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Featured Application: A mental and emotional state priming BCI to assist Neurofeedback self-
regulation serious games.

Abstract: Neurofeedback training (NFT) is a technique often proposed to train brain activity SR with
promising results. However, some criticism has been raised due to the lack of evaluation, reliability,
and validation of its learning effects. The current work evaluates the hypothesis that SR learning
may be improved by priming the subject before NFT with guided mindfulness meditation (MM). The
proposed framework was tested in a two-way parallel-group randomized controlled intervention
with a single session alpha NFT, in a simplistic serious game design. Sixty-two healthy naïve subjects,
aged between 18 and 43 years, were divided into MM priming and no-priming groups. Although both
the EG and CG successfully attained the up-regulation of alpha rhythms (F(1,59) = 20.67, p < 0.001,
ηp

2 = 0.26), the EG showed a significantly enhanced ability (t(29) = 4.38, p < 0.001) to control brain
activity, compared to the CG (t(29) = 1.18, p > 0.1). Furthermore, EG superior performance on NFT
seems to be explained by the subject’s lack of awareness at pre-intervention, less vigour at post-
intervention, increased task engagement, and a relaxed non-judgemental attitude towards the NFT
tasks. This study is a preliminary validation of the proposed assisted priming framework, advancing
some implicit and explicit metrics about its efficacy on NFT performance, and a promising tool for
improving naïve “users” self-regulation ability.

Keywords: self-regulation; assisted Neurofeedback; neurostimulation; mindfulness; randomized;
serious games BCI

1. Introduction

Techniques for self-regulation (SR) of mental states are widely used in clinical, pro-
fessional, athletic, and the game industry, whether for therapeutic, performance, or enter-
tainment reasons. They include imagery training, music regulation, breathing, meditation,
amongst others [1–6]. Many therapeutic implementations of SR have been using serious
games to increase user engagement and motivation for anxiety disorders [7], epilepsy [8],
attention-deficit/hyperactivity disorder [9], and cognitive training in elders [10]. However,
the combined use of SR and serious games is not a mature methodology. Some criticism
has been raised, pointing to the need for gradual stimulation, extra personalization of the
methodology, and more rigorous validation of its efficacy [7,9].

Appl. Sci. 2021, 11, 7725. https://doi.org/10.3390/app11167725 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8425-3501
https://orcid.org/0000-0003-2715-4037
https://doi.org/10.3390/app11167725
https://doi.org/10.3390/app11167725
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167725
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167725?type=check_update&version=4


Appl. Sci. 2021, 11, 7725 2 of 23

With the advancement of SR technologies, mechanistic approaches are increasing, such
as brain-computer interfaces (BCI) that utilize our ability to learn how to self-regulate brain
states when provided with corrective feedback training (in this field SR is also known as
self-control) [11–14]. This type of training is defined as neurofeedback training (NFT). Put
simply, a neurofeedback (NF) interface works as a virtual “mirror” for neuronal oscillations
occurring within the brain, empowering a person to modify them [6–8] explicitly. In this
way, NFT acts as a technique to train brain activity SR (in EEG, train brainwave SR). In
generic terms, SR is a vital adaptation process to environmental and social challenges.
Moreover, SR deficits are linked with diverse behavioural problems and mental disorders
such as depression, rumination, distraction, anxiety, stress, and attention control [1,3]. In
neurophysiological terms, the adaptation process depends critically on the brain’s ability to
carefully control the time within—and transitions among—different states [15]. Moreover,
NFT promising results attracted the attention and scrutiny of the scientific and medical
community, and the technique of NF received criticism concerning the insufficient evalua-
tion, reliability, and validation of its training effects [16]. With the current protocols, the
benefits from NFT significantly differ between subjects, with a high percentage of inefficacy
(this percentage varies up to ≈50% of non-responders/non-learners, and depending on the
protocol, it can be higher). Leading to the frustration of potential users, economic costs,
and discredit in NFT and its professionals [5,12,13,17–22].

Multiple mechanisms drive NF SR learning and experimental outcome [14,16]. Nonethe-
less, it has been hypothesized that an “optimal” self-regulation state is necessary to achieve
significant performance in voluntary modulating brainwaves. In this state, the learner
should be more engaged, focused (mental focus), undistracted, and mindful of the experi-
ment without judgement of present tasks. Conversely, the learner should avoid self-related
thinking (self-monitoring), ruminating, distracting and task-unrelated thoughts, irrelevant
associations between internal states and external reward (doubts, questioning, evaluation of
progress), and mind-wandering [23–26], suggesting a correlation to focused attention forms
of mindfulness meditation (MM). Indeed, during MM, an individual is trained to more
efficiently sustain his/her attention toward an intended object (in the current experiment,
bodily breathing sensations, BM, and internal imagery of a calm place, IM) and away from
external (e.g., external stimulus like sounds, visual cues) or internal sources of distraction
(e.g., mind-wandering thoughts) [26–28]. From a dynamical system perspective, the subject
needs to “walk” (transition between states) in a trying-sensing continuum until it reaches
the “optimal” sensing state [11,15,26]. Therefore, brainwaves SR practice seems closely re-
lated to MM, and they both seem to depend upon three core mechanisms: attention control,
self-awareness, and emotional regulation [4,25,29,30]. In addition, current “big data” fMRI
research investigates the influence of pre-training/priming mechanisms associated with
brain structures and NF success [31] and activation levels on NF success [32] to find possi-
ble predictors of NFT performance. Moreover, the same group investigated a wide range of
different subject- and study-specific factors on real-time fMRI NF success [33], linking the
significant positive effect of pre-training to the familiarization of the participants with the
NF setup and mental imagery task before NFT runs. Other EEG studies focused on finding
predictors from the resting state baseline [22,34–36], psychological factors [23,24,34,37–46],
and neurophysiological factors [35,36,47–55].

Additionally, current EEG literature relates these states with up-regulation (synchro-
nization) of alpha rhythm or/and sensory-motor rhythm (SMR), but also with desyn-
chronization (downregulation) of surrounding bands [5,17,18,30,56–61]. The most repli-
cated electro-neurophysiological correlates of MM include phasic increases in the am-
plitude of EEG alpha oscillations during MM practice and increased resting EEG al-
pha amplitude. MM and EEG alpha NF have been shown to improve attentional per-
formance and increase full 8–12-Hz EEG alpha amplitude, as shown in the past two
decades [4,27,28,30,60,62–67]. As such, EEG alpha rhythm was selected as the feedback
signal of interest in the current study.
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Based on these previous studies, we hypothesized that it would be possible to develop
a “Neurofeedback assisted self-regulation machine” combining the technical, behavioural,
psychological, emotional, and electrophysiological components of EEG BCIs, NFT, MM, and
SR in a single framework. The current work intends to shed light on the specific question
of “how” priming intervention right before NFT (pre-NFT) affects NFT performance (of
alpha brainwave) and the emotional state—acquired using qualitative emotional state self-
reports and the quantitative emotional state biomarkers of galvanic skin response (GSR)
and heart rate variability (HRV). This framework could potentially improve the efficacy of
SR serious games targeting therapeutic, performance, or entertainment applications. The
current work belongs to a broader three-part study, in which the contributions were: (1)
the definition of the foundations of the framework and its design for priming subjects to
self-regulate their NF; (2) the development of NeuroPrime [68], an open-source version
of the framework in Python for utility, expandability, and reusability; (3) the testing and
validation of the framework in different experiments, one previously published [69], that
enabled the grasping of the requirements for validation, and the one described in this
paper. These preliminary steps aimed to answer what can be gained by developing this
framework. Specifically, the fundamental question is, does priming with external stimulation
affect the SR of NF? Questioning the targets, which target states (from EEG, GSR, HRV, and
self-reports) can be “optimal” for learning SR of brain activity (up-regulation of alpha)? Regarding
the stimulus, are mindfulness stimuli a good starting primer baseline to arrive at the “optimal”
target, compared to, for example, the standard rest baseline tasks? Measurement-wise, how can
we measure each individual’s target performance (learning and behavioural outcomes)? Regarding
the experimental temporal design, what is the best temporal design to implement the framework?
Regarding the software, is it possible to develop software to implement this framework?

This paper focuses on the significance of the current experiment on answering the fun-
damental question, precisely, which physiological (implicit) and declarative measurements
can provide information about the MM priming effects on NFT performance and the emo-
tional state of experimental participants. Hence, following the current NFT experimental
checklist [16], we present a randomized controlled intervention with multidimensional
signals processing and multivariate statistical analysis.

2. Materials and Methods
2.1. Participants

Criteria. The participants eligible for this study were Portuguese-speaking healthy
subjects aged 18–43 years, with normal or corrected-to-normal vision. At study entry,
they needed to be naïve or did not perform, at least, in the last year any NFT session.
Exclusion criteria were a history of psychiatric or neurological disorders and the taking
of psychotropic medications or addictive drugs. In addition, they were requested to give
voluntary written informed consent.

Groups sample. Initially, 121 participants were eligible for inclusion. Only 83 were
assessed for eligibility, and 62 participants were eventually randomized over two interven-
tions: the experimental priming group (EG, n = 31) and the control no-priming group (CG,
n = 31). Moreover, the priming stimuli (PRIME) and the eyes sequence (ES) of open (EO)
and closed (EC) eyes were randomized. The randomization criteria were to balance the
groups in sample and gender. Sixty-two participants completed the study; there were no
participant dropouts, and no adverse events were recorded. EEG power spectra during the
different task conditions were available for 60 participants (n = 30 EG, n = 30 CG). EEG
missing data were due to technical reasons (n = 1) and outliers at baseline tasks (n = 1).
Auxiliary measures like the battery of self-reports and GSR measures were available for
the 62 participants, while the HRV was missing data due to technical reasons (n = 3). As
such, we selected the 60 participants from EEG for the study of this paper. The consort flow
diagram of this single session randomized controlled experiment is presented in Figure 1.
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Figure 1. Consort flow diagram of the randomized controlled intervention. Of the 121 participants
eligible for inclusion, 38 declined to participate, and 21 did not meet the inclusion criteria. Sixty-two
participants were randomized and allocated to the priming and no-priming group. There were no
dropouts, and all the subjects completed the tasks. During analysis, missing data from subjects in
EEG and HRV were detected, and one CG subject with outlier EEG data was removed.

Procedure. All the protocols were in accordance with the Declaration of Helsinki,
and the reported study was approved by an Internal Review Board (IRB), the local Re-
search Ethics Committee of the University of Minho (Subcommission of Life and Health
Sciences, SECVS, created under the University of Minho Ethics Commission, CEUM).
Written informed consent was obtained before participation. Participants were recruited
from the University of Minho student and working community. Intervention measures
included questionnaires (psychological traits and states), neuropsychological tasks, EEG,
GSR, and HRV.

2.2. Randomizations and Study Blinding

A two-way parallel-group study with balanced randomization in sample and gender
was conducted (EG|CG). Randomization was performed using Python “random” package.
First, a list of subjects was created with balanced groups (EG|CG, EO|EC, BM|IM) in
sample and gender, and then, the list was shuffled using “random.shuffle()” function. From
the schedule time slots for experimental acquisition—slot 1 (9:00 a.m. to 11:00 a.m.), slot 2
(11:00 a.m. to 1:00 p.m.), slot 3 (1:00 p.m. to 3:00 p.m.), and slot 4 (3:00 p.m. to 5:00 p.m.)—the
participants would choose the slot to be allocated, and they were allocated following the
rule first come/first served.

PRIME stimulus (BM|IM) and the ES protocol (EO|EC) were double-blinded, i.e.,
neither the subject nor the researcher knew the group. The main groups (EG|CG) were
single-blinded to the subject.
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Power analysis. From a priori analysis, for two dependent groups, a total sample size
of 54 (i.e., 27 per group) was calculated (by G*power version 3.1.9 [70]) to be sufficient
to detect a medium effect size (f = 0.25) in a between moments repeated measure (RM)
analysis of variance (ANOVA) with an alpha of 0.05 and a power of 95% (i.e., testing same
group intervention on different tasks). While for two independent groups within-moments,
a total sample size of 60 (i.e., 30 per group) was only sufficient to detect a large effect size
in a one-way ANOVA (f = 0.47) and a t-test (f = 0.86) with an alpha of 0.05 and a power of
95% (i.e., testing different group interventions on the same task).

2.3. Interventions and Control Condition

Our framework adopts a closed-loop brain state-dependent stimulation (BSDS) de-
sign [13] and a simple NFT protocol to test whether mindfulness (focused attention on
stimuli) has a role in NF SR. The methodology of a BSDS is to substitute the NFT learner
(explicit NF), who is actively engaged and adapting strategies to alter the brain activity
in the intended direction, with a stimulator device (implicit NF), which is adapted online
to present an experimental stimulus [13]. Hence, our framework for studying brain states
and stimuli that complement the NFT for a better self-regulation performance uses the two
methodologies for a loop of implicit and explicit training, testing if the implicit priming of
the target brain state at pre-NFT (pre-training) can facilitate/scaffold the explicit control
of the brain activity towards the target brain state during NFT. Nonetheless, considering
that the current experiment represents the first steps within this framework, instead of
adapting online the stimulus, we randomized two mindfulness stimuli (BM|IM) to assess
the viability of a closed-loop machine learning BSDS framework.

To simplify the analysis of stimulus-response oscillations, PRIME with MM is the
target condition, while the resting-state task (REST) is the no-priming control condition.

Priming. The external PRIME stimuli are pure instructional audio manipulations
to lead the person from a subjective trying state to a more sensing state before the NFT
(pre-training). These transitions can be referred belonging to the trying-sensing contin-
uum discussed by Davelaar and colleagues [26]. During the EO condition, the subject is
instructed to “focus on the cross in the centre of the screen and follow the audio-guided
instructions”, while during the EC condition, the subject is instructed to “close the eyes
and follow the audio-guided instructions”. The stimuli were adapted from previously pub-
lished procedures [71], reviewed/transcribed to Portuguese by a specialized mindfulness
psychologist, and recorded by a hospital Nurse on macOS using Garageband® software.
These meditation instructions are consistent with recent psychological conceptualizations
of MM that emphasize the development of attentional abilities combined with a specific,
non-judgmental attitude toward the different mental experiences that may arise during
MM [4,27–29].

No-priming. The REST task, based on resting-state baseline tasks, is the no-priming
control condition. In this type of task, the participant is instructed to “try to relax” for the
duration of the task. Moreover, if the task is with EO, the participant is instructed to “focus
on the cross in the centre of the screen”, while with EC, the participant is instructed to “close
the eyes”. This choice of control condition was due to the hypothesis that the attentional
focus would wander around during the REST control condition when the subject is only
instructed to “try to relax”.

Additionally, we hypothesize that the MM priming task will promote attentional
focus, awareness, and less self-related thinking. Concerning these hypotheses, Davelaar
et al. found surprising evidence that the typical instruction, “try to relax and focus on the
task”, used in NFT and REST tasks, can be detrimental to the learning success [26]. As
such, it is expected that the PRIME stimuli, pure implicit instructions guiding the person
toward the target subjective experience, can stimulate SR learning performance in short
NFT sessions compared to typical REST tasks.

Eyes protocol. To test EO and EC conditions, each subject received a randomized ES
intervention. In this study, our distinguishing feature was to use both EO and EC conditions
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for possible comparisons. Previous single-session studies [42,59,72–74] have tended to
use EO conditions for comparisons with the majority of NFT literature in multi-session
designs [17,54,60,75,76]. Moreover, the alpha amplitude is generally seen as a function of
reduced sensory input from the thalamic nuclei to the cortex [77], and keeping the EO will
naturally suppress alpha amplitude relative to an EC condition, providing a lower baseline
from which to attempt to increase the alpha amplitude, thereby presumably more amenable
to intervention effects via NFT [22,27,78]. Nevertheless, MM is most often practiced with
EC in the majority of studies [27,66]. As such, we implemented both conditions, and their
resting-state baselines can be used to predict NFT performance [22,35,36,54].

2.4. Experimental Design

The design of the experimental study is represented in the following Figure 2 This
study tested 60 participants grouped in 2 interventions: no-priming CG (n = 30) and
priming EG (n = 30). Before the intervention, each participant was instructed about the
tasks and did the battery of trait self-reports. During the interventions, each participant
of CG did a single session of no-priming, while the EG did a single session of priming.
The session was divided into six blocks (B), with a total of 14 tasks (T). The first and the
last block are equal for the two groups, named block in (Bin) and Block out (Bout). Bin
is used to extract the initial baseline threshold from REST EC and EO tasks (T1 and T2
respectably), the first EO NFT, and the first emotional states (using the TMS and POMS).
Bout has the same tasks as Bin and serves as the outcome block for comparison. The
four blocks between Bin and Bout, B1 to B4, are different for EG and CG. The ES was
randomized between two sequences, ES1: EO, EC, EC, EO and ES2: EC, EO, EO, EC. The
PRIME stimuli were also randomized between two PRIME sequences (PS), the PS1, BM,
IM, BM, IM and PS2: IM, BM, IM, BM. While the CG had a stimuli sequence (SS) of only
REST tasks, RS: REST, REST, REST, REST. All participants were randomized between ES1
and ES2 (2 blocks for each condition EO|EC). The CG participants repeated 4 blocks of the
REST task (no-priming) followed by the NFT task, while the EG were further randomized
between PS1 and PS2 (with two blocks for each condition BM|IM), with each block having
the PRIME task followed by the NFT task. After the intervention, participants were tasked
to describe the perceived outcome of the experiment and the mental strategy they have
used to gain control over the moving bars. The reports were recorded electronically.

NFT Paradigm. The NF system provided audiovisual feedback modality (guided
by [13,16]) for increasing alpha power (8–12 Hz). EEG signal was recorded over electrode
position Pz. One vertically moving bar, depicting the power of the feedback frequency, was
presented on a screen, as shown in Figure 2. The bar in the centre of the screen presented
feedback of the alpha power from the Pz channel. Participants were rewarded by getting
points, displayed on the feedback screen below the vertical bar and an audible sound
cue. Positive feedback was delivered when alpha power increased above an individually
calculated threshold. As referred before, at Bin, a 90 s baseline/resting measurement, REST
task, was used to define the individual threshold (alpha: mean of alpha power during
rest). The thresholds are adapted after each NFT task to prevent the extreme cases of the
trained EEG frequency in a single session design due to artefacts [58]: if 90% of epochs are
above the threshold, then its value is updated to threshold + 0.1 × threshold and if only
10% of epochs above the threshold then threshold − 0.1 × threshold. The NFT session
contained six feedback tasks with four EO NFT runs and two EC NFT runs. Before starting
NFT, participants did not receive any specific instruction on how to control the moving
bars. They only got the minimal instruction of being physically relaxed, mentally focused,
avoiding producing artefacts, and reading the instructions on the screen at the beginning
of each block.
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Figure 2. Experiment Block Mockup. Time flows from left to right, top to bottom. In a single session,
first, the subject fills the traits self-reports. Then, the training starts. There are 6 blocks and 14 tasks in
total. Block in and Block out each begins with rest state with eyes closed then eyes open, followed by
alpha NFT. From block 1 to 4, in the EG first is the PRIME, then NFT. In the control group PRIME is
substituted by REST. PRIME stimuli are randomized between IM and BM with two PS, PS1 and PS2.
Moreover, from blocks 1 to 4, eyes closed and eyes open are randomized between blocks with two
ES, ES1, and ES2. In the diagram, the “or” signal is represented by “|”. It is used to separate the task
for each group or the randomizations of ES (EO|EC) between blocks and the randomizations of PS
(BM|IM).

This experimental design enables the study of linear feature changes, within-subjects
(i.e., between tasks same group) and between-groups (i.e., same task or combination of
tasks in different groups), on the REST, PRIME, and NFT tasks. These feature changes
enable to test the main objective: whether the PRIME task before the NFT can facilitate or
scaffold the transition to the target brain activity, alpha (see Figure 3).
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2.5. Questionnaires

Psychological traits. To investigate different personality traits related to the NF
self-regulation performance and for descriptive baseline purposes, participants first com-
pleted a sociodemographic questionnaire (SOC), then standard, well-validated Portuguese
versions of scales to assess mindfulness, emotional regulation, anxiety, depression, and
stress. For mindfulness-related traits, the Five Facet Mindfulness Questionnaire, FFMQ,
addressing the traits of “describe”, “observe”, “nonjudge”, “actaware”, and “nonreact” [79,80],
was considered. For symptoms of depression, anxiety, and stress, the Depression Anxiety
Stress Scale, DASS [81,82], was used. For emotional regulation, the Emotional Regulation
Questionnaire, ERQ, measuring “cognitive reappraisal” and “expressive suppression” [83,84],
was applied.

Emotional states. In order to assess the immediate outcomes of the interventions on
mood and mindfulness state, participants also completed the Profile of Mood States-Short
Form, POMS [85] and the Toronto Mindfulness Scale, TMS [86], which assesses the degree
to which participants experience mindful curiosity (e.g., “I was curious to see what my mind
was up to from moment to moment”) and mindful decentering (e.g., “I experienced myself
as separate from my changing thoughts and feelings”). Neurofeedback and emotional states
results are complementary and offer a way to relate the phenomenological structure of
subjective experience with a real-time characterization of large-scale neural operations
continuously over the course of the experiment.

For more detail in the trait and states features, go to Appendix A.4.

2.6. Physiological Measures

The EEG, GSR, and HRV signals were continuously acquired to monitor the subjects
online during the tasks. The EEG power spectrum, GSR tonic and phasic components of
skin conductance level, and HRV photoplethysmography (PPG) signals were collected.
The features extracted and analysed from each signal are described in more detail in
Appendices A.1–A.3, respectively.

2.7. Recordings

EEG signals were acquired with a 32 channels amplifier ActiCHamp® from Brain
Products GmbH. The cap from EASYCAP GmbH has a unified, optimized layout based on
an international 10–20 localization system. The ground is located at Fpz position and is a
reference-free montage. Any referencing is done post hoc in the software. Before electrode
placement, the skin was prepared with a mild skin cleanser, ethanol 70% V/V, to help
improve the impedance and conductance of electrodes. Then, electrodes were affixed with
a conductive viscose gel, SuperVisc®, high viscosity electrolyte gel for active electrodes,
EASYCAP GmbH. Impedances were checked before starting the experiment to be below
30 kOhm and critical channels below 10 KOhm, and the signal was visually inspected to
find possible channels with noise. The computer screen was placed 60 cm from the edge of
the table. The mouse was only used by the researcher while the keyboard was placed at the
edge, close to the participant, so he could use it to interact with the task interface. A cup of
water was always present for the subject to drink if needed. Moreover, Bluetooth wireless
headphones were used for a lesser impact over the electrodes, consequently less prone to
artefacts. A new biosignals device, James One from MindProber Portugal, with a built-in
GSR sensor and a PPG sensor that allows HRV measurements [87,88]. The biodevices were
placed in the left hand of all the participants, even if they were lefties. GSR sensor was
placed in the palm, and the PPG sensor was placed in the index finger. Additionally, a
tablet was used to acquire the self-reports answers digitally using Google Forms®.

2.8. Multidimensional Signals Processing

Software. The online experimental paradigm was built from the ground up on Python
open-source language, synthesizing and using the best-tested parts of specific BCI and EEG
modules. For more detail on NeuroPrime, check [68]. The offline data analysis pipelines
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were run first in Brain Vision Analyzer (Brain Products GmbH) for visual inspection of
noisy channels, noisy epochs, and the processing pipeline’s automation planning. Then,
NeuroPrime (with Python modules like MNE) was used for advanced signal process-
ing/classification and automation of the pipeline [68].

NFT. During the EEG NFT online loop, the data were updated at an average rate
of 200 ms in each iteration. It was concatenated in an epoch buffer of 1 s, meaning that
the epoch is made from 800 ms of historical data and 200 ms of new data. There is no
real-time loop in the offline analysis, the entire length of each task is analysed instead, and
during pre-processing, these data were segmented into epochs of 1 s. Continuous EEG
measurements were band-pass filtered with a low cut-off of 1 Hz and a high cut-off value
of 40 Hz using a finite impulse response filter (FIR). The original sampling of 1 kHz was not
subsampled to maintain a higher resolution on the fast Fourier transform (FFT). Although
a common-reference was used for online data analysis, the data are re-referenced to an
average-reference previously to offline data processing. Four EEG channels were selected
for further processing: Fp1, Fp2, Fz, and Pz. In both online and offline processing pipelines,
we excluded epochs with abnormally large amplitudes with a maximum peak-to-peak of
over ±100 µV for online and ±150 µV for offline and also based on the flatness of the signal
with a minimum peak-to-peak acceptance of ±0.5 µV. Additionally, in offline analysis,
epochs contaminated by spurious gross-movement and other non-stereotyped artefacts
were also identified by visual inspection and additionally rejected. Afterwards, during
processing, the band power values were extracted from the power spectrum of the Pz
channel (for theta 4–8 Hz, alpha 8–12 Hz, SMR 12–15 Hz, beta 15–35 Hz). For a list of
descriptions of all the EEG features, please go to Appendix A.1.

GSR and HRV . They were continuously monitored for all the participants during the
session. Each signal was acquired at a 1 s interval. GSR tonic (skin conductance level—
SCL) and phasic components (skin conductance responses—SCR) were extracted offline
from each 1 s interval, with an exosomatic direct current sensor [87]. HRV time domain,
frequency domain, and non-linear domain features were extracted from the 1 s PPG RR-
intervals [88]. For a list of descriptions of all the features, please go to Appendix A.3.

2.9. Data Analysis

Theoretically, an NFT framework implies that any observable measure of brain activity
can be extracted and tested for volitional control. Nonetheless, what constitutes successful
control, and how to quantify it? In the engineering sense, successful control can be viewed
as enhancing the signal-to-noise ratio of a parameter relative to a control condition, a
reference condition (e.g., resting-state, sham, or sensory stimulation without control),
which could be administered sequentially or interspersed randomly in the experiment [11].

EEG measure. In the current work, the EEG band measure assessing NFT successful
control is based on the suggested measures from Dempster and Vernon [89] that can be
used to assess feature changes of brain activity during NF. We choose to study changes in
absolute values of the alpha amplitude of the Pz channel, reflecting brief and temporally
unstable increases over time from the learner. Then, this power spectra measure was
log10-transformed to obtain normally distributed data.

Group domains. Apart from the intervention groups (EG, CG) and EEG measures, the
additional multivariate data are grouped in four domains, two belonging to qualitative
data while the other two are quantitative. Qualitative data are the subject traits groups
domain (TG = FFMQ, DASS, ERQ) and emotional states group domain (SG = TMS, POMS).
Quantitative emotional states are divided into the skin response (GSR) and heart rate
variability (HRV) domains. Each one of these domains and its respective features is detailed
in Appendix A.

Statistical Analysis. Statistical analysis was performed using the R language. Sig-
nificance was assumed if p < 0.05 (two-tailed). Demographic data at pre-intervention (T0,
referring to the moment right before starting the training session) were compared between
groups with one-way ANOVA or χ2 test with Fisher exact correction. Significant group
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effects at Bin EC and EO baseline tasks were further explored to locate group differences
in band profile using one-way ANOVA. RM ANOVAs were calculated for each condition
(REST EC, REST EO, and NFT EO) and frequency band (theta, alpha, SMR, beta) with
time (Bin versus Bout) as within-subject factors, and the intervention group (EG vs. CG)
as between-subject factor. Only time effects, group main effects, and interactions with a
group are reported. For the main outcomes, mean difference and 95% confidence interval
[95% CI] are reported. Effect sizes are reported as partial eta-squared (ηp

2), with effects
interpreted as small (0.01), medium (0.06), or large (0.14). Afterwards, to perform single
session analysis, individual NFT performance was quantified by regression slopes of the
trained alpha feedback frequency across the intervention blocks B1 to B4 (regression slopes
have a mathematical component of within and between tasks). For that, B1 to B4 were
further break down in EO only tasks and EC only tasks, culminating in 3 tasks per subject:

“restBin”, the baseline REST task to get the initial threshold at Bin; “nft1”, the first NFT task
preceded by priming (in the EG) or no-priming (in the CG) and “nft2”, the second block of
NFT preceded by priming or no-priming. Regression slopes were estimated individually
(predictor variable = feedback task number; dependent variable = z-transformed power
of alpha) and subsequently averaged per group domain (based on [30]). Additionally,
to verify group domain effects on NF learning apart from priming (EG) and no-priming
(CG), the same alpha regression analysis was performed on two subgroups of participants
according to the features in each domain. Each feature (qualitative or quantitative variable)
was converted into a dichotomous variable: high value (HV) and low value (LV), represent-
ing the groups above and below the best central measure, respectively. We found that the
best central measure was mean = (maximum + minimum)/2 for the quantitative regression
slopes and the qualitative data of the 60 participants. As such, the statistical hypothesis
testing was centred on comparing the regression slopes from each group of HV with LV,
HV with zero, and LV with zero. When considering the grouped frequency distribution of
HV in the different domains (represent how frequent each HV value occurred within each
domain), we selected features with similar HV frequencies in both EG and CG and with
nine or more subjects (at least ≈ 1/3 of the EG and CG sample) for balanced comparisons
because we are not only comparing with zero slopes but also HV versus LV. One-sample
t-tests were calculated for each group to test whether the regression slope is different from
zero and between groups to test whether the two regression slopes are different. Only
features with significant time effects, group main effects, and interactions with groups
are reported.

3. Results
3.1. Group Characteristics

At pre-intervention before the training session starts, T0, there were no differences
between the intervention groups (EG, CG) in age, gender, and education, see Table 1. There
were no baseline differences between groups at Bin in alpha and SMR power during EO
and EC tasks in the Pz electrode (using the log10 transformation). However, there were
some baseline differences between groups in theta EC (p < 0.05) and beta EC (p < 0.01) and
EO (p < 0.05). The number of artefact-free segments was always above 40% of the total
task segments.

3.2. EEG Power Spectrum at Pre and Post Priming Intervention

RM ANOVA results for each condition and frequency band are shown in Table 2.
Log10-transformed EEG power spectra of theta, alpha, SMR, and beta frequency bands at
pre- (Bin) and post- (Bout) priming intervention are shown in Figure 4.

Looking at Table 2, the main findings in all the population were a significant decrease
between Bin and Bout for the REST EC condition in alpha and beta and an increase in SMR,
while for the REST EO a significant increase in theta, alpha, SMR, and beta. As for the NFT
EO, a significant increase in theta and alpha was observed. A significant interaction T × G
(time × group) was found for theta value on the REST EC task, while the value of theta
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in CG group decreases from Bin to Bout. In the EG group, this value is slightly increased.
This last result can be confirmed in Figure 4, as well as the similar behaviour of the EG and
CG between Bin and Bout.

Table 1. Group characteristics at preintervention (T0) (for n = 60).

EG (n = 30) CG (n = 30) p-Value

M SD M SD F p

Demographic
Age (years) 28.87 7.40 27.50 6.38 0.587 ns
Gender (F/M) 18/12 19/11 0.00 a ns
Education

(9/12/15/17/21) 0/3/10/12/5 0/8/8/11/3 5.01 b ns

Conditions
ES (ES1/ES2) 16/14 15/15 0.0 a ns
SS (RS/PS1/PS2) 0/15/15 30/0/0 - c - c

Baseline Bands
theta (EC/EO) −0.02/−0.16 0.28/0.2 0.27/−0.05 0.42/0.24 9.75/3.92 **/ns
alpha (EC/EO) 0.52/−0.015 0.61/0.47 0.82/0.19 0.56/0.45 3.90/3.04 ns/ns
SMR (EC/EO) −0.15/−0.35 0.55/0.40 −0.07/−0.28 0.55/0.38 0.23/0.53 ns/ns
beta (EC/EO) −0.75/−0.94 0.27/0.23 −0.56/−0.79 0.28/0.22 7.31/6.30 **/*

EG, experimental group; CG, control group; M, mean; SD, standard deviation; EC, eyes closed; EO, eyes open; F,
female; M, Male; ES, eyes sequence; ES1 and ES2, eyes sequence 1 and 2; SS, stimuli sequence; RS, REST sequence;
PS1 and PS2, PRIME sequence 1 and 2. Education level values refer to the number of participants (n) reporting the
number of years completed in one of the following five-category: (1) n ≥ 9, ninth grade; (2) n ≥ 12, Secondary; (3)
n ≥ 15, Bachelor’s degree; (4) n ≥ 17, Master’s degree; (5) n ≥ 21, Ph.D. Significant tests are marked with asterisks
(* p < 0.05, ** p < 0.01). a χ2 (df = 1); b χ2 (df = 5). Stimuli sequence (SS) is intended to be different for the CG and
the EG.

Table 2. RM ANOVA of pre-(Bin) and postintervention (Bout) power spectra for three conditions.

Task
T T × G

F ηp
2 Bout-Bin F ηp

2

REST EC theta 3.98 0.06 −0.050 4.86 * 0.08
alpha 5.04 * 0.08 −0.061 0.01 <0.001
SMR 4.67 * 0.09 0.054 <0.001 <0.001
beta 4.45 * 0.07 −0.033 2.13 0.04

REST EO theta 8.89 ** 0.13 0.056 0.64 0.01
alpha 18.17 *** 0.24 0.096 0.07 0.001
SMR 33.62 *** 0.38 0.015 0.61 0.01
beta 5.21 * 0.08 0.033 0.01 <0.001

NFT EO theta 4.41 * 0.07 0.039 0.77 0.01
alpha 20.67 *** 0.26 0.109 0.65 0.01
SMR 0.02 <0.001 0.015 0.02 <0.001
beta 0.79 0.01 0.012 0.17 0.003

REST, the rest task; NFT, the alpha neurofeedback training; EC, eyes closed, EO, eyes open; T, time; G, group.
Bout-Bin, the difference between log10 means from the 60 subjects. Significant tests are marked with asterisks
(* p < 0.05, ** p < 0.01, *** p < 0.001).
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3.3. NFT Performance in Different Group Domains at Intervention Blocks

As demonstrated in the previous section, results from EO tasks require a different
analysis from EC tasks. Therefore, the tasks were analysed separately, as described in
Section 2.9.

Regarding the analysis of no-priming (CG) and the priming (EG) results, both groups
increased their alpha during EO (voluntarily) and decreased during EC after one session
of NFT (Figure 5). These changes were reflected by linear increase and decrease of the
power, respectively, matching the results discussed in the previous section at pre- and
post-intervention (Figure 4)
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Figure 5. Z-transformed EEG power at intervention blocks. Alpha z-transformed power over the
baseline (restBin) and NFT tasks for EO condition and EC at intervention blocks (nft1 and nft2). Three
regression slopes are presented separately for CG and EG. Additionally, the regression equations are
depicted as well as the regression lines for each group are indicated by thinner lines. The regression
slopes at intervention blocks show a significant alpha increase for the EG in the EO condition. In
contrast, the EC condition shows a similar downregulation of alpha in both groups.

When individual alpha was regressed on EO NFT tasks, 24 out of 30 EG (80%) partic-
ipants and 17 out of 30 CG (57%) participants were able to linearly increase their alpha,
as suggested by positive individual regression slopes. Checking further, considering half
of the maximal slope as the threshold (0.80 = 45.83◦) instead of a zero slope, 12 out of 24
(50%) EG participants and 6 out of 17 CG (35%) were able to increase above this slope.
One sample t-tests revealed that regression slopes in the EG (t(29) = 4.38, p < 0.001) were
significantly larger than zero, while the CG were not (t(29) = 1.18, p > 0.1). We also directly
compared the slopes between groups. A t-test revealed a significant difference between
the slopes of the EG and CG (t(58) = −2.10, p < 0.05). We have similar results for the EC
NFT tasks, as 24 out of 30 EG participants and 24 out of 30 CG participants had negative
regression slopes. From these, 17 out of 24 EG and 16 out of 24 CG (~70%) participants had
greater negative slopes than half the minimal slope (−0.72 = −41.14◦). One sample t-tests
revealed that regression slopes in the EG (t(29) = −5.53, p < 0.000001) and CG (t(29) = −4.50,
p < 0.001) were significantly smaller than zero. A t-test revealed no difference between the
negative slopes of the EG and CG (t(58) = 0.62, p > 0.05). As such, we decided to only verify
in EO condition the existence of group domain effects on NF learning apart from the EG
and CG.

To verify the group domain effects, the first column of Table 3 depicts the HV frequency
distribution of each significant domain feature (according to the methodology described in
Section 2.9). The subsequent columns represent the average alpha power slope for the HV
and LV groups and their t-test’s. Considering the alpha regression slope, in the TG domain,
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the EG with LV of “actware” (those acting with less awareness) at T0 (pre-intervention)
were the most effective on increasing alpha power in the EO condition. For the SG domain,
LV of reported “vigour” at Bout in the EG led to the most significant EO NFT performance
in this domain, followed by HV of “decentering” at Bin and HV of “tension” changes (as the
difference Bout-Bin). While for the CG, LV of “fatigue” changes (as the difference Bout-Bin)
led to the most significant EO NFT performance, followed by LV “confusion” changes.
Considering the GSR regression slopes at intervention blocks, the EG participants with LV
of “scl std” (standard deviation of the tonic baseline skin conductance level), as well as those
with LV of “scr sumResp” slope (sum of the amplitudes of phasic event skin conductance
responses) had better efficacy on increasing alpha power during EO NFT performance.
While for the CG participants, those with HV of “scl mean” (mean of the tonic baseline skin
conductance level) led to significant alpha slopes during EO NFT. Considering the HRV
domain, the alpha power slopes (55 subjects because of missing HRV values) during the
EO NFT performance were most significant for the EG participants with LV of “rmssd” (it
reflects high-frequency influences on HRV—fast or parasympathetic, those influencing
larger changes from one beat to the next). In contrast, the CG participants with HV of

“sdnn” significantly decreased alpha during EO NFT performance.

Table 3. Table by domain at intervention blocks. Alpha z-transformed power over the baseline
(restBin) and NFT tasks for EO condition at intervention blocks (nft1 and nft2).

Domain Feature HV Frequencies
(EG/CG)

EO EG
[HVp1/LVp2]p3

EO CG
[HVp1/LVp2]p3

TG FFMQ actaware 13/16 [0.16/0.79 ***] ++ [0.35/−0.08]

SG TMS decentering (Bin) 18/19 [0.69 ***/0.27] [0.07/0.29]
POMS Vigour (Bout) 13/15 [0.2/0.76 ***] + [0.22/0.09]

POMS confusion (Bout-Bin) 12/13 [0.64 **/0.44 *] [−0.23/0.44 *] ++

POMS fatigue (Bout-Bin) 18/21 [0.48 **/0.58 *] [−0.06/0.63 *] +

POMS tension (Bout_Bin) 17/20 [0.69 ***/0.3] [0.04/0.38]

GSR GSR scl_mean 19/15 [0.39 */0.74 **] [0.46 **/−0.15] +

GSR scl_std 15/17 [0.36/0.68 ***] [0.1/0.22]
GSR scr_sumResp 11/10 [0.4/0.59 ***] [0.24/0.11]

HRV HRV sdnn 15/15 [0.48 */0.56 *] [0.44 */−0.12] +

HRV rmssd 14/9 [0.35/0.69 ***] [0.23/0.17]
HV, high value, LV, low value; All, EG and CG subjects; EO, eyes open, EC, eyes closed; EG, experimental priming
group; CG, control no-priming group. HV frequencies (the frequency distribution) represent how frequently each
HV value occurred within each EG and CG domain. Total sample = 60; EG = 30; CG = 30; Total HV = EG HV + CG
HV; Total LV = 60—Total HV; EG LV = 30—EG HV; CG LV = 30—CG HV. Note for HRV data: Total = 55, EG = 28
and CG = 27. Statistically significant non-zero regression slopes, p1 and p2, marked with an asterisk (* p < 0.05,
** p < 0.01, *** p < 0.001). Statistically significant differences between the two regression slopes from HV and LV,
p3, groups are marked with a cross (+ p < 0.05, ++ p < 0.01, +++ p < 0.001). Green represents the significant results.

4. Discussion

We investigated the ability to gain control over one’s brain with the assistance of
priming MM techniques right before NFT runs, compared to the no-priming REST tasks.

In this single session design, as initially predicted, the behaviours at pre- and post-
priming intervention are similar between the EG and CG. Nonetheless, the EG during the
EO intervention blocks showed an improved ability to control their brain activity compared
to the CG. While for the EC blocks, a downregulation on both groups was evident. As such,
in EC condition, we need further analysis to separate intervention feature changes from
the possible downregulation reflex occurring in the Pz channel after closing the eyes, as
physiologically expected. Alpha activity in the EEG is dominant during an eyes-closed
resting condition and is suppressed during visual stimulation [22,78]. Additionally, the
profile of theta power is always lower than alpha (see Figure 4). This result is generally the
case in adults during normal wakefulness and, in this case, focus on tasks [90].
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Furthermore, within the EG, the most significant subjects on increasing alpha power
during NFT had low values of the awareness trait (at pre-intervention) and reported more
signs of built-up tension and less “vigour” at the end of the experiment protocol (Bout). As
such, subjects with a low capacity to act with awareness benefited more from priming, and
the demand for focused attention on internal sensations through guiding audio increased
the subject’s emotional state of tension and lack of vigour. In contrast, the CG participants
didn’t express these emotional states, as they were not guided and were only required to
stare at the screen. Another distinctive EG feature is the higher decentering at Bin, which
is connected to the learner’s “optimal” state. It reflects higher situational self-awareness
(self-regulated awareness of thoughts and feelings), i.e., a capacity of non-judgement
by avoiding distractive task-unrelated thoughts—“awareness of one’s experience with
some distance and disidentification rather than being carried away by one’s thoughts and
feelings” [86].

Concerning the GSR biomarkers, the EG participants with low changes of SCL stan-
dard deviation from the baseline (an almost zero slope between “baseline”, “nft1” and

“nft2”) and low changes of SCR sum seem to perform the best. This finding seems to be in
line with the literature, since lower values of SCL standard deviation and SCR sum during
task performance usually reflect less arousal (diminished stimulation of the sympathetic
nervous system) and perhaps, explaining a less stressful, relaxed, and non-judgement
attitude (towards stimuli, thoughts or feelings) during task performance [91,92]. Con-
cerning the HRV metrics, the EG participants with low changes of HRV “rmssd” values
from the baseline (low high-frequency variations of vagal parasympathetic components)
performed better, and it might show a more effective task engagement of the subject dur-
ing the NFT task [93,94]. In contrast, the CG performers had an increase of SCL mean
and an increase of HRV “sdnn”. In the case of HRV, the literature suggests that a higher
baseline HRV is related to concomitants of better self-control and higher vagal withdrawal
scores to better attention control and emotional regulation [94–96]. As such, the biomarker
results seem to suggest that mindfulness priming stimulates engagement and a relaxed
and non-judgement attitude in alpha NFT performers. Nonetheless, these claims must be
interpreted with caution, as there is still observable publication bias.

General Discussion and Future Proposals

This work demonstrates a significant effect in priming versus no-priming on NFT
performance. In future priming designs, the priming stimuli sequence can be adjusted to
the subject’s performance in real-time instead of the current protocol’s random mindfulness
priming sequence. While priming protocols lack some consistency and are not yet ready
to be implemented on final products like SR serious games, they potentially provide an
essential layer of personalization and mutual game-player adaptation. Actually, a review
of attention-deficit hyperactivity disorder (ADHD) randomized control trials indicated that
the long-term effects of personalized NF interventions were superior to non-personalized
NF [97]. To optimize self-regulation learning, future work will also address the use of neural
networks to learn the sequence of stimuli that leads the subject towards their personalized
“optimal” state (e.g., using reinforcement learning, deep learning for time series forecasting
with long short-term memory networks, multilayer perceptron’s, convolutional neural
networks, between others). The framework should adapt to the user pace (even slow down
user pace if needed) and regulate/control the user’s brain state according to the target.

Mindfulness priming seems to facilitate learning in the current single session context,
while REST tasks do not. Thus, REST tasks do not seem to be the best primer for this
type of protocol. We find it imperative for baseline primer tasks to be discussed and
improved since the instruction “try to relax” and even “focus on the cross” does not seem
sufficient to diminish self-related mental processes and target a relaxed or/and attentive
state (also discussed by Davelaar et al. [26])—leading to uncertain brain states. Although
the baseline REST task is often used as a predictor of NFT performance [22,35], the difficulty
in monitoring its effects on the brain and emotional states is still meaningful. Therefore,
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the assumption that a guided instructional approach based on mindfulness techniques can
better target a relaxed and focused attention state seems valid. Thus, it is a step further for
a more consistent NF operant protocol.

In summary, we addressed the proposed questions in the present work. Regarding
the fundamental question, “Does priming with external stimulation affect the self-regulation of
NF?”, we were able to find significance in priming with MM external neurostimulation.
Priming increases the number of subjects with better NFT performance during intervention
blocks. As such, some implicit factors in priming were affecting the explicit control of NFT,
especially in subjects with a low self-awareness trait. Concerning the mental target state,
the hypothesized “optimal” target state seems to correspond to the actual state needed
for the learner to self-regulate brain activity, i.e., situational self-awareness (“decentering”,
a non-judgement attitude towards stimuli, thoughts, or feelings) and task engagement.
Following this answer and regarding the stimuli, it seems that MM stimuli are a significant
primer to arrive at the “optimal” target. Indeed, the best performers from the EG showed
distinct emotional state from the best performers of the CG, as qualitatively analysed by
the self-reports’ dimensions (“decentering”,” vigour”, “tension”) and quantitively by the
GSR (SCL SD, SCR sum) and HRV (“rmsdd”) domains. Measurement-wise, the EEG log10
transformed amplitudes, and z-transformed regression slopes seem suitable to track session
changes. Nevertheless, future publications will consider other measurements, e.g., the
percent time spent in the desired brain state by Vernon and Dempster [77], because it reflects
different aspects of brain activity. The percent of time reflects slight differences within the
training that are temporally stable, while amplitude reflects brief and unstable increases
over time. In the trait self-reports, the “actware” of FFMQ predicts that low self-awareness
users will significantly benefit from priming. Regarding the subjective experience, it seems
essential to target the “decentering” dimension of the TMS scale, and the POMS scores
seem to quantify the moods relative to the intervention correctly. Moreover, HRV and GSR
features seem to correctly separate some emotional states between the EG best performers
and the CG best performers. As such, MM priming seems to target mechanisms that
scaffold the subject into a superior NF operant. In the future, such mechanisms still need to
be discriminated from NF-specific (related to training a target neurophysiological variable),
NF non-specific (dependent on the NF context, but independent from the act of controlling
a particular brain signal), or general-non-specific mechanisms (including the common
benefits of cognitive training as well as psychosocial influences) [16].

We should also not forget that this framework will not substitute other self-regulation
mind-body techniques, such as physical exercise, musical training, and meditation, among
others. We consider this framework a mechanistic approach to SR techniques, a researching
tool for priming the capacity to self-regulate on SR serious games for therapy, performance,
and entertainment.

5. Conclusions

This study developed a human-computer framework to assist the SR of NF, aiming to
decrease the number of unsuccessful practitioners (non-responders/non-learners) of SR
tasks. The assistance was done by priming the subject with mindfulness guided instructions
right before the explicit NFT. This intervention was the first step to demonstrate that
priming with external stimulation assists NF SR in serious games design and potentially
turns NFT non-responders into responders. The main results showed that priming with
mindfulness stimuli enables higher significance of EEG target self-regulation during the EO
priming intervention blocks in a single session design. Additionally, from the self-reports
and biomarkers, the most significant priming performers had low values of the awareness
trait at pre-intervention, showed a higher “decentering” (situational awareness) at the end
of the first block (Bin), and reported signs of built-up tension and less “vigour” at the end of
the experiment protocol (Bout). As such, especially on subjects with a low capacity to act
with awareness, the demand for focused attention on internal sensations through guiding
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audio seems likely to implicitly support the subject’s emotional regulation capacity. In turn,
it should increase NFT task engagement and target situational awareness.

Nonetheless, there are remaining questions to be solved that should be addressed in
further experiments. In the future, we should be able to: experiment the priming effects
in a multi-session design and check if they are only crucial for the first session of the
NFT or if they support the subject throughout the multi-session; test different temporal
designs to find the best design for this type of framework; find the “optimal” mechanisms
that should be primed and validate stimuli able to prime them; test if MM audio-guided
is the “optimal” stimuli at priming NF SR mechanisms or if other categories of stimuli
or stimuli personalization have better efficacy in leading the subject into the “optimal”
learning state; evaluate the hypothesis that non-responders/non-learners depend on the
priming protocol personalization, i.e., that non-responders/non-learners can be turned
into a responders/learners. In this way, we are trying to answer that brain activity self-
regulation can be scaffolded by implicitly priming the “optimal” state at pre-NFT, limiting
the number of non-optimal mechanisms, and potentiating optimal mechanisms that affect
NF SR performance.

Scaling up this priming assistance research, we envision a machine controller that
uses neural networks to classify and select the required neurostimulation to arrive at
the desired target—this way, outsourcing the difficulty of sensing the correct mental
strategies. Moreover, the machine controller should assist the participant to gravitate/walk
towards the desired mental state by implicit neurostimulation, which can affect explicit
self-neuromodulation.

In conclusion, we took the first steps towards a better NF operant. Showing that
priming with mindfulness stimuli enables higher significance of EEG target self-regulation
in a single session. In this way, we find appropriate further research of priming right before
NFT for a more precise methodology in this field.
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Appendix A

Appendix A.1. EEG Features

Sample rate: 1000 Hz.
Feature region of interest (ROI): Pz.
Features extracted per subject:

• [theta, alpha, SMR, beta]: list of bands extracted.
• epoch_a: epochs array of each task = [[band mean, standard deviation] . . . , [n-epoch]].

Bands power spectrum density (PSD) is calculated from 1000 samples per second.

The measure used to detect brain activity changes due to neurofeedback [89]:

• Mean: changes in absolute values of frequency band mean amplitude (power spectra
measures were log10-transformed to obtain normally distributed data), reflecting brief
and temporally unstable increases over time from the learner.

Appendix A.2. GSR Features

Sample rate: 100 Hz.
Features extracted per subject:

• epoch_a: epochs array of each task = [[TIMESTAMP, SAMPLE_COUNTER, GSR_VALUE,],
. . . , [n-epoch]]. Each epoch is 1 sample of GSR value, calculated from the 100 samples
per second.

Tonic GSR Features, skin conductance level (SCL) [91,92]:

• scl_mean: GSR mean per task.
• scl_std: GSR standard deviation per task.

Phasic GSR Feature, skin conductance responses (SCR) [91,92]:

• scr_sumResp: sum of response amplitude per task.

Appendix A.3. HRV Features

Sample rate: 100 Hz.
Features extracted per subject:

• epoch_a: epochs array of each task = [[TIMESTAMP, SAMPLE_COUNTER, BPM_VALUE,
RR_VALUE], . . . , [n-epoch]]. Each epoch is 1 sample of RR value, calculated from the
100 samples per second.

Time Domain Features [93,98]:
Mainly used on long-term recordings (24 h), but some studies use some of these

statistical features on short term recordings such as in our case, from 1 to 5 min window.

• sdnn: The standard deviation of the time interval between successive normal heart
beats (i.e., the RR-intervals).

• rmssd: The square root of the mean of the sum of the squares of differences between
adjacent NN-intervals. Reflects high frequency (fast or parasympathetic) influences
on HRV (i.e., those influencing larger changes from one beat to the next).

Appendix A.4. Self-Reports Features

The reader can check out the digital forms at the following links:

• First questionnaire at T0 (pre-intervention): https://forms.gle/2uT7f7oH3pd4c9FD9
(accessed on 21 August 2021).

• Second questionnaire at Bin: https://forms.gle/nQNRQkBWEVtbKySo8 (accessed on
21 August 2021).

• Third questionnaire at Bout: https://forms.gle/k1zVwzwVacu7hBYRA (accessed on
21 August 2021).

https://forms.gle/2uT7f7oH3pd4c9FD9
https://forms.gle/nQNRQkBWEVtbKySo8
https://forms.gle/k1zVwzwVacu7hBYRA
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Appendix A.4.1. Traits (TG)

See the form online (1st questionnaire).

FFMQ

Five dimensions were obtained by summing the items: [describe, observe, nonjudge,
actaware, nonreact].

(R) = reverse item.

• Observe. “I notice the smells and aromas of things.”
• Describe. “I am good at finding words to describe my feelings.”
• Actaware (acting with awareness). “I find myself doing things without paying aware-

ness attention” (R).
• Nonjudge (nonjudging of inner emotions). “I think some of my emotions are bad or

experience inappropriate and I should not feel them”(R).
• Nonreact (nonreactivity to inner emotions). “I perceive my feelings and emotions

experience without having to react to them.”

ERQ

Two dimensions were obtained by summing the items: [cognitive reappraisal, expres-
sive suppression].

• Cognitive reappraisal. Where a person attempts to change how he or she thinks about
a situation in order to change its emotional impact.

• Expressive suppression. “I keep my emotions to myself”—where a person attempts to
inhibit the behavioural expression of his or her emotions.

DASS

Three dimensions were obtained by summing the items: [stress, anxiety, depression].

Appendix A.4.2. Sates (SG)

TMS

Two dimensions obtained by summing the items: [curiosity, decentering].
Decentering: awareness of one’s experience with some distance and disidentification

rather than being carried away by one’s thoughts and feelings.
Curiosity: reflect awareness of present moment experience with a quality of curiosity.

POMS

Four dimensions obtained by summing the items: [tension, fatigue, vigour, confusion].

• Tension: state of preoccupation and muscle tension.
• Fatigue: state of tiredness, inertia, boredom.
• Confusion: state of confusion.
• Vigour: state of energy and physical and psychological vigour.
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