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Abstract: Natural stone is an important component of historical heritage (buildings and art objects
such as sculptures or rock engravings), and it is still widely used in contemporary works. Soluble
salts are the main erosive agent in the built environment, and we review here comparative studies
that subject the same rock type to testing with different salt solutions. The results mostly support the
accepted notion of the major impact of sodium sulphate, although there are some exceptions. The
effects of sodium chloride and calcium sulphate deserve specific discussion given field information on
the relevance of these specific salts in the built environment. We relate the information collected to the
issues of risk assessment (considering both geochemical conditions and salt effects) and conservation
interventions (highlighting the interest of tests that do not produce damage to susceptible materials)
and present some methodological suggestions to avoid a case study culture.

Keywords: water–stone interaction; stone erosion; laboratory simulation; hazards studies; materials
conservation; replication; testing methodology

1. Introduction

Natural stones are an important component of the historical and contemporary an-
thropogenic environment (and, certainly, will be materials used in future structures), with
diverse types of applications, from pavements and walls to statuary, both indoors and
outdoors. In the anthropogenic environment, they are exposed to diverse agents that
promote alterations, and many of the effects resulting from the pollutants could be affected
by the modifications associated with climate change (see review in Bertolin [1]).

The interaction between natural stone and the pollutants in the anthropogenic envi-
ronment can result in a great diversity of features, from simply causing changes in surface
color and texture to erosive situations that lead to material loss and sometimes the loss of
cultural information (engravings, ornamental details, etc.).

Soluble salts have been frequently associated with stone decay at least since the times
of Herodotus, who remarked that the pyramids were “being eaten away” by salts [2]. The
widespread occurrence of soluble salts and their frequent erosive impact make them the
main hazard for natural stone in the built environment. Soluble salts can have diverse
sources (see, for example, [3–6]), including sea spray, anthropogenic air pollution, road
de-icing, organic sources (including wastes from humans and other animals) and also
building materials. There are several reviews regarding saltweathering processes of rocks
and stones and the factors that control their impact [3,5–10].

Soluble salts can contribute to diverse coatings such as the well-recognized efflores-
cences (white surficial occurrences, illustrated in Figure 1). While efflorescences and other
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surficial effects related to salt crystallization (such as black crusts) can have an aesthetic
impact, we will focus on the erosive effects of soluble salts (illustrated in Figure 1).

Figure 1. Salt efflorescences (whitish powder) and erosive effects (leading to rounding) on granitic
stones of a window from a historical structure in the town of Chaves (Portugal).

Salt weathering can be assessed through laboratory tests and several proposals have
been made (for a recent review, see Lubelli et al. [11]) regarding variables such as speci-
men geometric characteristics (shape and size), conditions for pollutant access (surface
deposition, total and partial immersion—the latter attempting to reproduce the frequent
situation where salt solutions migrate by capillarity) and climatic conditions (temperature
and air moisture). In the assessment of the erosive effects of salts, mass evolution seems to
be the most frequent procedure, as it is a reproducible, objectively measurable parameter.
However, as is illustrated in Figure 2 (whitish powder), for the case of salt crystallization,
it has the disadvantages that it could be disturbed by salt accumulation in porous media
(which promotes mass increase) and that it does not reflect the erosion patterns. Visual
observation is an important feature, but it is complex to convey in an objective, simple way.
Many other procedures have been proposed by diverse authors (some examples can be
seen in the reviews mentioned above). Other techniques can be used, such as scanning
electron microscopy (SEM), to assess the effects of salt crystallization on the structure of
the stone and variations in physical properties.

The main goal of the present work is to review studies that allow the comparison of
data from different salt solutions, including solutions of one salt and salt mixtures, applied
on the same rock material and under the same testing conditions (in each study). In this way,
it will be possible to assess the impact (and hazard level) of different salt solutions. Among
the diverse studies considered, there are diverse options regarding testing conditions in
terms of specimens’ imbibition and salt crystallization conditions. However, the analysis
is focused on the comparison of results within the same conditions using different salt
conditions. We have focused on studies with natural stone and a complementary goal
concerns the assessment of the lithological diversity of the materials studied. We focused
on and highlighted information concerning the erosive effects of salt solutions, especially
mass loss, which constitute quantitative evidence of the decay effects promoted by the
salt solutions. After the presentation of the data collected in the next section, this work
considers some specific salts that are especially relevant due to their frequency, presents
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some comments regarding the relevance of field studies and discusses these results in the
more global context of reproducibility and case studies.

Figure 2. Limestone (travertine) after cycles of salt crystallization with sodium sulphate solutions
(note the accumulation of salt efflorescences and the existence of irregular erosion patterns in relation
to the shape of the specimen and the rock texture).

2. Comparison of the Effects of Salt Solutions

In their “opus magnum” about salt weathering, Goudie and Viles [5] review some
previous studies that tested the effects of diverse salt solutions on the same materials. As
general trends of their review, these authors highlighted the following points:

- Sodium sulphate, sodium carbonate and magnesium sulphate generally were effective
in provoking erosive effects;

- Sodium nitrate had marked erosive effects in some cases but not in others;
- Sodium chloride and calcium sulphate were relatively ineffective in terms of caus-

ing erosion.

A more recent publication (Yu and Oguchi [12]), besides presenting the results of
testing on diverse rocks, also reviewed previous works and found that sodium sulphate
was the most effective in causing degradation of the specimens in most of the studies
considered (seven out of 10 studies considered), with the following exceptions:

- A study with granites by Birot from 1954, where the rank was headed by sodium
hyposulphite (the only reference that we found to testing with this solution), followed
by sodium carbonate, sodium sulphate and sodium chloride;

- A study with sandstones by Goudie from 1986 states that sodium carbonate and
magnesium sulphate have a greater impact than sodium sulphate (which was followed
by sodium chloride, sodium nitrate and calcium sulphate);

- From 1988, the study by Smith and McGreevy on sandstone indicated higher alter-
ation for magnesium sulphate than sodium sulphate (which was followed by 10%
magnesium sulphate, saturated sodium chloride and 10% sodium chloride).

In the studies reviewed by these authors, sodium chloride was the least effective salt
in causing damage in almost all the studies that included this salt, excepting the study
by Cooke in 1979, where sodium chloride, while being clearly less effective than sodium
sulphate, was more effective than calcium sulphate and sodium nitrate, and the study by
Kwaad in 1970, where calcium sulphate was placed below sodium chloride.

The results of other studies that compared the effects of tests with different salt
solutions are presented in three tables regarding size and organization:
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- Table 1, which considers studies with solutions of a given salt (including the experi-
mental results from Yu and Oguchi [12]);

- Table 2, with studies comparing seawater and other salt solutions (including other
natural solutions);

- Table 3, presenting studies of salt mixtures and other salt solutions.

Table 1. Analysis of comparative studies of salt crystallization tests using different salts (on the same rock type).

Ref. Rock Types Solutions Comparison

Yu and
Oguchi [12]

Sedimentary carbonate
rocks, sandstone, granite,

pyroclastic rocks and
lavic rocks

Magnesium sulphate,
sodium carbonate,
sodium sulphate

In general, sodium sulphate caused higher mass loss,
with some exceptions:

- a sandstone presented significant higher mass loss
for magnesium sulphate (around 64%) while sodium
sulphate and sodium carbonate caused similarly low

mass loss (below 2.1%);
- sodium carbonate caused higher loss in a limestone

but mass loss values were below 1.2%.

Heidari et al. [13] Limestone Magnesium sulphate,
sodium sulphate

Minor mass loss (up to 0.6%) for sodium sulphate
with clear erosion and negligible for magnesium

sulphate (up to 0.03%).

Sato and Hattanji
[14]

Pyroclastic rocks,
sandstone

Magnesium sulphate,
sodium chloride,
sodium sulphate

While in the wetting–drying experiments,
magnesium sulphate caused the worst effects

followed by sodium sulphate, for relative humidity
variations, the worst effects (including the total
destruction of one of the sandstone types) were

observed for sodium chloride, followed by
magnesium sulphate (sodium sulphate effects were

almost limited to efflorescences).

Çelik and Aygün
[15]

Lavic rock, pyroclastic
rocks

Sodium chloride,
sodium sulphate

Sodium sulphate caused higher mass loss, up to
around 70% (sodium chloride was below 3% but

caused breaking in one of the rock types).

Derluyn et al. [16] Limestone Sodium chloride,
sodium sulphate

Sodium chloride solutions caused cracking, which
was not observed in limestone specimens tested

with sodium sulphate.
Torabi-Kaveh et al.

[17] Limestone Magnesium sulphate,
sodium sulphate Negligible mass loss for both salts (up to 0.1%).

Çelik and Sert [18] Pyroclastic rocks

Magnesium sulphate,
potassium chloride,

sodium chloride,
sodium sulphate

Higher erosive impact for sodium sulphate,
followed by magnesium sulphate and potassium

chloride, with sodium chloride causing the lowest
impact. In general, higher erosive impact was

observed for solutions with higher content but the
results were not so clear for sodium chloride.

Scrivano and
Gaggero [19]

Carbonate sedimentary
rocks

Magnesium sulphate,
potassium nitrate,
sodium carbonate,
sodium chloride,
sodium sulphate

More intense effects (powdering and breakage) for
sodium carbonate and sodium sulphate. Greater
mass loss values for sodium carbonate than for

sodium sulphate (around 16× times higher in one
case) but with a wide interval, from less than 0.10%
in both cases to around 34% for sodium sulphate and
100% for sodium carbonate. Magnesium sulphate
caused minor rounding and moderate swelling in
veins, with mass loss up to around 2%. Sodium

chloride and potassium nitrate solutions showed
surface crystallization of salts without significant

physical degradation (mass loss below 0.20%).

Zhao et al. [20] Granite
Magnesium sulphate,

sodium sulphate (both
with different contents)

In both cases, higher mass loss for solutions with
higher salt content. Much higher values for sodium
sulphate (even so up to 3.4%) than for magnesium

sulphate (just up to 0.02%).
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Table 2. Analysis of comparative studies of salt crystallization tests using seawater (as well as other salt solutions).

Ref. Rock Types Solutions Comparison

Mottershead [21] Schist Sodium chloride,
seawater (1)

Mass loss higher for sodium chloride solution than for
seawater (2).

Rivas et al. [22] Granite Sodium chloride,
seawater

Generally higher mass loss for the sodium chloride spray
(although, for the more porous granite type, there is a

certain overlap of values) also with some morphological
differences in terms of erosive features: granular

disintegration for sodium chloride and small scales for
seawater spray.

Tingstad [23] Limestone
Sodium chloride,
sodium sulphate,

seawater

The weathered surface was more irregular, achieving
both lower and higher depth, for sodium chloride than

for sodium sulphate or seawater (but the largest variation
was 0.6 mm).

Sitzia et al. [24] Sandstone, limestone,
marble, lavic rocks

Rainwater,
groundwater, thermal

water, seawater (a
sequence of increasing

values of total
dissolved solids)

For a given rock type, comparisons were only made
between rainwater and one of the other solutions, with

rainwater presenting lower mass loss in all cases but one
concerning specimens from a volcanic rock (rhyolite)
where mass loss with rainwater was higher than with

thermal water. The highest mass loss was observed in the
sandstone test with seawater (4.79%). Photogrammetric
monitoring detected variations in the sandstone (both
with seawater and rainwater) and the two limestones

(with groundwater and rainwater).
1 The author considered solutions of other salts (calcium sulphate, magnesium bromide, magnesium chloride and magnesium sulphate) at
the concentration of these salts in seawater (which is much lower than usually used in salt-weathering tests). 2 The solutions of other salts
at the concentration found in seawater caused much lower mass loss, with calcium sulphate being the more prominent, followed closely by
magnesium sulphate.

Table 3. Analysis of comparative studies of salt crystallization tests that include mixtures of salts (excluding seawater).

Ref. Rock Types Solutions Comparison

Robinson and
Williams [25] Sandstone Calcium sulphate, sodium

chloride, a mixture of these salts

Higher mass loss for the mixture of sodium chloride
and calcium sulphate than for the solutions of these

salts, but values were generally below 1.0%.

Cardell et al. [26] Limestone Calcium sulphate,
magnesium sulphate Cardell et al. [25]

DeClercq et al.
[27] Limestone Sodium sulphate, a mixture of

this salt with sodium nitrate
Sodium sulphate solutions produced lower mass loss

than the mixed solution.

El-Gohary [28] Limestone

Sodium sulphate, mixtures of this
salt with other salts (sodium
chloride, iron chloride and

potassium nitrate)

Solutions of sodium sulphate caused more damage to
the studied limestones than solutions with the same
concentration of this salt mixed with the other salts.

Godts et al. [29] Limestone Sodium sulphate, magnesium
sulphate, a mixture of these salts

Erosive effects of solutions of sodium sulphate and
solutions of magnesium sulphate but not for mixed

solutions of these salts.

Menéndez and
Petráňová [30] Limestone

Calcium sulphate, sodium
chloride, sodium sulphate, a
mixture of these three salts

A certain dispersion of results. In the crystallization
cycles, the specimens tested with the mixture did not
show as marked decay as with the worst cases with
either salt. Contrastingly, in relative humidity cycles,

all specimens subjected to the mixture presented
stronger decay, followed by those submitted to tests
with sodium chloride. Occurrence of gypsum at the
surface in the tests with calcium sulphate solutions

and inside the stones when mixed solutions of
calcium sulphate, sodium sulphate and sodium

chloride were employed.

Lindström et al.
[31] Sandstone Sodium nitrate, sodium sulphate,

a mixture of these salts

Mixed solutions caused higher erosion than sodium
nitrate solutions but lower than sodium

sulphate solutions.

Lindström et al.
[32] Sandstone

Magnesium sulphate, sodium
sulphate, mixture of magnesium
sulphate and sodium sulphate

Lindström et al. [31]

The set of rocks tested in these studies is ample but sedimentary rocks (limestone and
sandstone) are clearly dominant, followed by pyroclastic rocks. This converges with results
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from our recent survey of salt-weathering tests focused on geological features, where
these rocks (especially limestones and sandstones) were clearly dominant. Metamorphic
rocks are relatively rare, with only one study considering results from marble specimens
and another from schists. Granite, another important building stone type, is also poorly
represented (with only two studies).

Sodium sulphate is the dominant salt in these studies and, based on previous reviews
and the data in these tables, the erosive potential for sodium sulphate can be considered
well-established. This salt is indeed used in many standards, such as the European EN
12370, and it is dominant in the global set of laboratory studies of salt weathering. Nonethe-
less, there are some situations where it seems to have a less marked effect, situations that
present a certain lithological variety (sandstone, limestone and pyroclastic rocks).

The information about the other salts is less straightforward, although the damaging
potential of magnesium sulphate and sodium carbonate seems to be common. The ques-
tion of the apparently lower erosive effects of sodium chloride and calcium sulphate in
laboratory tests is a particularly relevant issue given the frequent occurrence of these salts
in field cases. The lower damage caused by sodium chloride and calcium sulphate has
been already highlighted by Goudie and Viles (1997) and we will pay specific attention to
these salts in other sections below.

In most of the studies that compared seawater with other salt solutions, the former
caused lower physical degradation (seawater, which is mostly sodium chloride, will be
also included in the discussion in the next section). Concerning other salt mixtures, one
can highlight that, frequently, solutions with sodium sulphate cause more damage than the
solutions where this salt is mixed with others.

3. On Sodium Chloride and Seawater

The results presented in the tables of this work showed some examples where sodium
chloride (and seawater) causes significant damage. One can find other indications of the
erosive potential of sodium chloride in laboratory studies concerning a diversity of rock
types, which will be discussed next.

The study of Smith and McGreevy, published in 1983 and reviewed by Goudie and
Viles [5], dealing with sandstones and solutions of sodium sulphate, magnesium sul-
phate and sodium chloride, while showing higher erosive effects for sodium sulphate and
magnesium sulphate, also mentioned erosive effects for sodium chloride.

Slight erosive effects (including some flaking) were obtained in sodium chloride tests in
sandstone by McSkimming [33]. A study with two limestones by Al-Omari et al. [34] found
mass losses that were slightly above 5% for one of them, but results were clearly affected by
the mass of crystallized salt (in several tests, there was mass gain). Zalooli et al. [35] reported
mass loss around 9% and 3% for two limestone (travertine) types that showed, respectively,
granular disintegration and significant fracturing (which might not be associated with
marked weight loss as there was no separation from the specimen body).

Granites subjected to spray with sodium chloride solution showed erosion and oxida-
tion stains, but the mass loss was not higher than 0.23% (Borges [36]). Silva and Simão [37],
in tests with limestones, marbles and plutonic rocks using a spray of sodium chloride
solution, found erosive effects and mass loss values that reached up to around 5% in
limestone but were not higher than 1.0% in the specimens of marbles and plutonic rocks.
Silva et al. [38] performed spray tests with sodium chloride solutions in plutonic rocks,
obtaining erosive effects with increasing roughness and mass loss higher for hammered
surfaces (but, even so, the maximum mass loss was around 1.1%). Carvalho et al.’s [39]
tests of limestones with a spray of sodium chloride solution showed mass loss values that
were not higher than 0.40%.

In the study of Goudie in 1974 (cited in Goudie and Viles [5]), sea brine caused
mass loss values lower than some salts (sodium sulphate, sodium carbonate and calcium
chloride) but higher than others (sodium carbonate and sodium nitrate) for sandstones,
while for the limestone specimens, sea brine caused lower mass loss than sodium sul-
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phate, sodium carbonate, sodium nitrate and calcium chloride but higher than magnesium
sulphate, calcium sulphate and sodium chloride.

While not very frequent nowadays, exposition tests, where the material is exposed
to the weathering factors in the field, can be seen as something between laboratory tests
and field studies (these exposure tests were already recommended by Vitruvius to test
the suitability of a given stone for a given place [40]). Goudie et al. [41] report intense
erosive effects of limestone blocks exposed for two years in the desert and associated with
high halite content resulting from the desert saline fog. The study by Cabello-Briones and
Viles [42] exposed blocks of limestone (which were previously washed in water to remove
salts potentially present) in shelters (isolated from the ground) in a coastal location in Malta.
These blocks showed surface erosive features after a year of exposition (one might admit
that, given the location of the study, these erosive features are essentially the result of salts
from sea spray, either newly deposited or previously inside the blocks and that were not
removed by the washing operations).

4. Regarding Calcium Sulphate

Laboratory tests have not been clearly supportive of the erosive effect of calcium
sulphate (and gypsum) resulting from this salt crystallization from migrating solutions
(we are not considering here the effects associated with gypsum formation from SO2 tests).
However, the tests of limestones subjected to calcium sulphate in the study of 1974 by
Goudie (reviewed in Goudie and Viles [5]) gave a mass loss around 15% (less than other
salts but more than sodium chloride and wetting–drying with water).

Crystallization tests with calcium sulphate have promoted the development of subefflores-
cences and intergranular fissures parallel to the surface in limestones (Cardell et al. [26]). More-
over, using calcium sulphate solutions, Menéndez and David [43], Janvier-Badosa et al. [44],
and Menéndez and Petráňová [30], all with limestones, and Rivas Brea et al. [45] with gran-
ites, did not observe erosive features (only gypsum crystallization). Janvier-Badosa et al. [44]
mention previous works by Pauly in 1990 and Prick in 1996 that also only found gypsum
crystallization at the surface.

Nonetheless, besides the scarce evidence for erosive effects of gypsum, it is interesting
to note that Menéndez and David [43] reported gypsum crystallization below the surface
and Menéndez and Petráňová [30] detected the occurrence of gypsum at the surface in
the tests with calcium sulphate solutions and inside the stones when mixed solutions of
calcium sulphate, sodium sulphate and sodium chloride were employed.

The question of crystallization below the surface is particularly relevant given the
observation of this situation in field studies (e.g., Wendler et al. [46]; Jeannette [47]; Alves
and Sequeira Braga [48]; Janvier-Badosa et al. [44,49]) and the prediction of this kind of
distribution pattern in the model of Hammecker [50]. Besides the studies of natural stone
as a building material, crystallization of gypsum has been associated with disruptive
processes of building foundations (Yamanaka et al. [51]; Matheson and Quigley [52]).

Goudie and Viles [5] discuss factors that might contribute to the different assessments,
on the erosive effects of gypsum, from field and laboratory studies, pointing to the influence
of the presence of other salts, which can increase gypsum solubility due to ionic strength
effects, promote crystallization cycles by deliquescence and affect the hydration state.

Salt-weathering tests are performed without regard to biological components and
their conditions imply an almost sterile environment. However, there have been studies
showing the interaction between organisms and gypsum (Sheikholeslami and Lau [53]).
This could be an interesting avenue of research in terms of simulating the impact of gypsum
on stone decay.

5. Replication Crisis, Case Study Culture/Curse and Some Methodological Suggestions

The replication or reproducibility crisis is a major contemporary concern that has
received greater attention in the social and medical sciences but that could affect many other
areas (Baker [54]). The culture/curse question could be seen as a provocation unsuitable in
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a research journal, but we contend that it is a prompt for a reflection on a relevant issue in
the specific context of stone weathering studies. The term “curse” will suggest that it is an
inevitable consequence, while culture suggests that it can be changed. At this point, we
favor the latter option, but we are not closed-minded about the subject; while we think it
is an important discussion to start, we do not think that we are, yet, in a position to offer
a judgment.

One could suppose that laboratory studies are in a better position for replication than
field studies, as they follow specific controlled protocols. However, the data collected
above paint a more complex scenario. Namely, variations between rock types could imply
a situation of a new case study for each newly studied rock type. Additionally, there could
be significant variations within a certain “rock type”. Giving an example, about which
the present authors have some empirical evidence, “weathered granite” specimens with
similar grain size and mineralogical composition could have significant variations in water
migration properties, due to variations in weathering intensity, even in specimens from the
same boulder, which will influence the results of salt-weathering tests.

The use of different testing conditions, in terms of imbibition conditions and drying
conditions, while having the potential to shed some light on the influence of different
factors, can contribute also to a case study culture.

These considerations lead us to propose two major methodological suggestions:

- always use a random selection of specimens;
- report detailed information on each of the specimens studied;
- have a baseline of testing conditions for comparison.

The first point is a well-known basis for any statistical study. It should guide the
distribution of the specimens between the groups (“treatments”) that are to be compared.
For a good implementation of this principle, one should prepare a higher number of
specimens than those that are going to be tested (the ones to be tested will be randomly
selected from the initial set of specimens).

Concerning the second issue, the detailed information for each specimen studied
should include a detailed description, at least at the macroscopic level but ideally also in-
cluding thin sections from the portions adjacent to the specimen, non-destructive measure-
ments before the testing and individual test results. The development of non-destructive
imaging techniques such as X-ray tomography could offer an important contribution in
this regard.

Lastly, while creativity in terms of testing conditions promotes a vibrant research
culture in terms of the influence of different factors, it will be useful to perform, at the same
time, testing under the conditions proposed in the present standards given that this will
allow the comparison with a much wider set of results.

6. Implications: Hazard Assessment (with Reference to the Comparison with Field
Studies) and Conservation Procedures

Assessing the risk posed by salt weathering to stone heritage requires evaluating
the possibility of the occurrence of the problem—in this case of the salt pollutants—and
the impact that the occurrence of the pollutants will pose to the affected item. Regarding
salt weathering, this means not only to assess the differential impact of different salt
compositions but also to assess the geochemical conditions, i.e., the possibility of the
occurrence of the salts.

Field studies could be considered a “reality check” on the results of salt-weathering
simulations. However, there are complexities, sometimes insurmountable, that hinder this
goal. Namely, environmental conditions are variable over time and, in general, there is a
marked absence of data concerning these variations. Besides the problems of establishing
the sources of pollutants, it is troublesome to assess the presence and contents of the
pollutants. Salt efflorescences are a clear marker that are relatively easy to characterize
(but there could be diverse space variations). One should also remember the often-quoted
principle that association does not mean causation. In this case, the salts crystallizing inside
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the stone material (and causing the erosion) might be significantly different from the ones at
the surface, e.g., due to different solubilities (see discussion by Hammecker [50]). One can
also suggest that it might be useful to develop more research on modern buildings (which
have had a clear subordinate position when compared to historical heritage in terms of
research, but which might constitute case studies with better-constrained characteristics).

Nonetheless, field studies could be an important source of information regarding the
frequency of occurrence of the pollutants (the geochemical hazard, so to speak). Among
the diverse salts considered, sodium chloride has a well-known wide distribution and, as
mentioned above, calcium sulphate (gypsum) is frequently found in diverse field studies.
Thenardite is a major phase in recent structures (Alves [55]) and, accepting the hypothesis
that its occurrence is related to the presence of modern cements (Arnold and Zehnder [3]), it
will be another argument to be mindful of the use of these substances in restoration works.

These studies could also have significant relevance for the conservation measures
to be undertaken. While, in general, research publications are focused on showing and
highlighting the damaging effects, tests where the salts do not cause visible alterations ar-
guably deserve greater attention as they could suggest situations that minimize the impact
of salt pollution and, therefore, it will be important to use rock materials that present the
highest susceptibility to salt weathering under standard conditions. This point highlights
one of the issues of the last section (comparison between testing conditions). Field studies
could be also useful in this respect when soluble salts are found (on efflorescences) without
causing significant stone erosion, although, again, one should keep in mind the problem of
the characterization of the field conditions through time, leading to this result.

7. Final Considerations

The question of which salts have the greatest erosive impact on materials such as
natural stone has been the object of multitudinous laboratory studies. There are several
results pointing to the major effects of salts such as sodium sulphate, magnesium sulphate
and sodium carbonate and suggesting comparatively minor effects for other salts such as
sodium chloride and gypsum. Results for other salts, including mixtures, are less clear.

However, the assessment of salt-weathering hazards in the anthropogenic environ-
ment should also consider the abundance of the specific salts. While, in laboratory salt-
weathering tests, sodium chloride is, generally, not as aggressive as other salts (namely
sodium sulphate), there are indications from these tests showing that this salt can have
the potential for provoking erosive damage to natural stone. The frequent association of
sodium chloride with erosive effects is supported by its abundance in the anthropogenic
environment due to contributions from sea-related sources (sea spray, seawater, which
can contaminate, also, neighboring groundwater) to which one can add the contributions
of de-icing salts and also other uses from historical times (that affect historical structures
but might also affect new ones built on contaminated grounds), such as the storage of
common salt.

A more complex situation concerns the case of gypsum. A combination of geochemical
abundance (several sources) and relatively low solubility (compared with other soluble
salts that crystallize by evaporation) promotes opportunities for its crystallization, and,
indeed, gypsum is frequently identified in erosive decay features of natural stone. However,
laboratory tests, in general, have not shown marked erosive effects for this salt (but there are
some results in this direction). It could help to elucidate this issue through the performance
of tests under conditions more similar to those found in the built environment. These
tests should consider, namely, the size of the elements, the composition of solutions (both
in terms of inorganic and organic constituents), the way the solutions migrate through
the stone and also the number of testing cycles, since crystallization cycles could be very
frequent in historical structures due to pore water flow as a consequence of rainwater
events (followed by drying) and to the presence of other deliquescent salts.
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While the methodological suggestions presented above could be considered to corre-
spond to ideal situations hardly achievable at the present time, we think that they could
guide future research.

The review of these results suggests the possibility of replication problems related to a
proliferation of case studies resulting from the issues associated with variations in natural
stone characteristics. Suggestions to minimize this issue concern statistical considerations
(random selection of specimens) and the need for detailed characterization and reporting
of results for each specimen (to assess variation).

We propose that there are significant implications from the results reviewed here and
information from field studies in terms of hazard assessment and conservation intervention.
Sodium sulphate is a common salt in modern structures and its potential link to modern
cements could render it something to be wary of in terms of the use of this material. While
sodium chloride and gypsum frequently were less damaging than sodium sulphate, their
common occurrence in the field makes them relevant through a kind of geochemical hazard.
Special attention should be given to results where salts caused low erosive damage, in the
sense that they could suggest procedures for minimizing the impact of salt weathering
(and, therefore, it could be especially useful to use materials that are more susceptible to
salt weathering).
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