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Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main pathogens causing
chronic infections, mainly due to its capacity to form biofilms. However, the mechanisms underlying
the biofilm formation of MRSA strains from different types of human infections are not fully under-
stood. MRSA strains isolated from distinct human infections were characterized aiming to determine
their biofilm-forming capacity, the biofilm resistance to conventional antibiotics and the prevalence of
biofilm-related genes, including, icaA, icaB, icaC, icaD, fnbA, fnbB, clfA, clfB, cna, eno, ebpS, fib and bbp.
Eighty-three clinical MRSA strains recovered from bacteremia episodes, osteomyelitis and diabetic
foot ulcers were used. The biofilm-forming capacity was evaluated by the microtiter biofilm assay
and the biofilm structure was analyzed via confocal scanning laser microscopy. The antimicrobial
susceptibility of 24-h-old biofilms was assessed against three antibiotics and the biomass reduction
was measured. The metabolic activity of biofilms was evaluated by the XTT assay. The presence of
biofilm-related genes was investigated by whole-genome sequencing and by PCR. Despite different
intensities, all strains showed the capacity to form biofilms. Most strains had also a large number of
biofilm-related genes. However, strains isolated from osteomyelitis showed a lower capacity to form
biofilms and also a lower prevalence of biofilm-associated genes. There was a significant reduction
in the biofilm biomass of some strains tested against antibiotics. Our results provide important
information on the biofilm-forming capacity of clinical MRSA strains, which may be essential to
understand the influence of different types of infections on biofilm production and chronic infections.
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1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of community-
and hospital-associated infections. MRSA can cause mild infections often associated with
skin or soft tissue [1]; however, it can cause more severe infections such as pneumonia, os-
teomyelitis, cerebral abscess and sepsis, resulting in high rates of morbidity, high economic
burden and possible mortality [2]. Since MRSA is one of the main causes of persistent
human infections and its infections continue to be a major concern globally, MRSA was
categorized as a high-priority pathogen by the World Health Organization (WHO) in
2017 [3].

MRSA infections are difficult to eradicate since these strains are often multidrug-
resistant and the effectiveness of conventional antibiotics is compromised [4]. Overall, in
the European Union (EU) and the European Economic Area (EEA), MRSA accounts for
approximately 150,000 of hospital-associated infections each year, resulting in more than
7000 deaths and a socioeconomic burden of EUR 380 million annually [5,6]. The incidence
of MRSA infections in the EU and EEA varies significantly between the north and south,
with southern countries reporting above-median MRSA proportions [7]. In fact, although a
decrease in the weighted proportion of MRSA among S. aureus isolates from 2007 to 2015
was reported, a study by Cassini et al. (2019) showed that the estimated incidence of MRSA
infections actually increased 1.28-fold [6]. Moreover, although some countries, including
Portugal and Romania, reported a decrease in MRSA infections, these countries continue
to experience a substantial burden due to MRSA infections, with prevalence levels above
the European average [8].

Compounding the problem even further is the fact that MRSA can form biofilms on
biotic and abiotic surfaces [9]. For many decades, staphylococci have been recognized as
the most frequent cause of biofilm-associated infections [8,10]. However, most research has
focused on bacteria growing in planktonic cultures, while antibiotics were originally devel-
oped to target individual bacterial cells [11]. Nevertheless, it is clear that bacteria prefer
to grow as sessile communities [11]. It has been suggested that biofilms are responsible
for nearly 80% of all human infections and one of their most critical features is their high
level of resistance to antibiotics, host immune defenses, disinfectants and environmental
stress [10,11]. Biofilms are usually associated with medical devices such as catheters, me-
chanical heart valves, joint prostheses and orthopedic devices but can also be associated
with other infections, such as endocarditis and osteomyelitis [12,13]. Biofilms are more
resistant to antibiotics than planktonic cells due to the multi-level protection conferred by
the extracellular matrix (which hinders the penetration of antibiotics), altered metabolic
states and growth rate [14,15]. Furthermore, the biofilm formation ability of MRSA strains,
together with their often associated multidrug-resistance profile, enhances the overall
resistance, resulting in chemotherapeutic failure [16]. In addition, the close proximity of
bacterial cells within the biofilm promotes horizontal genetic transfer, conjugation and
mobilization of antimicrobial resistance genes [9].

Biofilm formation is divided into at least three stages: initial attachment, biofilm
maturation and dispersal [17]. The first stage is mediated mainly through the microbial
surface components recognizing adhesive matrix molecules (MSCRAMMs) [18]. The
maturation is characterized by the production of polysaccharide intercellular adhesin (PIA)
synthetized by the products of the icaADBC operon [19,20]. The final step, dispersal, allows
the recolonization of other available host sites [12]. Although some studies have reported
the biofilm-forming capacity of MRSA strains, it is important to conduct more studies
that will allow us to understand the mechanism underlying biofilm formation associated
with different human infections, particularly studies that compare MRSA isolates from
distinct infections [20–22]. Only a very limited number of studies have compared the
biofilm-forming ability of MRSA strains with the type of human infection [14,22]. In fact,
in Portugal, where the percentage of MRSA strains isolated from clinical infections is above
the European average, as far as we know, no studies have been conducted regarding the
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comparison between the type of infection and the biofilm-forming ability of MRSA or S.
aureus strains.

Therefore, we aimed to characterize the biofilm-forming ability of 83 MRSA strains
isolated from different human infections, to investigate the prevalence of biofilm-related
genes and to study the anti-biofilm efficacy of conventional antibiotics. Furthermore,
we also performed the whole-genome sequencing (WGS) of two strains based on their
biofilm-forming capacity.

2. Results
2.1. Biofilm Formation

A microtiter plate assay was used to measure the biofilm production of 83 MRSA
strains isolated from human infections, namely 13 from bacteremia episodes, 42 from
osteomyelitis and 28 from diabetic foot ulcers. The results were normalized against S.
aureus ATCC 25923 so that the comparison of results could be more reliable. The percentage
of biofilm formation of each strain is shown in Figure 1.
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Figure 1. Ability of MRSA strains to form biofilm associated with the type of infection. Comparison
of the biofilm formation capacity of clinical isolates from different infections, including bacteremia
(n = 13), diabetic foot (n = 28) and osteomyelitis (n = 42). The symbols (•, �, N) represent the average
biomass of the biofilm formed in independent tests of the individual isolates tested for each type of
infection. The red lines represent the average of biofilm biomass formed by all isolates of each type
of infection. Statistical significance was determined using one-way analysis of variance (one-way
ANOVA) followed by Tukey’s multiple comparison test. Significant differences are described with
*** p < 0.001.

The percentage mean of biofilm formation for all isolates from bacteremia, diabetic foot
infections and osteomyelitis was 80.5%, 77.6% and 58.3%, respectively. The biofilm production
of osteomyelitis strains was significantly lower than the biofilm production of strains isolated
from other infections (p < 0.001). Although the biofilm production of strains from bacteremia
was higher than this, this difference was small and not statistically significant. MRSA strain
O20, which belongs to the osteomyelitis group, was the weakest biofilm producer (31.9%),
and the strain D2 was the strongest biofilm producer (105.2%) and belonged to the diabetic
foot infection group. Both strains were analyzed by whole-genome sequencing.

2.2. Confocal Scanning Laser Microscopy (CLSM) Analysis

CLSM was used to visualize the overall morphology of MRSA biofilms. For CSLM
analysis, 18 strains (6 of each type of infection) were carefully selected according to their
biofilm-forming ability and the phenotypic antimicrobial resistance profiles of the plank-
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tonic cells. Strains from bacteremia, diabetic foot ulcers and osteomyelitis have been
previously characterized regarding antimicrobial resistance, virulence and genetic lin-
eages [1,23–25]. Figure 2 shows the images obtained by CLSM of each strain. Not surpris-
ingly, strains recovered from osteomyelitis produced less clusters when compared with the
images from bacteremia and diabetic foot strains.
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2-phenylindole (DAPI) probe (which binds to nucleic acids) is visualized in blue and the Tetramethyl-
rodamine (WGA-TRITC) probe (which binds to polysaccharides) in red.

2.3. WGS

To understand the genetic background of O20 and D2 clinical strains, WGS was
performed. The analysis of the genome sequences yielded 273 and 212 contigs, respectively
(from 200 to 127,245 bp, and from 203 to 137,189, respectively) (Table 1). The draft genome
contained a total assembly length of 2,795,149 and 2,788,919 bp, respectively; the GC
content was 32.7%.

Table 1. Genome analysis of MRSA clinical strains.

StrainContigs Contig Length (bp) N50 (bp) Total Assembly
Length (bp)

Minimum
Coverage

Mean
Coverage

GC Content
(%)

O20 273 200 to 127,245 26.219 2,795,149 10.2x 57.3x 32.7
D2 212 203 to 137,189 36.182 2,788,919 10.5x 63.4x 32.7

In silico analysis revealed the presence of loci associated with virulence, disease and
defense (Table 2). The virulence factor sdrE, which encodes for the serine-aspartate repeat
protein and is involved in biofilm adhesion, was exclusively identified in the D2 strain.
Sequences coding for functions related to mobile genetic elements were identified, which
include different plasmid types found in these replicons as well as open reading frames
(ORFs) associated with different insertion sequences.
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Table 2. General features of MRSA O20 and D2 clinical strains. PathogenFinder 1.1, ResFinder 2.1 (90% identity and 40%
minimum length) and PlasmidFinder 1.3 (<98% homology) were used to estimate the number of pathogenicity determinants,
genes and plasmids, respectively, within the genome. ISsaga: Semi-Automatic Insertion Sequences Annotation.

O20 D2

MLST ST22 (CC22) ST105 (CC5)

SCCmec SCCmec type IV(2B) SCCmec type II(2A)

spa typing t6966 t535

agr typing agr IV agr II

Antimicrobial resistance genes erm(C), blaZ, mecA
gyrA (S85P)

erm(A)-type, aadD-type, ant(9)-Ia, blaZ, mecA-type
gyrA (S84L), grlA (S80Y), grlA (E84G)

Virulence

Adherence bbp, ebp, eno, fnbA, icaACDR, srtB bbp, ebp, eno, fnbA, icaABCDR, sdrE, srtB

Exoenzymes adsA, aur, chp, geh, lip, sak, sspABC adsA, aur, chp, geh, lip, sak, sspABC

Host Immune Evasion cap8, sbi, scn cap8A, sbi, scn

Iron uptake and metabolism isdABCDEFG isdABCDEFG

Toxins and secretion machinery cidA, esaAB, essAB, esxA, hlb, hld, hlgABC, hly/hla, hysA,
pvl, sec, seg, sei, sel, sem, sen, seo

cidA, esaABDEG1G9, essABC, esxABCD, hlb, hld,
hlgABC, hly/hla, hysA, lukD, pvl, sed

Plasmid type repL (rep10) repA_N (rep20), rep1-type (rep22)

Pathogen (Probability of being a human
pathogen) 97.8% 98.3%

ISsaga

15 ORFs related to IS(s) were found in these replicons:
5 Putative complete ORFs

6 Putative partial ORFs
4 Uncategorized ORFs

11 ORFs related to IS(s) were found in these replicons:
4 Putative complete ORFs

5 Putative partial ORFs
2 Uncategorized ORFs

The total number of determinants matching pathogenic families, which, according to
PathogenFinder, includes, for instance, virulence factors, antibiotic resistance genes and
mobile genetic elements, showed 97.8% and 98.3% certainty that both O20 and D2 strains
were human pathogens, confirming the pathogenicity of these isolates.

The bioinformatics analysis of the genetic relatedness was carried out regarding
multilocus sequence typing (MLST), protein A gene (spa), accessory gene regulator (agr;
which encodes for the two divergent transcripts RNAII and RNAIII) and staphylococcal
cassette chromosome mec (SCCmec) typing. These two strains had completely different
typing results. D2 was ascribed to ST105, SCCmec type II, spa-type t535 and agr II while the
O20 isolate belonged to ST22, SCCmec type IV, spa-type t6966 and agr type IV. Studies have
reported a relation between the biofilm-forming capacity of S. aureus and the molecular
typing, showing that strains belonging to certain clonal lineages may have greater or lesser
capacity to form biofilms [26,27].

2.4. Biofilm-Related Genes

Since the variation of only one or two biofilm-related genes may induce more or less
biofilm production, we studied the prevalence of 13 genes involved in biofilm production,
icaA, icaB, icaC, icaD, fnbA, fnbB, clfA, clfB, cna, eno, ebpS, fib and bbp, performed by PCR. As
shown in Figure 3, the most prevalent genes were the ica genes, followed by eno, detected
among the isolates recovered from all types of infections. icaA (85%, 77.4% and 53.7% in
bacteremia, diabetic foot and osteomyelitis isolates, respectively) and icaD (89.1%, 74.1%
and 59.6 5 in bacteremia, diabetic foot and osteomyelitis isolates, respectively) were more
prevalent than icaB (73%, 64.1%, 44.5% in bacteremia, diabetic foot and osteomyelitis
isolates, respectively) or icaC (75.5%, 68% and 47.8% in bacteremia, diabetic foot and
osteomyelitis isolates, respectively) in all strains. The fnbB gene was less frequently detected
than fnbA, which had a prevalence similar to icaB and icaC. Unlike osteomyelitis strains,
which had a higher prevalence of clfA than clfB, the clfB gene was more prevalent in strains
from bacteremia and diabetic foot ulcers than clfA. The eno gene had also high frequencies
among the isolates, being slightly more prevalent in diabetic foot isolates. The prevalence
of bbp was almost identical in isolates from the three types of infections and it was the least
frequent gene detected among the isolates. The ebps and fib genes were more prevalent in
isolates from bacteriemia, followed by diabetic foot infections and osteomyelitis. Finally,
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the cna gene was detected in around 70% of bacteremia isolates, followed by 55% of diabetic
foot infections and 22% of osteomyelitis isolates.
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There is a significant difference of the total content of biofilm-related genes when
comparing the total amount of biofilm-related genes within each type of infection (data
not shown). The prevalence of biofilm-related genes in bacteremia isolates is statisti-
cally different from isolates of diabetic foot (p < 0.05), and the prevalence of these genes
in bacteremia and diabetic foot isolates is also statistically different from osteomyelitis
isolates (p < 0.001).

2.5. Antimicrobial Susceptibility of 24-h-Old Biofilms

In order to investigate the capacity of conventional antibiotics to reduce pre-established
24-h-old biofilms, the 18 strains (6 of each type of infection) analyzed by CSLM were used.
The microtiter biofilm assay was used to determine the capacity of antibiotics to reduce the
biofilm biomass. Results were normalized according to the 48-h-old biofilm mass recorded
for each strain tested, which were grown without antimicrobial agents. After obtaining
24-h-old biofilms, the medium was replaced by fresh medium with the antibiotic. As shown
in Figure 4, strains S1, S8, D7 and D26 had a significant decrease in biofilm mass when
treated with erythromycin. On the contrary, in strain D2, there was a significant increase
in biomass when treated with erythromycin (p < 0.05). Regarding the strains treated with
ciprofloxacin, there was a significant decrease in biofilm mass in strains S1, S8 and D26 and a
significant increase in strains S10 and D7. Strains S1, S8, S10, D5 and D26 suffered a significant
biomass decrease when treated with tetracycline. Nevertheless, it seems that the phenotypic
antimicrobial resistance does not influence the effect of antibiotics in biomass reduction since
in both strains, S1 and D26, the biomass was reduced significatively with all antibiotics and
these strains had resistance to ciprofloxacin and to the three antibiotics, respectively.
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significance was determined using one-way analysis of variance (one-way ANOVA) followed by Tukey’s multiple comparison
test. Significant differences are described with * p < 0.05; ** p < 0.005. (S = bacteremia, D = diabetic foot, O = osteomyelitis).

2.6. Effect of Antibiotics on Metabolic Activity

The XTT assay was used to evaluate the biofilms’ metabolic activity after exposure to
antibiotics. The effects of the different antibiotics on the metabolic activity of biofilms are
summarized in Figure 5. The results were normalized according to the 48-h-old biofilm of
each tested strain (which were grown without antimicrobial agents). Overall, it seems that
there is not much difference between biofilms exposed and not exposed to antibiotics. In fact,



Pathogens 2021, 10, 970 9 of 19

there was an increase in the metabolic activity of the D15 strain when treated with tetracycline
(p < 0.05) and of strains D26 (p < 0.05) and O11 (p < 0.005) when treated with ciprofloxacin.

Pathogens 2021, 10, x FOR PEER REVIEW 9 of 19 
 

 

tetracycline (p < 0.05) and of strains D26 (p < 0.05) and O11 (p < 0.005) when treated with 
ciprofloxacin. 

 
Figure 5. Metabolic activity of MRSA biofilms before and after exposure to antibiotics. The results are expressed as per-
centage of metabolic activity. The results were normalized according to the 48-h-old biofilm of each tested strain. Statistical 
significance was determined using one-way analysis of variance (one-way ANOVA) followed by Tukey’s multiple com-
parison test. Significant differences are described with * p < 0.05; *** p < 0.001. ERY: erythromycin, CIP: ciprofloxacin, TET: 
tetracycline. 

3. Discussion 
The biofilm-forming capacity of bacterial strains is a trait highly associated with bac-

terial persistence and virulence [26]. Furthermore, chronic bacterial infections are linked 
to the formation of biofilms [26]. Biofilm-producing capacity is closely related to clinical 
S. aureus strains, genetic lineages, multidrug-resistance profiles and highly virulent strains 
[26]. As far as we are aware, no data exist regarding MRSA and biofilm association with 
strains isolated in Portugal. Herein, we characterize the biofilm formation ability of sev-
eral MRSA Portuguese isolates obtained from bacteremia episodes, skin wounds (diabetic 
foot) and osteomyelitis. 

All MRSA strains had the ability to adhere to the microplate and form biofilms (Fig-
ure 1). MRSA from bacteremia and diabetic foot produced more biofilm biomass than 
strains from osteomyelitis. Other studies had similar results, with isolates from blood pro-
ducing more biofilm mass than isolates from other infections, such as skin lesions, urinary 
tract infections and sputum [14,28]. However, there are some contradictory results since 
it was also shown that some MRSA blood isolates display low-level biofilm formation 
[26,29]. This may be due to the fact that biofilm formation capacity is also influenced by 
other factors, such as the virulence genes carried by MRSA strains and the clonal lineages 
[30,31]. The biofilm-forming ability of strains from bacteremia and diabetic foot ulcers had 
similar results and the difference was not statistically significant. Isolates from the skin 
have proven to have a high ability to form biofilms, which may be due to the fact that the 
biofilm’s mode of growth may increase protection against topical antimicrobial agents 
routinely used in skin wounds [29]. The presence of MRSA strains with a high capacity to 
form biofilms in blood is a concern since MRSA may colonize other sites and generate 
secondary infections, such as infective endocarditis, septic arthritis and osteomyelitis [32].  

In our study, 18 strains (6 from each type of infection) were carefully selected based 
on their antimicrobial resistance profiles and biofilm-forming capacity to perform the 

Figure 5. Metabolic activity of MRSA biofilms before and after exposure to antibiotics. The results are expressed as
percentage of metabolic activity. The results were normalized according to the 48-h-old biofilm of each tested strain.
Statistical significance was determined using one-way analysis of variance (one-way ANOVA) followed by Tukey’s multiple
comparison test. Significant differences are described with * p < 0.05; *** p < 0.001. ERY: erythromycin, CIP: ciprofloxacin,
TET: tetracycline.

3. Discussion

The biofilm-forming capacity of bacterial strains is a trait highly associated with
bacterial persistence and virulence [26]. Furthermore, chronic bacterial infections are
linked to the formation of biofilms [26]. Biofilm-producing capacity is closely related to
clinical S. aureus strains, genetic lineages, multidrug-resistance profiles and highly virulent
strains [26]. As far as we are aware, no data exist regarding MRSA and biofilm association
with strains isolated in Portugal. Herein, we characterize the biofilm formation ability
of several MRSA Portuguese isolates obtained from bacteremia episodes, skin wounds
(diabetic foot) and osteomyelitis.

All MRSA strains had the ability to adhere to the microplate and form biofilms
(Figure 1). MRSA from bacteremia and diabetic foot produced more biofilm biomass
than strains from osteomyelitis. Other studies had similar results, with isolates from
blood producing more biofilm mass than isolates from other infections, such as skin
lesions, urinary tract infections and sputum [14,28]. However, there are some contradictory
results since it was also shown that some MRSA blood isolates display low-level biofilm
formation [26,29]. This may be due to the fact that biofilm formation capacity is also
influenced by other factors, such as the virulence genes carried by MRSA strains and
the clonal lineages [30,31]. The biofilm-forming ability of strains from bacteremia and
diabetic foot ulcers had similar results and the difference was not statistically significant.
Isolates from the skin have proven to have a high ability to form biofilms, which may be
due to the fact that the biofilm’s mode of growth may increase protection against topical
antimicrobial agents routinely used in skin wounds [29]. The presence of MRSA strains
with a high capacity to form biofilms in blood is a concern since MRSA may colonize other
sites and generate secondary infections, such as infective endocarditis, septic arthritis and
osteomyelitis [32].
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In our study, 18 strains (6 from each type of infection) were carefully selected based
on their antimicrobial resistance profiles and biofilm-forming capacity to perform the
CLSM analysis (Figure 2). After the visualization of the biofilms with CLSM, it was shown
that the selected strains were able to form compact biofilms on polystyrene after 24 h of
incubation, as reported in other studies [5,31]. However, as expected, and in accordance
with the biofilm-forming capacity results, strains recovered from osteomyelitis produced
less clusters than strains from the other two types of infection.

It has been shown that biofilm formation is a dynamic process influenced by biofilm-
related genes and regulatory reactions [33]. Therefore, WGS of the most biomass-producing
strain (D2) and the strain that produced the least biomass (O20) was performed in order
to verify the differences related to virulence factors and biofilm genes (Table 2). Overall,
both strains harbored almost the same genes and similar pathogenicity-related genes.
Nevertheless, novel genes present only in one strain, particularly the strong biofilm-
producing strain, could contribute to the difference in biofilm-forming capability. The large
difference in biofilm production between strains D2 and O20 may be related to the fact that
the sdrE and icaB genes were exclusively identified in the D2 strain. SdrE is a surface protein
that belongs to the Sdr protein subfamily, and it is known to be essential for biofilm growth
via homophilic interaction between the N2 subdomains likely occurring on neighboring
bacteria [34,35]. The IcaB protein is encoded by the icaB of the icaADBC operon. This
protein is the deacetylase responsible for the deacetylation of poly-N-acetylglucosamine,
which is essential for biofilm formation [28,36]. The absence of IcaB may be responsible for
the weak biofilm production since this leads to the synthesis of poly-N-acetylglucosamine
with deacetylation, which is less efficient in binding to the bacterial cell surface, leading to
a reduction in biofilm formation [28,36].

We studied the prevalence of 12 genes involved in biofilm production. The most
frequently detected genes were icaA, icaD, fnbA and eno (Figure 3). icaA and icaD are
necessary factors for intercellular adhesion and forming a bacterial multilayer in biofilm
production and are associated with both slime and biofilm formation in S. aureus [22].
Strains from osteomyelitis carried less biofilm-related genes when compared to strains
from bacteremia and diabetic foot infections. Biofilm formation is highly associated with
the expression of ica genes and a study has shown that ica-positive MRSA biofilms create
thicker biofilms with a more compact architecture than ica-negative isolates using CLSM
analysis, which is accordance with our results [37]. Other studies had ica genes frequencies
in clinical MRSA isolates similar to ours [26,38]. In all of our isolates, the fnbB gene was
less frequently detected than fnbA. Cha et al. (2013) reported the fnbB gene as the least
predominant in biofilm-producing strains isolated from blood [26]. fnbA and fnbB encode
for two adhesins, FnbA and FnbB, which are very relevant for the virulence action of
MRSA strains in human hosts. Both adhesins play a significant role in tissue colonization
in osteomyelitis and septic arthritis, and in dwelling medical devices, which may explain
the higher frequency of the fnbB gene in osteomyelitis isolates [39].

clfA is the major staphylococcal fibrinogen-binding protein and it was also more frequent
in osteomyelitis isolates [18]. In accordance with our results, a study conducted by Yu
et al. examined the biofilm formation capacity and the prevalence of biofilm-related genes
of 137 orthopedic S. aureus isolates and also reported a high prevalence of this gene in S.
aureus isolates [40]. Wang et al. reported that ClfA impairs orthopedic implant-associated
hematogenous S. aureus infection in a mouse model and that neutralizing antibodies against
ClfA inhibited S. aureus biofilm formation [41]. On the contrary, the clfB gene was more
prevalent in strains from bacteremia and diabetic foot ulcers than clfA. The clumping factor
B (ClfB) was identified as a major determinant of nasal colonization [42]. Nevertheless,
Wang et al. showed that both clfA and clfB were present in all isolates recovered from
bone/joint infections, skin/soft tissue infections and catheter-related bacteremia [43].

The prevalence of the eno gene is in accordance with Szczuka et al., who found a higher
prevalence of the eno gene in isolates from wounds than in isolates from bacteremia [37].
Regarding the bbp gene, similarly to our results, other studies have reported an absence
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or a low prevalence of the bbp gene in S. aureus isolates [18,44]. In our study, the ebps and
fib genes were more prevalent in isolates from bacteremia. ebps was the most prevalent
in the study by Bride et al., conducted with S. aureus strains isolated from healthcare-
associated infections from various sources including blood [45]. Regarding the fib gene,
other studies conducted with MRSA and S. aureus strains isolated from blood and wounds
had a higher prevalence of this gene when compared to our study [46,47]. Nevertheless,
a study conducted in MRSA from burn patients reported a prevalence of fib similar to
ours [48]. Finally, cna was detected in most of the bacteremia isolates, followed by diabetic
foot infections. Yu et al. studied the prevalence of several virulence genes, including
biofilm-related genes, in S. aureus isolated from bloodstream infections and reported a
lower prevalence (50.6%) of cna [49]. In contrast, G haznavi-Rad et al. reported a cna
prevalence of 98.7% in S. aureus isolated from clinical samples.

It has been shown that bacteria within biofilms are up to 1000-fold more resistant
to antibiotics than planktonic bacteria [50]. The 18 strains (6 from each type of infection)
selected for CLSM analysis were also used to assess the antimicrobial susceptibility of
biofilms and to perform the XTT assay. Several studies have been conducted regarding
the MBIC of conventional antibiotics [51–54]. However, MBIC concentrations are often
several fold higher than the peak serum concentration, and as such, these studies do not
provide results applicable in the in vivo situation. To assess biofilm tolerance to clinically
relevant antibiotics, 24 h-old biofilms from the selected isolates were exposed erythromycin,
ciprofloxacin and tetracycline (Figure 4). Although strains S8 and D26 were resistant to
erythromycin, there was a significant decrease in biofilm biomass when treated with this
antibiotic. Studies have shown a positive effect of macrolides on the reduction in biofilm
mass [55,56]. Furthermore, a study by Mottola et al. reported that the minimum biofilm
inhibitory concentration (MBIC) for erythromycin against S. aureus recovered from diabetic
foot ulcers increased around four times in comparison with the values for the minimum
inhibitory concentration (MIC), from 0.12 –>256 µg/mL to 0.5 – >256 µg/mL [51]. Parra-
Ruiz et al. (2012) showed that low levels of macrolides can inhibit the biofilm formation
process of S. aureus [56]. In contrast, another study demonstrated that erythromycin can
stimulate the expression of ica genes, leading to an increase in biofilm formation [57].

Ciprofloxacin led to a reduction in the biofilm on a smaller number of isolates, which
might be explained by the fact that 13 out of 18 isolates showed phenotypic resistance
to ciprofloxacin when tested by the Kirby–Bauer disc diffusion method, as reported else-
where [1,23–25]. The ciprofloxacin concentration used in our study was 10 mg/L, which
corresponds to the peak serum concentration. Studies have reported that the MBIC of
ciprofloxacin for S. aureus, either resistant or susceptible to ciprofloxacin, varies from 4
to 128 mg/L [52,58]. Only three isolates were resistant to tetracycline, yet this antibiotic
had a positive effect on the reduction of biofilm mass in five isolates. Indeed, it has been
shown that the tetracycline group of antibiotics is quite effective in eradicating MRSA
biofilms [53]. Furthermore, other studies on S. epidermidis biofilms demonstrated that
antibiotics that target protein or RNA syntheses have higher efficiency than antibiotics
that target cell wall synthesis, and this has been associated with the lower growth rate
of cells within biofilms [17,59–61]. Studies have reported that tetracycline suppresses the
localization of the autolysin Atl, which plays an important role in the initial attachment
of the biofilm [62,63]. Although MRSA strains from osteomyelitis presented the lowest
biofilm formation, they were also the most resistant to the action of antibiotics on the
24-h-old biofilms.

The crystal violet (CV) assay stains all cells and quantifies the matrix of both living
and dead cells [33]. Therefore, after exposure to antibiotics, the metabolic activity of biofilm
cells was evaluated using the XTT assay. Overall, none of the antibiotics used were able
to significantly reduce the metabolic activity of the strains (Figure 5). In contrast, the
metabolic activity was not significantly increased in 3 out of 18 strains. Although the
XTT method has the advantage of being a fast assay, it also has some limitations, one of
them being the low sensitivity [54]. In one study, the treatment of pre-established biofilms
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with chloramphenicol alone or together with antimicrobial peptides did not produce a
substantial change in biofilm viability after 24 h of treatment [64]. Another study using
natural products against S. aureus biofilms did not show a reduction or showed a small
reduction in the metabolic activity after 24 h of exposure for some natural products [65].

In our study, strain D26 presented a decrease in biofilm biomass and an increase in
the metabolic activity after 24 h of exposure to antibiotics. Indeed, it is not possible to
determine whether there are actually more living cells or if the cells are increasing their
metabolism in an attempt to resist the external pressure caused by antibiotics. Another
possible explanation is that the strains might have been at the proliferative stage, with a
lesser extracellular matrix. Xu et al. (2016) compared the CV and XTT assays on S. aureus
biofilm quantification and reported that some strains seemed to be strong biofilm producers
according to the CV results, but these strains were found to have weaker metabolic activity
than strains that produced less biofilm and vice versa [33].

4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions

In this study, 83 clinical MRSA strains recovered from bacteremia episodes (n = 13),
osteomyelitis (n = 42) and diabetic foot ulcers (n = 28) were used. These strains have
been previously characterized regarding the antimicrobial resistance, virulence and genetic
lineages [1,23–25]. The isolates were obtained under the approval of the Ethics Committee of
the University of Trás-os-Montes and Alto Douro (CE-UTAD), Vila Real, Portugal. S. aureus
ATCC® 25923 (clinical isolate) was used as a positive control due to its excellent biofilm
formation capacity. The isolates were cryopreserved at −80 ◦C in Tryptic Soy Broth solution
(TSB; Liofilchem, Teramo, Italy) with 30% (v/v) glycerol (Panreac, Barcelona, Spain).

4.2. Biofilm Formation Assay

The biofilm formation assay was performed as previously described by Oniciuc et al.
(2016), with some modifications [66]. Briefly, a few colonies were transferred from fresh
cultures to 10 mL volume Erlenmeyer flasks with 2.5 mL of TSB and incubated at 37 ◦C
for 16 ± 1 h with continuous shaking at 120 rpm (ES-20 Shaker-Incubator, BioSan, Riga,
Latvia). The bacterial suspension was adjusted to an optical density of 0.25 ± 0.05 at OD640
nm, corresponding to a concentration of 2 × 108 colony-forming units (Biochrom; EZ Read
800 Plus). Then, 198 µL of TSB supplemented with 3% (w/v) NaCl and 2 µL of bacterial
suspension of different isolates was added to each well of a 96-well flat-bottom microplate
(Orange Scientific, Braine-l’Alleud, Belgium). S. aureus ATCC® 25923 was included in
all plates as a positive control. Fresh medium without bacterial inoculum was used as a
negative control. The plates were incubated at 37 ◦C for 24 h. All experiments had seven
technical replicates and were performed in triplicate.

Biofilm Biomass Quantification

Biofilm biomass was quantified using the CV staining method as previously described
by Peeters et al. (2008), with some modifications [67]. After incubation, the bacterial cells in
suspension were removed and the plates were washed twice with 200 µL of distilled water.
The plates were then allowed to dry at room temperature for 2 h. Then, 100 µL of methanol
(Fisher Scientific, Leicestershire, UK) was added to each well and incubated for 15 min to
fix the biofilm. Methanol was removed, the plates were allowed to dry at room temperature
for 10 min, and 100 µL of CV at 1% (v/v) (Acros Organics, NJ, USA) was added to each
well. After 5 min, the CV solution was removed, and the excess dye was removed by
washing the plates twice with 200 µL of distilled water. Then, 100 µL 33% (v/v) of acetic
acid (Fisher Scientific) was added to solubilize the CV and the absorbance was measured at
595 nm using a microplate reader (Biochrom, EZ Read 800 Plus, Cambridge, UK). In order
to standardize the results, the biofilm formation of each isolate was normalized according
to the positive control strain, S. aureus ATCC® 25923.
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4.3. CLSM Analysis

Eighteen strains (6 of each type of infection) representative of the bacterial collection
were used. This particular set of strains was chosen according to their biofilm-forming
capacity and susceptibility to the tested antibiotics (Table 3): strains D5, D6 and O26 were
sensitive to eryhtromycin, ciprofloxacin and tetracycline; strains S1, S7, S12, D7, O11 and
O39 were resistant to ciprofloxacin; strains S6, S8, S10, D2, D15, O20 and O25 had resistance
to both erythromycin and ciprofloxacin; strain D26 was resistant to the three antibiotics;
and strain O19 showed resistance to both erythromycin and tetracycline [1,23–25]. Biofilm
formation was performed as described in Section 2.2., but using 24-well plates (Orange
Scientific, Braine-l’Alleud, Belgium). A 13 mm diameter sterile plastic coverslip (Nunc®

Thermomanox® Plastic Coverslips, New York, NY, USA) was placed at the bottom of each
well. Ten microliters of bacterial suspension was added to 990 µL of TSB with 3% NaCl and
incubated at 37 ◦C for 24 h [68]. Then, culture medium was removed, and the biofilms were
washed with 1 mL of 0.9% (w/v) NaCl solution. The plastic coverslips were transferred to
microscopic slides and stained. All staining procedures were performed in the dark and
according to the manufacturer’s instructions. A fluorescent probe of wheat germ agglutinin
conjugated to WGA-TRITC (Invitrogen, Carlsbad, CA, USA) and DAPI fluorescent nuclear
probe (Sigma-Aldrich, Saint Louis, MO, USA) were used to allow the staining of residues of
N-acetyl-D-glucosamine (GlcNAc) and to allow visualization of the cells, respectively [69].
One hundred microliters of WGA-TRITC at a concentration of 10 µg/mL was added to
each surface and incubated for 10 min. After incubation, the excess dye was removed and
100 µL of DAPI at a concentration of 100 µg/mL was added. After 5 min of incubation,
the excess dye was removed. The fluorescence of the WGA-TRITC was detected using a
laser with an excitation wavelength of 559 nm and an emission filter of 505–605 nm. DAPI
fluorescence was detected using a laser with an excitation wavelength of 405 nm and an
emission filter of 430–470 nm. Stained biofilms were visualized using the CLSM Olympus
FluoView FV1000 (Olympus, Lisbon, Portugal) with a 10× objective and a 2× electronic
magnification. Images of different regions of each surface were acquired with a resolution
of 640 × 640 pixels. Two technical replicates were used to select representative images.

Table 3. Biofilm-forming capacity and susceptibility to the tested antibiotics of the 18 selected strains.

Strain % of Biofilm Formation Phenotypic Antimicrobial Resistance

S1 67.7% CIP
S6 99.2% ERY, CIP
S7 69.8% CIP
S8 64.7% ERY CIP
S10 82.6% ERY, CIP
S12 78.9% CIP
D2 105.1% ERY, CIP
D5 94.3% Susceptible
D6 73% Susceptible
D7 65.2% CIP

D15 84.8% ERY, CIP
D26 76.4% ERY, CIP, TET
O11 37.4% CIP
O19 51.6% ERY, TET
O20 31.9% ERY, CIP, TET
O25 56.9% ERY, CIP
O26 60.8% Susceptible
O39 66.5% CIP

4.4. WGS
4.4.1. Genomic DNA Preparation and WGS

Two strains were selected according to their biofilm production capacity, the most
productive and the least productive (O20 and D2), to perform the WGS. Genomic DNA of
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O20 and D2 strains was extracted using the MagNa Pure 96 Instrument (Roche, Germany),
and DNA quantification was performed by Qubit Fluorometric Quantitation (Life Tech-
nologies, Carlsbad, CA, USA), according to the manufacturer’s instructions. Libraries were
prepared from 1 ng of genomic DNA using the Nextera XT DNA Sample Preparation Kit
(Illumina, San Diego, CA, USA), according to the manufacturer’s instructions. WGS was
performed using 150 bp paired-end reads on a MiSeq (Illumina, San Diego, CA, USA).

4.4.2. Genome Assembly and Annotation

Sequence reads were trimmed and filtered according to quality criteria, and assembled
de novo using CLC genomics workbench version 10.0.1 (QIAGEN Aarhus, Denmark). The
generated contigs were submitted for annotation in Prokka v.1.12 [70].

4.4.3. Genomic Analysis

Downstream bioinformatic analyses were performed by means of online tools and databases
available at the Center for Genomic Epidemiology (CGE) (www.genomicepidemiology.org,
accessed on 15 January 2021) to investigate the presence of antimicrobial resistance genes
(ResFinder 4.1, https://cge.cbs.dtu.dk/services, accessed on 15 January 2021), plasmids (Plas-
midFinder 2.1) and pathogenicity determinants (PathogenFinder 1.1). In silico MLST was
performed using MLST v.2, spa typing was predicted using spaTyper 1.0, and SCCmec ele-
ments were identified in sequenced S. aureus isolates by SCCmecFinder 1.2. All analyses were
performed using default parameters.

For virulence factor identification, the S. aureus genomes were interrogated for a
pool of genes, including those reported for staphylococci (VirulenceFinder database), and
determined using a database built for this study with CLC genomics workbench 10.01 tools
(QIAGEN Aarhus, Denmark).

4.4.4. Data Availability

The S. aureus O20 and S. aureus D2 whole-genome shotgun (WGS) projects have
been deposited at DDBJ/ENA/GenBank under the accession numbers JAHUTU000000000
(sequences JAHUTU010000001–JAHUTU010000273) and JAHUTV000000000 (sequences
JAHUTV010000001–JAHUTV010000212), respectively.

4.5. Biofilm-Related Genes

DNA was extracted from fresh cultures as previously described [18]. Detection of 13
biofilm-related genes including, icaA, icaB, icaC, icaD (intercellular adhesion gene A, B, C
and D, respectively), fnbA and fnbB (encoding fibronectin-binding protein A and B), clfA
and clfB (encoding clumping factors A and B), cna (encoding collagen-binding protein), eno
(encoding laminin-binding protein), ebpS (encoding elastin-binding protein), fib (encoding
fibrinogen-binding protein) and bbp (encoding bone sialoprotein-binding protein) was
performed by PCR using specific primers and conditions previously described [71].

4.6. Effect of Antibiotics on 24-h-Old Biofilm Biomass

The 18 strains analyzed by CSLM were used in this experiment. Biofilm formation
was carried out as described above. After obtaining 24-h-old biofilms, the medium was
removed carefully, and the culture medium was replaced by 200 µL of TSB solution with
erythromycin (Sigma-Aldrich, Saint Louis, MO, USA), ciprofloxacin (Sigma-Aldrich, Saint
Louis, MO, USA) or tetracycline (Sigma-Aldrich, Saint Louis, MO, USA) and incubated at
37 ◦C for 24 h without shaking. The concentrations used for each antibiotic correspond to
the peak serum concentration, with 10.0 mg/L for erythromycin, 4.5 mg/L for ciprofloxacin
and 16.0 mg/L for tetracycline [72–74]. After incubation with antimicrobial agents, biofilm
biomass was quantified using the CV staining method as described in Section 4.2. All
experiments had seven technical replicates and were performed in triplicate.

www.genomicepidemiology.org
https://cge.cbs.dtu.dk/services
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Effect of Antibiotics on Metabolic Activity

To determine the effect of antimicrobial agents on metabolic activity, after the incu-
bation period with antimicrobial agents, biofilms were quantified using the XTT colori-
metric method, as previously described by Logu et al. [75]. Biofilms were washed with
200 µL of 0.9% (w/v) NaCl solution and 200 µL of a solution containing 250 µg/mL of
XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) (Panreac
Applichem, Barcelona, Spain) and 25 µg of phenazine methosulfate (MSF) (Acros Organics,
Geel, Belgium) were added. The plates were incubated in the dark for 3 h at 37 ◦C and,
after incubation, 150 µL of the solution from each well was transferred to 1.5 mL Eppendorf
tubes and centrifuged for 5 min at 10,000 rpm. Then, 100 µL of supernatant was collected,
transferred to a new microtiter plate, and 100 µL of sterile ultrapure water was added
to each well. Absorbance was measured at 490 nm. All experiments were performed in
triplicate with two technical replicates.

4.7. Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics for Mac, Version 26.0.
(IBM Corp., Armonk, New York, NY, USA) and GraphPad Prism Version 8.0.2. (GraphPAD
Software Inc., San Diego, CA, USA) to compare the biofilm formation capacity of clinical
isolates from different infections. Results were expressed as mean values and standard
deviation. The level of significance was determined using one-way ANOVA with Tukey’s
multiple comparison test. p ≤ 0.05 was considered significant.

5. Conclusions

Our results indicate that MRSA strains, independently of the type of infection, are
biofilm producers. Interestingly, strains from osteomyelitis had a lower biofilm forma-
tion capacity and lower prevalence of antimicrobial resistance genes than MRSA from
bacteremia and diabetic foot ulcers, at least under our tested conditions. ica genes were
the most frequently detected genes among all isolates, demonstrated to be significant in
biofilm formation. Furthermore, we also showed that the difference in the presence of just
one biofilm-related gene may promote higher or lower biofilm formation. Understanding
the ability of MRSA strains from different types of infections to form biofilms and the
mechanisms underlying biofilm production is the first step towards a possible solution for
biofilm-related infections.
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37. Szczuka, E.; Urbańska, K.; Pietryka, M.; Kaznowski, A. Biofilm density and detection of biofilm-producing genes in methicillin-
resistant Staphylococcus aureus strains. Folia Microbiol. 2013, 58, 47–52. [CrossRef]

38. Mahdavi, F.S.; Izadi Amoli, R.; Oskooeian, R. Molecular Identification of icaA, icaB, icaC and icaD Genes in Staphylococcus aureus
Clinical Isolates Resistant to Methicillin. Alborz Univ. Med. J. 2019, 8, 245–252. [CrossRef]

39. Arciola, C.R.; Campoccia, D.; Gamberini, S.; Baldassarri, L.; Montanaro, L. Prevalence of cna fnbA and fnbB adhesin genes among
Staphylococcus aureus isolates from orthopedic infections associated to different types of implant. FEMS Microbiol. Lett. 2005,
246, 81–86. [CrossRef]

40. Yu, S.; Jiang, B.; Jia, C.; Wu, H.; Shen, J.; Hu, X.; Xie, Z. Investigation of biofilm production and its association with genetic and
phenotypic characteristics of OM (osteomyelitis) and non-OM orthopedic Staphylococcus aureus. Ann. Clin. Microbiol. Antimicrob.
2020, 19, 1–9. [CrossRef]

41. Wang, Y.; Cheng, L.I.; Helfer, D.R.; Ashbaugh, A.G.; Miller, R.J.; Tzomides, A.J.; Thompson, J.M.; Ortines, R.V.; Tsai, A.S.; Liu, H.
Mouse model of hematogenous implant-related Staphylococcus aureus biofilm infection reveals therapeutic targets. Proc. Natl.
Acad. Sci. USA 2017, 114, E5094–E5102. [PubMed]

42. Wertheim, H.F.L.; Walsh, E.; Choudhurry, R.; Melles, D.C.; Boelens, H.A.M.; Miajlovic, H.; Verbrugh, H.A.; Foster, T.; van Belkum,
A. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med. 2008, 5, e17. [CrossRef]
[PubMed]

43. Wang, F.-D.; Wu, P.-F.; Chen, S.-J. Distribution of virulence genes in bacteremic methicillin-resistant Staphylococcus aureus isolates
from various sources. J. Microbiol. Immunol. Infect. 2019, 52, 426–432. [CrossRef]

44. Egea, A.L.; Gagetti, P.; Lamberghini, R.; Faccone, D.; Lucero, C.; Vindel, A.; Tosoroni, D.; Garnero, A.; Saka, H.A.; Galas, M.;
et al. New patterns of methicillin-resistant Staphylococcus aureus (MRSA) clones, community-associated MRSA genotypes behave
like healthcare-associated MRSA genotypes within hospitals, Argentina. Int. J. Med. Microbiol. 2014, 304, 1086–1099. [CrossRef]
[PubMed]

45. Bride, L.D.L.; Pereira, M.F.; Barbosa, M.C.; Silva, N.C.; Klein, N.M.; Nascimento, T.C.; Schuenck, R.P. Differences in resistance
profiles and virulence genes among methicillin-resistant and methicillin-susceptible Staphylococcus aureus of different lineages at a
public tertiary hospital. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190095. [CrossRef] [PubMed]

46. Sedaghat, H.; Esfahani, B.N.; Halaji, M.; Jazi, A.S.; Mobasherizadeh, S.; Havaei, S.R.; Emaneini, M.; Havaei, S.A. Genetic diversity
of Staphylococcus aureus strains from a teaching hospital in Isfahan, Iran: The emergence of MRSA ST639- SCCmec III and ST343-
SCCmec III. Iran. J. Microbiol. 2018, 10, 82–89. [PubMed]

47. Ghasemian, A.; Najar Peerayeh, S.; Bakhshi, B.; Mirzaee, M. Comparison of Biofilm Formation between Methicillin-Resistant and
Methicillin-Susceptible Isolates of Staphylococcus aureus. Iran. Biomed. J. 2016, 20, 175–181. [PubMed]

http://doi.org/10.1016/j.jgar.2019.05.017
http://www.ncbi.nlm.nih.gov/pubmed/31125626
http://doi.org/10.1016/j.phrp.2013.09.001
http://www.ncbi.nlm.nih.gov/pubmed/24298437
http://doi.org/10.1155/2018/4657396
http://www.ncbi.nlm.nih.gov/pubmed/30687745
http://doi.org/10.1099/jmm.0.2008/000968-0
http://doi.org/10.3389/fmicb.2021.636788
http://doi.org/10.3389/fmicb.2018.03004
http://www.ncbi.nlm.nih.gov/pubmed/30564226
http://doi.org/10.2217/fmb.10.155
http://doi.org/10.1007/s00284-016-1081-1
http://doi.org/10.1111/mmi.12750
http://doi.org/10.1042/BCJ20170085
http://doi.org/10.1074/jbc.M411374200
http://doi.org/10.1007/s12223-012-0175-9
http://doi.org/10.29252/aums.8.3.245
http://doi.org/10.1016/j.femsle.2005.03.035
http://doi.org/10.1186/s12941-020-00352-4
http://www.ncbi.nlm.nih.gov/pubmed/28607050
http://doi.org/10.1371/journal.pmed.0050017
http://www.ncbi.nlm.nih.gov/pubmed/18198942
http://doi.org/10.1016/j.jmii.2019.01.001
http://doi.org/10.1016/j.ijmm.2014.08.002
http://www.ncbi.nlm.nih.gov/pubmed/25240872
http://doi.org/10.1590/0037-8682-0095-2019
http://www.ncbi.nlm.nih.gov/pubmed/31340369
http://www.ncbi.nlm.nih.gov/pubmed/29997747
http://www.ncbi.nlm.nih.gov/pubmed/26948126


Pathogens 2021, 10, 970 18 of 19

48. Motallebi, M.; Jabalameli, F.; Asadollahi, K.; Taherikalani, M.; Emaneini, M. Spreading of genes encoding enterotoxins,
haemolysins, adhesin and biofilm among methicillin resistant Staphylococcus aureus strains with staphylococcal cassette chromo-
some mec type IIIA isolated from burn patients. Microb. Pathog. 2016, 97, 34–37. [CrossRef] [PubMed]

49. Yu, F.; Li, T.; Huang, X.; Xie, J.; Xu, Y.; Tu, J.; Qin, Z.; Parsons, C.; Wang, J.; Hu, L.; et al. Virulence gene profiling and molecular
characterization of hospital-acquired Staphylococcus aureus isolates associated with bloodstream infection. Diagn. Microbiol. Infect.
Dis. 2012, 74, 363–368. [CrossRef] [PubMed]

50. Rogers, S.A.; Huigens, R.W.; Cavanagh, J.; Melander, C. Synergistic Effects between Conventional Antibiotics and 2-
Aminoimidazole-Derived Antibiofilm Agents. Antimicrob. Agents Chemother. 2010, 54, 2112–2118. [CrossRef]

51. Mottola, C.; Matias, C.S.; Mendes, J.J.; Melo-Cristino, J.; Tavares, L.; Cavaco-Silva, P.; Oliveira, M. Susceptibility patterns of
Staphylococcus aureus biofilms in diabetic foot infections. BMC Microbiol. 2016, 16, 1–9. [CrossRef]

52. Reeve, S.M.; Scocchera, E.W.; G-Dayanadan, N.; Keshipeddy, S.; Krucinska, J.; Hajian, B.; Ferreira, J.; Nailor, M.; Aeschlimann,
J.; Wright, D.L.; et al. MRSA Isolates from United States Hospitals Carry dfrG and dfrK Resistance Genes and Succumb to
Propargyl-Linked Antifolates. Cell Chem. Biol. 2016, 23, 1458–1467. [CrossRef]

53. Chopra, S.; Harjai, K.; Chhibber, S. Antibiotic susceptibility of ica -positive and ica -negative MRSA in different phases of biofilm
growth. J. Antibiot. 2015, 68, 15–22. [CrossRef]

54. Kuhn, D.M.; Balkis, M.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Uses and limitations of the XTT assay in studies of
Candida growth and metabolism. J. Clin. Microbiol. 2003, 41, 506–508. [CrossRef]

55. Abreu, A.C.; Saavedra, M.J.; Simões, L.C.; Simões, M. Combinatorial approaches with selected phytochemicals to increase
antibiotic efficacy against Staphylococcus aureus biofilms. Biofouling 2016, 32, 1103–1114. [CrossRef]

56. Parra-Ruiz, J.; Vidaillac, C.; Rybak, M.J. Macrolides and staphylococcal biofilms. Rev. Esp. Quimioter. 2012, 25.
57. Rachid, S.; Ohlsen, K.; Witte, W.; Hacker, J.; Ziebuhr, W. Effect of subinhibitory antibiotic concentrations on polysaccharide

intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 3357–3363.
[CrossRef] [PubMed]

58. Singh, S.; Kalia, N.P.; Joshi, P.; Kumar, A.; Sharma, P.R.; Kumar, A.; Bharate, S.B.; Khan, I.A. Boeravinone B, A Novel Dual
Inhibitor of NorA Bacterial Efflux Pump of Staphylococcus aureus and Human P-Glycoprotein, Reduces the Biofilm Formation
and Intracellular Invasion of Bacteria. Front. Microbiol. 2017, 8, 1868. [CrossRef] [PubMed]

59. Cerca, N.; Martins, S.; Cerca, F.; Jefferson, K.K.; Pier, G.B.; Oliveira, R.; Azeredo, J. Comparative assessment of antibiotic
susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or
rapid XTT colorimetry. J. Antimicrob. Chemother. 2005, 56, 331–336. [CrossRef]

60. Carvalhais, V.; Pérez-Cabezas, B.; Oliveira, C.; Vitorino, R.; Vilanova, M.; Cerca, N. Tetracycline and rifampicin induced a viable
but nonculturable state in Staphylococcus epidermidis biofilms. Future Microbiol. 2017, 13, 27–36. [CrossRef]

61. Gaio, V.; Cerca, N. Cells released from S. epidermidis biofilms present increased antibiotic tolerance to multiple antibiotics. PeerJ
2019, 7, e6884. [CrossRef] [PubMed]

62. Yamada, S.; Sugai, M.; Komatsuzawa, H.; Matsumoto, A. Suppressed localization of a major autolysin on Staphylococcus aureus
treated with tetracycline. J. Electron. Microsc. 2001, 50, 359–364. [CrossRef]

63. Ledala, N.; Wilkinson, B.J.; Jayaswal, R.K. Effects of oxacillin and tetracycline on autolysis, autolysin processing and atl
transcription in Staphylococcus aureus. Int. J. Antimicrob. Agents 2006, 27, 518–524. [CrossRef]

64. Field, D.; O’ Connor, R.; Cotter, P.D.; Ross, R.P.; Hill, C. In Vitro Activities of Nisin and Nisin Derivatives Alone and In
Combination with Antibiotics against Staphylococcus Biofilms. Front. Microbiol. 2016, 7, 508. [CrossRef]

65. Adukwu, E.C.; Allen, S.C.H.; Phillips, C.A. The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus
paradisi) essential oils against five strains of Staphylococcus aureus. J. Appl. Microbiol. 2012, 113, 1217–1227. [CrossRef]

66. Oniciuc, E.-A.; Cerca, N.; Nicolau, A.I. Compositional Analysis of Biofilms Formed by Staphylococcus aureus Isolated from Food
Sources. Front. Microbiol. 2016, 7, 390. [CrossRef]

67. Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter
plates. J. Microbiol. Methods 2008, 72, 157–165. [CrossRef]

68. França, A.; Cerca, N. Plasma is the main regulator of Staphylococcus epidermidis biofilms virulence genes transcription in human
blood. Pathog. Dis. 2016, 74, ftv125. [CrossRef]

69. Jefferson, K.K.; Cerca, N. Bacterial–bacterial cell interactions in biofilms: Detection of polysaccharide intercellular adhesins by
blotting and confocal microscopy. Cell-Cell Interact. 2006, 341, 119–126. [PubMed]

70. Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [CrossRef] [PubMed]
71. Atshan, S.S.; Shamsudin, M.N.; Karunanidhi, A.; van Belkum, A.; Lung, L.T.T.; Sekawi, Z.; Nathan, J.J.; Ling, K.H.; Seng, J.S.C.;

Ali, A.M.; et al. Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus
aureus (MRSA). Infect. Genet. Evol. 2013, 18, 106–112. [CrossRef] [PubMed]

72. Bennett, J.; Dolin, R.; Blaser, M. Basic Principles in the Diagnosis and Management of Infectious Diseases. Princ. Pr. Infect. Dis.
2004, 1, 358–376.

73. Bayer HealthCare Pharmaceuticals Inc. CIPRO (R) (Ciprofloxacin Hydrochloride) Tablets; Bayer Pharmaceuticals Corporation: West
Haven, VT, USA, 2004; pp. 1–31.

74. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow
Aerobically, 5th ed.; Approved Standard M7-A5; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1997.

http://doi.org/10.1016/j.micpath.2016.05.017
http://www.ncbi.nlm.nih.gov/pubmed/27238459
http://doi.org/10.1016/j.diagmicrobio.2012.08.015
http://www.ncbi.nlm.nih.gov/pubmed/23021064
http://doi.org/10.1128/AAC.01418-09
http://doi.org/10.1186/s12866-016-0737-0
http://doi.org/10.1016/j.chembiol.2016.11.007
http://doi.org/10.1038/ja.2014.96
http://doi.org/10.1128/JCM.41.1.506-508.2003
http://doi.org/10.1080/08927014.2016.1232402
http://doi.org/10.1128/AAC.44.12.3357-3363.2000
http://www.ncbi.nlm.nih.gov/pubmed/11083640
http://doi.org/10.3389/fmicb.2017.01868
http://www.ncbi.nlm.nih.gov/pubmed/29046665
http://doi.org/10.1093/jac/dki217
http://doi.org/10.2217/fmb-2017-0107
http://doi.org/10.7717/peerj.6884
http://www.ncbi.nlm.nih.gov/pubmed/31143534
http://doi.org/10.1093/jmicro/50.4.359
http://doi.org/10.1016/j.ijantimicag.2006.03.008
http://doi.org/10.3389/fmicb.2016.00508
http://doi.org/10.1111/j.1365-2672.2012.05418.x
http://doi.org/10.3389/fmicb.2016.00390
http://doi.org/10.1016/j.mimet.2007.11.010
http://doi.org/10.1093/femspd/ftv125
http://www.ncbi.nlm.nih.gov/pubmed/16799194
http://doi.org/10.1093/bioinformatics/btu153
http://www.ncbi.nlm.nih.gov/pubmed/24642063
http://doi.org/10.1016/j.meegid.2013.05.002
http://www.ncbi.nlm.nih.gov/pubmed/23669446


Pathogens 2021, 10, 970 19 of 19

75. De Logu, A.; Pellerano, M.L.; Sanna, A.; Pusceddu, M.C.; Uda, P.; Saddi, B. Comparison of the susceptibility testing of clinical
isolates of Mycobacterium tuberculosis by the XTT colorimetric method and the NCCLS standards method. Int. J. Antimicrob.
Agents 2003, 21, 244–250. [CrossRef]

http://doi.org/10.1016/S0924-8579(02)00350-3

	Introduction 
	Results 
	Biofilm Formation 
	Confocal Scanning Laser Microscopy (CLSM) Analysis 
	WGS 
	Biofilm-Related Genes 
	Antimicrobial Susceptibility of 24-h-Old Biofilms 
	Effect of Antibiotics on Metabolic Activity 

	Discussion 
	Materials and Methods 
	Bacterial Strains and Growth Conditions 
	Biofilm Formation Assay 
	CLSM Analysis 
	WGS 
	Genomic DNA Preparation and WGS 
	Genome Assembly and Annotation 
	Genomic Analysis 
	Data Availability 

	Biofilm-Related Genes 
	Effect of Antibiotics on 24-h-Old Biofilm Biomass 
	Statistical Analysis 

	Conclusions 
	References

