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Abstract. In this paper, we explore eight Machine Learning (ML) approaches
(binary and one-class) to predict the quality of in-car displays, measured using
Black Uniformity (BU) tests. During production, the industrial manufacturer rou-
tinely executes intermediate assembly (screwing and gluing) and functional tests
that can signal potential causes for abnormal display units. By using these in-
termediate tests as inputs, the ML model can be used to identify the unknown
relationships between intermediate and BU tests, helping to detect failure causes.
In particular, we compare two sets of input variables (A and B) with hundreds of
intermediate quality measures related with assembly and functional tests. Using
recently collected industrial data, regarding around 147 thousand in-car display
records, we performed two evaluation procedures, using first a time ordered train-
test split and then a more robust rolling windows. Overall, the best predictive re-
sults (92%) were obtained using the full set of inputs (B) and an Automated ML
(AutoML) Stacked Ensemble (ASE). We further demonstrate the value of the se-
lected ASE model, by selecting distinct decision threshold scenarios and by using
a Sensitivity Analysis (SA) eXplainable Artificial Intelligence (XAI) method.

Keywords: Anomaly Detection · Automated Machine Learning · Deep Learning
· Explainable artificial intelligence · Supervised Learning · One-class learning.

1 Introduction

The Industry 4.0 generates big data that can be used by Machine Learning (ML)
algorithms to provide value [12]. In this work, we predict in-car display quality based
on hundreds of assembly and functional tests from Bosch Car Multimedia. Currently,
the manufacturer uses Black Uniformity (BU) tests to measure the display of solid
black over the entire device screen. By adopting predictive ML models, the goal is to
model the currently unknown relationships between the assembly and functional tests
(the inputs) with the in-car display final quality (measured using BU tests), allowing to
identify failure causes (e.g., screwing defect).

Most related works using ML to predict production faults consider a binary classi-
fication approach [1]. A less adopted approach is to use a one-class learning, such as
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Isolation Forest (iForest) and deep dense Autoencoder (AE), which only uses normal
examples during the training phase [9, 11]. Moreover, the best ML algorithm is often
selected by using trial-and-error experiments that consume time. The Automated ML
(AutoML) and Automated Deep Learning (ADL) concepts were proposed to reduce
the ML analyst effort [4]. Within our knowledge, there are no studies that use AutoML
or ADL to predict production failures. In addition, there are no studies that model BU
quality using ML based on assembly and functional tests. Thus, the novelty of this pa-
per comes from a practical application point of view, where we compare several ML
algorithms (e.g., one-class, AutoML and ADL) and estimate their potential value for
the analyzed industrial use case. In particular, we explore eight ML methods: one-class
- iForest and deep AE; and binary classification - Decision Tree (DT), Logistic Regres-
sion (LR), Random Forest (RF), Deep Feedforward Neural Network (DFFN), AutoML
Stacked Ensemble (ASE) and an ADL. To evaluate the methods, we collected a dataset
with around 147 thousand in-car display quality tests and adopt two evaluation schemes:
an initial time ordered holdout train and test split and then a more robust rolling win-
dows, which simulates several training and test iterations through time. Finally, we
demonstrate how the best predictive ML model can provide a value for the analyzed
industrial domain by selecting diverse decision thresholds and by using a Sensitivity
Analysis (SA) eXplainable Artificial Intelligence (XAI) method [2].

2 Materials and Methods

2.1 Industrial Dataset

For this study, we collected 146,536 records related with in-car displays produced
from a Bosch Car Multimedia in the year of 2020. The left of Fig. 1 exemplifies a pro-
duced in-car display. For the analyzed product, there are three main intermediate quality
tests that are executed during the production process: gluing and screwing process (both
executed during assembly), and functional tests (performed after assembly and prior to
BU testing). The final quality is assessed by using a BU test that returns a percentage
(the higher the value, the better is the display screen). The right of Fig. 1 shows the
result of a failed BU test (due to a large detected red region).

Fig. 1: Example of a produced display (left) and a BU failure test (right).

In an initial phase of the ML project, the manufacturer provided the raw BU out-
put values and an initial set of input features (a subset of the screwing process tests)
that were considered by the manufacturer as more relevant to influence the BU quality,
resulting in dataset A. Since the obtained ML results were not considered sufficiently
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good (as shown in Section 3), in a second ML project stage, the full intermediate quality
tests (including the gluing process and functional tests) were also requested, leading to
the creation of dataset B. All inputs are numeric the Carrier Cavity (CC) and System
(SCC) attributes, which are categorical with 8 and 7 distinct levels (used in both A and
B sets). In total, dataset A includes 110 screwing input variables (108 numeric and 2
categorical), while dataset B has 1032 input assembly and functional attributes (1030
numeric and 2 categorical).

The data preprocessing involved the transformation of the BU values into a binary
target, by using the manufacturer quality rule: y =“Fail” if BU<40% else y =“Pass”.
The output target (y) is unbalanced, including only 2,138 abnormal instances. When the
ML algorithm requires a numeric output (e.g., LR, DFFN), we assume the “Fail” class
as the positive concept, thus transformed into y =1 (if true) or y =0 (if false). Moreover,
the CC and SCC categorical variables were encoded into binary numeric ones (within
{0,1}) by adopting the popular one-hot encoding. Finally, the numeric variables were
rescaled into the [0,1] range by adopting the popular min-max normalization.

2.2 Anomaly Detection Methods

All ML methods were implemented by using the Python language and the following
modules: scikit-learn – for iForest, DT, LR and RF (https://scikit-learn.org/stable/);
TensorFlow – for AE and DFFN (https://www.tensorflow.org/); and H2O – ASE and
ADL (https://docs.h2o.ai/).

The iForest is a recently proposed one-class ML algorithm [7]. The scikit-learn
iForest implementation provides a decision score that ranges from ŷi =-1 (highest ab-
normal score) to ŷi =1 (highest normal score). In order to obtain an anomaly probability
score (di ∈ [0,1], for an input example i), we rescale the iForest scores by computing
di = (1− ŷi)/2.

Autoencoders (AE) compresses and encode data into a lower-dimensional represen-
tation by assuming a bottleneck layer (with Lb hidden units) [5]. Let (LI ,L1, ...,LH ,LO)
denote the structure of a dense (fully connected) DFFN architecture with the layer node
sizes, where LI and LO represent the input and output layer sizes and H is the number of
hidden layers. The proposed AE assumes LI = LO, a symmetrical encoder and decoder
structure (e.g., L1 = LO−1) and the popular ReLu activation function is used by all neu-
ral units. In the encoder component, the number of hidden layer units decreases by half
in each subsequent hidden layer until the bottleneck size (Lb) is reached: L1 = LI/2,
L2 = L1/2, and so on. Each hidden layer is also attached with a Batch Normalization
layer. When adapted to anomaly detection, the AE training algorithm is only fed with
standard (normal) instances, aiming to generate output values that are identical to its
inputs. In this work, the AE is trained with the Adam optimizer using a batch size of
1024, 100 epochs and early stopping (using 10% of the training data as the validation
set). The Mean Absolute Error (MAE) is used as the loss function and reconstruction
error: MAEi = ∑

n
k=1

|xi,k−x̂i,k|
n , where xi,k and x̂i,k denote the AE input and output value

for the i-th data instance and k-th input or output node. The reconstruction MAE error
is used as the decision score di = MAEi, where higher reconstruction errors should cor-
respond to a higher anomaly probability. In preliminary experiments, using the training
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data from the first partition (P1, Section 2.3), a grid search was used to search for the
best Lb ∈ {2,4,8,16} value that provided the lowest reconstruction error. The best result
was achieved using Lb = 8, which was kept fixed in the remaining AE experiments.

Focusing on the supervised learning models used, the LR, DT and RF algorithms
were set to output an anomaly class probability (di for instance i). Turning to the more
complex deep learning DFFN model, it assumes the base dense architecture presented in
[8] with no additional tuning. We note that this DFFN is adopted as a default supervised
deep learning model since the ADL (described below) already performs a substantial
DFFN hyperparameter selection. The default DFFN has H=9 hidden layers, under the
structure (LI , 1024, 512, 256, 128, 64, 32, 16, 8, 2, 1). The ReLu activation function
is used in the hidden layers, while the logistic function is adopted in the output node,
in order to output an anomaly class probability (di). To avoid overfitting, we network
includes a Dropout with the values 0.5 and 0.2 in the fourth and sixth hidden layers.
The DFFN assumes the same AE Adam training, with the difference that a different
loss function is used (binary cross entropy).

The ASE and ADL methods were implemented by using the AutoML H2O tool.
The ASE first trains 5 distinct regression algorithms: RF, Generalized Linear Model
(GLM), XGBoost, Gradient Boosting Machine and a default DFFN network. Then, it
employs a Stacking Ensemble (SE), which uses all previously trained models to gener-
ate inputs for another GLM model. As for ADL, it uses a dense DFFN, with the H2O
automatically tuning 7 of its hyperparameters (e.g., number of hidden units per layer,
learning rate). During the AutoML and ADL search, the H2O tool was configured to
maximize the Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) analysis [3], using a 5-fold cross-validation. Preliminary experiments using the
training data from the first partition (P1, Section 2.3), allowed to set the stopping crite-
rion for AutoML and ADL, which was fixed to stop after a time limit of 300 (dataset
A) and 1,200 (dataset B) seconds.

Descriptive knowledge can be directly extracted from any trained ML model (e.g.,
ensemble, deep learning) by applying a SA XAI method. In this paper, we adopt the
computationally efficient one-dimensional SA (1D-SA) [2], which holds all ML inputs
at their average values, except one target input, which is changed with L=7 distinct
levels. The ML output responses are stored, allowing to compute an input relevance,
which is proportional to the Average Absolute Deviation (AAD) measure applied to
the responses, and Variable Effect Characteristic (VEC) curves, which plot the SA ML
responses for each input. This SA XAI was implemented by using the rminer package
of the R tool (https://CRAN.R-project.org/package=rminer) with the following param-
eters: SA method=1D-SA; default values for other parameters (e.g., number of levels
L=7, measure = "AAD").

2.3 Evaluation

We adopt two evaluation schemes. Assuming time ordered records, the data (146,536
instances) is divided into two main partitions (Fig. 2): P1 - with the oldest 70% elements
(102,575 records); and P2 - with the more recent 40% examples (58,613 records). The
first partition (P1) was used to explore an initial single train and test Holdout Split
(HS). The second partition (P2) was used to execute a more robust Rolling Window
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(RW) procedure [13], which simulates a real classifier usage through time by adopting
a fixed training window (W ), which is rolled in different iterations (with step size of S),
generating U training and testing updates. As shown in Fig. 2, the test data from the
P1 (HS) and P2 (RW) partitions do not overlap. The HS uses the oldest 70% P1 data to
fit a model (71,802 instances, includes model selection and training) and the remaining
30% (30773 records) to test the predictive capability of the ML methods. The first par-
tition test results for dataset A (Section 3) were shown to the industrial experts, which
identified a higher predictive performance need. This triggered the collection of further
intermediate quality inspection tests (e.g., functional tests), that resulted in dataset B.
Then, dataset B was also evaluated on P1 test data, obtaining improved results. The
second RW evaluation scheme was applied to the best dataset B ML algorithms. In the
first RW iteration (u = 1), the more recent W examples from P1 were used as the ML
fit data, allowing to predict the next test T examples. In the second iteration (u = 2),
the training data is updated with S newer examples allowing to fit a new ML model
and perform T predictions, and so on. In total, the RW results in U = P2−(W+T )

S model
updates, where P2 is the second data partition length. We use U = 20 RW iterations by
fixing the values: W =25,000, T =5,000 and S = 1,400.

Test data (P1)Training data (P1) Test data (P2)

Full data

Holdout Split data (P1 examples)

Rolling Window data (P2)

TestTraining

Training Test

Training Test
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TimeTW
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Time
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Fig. 2: Schematic of Holdout Split (HS) and Rolling Window (RW) evaluations.

The predictive classification performance is based on the ROC curve [3]. When a
classifier outputs a decision score di, the class can be interpreted as positive if di > K,
where K is a fixed decision threshold, otherwise it is considered negative. With the
class predictions there will be True Positives (TP), True Negatives (TP), False Positives
(FP) and False Negatives (FN). The ROC curve shows the performance of a two class
classifier across all K ∈ [0,1] values, plotting one minus the specificity (x-axis), or False
Positive Rate (FPR), versus the sensitivity (y-axis), or True Positive Rate (TPR). The
discrimination performance is given by the AUC =

∫ 1
0 ROCdK. The AUC metric has

two main advantages [10]. Firstly, when the data is unbalanced (which is our case),
the interpretation of the goodness of the metric values does not change. Secondly, the
AUC values can be interpreted as: 50% - performance of a random classifier; 60% -
reasonable; 70% - good; 80% - very good; 90% - excellent; and 100% - perfect. If
needed, the best K threshold can be selected by using the ROC curve of a validation
set (Section 3). Since the RW produces several test sets, for each RW iteration we store
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the AUC value on test data. We also record the computational effort, in terms of the
total training time (in s) and prediction response time for one instance (in µs) when
using an 2.4 GHz i9 Intel processor. To aggregate all u ∈ {1, ...,U} execution results,
we compute the median values, it is less sensitive to outliers when compared with the
average. The Wilcoxon non parametric test is used to check if paired differences are
significant [6].

3 Results

Table 1 presents HS predictive test results. For all compared ML algorithms, the us-
age of the first dataset (A) results in a lower class discrimination capability, with the
AUC values ranging from 51% (almost random classifier for DFFN) to 69% (LR).
When using more inputs (dataset B), there is a substantial improvement in the BU
anomaly detection, with all ML algorithms presenting a much higher AUC value.

Table 1: Anomaly detection results (AUC values) for P1 and the HS evaluation (values
higher than 0.75 are in bold).

Unsupervised Supervised

iForest AE DT LR RF DFFN ASE ADL

Dataset A 0.61 0.60 0.55 0.69 0.64 0.51 0.52 0.64
Dataset B 0.71 0.76 0.60 0.87 0.84 0.87 0.84 0.60

The ML algorithms that obtained an AUC>75% using Dataset B in Table 1 were
selected for the second stage evaluation: AE, LR, RF, DFFN and ASE. The respective
RW results are shown in Table 2 and left of Fig. 3. For comparing purposes, we also
present the dataset A RW results in Table 2. Similarly to the previous HS evaluation,
the best RW results were achieved when using dataset B. In effect, for all tested ML,
the AUC differences between dataset B and A are statistically significant (p-value<
0.05). Using dataset B, the best overall anomaly detection performance was obtained by
ASE (AUC of 92%), followed by RF (91%), LR and DFFN (89%) and AE (87%). The
individual AUC results for each RW iteration are plotted in the left of Fig. 3. Both ASE
and RF (purple and green curves) present a consistent excellent discrimination (≥90%)
after iteration u = 6. Regarding the computational effort, LR and RF provide the fastest
training and predict response times. Yet, even the more demanding ML algorithm (ASE)
requires a computational effort that is acceptable for the analyzed domain. Thus, we
select the ASE model for the remainder demonstration results.

To demonstrate the ASE value, we adopt the last RW iteration (u= 20) results, using
the most recent non overlapping RW test set (u = 17) as a validation set for selecting a
K threshold. The ROC curve is shown in the right of Fig. 3, allowing to define several
FPR and TPR trade-offs. Five thresholds (K) were fixed and applied to the last RW
iteration test results (Table 3), confirming that the selected thresholds (from u = 17)
correlate highly with similar sensitive and specific test (from u = 20) trade-offs results.
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Table 2: Anomaly detection results for P2 and the RW evaluation (best AUC values per
dataset in bold; best global AUC is underlined).

AUC Training (s) Predict (µs)

AE LR RF DFFN ASE AE LR RF DFFN ASE AE LR RF DFFN ASE
Dataset A 0.66 0.72 0.66 0.71 0.66 48.6 0.4 1.3 8.1 300.0 30 1 10 30 50
Dataset B 0.87 0.89 0.91 0.89 0.92 88.9 3.6 2.0 13.7 1200.0 150 4 10 100 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration
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Fig. 3: Evolution of the AUC measure for the distinct RW iterations (left) and the ROC
curve for ASE and iteration u=17 (right).

Table 3: Class label ASE prediction results for five threshold values (u = 20).
K TP TN FP FN TPR FPR

0.004149 56 4035 239 41 90.3% 18.3%
0.005806 49 4534 403 13 79.0% 8.2%
0.009425 41 4698 239 21 66.1% 4.8%
0.016480 30 4803 134 32 48.4% 2.7%
0.116040 13 4910 27 49 30.0% 0.5%

Secondly, we applied the SA XAI approach to the ASE model that was fit using the last
RW training data (u = 20). The left of Fig. 4 plots the top 20 relevant input variables
from dataset B (total of 1032 inputs). For instance, the most influential input is related
with a functional test (total relevance of 6%). The top 20 inputs account for 51% of the
influence in the ASE model. The right of Fig. 4 shows the VEC curves for the top 5 input
variables. The plot clearly reveals that the most influential input (Func02 T4105.02)
produces the largest ASE output response change, where an increase in the numeric test
value results in a nonlinear BU failure probability decrease.

4 Conclusions

In this paper, we use ML to model BU quality tests of in-car displays based on as-
sembly and functional intermediate tests. A large set of comparative experiments was
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Fig. 4: Extracted knowledge from the ASE model (u = 20) using the SA XAI method:
top 20 relevant input variables (left) and top 5 VEC curves (right).

held, involving 147 thousand in-car display records. Overall, an excellent discrimina-
tion level was obtained by the ASE model (92%) when using both assembly and func-
tional inputs (input set B), followed by the RF (91%), LR and DFFN (89%) and AE
(87%). The AE results are particularly appealing for initial product production stages,
since the model does not require labeled data and anomaly instances are rare. As for the
best predictive model (ASE), it requires a computational effort that is affordable in this
domain. The ASE model is particularly appealing for the analyzed industrial domain
because it can be automatically adapted to new dynamic data changes, without needing
an ML expert to tune or select the model. Moreover, we have shown that more specific
or sensitive decision thresholds can be selected by using a validation set, producing
a similar classification performance on unseen data. Furthermore, by using a SA XAI
procedure, we have shown how descriptive knowledge can be extracted from a trained
ASE model, which is valuable for BU failure cause identification. The obtained results
were discussed with the manufacturer experts, which returned a very positive feedback.

In future work, we aim to deploy the proposed ASE in a real industrial setting. In
addition, we plan to define intermediate production checkpoints before reaching the
final BU test. This would allow the setting of quality assessment ML models at early
production stages, thus saving production time and costs, and ultimately reducing the
number of BU faulty tests.
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