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Abstract: Environmental issues related to energy consumption are mainly associated with the strong
dependence on fossil fuels. To solve these issues, renewable energy sources systems have been
developed as well as advanced energy storage systems. Batteries are the main storage system
related to mobility, and they are applied in devices such as laptops, cell phones, and electric vehicles.
Lithium-ion batteries (LIBs) are the most used battery system based on their high specific capacity,
long cycle life, and no memory effects. This rapidly evolving field urges for a systematic comparative
compilation of the most recent developments on battery technology in order to keep up with the
growing number of materials, strategies, and battery performance data, allowing the design of future
developments in the field. Thus, this review focuses on the different materials recently developed for
the different battery components—anode, cathode, and separator/electrolyte—in order to further
improve LIB systems. Moreover, solid polymer electrolytes (SPE) for LIBs are also highlighted.
Together with the study of new advanced materials, materials modification by doping or synthesis,
the combination of different materials, fillers addition, size manipulation, or the use of high ionic
conductor materials are also presented as effective methods to enhance the electrochemical properties
of LIBs. Finally, it is also shown that the development of advanced materials is not only focused on
improving efficiency but also on the application of more environmentally friendly materials.

Keywords: electrodes; solid polymer electrolytes; separators; battery systems

1. Introduction

The search for more efficient and sustainable energy storage devices is a growing
need and a fruitful research field, based on the increasing mobility of society. Industrial
production and mobility require significant quantities of energy, mostly relying on fossil
fuels, as coal or petroleum, and more recently natural gas and nuclear fission [1]. Nowadays,
with the growing awareness with respect to environmental issues, renewable energy
sources gained significant interest as they allow to obtain green energy, with the reliance
in inexhaustible sources, such as wind, water or sun [2,3]. However, the use of renewable
energies is limited by their irregularity, which does not warrant a constant energy supply [4].
In this context, the integration of renewable energies with efficient energy storage systems
(ESS) arises as a potential solution regarding this issue.

These ESS can vary depending on the application needs, batteries being the most used
systems worldwide. Since the voltaic pile, created in 1800 [5], until the commercialization
of the first lithium-ion battery (LIB) in 1991, battery technology has undergone strong
developments, with significant improvements on capacity, durability, and reversibility
(Figure 1).
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LIBs are the most commonly used ESS in modern society, mainly due to their high
specific capacity, making them appropriate for small and light portable devices without
limiting their performance. LIBs are also characterized by prolonged cycle life and no
memory effects [6]. These are important advantages that increased the use of LIBs, leading
to a progressive replacement of previous technologies, such as nickel–cadmium and nickel–
metal hydride batteries, which are less efficient, in particular for small device applications.
In fact, the developments in the area of ESS further supported the strong evolution of the
market of portable equipment with increased and improved features, capacity and smaller
sizes. LIBs are present in a large variety of commonly used devices including smartphones,
tablets, laptops, grid stabilization, electric vehicles, and a vast range of other electronic
systems [7].

In this constant growing field, it is extremely important to keep up with the high
number of works that are published every year. Thus, a frequent systematization and
review of the literature is needed in order to comparatively analyze newly developed
materials, integration strategies, and battery performance data to properly design further
developments in the field. The main focus of the research community in the field nowadays
is the search for new high-performance materials, but also to address environmental
questions, by finding more sustainable and green solutions. In the present work, the LIB
constitution and working principles are described, presenting the most recent solutions for
each component of the battery separately. In particular, the latest developed materials and
production/modification strategies are considered.

2. Lithium-Ion Batteries

As stated before, LIBs are the most used energy storage devices worldwide, due to
their versatility and high capacity, when compared with other ESS [8]. These devices
convert chemical energy into electrical energy and vice versa, with high energy density,
making them particularly suitable for smaller devices [9]. However, some issues related to
the costs, progressive degradation of the components, and the necessity to maintain the
voltage and current within safe limits need to be addressed for the LIB technology to be
fully optimized [10,11].

The lithium-ion technology is somewhat recent, as it only appeared in the second half
of the twentieth century. Stanley Whittingham in 1977 was responsible for the development
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of the first device [12]. The safety problems associated with lithium dendrites growth
were solved in the 1980s by John Goodenough with the development of new cathode
active materials and carbonaceous anode materials, avoiding the use of lithium metal
anodes [13–15]. The first commercial battery was developed by Sony, using the work
of Akira Yoshino [16], and it was placed in the market in 1991. These three researchers
won the Nobel Prize in Chemistry in 2019 due to the relevance of their work in the
essential area of energy storage. The research work in the battery field has been always
accompanied by efforts on developing solid-state technology [17], in order to eliminate the
liquid components of the battery structure, leading to safer devices, despite the difficulty
of obtaining consistent results.

The typical constitution of a battery includes two electrodes (cathode and anode) and
a separator membrane soaked in an electrolyte solution [18]. Each electrode is composed
by an active material, a conductive material, and a binder. Both electrodes share similar
binders and conductive materials, with the function of warranting the structural cohesion
and the adhesion to the structure, in the case of the binder, and increasing the electric
conductivity of the electrode, in the case of the conductive material. The battery capacity is
determined by the active material, with the ability to deliver or store lithium-ions, in the
cathode and the anode, respectively [19]. The current collectors are made of different metals
and are placed in each electrode, contributing to the electronic conductivity and potential
stability of the cell. The potential difference generated between the electrodes allows for the
redox reactions to occur, which represents the basic working principle of the batteries [20].
Between the electrodes, a polymeric porous membrane, the separator, is placed to avoid
the physical contact, preventing short circuits. The separator is typically soaked in an
electrolyte solution, which increases the ionic conductivity of the system, allowing for an
easier Li+ diffusion [21]. More recently, this design of the separator/electrolyte system
is being replaced by a solid electrolyte, which combines the physical barrier function of
the separator and the high ionic conductivity of the electrolyte, allowing the elimination
of the liquid components from the battery structure [22]. However, there are still major
drawbacks in this approach that limit battery performance, such as low ionic conductivity
and difficult interfacial compatibility with the electrodes [23].

The function of a LIB is based in redox reactions. During the charging process, energy
is provided to the system accompanied by a flow of electrons from the cathode to the anode,
making the Li+ ions migrate from the cathode to the anode in order to compensate the
created charge difference. This reaction is reverted during the discharge process. In this
case, the Li+ ions return to their original state, with the corresponding release of energy,
which can be used for different applications. This flow of Li+ and electrons is described by
Equation (1):

LiAM↔ AM + xLi+ + xe− (1)

where AM is the active material and e- is an electron.
The most common LIBs use different metal oxides, such as LiFePO4 [24], LiCoO2 [25],

or LiMnO2 [26], as active materials for the cathodes. The selection of the active material
is dependent on the specific application, as each one allows for different operational volt-
age [27]. For the anode, the most common active materials are carbon-based materials,
such as graphite and silicon-based materials [28]. At the separator level, different kinds of
polymers such as poly(ethylene) (PE) [29], poly(propylene) (PP) [30], or poly(vinylidene
fluoride) (PVDF) [31] are successfully applied due to their properties, including high
mechanical and thermal resistance, suitable porosity, electrolyte wettability, and electro-
chemical stability [32]. The electrolyte solution is usually composed by a lithium salt,
lithium hexafluorophosphate (LiPF6), dissolved in organic carbonates, such as ethylene
carbonate (EC) and dimethyl carbonate (DMC) or diethyl carbonate (DEC) [33]. In the field
of solid electrolytes, they can be inorganic or organic. The inorganic ones are composed
by ceramic crystalline materials as LISICON [34], NASICON [35], or perovskites [36], and
they usually possess high ionic conductivity but have significant limitations when it comes
to interfacial compatibility [23]. Solid polymer electrolytes comprise a polymer matrix and
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one or more fillers incorporated in their structure [37]. They show high mechanical and
thermal stabilities but low ionic conductivity, being difficult to find the balance between
the type and amount of fillers to optimize the abovementioned properties [38].

Other technologies based on lithium include lithium-air and lithium-sulfur batteries.
These batteries represent promising options due to their higher theoretical capacities when
compared to conventional LIBs. However, limitations such as the difficulty to obtain
perfectly reversible reactions, control of the volume changes, and to warrant suitable ionic
conductivity are holding back the full potential of these kind of batteries [39,40].

Beyond lithium, other promising battery technologies are being intensively studied
and developed, as presented in Table 1.

Table 1. Comparative analysis between different battery technologies. The variability of data for the same type of battery is
due to the different active materials used for a given technology.

Technology Specific Energy (Wh/kg) Number of Cycles Efficiency (%) Voltage (V) Ref.

Lithium-sulfur 500 ~500 85 3 [40]

Lithium-ion 100–265 1000–2000 99.9 3.6 [41]

Lithium-air 3860 700 65 2.91 [42]

Potassium-ion 120–170 ~4000 >90 2.0–4.3 [43]

Magnesium-ion 77 ~2000 ~95 1.1 [44]

Sodium-ion 85–125 ~500 >90 2.7–3.2 [45]

These technologies aim to overcome some of the problems associated with lithium,
such as its scarcity [46]. Thus, the abundance of sodium and magnesium could represent an
effective and cheaper alternative if the problems associated with their high reactivity could
be overcome [47]. Potassium has the advantage of high voltage operation; however, its low
melting point can be an issue in the case of higher operation temperatures [48]. Beyond
batteries, there are other ESS, such as fuel cells or hydrogen-based technologies, that can be
successfully integrated with the most common batteries. However, there is a long path to
go in research and development for these technologies to achieve their full potential [49].
This means that despite the alternatives to and the limitations of the commonly used LIBs,
these devices are still the most appropriate, at least until further developments are made in
other technologies. With this purpose, the research and development of advanced, more
efficient, safer and environmentally friendlier materials for energy storage devices is a very
relevant area nowadays.

In the next sections, the latest advances in the materials used for the different battery
components will be provided, with particular focus in the materials that offer potential
solutions for the previously mentioned LIBs issues.

3. Materials for Electrodes

Regardless of the type of electrode, its basic constituents are the active material,
the conductive material, and the polymer binder. The microstructural characteristics of
lithium-ion battery electrodes also determine their performance [50].

In the electrode composition, the amount of active material typically varies between
60 wt % and 95 wt %, the conductive material varies between 3 wt % and 30 wt %,
and the polymer binder varies between 2 wt % and 25 wt %, where the proportion of
80 wt %/10 wt %/10 wt % for active material, conductive material, and polymer binder is
the most used by the scientific community [51]. Basically, the difference between the two
electrodes (anode and cathode) is the active materials; therefore, this review focuses on the
recent advances for each of the active materials divided by the type of electrode.

Several issues can affect the performance and durability of the electrode materials,
including volume expansion of the electrode during the charge–discharge process [52,53],
mechanical failure of the electrodes due to external mechanical/thermal loadings [54,55],
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thermal failure caused by the battery overheating [56], and tortuosity/percolation limita-
tions [57]. Some suggested solutions for these issues are presented in the following.

3.1. Active Anode Materials

Anode active materials can be structures of different types, their main characteristic
being the capacity, electrical conductivity, mechanical stress, and structural stability, which
plays a relevant role in the durability of the material through the Li+ intercalation–de-
intercalation reactions [58].

In addition to the gravimetric and volumetric capacities of each anode active material,
other parameters, such as the average voltage range, porosity, and irreversible capacity
loss are relevant in determining the performance of the anode. Typically, the main active
materials for the anode are carbonaceous materials, alloys based on Si, Sn, Al, Ga, Ge, Pb,
and Sb, metal oxides, and metal chalcogenides, among others. Figure 2 shows the voltage
range vs. Li/Li+ as a function of charge capacity of these anode active materials [59,60].
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Carbonaceous materials are the most widely used active materials for the anode,
including graphite and carbon nanotubes, among others, mainly due to the reversibility,
low cost, low volume variation during the intercalation/deintercalation process, and
high number of charge/discharge cycles. One of the main disadvantages of graphite is
the irreversible loss of capacity during the first charge–discharge cycle to form a stable
interface between the electrolyte and the graphite, called the solid electrolyte interface
(SEI). Despite the fact that the SEI prevents the degradation of the battery materials, it also
increases the overall resistance of the system, causing a loss of performance [62,63].

Conversion-type transition-metal compounds (MaXb, M = Mn, Fe, Co, Ni, Cu, X = O,
S, Se, F, N, P, etc.) are attractive active materials for anodes due to their high theoretical
capacity, tunable operation voltages, and the diversity of chemical composition and phases,
allowing tuning materials characteristics. The main disadvantage is their poor intrinsic
conductivity [64].

Recently, advances on anode active materials are focused on their compositional varia-
tion and design, taking into account that the low-dimensional, inter-spatial, and composite
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design of materials such as ordered-array, cross-aligned, or alternating-layer structure affect
the lithium-ion and electrons transport within the electrodes, solid electrolyte interphase,
and reversibility, among others [65]. In the following, advances in this area are divided by
the composition of each material.

3.1.1. Carbon and Metal Alloys-Based Anode Materials

Graphite is widely used in the anode electrode, although, to improve even more its energy
density, graphite intercalation compounds (GICs) have been developed allowing enhancing
the electrochemical performances. Advanced anode materials based on cobalt chloride–ferric
chloride–graphite bi-intercalation compounds (CoCl2-FeCl3-GICs) have been synthetized
through the molten-salt method, showing a high capacity of 1033 mAh·g−1, with a retention
rate of 94.2% at 200 mA·g−1 and, after 350 cycles under 1000 mA·g−1, the charge capacity
reached 536 mAh·g−1, as shown in Figure 3a [66].
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the different nitrogen-doped graphene-like carbon nanosheets samples [68].

In order to improve the intrinsic electrical conductivity of graphite, a new material
based on VGS/graphite was produced with high specific capacity. The electrochemical per-
formance is shown in Figure 3b [67]. Using coffee grounds as a carbon and nitrogen source,
and CaCO3, Fe(NO3)3, and their derivatives as structural templates and graphitization
catalysts, nitrogen-doped graphene-like carbon nanosheets were prepared in the form of
3D porous architecture. The corresponding battery performance is shown in Figure 3c [68].
Alloys are also used as anode active materials, since they can adapt to volume changes
during lithiation. Thus, the ternary Li-Sb-Sn system has been developed being able to
uptake up to 15 at % Li without changing the crystal structure [69].

3.1.2. Silicon-Based Anode Materials

Silicon-based materials are characterized by a high specific capacity, over 10 times
when compared with the one of graphite [70]. On the other hand, they exhibit large volume
changes and form an unstable SEI. Recent advances in these materials are focused on
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solving those issues by developing advanced silicon-based materials [71]. The combination
of silicon nanostructures with carbon structures is the main alternative to circumvent the
disadvantages of silicon-based anodes [72] such as a coral-like porous Si/C (CLP-Si/C),
which exhibit a stable capacity of 990.6 mAh·g−1 and can be kept after 100 cycles at a
rate of 250 mA·g−1 [73]. Other interesting material is amorphous carbon cascade-coated
nano-silicon, with 89% initial coulombic efficiency (ICE) and high reversible capacity of
874.5 mAh·g−1 after 300 cycles. The processing of this material is shown in Figure 4a [74].
Free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C compos-
ites (Si/C-ZIF-8/CNFs) [75], Si/carbon nanotube microspheres (Si/CNTsS) prepared by
chemical vapor deposition [76], silicon (Si)/carbon(C) composites prepared by mixing ap-
propriate concentrations of hydrocarbon resin, Si powder, and polyacrylic acid [77], and Si
nanoparticles confined within a conductive 2D porous Cu-based metal–organic framework
(Cu3(HITP)2) [78] represent interesting examples for the advanced materials developed in
this area. Particularly interesting are Si@Cu3Si nanocomposites, which show a delivering
charge/discharge capacity of 1000 mAh·g−1 even after 300 cycles [79]. Si powders with
electrical conductivity of 1.04 µs·cm−1 have been obtained from p-type solar grade broken
Si wafers with electrical resistivity of about 1–10 Ω·cm via ball-milling and tested for anode
electrodes. The charge-specific capacity of p-doped Si holds 1920.3 mAh·g−1 after 50 cycles
at 0.84 A·g−1, when the charge current density increased to 21 A·g−1 (only taking 12 min
for charging), and it is still maintains at 1758.5 mAh·g−1 after 50 cycles [80].
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Figure 4. (a) Schematic illustration of the preparation process of amorphous carbon-coated silicon [74], (b) CV curves
of Si-200 at a scan rate of 0.1 mV·s−1; (c) Galvanostatic discharge/charge profiles of Si-200 at 0.2 A·g−1; (d) Cycling
performance of various nano-Si at 0.2 A·g−1 [81]; and (e) Rate capability of the different silicon oxycarbide (SiOC) samples
measured at various C-rates from 180 to 3600 mA·g−1 [82].

A MgH2-AlCl3-SiO2 melt system was developed to synthesize nano-Si through the
reduction of SiO2 by MgH2 into molten AlCl3. The obtained nano-Si product shows an
average particle size of 22.4 nm and exhibits a superior electrochemical storage capacity
of 1185 mAh·g−1 over 300 cycles at 0.2 A·g−1 and a low thickness variation of 14.5% at
2 A·g−1 over 500 cycles, as shown in Figure 4b–d [81].

Silicon oxycarbide (SiOC, SiOn C4-n (0 ≤ n ≤ 4)) has been developed for anode
material through the introduction of PSS-Octakis (dimethylsilyloxy) silsesquioxane (POSS)
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into the synthesis process of SiOC. The rate performance of these materials is shown in
Figure 4e [82]. Silicon oxycarbide (SiOC) was also synthetized by pyrolysis using silicone
oil and phenyl group-containing additives (divinylbenzene -DVB) as precursor, leading to
a high reversible capacity (550 mAh·g−1 at 200 mA·g−1) [83].

3.1.3. Conversion-Type Transition-Metals and Their Composites-Based Anode Active Materials

Transition metals are another excellent option for the development of anode electrodes
for LIBs due to their high theoretical capacities, low cost, and easy availability. The focus
on these materials is the development of new compositions and the improvement of their
electrical conductivity.

Various transition metals such as cerium vanadate (CeVO4) [84], Co0.85Se [85], CuSi2P3 [86],
iron oxide (Fe2O3) [87], Mn3O4 [88], octahedral nanostructured Cu2WS4 [89], copper ox-
ide (Cu2O) [90], Li3VO4 particles [91], NiO nanocrystals [92], nano-Mn2O3 particles [93],
MnV2O4 particles [94], SnO2 [95], molybdenum sulfide (MoS2) [96], MoSe2 [97], Sn-based
material (SnFe2O4) [98], SnS2 nanoflowers [99], SiO2 [100], SnO2 [101], SnO2@ZrO2 [102],
and WS2 heterostructures [103] have been developed and doped with carbonaceous mate-
rials (carbon agents, carbon nanotubes, and graphene oxide, among other). This carbona-
ceous doping has the objective of increasing the electrical conductivity and, consequently,
the electrochemical properties through conductive pathways to facilitate charge transport
and structural buffer space to accommodate volume variations. Other active materials with
interesting properties are Columbite CuNb2O6 with 154.9 mAh·g−1 at the ultra-large cur-
rent rate of 5 A·g−1 [104], TiNb2O7 with specific capacity of 220 mAh·g−1 after 500 cycling
at 0.5 C [105], and ammonium manganese phosphate hydrate (NMP) [106].

A widely used transition metal oxide is iron oxide (Fe2O3), considering the low cost
and abundant reserves. In order to improve its performance, several approaches have
been taken, including in situ encapsulation of α-Fe2O3 nanoparticles into micro-sized
ZnFe2O4 capsules [107], a new synthesis method based on chemical precipitation with
the sulfuric acid leaching liquor of tin ore tailings as an Fe source [108] and a new mate-
rial based on Rosa roxburghii-like hierarchical hollow sandwich-structure C@Fe2O3@C
microspheres [109]. In addition, Co3O4/Co in situ nanocomposites were synthetized to
improve SEI [110]. CoS2-MnS@CNT have been produced with excellent rate performance
(1620 mAh·g−1 at 100 mA·g−1) and high reversible capacity (1327 and 927 mAh·g−1 at 100
and 1000 mA·g−1, respectively, after 100 cycles) [111]. In addition to carbon, nickel has
been used for doping Co9S8@ZnS composites in order to improve the overall battery perfor-
mance [112]. A new material based on hollow core–shell structured CNT/PAN@Co9S8@C
coaxial nanocables have been produced for anode active material with the aim of pro-
viding more channels for Li+ ions/electrons diffusion and relieving volume swelling
during the charge/discharge process. This material exhibits excellent cycling performance
(>700 mAh·g−1 at 0.1 A·g−1) [113].

The novel mixed Co/Mn vanadates have been obtained by balancing performance and
cost through the doping of Mn for cobalt vanadate through an easy hydrothermal reaction
where the optimized element ratio is found for 67% Mn-based vanadates. This material
shows a high initial discharge capacity of 1193 mAh·g−1 and maintains 935 mAh·g−1 after
500 cycles at 0.5 A·g−1 [114].

A multifunctional heterostructure, MoS3-Ti3C2Tx, comprising a functionalized MX-
ene (Ti3C2Tx) and amorphous MoS3 has been prepared by a scalable electrostatic self-
assembly method, MoS3-Ti3C2Tx offering an excellent reversible capacity of 1043 mAh·g−1

at 200 mA·g−1 and exhibiting a capacity of 568 mAh·g−1 at a current density of 2 A·g−1

after 1000 cycles. Figure 5a shows the cycling performance of this material [115].
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500 mA·g−1 over 10 cycles [118], and (e) Cycling tests of MOF-MnO/C and MOF-MZO/C electrodes at 0.2 A·g−1 [119].

A hetero-structured few-layer MoS2-coated MoO2 (MoS2@MoO2) has been fabri-
cated for anode applications. This material shows a high reversible specific capacity of
1263 mAh·g−1 after 40 cycles at 0.1 A·g−1 [120]. In addition, nanocomposites based on
Fe2O3–TeO2–MoO3 allow improving the electronic conductivity and, consequently, lead to
excellent battery performance [121]. SnO2/NiFe2O4/graphene (SNG) nanocomposites also
lead to a high discharge capacity of 613 mAh·g−1 at 800 mA·g−1 after 100 cycles [122].

Another suitable nanocomposite is CoP-Co2P/Ti3C2 based on MXene, which effec-
tively improves the cycle stability performance compared to Ti3C2 [123]. A new material
based on MXene results from the intersection of TiO2 nanosheets using a molten-salt
method, followed by the generation of dispersed Li3Ti2(PO4)3 NCs. This composite al-
lows improvement of structural stability while showing a high discharge capacity of
204 mAh·g−1 at 50 mA·g−1 [124]. In addition, a new anode material based on CoO/Co1.94P
nanocrystals wrapped within carbon polyhedron (CoO/Co1.94P@CP) heterostructure has
been prepared, and its cycling performance is shown in Figure 5b [116].

In order to improve the cycling performance of niobium oxide (Nb2O5), a new material
based on aspergillus oryzae spore carbon (ASC) with niobium oxide has been developed
to form ASC/Nb2O5 composites, The material is synthetized by the solvothermal (ST)
method and offers discharge capacities of 189 and 65 mAh·g−1 as the current density
increases from 0.2 to 20 C [125].

Another transition metal of mixed valence spinel cobalt oxide (Co3O4) has been used
for anode electrodes, but it has low electronic conductivity and large volume expansion. To
solve these disadvantages, carbon-coated porous Co3O4 polyhedrons with (220) facets are
produced through a hydrothermal method. The discharge capacity of this material reaches
1463 and 596 mAh·g−1 at 100 and 5000 mA·g−1, respectively, as shown in Figure 5c [117].

Furthermore, TiO2 particles have been used to improve the electrical conductivity
of the anode. TiO2/carbon composite-fiber anodes are developed through centrifugal
spinning of TiS2/polyacrylonitrile (PAN) precursor fibers and subsequent thermal treat-
ment. This material allows increasing the specific capacity, improves stability, and enhances
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electrochemical performance compared to TiO2. The corresponding rate performance is
shown in Figure 5d [118]. Another material based on TiO2 is constituted by multi-role
TiO2 coated on carbon@few-layered MoS2 (CMT) nanotubes, showing excellent long-term
cycling performance [126].

Considering their properties, metal–organic framework (MOF) derivatives are increas-
ing their applicability for anode materials, and MnO/ZnO@C nanohybrids have been
developed with superior lithium storage capabilities, reaching a reversible capacity of
1396 mAh·g−1 at 0.2 A·g−1 with an initial coulombic efficiency higher than 75%, as shown
in Figure 5e [119]. In addition, hollow urchins Co-MOF with fluorine (F) doping on reduced
graphene oxide (rGO) was synthetized using a solvothermal reaction with excellent re-
versible capacity (1202.0 mAh·g−1 at 0.1 A·g−1) [127]. Finally, also related to MOFs, a new
Co3O4/Co@N-C composite was developed for anode applications. This structure allows
improving the electrical conductivity and acts as a buffer medium to alleviate the volume
change [128]. Furthermore, it allows the development of new polyoxometalate-based
metal–organic frameworks (POMOFs) of NAU3–6 with various architectural features [129].

3.2. Active Cathode Materials

For cathode electrodes, the main characteristics of the active materials are high reac-
tivity with lithium, high voltage, easy intercalation and desintercalation of Li+ ions during
the charge and discharge process, i.e., lithium diffusion channels and low volume change,
being good electronic conductors, stable in contact with the electrolyte solution, and having
low cost. The most commonly used active materials for the cathode are lithium cobalt
oxide (LiCoO2, LCO), lithium manganese oxides (LiMnO2 and LiMn2O4, LMO), lithium
iron phosphate (LiFePO4, LFP), lithium nickel cobalt oxide (LiNi1-xCoxO2 (0.2 ≤ x ≤ 0.5),
LNCO), lithium nickel manganese cobalt oxide (LiNi1/3Co1/3Mn1/3O2, LNCMO), and
lithium nickel manganese oxide (LiNi0.5Mn0.5O2, LNMO). Table 2 shows the crystal system,
specific capacity, and voltage range for each active material.

Table 2. Most commonly active cathode active materials used for lithium-ion battery applications [130].

Cathode Active Material Crystal System/Space Group
[Point Group] Specific Capacity/mAh·g−1 Typical Voltage Range/V

LiCoO2 Orthorhombic/R3m [C3V] 274 2.5–4.45

LiFePO4 Orthorhombic/Pnma [D2h] 170 2.5–4.2

LiMn2O4 Cubic/Fd3m [Oh] 148 3.0–4.3

LiNiO2 Trigonal/R3m [C3V] 275 3.0–4.3

LiNi1-xCoxO2 (0.2 ≤ x ≤ 0.5) Rhombohedral/R3m [C3V] ~275 3.5–4.3

LiNi1/3Mn1/3Co1/3O2 Rhombohedral/R3m [C3V] 278 2.3–4.3

LiNi0.5Mn1.5O2 Trigonal/R3m [C3V] 147 3.5–4.9

Recent advances in cathode active materials are focusing on the optimization of par-
ticle size, morphology, specific functionalization, doping with different elements, and
developing composites with different particles and coating. All these optimization strate-
gies are focusing on the improvement of electronic and thermal properties, to stabilize the
particle with respect to the electrolyte, to optimize synthesize methods (as sol–gel synthesis
and co-precipitation), and to improve the mechanochemical activation [130,131].

LiCoO2 is widely used in portable applications, such as smartphones, watches, or
computers. In fact, it was applied in the first battery in 1991 by Sony due to its high volu-
metric energy density and reliability. The main disadvantage of this material is associated
to the fact that its structure is not stable at high voltage (>4.2 V vs. Li/Li+). Improvements
are relying on doping with different elements, surface coating with Li3NbO4 and Co3O4
layers [132], and also through electrolyte optimization [25]. Doping with transition metal
ions in LiCoO2-based batteries has been shown to improve electrochemical properties due
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to the distorted local structure promoted by the impurity ions [133]. LiFePO4 (LFP) is
an active material of particular interest to be applied in electric vehicles. To improve its
performance, a carbon coating has been placed using biomass of phytic acid (PhyA) as
a novel phosphorus source to replace traditional phosphoric acid [134], LiFePO4/multi-
walled carbon nanotube (MWCNT) composites have been developed by a hydrothermal
process [135], zinc oxide and carbon co-modified LiFePO4 nanomaterials (LFP/C-ZnO)
have been produced by a hydrothermal method [136], and LiFePO4/C have been imple-
mented as active cathode materials [137]. Moreover, for LFP, the volumetric capacity has
been increased by hot isostatic pressing, isostatic pressure facilitating the electrolyte to
penetrate into the voids among LFP particles, which improves Li+ ion diffusion [138].

A novel synthesis of LiFe0.25Mn0.75PO4/C@reduced graphene oxide (rGO) has been
developed with the aim of reducing the charge-transfer impedance of the electrode and im-
proving the conductivity and electrochemical properties. With a specific discharge capacity
of 143.8 and 139.8 mAh.g−1 at 1 C and 2 C, respectively, this material shows excellent elec-
trochemical reversibility [139]. LiFeBO4 (LFeB) has received special attention considering
its high theoretical capacity of 220 mAh·g−1. To further improve its performance, a new
active material, LiFeBO3- xF2 x (LFeBF, x = 0.05, 0.1, 0.2, 0.3, and 0.5), has been synthetized
by a solid-state reaction, the fluorine substitution at the oxygen site of LFeB leading to an
improvement in discharge capacity [140].

LiMn2O4 (LMO) is another active material widely used in LIBs, and its poor cycling
behavior has been improved by doping with Ni, Cu, and Co through sol–gel synthesis.
The LiMn1.5Ni0.5O4-based cathodes show a decrease in the total half-cell resistance after
cycling and excellent electrochemical stability [141]. In addition, for this active material,
nanocomposites with graphene oxide have been developed for enhanced electrochem-
ical performance [142]. In order to improve the spinel deterioration, a rock salt type
Li2Nb0.15Mn0.85O3 was synthetized, its structure showing no tendency for spinel deteri-
oration or cation ordering, even with massive lithium vacancies [143]. Furthermore, the
spinel LiMn1.5Ni0.5O4 has been coated with aluminum oxide to strongly influence the
charge–discharge performance [144] and has been doped with vanadium to improve its
thermal stability and cyclability [145]. LiNi0.4Mn1.6O4 has been also doped with Ti, where
the strong Ti-O bonds reinforce the oxygen lattice and stabilize the crystal structure during
the electrochemical reactions process [146].

LiNi0.8Co0.1Mn0.1O2 (NCM811) is a promising active material suitable for electric
vehicles based on its high specific energy and power density [147], although it shows
the disadvantages of mixed cation discharge, poor thermal stability, and cycling perfor-
mance [148]. To improve its stabilization and performance, different strategies have been
implemented. These strategies include synthetizing it in monocrystalline and polycrys-
talline structures [149], the ZnO surface coating to increase the structural stability and
the conductivity (the corresponding battery performance is shown in Figure 6a) [150],
or the use of Ag-Sn dual-modification to promote structural stability (Figure 6b) [151].
LiNi0.8Co0.1Mn0.1O2 has been also doped with reduced graphene oxide (rGO) [152] and
with a La2Zr2O7 coating for Zr doping (cycling behavior shown in Figure 6c) [153]. Fi-
nally, other modification strategies for the same active material include surface modifi-
cation after washing by H3BO3 [154], 3D carbon network using 6-amino-4-hydroxy-2-
naphthalenesulfonic acid (AHNS)-functionalized rGO and carbon nanotubes (CNTs) [155],
partially substitution of Co for Fe [156], and adding ethylene glycol (EG) and surfactant
polyvinylpyrrolidone (PVP) [157].

A further variety of related active materials include LiNi0.5Co0.2Mn0.3O2 coated with an
oligomer additive [158] and produced by drying methods (freeze drying and vacuum drying)
through the solvothermal method [159], LiNi0.6Co0.2Mn0.2O2 with Zr-based dual modifica-
tion [160], LiNi0.6Co0.2Mn0.2O2 synthesized via solid reaction assisted with a plasma milling
pretreatment [161], 0.5Li2MnO3.0.5LiMn1/3Ni1/3Co1/3O2 [162], LiNi0.83Co0.10Mn0.07O2, [163],
LiNi0.83Co0.12Mn0.05O2/graphite–SiOx [164], LiNi0.87Co0.1Al0.03O2 with the LBP coating
layer [165], LiNi0.88Co0.06Mn0.03Al0.03O2 [166], LiNi0.88Co0.09Al0.03O2 coated with Al2O3
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layer [167], LiNi0.90Co0.05Mn0.05O2 with lithium tungsten oxide (LWO) coating layer [168]
and Sn-doping [169], Li1.02Ni0.05Mn1.93O4 [170], Li1.05Mn1.95-xNixO4 (0≤ x ≤ 0.08) by
a solution combustion method [171], LiMn0.5Fe0.5PO4 cathode coated of Li3VO4, and
carbon [172], Li2ZrO3-Li3V2(PO4)3/C composites [173], among others, have been also
explored with great potential for cathode electrode aiming to increase battery performance
and stability.
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In addition, active cathode materials based on single crystal LiNi0.83Co0.10Mn0.07O2
(SC-NCM) have been developed to improve thermal stability, offering a reversible capacity
of 167.0 mAh·g−1 [163]. LiNi0.88Co0.06Mn0.03Al0.03O2 has been synthesized and modified
by Zr doping and LiBO2 coating to reach a discharge specific capacity of 211.7 mAh·g−1

at 0.1 C [166]. A composition of Li1.17Ni0.21Mn0.54Co0.08O2, with low cobalt content, syn-
thetized by the co-precipitation method, reaches a specific capacity of 250 mAh·g−1, the
electrochemical behavior being governed by Ni2+/Ni4+ and Co3+/Co4+ redox couples [174].
Li1.2Ni0.182Co0.08Mn0.538O2 has been coated with PVP-bridged γ-LiAlO2 nanolayers to im-
prove the rate capability and cycling stability, the rate capability being 177.0 mAh·g−1 at
5 C [175].

Another interesting active material is Li1.2Mn0.54Co0.13Ni0.13O2, which doped with
carbon and oriented following a {010} plane allows improving Li+ diffusion and reaching
a reversible capacity of 276 mAh·g−1 [176]. Another strategy for this active material is
to modify the surface using La–Co–O compounds [177]. Finally, this material has been
also synthetized to improve the kinetics and reversibility of transition-metal (TM) ion
migration, leading to an ultrahigh energy efficiency at 1 C (90.6%) and high capacity
(>200 mAh·g−1) [178].

Other cathode active materials without lithium in their structure have been studied as
an alternative of the conventional lithium cathode active materials. In this case, the source
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of lithium ions is the lithium metal used as anode. The electrode material NaVMoO6 with
a layered structure has been found with the highest valence states for vanadium (+5) and
molybdenum (+6), which are suitable for cathode active material for LIBs, their structure
and performance being shown in Figure 7a,b, respectively [179].
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In addition, a ferrocene-based MOF, iron (III) 1,1′-ferrocenedicarboxylate (Fe2(DFc)3),
has been synthesized and tested for cathode applications with the specific capacity of
172 mAh·g−1 at 50 mA·g−1 [180].

4. Materials for Separators/Electrolytes
4.1. Separator Membrane

An essential component of electrochemical devices is the separator. This component
is placed between the two electrodes, and its main function is to prevent the short circuit of
the system. Its specific function depends on the type of application being, in the case of
lithium-ion batteries, the means of transferring lithium-ions between the electrodes during
the charge/discharge process [181].

There are different types of separators, such as microporous membranes, nonwo-
ven membranes, electrospun membranes, membranes with external surface modification,
composite membranes, and polymer blends [182].

The separator is composed by a porous membrane wetted with an organic electrolyte
solution, the main characteristics required for battery applications being [32,182]:

• Low thickness (<25 µm) and good permeability;
• Porosity > 50% and pore size below <1 micron;
• Excellent wettability: absorption and retention of electrolytes;
• Chemical and dimensional stability;
• Good thermal stability and excellent mechanical properties.

Different separator types are produced using different processing techniques, ranging
from solvent casting to electrospinning, and different polymers have been used, including
polyethylene (PE), polypropylene (PP), poly (vinyl chloride) (PVC), poly(ethylene oxide)
(PEO), and poly (vinylidene fluoride) (PVDF), among others, commercial separators being
based on polyolefins (PP and PE). Regardless of the separator type, its thickness should be
lower than 25 µm, porosity higher than 40% with an average pore size lower than 1 µm
and stable at temperatures above 150 ◦C [182].

Advances in the area of separators are focused on the development of advanced porous
membranes based on environmental friendly materials, improving thermal and safety
properties, increasing the wettability of polyolefins polymers, and inhibiting dendrites
growth [183], among others. Table 3 summarizes representative recent works in this field.
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Table 3. Recent advances on Li-ion battery separators based of different materials with main properties, goals and achievements for improving separator characteristics.

Materials Electrolyte Solution Porosity and Uptake (%) Conductivity (mS·cm−1)
and Capacity (mAh·g−1) Main Goal/Achievement Ref.

Polyimide (PI) with
poly(amic acid) (PAA)

1.0 M LiPF6 (ethylene carbonate (EC)/
diethyl carbonate (DEC) (1:1 by weight))

with 5% of fluoroethylene carbonate (FEC)
89.1/- 1.79/1.930 mAh Improved mechanical

strength [184]

Polyimide (PI)
1.0 M
LiPF6

(EC/dimethyl carbonate (DMC) (1:1 in vol.))
-/- -/- Improved thermal stability [185]

PE with phenolic resin (AF) 1mol L−1 LiPF6 (DMC/EC (1:1 in vol.)) 57/228 0.6/119
Improved thermal stability

and electrochemical
properties

[186]

Untreated Al2O3/PE
1.0 M LiPF6

(EC/DEC (1:1 by weight)) with 5% of
Fluoroethylene carbonate (FEC)

-/- 0.39/140@0.2C
Good wettability, high

thermal stability, and good
electrochemical performance

[187]

Polyethyleneimine
(PEI)/dopamine coating layer

in PP separator.
1.0 M LiPF6 (EC/DMC (1:1 in vol.)) -/144 0.58/128 High electrolyte uptake [188]

PVDF containing titanium
dioxide (TiO2) and graphene

oxide (GO)
Commercial electrolyte based LiPF6 86.50/494 4.87/- High electrolyte uptake [189]

Polyimide (PI) with ZSM-5
zeolite filler 1.0 M LiPF6 (EC/DMC (1:1 in vol.)) 61/260 1.04/133@2C Enhanced wettability and

electrolyte uptake [190]

Poly(aryl ether sulfone) (PES)
and poly(vinylidene fluoride)

(PVDF)

1.0 M LiPF6 (EC/ethylmethyl carbonate
(EMC)/DMC (1:1:1 in vol.)) -/595 1.69/162.8 Enhanced wettability and

high ionic conductivity [191]

Poly(vinylidene
fluoridehExafluoropropyl-ene)

(PVDF-HFP)/poly-
mphenyleneisophthalamide

(PMIA)

1.0 M LiPF6 (EC/DEC/EMC (1:1:1 in vol.)) 94.28/~900 -/-
Good electrolyte affinity and

enhanced interfacial
compatibility

[192]
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Table 3. Cont.

Materials Electrolyte Solution Porosity and Uptake (%) Conductivity (mS·cm−1)
and Capacity (mAh·g−1) Main Goal/Achievement Ref.

PE with ammonium
persulfate (APS) coating

1.0 M LiPF6
(EC/EMC (3:7 in vol.)) with 2 wt %
vinylene carbonate as an additive

-/- 0.36/~170 High lithium-ion migration
and ionic conductivity [193,194]

PVDF/13X zeolite particles 1.0 M LiPF6 (EC/DEC/DMC (1:1:1 in vol.)) 76/475 ~1/144.14 Excellent ionic conductivity [195]

PAN@PVdF-HFP - -/- 1.2/170@0.1C
Excellent cycling

performance, good rate
capability

[196]

PE with controllable
polyamine (PAI) layer 1.0 M LiPF6 carbonate solution 60/- -/- Enhanced safety [197]

PVDF coated with ZnO - 85.1/352 2.3/148@1C High safety in high
temperature. [198]

Thin layer of low-density
polyethylene microspheres

onto a commercial porous PP
1.0 M LiPF6 (EC/DMC/EMC (1:1:1 in vol.)) -/- 0.30/158

Rapid thermal shutdown at
elevated temperature

(≈110 ◦C)
[199]

Aramid nanofiber/
bacterial cellulose 1.0 M LiPF6 (EC/DMC/DEC (1:1:1 in vol.)) 83.9/- 12.54/157 Excellent tensile strength and

ionic conductivity. [200]

Poly (L-lactic acid) (PLLA) 1.0 M LiPF6 (EC/DMC (1:1In vol.)) ≈72/350 1.6/93@1C Environmentally friendly
separator [201]

Cellulose/PVDF-HFP
with TiO2

1.0 M LiPF6 (EC/DMC (1:1 in vol.)) 86/403 1.68/103.8@8C Excellent thermal stability
and high ion conductivity [202]

Silk fibroin 1.0 M LiPF6 (EC/DMC (1:1 in vol.)) 86/350 2.2/131.3 @8C Environmentally friendly
separator [203]



Energies 2021, 14, 3145 16 of 36

Stability parameters, such as thermal and mechanical characteristics, are the easiest
to achieve, as the properties of the separator components are well known and easily com-
bined. Polyimide (PIs) is widely used in the separator field due to the improved thermal
stability and different separators based on this polymer are being developed, such as PI
nonwovens with diphenyl phosphate (DPhP) as plasticizer [204], PI with organic mont-
morillonite (OMMT) [205], a three-dimensionally ordered microporous polyimide (3DOM
PI) separator developed by micropatterning [206], coating of silicon nitride on both sides
of polyimide separator [207], and a PVDF-HFP/PI side-by-side bicomponent electrospun
separator [208]. In addition to PI, other polymers such as poly(aryl ether benzimidazole)
(OPBI) [209], polydopamine-coated poly(m-phenylene isophthalamid) membrane [210],
and poly(phenylene sulfide) [211] are used due to their high thermal resistance.

The affinity of the separator with the electrolytes is also an important parameter,
which is mainly associated with the wettability and uptake of the membranes. In order
to improve electrolyte wettability and thermal stability, new separators based on heat-
resistant polyphenylene sulfide (PPS) fibers and cellulose fibers (CFs) were fabricated via
a facile papermaking process, and their performance is shown in Figure 8a [212]. The
wettability of PE separator membranes can be improved by the coating of Al2O3 on the
membrane, leading also to a reduction of the interfacial resistance [187]. Furthermore, in
the same separator type and with the objective of enhancing thermal runaway, melamine-
based porous organic polymer (POP) coatings [213] were implemented. In fact, different
materials have been used as a layer on the surface of polyolefin separators to improve
its wettability, including polyethyleneimine (PEI)/dopamine coating layer [188], Al2O3
layers in electrospun PVDF nanofibers [193], ammonium persulfate (APS) coating [194],
a phenolic resin (AF) layer with immersion in situ reaction [186], a thin layer of low-
density polyethylene microspheres [199], polyamine (PAI) containing natural clay nanorods
(attapulgite, ATP) [197], and polyvinyl alcohol (PVA) [214], TiO2 [215], Al2O3 [216], UV-
induced graft with polar methyl acrylate (MA) [217], and polyimide (PI)-SiO2 layers [218].

The ionic conduction of the separators is a direct consequence of their wettability and
uptake, as the electrolyte plays a key role on the electrochemical properties of the system. In
this regard, composite separators are intensively used, and different combinations of poly-
mer matrix and specific fillers are being developed, such as, boehmite/polyacrylonitrile
(BM/PAN) [219], 9,10-dihydro-9- oxa-10-phosphaphenanthrene-10-oxide (DOPO) into
polyacrylonitrile (PAN) [220], PVDF containing titanium dioxide (TiO2) and graphene oxide
(GO) [189], PVDF with 13X zeolite [195] and PVDF with modacrylic and SiO2 [221], poly-
acrylonitrile (PAN)/helical carbon nanofibers(HCNFs)@PVDF/UiO-66 composite [222],
cellulose/Poly (vinylidene fluoride-hexafluoropropylene) membrane with titania nanopar-
ticles [202], polyimide (PI) with ZSM-5 zeolite as filler [190] and PVDF with titanium
hydroxide (Ti(OH)x) [223], polyethylene terephthalate (PET) combined with inorganic zirco-
nia (ZrO2) [224], silica-coated expanded polytetrafluoroethylene separator [225], poly(vinyl
alcohol) (PVA) with ZrO2 nanoparticles [226], poly(vinyl alcohol) (PVA) with submicron
spindle-shaped CaCO3 [227], poly(vinyl alcohol)/melamine composite nanofiber mem-
brane containing LATP nanocrystals [228], and poly(m-phenylene isophthalamide) (PMIA)
with SiO2 nanoparticles [229], among others, mainly with the main focus on improving the
electrochemical properties. In particular, separators based on PVDF coated with ZnO have
been developed with higher ionic conductivity (2.261 mS·cm−1), high porosity (85.1%),
favorable electrolyte wettability (352%), and lower interfacial impedance (220 Ω) [198].

The future trends on the separator technology include the development of more
complex and multifunctional membranes, particularly with the increasing of the devices’
safety, by adding shutdown functions to the separators [199]. Novel separator architectures
based on three layers were developed combining electrospinning and electrospraying
techniques and composed of PI and poly(amic acid) ammonium salt (PAAS) solution with
inorganic nanoparticles (SiO2 or Al2O3) [185]. Another three-layer separator was produced
based on poly (ethylene-co-vinyl acetate) (EVA)/polyimide (PI)/EVA (PIE) with high
thermal stability and a shutdown function [230].
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With the increase of the global awareness on environmental issues, the development
of “greener” separators for batteries has also gained relevance in recent years, with the
application of biopolymers as host, and less hazardous fillers in order to reduce environ-
mental impacts. A biopolymer widely used in battery separator membranes is cellulose.
In order to improve its performance, the “Trojan Horse” camouflage strategy was used,
which consists of preparing positively charged lignosulfonate–polyamide–epichlorohydrin
complex (LPC) nanoparticles that are incorporated into the separator. This strategy
shows exceptional electrolyte wettability and rate capability as shown in Figure 8b [231].
Other works in this field include composites based on bacterial cellulose nanocrystals
(BCNCs) with polyether block amide (PEBAX) [232], zeolitic imidazolate framework-67
(ZIF-67) on the surface of cellulose nanofibers (CNFs) [233], poly(vinylidene fluoride-
hexafluoropropylene)/cellulose/carboxylic titanium dioxide (PVDF-HFP/cellulose/C-
TiO2) composites [234], aramid nanofiber (ANF)/bacterial cellulose (BC) [200], cellulose
nanofibrils (CNFs) reinforced pure cellulose paper (CCP) [235], and Lyocell fibrillated
fibers [236], all showing exceptional electrochemical performance and rate capability
(Figure 8c for ANF/BC separator). A novel PVDF/triphenyl phosphate (TPP)/cellulose
acetate (CA) separator membrane was fabricated by electrospinning, and this membrane
shows high porosity, improved thermal stability, superior electrolyte wettability, improved
flame resistance, excellent electrochemical properties, and cycle stability when compared
to the commercial separators (Figure 8d) [237]. Silk fibroin membranes prepared by salt
leaching are also an excellent candidate for this green transition, due to its high porosity
and uptake, which leads to excellent battery performances at a wide range of discharge
rates [203]. The experimental studies are frequently accompanied with theoretical and
simulation models to better understand the involved physical–chemical phenomena [238].

4.2. Solid Polymer Electrolytes

Solid polymer electrolytes (SPE) are a solvent-free salt solution in a polymer host,
which can be considered solid in the macroscopic scale [37]. They are a key component in
the operation of solid-state batteries, as they allow the removal of the liquid electrolytes
from the system, improving their safety. However, some major drawbacks are causing this
technology to lag behind, namely the low ionic conductivity achieved and the difficult
interfacial interaction between the electrodes and the electrolyte [239,240]. A good SPE in
LIBs must have some basic properties, such as good ionic conductivity (>10−4 S·cm−1),
good interfacial compatibility with the electrodes, high lithium-ion transference number,
and good mechanical and thermal stability. The perfect balance among all these character-
istics is difficult to achieve but will allow producing suitable SPE for application at large
scale in the next generation of solid-state batteries [38].

The field of SPEs in lithium-ion batteries is strongly growing in recent years, with more
than 500 publications in 2020 according to the Web of Science. This highlights the relevance
of this thematic and the efforts made to find the most suitable materials for application
in SPEs. Some of the most relevant studies are focusing on the resolution of issues that
include the growth of lithium dendrites [241] and electrode/electrolyte interface [242], as
well as enhancing the multifunctionality of the SPE, with the addition of battery shutdown
functions or self-healing ability. Table 4 summarizes and outlines the recent works in the
SPE field.
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Figure 8. (a) Discharge C-rate capabilities of cells with Celgard 2400 separator and CFs/PPS-1/1 separator [212], (b) Rate
capability of LFP half cells with PP and LPC-CNF paper separators at different current densities [231], (c) Rate capabil-
ity of LFP half-cells with BC and ANFs/BC separators [200], and (d) Rate capabilities of LFP half cells using PE and
PVDF/TPP/CA membranes [237].

Table 4. Recent advances in solid polymer electrolyte (SPE) technology for Li-ion battery applications.

Polymer Matrix Fillers Method Ionic Conductivity
(S·cm−1)

Discharge
Capacity

(mAh·g−1)
Main Features Ref.

PEO Carbon quantum dots,
LiTFSI Doctor blade 2.2 × 10−4 (25 ◦C)

160.4
(C/10)

Lithium
dendrite

suppression
[30]

PEO GO, [Bmim][DCA] Solvent casting 1 × 10−4 (25 ◦C)
156.2

(C/10)

Lithium
dendrite

suppression
[243]

PEO LiTFSI SiO2 Solvent casting 9.32 × 10−5 (30 ◦C)
166.9

(C/10)

Lithium
dendrite

suppression
[244]

PEO Nonwoven glass fiber,
LiTFSI Solvent casting 1.2 × 10−4 (20 ◦C) 128 (C/10)

Lithium
dendrite

suppression
[245]

PEO, PVDF LiTFSI Solvent casting 2.46 × 10−9 (30 ◦C) 157.5 (C/5)
Lithium
dendrite

suppression
[246]
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Table 4. Cont.

Polymer Matrix Fillers Method Ionic Conductivity
(S·cm−1)

Discharge
Capacity

(mAh·g−1)
Main Features Ref.

PCL-PPC-PCL LiTFSI Solvent casting 3 × 10−5 (30 ◦C) 142 (C/20)
Lithium
dendrite

suppression
[247]

PVDF LiTFSI, LLZTO Solvent casting 1.16 × 10−3 (80 ◦C) 151 (C/5)
Lithium
dendrite

suppression
[248]

PVDF LiTFSI, Pyr13TFSI Solvent casting 1.23 × 10−3 (25 ◦C) 158.2 (1C)
Lithium
dendrite

suppression
[249]

PVDF-CA Montmorillonite,
LiTFSI Solvent casting 3.40 × 10−4 (25 ◦C) 112 (C/2)

Lithium
dendrite

suppression
[250]

PVDF-HFP LLZO, IL Solvent casting 6.3 × 10−3 (20 ◦C) 164 (C/2)
Lithium
dendrite

suppression
[251]

PEO LiTFSI,
UiO-66-NH2@SiO2

Hot pressing 8.1 × 10−6 (60 ◦C) 151 (C/10)
Lithium
dendrite

suppression
[252]

TMPTA-
TEGDME-PEO LiTFSI UV curing 4.36 × 10−4 (30 ◦C)

157.8
(C/10)

Lithium
dendrite

suppression
[253]

PEO LiTFSI, Pyr14TFSI,
LLZO UV curing 5.0 × 10−4 (60 ◦C) -

Lithium
dendrite

suppression
[29]

PVDF LiClO4, LLTO Tape casting 4.7 × 10−4 (25 ◦C) 139 (C/5)

Lithium
dendrite

suppression,
interfacial

contact

[241]

PAN nanofibers,
PDMS, PEO LiTFSI Solvent casting 1.2 × 10−3 (60 ◦C) 151.7 (C/5)

Lithium
dendrite

suppression,
interfacial

contact

[254]

PEO LiTFSI Zn(BEH2) Solvent casting 1.1 × 10−5 (30 ◦C) 145 (C/10)

Lithium
dendrite

suppression,
interfacial

contact

[255]

PVDF-HFP LiTFSI, LGPS Solvent casting 1.8 × 10−4 (30 ◦C) 158 (C/20)

Lithium
dendrite

suppression,
interfacial

contact

[256]

PEG LiTFSI, HDIt Cross-linked
copolymerization 6.51 × 10−5 (25 ◦C) 162 (C/10) Interfacial

contact [242]
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Table 4. Cont.

Polymer Matrix Fillers Method Ionic Conductivity
(S·cm−1)

Discharge
Capacity

(mAh·g−1)
Main Features Ref.

PEO LiFSI, LiPSTFSI Hot pressing 3.7 × 10−5 (70 ◦C) 150 (C/20) Interfacial
contact [257]

PEO LiPCSI Solvent casting 7.33 × 10−5 (60 ◦C) 141 (C/10) Interfacial
contact [258]

PEO Li3N Doctor blade - 160 (C/10) Self-healing [259]

HCP-UPyMA,
PEGMA LiTFSI UV

copolymerization 8.95 × 10−5 (30 ◦C) - Self-healing [260]

PVT [EMIM][TFSI], LiTFSI Solvent casting 1.26 × 10−4 (25 ◦C) 145 Self-healing [261]

PEGA

LiTFSI, Bis(2-
methacryloyloxyethyl)

Disulfide, 1,2-Bis
(ureidoethylen-
emethacrylate)

Hexamethylene

RAFT
polymerization 7.28 × 10−6 (30 ◦C)

140.5
(C/10) Self-healing [262]

PEG600
Phosphorous and
silicon-containing
monomers, LiTFSI

Solvent casting 2.98 × 10−5 (25 ◦C)
142.0

(C/10)
Flame

retardancy [263]

PAES-g-PEG PYR14-TFSI, LiTFSI Solvent casting 8.9 × 10−4 (40 ◦C) 138 (C/10) Battery stability [264]

PEO ZIF-8 Solvent casting 2.2 × 10−5 (30 ◦C) 111 (C/2) Battery stability [265]

ETPTA-PVDF-
HFP - UV curing 9 × 10−4 (25 ◦C) 150 (C/5) Ionic

conduction [266]

PEO UiO-66, LiClO4 Solvent casting 4.8 × 10−5 (25 ◦C) 148 (C/10) Ionic
conduction [267]

PEO HACC-TFSI, LiTFSI Solvent casting 1.77 × 10−5 (30 ◦C) 161.3 (C/5) Ionic
conduction [268]

PEO LiTFSO, Mesoporous
silica Solvent casting 4.3 × 10−4 (60 ◦C)

150.3
(C/10)

Ionic
conduction [269]

PVDF-HFP
LiTFSI, Pyr13TFSI,

P(MMA-co-VIm(1O2))
(TFSI)

Solvent casting 5.1 × 10−4 (25 ◦C) 102 (C/10) Ionic
conduction [270]

PMMA BaTiO3, LiPF6 Solvent casting 3.9 × 10−4 (70 ◦C) - Ionic
conduction [271]

PVDH-HFP [Bmim][SCN] Doctor blade 1.5 × 10−4 (25 ◦C) 148 (C/8) Ionic
conduction [272]

PEO LiTFSI
Ultrasonic

treatment, solvent
casting

3.2 × 10−4 (25 ◦C) - Ionic
conduction [273]

PEO LiTFSI, LLZAO Solvent casting 2.51 × 10−4 (25 ◦C) 165.9 (C/5) Ionic
conduction [274]

PVO LiTFSI Solvent casting 1.36 × 10−6 (25 ◦C) - Ionic
conduction [275]
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Table 4. Cont.

Polymer Matrix Fillers Method Ionic Conductivity
(S·cm−1)

Discharge
Capacity

(mAh·g−1)
Main Features Ref.

Chitosan, PEG LiClO4 Solvent casting 4.56 × 10−4 (25 ◦C) - Environmentally
friendly [276]

I-Carrageenan LiCl Solvent casting 5.33 × 10−3 (25 ◦C) - Environmentally
friendly [277]

Pectin, Guar
gum LiTFSI Solvent casting 1.59 × 10−4 (25 ◦C) - Environmentally

friendly [278]

PAA Silica nanoparticles Free radical
polymerization 1.29 × 10−2 (25 ◦C) - Environmentally

friendly [279]

The lithium dendrite suppression can be a major breakthrough for the use of lithium
metal batteries in their full potential, without safety problems. According to that, several
studies have been carried out in order to solve this issue. The production of a sandwiched
PVDF/LLTO by tape casting proved to be effective for this purpose, as the use of dif-
ferent LLTO concentrations in each layer allows for high ionic conductivities and good
interfacial compatibility. This leads to batteries with good cycling capacities and excellent
lifetimes [241]. Similar results are reported for LLZO nanofibers [251]. LLZO can also be
combined with PEO and Pyr14TFSI to reinforce commercial Celgard® separators, leading to
an SPE with excellent dendrite suppression ability. The formation of dense Li depositions in
the interface with lithium metal is observed, due to a synergistic electro-chemo-mechanical
effect observed in LLZO composite layer (Figure 9) [29]. The addition of 3D SiO2 particles
into a PEO matrix offers a uniform dispersion of high conductive interfaces, improving
the performance of the battery [244]. The 3D cross-linked network formed by a mixture of
PEO, GO, and [Bmim][DCA] provided a fast ion transport channel in the SPE structure,
leading to high lithium transference number and high ionic conductivity even at room
temperature, simultaneously suppressing the lithium dendrite growth [243]. Ionic liquids
such as Pyr13TFSI lead to a viscoelastic electrode/electrolyte interface, which reduces the
impedance of the battery and avoids lithium dendrites [249]. The use of MOFs, such as
UiO-66-NH2@SiO2, leads to a network of high conductivity channels in the SPE structure,
which improves its electrochemical properties and reduces the lithium dendrite forma-
tion [252]. By adding Zn(BEH2) at the SPE, a LiZn alloy interface is formed in the anode,
which suppresses dendrite penetration, simultaneously increasing the ionic conductiv-
ity [255]. The highly conductive LGPS salts act as stabilizers, particularly when combined
with fluorinated polymers such as PVDF-HFP, due to the LiF layer formed between the
electrodes and the electrolyte, which suppresses lithium propagation [256]. The addition
of carbon quantum dots into a PEO matrix leads to an increase in the mechanical stability
of the SPE, particularly at the level of stretching and puncture resistance, without compro-
mising the battery performance [30]. The use of nonwoven glass fiber to reinforce the PEO
matrix significantly improves the mechanical properties of the SPE with storage moduli
up to 1 GPa. This allows not only the lithium dendrite suppression but also the possibility
of increasing the load of other fillers, leading to higher ionic conductivities and cycling
performances without compromising the mechanical properties [245].
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Another strategy to suppress lithium dendrites is the combination of different kinds
of polymers. By adding PAN electrospun nanofibers to a blend of PDMS and PEO, it
is possible to reduce the crystallization of PEO and increase the mechanical properties
of the SPE, which prevents it from being punctured by dendrites [254]. The addition of
a PEO/LiTFSI solution in an electrospun PVDF nanofiber matrix also reduces the PEO
crystallization due to the increase in the contact area with the nanofibers. This increases
the mechanical strength and the cycling stability of the SPE [246]. Similar results can also
be achieved by using a polyester-based triblock structure [247]. By combining different
kinds of polymers in regular-random network structures, it is possible to regulate the
lithium deposition by facilitating the formation of a regular and robust SEI in lithium
metal [253]. Mechanical properties improvement can also be achieved by creating polymer
blends between PVDF and cellulose acetate. Simultaneously, the addition of an inorganic
filler (montmorillonite) accelerates the dissociation process of LiTFSI, allowing for higher
ion transport rates [250]. The development of a hybrid polymer-in-ceramic composite
electrolyte is an interesting approach, as it combines the advantages of high ionic conduc-
tivity in ceramic electrolytes, and the mechanical properties of the polymer electrolytes;
furthermore, it can simultaneously suppress the lithium dendrites [248].

In many cases, the suppression of lithium dendrites is strongly associated with the
improvement of the interfacial contact between the electrodes and the electrolyte [254–256].
The interfacial compatibility can be enhanced by combining different functional units, as
PEG and HDIt in one SPE, in which its properties can be easily tuned by changing the
ratio between the functional units [242]. The use of additive containing solid lithium-ion
conductors, where lithium salts are combined with polymers such as PS, proved to reduce
the interfacial resistivity between the electrolyte and the electrodes, improving battery
performance [257]. The substitution of the conventional lithium salts by LiPCSI reduces
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the glass transition temperature of the SPE, thus increasing the mobility of the polymer
chains and improving compatibility with metallic lithium anodes [258].

An interesting approach that attracted great interest in recent years is the study of
the self-healing capacity in SPEs. This application has the potential to solve simultane-
ously the interfacial and lithium dendrite problems, leading to a reduction on the short
circuits and electrolyte leakages occurrence, and consequently to a significant increase
in the battery cycle life [280]. In this sense, the addition of lithium nitride as an artificial
SEI in the interface between the SPE and Li metal proved to inhibit the reactions between
the electrolyte and the electrode. This layer avoids the use of lithium-ions for the for-
mation of the common SEI, and it has the capacity to maintain its structure after several
charge and discharge cycles, also avoiding the growth of lithium dendrites due to their
excellent mechanical properties [259]. The use of UV copolymerization of polymers such
as hexa(4-ethyl acrylate phenoxy) cyclotriphosphazene (HCP), (2-(3-(6-methyl-4-oxo-1,4-
dihydropyrimidin-2-yl)ureido)ethyl methacrylate) (UPyMA), and poly(ethylene glycol)
methyl ether methacrylate (PEGMA) is an effective way to combine the different properties
of each polymer and create an SPE with high thermal and mechanical stability, self-healing,
and fire retardant capacity, improving both the safety and the performance of LIBs [260].
Polymeric ionic liquids (PILs) can also be effectively applied for this purpose. The re-
versible ionic bonds created by the abundance of cations and anions existent in the polymer
chains and in the interstitial ionic liquid enhance the self-healing capacity and creates a
system of interconnected pathways for the lithium-ion migration, increasing the ionic con-
ductivity of the LIB (Figure 10) [261]. Fast self-healing levels can be achieved by combining
disulfide bonds with urea groups, particularly at high temperatures, without loss in battery
performance, due to the effect of hydrogen and disulfide bonds, which return the material
to its former state [262].
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Flame retardancy is also an important and needed development in the SPE technology,
as it prevents the occurrence of incidents caused by short circuits, such as burning or
explosion of the equipment. By doping the polymer matrix structure with phosphorous
and silicon containing monomers, it is possible to increase the compatibility between the
fillers and the matrix, which improves the overall stability even at high temperatures,
enhancing the flame retardant performance [263].

More conventional approaches include the studies to increase battery performance,
cycling stability, and to reduce the operation temperature of an SPE. In this context, the
production of a PAES-g-PEG polymer blend, using room temperature ionic liquids as fillers
lead to excellent cycling stabilities, particularly with the addition of nitrile functional groups
to the matrix, with stability up to 500 cycles [264]. Ionic conduction can be increased when
PVDF-HFP is added to the structure of an ETPTA UV cured polymer, with the formation
of high ionic conduction pathways [266]. The use of MOFs promotes the intermolecular
interactions in the polymer structure, which inhibits the crystallization of PEO, improving
the ionic conductivity, particularly at high temperatures [267]. Ionic liquids are also an
effective way to increase the ionic conductivity of an SPE, through the inhibition of the
polymer crystallization [268,272]. The immobilization of lithium ionic liquids (LiIL) in a
mesoporous silica structure creates a hybrid interface that provides fast Li+ transportation
kinetics without compromising the mechanical properties. The assembled batteries with
this SPE showed good cycling performances at high temperatures [269]. Polymeric ionic
liquids (PILs) can reduce the interfacial resistance in the battery, resulting in improved ionic
conductivity, and consequently good cycling performance [270]. BaTiO3 nanoparticles can
be used to improve both the ionic conductivity and the dielectric constant of a PMMA
based SPE, up to a maximum of 5166 [271]. The use of ultrasonic treatments in the PEO
matrix proved to significant increase the ionic conductivity of the SPE by around 78% due
to the breaking of PEO grains and reduction in the crystallinity [273]. Polymer-in-ceramic
composites can also play a key role in the ionic conduction with fast Li+ conduction and
high lithium transference number [274]. The use of zeolites is still not much explored, but
it shows promising results, particularly in the prolonged cycle life of the batteries [265].
The comparison between the two most used lithium salts (LiTFSI and LiClO4) concluded
that LiTFSI originates SPEs with the higher ionic conductivity, while the Li+ transference
number is increased by the addition of LiClO4 [275].

Environmental issues are gaining significant relevance in modern society. Thus, the
necessity to produce more sustainable devices has also reached the SPE field. In this context,
the shift toward the use of environmental friendlier materials, both with the use of natural
polymers as matrix, and by avoiding the use of organic solvents, is getting increasing
interest [281]. The use of chitosan combined with a PEG plasticizer leads to an SPE with an
excellent room temperature ionic conductivity, due to increasing polymer chain flexibility
attributed to the plasticizer addition, making this a promising option for application in
batteries [276]. Iota-Carrageenan [277], pectin, and guar gum [278] are other promising
polymers that can achieve high room temperature ionic conductivity (in the order of
10−4 S·cm−1). The use of water as solvent in a super hydrophilic PAA matrix doped with
silica nanoparticles presents outstanding ionic conductivities above 10−2 S·cm−1, being a
promising candidate for aqueous rechargeable lithium-ion batteries [279].

5. Main Conclusions and Future Trends

Lithium-ion batteries (LIBs) are the most used energy storage system with increasing
applicability on devices ranging from small sensors to large-scale and complex electric
vehicles. The recent development in the materials used in the main three LIBs components,
anode, cathode, and separator/electrolyte, have been presented and compared. These
materials are focused on the resolution of the most frequent LIB issues, such as the ones
related to their processability, safety, and stability, as well as to increase their performance.
Furthermore, the environmental impact of materials and processes are gaining increasing
relevance in this area. For the anode, the most studied active materials are carbon, metal
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alloys, and silicon-based materials. Furthermore, conversion-type transition metals and
their composite-based anode materials increased interest in recent years due to their high
theoretical capabilities, low cost, and availability. Materials such as iron oxides and MOFs
increase lithium storage capabilities and electrical conductivity, and they act as a buffer
medium to reduce the volume change.

With respect to cathode active materials, the most used ones, including LFP, LCO,
LMO, or LNMO, are being modified through doping with different elements, innovative
synthesis methods have been developed, composites with different particles have been
processed, particle size and morphology are being optimized, and performance is being
improved by functionalization and coating. Efforts are also being made in the field of
hybrid structures, using materials such as MXenes and MOFs, to improve the electrode’s
performance, with a focus on improving cycling behavior. Future trends in this area also
include research in cobalt-free active materials, which will allow for the reduction of the
battery costs, as cobalt is a scarce and costly component of batteries. These optimizations
are focused to improve the electronic and thermal properties, to stabilize the particle
with the electrolyte, and to improve the mechanochemical activation. Separator materials
based on PP, PE, and PVDF, among other polymers, have been studied as microporous
membranes, nonwoven membranes, and electrospun membranes. In addition to the
structure, surface modification, composite membranes, and polymer blends have been
studied showing improved lithium dendrite growth inhibition, improving thermal and
safety properties, increasing the wettability, and improving interfacial issues. Studies of
new environmentally friendly materials and SPE are increasing due to the commitment
with advanced sustainable and safer materials in LIBs systems. Materials such as cellulose
and silk, and fillers such as natural clay are some of these examples. The elimination
of the liquid electrolyte in SPE strongly decreases the safety concerns visualized in the
typical separators. Furthermore, SPE studies show that additional functionalities as battery
shutdown, self-healing, and/or self-sensing ability can be implemented in those systems,
strongly increasing battery characteristics, particularly at the safety level. In addition,
initial studies demonstrate that natural polymers are a possible route for SPE development,
once they allow for high room temperature ionic conductivity, without compromising
sustainability. Thus, efforts to enhance the material properties of chitosan, iota-carrageenan,
pectin, and guar gum have been made in order to be applied to LIBs.

The work on LIBs should always take into consideration improvements on all com-
ponents of the batteries in order to achieve the best compatibility and improve the per-
formance of the devices. Thus, the study of the different materials for a specific battery
component must take into consideration the materials that will be integrated into the
other components. The selection and combination of these materials will affect the overall
performance of the system, aiming to solve the current performance, safety, stability, and
environmental issues.

The development of LIB technology must also be accompanied with the advance in
alternative energy storage systems, which allows for a higher diversity of options, limiting
the over exploration of the same type of resources. These alternatives include sodium,
potassium, and manganese-based batteries, which are areas of increasing research activity.

Thus, despite the strong success and implementation of Li-ion batteries in modern
technology, efforts and the levels of materials must continue to provide a new generation
of higher performance, safer, and environmentally friendlier batteries.
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