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Abstract

In this paper, we propose an additive time-varying (or partially time-varying)
multivariate model of volatility, where a time-dependent component is added to the
extended vector GARCH process for modelling the dynamics of volatility interac-
tions. In our framework, co-dependence in volatility is allowed to change smoothly
between two extreme states and second-moment interdependence is identified from
these crisis-contingent structural changes. The estimation of the new time-varying
vector GARCH process is simplified using an equation-by-equation estimator for the
volatility equations in the first step, and estimating the correlation matrix in the second
step. A new Lagrange multiplier test is derived for testing the null hypothesis of
constancy co-dependence volatility against a smoothly time-varying interdependence
between financial markets. The test appears to be a useful statistical tool for evaluating
the adequacy of GARCH equations by testing the presence of significant changes in
cross-market volatility transmissions. Monte Carlo simulation experiments show that
the test statistic has satisfactory empirical properties in finite samples. An application
to sovereign bond yield returns illustrates the modelling strategy of the new specification.
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1 Introduction

The class of conditional correlation (CC-)GARCH models of financial time series has become

a standard tool for modelling and forecasting correlations between financial returns. Follow-

ing the constant conditional correlation (CCC-)GARCH model of Bollerslev (1990) many

parametric extensions have been proposed in the literature on building more flexible models

for describing time-varying conditional correlations. The models introduced by Tse and Tsui

(2002) and Engle (2002) with dynamic conditional correlations postulating a GARCH-type

dynamics on the correlations have become particularly popular among practitioners. For

surveys about these and other multivariate GARCH models, see Bauwens et al. (2006) and

Silvennoinen and Teräsvirta (2009).

As a result of financial market connectivity, the analysis of interdependence and inter-

actions in volatility is also useful to earn knowledge on how information is transmitted

across markets. Understanding the transmission mechanism of financial market movements

is important for portfolio risk management and for successful hedging and trading strategies.

A large number of studies have documented evidence of interdependence and linkages across

financial markets or assets. Empirical studies providing evidence for volatility spillovers

include Baillie and Bollerslev (1990), King and Wadhwani (1990), Hamao et al. (1990), Lin

et al. (1994), Cheung and Ng (1996), Forbes and Rigobon (2002), Cifarelli and Paladino

(2005), among others.

Despite the extensive literature investigating co-movements between financial markets,

most of research has been focused on the interdependence in terms of the conditional first

moments of the distribution of returns, and less attention has been devoted to exploring

financial interactions in terms of the second moments. A few examples of the former

include Diebold and Yilmaz (2009) who used vector autoregressive methods for examining

the transmission of financial market movements. Chiang and Wang (2011) proposed an

autoregressive range-based volatility model and employed a smooth transition copula function

to further examine financial volatility contagion between financial stock markets of the G7

countries. Leung et al. (2017) used a linear regression approach to study volatility spillovers

(or interactions) between the GARCH volatilities of equity and exchange rate markets to

equity markets during periods of financial crises. Yet, the findings in Engle and Susmel (1993)
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and Diebold and Yilmaz (2009) suggest that cross-market volatility interactions convey more

insightful information about the dynamics of co-movements across markets than linkages in

returns.

Several specification techniques have been employed in the literature for examining the

dynamics of financial market interdependence, but few attempts to investigating time-varying

volatility transmission mechanism spillovers exist in the literature. An interesting extension

that builds on the assumption of time-invariant correlations in an attempt to capture volatility

spillovers was suggested by Jeantheau (1998) generalizing the diagonal CCC-GARCH model

to the so-called extended (E)CCC-GARCH model wherein dynamic volatility interactions

between markets are allowed in the form of cross-market ARCH and GARCH effects. Yet

recent research found evidence of time-variation and structural shifts in the transmission

mechanisms of shocks to volatility during periods of financial market distress. Examples

documenting time-varying volatility spillovers can be found in Karanasos et al. (2014), Jung

and Maderitsch (2014), Karanasos et al. (2018) and Liu and Gong (2020).

While the class of conditional correlation GARCH models has been extensively employed

for quantifying and examining volatility transmission mechanism spillovers, less attention

has been addressed to the misspecification of the GARCH structure of these models, and the

contribution of this paper lies in that direction. Testing the assumption of constant volatility

spillovers between time series is an important specification tool for building multivariate

GARCH models. Modelling volatility spillovers would be only relevant when the null

hypothesis of no interactions is rejected. For a comprehensive discussion of tests for volatility

spillovers see, for example, Hong (2001), Nakatani and Teräsvirta (2009) and Pedersen (2017).

Other specification issues of interest include alleviating the curse of dimensionality in large

systems or developing models whose parametric structure is well suited for time-varying

co-movements across markets.

This paper contains two novelties. First, we propose a novel extension of the ECCC-

GARCH representation of Jeantheau (1998) suited to model time-varying conditional vari-

ances and cross-market volatility interactions. It is based on decomposing additively the

conditional variance equations into two components, one describing clustering volatility

specified as a measurable function of the past of all elements of the vector of returns, and
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another representing the misspecification of the volatility structure. One type of model

misspecification includes omitting a time-dependent component to the extended vector

GARCH model in the form of structural changes in the volatility process. Other types of

model misspecification in the functional form of the conditional variances could also be

considered. Second, we introduce statistical tests based on the Lagrange multiplier principle

as an useful validation tools to reveal against such type of model misspecification. Monte

Carlo simulations show that the tests have reasonable good size and power in finite samples.

Our modelling strategy relies on by first testing the adequacy of the specification against

the alternative of the additive time-dependent vector GARCH model and estimating such

nonlinear extension only in case of rejection of the null hypothesis. For numerical simplicity,

we shall adopt the two-step estimation approach proposed by Francq and Zakoïan (2016)

where the univariate conditional variances are estimated equation-by-equation in the first step

and the conditional correlations are estimated in the second step conditionally on the first

step estimates. Finally, we shall illustrate our modelling cycle with an application to study

the dynamics of the co-movements among bond yield returns on the 10-year government

Greek, Irish and Portuguese sovereign markets.

The remaining sections of this paper are organised as follows. Section 2 introduces

the new model and its properties. In Section 3 is discussed the equation-by-equation

estimation of parameters and the asymptotic properties of the quasi-maximum likelihood

estimator (QMLE). Section 4 is devoted to Lagrange multiplier tests for time-varying volatility

interactions. Section 5 presents some evidence of the small sample properties of the statistical

tests by Monte Carlo simulations. In Section 6 we illustrate the functioning of the modelling

strategy to sovereign bond yield returns. Finally, Section 7 concludes the paper.

2 The model and assumptions

Consider the observable stochastic m−dimensional vector of returns

εt = Σ
1/2
t zt, t = 1, ..., T, (1)
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where the stochastic vector zt = (z1t, ..., zmt)
′ is a sequence of independent random variables

with Ezt = 0 and a time-varying positive definite correlation matrix Eztz
′
t = Pt = [ρij,t], such

that ρii,t = 1 and ρij,t 6= 0, i, j = 1, ...,m. It follows that the error vector ζt = P
−1/2
t zt ∼

iid(0, Im), where Im is the m×m identity matrix. Without loss of generality, we assume the

conditional mean of the vector of returns to be equal to zero. With these assumptions, the

vector process εt is a martingale-difference

E(εt|Ft−1) = 0 (2)

with a symmetric conditional covariance matrix defined as

E(εtε
′
t|Ft−1) = Σt (3)

where Ft−1 is the σ−algebra generated by the past information about εt available at time

t − 1. The conditional covariance matrix Σt = [σij,t] is assumed to be multiplicatively

decomposed in the usual fashion:

Σt = D(t/T )PtD(t/T ) (4)

where T is the sample size and D(t/T ) = diag(σ1(t/T ), . . . , σm(t/T )) is a diagonal matrix of

conditional standard deviations of the process εt. Each component σi(t/T ), i = 1, ...,m, is a

smooth time-dependent function describing structural changes in the conditional variance.

In this paper, we generalise the class of conditional correlation GARCH models by

introducing nonstationarity in the own-market volatility process and cross-market volatility

interactions. We shall rely on statistical inference to specify the most appropriate parameter-

ization of σ2
i (t/T ) so that it captures completely the past information. More details about

the statistical test shall be discussed in Section 4. We assume that σ2
t = (σ2

1t, ..., σ
2
mt)
′ is

defined as a time-varying representation measurable with respect to Ft−1 with the additive

decomposition:

σ2
t = ht + gt (5)

where ht is the stationary component allowing for volatility interactions across markets and
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gt is the time-dependent volatility component of rescaled time. This rescaling technique for

the calendar time is useful for obtaining a meaningful asymptotic theory (Dahlhaus and Rao

(2006)), but establishing the asymptotic properties of the maximum likelihood estimators is

beyond the scope of this paper.

We assume that ht is specified as the vector GARCH (p, q) process:

ht = ω +

q∑
i=1

Aiε
2
t−i +

p∑
j=1

Bjht−j (6)

where ht = (h1t, ..., hmt)
′, ε2t = (ε21t, ..., ε

2
mt)
′, ω is an m × 1 intercept vector with strictly

positive components, and Ai and Bj are m×m matrices with positive entries.

To introduce time-variation in the volatility dynamics, we define the nonstationarity

component gt as follows:

gt =

(
ω∗ +

q∑
i=1

A∗iε
2
t−i +

p∑
j=1

B∗jht−j

)
G(t/T ) (7)

where gt = (g1t, ..., gmt)
′ is a m× 1 stochastic time-varying vector, ω∗ is an m× 1 intercept

vector, A∗i and B∗j are m×m matrices, and G(t/T ) = diag(G1(t/T ; γ1, c1), . . . , Gm(t/T ; γm,

cm)) is a diagonal matrix ofm transition functions defined below in (8). Further simplification

of the model is possible by letting Bj to be diagonal to alleviating the computational burden

and reducing the dimensionality curse without preventing the high-dimensional property of

the model. In what follows, we shall assume Bj to be diagonal matrices while keeping the

specification of the correlation matrix fairly general.

Each component of the matrix G(t/T ) is represented by the general logistic transition

function Gi(t/T ; γi, ci), i = 1, ...,m, with the form

Gi(t/T ; γi, ci) =

(
1 + exp

{
−γi

ki∏
k=1

(t/T − cik)

})−1
, γi > 0, ci1 6 · · · 6 ciki (8)

where ci = (ci1, . . . , ciki)
′ is the vector of ki location parameters. The function Gi(t/T ; γi, ci)

is continuous for γi <∞ and bounded between zero and one. By construction, when γi = 0

for all i = 1, . . . ,m, the model collapses into the augmented GARCH specification of Francq

and Zakoïan (2016). The parameters ci and γi determine the location and the speed of
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transition from one state to another. For smaller values of γi, the changes between volatility

regimes are smooth, but when γi →∞, structural breaks can be identified at cik, k = 1, . . . , ki.

The dimension of ci is determined by testing a sequence of nested hypothesis as in Lin

and Teräsvirta (1994) and Teräsvirta (1994). Equations (1)-(8) jointly define the time-

varying extended conditional correlation (TV-ECC-) GARCH model. The modelling strategy

for building the TV-ECC-GARCH model is similar to the specific-to-general strategy for

nonlinear models of the conditional mean considered in, among others, Teräsvirta (1998a)

and Teräsvirta et al. (2010). Details shall be considered in Section B in the Supplementary

Appendix.

Furthermore, we assume that the following conditions are satisfied:

Assumption 1. The true vector of parameters θ0 ∈ Θ lies in the interior of the compact

parameter space Θ.

Assumption 2. The log-likelihood has a unique maximum at the true parameter vector

θ0 ∈ Θ.

Assumption 3. The error terms zi,t ∼ iid with E[zi,t|Ft−1] = 0, E[z2i,t|Ft−1] = 1, i = 1, ...,m.

In addition, E|z2(2+φ)i,t | <∞ for some φ > 0 and i = 1, ...,m.

Assumption 4. The elements of G(t/T ) satisfy infτ∈ΘGi(t/T ; γi, ci) ≥ Gmin > 0, for

i = 1, ...,m.

Assumption 5. The slope parameters and the location parameters satisfy, respectively, the

identification restrictions γi > 0 and ci1 ≤ · · · ≤ ciki , i = 1, ...,m.

Assumption 6. Pt is a positive-definite correlation matrix for all θ ∈ Θ.

Remark 1. Assumptions 1 and 2 are standard regularity conditions. The "fourth-moment

restriction" in Assumption 3 is necessary to guarantee the existence of the variance of the

score. Assumption 4 is required for positivity and boundedness of the deterministic component

git, i = 1, ...,m. The conditions in Assumption 5 are identification restrictions required for

the existence of a unique maximum value for the log-likelihood function. Assumption 6 is

needed for positive definiteness of Σt.
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Many different forms of parameterizations are possible for Pt. We shall focus on the

constant correlation structure, that is, Pt = P, when deriving the misspecification test of

the GARCH equations in Section 4. The above formulation nests the special case of the

extended constant conditional correlation (ECCC-)GARCH model in Jeantheau (1998). The

assumption of nonnegative volatility parameters is a sufficient condition for ensuring the

positive definiteness of the conditional covariance matrix in this specification; for references

see the Definition 3.1 in Jeantheau (1998), the Assumption 3 in Ling and McAleer (2003)

and the Section 3 in Francq and Zakoïan (2012). In order to allow for negative volatility

spillovers, we refer to the conditions derived in Conrad and Karanasos (2010).

A very flexible model can be obtained by letting the specification of Pt unspecified. An

often used parsimonious specification for the correlation matrix is defined by the dynamic

conditional correlation (DCC-) GARCH model of Engle (2002). Alternatively, we allow the

unconditional correlations to change smoothly between two extreme states as in the smooth

transition conditional correlation model of Silvennoinen and Teräsvirta (2005, 2015).

Remark 2. Positive definiteness of Σt is ensured provided that the conditional variances

σ2
i (t/T ) are strictly positive and Pt is a well-behaved correlation matrix. The additional

conditions that elements of ω+ω∗ are positive, and the elements of Ai+A∗i and diag(Bj+B∗j),

i = 1, . . . , q, j = 1, . . . , p are non-negative are sufficient to guarantee σ2
i (t/T ) > 0, for all

i. When these constraints are satisfied and Pt is positive definite, the matrix Σt is positive

definite almost surely for all t.

3 Equation-by-equation estimator

3.1 The log-likelihood function

We begin by introducing some notation. Let the parameter vector θ be partitioned into

θ = (ϑ′,ρ′)′, where ϑ denotes the volatility parameter vector and ρ = vecl(Pt) is the

m(m− 1)/2-dimensional vector of correlation parameters, where the operator vecl stacks

the lower off-diagonal elements of the symmetric m×m matrix Pt. The vector ϑ is further

partitioned into ϑ = (φ′,ϕ′)′, where φ = (φ′1, ...,φ
′
m)
′ and ϕ = (ϕ′1, ...,ϕ

′
m)
′ are vectors

containing the parameters in ht and gt, respectively. Assume that ϕ = (ψ′, τ ′)′, where
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ψ = (ψ′1, ...,ψ
′
m)
′ and τ = (τ ′1, ..., τ

′
m)
′. For each i, i = 1, ...,m, denote φi = (ωi, α

′
i1, . . . ,

α′im,β
′
i)
′, where αij = (α1ij, . . . , αqiij)

′ and βi = (β1i, . . . , βpii)
′, ϕi = (ω∗i ,α

∗′
i1, . . . ,α

∗′
im,β

∗′
i ),

where α∗ij = (α∗1ij, . . . , α
∗
qiij

)′, β∗i = (β∗1i, . . . , β
∗
pii
)′, and τ i = (γi, ci)

′ with ci = (ci1, . . . , ciki)
′.

The identity matrix I is of size m×m unless otherwise stated by a subscript. Furthermore,

assume the subscript 0 denotes quantities evaluated at the true parameter values and the

"hat" denotes the maximum likelihood estimator under the null hypothesis. Thus, the true

parameter vector equals θ0 = (ϑ′0,ρ
′
0)
′, where ϑ0 = (φ′0,ϕ

′
0)
′.

Under the assumption of normality, εt|Ft−1 ∼ N (0,Σt), the conditional log-likelihood

function for observation t is defined as

`t(θ) = −(m/2) ln(2π)− (1/2) ln |Σt| − (1/2)ε′tΣ
−1
t εt

= −(m/2) ln(2π)− ln |Dt| − (1/2) ln |Pt| − (1/2)z′tP
−1
t zt (9)

and maximising LT (θ) =
∑T

t=1 `t(θ) with respect to θ yields the maximum likelihood

estimator θ̂. Equation (9) implies the following decomposition of the log-likelihood function

for observation t:

`t(φ,ϕ,ρ) = `Vt (φ,ϕ) + `Ct (φ,ϕ,ρ) (10)

where the volatility component is

`Vt (φ,ϕ) =
m∑
i=1

`Vit (φi,ϕi) (11)

=− (1/2)
{
m ln(2π) + 2 ln |Dt|+ ε′tD−1t D−1t εt

}
(12)

and the correlation term equals

`Ct (φ,ϕ,ρ) = −(1/2)
{
ln |Pt|+ z′tP

−1
t zt − z′tzt

}
(13)

Using decomposition (10), maximum likelihood estimation of θ can be carried out in two

steps similarly to the two-step approach suggested by Engle (2002) for estimating the DCC-

GARCH model. Yet, due to the higher-dimensional parameter space, the estimation of
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parameters by full maximum likelihood is time-demanding and numerically challenging.

One solution to alleviate the computational burden is to apply the equation-by-equation

estimation suggested by Francq and Zakoïan (2016). The assumption of diagonality of Bj

and B?
j enables the estimation of the variance equations separately allowing for cross-market

volatility interactions. This formulation facilitates the estimation of the model even when

the covariance matrix is of large dimension. The equation-by-equation estimation proceeds

in two steps:

1. Estimate φi and ϕi equation-by-equation by maximising

LViT (φi,ϕi) =
T∑
t=1

`Vit (φi,ϕi)

=− (1/2)
T∑
t=1

{
ln(2π) + ln(hit(φi) + git(ϕi)) +

ε2it
hit(φi) + git(ϕi)

}
(14)

with respect to φi and ϕi for each i, i = 1, . . . ,m, separately. This yields the estimators

φ̂i and ϕ̂i, i = 1, ...,m.

2. After estimating the volatility equations, obtain ρ̂ given φ̂i and ϕ̂i by maximising

LCT (ρ|φ̂, ϕ̂) = −(1/2)
T∑
t=1

{
ln |Pt(ρ)|+ z′tP

−1
t (ρ)zt − z′tzt

}
(15)

where zt = (z1t, ..., zmt)
′ with zit = εit/(hit(φ̂i) + git(ϕ̂i))

1/2, i = 1, ...,m.

3.2 The score and the Hessian of the log-likelihood function

In order to define the first and second partial derivatives of (9), denote the score vector for

observation t as st(θ) = ∂`t(θ)/∂θ and let

s(θ) = (1/T )
T∑
t=1

st(θ) = (1/T )
T∑
t=1

(
∂`t(θ)

∂ϑ′
,
∂`t(θ)

∂ρ′

)′
(16)

be the average score. The score vector of (9) has the following form

st(θ) = (st(ϑ)
′, st(ρ)

′)′ (17)
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where st(ϑ) = (st(ϑ1)
′, ..., st(ϑm)

′)′ is partitioned into st(ϑi) = (st(φi)
′, st(ϕi)

′)′, i = 1, ...,m.

The notation st(θ̂) defines the score evaluated at the maximum likelihood estimator θ̂.

The analytical expressions of the first partial derivatives of (9) with respect to θ are

given in the following lemma.

Lemma 3.1. The blocks of the ith element of the score vector (17) for observation t have

the following representation

st(ϑi) =
∂`it(θ)

∂ϑi
= −(1/2) 1

σ2
it

∂σ2
it

∂ϑi

(
1− z′teie

′
iP
−1
t zt

)
, i = 1, ...,m, (18)

st(ρ) =
∂`t(θ)

∂ρ
= −(1/2)∂vec(Pt)

′

∂ρ
{vec(P−1t )−P−1t ztz

′
tP
−1
t } (19)

where the vec(·) operator stacks the columns of the matrix underneath one another, ei =

(0′i−1, 1,0
′
m−i)

′ and
∂σ2

it

∂ϑi
=

(
∂σ2

it

∂φ′i
,
∂σ2

it

∂ϕ′i
,
∂σ2

it

∂τ ′i

)′
(20)

with
∂σ2

it

∂ϑi
= ωit +

pi∑
k=1

(βik + β∗ikGi(t/T ))
∂σ2

i,t−k

∂ϑi
(21)

where ωit = (υ′it,υ
′
itGi(t/T ), g

′
τit
(git/Gi(t/T )))

′, with υit = (1, ε2i,t−1, ..., ε
2
i,t−qi , hi,t−1, ..., hi,t−pi)

′

and gτit = (gγit, g
′
cit
)′ with gcit = (gci1t, . . . , gciki t)

′, i = 1, . . . ,m. The blocks of gτit are

gγit =
∂Gi(t/T )

∂γi
= Gi(t/T )(1−Gi(t/T ))

ki∏
k=1

(t/T − cik)

gcikt =
∂Gi(t/T )

∂cik
= −γiGi(t/T )(1−Gi(t/T ))

ki−1∏
l=1,l 6=k

(t/T − cil), i = 1, . . . ,m.

Proof. The expressions for the blocks in (18)-(19) are proven in Appendix 12 of Silvennoinen

and Teräsvirta (2017).

The population information matrix equals

IT (θ0) = (1/T )Es(θ0)s(θ0)
′ = Est(θ0)st(θ0)

′ (22)

where st(θ0) is the score evaluated at the true parameter vector θ0. The negative of the
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expected Hessian matrix evaluated at θ0 equals

JT (θ0) = −(1/T )E[HT (θ0)] = −(1/T )E
T∑
t=1

∂2`t(θ0)

∂θ∂θ′
. (23)

The Hessian for observation t of the log-likelihood function (9) has the partitioned form

Ht(θ) =
∂2`t(θ)

∂θ∂θ′
=

Hϑϑ,t(θ) Hϑρ,t(θ)
Hρϑ,t(θ) Hρρ,t(θ)

 =

∂2`t(θ)∂ϑ∂ϑ′
∂2`t(θ)
∂ϑ∂ρ′

∂2`t(θ)
∂ρ∂ϑ′

∂2`t(θ)
∂ρ∂ρ′

 (24)

where the elements for the sub-blocks in (24) are given in the following lemma.

Lemma 3.2. The sub-blocks of the second-order partial derivatives of the log-likelihood

function (14) for observation t are given by

Hϑiϑj ,t(θ) =
∂2`it(θ)

∂ϑi∂ϑ
′
j

= −(1/4) 1

σ2
itσ

2
jt

∂σ2
it

∂ϑi

∂σ2
jt

∂ϑ′j

(
e′iP

−1
t eje

′
jztz

′
tei
)

(25)

for i 6= j, i,j=1,...,m,

Hϑiϑi,t(θ) =
∂2`it(θ)

∂ϑi∂ϑ
′
i

= −(1/2) 1

σ2
it

(
1

σ2
it

∂σ2
it

∂ϑi

∂σ2
it

∂ϑ′i
− ∂2σ2

it

∂ϑi∂ϑ
′
i

)
(
e′iP

−1
t ztz

′
tei − 1

)
− (1/4)

1

(σ2
it)

2

∂σ2
it

∂ϑi

∂σ2
it

∂ϑ′i
e′iP

−1
t (I + eie

′
i) ztz

′
tei

(26)

for i = j, i=1,...,m,

Hϑiρ,t(θ) =
∂2`it(θ)

∂ϑi∂ρ
= −(1/2) 1

σ2
it

∂σ2
it

∂ϑi
(ei ⊗ ei)

′(ztz
′
tP
−1
t ⊗P−1t )

∂vec(Pt)

∂ρ
(27)

and

Hρρ,t(θ) =
∂2`it(θ)

∂ρ∂ρ′
= −(1/2)∂vec(Pt)

∂ρ′
{P−1t ⊗P−1t − (P−1t ztz

′
tP
−1
t ⊗P−1t

+ P−1t ⊗P−1t P−1t ztz
′
tP
−1
t )}∂vec(Pt)

∂ρ

(28)

where ⊗ denotes the Kronecker product.

Proof. See Appendix 12 of Silvennoinen and Teräsvirta (2017). The analytical expressions

12



for each element of ∂2σ2
it/∂ϑi∂ϑ

′
i can be obtained by straightforward calculation.

The expressions for ∂vec(Pt)
′/∂ρ depend on the form of the correlation structure. For

further details we refer to Bollerslev (1990) for constant conditional correlations, Engle (2002)

for dynamic conditional correlations and Silvennoinen and Teräsvirta (2015, 2017) when the

(un)conditional correlations are assumed to change smoothly over time.

3.3 Asymptotic properties

Under mild regularity conditions, Ling and McAleer (2003) established consistency and

asymptotic normality of the QMLE for the general class of vector ARMA-GARCH models

(without any diagonality assumption) with constant conditional correlations. Moreover, strict

stationarity and ergodicity are also proved for these models. In a restricted formulation,

consistency of the QMLE estimator for the ECCC-GARCH model was established by

Jeantheau (1998) and the condition for the existence of the fourth-order moment was derived

by He and Teräsvirta (2004). Recently, Francq and Zakoïan (2016) showed strong consistency

and asymptotic normality of the equation-by-equation estimator of the augmented GARCH

model with constant conditional correlations. They show that when the errors differ from the

normal distribution, the equation-by-equation estimator is also asymptotically more efficient

than the quasi-maximum likelihood approach when the parameters are jointly estimated.

The asymptotic results of the second-step of the equation-by-equation estimator need yet to

be further investigated.

Since under the null of constant volatility interactions, our model with constant conditional

correlations collapses into the augmented GARCH model of Francq and Zakoïan (2016), we

can rely on their following result. Under suitable assumptions and regularity conditions, the

asymptotic distribution of the equation-by-equation estimator is

√
T (θ̂T − θ0)

d→ N (0,J −1T (θ0)IT (θ0)J −1T (θ0)) (29)

where IT (θ0) and JT (θ0) can be consistently estimated by

IT (θ̂T ) = (1/T )
T∑
t=1

st(θ̂T )st(θ̂T )
′ (30)
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and

JT (θ̂T ) = −(1/T )
T∑
t=1

∂2`t(θ̂T )

∂θ∂θ′
, (31)

respectively. If we further assume zt|Ft−1 ∼ N (0,P), then IT (θ0) = −E[JT (θ0)] and the

asymptotic covariance matrix reduces to I−1T (θ0).

Extending their asymptotic results to our model is a nontrivial problem and beyond the

scope of the present paper. For inference, we shall assume that the asymptotic distribution

of the equation-by-equation estimator is normal. It then follows that

√
T (θ̂T − θ0)

d→ N (0, I−1T (θ0)). (32)

4 Testing the adequacy of the extended vector GARCH

model

In this section, first we shall introduce a statistical test against a general form of additive

misspecification in the extended vector GARCH process and thereafter we focus our attention

on the specific form of tests for parameter constancy against smooth changes in the conditional

variance equations.

4.1 The general misspecification test

One may expect that over a long observation period, certain economic, environmental and

social events affecting the financial institutions cause the structure of volatility to change

over time. Similarly, volatility transmissions between markets are very likely to behave

differently across tranquil and turbulent times. It thus seems inappropriate to assume that

the parameters remain constant when the series of returns to be modelled is long. Testing the

constancy of parameters is therefore an important statistical tool to validate the specification

of the estimated model. A rejection of the hypothesis of parameter constancy against an

additive time-dependent vector GARCH model might be seen as evidence of the hypothesis

of time-varying volatility parameters. Of course, other types of misspecification are also

possible. Since the rejection of the null hypothesis does not imply that the data have been
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generated by the time-varying extended conditional correlation (TV-ECC-) GARCH model,

the LM-type test can be viewed as a general misspecification test for multivariate GARCH

models.

We shall start with the general misspecification hypothesis for which tests against specific

alternatives can be easily derived and then we present explicit formulas for the alternative of

interest. In order to shorten the notation, let hit = hit(φi) and git = git(ϕi), i = 1, ...,m,

where the additional component git is an Ft−1−measurable function depending on the

additional parameters ϕi. In what follows, assume that the true process of the conditional

variance is additively misspecified by introducing a new component

εit = σitzit, zit i = 1, ...,m (33)

σ2
it = hit(φi) + git(ϕi), (34)

where the errors zit, i = 1, ...,m, form a sequence of independent random variables with mean

zero and variance one. The function git = git(ϕi) is at least twice continuously differentiable

with respect to ϕi, such that under the null hypothesis git(ϕi) = 0 if and only if ϕi = 0.

Since Dt is diagonal, it follows that the Gaussian quasi-log-likelihood function (12) is further

simplified to

`it(θ) = −(1/2){ln 2π + ln{hit(φi) + git(ϕi)}+
ε2it

hit(φi) + git(ϕi)
}. (35)

The average score of (35) is partitioned as

s(ϑi) = (sφ(ϑi)
′, sϕ(ϑi)

′)′ (36)

with

s(ϑi) = (1/T )
T∑
t=1

∂`it(θ)

∂ϑi
= (2T )−1

T∑
t=1

(z2it − 1)xit, (37)

where zit = εit/(hit + git)
1/2 and xit = (x′1i,t,x

′
2i,t)

′, with x1i,t = (hit + git)
−1(∂hit/∂φi) and

x2i,t = (hit + git)
−1(∂git/∂ϕi).

Setting ĥit = hit(φ̂iT ), ĝit = git(ϕ̂iT ) and ẑit = εit/(ĥit+ĝit)
1/2, the average score evaluated
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at ϑ̂T under the null hypothesis yields

s(φ̂iT ,0) = (0′, sϕ(φ̂iT ,0)
′)′ (38)

where

sϕ(φ̂iT ,0) = (2T )−1
T∑
t=1

(ẑ2it − 1)x̂2i,t|H0i
(39)

is the relevant (nonzero) block in the LM test statistic. It follows that, under regularity

conditions, φ̂iT −→ φi0 and ϕ̂iT −→ ϕi0 in probability as T −→∞.

Denoting

IiT (ϑ0) = Es(φi0,0)s(φi0,0)
′ =

Iφφ,i(ϑ0) Iφϕ,i(ϑ0)

Iϕφ,i(ϑ0) Iϕϕ,i(ϑ0)

 (40)

the corresponding south-east block of the inverse of IiT (ϑ̂T ) evaluated under the null equals

{
IiT (ϑ̂T )

}−1
[ϕi,ϕi]

=
{
Iϕϕ,i(ϑ̂T )− Iφϕ,i(ϑ̂T )I−1φφ,i(ϑ̂T )Iϕφ,i(ϑ̂T )

}−1
, (41)

where Ilk(ϑ̂T ) = (2T )−1
∑T

t=1 x̂ltx̂
′
kt, l, k = 1, 2 is a consistent plug-in estimator of Ilk(ϑ0)

(with the subscript i omitted for notational convenience) under the null hypothesis.

Theorem 1 presents the univariate LM-type statistic for the test against a general additive

alternative. Specific alternatives for the test can be easily adapted into our framework, where

ẑit and x̂li,t, l = 1, 2, have to be modified accordingly.

Theorem 1 (Univariate test statistic). Consider the model (33)-(34) and assume that the

standard regularity conditions hold. Furthermore, assume that under the null hypothesis H0i :

ϕi = 0, the function git = git(ϕi) ≡ 0 and the appropriate estimates for xit = (x′1i,t,x
′
2i,t)

′

are defined as x̂1i,t = h−1it (φ̂i)
∂hit(φ̂i)
∂φi

|H0i
, x̂2i,t = h−1it (ϕ̂i)

∂git(ϕ̂i)
∂ϕi

|H0i
, and ζ̂it = ε2it/hit(φ̂i)− 1.

Let ϑ̂T be a consistent estimator of ϑ0. Then, under the null hypothesis H0i : ϕi = 0, the

LM type statistic for the volatility equation i

ξLMi = (1/2)
T∑
t=1

ζ̂itx̂
′
2i,t

{
IiT (ϑ̂T )

}−1
[ϕi,ϕi]

T∑
t=1

ζ̂itx̂2i,t (42)

is asymptotically χ2-distributed with dim(ϕi) degrees of freedom.
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In practice, an asymptotically equivalent test to the LM test in Theorem 1 may be carried

out in a straightforward way using auxiliary least squares regressions as follows:

1. Estimate φi by maximum likelihood under H0i and compute ζ̂it = ε2it/ĥit − 1, x̂1i,t =

1

ĥit

∂ĥit
∂φi
|H0i

and x̂2i,t =
1

ĥit

∂ĝit
∂ϕi
|H0i

for t = 1, . . . , T .

2. Regress ζ̂it on x̂1i,t and x̂2i,t, t = 1, . . . , T, and obtain the coefficient of determination

R2
i .

3. Under the null hypothesis, the test statistic

ξLMi = T ×R2
i (43)

has an asymptotic χ2 distribution with dim(ϕi) degrees of freedom.

Note that the partial derivatives ∂ĥit/∂φi|H0i
and ∂ĝit/∂ϕi|H0i

are computed recursively,

where it is assumed ε2i0 = hi0 = T−1
∑T

t=1 ε
2
it, i = 1, . . . ,m, as the initial values in the

recursion.

To further examine whether the coefficients of the additive component in the augmented

version of equation (34) for each i = 1, ...,m, are jointly zero, we propose a multivariate

version of the LM-type test statistics (42) or (43). The general procedure involves testing

the joint hypothesis of no additive misspecification in the system of variance equations, so

that a rejection of the null hypothesis is evidence of model misspecification. The extension

of the univariate case to the multivariate case is straightforward and the multivariate test

statistic is presented in the Corollary 4.1.

Corollary 4.1 (Multivariate test statistic). Consider the model (33)-(34) and assume

that the standard regularity conditions hold. Due to the block-diagonality of the information

matrix, under the null hypothesis H0 : ϕ = 0, the multivariate LM-type statistic defined by

ξLM =
m∑
i=1

ξLMi (44)

where ξLMi is given by (42) or (43) for each i = 1, ...,m, has an asymptotic χ2 distribution

with dim(ϕ) degrees of freedom.
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The robust versions of the univariate and multivariate test statistics to non-normal

innovations can be constructed using the procedure by Wooldridge (1990, 1991). The results

of Wooldridge enable us to construct test statistics robust to deviations from distributional

assumptions. The approach to calculating the robust univariate test statistic proceeds as

follows:

1. Estimate φi consistently by maximum likelihood under the null hypothesis and compute

ζ̂it = ε2it/ĥit − 1, x̂1i,t =
1

ĥit

∂ĥit
∂φi
|H0i

and x̂2i,t =
1

ĥit

∂ĝit
∂ϕi
|H0i

for t = 1, . . . , T.

2. Regress x̂2i,t on x̂1i,t, t = 1, ..., T, and save the vector of residuals r̂it from the regression.

3. Regress 1T on ζ̂itr̂it, t = 1, ..., T, and compute the residual sum of squares RSSi. Under

H0i, the robust statistic

ξrobi = T −RSSi (45)

has an asymptotic χ2 distribution with dim(ϕi) degrees of freedom.

For the robust multivariate statistic, repeat the previous steps 1−3, for all i = 1, ...,m,

and compute the LM-type test statistic

ξrob =
m∑
i=1

ξrobi (46)

which is asymptotically χ2−distributed with dim(ϕ) degrees of freedom.

4.2 Testing for smoothly time-varying volatility and spillovers

We now consider specific alternatives belonging to the general misspecification test presented

in Section 4.1. We begin by deriving the test for parameter constancy against the alternative

of a smoothly time-varying augmented GARCH model and next we focus on the volatility-

based statistical test of co-movements within this class of models.

In order to derive the misspecification test statistic rewrite the variance equation (34) as:

σ2
it = ωi +

m∑
j=1

αijε
2
j,t−1 + βiσ

2
i,t−1 +

(
ω∗i +

m∑
j=1

α∗ijε
2
j,t−1 + β∗i σ

2
i,t−1

)
G̃it(t/T ; γi, ci)(47)

where, for simplicity, we restrict our discussion to the case when the augmented GARCH
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component is of order one (pi = qi = 1) in (6)-(7) since first-order models describe well

the majority of financial applications. For notational convenience, we let G̃it(t/T ; γi, ci) =

Git(t/T ; γi, ci)− 1/2 without losing generality.

The null hypothesis of parameter constancy against smoothly time-varying volatility

corresponds to testing H0i : γi = 0 against H1i : γi > 0 in (47). When γi = 0 holds, the

parameters ω∗i , α∗ij, β∗i and ci, j = 1, . . . ,m, constitute a vector of unidentified nuisance

parameters. We circumvent the identification problem by approximating G̃it(t/T ; γi, ci) with

its first-order Taylor expansion evaluated at γi = 0 as in Luukkonen et al. (1988). Using

Taylor’s theorem, we obtain

G̃it(t/T ; γi, ci) =

ki∑
k=0

γi(t/T )
kc̃ik +Rit(t/T ; γi, ci) (48)

where Rit(t/T ; γi, ci) is the remainder term. Replacing G̃it(t/T ; γi, ci) in (47) by (48) and

rearranging terms, gives

σ2
it = κi+

m∑
j=1

aijε
2
j,t−1+biσ

2
i,t−1+

ki∑
k=1

(t/T )k

(
κ∗ik +

m∑
j=1

a∗ijkε
2
j,t−1 + b∗ikσ

2
i,t−1

)
+Rit(t/T ; γi, ci)

(49)

where the parameters are functions of the original ones in (47). Under H0i, the remainder

Rit(t/T ; γi, ci) = 0, so that the remainder does not affect the asymptotic null distribution

of the test statistic. Using (49) we can transform the original testing problem into testing

against the following approximate alternative:

εit = (hit + git)
1/2zit (50)

where

hit + git = κi +
m∑
j=1

aijε
2
j,t−1 + bi(hi,t−1 + gi,t−1) (51)

+

ki∑
k=1

κ∗ik(t/T )
k +

m∑
j=1

ki∑
k=1

a∗ijk(t/T )
kε2j,t−1 +

m∑
j=1

ki∑
k=1

b∗ik(t/T )
khi,t−1 (52)
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and

git = bigi,t−1 +

ki∑
k=1

κ∗ik(t/T )
k +

m∑
j=1

ki∑
k=1

a∗ijk(t/T )
kε2j,t−1 +

m∑
j=1

ki∑
k=1

b∗ik(t/T )
khi,t−1 (53)

.

Model (50)-(53) reduces to the null model under the auxiliary null hypothesis of parameter

constancy:

H0i : κ
∗
ik = a∗ijk = b∗ik = 0, j = 1, . . . ,m, k = 1, ..., ki. (54)

The following corollary defines the test statistic for testing the null hypothesis in (54).

Corollary 4.2. Consider the model (50)-(53) and let φi = (κi, a
′
i, bi)

′ with ai = (ai1, ..., aim)
′

and ϕi = (κ∗′i , a
∗′
i1, ..., a

∗′
im,b

∗′
i )
′ with κi = (κi1, ..., κiki)

′, a∗ij = (a∗ij1, ..., a
∗
ijki

)′ and bi =

(bi1, ..., biki)
′, i, j = 1, ...,m, k = 1, ..., ki. In addition, denote υit = (1, ε2′t−1, hi,t−1)

′, εt =

(ε1t, ..., εmt)
′, Z1i,t = [(t/T )kε2j,t−1] and Z2i,t = [(t/T )khi,t−1], k = 1, ..., ki, i, j = 1, ...,m.

Under H0 : ϕi = 0, the LM-type statistic (42) or (43), where

x̂i1,t =
1

ĥit

∂ĥit
∂φi
|H0i

= ĥ−1it (υ̂it + bi
∂ĥi,t−1
∂φi

|H0i
) (55)

x̂i2,t =
1

ĥit

∂ĝit
∂ϕi
|H0i

= ĥ−1it
(
((t/T ), ...., (t/T )ki , vec(Z1i,t)

′, vec(Z2i,t)
′)′ + bi

∂ĝi,t−1
∂ϕi

|H0i
)(56)

is asymptotically χ2-distributed with dim(ϕi) degrees of freedom.

4.3 Specification of additive extended GARCH models

We design a model-building cycle for the TV-ECC-GARCH model identical to the specific-

to-general strategy for nonlinear models recommended by Granger (1993) and Teräsvirta

(1998b), among others. The technique involves a sequential procedure for specifying the

parameterization of the volatility component and determining the shape of the transition

function using a sequence of LM-type tests. Formal asymptotic theory for these tests is not

yet available, and thereafter we assume the test statistics to approximate the chi-squared

distribution. The modelling cycle for specifying additive extended GARCH models consists

of the following stages:
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1. Estimate the extended GARCH model as in Francq and Zakoïan (2016). The determi-

nation of the lag structure may be done using a model selection criterion. This may be

preceded by testing the null hypothesis of no volatility interactions as in Nakatani and

Teräsvirta (2009) and Pedersen (2017).

2. Test parameter constancy against the additive time-dependent vector GARCH model

(TV-ECC-GARCH) alternative using the LM-type statistic described in Section (4.2)

at the significance level α(1): HTV-ECC
0i : κ∗ik = a∗ijk = b∗ik = 0, j = 1, . . . ,m, k =

1, ..., ki. in (54). If HTV-ECC
0i is rejected, then select the order k ≤ 3 in the exponent

of Git(t/T ; γi, ci) based on a sequence of nested tests as in Teräsvirta (1994). This is

done by testing the following sequence of nested hypotheses:

H03i : ϕi3 = 0

H02i : ϕi2 = 0 | ϕi3 = 0

H01i : ϕi1 = 0 | ϕi2 = ϕi3 = 0

where ϕik = (κ∗ik, a
∗
i1k, . . . , a

∗
imk, b

∗
ik)
′, i = 1, . . . ,m, k = 1, 2, 3, by means of LM-type

tests using auxiliary regressions. The choice of k proceeds as follows. Carry out the

three sequential tests and observe the hypotheses rejected. If H01i and H03i are rejected

more strongly, measured by p-values, than H02i, then select either k = 1 or k = 3. If

testing H02i yields the strongest rejection, then select k = 2.

3. If parameter constancy is rejected, then sub-hypotheses are tested to determine whether

the TV-ECC-GARCH model is necessary to characterize the data or either whether

a model with a subset of time-varying parameters is sufficient. The statistical tests

are conducted using the significance level α(2) = τα(1), where τ ∈ (0, 1). Here we

set τ = 0.5. In what follows, assume the partitioned vector ϕik = (ϕ′ik,1,ϕ
′
ik,2)

′,

where ϕik,1 = (κ∗ik, a
∗
ik, b

∗
ik)
′ denotes the vector of standard GARCH parameters and

ϕik,2 = {a∗ijk}, i 6= j, j = 1, . . . ,m, k = 1, 2, 3, denotes the cross-market ARCH

coefficients. In order to identify individual changes in the dynamics of volatility (or

co-volatility) for a subset of return series, we shall proceed as follows:
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(a) Test the hypothesis of parameter constancy in the standard GARCH coefficients

HTV-VOL
0i,1 : ϕi1,1 = ϕi2,1 = ϕi3,1 = 03 | ϕi1,2 = ϕi2,2 = ϕi3,2 = 0.

(b) Test the hypothesis of parameter constancy in the cross-market ARCH coefficients

HTV-CO-VOL
0i,2 : ϕi1,2 = ϕi2,2 = ϕi3,2 = 0 | ϕi1,1 = ϕi2,1 = ϕi3,1 = 0.

(c) If either HTV-VOL
0i,1 or HTV-CO-VOL

0i,2 is rejected, then select k = 1, 2, 3, by testing the

following sequence of nested hypotheses at the significance level α(3) = τα(2):

H03i,s : ϕi3,s = 0 | ϕik,r = 0

H02i,s : ϕi2,s = 0 | ϕik,r = 0 and ϕi3,s = 0

H01i,s : ϕi1,s = 0 | ϕik,r = 0 and ϕi3,s = ϕi2,s = 0,

for r 6= s, r, s = 1, 2, by means of auxiliary regressions as before. Rejection of H0i,2

provides evidence for time-varying cross-market ARCH effects revealing changes

in volatility spillovers between the returns.

An appealing feature of this testing approach is that it makes it possible to identify

individual changes in the volatility dynamics (or co-volatility) for a subset of return

series. As a result, statistical evidence of time-varying volatility parameters is a

necessary, yet not a sufficient condition for volatility-based spillovers. In this framework,

rejecting the null hypothesis suggests that the volatility parameters are jointly time-

varying, but it does not imply that every coefficient is changing over time. As a matter

of fact, the hypothesis for parameter constancy can be rejected when structural changes

occur in the volatility dynamics but the co-volatility parameters remain constant.

22



5 Small sample properties

5.1 Design of the experiments

In this section, we investigate by Monte Carlo simulations the finite sample behaviour of the

tests presented in section 4. We shall first report the empirical size and the power results of

the parameter constancy tests. Thereafter, we carry out several robustness checks regarding

the implementation of the tests. The experiments are conducted for the bivariate, trivariate

and five-variate cases, that is, for m = 2, 3, 5. We generated 5000 replications at sample sizes

T = 1000, 2500 and 5000 for each data generating process (DGP). The first 1000 generated

observations from each data set have been discarded to reduce initialization effects. For

the size simulations we use the bivariate extended conditional constant correlation GARCH

model of Jeantheau (1998) whose volatility component is given by

ht = ω + A1ε
2
t−1 + B1ht−1 (57)

where we restrict the matrix of GARCH parameters B1 to be diagonal and we let the

conditional correlation parameter ρ12 to vary between 0.3 and 0.9. The generated data satisfy

the weak stationarity condition established in Jeantheau (1998) where the spectral radius of

A + B, denoted by λ(A + B), is smaller than unity. For the power simulations we use the

extended version of (57) with time-varying parameter matrices where the model is specified

as

ht = ω + A1ε
2
t−1 + B1ht−1 +

(
ω∗ + A∗1ε

2
t−1 + B∗1ht−1

)
Gt (58)

where A and A∗ are non-diagonal matrices of ARCH coefficients, B and B∗ are diagonal

matrices of GARCH coefficients and Gt is the diagonal matrix of logistic transition functions

defined in (8). Only parameter combinations satisfying the sufficient conditions for weak

stationary in each extreme volatility state are considered. Under these restrictions, the DGPs

verify the conditions λ(A+B) < 1 when Gt = 0 and λ(A+A∗+B+B∗) < 1 when Gt = I.

All computations have been carried out using the open-source statistical software package R

(R Core Team (2017)).
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Table 1: Data generating processes for size simulations for tests of parameter constancy

DGP 1 DGP 2 DGP 3 DGP 4

A1

 0.10 0.005

0.005 0.05

 0.10 0.005

0.005 0.05

0.10 0.07

0.02 0.05

 0.10 0.005

0.005 0.05



B1

0.80 0

0 0.85

 0.80 0

0 0.85

 0.80 0

0 0.85

 0.88 0

0 0.94


ρ12 0.90 0.30 0.90 0.30

λ(A1 + B1) 0.905 0.905 0.937 0.992

Note: The vector of constants in the conditional variances equals ωωω = [0.10 0.20]′ for all DGPs.

5.2 Size simulations

To illustrate the behaviour of the parameter constancy test in small samples we present the

results from the size simulations. The data generated processes (DGPs) from four bivariate

ECC-GARCH(1,1) models used in the size simulations are reported in Table 1. The artificial

series have the following dynamics. The persistence in volatility varies from moderate (0.905)

in DGP 1-2 to very high (0.992) in DGP 4. DGPs 2 and 4 have low correlations (ρ12=0.3)

with moderate and very high persistence, respectively, while DGP 3 is characterised by

higher cross-market volatility interactions and high correlations (ρ12=0.9). The simulation

study shows that the non-robust tests are severely-size distorted and the robust statistics

clearly outperform their non-robust versions. These simulations are available upon request.

For the sake of saving space, we only report the actual rejection frequencies for the robust

tests statistics when T = 2500, 5000.

Size discrepancy plots for the robust tests statistics are displayed in Figure 1. The figures

show the size discrepancies, that is, the differences between the actual rejection frequencies

and the nominal sizes (vertical axis) plotted against the nominal sizes (horizontal axis). As

expected, the size distortions decrease with the number of observations but increase with

the level of persistence in volatility. Furthermore, size distortions tend to increase with the

level of correlation and decrease with the magnitude of the volatility interactions. Overall,

the robust tests have reasonably good size in finite samples with the exception of DGP1

characterised with high correlation and small volatility interactions where size is largely
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Figure 1: Size discrepancy plots for tests of parameter constancy tests using artificial series
generated according to the DGPs in Table 1. The size discrepancy is plotted against the
nominal size. Results are shown for the univariate robust (ui_T), i = 1, 2, and multivariate
robust (m_T) test statistics defined in (45) and (46), respectively, with x̂i1,t and x̂i2,t given
in (56) and (56) for T = 2500, 5000. The number of replications for each simulation equals
5000.

distorted. Thus, the test may tend to reject more often when the correlations are large and

interactions are small. Looking at the results of the multivariate test, the empirical size is

also distorted to some extent. The size properties of the tests suggest that the asymptotic

distribution of the test statistics may be a poor approximation of their true distribution

in some situations. In order to improve inference and obtain well-behaved tests, bootstrap

procedures may be used in order to mitigate the poor size properties in those cases.

5.3 Power simulations

In this section we present the results from the power simulations for the robust test statistics.

There is no direct benchmark at which we can compare our tests, but it may be interesting

to investigate their power in small samples. We simulate the bivariate model under the

alternative using four alternative specifications. The DGPs from (58) are listed in Table 2.

The upper panel defines the volatility structure in the first extreme state which is common
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Table 2: Data generating processes for power simulations for tests of parameter constancy

ωωω =
[
0.10 0.20

]′
A1 =

0.10 0.05

0.05 0.05

B1 =

0.80 0

0 0.85


DGP 5 DGP 6 DGP 7 DGP 8

ωωω∗
[
0.20 0.10

]′ [
0.20 0.10

]′
A∗1

 0.01 0.015

0.015 0.01

  0.01 0.015

0.015 0.01


B∗1

0.04 0

0 0.03

 0.02 0

0 0.03


λ
(
A

(∗)
1 + B

(∗)
1

)
0.995 0.975 0.995 0.975

Note: In the power simulations, we set c11 = 0.50, c21 = 0.75, γ1 = 5, γ2 = 10 and ρ = 0.70 for all
DGPs.

to all DGPs and from where parameters change to the second extreme volatility state. The

sign and magnitude of the parameters that are changing over time are shown in the lower

panel. In DGPs 5 and 6 the ARCH and GARCH parameter matrices are time-varying,

respectively. DGPs 7 and 8 have a similar design but the vector of constants is also assumed

to be time-dependent. Selected results from the power simulations are displayed in Figure 2.

The rejection frequencies for the tests under the generated data behave as expected. The

actual rejection frequencies show that power increases notably with the sample size, meaning

that a long time series is required for a well-behaved test in terms of power. Detecting time

dependence in the volatility interactions can be quite difficult against DGP 5, but the power

increases sharply if the true alternative contains additional changes in the constants at all

sample sizes. Interestingly, the tests also become less powerful against DGPs when the level

of the unconditional correlations is quite large. In general, the power against DGPs clearly

increases with the number of time-varying parameters. Therefore, one expects the power of

the multivariate test to be clearly stronger compared to that of the univariate parameter

constancy test.
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Figure 2: Power curves of the tests for parameter constancy tests using artificial series
generated according to the DGPs in Table 2. Results are shown for the univariate robust
(ui_T), i = 1, 2, and multivariate robust (m_T) test statistics defined in (45) and (46),
respectively, with x̂i1,t and x̂i2,t given in (56) and (56) for T = 2500, 5000. The number of
replications for each simulation equals 5000.
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5.4 Robustness checks

In this section we perform several robustness checks for the parameter constancy tests to

investigate how the suggested statistical tests are affected in higher-dimensional models

assuming constant conditional correlations. Finite-sample properties of the test statistics

are also studied in higher-dimensional models under changing conditional correlations. For

the sake of saving space, we omit some information regarding the model parameters used in

these simulations and the experiment results of the modelling cycle, but they are available

upon request.

Firstly, we shall evaluate the empirical rejection frequencies of the null hypothesis when

it is true for given higher-dimensional models described below. For the size simulations, we

generated additional artificial DGPs with constant conditional correlations where volatility is

moderately persistent with λ(A1 + B1) = 0.956 in the 3-dimensional model and λ(A1 + B1)

= 0.971 in the 5-dimensional model. The size discrepancy plots for the higher dimensional

models are depicted in the upper panel of Figure 3. As for higher-dimensional models, both

the non-robust and robust multivariate LM test are size-distorted and the empirical size

of the tests increases with the dimension of the model, but it decreases with the sample

size. Interestingly, the empirical size of the univariate robust LM test remains very close

to the nominal size at higher-dimensional models. In summary, the robust version of the

multivariate test has notably larger size distortions than those of the univariate test statistic

for higher dimensional models.

Secondly, the finite sample size behaviour of the test statistics are also studied for

multidimensional models under changing conditional correlations. The statistical tests

are derived for cases in which the parametric structure of the GARCH equations may be

misspecified with constant conditional correlations. However, it appears to be useful to

examine the behaviour of the tests assuming alternative parameterizations for the correlation

structure. The alternative bivariate designs used in the simulations are summarised in Table

3. We assume the parameters of the volatility equations to be identical in both designs

where volatility has moderate persistence. This is shown in the middle panel of Table 3. The

performance for the empirical levels of the test statistics shall be investigated when the true

model generating the data is the extended time-varying correlations (ETVC-)GARCH model
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Table 3: Data generating processes for size and power simulations under time-varying
correlations. In the power simulations, we set c1i = 0.50 and γi = 5, i = 1, 2 for all DGPs.

P1

 1 0.25

0.25 1

 P2

 1 0.75

0.75 1


c1 = 0.50 γ = 5

Q̄

 1 0.50

0.50 1


α = 0.05 β = 0.90

ETVC-GARCH(1, 1) MODEL EDCC-GARCH(1, 1) MODEL

ωωω
[
0.01 0.01

]′
A1

 0.09 0.001

0.004 0.04

 B1

0.90 0

0 0.89


TV-ETVC-GARCH(1, 1) MODEL TV-EDCC-GARCH(1, 1) MODEL

ωωω∗
[
0.02 0.02

]′
A∗1

 0 0.001

0.01 0.01

 B∗1

0 0

0 0



where the transition variable is the rescaled time. We further examine the empirical size

of the LM robust statistics under the extended dynamic conditional correlations (EDCC-)

GARCH parameterization. The correlation parameters for both alternatives are specified

in the upper panel of Table 3. Size simulation results from both designs are plotted in the

lower panel of Figure 3. While the LM robust test statistics is strongly oversized for the

constant correlations design, the tests become rather well-behaved assuming time-varying

unconditional correlations at all sample sizes. The results (not shown here to conserve space)

are also robust to other transition variables such as when a GARCH process is governing

the changes in the correlations dynamics. Similar behaviour is observed for the dynamic

correlation structure where the empirical size of the tests remains very close to the nominal

size. Moreover, the empirical levels of the tests behave similarly for higher correlation

persistence. As for the power experiments, a large number of observations is required for

the LM robust tests to have reasonable power under time-varying correlation dynamics.

Overall, the chi-squared distribution provides a good approximation to the univariate and

the multivariate robust test statistics for designs when the (un)conditional correlations are

time-varying.
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Figure 3: Size discrepancy plots for tests of parameter constancy in higher-dimensional
ECCC-GARCH models (upper panels) and for artificial series generated from time-varying
conditional correlations DGPs in Table 3 (lower panels). The size discrepancy is plotted
against the nominal size. Results are shown for the univariate (ui_T), i = 1, 2, and
multivariate robust (m_T) test statistics defined in (45) and (46), respectively, with x̂i1,t
and x̂i2,t given in (56) and (56) for T = 2500, 5000. The number of replications for each
simulation equals 5000.
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6 Empirical application

In this section we illustrate the usefulness of the multivariate time-varying extended GARCH

framework to sovereign bond markets. We employ daily data on 10-year government bond

yields from October 3, 2005 until September 30, 2015 (2608 observations) to investigate

volatility spillovers between sovereign bonds markets from Greece (GR), Ireland (IR) and

Portugal (PT). The data were collected from the Thomson Reuters Datastream and trans-

formed into continuously compounded rates of return. To avoid estimation problems, the

observations in the series are truncated with a threshold of +/ − 10 standard deviations

above/below extremely large returns. The aim is to investigate cross-market volatility

transmissions and the dynamics of bond market co-movements during the global financial

crisis and the European debt crisis. The daily 10-year government benchmark bond yields

and their truncated returns are depicted in Figure 4. After the Greek deficit revision, Greece

government bonds increased sharply, followed foremost by Portugal and Ireland. In fact, the

Greek financial bailout in May 2010 was followed by the Irish bailout in November 2010

and the Portuguese bailout in April 2011. A closer look to the percent changes reveals an

increasing pattern in the volatility on these European sovereign bond markets starting in

late 2009. For the Irish series, the increase in volatility is more pronounced at the end of the

sample period.

Table 4: Descriptive statistics of the daily government bond yield percent changes

MIN. MEAN MAX. S.D. SK KR Q(5) ARCH(5)

GREECE −27.95 0.085 27.95 2.606 −0.592 28.96 16.28 40.08
(0.000) (0.000) (0.006) (0.000)

IRELAND −19.09 −0.019 19.09 1.914 1.012 19.84 10.46 79.32
(0.000) (0.000) (0.063) (0.000)

PORTUGAL −20.44 0.011 18.46 2.022 0.526 12.48 19.84 18.50
(0.000) (0.000) (0.001) (0.000)

Note: SK and KR denote, respectively, the excess kurtosis and skewness. Q(5) is the portmanteau
test statistic for serial correlation of Francq and Zakoïan (2009) robust to the presence of ARCH
effects up to order 5 and ARCH(5) is the test for ARCH effects of Engle (1982) up to order 5
(p-values in parentheses).

Summary statistics for the truncated series of yield percent changes can be found in

Table 4. As expected, the bond yield returns exhibit a skewed and heavy-tailed distribution

suggesting the series to be non-normally distributed. Results of the robust portmanteau
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Figure 4: Daily 10-year government bond yields and truncated percent changes. The
threshold for truncation is +/− 10 times the sample standard deviation.

Q(5) statistic of Francq and Zakoïan (2009) show time-dependence in the first moment for

the Greek and Portuguese bond returns. To filter out the linear dependence we fit an AR(1)

to the Greek bond returns and an ARMA(1,1) to the Portuguese bond returns. There is

also evidence of higher-order ARCH effects in the bond returns from the results of the LM

test of Engle (1982).

We apply the modelling strategy for the additive extended GARCH model and begin

with the appropriate LM-type tests. First, we investigate the hypothesis that the ARCH

and GARCH matrices are diagonal. The tests proposed by Nakatani and Teräsvirta (2009)

and Pedersen (2017) are performed under the null hypothesis of no volatility spillovers.

The results (not shown here but available upon request) strongly indicate the presence of

volatility interactions as the p-values of the test statistics are smaller than 0.05. Next we turn

out attention to testing parameter constancy against the extended additive time-dependent

vector GARCH model. Robust versions of the univariate and multivariate test statistics for

testing the constancy of volatility interactions are reported in Table 5. Results of the test

statistics for the constancy of the full set of volatility parameters are shown in the upper

panel. It is seen from the p-values that the null of constant parameters is strongly rejected

by the univariate and multivariate test statistics suggesting that the volatility parameters
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are time-varying and thereby providing support for the TV-ECC-GARCH model. In what

follows, we attempt to disentangle changes in the dynamics of volatility (or co-volatility)

by showing the parameter constancy test results in the standard GARCH coefficients and

cross-market ARCH effects in the middle and lower panels of Table 5, respectively. The

strong rejection of the parameter constancy hypothesis suggests structural changes in the

standard GARCH coefficients and co-volatility processes during the observation period.

Specification of the TV-ECC-GARCH model includes determining the parameterisation

of the transition function by choosing ki. After parameter constancy is rejected, we attempt

to identify the number of locations using the sequence of nested null hypothesis as discussed

in subsection 4.3. Since the null hypothesis yielding the strongest rejection (measured by the

p-value of the robust test) is H02i, the rule is to select ki = 2 for the Irish bond market. As for

Greek and Portuguese returns, a single transition parameter suffices to capture the dominant

changes in the volatility dynamics since the p-value of the test of H01i is the smallest. For a

more detailed discussion about this procedure see Teräsvirta (1994).

For fitting the TV-ECC-GARCH model we use the two-step approach of Francq and

Zakoïan (2016) where the algorithm consists in estimating the individual conditional variances

equation-by-equation and obtaining estimates of the conditional correlations specification in

the second step. To obtain fully efficient estimates, the procedure must be repeated iteratively

until convergence where the estimates are obtained by maximizing the full log-likelihood

function. Compared to the two-step procedure, the multi-step approach yields more accurate

estimates, but the computational burden is severely aggravated and the estimation problem

becomes numerically more difficult. The two-step estimates of the model can be found in

Table 6. The estimation results are broadly consistent with the results of the parameter

constancy tests. The estimates as shown in the upper panel of Table 6 indicate there is

evidence of structural changes in the volatility dynamics. We find an increasing trend in

the baseline volatility for the three bond markets. Not surprisingly, the level of persistence

increases from the low- to the high-volatility extreme state over time. This is precisely what

one would expect moving from a tranquil to a turbulent period in the bond markets. The

change in the volatility persistence is explained mostly by higher ARCH effects and smaller

GARCH coefficients between the extreme states of volatility for Ireland and Portugal.
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Table 5: Robust test statistics from the testing for parameter constancy in the univariate and
multivariate forms for all parameters (upper panel), for the standard GARCH coefficients
(middle panel) and for the cross-market ARCH coefficients (lower panel). The p-values are
reported in parentheses.

GREECE IRELAND PORTUGAL

H0i: ϕi3 = ϕi2 = ϕi1 = 05 33.72 40.35 29.83
(0.004) (0.000) (0.013)

H03i: ϕi3 = 05 8.043 3.988 6.281
(0.154) (0.551) (0.280)

H02i: ϕi2 = 05|ϕi3 = 05 2.618 17.53 1.962
(0.759) (0.004) (0.854)

H01i: ϕi1 = 05|ϕi3 = ϕi2 = 05 13.32 7.102 15.64
(0.021) (0.213) (0.008)

H0: ϕ1 = (ϕ′GR,1,ϕ
′
IR,1,ϕ

′
PT,1)

′ = 015 36.06
(0.002)

H0i,1: ϕi3,1 = ϕi2,1 = ϕi1,1 = 03 30.35 25.33 15.85
(0.000) (0.003) (0.051)

H03i,1: ϕi3,1 = 03 5.467 3.256 3.473
(0.141) (0.354) (0.324)

H02i,1: ϕi2,1 = 03|ϕi3,1 = 03 1.327 11.76 1.388
(0.723) (0.008) (0.708)

H01i,1: ϕi1,1 = 03|ϕi3,1 = ϕi2,1 = 03 9.396 6.926 11.56
(0.024) (0.074) (0.009)

H0i,2: ϕi3,2 = ϕi2,2 = ϕi1,2 = 02 24.66 9.287 19.27
(0.000) (0.158) (0.004)

H03i,2: ϕi3,2 = 02 3.236 3.361 1.406
(0.198) (0.186) (0.495)

H02i,2: ϕi2,2 = 02|ϕi3,2 = 02 4.304 6.338 6.446
(0.116) (0.042) (0.040)

H01i,2: ϕi1,2 = 02|ϕi3,2 = ϕi2,2 = 02 8.784 0.735 3.849
(0.012) (0.692) (0.146)
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The off-diagonal elements of the estimated ARCH matrix for each extreme volatility state

are reported in Table 6. The results suggest that the bidirectional cross-market volatility

effects between the Portuguese and Greek sovereign bonds changed over time. In other words,

the effect of shocks to the Portuguese bond on the volatility of the Greek bond increased

significantly after October 2009. Conversely, we observe that the effect of shocks to the Greek

bond on the volatility of the Portuguese bond is notably larger before January 2011. The

effects on the Irish bond volatility from shocks to the Greek bond seem to be stronger before

March 2010 and after April 2015. When the shock occurs to the Portuguese bond, the effects

on the Irish bond volatility are significantly higher between March 2010 and April 2015.

Our results suggest higher effects on the Portuguese sovereign bond volatility after January

2011 from shocks to the Irish bond. Overall, volatility interactions appear to be stronger

during the most acute phase of the European sovereign debt crisis. Our findings suggest

that volatility-based contagion is identified bidirectionally for the pairwise Greece−Portugal

and Ireland−Portugal, and unidirectionally from Greece to Ireland.

In the lower panel of Table 6 are reported the estimated transition parameters. The

slope estimates yield smooth changes between the extreme states of volatility as depicted in

Figure 5. From the results, a single transition seems to be sufficient to capture the dominant

changes in the volatilities of the Greek and Portuguese markets whereas two major structural

changes can be identified in the Irish bond market. By looking at the locations of transition,

the mid-point of change1 occurs in October 2009 for the Greek sovereign bond market and

in January 2011 for the Portuguese sovereign bond, few months before its financial request.

With respect to the Irish sovereign bond, the first and second structural changes occur,

respectively, in March 2010 and April 2015.

A closer look to the estimated volatilities of the sovereign bond returns in Figure 6 shows

an increasing trend following the Greek deficit revision (marked by the red dotted line) which

is particularly remarkable for Ireland and Portugal by the end of the sample period. The

results further suggest that the ARCH effects are assumed to be constant, the impact of

larger shocks tends to be underestimated by the ECCC-GARCH model. Therefore, constant
1For a general transition function, the transition may be already half-completed at c if γ is small. When

the speed of transition is very high, it has no implication for defining the phases of transition using the
estimated locations.
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Table 6: Estimation results (standard errors in parentheses) for the variance equations (upper
panel) and transition functions (lower panel) of the TV-ECC-GARCH(1, 1) model in the
extreme states.

STATE I

GREECE IRELAND PORTUGAL

ω̂ 0.117 0.012 0.001
(0.042) (0.007) (0.008)

Â1

0.091 0.006 0.000
(0.034) (0.015) (0.028)

0.023 0.000 0.013
(0.011) (0.017) (0.016)

0.040 0.000 0.008
(0.011) (0.008) (0.015)

B̂1

0.702
(0.080)

0.947
(0.016)

0.944
(0.012)

STATE II

GREECE IRELAND PORTUGAL

ω̂ + ω̂∗ 0.609 0.053 0.131
(0.059) (0.036) (0.043)

Â1 + Â∗1

0.243 0.000 0.015
(0.013) (0.006) (0.007)

0.000 0.211 0.034
(0.013) (0.149) (0.014)

0.002 0.020 0.032
(0.004) (0.008) (0.009)

B̂1 + B̂∗1

0.742
(0.011)

0.755
(0.133)

0.924
(0.014)

GREECE IRELAND PORTUGAL

γ̂i 12.76 15.49 6.962
(1.773) (12.91) (2.233)

ĉi1 0.400 0.441 0.529
(0.032) (0.205) (0.084)

Oct 2009 Mar 2010 Jan 2011

ĉi2 0.954
(0.178)

Apr 2015

volatility interactions may be insufficient to capture all the variation in the daily volatilities

during periods of market distress. This result is especially notable for the volatility processes

of the Greek and Irish sovereign bonds. For smaller shocks and calm periods, the estimated

volatility processes from the TV-ECC-GARCH and ECCC-GARCH models remain very

close. Extending the specification by allowing cross effects between markets does improve

the model fit to the data according to model selection by the Bayesian information criterion.

Accounting for nonstationarity in the volatility equations leads to further improvement in

the estimation of the model as persistence is notably reduced and the information criteria is

minimized by fitting the TV-ECC-GARCH model.

Test results associated with the hypothesis of constant conditional correlations strongly

reject the null hypothesis against the alternative of dynamic conditional correlations and

smoothly time-varying correlations. Results are not shown, but they are available upon

request. For more details on the tests, we refer to Engle (2002) and Silvennoinen and

Teräsvirta (2005, 2015). The estimated results for different correlation structures are visible
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Figure 5: Estimated transition functions for the Greek, Irish and Portuguese sovereign bond
returns. The dashed vertical lines indicate the dates of the Lehman Brothers bankruptcy
(green line), the Greek deficit revision (red line) and the first Greek financial bailout in May
2010, the Irish bailout in November 2010, the Portuguese bailout in May 2011 and the second
Greek bailout in July 2011 (blue line).
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Figure 6: Estimated conditional volatilities for the Greek, Irish and Portuguese sovereign
bonds from the TV-ECC-GARCH(1, 1) model (blue curve) and ECCC-GARCH(1, 1) model
(grey curve). The dashed vertical lines indicate the dates of the Lehman Brothers bankruptcy
(black line), the Greek deficit revision (red line) and the first Greek financial bailout (green
line).
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Figure 7: Estimated bivariate dynamic conditional correlations (grey line) from the TV-
EDCC-GARCH(1,1) model, time-varying unconditional correlations (blue line) from the
TV-ETVC-GARCH(1,1) model and constant conditional correlations (red line) from the
TV-ECC-GARCH(1,1) model.

in Figure 7. We choose estimating the bivariate models over the 3-dimensional model in

order to obtain more precise estimates for the transition parameters in the TV-ETVC-

GARCH(1,1) model. The estimation results have interesting interpretations. We observe

that the short-run dynamic correlations obtained from the TV-EDCC-GARCH(1,1) model

tend to fluctuate around the time-varying unconditional correlations estimated from the TV-

ETVC-GARCH(1,1) model. The time-varying (un)conditional correlations show a decreasing

trend over time suggesting that the co-movements of the yield returns become weaker during

the period of higher uncertainty. The long-term time-varying correlations show a downward

trend movement descending to a level lower than that of before the global and sovereign

debt crises and turn out to become smaller than "normal" market co-movements proxied by

the constant conditional correlations1.
1As the level of market interdependence, the normal comovement that is observed during both calm and

turbulent periods, we use the estimated constant conditional correlation for the total sample period; see
Martins and Amado (2018)).
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7 Conclusions

In this paper we propose an additive structure for the extended vector GARCH process

to investigate the dynamics of co-dependence volatility across financial markets. In this

regard, we consider the general class of conditional correlation GARCH models where the

volatility parameters are allowed to change smoothly over time by adding a deterministic

time-dependent component to the variance equations. Within our approach, the timing of

volatility regime changes is identified from a purely data-driven procedure.

For detecting changes in the volatility and co-volatility spillovers, we develop a Lagrange

multiplier test for testing the hypothesis of parameter constancy where the rejection of

the null hypothesis provides evidence for structural changes in the (co-)volatility processes.

Crisis-contingent structural changes in the volatility interactions can be interpreted as

cross-market contagion, thereby the new test can be regarded as a volatility-based test of

contagion. Simulation experiments show that the robust univariate LM-type version of the

test to departures from normality is reasonably well-behaved in finite samples.

Our modelling technique is applied to Greek, Irish and Portuguese sovereign bond

returns and we find the new statistical test to be an useful tool in model specification for

the extended vector GARCH model. Results indicate a strong rejection of the parameter

constancy hypothesis suggesting structural changes in the standard GARCH coefficients

and co-volatility processes during the observation period. Once the model accounts for

time-variation in the volatility interactions, the fit of the model substantially improves and

the evidence for volatility persistence is remarkably decreased. The computational burden of

the higher-dimensional model is alleviated by estimating the conditional variances equation-

by-equation for each individual series in the first step and the correlation matrix in the second

step. Our estimation results further suggest that volatility interactions seem to be stronger

during the most acute phase of the European sovereign debt crisis. Volatility-based contagion

is also identified bidirectionally for the pairwise Greece-Portugal and Ireland-Portugal, and

unidirectionally from Greece to Ireland.

Albeit the tests for structural changes in the dynamics of volatility (or co-volatility) seem

rather robust against time-varying conditional correlations, it would be of interest to extend

these tests to cover the extended conditional correlation GARCH model with time-varying
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correlations. Another interesting practical question would be to investigate how volatility

responds to negative and positive shocks within this framework. A possible extension to the

model would be to include the so-called leverage effect as in Francq and Zakoïan (2012), but

since empirical evidence is scanty in response of conditional volatility to the sign of shocks

for bond returns (Cappiello et al. (2006)), the effects of asymmetric volatility shocks were

not considered in this work. Such issues, however, are left for future research.
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