(rm)〉 ∼
∑

r̂m

δ(rm, r̂m) ∼ 0. (A.3)

A.2 Distance Conversions

A.2.1 Converting Distance to Redshift

To compute the redshift, we introduce the usual decceleration parameter

q0 = − 1

H2
0

d2a

dt2
=

1

2
Ωm − ΩΛ, (A.4)

after assuming that Ωr ∼ 0 and wDE = −1. In the purpose of our calculations, Ωm = 0.3
and ΩΛ = 0.7 as a rough estimate1. Assuming that our sources are at a low enough redshift
(ie. z . 0.2), one can perform the power law expansion for the comoving distance (keeping
c in) [219]:

H0

c
r = z − 1

2
(1 + q0)z2 +O(z3), (A.5)

to which we can solve at second order for z to get

z(r) ≈ 1−
√

1− 2rH0(1 + q0)/c

1 + q0

, (A.6)

giving a second order approximation of the redshift z given a comoving distance r.

A.2.2 Converting Comoving Distance to Luminosity Distance

Recall that the luminosity distance DL of a source is related to the comoving distance r
by

DL = (1 + z)r, (A.7)

1Although these are cosmological parameters that one can introduce into the set of cosmological pa-
rameters to be inferred with the statistical model.
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where z is the redshift of the source. Using (A.6), this then lets us write DL as a function
of r approximately as

DL(r) = (1 + z(r))r ≈
[

1 +
1−

√
1− 2rH0(1 + q0)/c

1 + q0

]
r. (A.8)

A.2.3 Converting Luminosity Distance to Comoving Distance

This time, writing DL as a power series [219],

H0

c
DL = z +

1

2
(1− q0)z2 +O(z3), (A.9)

to which we can find the roots (to second order) again

z(DL) =
−1 +

√
1 + 2DLH0(1− q0)/c

1− q0

. (A.10)

These will be the redshifts that we compute with each value of h given the luminosity
distances of the GW sources. Then we substitute back into the relationship for r and dL
to get:

r(DL) =
DL

1 + z
≈
[

1 +
−1 +

√
1 + 2DLH0(1− q0)/c

1− q0

]−1

DL. (A.11)

A.3 68% Interval for 2D Gaussian

By definition, the solid angle can be written as

Ω =
A

r2
, (A.12)

where r is the radius of the spherical shell and A is the spherical surface area of a patch
for solid angle A. In the large distance regime where r is very large (as in most cases for
astronomy), for a small solid angle ∆Ω, we can approximate the spherical surface area with
a flat circle of radius ` so that

∆Ω =
π`2

r2
= πθ2, (A.13)
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where θ = `/r is the approximated small angle. Hence if ∆Ω is the 68% interval for the
solid angle, we can translate it to a standard deviation in either transverse coordinates or
one-dimensional angle θ by using the probability function in two dimensions:

P (x, y) =
1

2πσxσy
exp

(
− x2

2σ2
x

)
exp

(
− y2

2σ2
y

)
=

1

2πσ2
`

exp

(
− `2

2σ2
`

)
, (A.14)

where we used the fact that `2 = x2 + y2 and the isotropic condition σ` = σx = σy. Then,
we can integrate this in polar coordinates to find the 68%-percentile around the mean:

0.68 =
1

2πσ2
`

∫ 2π

0

∫ `

0

`d` exp

(
− `2

2σ2
`

)
= 1− exp

(
− `2

2σ2
`

)
. (A.15)

Isolating for σ2
` and using (A.13) gives

σ2
` =

∆Ωr2

−2π ln(0.32)
, (A.16)

or in angles σθ = σ`/r,

σ2
θ =

∆Ω

−2π ln(0.32)
. (A.17)
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